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Abstrat. In this paper we improve a goal-direted E-uni�ation pro-

edure by introduing a new rule, Cyle, for the ase of ollapsing equa-

tions, i.e. equations of the type x � v where x 2 V ar(v). In the ase

of these equations some obviously unneessary in�nite paths of infer-

enes were possible, beause it was not known if the inferene system

was still omplete if the inferenes were not allowed into positions of x

in v. Cyle does not allow suh inferenes and we prove that the system

is omplete. Hene we prove that as in other approahes, inferenes into

variable positions in our goal-direted proedure are not needed.

1 Introdution

E-uni�ation problems appear when one has to deide or �nd solution to an

equation between �rst-order terms or a set of suh equations modulo an equa-

tional theory. Preferably, we would like to have a proedure whih would be able

to enumerate all possible solutions, or a set of most general ones. Alas, this prob-

lem is in general undeidable. But trying to solve suh problem by brute fore,

e.g. using axioms of ongruene relation and Resolution, would produe an in-

�nitely many useless inferenes even in deidable ases. E-uni�ation problem is

in general semi-deidable, and there exist omplete semi-deision proedures to

solve it. In view of the undeidability, inventing new, better proedures for a gen-

eral E-uni�ation, have an important pratial aim: to understand the problem

to suh a degree, as to be able to distinguish useful ases of deidable equational

theories. [4℄, [5℄, [6℄ are examples of suh results.

The result presented in this paper will hopefully open a way to detet even

more deidable equational theories, beause the improvement presented here for

an E-uni�ation proedure redues in a dramati way the degree of a "don't

know" type of non-determinism involved. Namely, it prevents some unneessary

in�nite sequenes of inferenes, whih were possible in our previous E-uni�ation

proedure [7℄ in ase of ollapsing goal equations, i.e. the equations of type x � v,

x 2 V ar(v). The result presented in this paper may be stated as follows: in our

goal-direted E-uni�ation proedure, just as in some other, rival approahes,

inferenes into variable position are not needed.
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Most of these other E-uni�ation proedures used nowadays are based on

Knuth-Bendix ompletion of an equational theory, and narrowing of goal equa-

tions. We would like to argue, that a di�erent approah, goal-direted, with the

improvements presented in this paper is in some ases better than the former.

In ontrast to the proedures based on ompletion, a goal-direted approah to

E-uni�ation onsists in transforming a set of goal equations, without hang-

ing an equational theory, E. Hene the goal-direted approah is better, when

ompletion of E produes many equations that are unneessary for solving a

given goal. Moreover, a goal-direted approah does not require any ordering of

terms, whereas any proedure based on ompletion is sensitive to a hoie of

an order. Nevertheless up to now, this approah demanded some inferenes into

variable positions, whih generated muh of a troublesome, \don't know" kind

of non-determinism.

A goal-direted E-uni�ation proedure was �rst presented by Gallier and

Snyder in [2℄. Alas, they ould not sueed in proving the ompleteness of their

system. The diÆulty lay in justifying eager appliations of Variable Elimination

(Fig. 1). In [8℄ we have �nally proved that their system is in fat omplete. Please,

look up [9℄ for the details of the proof.

In [3℄, Gallier and Snyder replaed eager appliations of Variable Elimination

with Variable Deomposition (Fig. 1), alled by them Root Imitation there, and

Root Rewriting, whih is in fat our Mutate and Variable Mutate (Fig. 1). They

notied at one three main drawbaks of this system. First, \the possibility of

rewriting variables in Root Rewriting", seond, having to solve variable-variable

equations (equations of the type x � y) and third, \the potential for in�nite

reursion" in the Root Imitation if we have to solve an equations of the type

x � v and x ours in v. (f. [3℄, p. 233).

In [7℄, we have proved that there is really no need to bother with solving

variable-variable equations, sine they an be dealt with by tehniques of syn-

tati uni�ation after all other equations are solved.

In view of pereived diÆulties, in [3℄, Gallier and Snyder presented a di�erent

goal-direted inferene system, namely the one based on Lazy Paramodulation

inferene rule. Lazy Paramodulation has the following form:

fu � vg [G

fu

1

� s

1

; : : : ; u

n

� s

n

; u[t℄

�

� vg [G

where fu � vg [ G is a set of goal equations, f(s

1

; : : : ; s

n

) � t is a renaming

of an equation in an equational theory E (f(s

1

; : : : ; s

n

) � t 2 E) and uj

�

=

f(u

1

; : : : ; u

n

) or

fu � vg [G

fuj

�

� x u[t℄

�

� vg [G

where x � t 2 E and uj

�

is not a variable, (f. [3℄, page 242).

This presentation orresponds to assuming that the leftmost, highest step

in a proof of u� � v� is at position �, where � is an E-uni�er of u � v. In

this paper, we have a di�erent approah, i.e. we look for the rightmost step
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in a proof. Apart from this, our Mutate and Variable Mutate is exatly Lazy

Paramodulation when � = �.

In fat, Gallier and Snyder onjeture, that their system is still omplete if

Lazy Paramodulation is restrited so that it applies only when either � = � or

one of u, v is a variable (f. [3℄, page 247).

The reader an view the result presented in our paper, as proving their on-

jeture in the ontext of our system with Variable Elimination eagerly applied.

we introdue a new rule, Cyle, whih an be viewed as Lazy Paramodulation

with Deomposition on equations of the form x � v, where x ours in v. More-

over, we don't need Lazy Paramodulation for other equations of the form x � v,

beause for them we use Variable Elimination eagerly.

We use a similar kind of analysis of equational proofs whih enabled us also to

prove ompleteness of the inferene system with the rule Variable Elimination

eagerly applied in [8℄. We are using a similar, though simpli�ed, de�nition of

paths and a new transformation on equational proofs to justify our new Cyle

rule. We use a smarter way to ount paths.

The plan of the paper is the following: after preliminary de�nitions whih

desribe properties of equational proofs, we present the inferene rules for a

proedure solving E-uni�ation problems. Next we will present and explain op-

erations on equational proofs and a proedure Solve whih given a solution, yields

an E-equivalent solution for a goal. Then we will prove that a new solution must

be smaller than the old one in some respet. Hene, we will de�ne a measure

of a goal with an E-solution, whih is dereasing with an inferene rule of E-

uni�ation proedure with a new Cyle rule, applied to a goal and thus enables

us to prove the ompleteness of our proedure.

2 Preliminaries

Reader should onsult [1℄ for standard de�nitions of term, ground term, substi-

tution, ground substitution, position in a term, subterm. If t is a term, and p

a position de�ned in this term, t[s℄

p

means a term t with a subterm s at posi-

tion p. Furthermore, t[s

1

℄

p

1

: : : [s

n

℄

p

n

means a term t with subterms s

1

; : : : ; s

n

at

parallel positions p

1

; : : : ; p

n

.

We will onsider equations of the form s � t, where s and t are terms.

Throughout this paper these equations are onsidered to be oriented, so that

s � t is a di�erent equation than t � s. Let E be a set of equations, and u � v

be an equation, then we write E j= u � v (or u =

E

v) if u � v is true in any

model ontaining E. We all E an equational theory, and assume that E is losed

under symmetry. A goal (E-uni�ation problem) is usually denoted by G and it

is a set of equations. E j= G means that E j= e for all e in G.

We will be onsidering ground terms as ground objets that may or may

not have the same syntati form. In other words we will be onerned with the

ourrenes of the terms more than their values. A term may be identi�ed by

its address in a proof sequene and a position of it as a subterm in a term in the

proof. Hene the equality sign between ground terms is treated in a speial way.
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If u; v are ground terms, by u = v, u is understood to be an objet idential with

v, whereas when syntati equality is suÆient, it will be denoted by u == v.

Syntati inequality will be denoted by u 6== v. The di�erene between identity

and syntati identity is that the �rst involves objets and the seond involves

names.

We an say that a variable x points to its ourrenes in a term u, where eah

of these ourrenes under some ground substitution , is a subterm of u at a

position � (x = uj

�

). Di�erent ourrenes of the same variables are di�erent

objets, though they have the same syntati form (eah one is of the form x).

In order to distinguish between di�erent ourrenes of the same variable, we

will use supersript numbers, usually numbering the ourrenes from left to

right in order of their appearanes in an equational proof. Hene x

1

and x

2

are di�erent ourrenes of x in a proof.

Sometimes we will want to state that some subterm has a form (or value) of

x, but is not idential to x (hene is not pointed to by a variable x). This will

be indiated by quote marks. Hene w[\x"℄

�

is di�erent from w[x℄

�

sine in

the seond term x atually ours at position �, while in the �rst one there is

only a subterm that has the value of x.

If  is a ground substitution, 

x

means the restrition of this substitution to

a variable x. Hene if  = [x 7! a; y 7! b; z 7! ℄, 

x

= [x 7! a℄.

