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Abstrat

Motivated by the need for semantially well-founded and algorithmially man-

agable formalisms for desribing the funtionality of Web servies, we introdue

an ation formalism that is based on desription logis (DLs), but is also �rmly

grounded on researh in the reasoning about ation ommunity. Our main on-

tribution is an analysis of how the hoie of the DL inuenes the omplexity of

standard reasoning tasks suh as projetion and exeutability, whih are important

for Web servie disovery and omposition.
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1 Introdution

Desription logis [2℄ play an important rôle in the Semanti Web sine they are the

basis of the W3C-reommended Web ontology language OWL [3, 12℄, whih an be used

to reate semanti annotations desribing the ontent of Web pages [33℄. In addition

to stati information, the Web also o�ers servies, whih allow their users to e�et

hanges in the world, like buying a book or opening a bank aount. As in the ase of

stati information, annotations desribing the semantis of the servie should failitate

disovery of the right servie for a given task. Sine servies reate hanges of the world,

a faithful representation of its funtionality should deal with this dynami aspet in an

appropriate way.

The OWL-S initiative [32℄ uses OWL to develop an ontology of servies, over-

ing di�erent aspets of Web servies, among them funtionality. To desribe their

funtionality, servies are viewed as proesses that (among other things) have pre-

onditions and e�ets. A similar approah is taken by the Web servie modelling on-

tology WSMO [15℄. However, the faithful representation of the dynami behaviour of

proesses (what hanges of the world they ause) is beyond the sope of a stati ontology

language like OWL.

In AI, the notion of an ation is used both in the planning and the reasoning about

ation ommunities to denote an entity whose exeution (by some agent) auses hanges

of the world (see e.g. [28, 34℄). Thus, it is not surprising that theories developed in these

omunities have been applied in the ontext of Semanti Web servies. For example,

[20, 21℄ use the situation alulus [28℄ and GOLOG [17℄ to formalize the dynami aspets

of Web servies and to desribe their omposition. In [31℄, OWL-S proess models are

translated into the planning language of the HTN planning system SHOP2 [22℄, whih

is then used for automati Web servie omposition.

The approah used in this paper is in a similar vein. We are interested in the faithful

desription of the hanges to the world indued by the invoation of a servie. To this

purpose, we desribe servies as ations that have pre-onditions and post-onditions (its

e�ets). These onditions are expressed with the help of desription logi assertions, and

the urrent state of the world is (inompletely) desribed using a set of suh assertions

(a so-alled ABox). In addition to atomi servies, we also onsider simple omposite

servies, whih are sequenes of atomi servies. The semantis of a servie is de�ned

using the possible models approah developed in the reasoning about ation ommunity

[38, 39, 40, 6, 9, 5℄, and is fully ompatible with the usual DL semantis.. However,

we will also show that this semantis an be viewed as an instane of Reiter's approah

[27, 25, 16, 28℄ for taming the situation alulus. In partiular, our semantis solves the

frame problem in preisely the same way.

Then, we onentrate on two basi reasoning problems for (possibly omposite)

servies: exeutability and projetion. Exeutability heks whether, given our urrent

and possibly inomplete knowledge of the world, we an be sure that the servie is

exeutable, i.e., all pre-onditions are satis�ed. Projetion heks whether a ertain

ondition always holds after the suessful exeution of the servie, given our knowledge

of the urrent state of the world. Both tasks are relevant for servie disovery. It is

obviously preferable to hoose a servie that is guaranteed to be exeutable in the
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urrent (maybe inompletely known) situation. In addition, we exeute the servie to

reah some goal, and we only want to use servies that ahieve this goal. Though these

reasoning tasks may not solve the disovery problem ompletely, they appear to be

indispensable subtasks.

The main ontribution of this paper is an analysis of how the hoie of the DL inu-

enes the omplexity of these two reasoning tasks for servies. For the DLs L onsidered

here, whih are all sublanguages of the DL ALCQIO, the omplexity of exeutability

and projetion for servies expressed in this DL oinides with the omplexity of stan-

dard DL reasoning in L extended with so-alled nominals (i.e., singleton onepts). The

reason is that we an redue both tasks for servies to the standard DL task of hek-

ing onsisteny of an ABox w.r.t. an ayli TBox, provided that we an use nominals

within onept desriptions. This redution is optimal sine our hardness results show

that the omplexity inrease (sometimes) aused by the addition of nominal annot be

avoided. We also motivate the restritions we impose: we disuss the semanti and the

omputational problems that arise when these restritions are loosened. Most impor-

tantly, we prove that allowing for omplex onepts in post-onditions not only yields

semanti problems, but also the undeidability of the two servie reasoning problems.

2 The Formalism

The framework for reasoning about Web servies proposed in this paper is not restrited

to a partiular desription logi, but an be instantiated with any desription logi that

seems appropriate for the appliation domain at hand. For our omplexity results, we

onsider the DL ALCQIO and a number of its sublanguages. The reason for hoosing

ALCQIO is that it forms the ore of OWL-DL, the desription logi variant of OWL.

The additional OWL-DL onstrutors ould be easily added, with the exeption of

transitive roles whih are disussed in Setion 4. In this setion, we �rst introdue

ALCQIO and several of its fragments, then de�ne the framework for representing Web

servies, propose relevant reasoning tasks for servies, and �nally disuss the relation

between our formalism and the situation alulus.

2.1 The Desription Logi ALCQIO

In DL, onepts are indutively de�ned with the help of a set of onstrutors whih

determine the expressive power of the DL. We introdue the onstrutors available in

ALCQIO and explain how its fragments disussed here an be obtained by omitting

onstrutors. The syntax of ALCQIO as presented here an be easily translated into

an XML syntax as used for OWL-DL [12℄.

De�nition 1 (ALCQIO Syntax). Let N

C

, N

R

, and N

I

be disjoint and ountably

in�nite sets of onept names, role names, and individual names. A role is either a role

name or the inverse r

�

of a role name r. The set of ALCQIO-onepts is the smallest

set satisfying the following properties:

� eah onept name A 2 N

C

is a onept;
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Symbol Construtor ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI

Q (6 n r C) x x x

(> n r C)

I r

�

x x x

O fag x x x

Figure 1: Fragments of ALCQIO.

� if C and D are onepts, r is a role, a an individual name, and n a natural number,

then the following are also onepts:

:C (negation)

C uD (onjuntion)

C tD (disjuntion)

fag (nominal)

(> n r C) (atmost number restrition)

(6 n r C) (atleast number restrition)

4

It is onvenient to introdue some abbreviations. As usual, we use the Boolean standard

abbreviations ! and $. Additionally, we use

9R:C for (> 1 R C) (existential restrition)

8R:C for (6 0 R :C) (universal restrition)

> for a propositional tautology (top)

? for :> (bottom)

The DL that allows only for negation, onjuntion, disjuntion, and universal and exis-

tential restritions is alled ALC. The availability of additional onstrutors is indiated

by onatenation of a orresponding letter: Q stands for number restritions; I stands

for inverse roles, and O for nominals. This explains the name ALCQIO for our DL,

and also allows us to refer to sublanguages as indiated in Figure 1.

We now de�ne the semantis of ALCQIO onepts.

De�nition 2 (ALCQIO Semantis). An interpretation I is a pair (�

I

; �

I

) where �

I

is a non-empty set and �

I

is a mapping that assigns

� to eah onept name A, a set A

I

� �

I

,

� to eah individual name a, an element a

I

2 �

I

;

� to eah role name r, a binary relation r

I

� �

I

��

I

.