E-uni�ation problem is given as an equational theory E is a set of goal

equations G and we want to �nd a substitution  suh that E j= G.  is then

alled a solution. In the ompleteness proof of our proedure, we will assume that

there is a ground substitution  suh that E j= G. This is suÆient in order to

show that the proedure omputes a omplete set of most general solutions for

G. But if suh substitution  exists, there is a ground equational proof � for all

equations in G. We de�ne here equational proof in a more lassi way than in

[8℄.

De�nition 1. (equational proof)

Let E be a set of equations. An equational proof of an equation u � v, where u

and v are ground terms, is a series of ground terms, � = (w

1

; w

2

; : : : ; w

n

), suh

that:

1. u = w

1

, v = w

n

,

2. for eah pair (w

i

; w

i+1

) for 1 � i � (n� 1), there is an equation s � t 2 E

and a mather �, suh that there is a subterm w

i

j

�

of w

i

and a subterm

w

i+1

j

�

of w

i+1

, and w

i

j

�

= s�, w

i+1

j

�

= t�.

We an write the equational proof as

u = w

1

�

[�

1

;s

1

�t

1

;�

1

℄

w

2

�

[�

2

;s

2

�t

2

;�

2

℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;�

n�1

℄

w

n

= v

where u and v are not neessarily ground terms, but  makes them ground.

[�

i

; s

i

� t

i

; �

i

℄ indiates at what position �

i

is the mathing subterm, whih

equation from E was used (s

i

� t

i

), and how the variables in this equation were

substituted (�). Eah w

i

in the above sequene is alled a term in the proof,

as distint from any proper subterms of w

i

, whih are not ounted as terms
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in the proof. Sine an equational proof is a sequene of ground terms, we will

sometimes use the notation borrowed from that for arrays, and � [i℄ will mean

the i'th term in � .

Sine every mather at eah step uses a renamed version of an equation

from E, the domain of the mather is disjoint from the domain of  and the

domains of mathers at all other steps in the proof, we extend  to 

0

suh that:



0

=  [�

1

[ : : :[�

n

. From now on we will assume that  is an extended version

of itself.

For the purposes of the ompleteness proof in Setion 6, we have to extend

 even more. We de�ne general extension of .

De�nition 2. (general extension of )

Let  be a ground substitution. A general extension of , ex(), is de�ned reur-

sively as follows:

1. if 

x

= [x 7! v℄ and jvj = 1 (v is a onstant), then ex(

x

) = 

x

,

2. if 

x

= [x 7! f(v

1

; : : : ; v

n

)℄, and n � 1, then let 

y

i

= [y

i

7! v

i

℄, for

1 � i � n, and ex(

x

) = 

x

[ ex(

y

1

) [ � � � [ ex(

y

n

),

3. ex() =

S

x2Dom()

ex(

x

)

From now on we onsider  in (�; ) as the general extension of itself.

We have 3 kinds of variables now: the variables in a goal equation u � v,

alled goal variables, the variables in V ar(s

i

� t

i

), where there is a step in

� , � [i℄ �

[�;s

i

�t

i

;)℄

� [i + 1℄, alled system variables, and variables introdued

in general extension of , alled subterm variables.

For eah of the ourrenes of these variables we de�ne orientation. Let u � v

be a goal equation. If x is an ourrene of a goal variable in u, then this x

has right orientation (

!

x), if x is an ourrene of a goal variable in v, then

this x has left orientation (

 

x), if x is an ourrene of a system variable in

� [i℄ �

[�

i

;s

i

�t

i

;℄

� [i+1℄ and x ours in � [i℄, then this x has left orientation

(

 

x), and if x ours in � [i + 1℄, then this x has right orientation (

!

x), if

x is a subterm variable ourrene, hene x = yj

�

, then it has the same

orientation as y.

�

w�w

0

is a subproof in a proof � , if there is a part of � : � [i℄ �

[�

i

;s

i

�t

i

;℄

� [i+ 1℄ �

[�

i+1

;s

i+1

�t

i+1

;℄

� � � �

[�

i+k

;s

i+k

�t

i+k

;℄

� [i+ k℄, suh that for i � j �

i + k, �

j

� � or �

k

jj�, and �

w�w

0

is � [i℄j

�

� � [i + 1℄j

�

� � � � � � [i + k℄j

�

where w = � [i℄j

�

and w

0

= � [i+ k℄j

�

.

In a subproof �

w�w

0

we an distinguish internal and external variables. A

variable y is alled internal in �

w�w

0

if y 2 V ar(s � t), and there is a step

w

i

�

[�;s�t;℄

w

i+1

in �

w�w

0

.

We will use renamings of subproofs in the paper, but notie that renaming

of a subproof is a subproof in whih only internal variables are renamed.

With eah ourrene of a variable x in an equational proof, we assoiate a

subproof (alled a subproof assoiated with x), whih is the longest subproof

starting with x and going in the diretion of the orientation of x. The ground

term at the end of the subproof assoiated with x is alled a term assoiated

with x, ass(x).
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If we have a ground term w and a proof � of the form w

1

�

[�

1

;s

1

�t

1

;℄

w

2

�

[�

2

;s

2

�t

2

;℄

: : : �

[�

n�1

;s

n�1

�t

n�1

;℄

w

n

, and wj

�

== w

1

, for some position �

in w, then we an onstrut new equational proof�

0

of the form: w[w

1

℄

�

�

[��

1

;s

1

�t

1

;℄

w[w

2

℄

�

�

[��

2

;s

2

�t

2

;℄

: : : �

[��

n�1

;s

n�1

�t

n�1

;℄

w[w

n

℄

�

. We all this onstrution

embedding of the proof � in the term w.We an attah a proof �

0

to a given

equational proof � by embedding it into the last term of � , if the onditions

of the de�nition are met. Then the new proof obtained in this way is alled a

omposition of � and �

0

.

We de�ne a non-redundant equational proof as any proof � suh that there

are no two terms � [i℄ and � [j℄, with i 6= j and � [i℄ == � [j℄ in � , and all

proper subproofs of � are non-redundant.

A simple proedure of utting out loops out of subproofs in a proof allows us

to obtain a non-redundant proof from any redundant one. We all this ontra-

tion. From now on, we will assume for all the equational proofs we are going to

talk about that they are non-redundant. This property will be preserved in all

the onstrutions whih will be de�ned in the paper.

Sine eah ground solution  for a goal G in an equational theory E is always

assoiated with some equational proof � whih is a witness for the solution, we

will talk rather about a pair (�; ) than about  alone as a solution for a goal.

3 Transformation Rules

In this setion we present the inferene system for solving an E-uni�ation prob-

lem in any equational theory E. Any proedure based on these rules must be

non-terminating in some ases, beause the problem is in general undeidable.

In [8℄ we have proved that the set of rules presented in Figure 1 (with slightly

di�erent formulation of Variable Mutate) is omplete. An arbitrary seletion

funtion selets an equation u � v from the set of goal equations for an inferene.

Deomposition applies if both u and v are not variables and have the same

root symbol. Mutate applies if there is an equation s � t in E, suh that t is

not a variable and the root symbol of t is the same as root symbol of v (hene

v must not be a variable). Variable Mutate applies if there is an equation

s � x in E and v is not a variable. If v is a variable, and u is not, then Orient

applies. Variable Elimination applies if u is a variable and u does not our

in v. Notie that Variable Elimination is applied eagerly to suh an equation,

beause there is no other rule appliable in this situation. If u and v are idential

variables then Trivial deletes this equation from the goal.

If an equation of the form x � v is seleted, v is not a variable and x 2 V ar(v),

then we have a hoie.Mutate applies, if s � t 2 E suh that root symbols of v

and t are the same, or Variable Mutate applies, if s � x 2 E, or we an apply

Variable Deomposition.

Variable Deomposition may lead immediately to in�nite sequenes of infer-

enes, as in the following simple example:
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Deomposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is seleted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is seleted in the goal, and s � f(t

1

; � � � ; t

n

) 2 E.

a

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s[x 7! f(v

1

; � � � ; v

n

)℄g [G

where s � x 2 E, x is a variable, and u � f(v

1

; � � � ; v

n

) is seleted in the goal.

Variable Elimination Orient

fx � vg [ G

fx � vg [G[x 7! v℄

ft � xg [ G

fx � tg [ G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Variable Deomposition (for yle)

fx � f(t

1

; � � � ; t

n

)g [ G

fx � f(x

1

; � � � ; x

n

)g [ (fx

1

� t

1

; � � � ; x

n

� t

n

g [ G)[x 7! f(x

1

; � � � ; x

n

)℄

where x is a variable, x � f(t

1

; � � � ; t

n

)

Trivial

fx � xg [G

G

where x � x is seleted in the goal.

a

We assume that E is losed under symmetry.

Fig. 1. E-Uni�ation with eager Variable Elimination
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x � fx

x � fx

1

x

1

� fx

1

.

.

.

We need to break the sequene of Variable Deompositions applied to the

rightmost equation by applying Mutate or Variable Mutate, but we don't know

when, after how many steps, we should do it. Hene at this point non-termination

of our proedure does not depend only on semi-deidability of an equational

theory, but also on properties of the inferene rules.

Therefore we want to replae Variable Deomposition, Mutate and Variable

Mutate applied to ollapse equations, by another rule alled Cyle, whih will

not lead to suh immediate in�nite paths of inferenes. The rule is presented in

Figure 2.

Cyle

fx � v[v

1

℄

�

1

� � � [v

k

℄

�

k

g [ G

fx � v[x

1

℄

�

1

� � � [x

k

℄

�

k

g [

S

k

i=1

fM(x

i

� v

i

�)g [G�

where x � v[v

1

℄

�

1

� � � [v

k

℄

�

k

is seleted in the goal, x 2

V ar(v[v

1

℄

�

1

� � � [v

k

℄

�

k

), eah v

i

is a non-variable term, whih ontains

at least one ourrene of x, � = [x 7! v[x

1

℄

�

1

� � � [x

k

℄

�

k

℄.

M(x � f(v

1

; : : : ; v

n

)) =

8

>

>

>

<

>

>

>

:

fx � s; t

1

� v

1

; : : : ; t

n

� v

n

g;

where s � f(t

1

; : : : ; t

n

) 2 E;

x � s[y 7! f(v

1

; : : : ; v

n

)℄;

where s � y 2 E and

Fig. 2. Cyle Rule

Cyle applies to a goal with an equation of the type x � v seleted, where

x 2 V ar(v). There are possibly many ourrenes of x in v, hene v an be

written as v[x℄

�

1

� � � [x℄

�

l

, where �

i

is a position of i'th ourrene of x in v and

there are l ourrenes of x in v. All these positions are parallel to eah other,

hene eah �

i

and �

j

is suh that �

i

jj�

j

.
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For eah ourrene of x in v, we guess a subterm v

i

in v[x℄

�

1

� � � [x℄

�

k

at a

position �

i

, ontaining this x (hene �

i

� �

i

).

Hene v[x℄

�

1

� � � [x℄

�

l

an be represented as v[v

1

℄

�

1

� � � [v

k

℄

�

k

, where k � l,

beause we an guess a subterm v

i

ontaining more than one ourrene of x.

Cyle is a maro rule. One an view the e�et of Cyle as deomposing a

part of the term, by repeated appliations of the old Variable Deomposition

rule and Variable Elimination, whih would allow us to obtain a solved equation

x � v[x

1

℄

�

1

� � � [x

k

℄

�

k

and then performing Mutate or Variable Mutate on the

equations x

i

� v

i

obtained by this repeated Variable Deomposition.

The appliation of Mutate or Variable Mutate is represented by funtionM in

the de�nition of Cyle. M returns a set of equations obtained from its argument

by Mutate or Variable Mutate, depending on the form of equation hosen from

E. Notie that only in the ontext of M , Mutate or Variable Mutate is applied

to an equation of the form x � v.

In other words, Cyle performs Mutate or Variable Mutate at some position

de�ned in a given term v, while deomposing symbols at higher positions. Sub-

terms of v whih do not ontain x (we an all them irrelevant for x) are still

inside the term v[x

1

℄

�

1

� � � [x

k

℄

�

k

with whih x is eliminated.

Replaing Variable Deomposition, and Mutate and Variable Mutate as ap-

plied to yli equations by Cyle, redues nondeterminism of our proedure.

We have only �nitely many positions in v to guess. Hene e.g. in our previous

example we would have to try only two appliations of Cyle.

Mutate at root symbol of v (hene we guess that v[v

1

℄

�

), s � f(t) 2 E:

x � fx

x � x

1

x

1

� s t � x

1

Mutate at vj

1

, s � f(t) 2 E:

x � fx

x � fx

1

x

1

� s t � x

1

In another example, where x � fgx is our goal and a � gb is in E, we have

no hoie, but to apply Mutate inside the Cyle rule at fgxj

<1>

:

x � fgx

x � fx

1

x

1

� a b � x

1

4 Operations on Equational Proofs

Before proving ompleteness of the inferene system with Cyle for general E-

uni�ation, we have to de�ne operations on equational proofs that an transform

suh a proof into an E-equivalent equational proof. This means that if (�; ) is
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an E-solution for a goal u � v, and we obtain (�

0

; 

0

) by one of these operations,

then  =

E



0

and (�

0

; 

0

) is also an E-solution for a goal u � v.

We will de�ne here two suh transformations: extending and attening.

4.1 Extending a proof

If x is an ourrene of a variable in an equational proof � , and �

x�v

is a

subproof assoiated with this ourrene, then if x has no ourrenes in v, we

an extend the proof in all plaes where x has ourrenes in � with the sub-

proof �

x�v

. We all this operation extending equational proof with respet to

x � v. After this extension we get a new proof �

0

and a new substitution 

0

,

hene we write: (�; )

[x!v℄

�! (�

0

; 

0

). The formal desription of the operation of

extending a proof with respet to x � v is the following.

Let (�; ) be an equational proof with  an extended substitution for this proof.

Let x be an ourrene of a variable in �, �

x�v

a subproof assoiated in �

with this ourrene of x and v does not ontain ourrenes of x.

An equational proof �

0

is exatly as � with the following modi�ations.

For eah a term w

i

in �, suh that w

i

= w

i

[x

k

℄, for some ourrene of x in

�, do the following:

1. If x

k

has right orientation, replae w

i

with the following sequene of steps:

w

i

[v℄

�

� w

i

(�

0

v�\x"

) � w

i

[\x"℄

�

where w

i

(�

0

v�\x"

) means that a renaming of �

\x"�v

is reversed and em-

bedded in w

i

at position � leftwards. Note that the renamings of internal

ourrenes of variables and new ourrenes of external variables in the

renaming of �

\x"�v

have reversed orientation in the new proof.

2. If x has left orientation, replae w

i

by the sequene of steps:

w

i

[\x"℄

�

� w

i

(�

0

\x"�v

) � w

i

[v℄

�

where w

i

(�

0

\x"�v

) means that a renaming of �

\x"�v

is embedded in w

i

at

position � rightwards. The renamings of internal ourrenes of variables and

new ourrenes of external variables in �

0

\x"�v

preserve their orientation

in the new proof.

Contrat any non-redundant subproofs in the obtained equational proof.

The substitution 

0

is then de�ned in the following way:



0

x

= [x 7! v℄,

if yj

�

= x, then 

0

y

= [y 7! y[x

0

℄

�

℄,

if z 62 Dom(), z is a renaming of a variable z

0

2 Dom(), that appeared in

some �

0

x�v

, then 

0

z

= [z 7! z

0

℄,

for any other variable u, 

0

u

= 

u

;
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4.2 Flattening a proof

We an atten an equational proof � in the following situation.

Suppose there is a subproof �

x

j

�x

in � , where x

j

is a subterm variable

of x. Hene x

j

 is a subterm of another ourrene of x and �

x

j

�x

is a

subproof of �

x[x

j

℄�v[x℄

. We say that the proof � is not at at x. Notie also

that then the length of �

x

j

�x

must be greater than 0, beause x annot be

syntatially idential with its subterm.

We atten the proof � with respet to x in a reursive way:

1. extend � with respet to x � x

j

 ( i. e. (�; )

[x!x

j

℄

�! (�

0

; 

0

));

2. if there is a subproof �

x

j



0

�x

0

in �

0

, atten �

0

with respet to x

0

.

Flattening will always terminate. The reason is that in the new proof �

0

,



0

x

= [x 7! x

j

℄ and sine x

j

was a subterm variable for x, jx

0

j < jxj.

Let us see what exatly happens when � is extended with x � x

j

. Sine

x

j

is a subterm variable of x, there is an ourrene of x, suh that �

x

j

�x

is

a subproof of �

x[x

j

℄�v[x℄

in � .

At �rst extension hanges this subproof to the subproof of the form:

\x

j

" � (�

\x

j

"�\x"

) � \x[x

j

℄" � v(�

\x

j

"�\x"

) � v[\x"℄ �

v(�

\x"�\x

j

"

) � v[\x

j

"℄

Notie that sine there is a subproof �

x

j

�x

in � , all steps in the subproof

�

x[x

j

℄�v[x℄

must be at or bellow position of x

j

 in x[x

j

℄ (or position of x

in v[x℄, whih is the same �). Hene x[x

j

℄ == v[x

j

℄. The subproof therefore

will be ontrated and will have the following form:

\x

j

" � (�

\x

j

"�\x"

) � v[\x

j

"℄

The term \x

j

" is x

0

in the new proof hene in fat this subproof is:

x

0

� (�

\x

j

"�\x"

) � v[x

0

℄

Notie that this subproof has the same length as the original �

x�v[x℄

, but

this is not telling us anything about the length of the new equational proof,

whih in fat may inrease in the proess of attening in other plaes where x

ours.