The interpretation of inverse roles and omplex onepts is then de�ned as follows, with
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#S denoting the ardinality of the set S:

(r

�

)

I

= f(e; d) j (d; e) 2 r

I

g

(fag)

I

= fa

I

g

(:C)

I

= �

I

n C

I

(C uD)

I

= C

I

\D

I

(C tD)

I

= C

I

[D

I

(6 n r C)

I

= fd j #fe 2 C

I

j (d; e) 2 r

I

g � ng

(> n r C)

I

= fd j #fe 2 C

I

j (d; e) 2 r

I

g � ng

An interpretation I is alled a model of a onept C if C

I

6= ; 4

A entral idea of the Semanti Web is to represent relevant terminologial knowledge in

ontologies: ontologies formally de�ne notions that are relevant for the desription of Web

page ontent, and, onversely, suh desriptions an refer to ontologies to ensure a well-

understood and unambiguous meaning of the used notions. The presene of ontologies

in the Semanti Web arhiteture provides one of the main motivations for using a

DL approah for reasoning about servies: a large olletion of ontologies are already

available on the Semanti Web, and many of them are formulated in the desription logi

OWL-DL. By allowing the desription of Web servies to refer to (DL-based) ontologies,

we thus enable the reuse of existing ontologies for desribing servies, and ensure that

the desription of stati Web pages and of servies are based on the same terminology.

In the DL world, ontologies are usually alled TBoxes.

De�nition 3 (TBox, Ayli TBox). A onept de�nition is of the form A � C;

where A is a onept name and C a onept. A TBox is a �nite set of onept de�nitions

with unique left-hand sides. We say that a onept name A diretly uses a onept name

B w.r.t. T if there is a onept de�nition A � C 2 T with B ourring in C. Let uses

be the transitive losure of diretly uses. Then a TBox T is ayli if no onept name

uses itself w.r.t. T .

An interpretation I satis�es a onept de�nition A � C (written I j= A � C) if

A

I

= C

I

. I is alled a model of a TBox T , written I j= T , if I satis�es all onept

de�nitions in T . 4

We all a onept name A de�ned w.r.t. a TBox T if A ours on the left-hand side of

a onept de�nition in T , and primitive w.r.t. T otherwise. Throughout this paper, we

will usually restrit ourselves to ayli TBoxes. The reason for this restrition is that

yli TBoxes ause semanti problems as disussed in Setion 4.

To predit the outome of applying a servie, an agent usually needs to take into

aount her knowledge about the urrent state of the world. In our framework, a

omplete desription of the state of the world orresponds to an interpretation. However,

a lient usually has only inomplete knowledge. In DLs, suh inomplete knowledge

about the world is represented in an ABox.

De�nition 4 (ABox). An assertion is of the form C(a), r(a; b) or :r(a; b), where

a; b 2 N

I

, C is a onept, and r a role. An ABox is a �nite set of assertions. An
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interpretation I satis�es an assertion

C(a) i� a

I

2 C

I

;

r(a; b) i� (a

I

; b

I

) 2 r

I

;

:r(a; b) i� (a

I

; b

I

) =2 r

I

:

If ' is an assertion, then we write I j= ' i� I satis�es '. An interpretation I is alled

a model of an ABox A, written I j= A, if I satis�es all assertions in A 4

To improve readability, we will sometimes write the assertion C(a) in the form a : C.

Negated role assertions are usually not onsidered in DL, but they are very useful as

pre- and post-onditions. As desribed below, reasoning with suh assertions an easily

be redued to reasoning without them if the DL under onsideration allows for value

restrition and atomi negation.

Various reasoning problems are onsidered for DLs. For the purpose of this paper,

it is suÆient to introdue only three of them: onept satis�ability, ABox onsisteny,

and ABox onsequene.

De�nition 5 (DL Reasoning Problems). Let C be a onept, A an ABox, and T

a TBox. Then

� C is satis�able w.r.t. the TBox T i� there exists an interpretation I that is a

model of both C and A;

� A is onsistent w.r.t. the TBox T i� there exists an interpretation I that is a

model of both T and A;

� an ABox assertion ' is a onsequene of an ABox A w.r.t. a TBox T (written

A;T j= ') if every model of A and T satis�es '.