Nevertheless, attening must terminate, beause the term we substitute for

x in eah new proof is stritly smaller than the term in the previous proof.

In the end, the subproof �

x

j

�x

will have to disappear, beause x on the

right will have to appear at the lower position than the step in the subproof

�

x�v[x℄

is taken and this will prevent the subproof assoiated with the x on

the right to reah a subterm of the x on the left. It is obvious that if jxj = 1,

then there must be a step at the root in �

x�v[x℄

.

Let us look at a simple example. Let our equational theoryE be fa � fag and

our goal G be fx � fx; x � fffag. Let our E-uni�er be  = [x 7! fffa; x

1

7!

ffa; x

2

7! fa; x

3

7! a℄ where x

1

; x

2

; x

3

are subterm variables of x, and the

equational proof be � = ffffa � ffffa; fffa = fffag.

If x � fx is seleted, � is not at at x

2

, beause x

2

� x

1

, (or fffa �

ffa). Flattening will proeed in the following stages:
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1. (�; )

[x 7!x

1

℄

�! (�

0

; 

0

). Extension will �rst hange the subproof fffa �

ffffa into ffa � fffa � ffffa � fffa and ontration will shorten

it to ffa � fffa. Hene �

0

= fffa � fffa; ffa � fffag. 

0

= [x 7!

ffa; x

1

7! fa; x

2

7! a℄.

Still, �

0

is not at at x

02

, beause there is a subproof x

02

� x

1



0

, (or

ffa � fa).

2. (�

0

; 

0

)

[x 7!x

1



0

℄

�! (�

00

; 

00

). Extension will �rst hange the subproof ffa �

fffa into fa � ffa � fffa � ffa and ontration will shorten it to fa �

ffa. Hene �

00

= ffa � ffa; fa � ffa � fffag. 

00

= [x 7! fa; x

1

7! a℄.

Still, �

00

is not at at x

002

, beause there is a subproof x

002

� x

1



00

, (or

fa � a).

3. (�

00

; 

00

)

[x 7!x

1



00

℄

�! (�

000

; 

000

). Extension will �rst hange the subproof fa �

ffa into a � fa � ffa � fa and ontration will shorten it to a � fa.

Hene �

000

= fa � fa; a � fa � ffa � fffag. 

000

= [x 7! a℄.

Obviously, �

000

is at at x

0002

and there is a step at the root in the sub-

proof of x

000

� fx

000

. Flattening ends here, but notie that �

000

has length

4, whereas � had length 1. But notie also that the subproof a � fa �

ffa � fffa an be found in � in a form of omposition of subproofs:

x

3



1

� x

2



2

== x

2



1

� x

1



2

== x

1



1

� x

2

== x

3

. We will all suh

omposition of subproofs a path and show that �

000

has the same set of paths

as � .

5 Solving variable in a proof

In the proof of ompleteness theorem, we assume that there is a solution for a

goal, hene for a given E { equational theory and G { a set of goal equations,

there is (�; ), suh that E j= G and � is an equational proof of G in E.

We will see that Deomposition, Mutate, Orient and Trivial preserve the

form of the solution, i.e. if one of these rules is the right rule to apply, then we

an assume that the proof of the new goal obtained by this rule is omposed

of subproofs of the previous one, with the same substitution and the same set

of variables involved, i.e. the same proof (or a set of subproofs thereof) and the

same substitution are the solution of a new E-uni�ation goal.

In ontrast to this, Variable Elimination, Variable Mutate and Cyle may

hange the form of assumed solution of the goal.Variable Mutate and Cyle may

hange the form of a solution of the goal, beause they are maro rules involving

Variable Elimination.

In order to reet the transformations required by Variable Elimination and

Cyle, we now de�ne a proedure Solve x in ((�; ); U) whih takes as input a

solution for an E-uni�ation goal, i.e. an equational proof and a substitution,

and a set of unsolved variables, and returns another solution E-equivalent to the

original one and a new set of unsolved variables.

In the following desription,we use the notions of maximal ourrene of a

variable and an irrelevant subterm variable, whih are de�ned now.
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De�nition 3. (maximal ourrene of a variable)

Let (�; ) be a solution of a goal G, with a set of unsolved variables U , suh that

U � Dom(). Let x 2 U . An ourrene x of x is alled maximal in in � with

respet to U , if there is no ourrene, y, of an unsolved variable y, suh that

x appears in �

y�t

, where �

y�t

is a subproof assoiated with y.

De�nition 4. (subterm variable irrelevant for x)

Let (�; ) be a solution of a goal G, and x 2 Dom(), x an ourrene of x

in �. Let �

x�v

be a subproof assoiated with this ourrene of x, suh that v

ontains some ourrenes of x.

A subterm variable x

i

de�ned for x is alled irrelevant for x, if �

x

i

�v

i

is a subproof assoiated with x

i

, and v

i

is not a subterm of v, or v

i

does not

ontain any ourrenes of x.

We all x

i

a maximal irrelevant subterm variable for x, if whenever x

i

 =

x

j

j

�

, for any position � 6= � and x

j

a subterm variable of x, x

j

is not irrelevant

for x.

Let us see an example illustrating the meaning of the previous de�nition.

Let our E = fb � ; a � gf(a; b)g and G = fx � f(gx; )g.

Let� = ff(a; b) � f(gf(a; b); b) � f(gf(a; b); )g and  = [x 7! f(a; b); x

1

7!

a; x

2

7! b℄, where x

1

; x

2

are subterm variables for x.

Then aording to the de�nition, x

1

is relevant for x

1

, but x

2

is irrelevant.

Notie that when Cyle is applied to x � f(gx; ), we get the following goal:

fx � f(x

1

; )g [M(x

1

� g(f(x

1

; ))). Hene irrelevant subterm variables are

\solved" as if automatially in Cyle.

Solve x in ((�; ); U)

Let (�; ) be a solution of a goal G. U � Dom(), is a set of variables alled

unsolved. x is a variable in U , suh that there is at least one maximal ourrene

of x, x in �. Choose an ourrene of x, x whih is maximal in (�; ) with

respet to U . Let �

x�v

be a subproof assoiated with x.

1. If x 62 V ar(v), extend � with �

x�v

, (�; )

[x!v℄

�! (�

0

; 

0

).

Return (�

0

; 

0

) and U

0

, where U

0

= (U �fx; x

1

; x

2

; : : : ; x

k

g) [ (Dom(

0

)�

Dom()), where x

1

; : : : ; x

k

are all subterm variables de�ned for x;

2. If x 2 V ar(v), and there is an ourrene of x, x

k

in v, suh that the proof

� is not at at x

k

, then atten � with respet to x

k

. Let the result be

(�

0

; 

0

).

Rename variable x with a new variable z in (�

0

; 

0

), (�

0

; 

0

)[x 7! z℄. Re-

turn (�

0

; 

0

)[x 7! z℄ and U

0

, where U

0

= (U � fx; x

1

; x

2

; : : : ; x

k

g) [ fzg [

(Dom(

0

) � Dom()), where x

1

; : : : ; x

k

are subterm variables de�ned for

positions in x whih are no more de�ned for z

0

;

3. If x 2 V ar(v), and � is at at all ourrenes of x in v, then for eah

subterm variable x

i

maximal irrelevant for x extend � with �

x

i

�v

i

.

Return the result, (�

0

; 

0

) and U

0

= (U � fx; x

1

; x

2

; : : : ; x

k

g) [ (Dom(

0

)�

Dom()), where x

1

; : : : ; x

k

are all subterm variables irrelevant for x.
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Notie that by hoosing maximal ourrene of x, we are making sure that no

inner variables in �

x�v

are solved before x. Sine these variables are renamed

in the proess of extension, de�nition of U

0

would had to be somehow hanged,

if we had allowed to solve those variables �rst.(Should these new variables in U

0

be ounted as solved or not?) But fortunately, we an safely restrit ourselves to

maximal ourrenes of variables, sine only these ourrenes are playing role

in Variable Elimination. Namely, if x is going to be eliminated from an unsolved

part of a goal, G, beause x � v 2 G, x must be a maximal ourrene of x in

an equational proof of this goal.

In order to use Solve in the ompleteness proof, we have to show in what

sense its result, ((�

0

; 

0

); U

0

), is smaller than its input ((�; ); U). For this we

de�ne paths in an equational proof.

De�nition 5. (path starting with a variable ourrene, variables used in a path)

Let (�; ) be a solution for a goal G, U a set of unsolved variables in Dom(),

x 2 U and x a given variable ourrene in �. A path in � starting with x

is a omposition of subproofs, �

1

� � ��

n

, de�ned in a reursive way:

1. if �

x�v

is an assoiated subproof for x, �

x�v

is a path starting with x;

2. (a) if �

1

� � ��

n

is a path in � starting with x

1

 with the last term of the

form v[x

n+1



k

℄, x

n+1

is an external variable in �

x

n

�v[x

n+1



k

℄

, and if

�

0

1

; : : : ; �

0

m

is a path in � starting with x

n+1



i

, and if no variable whih

is used in one path appears as not used in the other, then the omposition

�

1

� � ��

n

�

0

1

� � ��

0

m

is also a path in � starting with x

1

 and all variables

used in the �rst and seond path are used in this path;

(b) if �

1

� � ��

n

is a path in � starting with x

1

 and with the last term of the

form yj

�

, and if �

y

k

j

�

�s

is a subproof in � and no variable whih is

used in one path appears as not used in the other, then �

1

� � ��

n

�

y

k

j

�

�s

is also a path in � starting with x

1

 and all variables used in the �rst

and seond path are used in the new path;

Notie that when Solve is applied to x in (�; ; U), where x is a hosen

maximal ourrene of x and �

x�v

is a subproof assoiated with x, some

ompositions of subproofs in � beome subproofs in �

0

. Sine x and possibly

some of its subterm variables are not in U

0

, we don't have paths starting with

these ourrenes de�ned for �

0

any more. Notie also that there are no paths

in �

0

, whih represent the subproofs where x or some of its subterm variables

were used in extension in a di�erent way, i.e. with di�erent variable ourrene

and di�erent subproof used in extension.

Consider the restrition in the de�nition of paths to the external variables

in De�nition 5.2.2a. Notie that this restrition is just what we need in order to

aount for what happens in the proof when a variable is eliminated in the goal.

Namely, if by Mutate new variables are disovered in the goal, i.e. a step in an

equational proof is being explored, then these new variables appear as external

in all subproofs represented by the unsolved equations in the goal. If u � v is

in the goal, the variable ourrenes in u have always opposite orientations to

those in v.
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We want to show that when Solve x is applied to ((�; ); U), a multiset of

lengths of paths in �

0

de�ned with respet to U

0

, where ((�

0

; 

0

); U

0

) is a result

of Solve x in ((�; ); U), is smaller than the multiset of paths in � de�ned with

respet to U . In order to do this, we have to be areful with the way we ount

paths. Namely, if a shorter path is a ommon part of longer paths, we have to

ount it as separate for eah suh longer path. In fat, sine paths are linear, it is

enough to ount separately ourrenes of a path inluded in di�erent maximal

paths. Hene we de�ne maximal and proper paths and prove that the set of

proper paths after solving a variable does not inrease.

De�nition 6. (maximal paths) Let (�; ) be a solution for a goal, and U a set

of unsolved variables in Dom(). Let P be the set of all paths in � de�ned with

respet to U . Then M is a set of maximal paths if M = fp 2 � j for no q 2 �,

p is a part of qg.

Now we de�ne a set of proper paths.

De�nition 7. (proper paths)

Let (�; ), U , P and M be as in the previous de�nition.

For eah p 2 M , we de�ne P

p

= f�j� is a opy of p or there is q 2 P suh

that q is a part of p and � is a opy of qg.

A set PP is a multiset of proper paths for � de�ned with respet to U if PP

is a multiset union of P

p

, for all p 2M .

As an example of proper paths assume that the following subproofs are in

� : �

x

1

�v

1

[z

1

℄

, �

x

2

�v

2

[z

2

℄

, �

z

3

�s[y

1

℄

, �

y

2

�t

1

, �

y

3

�t

2

.

There will be the following maximal paths in � :

p

1

= �

x

1

�v

1

[z

1

℄

�

z

3

�s[y

1

℄

�

y

2

�t

1

,

p

2

= �

x

2

�v

2

[z

2

℄

�

z

3

�s[y

1

℄

�

y

2

�t

1

,

p

3

= �

x

1

�v

1

[z

1

℄

�

z

3

�s[y

1

℄

�

y

3

�t

2

,

p

4

= �

x

2

�v

2

[z

2

℄

�

z

3

�s[y

1

℄

�

y

3

�t

2

.

You an see that the subproof, whih is also a path, �

z

3

�s[y

1

℄

is repeated

in all of them. Hene a opy of this subproof will appear in P

p

1

; P

p

2

; P

p

3

; P

p

4

.

Similarly, opy of �

x

1

�v

1

[z

1

℄

�

z

3

�s[y

1

℄

will appear in P

p

1

and P

p

3

, and so on.

P

p

1

will onsist of the opies of the following paths:

�

x

1

�v

1

[z

1

℄

�

z

3

�s[y

1

℄

�

y

2

�t

1

;

�

x

1

�v

1

[z

1

℄

�

z

3

�s[y

1

℄

;

�

z

3

�s[y

1

℄

�

y

2

�t

1

;

�

x

1

�v

1

[z

1

℄

; �

z

3

�s[y

1

℄

; �

y

2

�t

1

.

We have to show that after Solve if extension applies, a multiset of lengths

of proper paths in �

0

de�ned with respet to the new set of unsolved variables,

U

0

, is not greater than the one de�ned for � with respet to U .

Lemma 1. Let (�; ) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(), x is a maximal ourrene of x in �, and �

x�v

a subproof

assoiated with x, suh that ase 1 of the Solve x in ((�; ); U) applies.
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Let ((�

0

; 

0

); U

0

) be a result of Solve in this ase, then eah proper path

de�ned for � with respet to U is a unique renaming of a path de�ned for �

0

with respet to U

0

.

Proof. Let p be a proper path de�ned for �

0

with respet to U

0

. Let p starts

with y

0

. Assume that p is maximal.

Assume that y 2 Dom(). Then by de�nition of path and extension, there

is a path in � , p

0

, suh that p is a renaming of p

0

and p

0

di�ers from p only in

this that p does not use ourrenes of x or its subterm variables any more in

plaes where these variable ourrenes were used in p

0

.

If p

0

is maximal in � , then it is unique, maximal path starting with y, and

then obviously only one path de�ned for �

0

an be a renaming of p

0

.

Now, if p

0

is not maximal in � , then p

0

must be a part of a maximal path, q,

starting with x

i

, for some ourrene of x in � . p

0

is part of q (p

0

2 P

q

). Even

if there may be many di�erent maximal paths starting with x

i

, there is only

one suh path (q) that ontains p

0

, for otherwise p ould not beome maximal

in �

0

. Hene p is the only renaming of p

0

in �

0

.

Assume now that y 62 Dom() (p is maximal in �

0

). Then there is an inner

variable y

0

in �

x�v

, suh that y

0

is a renaming of y

0

. By de�nition of path

and extension, there must be a path in � , p

0

, starting with y

0

, suh that p is a

renaming of p

0

. p

0

must be either maximal or a part of a path starting with x.

If p

0

is maximal, it is a unique path in � , of whih p is a renaming. If p

0

is a part

of a maximal path q starting with x. (q must be maximal, beause otherwise,

p would not beome maximal in �

0

.) Even if there may be many maximal paths

starting with x, there will be only one ontaining p

0

and there an be only one

renaming of p

0

in �

0

.

Now assume that p is not maximal.

In this ase, p is a part of a maximal path q in �

0

and p 2 P

q

. Then there is

a unique (not neessarily maximal) path q

0

in � , suh that q is a renaming of q

0

and p

0

is part of q

0

. From the previous argument we know that q

0

is unique for

q. Sine q

0

is unique, then p

0

must also be unique, hene there may be only one

renaming of p

0

in P

q

.

If in Solve attening applies, we have to prove that Solve does not inrease

the set of paths in �

0

.

Lemma 2. Let (�; ) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(), x is a maximal ourrene of x in �, and �

x�v

a subproof

assoiated with x, suh that ase 2 of the Solve x in ((�; ); U) applies.

Let ((�

0

; 

0

); U

0

) be a result of Solve (with attening of �), then eah proper

path de�ned for � with respet to U is a unique renaming of a path de�ned for

�

0

with respet to U

0

.

Proof. Let there be an ourrene x

k

in v, suh that � is not at at x

k

.

Flattening of � with respet to x must terminate. Hene we an use in-

dution on number of extensions used in this proess. Assume therefore, that

(�

0

; 

0

); U

0

were obtained by extension from (�

00

; 

00

); U

00

. (�

00

; 

00

)

[x 7!x

i



00

℄

�!
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(�

0

; 

0

) where x

i



00

is an ourrene of subterm variable for x

00

, and �

x

00k

�x

i



00

is a subproof assoiated with x

00k

. By indution assumption we know that for

eah proper path in �

00

de�ned with respet to U

00

, there is a unique proper

path in � , de�ned with respet to U .

Assume that p is a proper path de�ned for �

0

with respet to U

0

.If p starts

with y

0

, where y is not x

1

, then the argument from the proof of the previous

lemma applies.