4

ABox onsequene will play the most important role in this paper. As it is a slightly

unusual DL reasoning problem, we briey show that ABox onsequene with negated

role assertions, i.e. assertions of the form :r(a; b), an be polynomially redued to ABox

onsisteny without negated role assertions, and vie versa. From these redutions, it

follows that ABox onsisteny and ABox onsequene are of the same omplexity. We

proeed in two steps:

Firstly, we redue ABox onsequene with negated role assertions to ABox onsis-

teny with negated role assertions, and vie versa. For an assertion ', let :' = :C(a)

if ' = C(a), :' = :r(a; b) if ' = r(a; b), and :' = r(a; b) if ' = :r(a; b). Then ' is a

onsequene of A w.r.t. T i� A[f:'g is inonsistent w.r.t. T . Conversely, an ABox A

is onsistent w.r.t. a TBox T i� ? is not a onsequene of A w.r.t. T .

Seond, we redue ABox onsisteny with negated role assertions to ABox onsis-

teny without suh assertions. Given an ABox A, introdue a onept nameX

a

not used

in A for eah individual name a used in A. Then replae eah assertion :r(a; b) with

the two assertions (8r::X

b

)(a) and X

b

(b). Clearly, the resulting ABox A

0

is onsistent

i� the original one is, and A

0

is of size linear in the size of A.
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2.2 Servie Desriptions

We now introdue the formalism for the representation of and reasoning about Web

servies. For simpliity, we onentrate on ground servies, i.e., servies where the input

parameters have already been instantiated by individual names. Parametri servies,

whih ontain variables in plae of individual names, should be viewed as a ompat

representation of all its ground instanes: a parametri servie simply represents the

set of all ground servies obtained from the parametri servie by replaing variables

with individual names. The handling of suh parametri servies takes plae \outside"

of our formalism and is not disussed in detail in the urrent paper. We may savely

restrit ourselves to ground servies sine all the reasoning tasks onsidered in this paper

presuppose that parametri servies have already been instantiated. For other tasks,

suh as planning, it may be more natural to work diretly with parametri servies.

De�nition 6 (Servie). Let T be an ayli TBox. An atomi servie S = (pre; o; post)

for an ayli TBox T onsists of

� a �nite set pre of ABox assertions, the pre-onditions;

� a �nite set o of olusions of the form A(a) or r(a; b), with A a primitive onept

name w.r.t. T , r a role name, and a; b 2 N

I

;

� a �nite set post of onditional post-onditions of the form '= , where ' is an ABox

assertion and  is a primitive literal for T , i.e., an ABox assertion A(a), :A(a),

s(a; b), or :s(a; b) with A a primitive onept name in T and s a role name.

A omposite servie for T is a �nite sequene S

1

; : : : ; S

k

of atomi servies for T . A ser-

vie is a omposite or an atomi servie. 4

Intuitively, the pre-onditions speify under whih onditions the servie is appliable.

The onditional post-onditions '= say that, if ' is true before exeuting the servie,

then  should be true afterwards. If ' is tautologial, e.g. >(a) for some individual name

a, then we write just  instead of '= . Also note that it is not a restrition to admit only

role names in post-onditions s(a; b) and :s(a; b) sine s

�

(a; b) an be replaed by s(b; a)

and similarly for :s

�

(a; b). By the law of inertia, only those fats that are fored to

hange by the post-onditions should be hanged by applying the servie. However, it is

well-known in the reasoning about ation ommunity that enforing this minimization of

hange stritly is sometimes too restritive [18, 29℄. The rôle of olusions is to desribe

those primitive literals to whih the minimization ondition does not apply.

To illustrate the de�nition of servies, onsider a Web site o�ering servies for people

that move from Continental Europe to the United Kingdom. Among its servies are

getting a ontrat with an eletriity provider, opening a bank aount, and applying

for hild bene�t. Obtaining an eletriity ontrat b for ustomer a does not require

any pre-onditions. It is desribed by the servie S

1

, whih has an empty set of pre-

onditions, an empty set of olusions, and whose post-onditions are de�ned as follows:

post

1

= fholds(a; b); eletriity ontrat(b)g:
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Suppose the pre-ondition of opening a bank aount is that the ustomer  is eligible

for a bank aount in the UK and holds a proof of address. Moreover, suppose that, if

a letter from the employer is available, then the bank aount omes with a redit ard,

otherwise not. This servie an be formalised by the servie desription S

2

, whih has

an empty set of olusions and the following pre- and post-onditions:

pre

2

= fEligible bank(a);9holds:Proof address(a)g

post

2

= fholds(a; );