Hene assume that p starts with z

0

(whih is renamed x

0

). From the de�ni-

tion of extension and attening, we know that z

0

= x

i



00

, where x

i

is a subterm

variable in Dom(

00

) for x

00

.

Hene by the de�nition of path and extension, p is a renaming of a proper

path in �

00

, p

0

, whih starts with x

i



00

. The argument similar to the one used in

the proof of the previous lemma shows that p

0

is a unique suh path, whih p is

a renaming of.

Lemma 3. Let (�; ) be a solution for a goal, and U a set of unsolved vari-

ables in Dom(), x is a maximal ourrene of x in �, and �

x�v

a subproof

assoiated with x, suh that ase 3 of the Solve x in ((�; ); U) applies.

Let ((�

0

; 

0

); U

0

) be a result of Solve (with attening of �), then eah proper

path de�ned for � with respet to U is a unique renaming of a path de�ned for

�

0

with respet to U

0

.

Proof. Proof of this lemma is the same as that of Lemma 1, with a not that

p di�ers from p

0

in this that it does not uses ourrenes of x or some of its

subterm variables in plaes where p

0

had to use them. But some of the subterm

variables are still unsolved in �

0

.

Now we show that atually Solve x in (�; ); U dereases multiset of lengths

of proper paths in a new solution and hene we an take it as a measure for a

solution.

De�nition 8. (measure of a solution)

Let (�; ) be a solution of a goal, and U a set of unsolved variables in Dom().

Let PP be a set of proper paths de�ned for � with respet to U .

The measure of the solution (�; ) with U is M((�; ); U) a multiset of

lengths of paths in PP .

Lemma 4. Let (�; ) be a solution of a goal, and U a set of unsolved variables

in Dom(). Let PP be a set of proper paths de�ned for � with respet to U . Let

x 2 U , be a variable with a maximal ourrene x in � hosen in suh a way

that Solve x in (�; ); U applies. Let (�

0

; 

0

); U

0

be a result of Solve and PP

0

a set of proper paths de�ned for �

0

with respet to U

0

. Then M((�; ); U) >

M((�

0

; 

0

); U

0

).

Proof. Let �

x�v

be a subproof assoiated with x in � . If Solve applies when

x is hosen, we have 3 ases to onsider. In the �st ase, when x 62 V ar(v), x

is no longer in U

0

, and by Lemma 1, all paths in PP

0

are renamings of unique
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paths in PP . But whereas at least one path starting with x is in PP , there is

no suh path in PP

0

.

In the seond ase, x is replaed by z in U

0

. By Lemma 2, we know that

all paths in PP

0

are renamings of unique paths in PP . But sine z

0

is stritly

smaller than x, some subterm variables of x are no longer in U

0

. Hene the

proper paths starting with these subterm variables will no longer be de�ned in

PP

0

.

In the third ase, where x 2 V ar(v), but � is at at all ourrenes of x in

v, by Lemma 3,we know that all paths in PP

0

are renamings of unique paths in

PP . But x and possibly some subterm variables are no longer in U

0

, hene the

paths starting with these variable ourrenes are no longer in PP

0

.

6 Completeness

We will prove ompleteness of the inferene system presented in Figure 3, where

M in a de�nition of Cyle is de�ned by:

M(x � f(v

1

; : : : ; v

n

)) =

8

>

>

<

>

>

:

fx � s; t

1

� v

1

; : : : ; t

n

� v

n

g;where

s � f(t

1

; : : : ; t

n

) 2 E;

x � s[y 7! f(v

1

; : : : ; v

n

)℄;where s � y 2 E

Notie that now neither Mutate nor Variable Mutate is appliable to an

equation of the type x � v. If suh an equation is seleted, Variable Elimination,

Orient, Cyle or Trivial applies and either of these rules applies eagerly.

This said, it must also be pointed out that there is a \don't know" type non-

determinism involved in an appliation of Cyle, beause we don't know whih

is the right plae to \divide" the term on the right in a goal equation of the

type x � v if x ours in v. Nevertheless, we have only �nitely many positions

to hoose from.

We prove that in any equational theory E, a given goal G suh that E j= G�,

may be transformed by appliations of rules in Figure 3 applied to equations

whih are not solved, into a solved form with whih we an de�ne an E-uni�er

more general than �. The solved form of an equation and of a goal is de�ned in

the following way.

De�nition 9. (solved equation and solved goal)

Let G be a set of equations. An equation x � t 2 G is in a solved form, if x is a

variable, x 62 V ar(t) and x 62 V ar(Gnfx � tg).

G is in a solved form if all equations in G are in solved form.

If G is in the solved form, then we de�ne a substitution �

G

= [x

1

7!

t

1

; : : : ; x

n

7! t

n

℄. Obviously, �

G

is the most general uni�er of G.

If G is a set of goal equations, an inferene performed on G with one of the

rules of Figure 3 is denoted by G! G

0

, where G

0

is the result of this inferene.

The transitive, reexive losure of ! is written as

�

!.
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Deomposition

ff(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

)g [G

fs

1

� t

1

; � � � ; s

n

� t

n

g [ G

where f(s

1

; � � � ; s

n

) � f(t

1

; � � � ; t

n

) is seleted in the goal.

Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s; t

1

� v

1

; � � � ; t

n

� v

n

g [G

where u � f(v

1

; � � � ; v

n

) is seleted in the goal, u is not a variable and s �

f(t

1

; � � � ; t

n

) 2 E.

Variable Mutate

fu � f(v

1

; � � � ; v

n

)g [G

fu � s[x 7! f(v

1

; � � � ; v

n

)℄g [G

where s � x 2 E, x is a variable, u is not variable and u � f(v

1

; � � � ; v

n

) is

seleted in the goal.

Variable Elimination Orient

fx � vg [ G

fx � vg [G[x 7! v℄

ft � xg [ G

fx � tg [ G

where x 62 V ar(v) where x is a variable.

and t is not a variable.

Cyle

fx � v[v

1

℄

�

1

� � � [v

k

℄

�

k

g [G

fx � v[x

1

℄

�

1

� � � [x

k

℄

�

k

g [

S

k

i=1

fM(x

i

� v

i

�)g [G�

where x � v[v

1

℄

�

1

� � � [v

k

℄

�

k

is seleted in the goal,

x 2 V ar(v[v

1

℄

�

1

� � � [v

k

℄

�

k

), eah v

i

is a non-variable term, whih ontains at

least one ourrene of x, � = [x 7! v[x

1

℄

�

1

� � � [x

k

℄

�

k

℄.

Trivial

fx � xg [G

G

where x � x is seleted in the goal.

Fig. 3. E-Uni�ation with nie Cyle rule
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In order to prove ompleteness, we will need the measure of a goal G, of

whih we will show that it may be dereased by appliation of an inferene rule

if G is E-uni�able and not in solved form.

De�nition 10. (measure of a goal)

Let E be an equational theory, and G, an unsolved part of a goal G

0

, suh that

there is a ground substitution , for whih E j= G

0

 and hene there is a solution

(�

0

; ) of G

0

and � a subproof of �

0

, suh that (�; ) is a solution of G, and

all variables in V ar(G) are unsolved in (�; ).

The measure of G

0

with respet to (�

0

; ) is a 4-tuple (m;n; o; p), where

m =M(�; ), n is the length of �, o is the size of terms in G, p is the number

of equations in G, of the form t � x, where x is a variable and t is not a variable.

Notie that the measure of a goal is in fat a measure of its unsolved part.

Measures for di�erent goals are ompared with respet to lexiographi order.

Theorem 1. Let E be a set of equations, suh that E j= G for some ground

substitution . Then there is H, a set of equations in the solved form, suh that

G

�

�! H and �

H

[V ar(G)℄ �

E

.

Proof. If G is already in the solved form, then �

G

�

E

.

If G is not in solved form, then there is an unsolved part of G, whih onsists

of all unsolved equations in G. Only unsolved equations in G may be seleted

for inferene. Assume that u � v was seleted for an inferene. If E j= G, there

must be an equational proof � of G. We will all (�; ) an atual solution

of G. There must be a subproof in � , of u � v, �

u�v

and u, v are the

extreme terms in this subproof, i.e. there is no subproof in � at position of u

or v ontaining �

u�v

as its proper part. It is important to show in eah of

the following ases, that our rules preserve this property, sine we use Solve in

justifying ompleteness of some of them, and Solve is de�ned with respet to

assoiated subproofs whih are the subproofs of maximal length starting with

some variable ourrene in � . Hene if x � v is seleted and �

x�v

is its

subproof in � , we want to be sure that �

x�v

is a subproof assoiated with

x (and hene maximal subproof starting with x). We an also assume that all

solved variables in G are solved in � , i.e. not in U , and all unsolved variables in

G are unsolved in � , i,e. there are in U .

Obviously, if x � v is seleted for an inferene, x is a maximal node in �

with respet to U .