9holds:Letter(a)=B a redit();

:9holds:letter(a)=B a no redit()g

Suppose that one an apply for hild bene�t in the UK if one has a hild and a bank

aount. The servie S

3

that o�ers this appliation then has the following pre- and

post-onditions, and again an empty set of olusions:

pre

3

= fparent of(a; d);9holds:B a(a)g

post

3

= freeives  benef for(a; d)g

The meaning of the onepts used in S

1

and S

2

are de�ned in the following ayli

TBox T :

T = fEligible bank � 9permanent resident:fUKg;

Proof address � Eletriity ontrat;

B a � B a redit t B a no reditg

To de�ne the semantis of servies, we must �rst de�ne how the appliation of an

atomi servie hanges the world, i.e., how it transforms a given interpretation I into

a new one I

0

. Our de�nition follows the possible models approah (PMA) initially

proposed in [38℄ and further elaborated e.g. in [39, 40, 6, 9, 5℄. Equivalently, we ould

have translated desription logi into �rst-order logi and then de�ne exeutability and

projetion within Reiter's framework for reasoning about deterministi ations [28℄. We

disuss this approah in Setion 2.4. The idea underlying PMA is that the interpretation

of atomi onepts and roles should hange as little as possible while still making the

post-onditions true. Sine the interpretation of de�ned onepts is uniquely determined

by the interpretation of primitive onepts and role names, it is suÆient to impose this

minimization of hange ondition on primitive onepts and roles names. We assume

that neither the interpretation domain nor the interpretation of individual names is

hanged by the appliation of a servie.

Formally, we de�ne a preedene relation 4

I;S;T

on interpretations, whih hara-

terizes their \proximity" to a given interpretation I. We use M

1

OM

2

to denote the

symmetri di�erene between the sets M

1

and M

2

.

De�nition 7 (Preferred Interpretations). Let T be an ayli TBox, S = (pre; o; post)

a servie for T , and I a model of T . We de�ne the binary relation 4

I;S;T

on models of

T by setting I

0

4

I;S;T

I

00

i�

� ((A

I

OA

I

0

) n fa

I

j A(a) 2 og) � A

I

OA

I

00

;
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� ((s

I

Os

I

0

) n f(a

I

; b

I

) j s(a; b) 2 og) � s

I

Os

I

00

.

for all primitive onepts A, all role names s, and all domain elements d; e 2 �

I

. When

T is empty, we write �

I;S

instead of �

I;S;;

. 4

Intuitively, applying the servie S transforms the interpretation I into the interpretation

I

0

if I

0

satis�es the post-onditions and is losest to I (as expressed by 4

I;S;T

) among

all interpretations satisfying the post-onditions. Sine we onsider onditional post-

onditions, de�ning when they are satis�ed atually involves both I and I

0

. We say that

the pair of interpretations I;I

0

satis�es the set of post-onditions post (I;I

0

j= post) i�

the following holds for all post-onditions '= in post: I

0

j=  whenever I j= '.

De�nition 8 (Servie Appliation). Let T be an ayli TBox, S = (pre; o; post)

a servie for T , and I;I

0

models of T sharing the same domain and interpretation of

all individual names. Then S may transform I to I

0

(I )

T

S

I

0

) i�

1. I;I

0

j= post, and

2. there does not exist a model J of T suh that I;J j= post, J 6= I

0

, and

J 4

I;S;T

I

0

.

The omposite servie S

1

: : : ; S

k

may transform I to I

0

(I )

T

S

1

;:::;S

k

I

0

) i� there are

models I

0

; : : : ;I

k

of T with I = I

0

, I

0

= I

k

, and I

i�1

)

T

S

i

I

i

for 1 � i � k. If T is

empty, we write )

S

1

;:::;S

k

instead of )

T

S

1

;:::;S

k

. 4

Note that this de�nition does not hek whether the servie is indeed exeutable, i.e.,

whether the pre-onditions are satis�ed. It just says what the result of applying the

servie is, irrespetive of whether it is exeutable or not.