For the proof, we have to onsider all possible forms of an unsolved goal

equation u � v seleted for an inferene. We will show that in all these ases,

there is an inferene rule from Figure 3, suh that it is appliable to the seleted

equation and this appliation dereases the measure for the new goal. Hene we

show that G! G

0

, and measure of G

0

is stritly smaller than that of G. Moreover

we show that if E j= G, then also E j= G

0



0

, where  =

E



0

[V ar(G)℄. Then by

indution hypothesis G

0

�

�! H and �

H

[V ar(G)℄ �

E

. Hene also G

�

�! H and

�

H

[V ar(G)℄ �

E

.

Hene it is enough to onsider now the following possible forms of a seleted

equation in a goal.
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1. Assume that neither u nor v is a variable.

Let �

u�v

be a subproof in � of u � v.

Assume also that there is no step at the root in �

u�v

. Hene u and v must

have the same root symbols.

The right rule to apply in this ase is Deomposition. In the new goal

u � v is replaed by equations s

1

� t

1

; : : : ; s

n

� t

n

. There is a subproof

in � for eah s

i

 � t

i

, i 2 f1; : : : ; ng, and if u, v were the extreme

terms in �

u�v

, s

i

, t

i

 are extreme terms in the respetive subproofs.

E j= fs

1

 � t

1

; : : : ; s

n

 � t

n

g. The sum of the lengths of the subproofs

is equal to the length of the original subproof of u � v, but �

n

i=1

(js

i

j+

jt

i

j) < juj+ jvj.

Let (m;n; o; p) be the measure of the goal before Deomposition and (m

0

; n

0

; o

0

; p

0

)

after Deomposition. m

0

= m, n

0

= n and o

0

< o.

2. Assume that u and v are as in ase 1. Assume also that there is a step at

the root in �

u�v

.

�

u�v

has the form: u � � � � � w

i

�

[�;s�t;℄

w

i+1

� � � � � v. Let us

hoose i in suh a way, that this is the rightmost root step in this subproof

and assume that t is not a variable.

Then there is no root step between w

i+1

and v. Sine the i'th step is at

the root position, s = w

i

and t = w

i+1

. Sine there is no step at the root

between t and v, and t is not a variable, t and v must have the same root

symbol and thus we an at one deompose them, obtaining possible empty

set of equations: t

1

� v

1

; : : : ; t

n

� v

n

, suh that for eah i 2 f1; : : : ; ng,

t

i

 � v

i

 has a subproof in � , and moreover t

i

, v

i

 are extreme subterms

in their respetive subproofs. Hene in this ase Mutate is appliable, and

we see that E j= fu � s; t

1

 � v

1

; : : : ; t

n

 � v

n

g.

Let (m;n; o; p) be the measure of the goal before Mutate and (m

0

; n

0

; o

0

; p

0

)

after Mutate. m

0

= m and n

0

< n.

3. Assume that u and v are the same as in ase 2, but now t is a variable. In

this ase Variable Mutate is appliable.

As in the previous ase we see that: E j= u � s and E j= t � v. Both

u � s and t � v have subproofs in � , and �

t�v

is a subproof asso-

iated with t.. Solve t in ((�; ); U) gives us a new E-equivalent solution,

(�

0

; 

0

), suh that �

0

is an equational proof of the goal G.

Sine t is a system variable used in a root step s � t, beside t, t may

appear only in s. Hene solving t does not hanges subproofs of � for

any of the other equations in the goal. Only �

u�v

is a�eted. Therefore

E j= (fu � s[t 7! v℄g[G

1

)

0

and all equations in the new goal have subproofs

in �

0

. Hene we assume (�

0

; 

0

) as our new atual solution.

Let (m;n; o; p) be the measure of the goal before Variable Mutate and

(m

0

; n

0

; o

0

; p

0

) after Variable Mutate. m

0

< m.

4. Assume that u is a variable x, v is not a variable and x 2 V ar(v), hene v

an be written as v[x℄

�

1

: : : [x℄

�

n

. In this ase Cyle applies eagerly.

Let �

x�v[x℄

�

1

:::[x℄

�

n



be a subproof in � of x � v[x℄

�

1

: : : [x℄

�

n

.

Sine x has an ourrene in v[x℄

�

1

: : : [x℄

�

n

, the subproof�

x�v[x℄

�

1

:::[x℄

�

n



must have length greater than 0.
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(a) Assume that there is a step at the root in �

x�v[x℄

�

1

:::[x℄

�

n



.

Notie that in this ase, sine v is not a variable, if x is hosen in Solve

x in ((�; ); U), then ase 2 applies, beause � is at at any ourrene

of x in v. Notie also that there are no irrelevant subterm variables for

x. Hene the e�et of Solve is just a removal of x from U .

�

x�v[x℄

�

1

:::[x℄

�

n



has the form: x � � � � � w

i

�

[�;s�t;℄

w

i+1

� � � � �

v[x℄

�

1

: : : [x℄

�

n

. We hoose i in suh a way, that this is the rightmost

root step in this subproof. Obviously, E j= (fx � s; t � vg [ G) and

eah of these equations has a subproof in � .

If (�

0

; 

0

) is obtained by Solve, we have a set of unsolved variables U

0

=

U�fxg. We hange our atual solution to (�

00

; 

00

) = (�

0

[x 7! z; 

0

[x 7!

z℄), where z is a new variable, added in Dom(

00

), in suh a way that



00

z

= [z 7! x

0

℄. Now U

00

= U

0

[ fzg.

Notie that this renaming of x is needed here only in order to keep

one Cyle rule for all relevant ases. Notie also that although Solve

dereased the measure for the goal under solution (�

0

; 

0

), but sine we

renamed x with a new unsolved variable in (�

00

; 

00

), (�

00

; 

00

) has the

same multiset of paths as (�; ) and in fat it is a renaming of it.

E j= (fx � z; z � s; t � v[x 7! z℄g[G[x 7! z℄)

00

and all these equations

have subproofs in �

00

. Exept for the renaming nothing an hange in

�

00

. Hene �

z�v[z℄

�

1

:::[z℄

�

n



00

is just a renaming of �

x�v[x℄

�

1

:::[x℄

�

n



,

with the same step at the root s

00

� t

00

.

i. Assume that t is not variable. Sine v is not a variable either and

there is no step at the root between t

00

and v[x 7! z℄

00

, v =

f(v

1

; : : : ; v

n

) and t = f(t

1

; : : : ; t

n

) and E j= (ft

1

� v

1

; : : : ; t

n

�

v

n

g)

00

, where all of these equations have subproofs in �

00

.

This is exatly what we need beause in this aseM(z � v[z℄

�

1

: : : [z℄

�

n

) =

fz � s; t

1

� v

1

; : : : ; t

n

� v

n

g, where ft

1

� v

1

; : : : ; t

n

� v

n

g is an ef-

fet of deomposing t � v[z℄

�

1

: : : [z℄

�

n

.

Hene if G ! G

0

by Cyle, and E j= G, then E j= G

00

and

 = 

00

[V ar(G)℄.

Let (m;n; o; p) be the measure of the goal before Cyle and (m

0

; n

0

; o

0

; p

0

)

after Cyle. m

0

= m and n

0

< n.

ii. Assume now that t is a variable. Then M(z � v[z℄

�

1

: : : [z℄

�

n

) =

fz � s[t! v[z℄

�

1

: : : [z℄

�

n

℄g.

As in the previous ase, we know that E j= (fx � z; z � s; t �

f(v

1

; : : : ; v

n

)

00

g, where x � z is solved and all of these equations

have subproofs in �

00

, suh that the respetive terms are the extreme

terms of these subproofs. Also if E j= G

1

, then also E j= G

1

[x 7!

z℄

00

, where G

1

= Gnfx � f(v

1

; : : : ; v

n

)g.

Sine t is a system variable used in the step s

00

� t

00

, then besides

t

00

, t may only appear in s

00

in the goal. Solve t in ((�

00

; 

00

); U

00

)

(ase 1 applies) with t

00

the hosen maximal ourrene of t, yields

an equivalent solution (�

000

; 

000

) with t removed from U

000

. Notie

that we don't need to keep the equation t � f(v

1

; : : : ; v

n

) in the
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goal, beause t is not in the set of goal variables, and hene we don't

need it in the solved form of G in order to de�ne a solution.

E j= (fx � z; z � s[t 7! f(v

1

; : : : ; v

n

)℄g

000

g and t is eliminated from

the goal.  =

E



000

.

Let (m;n; o; p) be the measure of the goal before Cyle and (m

0

; n

0

; o

0

; p

0

)

after Cyle. m

0

< m.

(b) Now, let assume that there is no step at the root in �

x�v[x℄

�

1

:::[x℄

�

n



.

Notie that for eah ourrene of x at position �

i

in v[x℄

�

1

: : : [x℄

�

n

,

there must be a step at a position higher, equal or lower than �

i

, beause

otherwise x would have to be syntatially idential with its subterm.

i. Assume that the proof� is at at all positions of x in v[x℄

�

1

: : : [x℄

�

n

.

Hene we know that for eah ourrene of x in v[x℄

�

1

: : : [x℄

�

n

,

there is a subterm v

l

at a position �

l

in v[x℄

�

1

: : : [x℄

�

n

, suh that

there is a step in the subproof at this position and x ours in v

l

.

We know also that �

l

6= �, beause we assumed that there is no step

at the root.

Let us hoose for eah ourrene of x in v[x℄

�

1

: : : [x℄

�

n

 highest �

l

for whih there is suh a subterm in v[x℄

�

1

: : : [x℄

�

n

 and there is a

step at this position in the subproof.

Then the subproof �

x�v[x℄

�

1

:::[x℄

�

n



an be viewed a omposition

of subproofs �

1

: : : �

k

embedded at parallel positions, �

1

; : : : ; �

k

, of

x.

Notie also that there must be at least one step at the root in

eah of the subproofs. In Cyle, we are guessing the right positions

�

1

; : : : ; �

k

. Hene v[x℄

�

1

: : : [x℄

�

n

 an be presented as v[v

1

℄

�

1

: : : [v

k

℄

�

k

.

We know that Solve x in ((�; ); U), ase 2 applies. It yields ((�

0

; 

0

); U

0

)

with x and subterm variables irrelevant for x solved. In�

0

,�

x

0

�v[v

1

℄

�

1

:::[v

k

℄

�

k



0

is suh that x

0

= v[x

1

℄

�

1

: : : [x

k

℄

�

k



0

, where x

1

; : : : ; x

k

are subterm

variables de�ned for subterms of x at positions �

1

; : : : ; �

k

respe-

tively.

It is then obvious that E j= (fx � v[x

1

℄

�

1

: : : [x

k

℄

�

k

g [

S

k

i=1

fx

i

�

v

i

g [ G)

0

. Moreover, for eah x

i

 � v

i

 there is a subproof �

i

in

�

0

with at least one step at the root. We hoose the rightmost suh

step in eah �

i

. We know also that v

i

is not a variable, beause the

proof � was at at eah ourrene of x and v

i

ontains at least one

ourrene of x. Let v

i

= f(v

0

1

; : : : ; v

0

m

).

Hene eah suh �

i

has the form x

0

� � � � � w

i

�

[�;s�t;

0

℄

w

i+1

�

� � � � f(v

0

1

; : : : ; v

0

m

)

0

, where there are no steps at the root between

t

0

= w

i+1

and f(v

0

1

; : : : ; v

0

m

)

0

.

Depending on whether t is a variable or not, M(x

i

� f(v

0

1

; : : : ; v

0

m

))

yields fx

i

� s; t

1

� v

0

1

; : : : ; t

m

� v

0

m

g, when t = f(t

1

; : : : ; t

m

) and

fx

i

� s[t 7! f(v

1

; : : : ; v

m

)℄ in the ase where t is a variable.

Here again we have to analyze both these ases separately.

If t is not a variable the analysis similar to that in point 2 of this proof

assures us that E j= M(x

i

� f(v

0

1

; : : : ; v

0

m

))

0

and eah equation in

M(x

i

� f(v

0

1

; : : : ; v

0

m

)) has a subproof in �

0

suh that it's terms are
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extreme terms in this subproof are extreme terms of a given equation.

Now, if t is a variable, as in point 3, we hange our atual solution

for the goal to (�

00

; 

00

) with t solved, given by Solve t in (�

0

; 

0

).

At eah suh step the set of lengths of proper paths is dereased.

Hene if (m;n; o; p) is the measure of the goal before Cyle and

(m

0

; n

0

; o

0

; p

0

) after Cyle. m

0

< m.

ii. Assume now that there is a position �

i

in v[x℄

�

1

: : : [x℄

�

n

 suh that

� is not at at x

i

at this position. If x is hosen for Solve x in

((�; ); U), it gives us a new, E-equivalent solution (�

0

; 

0

) suh that

the subproof �

x

0

�v[x℄

�

1

:::[x℄

�

n



0

has a step at the root.

Then the analysis of ase 4.4(a)i of this proof applies and if (m;n; o; p)

is the measure of the goal before Cyle and (m

0

; n

0

; o

0

; p

0

) after Cyle,

m

0

< m.

5. Assume that v is a variable and u is not a variable. Then Orient applies

eagerly. Obviously, Orient preserves the set of E-uni�ers for u � v. Let

(m;n; o; p) be the measure of the goal before Orient and (m

0

; n

0

; o

0

; p

0

) after

Orient. m

0

� m;n

0

� n; o

0

� o and p

0

< p.

6. Assume that x � v was seleted for an inferene and x 62 V ar(v). In this

ase Variable Elimination applies eagerly.

Then E j= x � v and there is a subproof �

x�v

in the proof � suh that

x and v are the extreme terms of �

x�v

and hene this is the subproof

assoiated with x. If x is unsolved in the goal G, x is also unsolved in � .

Solve x in (�; ), if x is hosen as the maximal ourrene of x, yields a

new, E-equivalent solution (�

0

; 

0

) with x no longer U

0

.

Sine E j= G, also E j= G

0

and (�

0

; 

0

) is the proof of G

0

. We hange the

atual solution to (�

0

; 

0

) and take it as the basis of ompleteness argument

of further inferenes. Sine x

0

= v

0

, E j= G

1

[x 7! v℄

0

, where G

1

=

Gnfx � vg and beause of extension, all equations in this part of the goal

have subproofs in �

0

.

Let (m;n; o; p) be the measure of the goal before Variable Elimination and

(m

0

; n

0

; o

0

; p

0

) after Variable Elimination. m

0

< m.

7. Assume that u and v are ourrenes of the same variable x. Sine a non-

redundant proof of x � x has length 0, we an get rid of this equation in

the goal by eagerly applying Trivial.

Let (m;n; o; p) be the measure of the goal before Trivial and (m

0

; n

0

; o

0

; p

0

)

after Trivial. m

0

= m, n

0

= n and o

0

< o.

Let us look at one more example of appliation of Cyle.

Let E = f � d; gy � f(gy; )g and the goal is G = fx � f(x; d)g.

Let� = ff(ga; ) �

[<1>;gy�f(gy;);[y 7!a℄℄

f(f(ga; ); ) �

[<2>;�d;[℄℄

f(f(ga; ); d)g

with  = [x 7! f(ga; ); y 7! a; x

1

7! ga; x

2

7! ; x

3

7! a℄. x

1

; x

2

; x

3

are subterm

variables for x.

Sine � is not at at x

2

, the onstrution behind the Cyle will hange our

atual solution to (�

0

; 

0

) suh that
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�

0

= fga �

[�;gy�f(gy;);[y 7!a℄℄

f(ga; ) �

[<2>;�d;[℄℄

f(ga; d)g with 

0

= [x 7!

ga; y 7! a; x

1

7! a; z 7! x

0

℄. x

1

is a subterm variable for x

0

and z is additional

variable, renaming of x.

Notie that there is a step at the root in �

0

, and thus �

0

justi�es the on-

lusion of Cyle: fx � zg [M(z � f(z; d)) = fx � zg [ fz � gy; z � gy; d � g.

7 Conlusion

We have proved that the goal-direted proedure based on inferene rules in

Figure 3 and an arbitrary seletion funtion is omplete.

In ontrast to the proof of ompleteness of Gallier and Snyder's Lazy Paramod-

ulation, we did not take a detour through a possibility of unfailing ompletion

of a theory E, assumption that there is a solution with a redued substitution

for the variables in the goal and then showing that our rules an simulate the

inferenes in a ompleted E as it is done in [3℄.

In the ase of ollapsing goal equations, Solve allows us as if to \redue"

the E-uni�er for the goal only when we need it, but this is a di�erent kind of

redution than the one assumed in [3℄.

In general our proof uses a straightforward analysis of what happens in the

realm of equational proofs if one of our inferene rules is applied without even

mentioning any ordering on ground terms substituted for variables, exept for

the fat that we an redue their size measured by number of symbols if we need

this. The possibility of proving our result without taking reourse to simulating

inferenes in some other system, shows also that the seletion funtion involved

in hoosing equations for inferenes, may be arbitrary and thus generates only

the \don't are" kind of non-determinism. Our system is then strongly inde-

pendent of the seletion rule. The weak independene of Gallier-Snyder's Lazy

Paramodulation follows from proofs in [10℄, and an be proved straightforward

by the same analysis as in our paper.

The fat that we an use a similar style of proof in [8℄ and here shows that this

is a robust way of looking at properties of goal-direted E-uni�ation systems.

We believe that it will enable us to searh for more ases of deidable equational

theories and eÆient pratial appliations of E-uni�ation.
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