Beause of our restrition to ayli TBoxes and primitive literals in the onsequene

part of post-onditions, servies without olusions are deterministi, i.e., for any model

I of T there exists at most one model I

0

suh that I )

T

S

I

0

. First note that there are

indeed ases where there is no suessor model I

0

. In this ase, we say that the servie

is inonsistent with I . It is easy to see that this is the ase i� there are post-onditions

'

1

= ; '

2

=: 2 post suh that both '

1

and '

2

are satis�ed in I. Seond, assume that

S is onsistent with I. The fat that there is exatly one model I

0

suh that I )

T

S

I

0

is an easy onsequene of the next lemma, whose proof we leave as an easy exerise.

Lemma 9. Let T be an ayli TBox, S = (pre; ;; post) a servie for T , and I )

T

S

I

0

for models I;I

0

of T . If A is a primitive onept and s a role name, then

A

I

0

:=

�

A

I

[ fb

I

j '=A(b) 2 post and I j= 'g

�

n fb

I

j '=:A(b) 2 post and I j= 'g;

s

I

0

:=

�

s

I

[ f(a

I

; b

I

) j '=s(a; b) 2 post and I j= 'g

�

n

f(a

I

; b

I

) j '=:s(a; b) 2 post and I j= 'g:

9



Sine the interpretation of the de�ned onepts is uniquely determined by the interpre-

tation of the primitive onepts and the role names, it follows that there annot exist

more than one I

0

suh that I )

T

S

I

0

.

In priniple, we ould have started with this more transparent de�nition of the re-

lation I )

T

S

I

0

(with some adaptations to deal with olusions). However, in Setion 4

we will disuss possible extensions of our approah: for example, to yli TBoxes or

post-onditions '= with more omplex ABox assertions  . In these ases, servies

are no longer deterministi, and thus the above lemma does not hold. The PMA ap-

proah also provides these extensions with a semantis (though not neessarily with a

satisfatory one).

2.3 Reasoning about Servies

Assume that we want to apply a omposite servie S

1

; : : : ; S

k

for the ayli TBox T .

Usually, we do not have omplete information about the world (i.e., the model I of T

is not known ompletely). All we know are some fats about this world, i.e., we have

an ABox A, and all models of A together with T are onsidered to be possible states

of the world.

Before trying to apply the servie, we want to know whether it is indeed exeutable,

i.e., whether all neessary pre-onditions are satis�ed. If the servie is exeutable, we

may want to know whether applying it ahieves the desired e�et, i.e., whether an asser-

tion that we want to make true really holds after exeuting the servie. These problems

are basi inferene problems onsidered in the reasoning about ation ommunity, see

e.g. [28℄. In our setting, they an formally be de�ned as follows:

De�nition 10 (Reasoning Servies). Let T be an ayli TBox, S

1

; : : : ; S

k

a servie

for T with S

i

= (pre

i

; o

i

; post

i

), and A an ABox.

� Exeutability: S

1

; : : : ; S

k

is exeutable in A w.r.t. T i� the following ondition is

true for all models I of A and T :

{ I j= pre

1

{ for all i with 1 � i < k and all interpretations I

0

with I )

T

S

1

;:::;S

i

I

0

, we have

I

0

j= pre

i+1

.

� Projetion: an assertion ' is a onsequene of applying S

1

; : : : ; S

k

in A w.r.t. T

i�, for all models I of A and T , and all I

0

with I )

T

S

1

;:::;S

k

I

0

, we have I

0

j= '.

If T is empty, we simply drop the phrase \w.r.t. T " instead of writing \w.r.t. the empty

TBox ;". 4

Note that exeutability alone does not guarantee that we annot get stuk while exeut-

ing a omposite servie. It may also happen that the servie to be applied is inonsistent

with the urrent interpretation. This annot happen if we additionally know that all

servies S

i

are onsistent with T in the following sense: S

i

is not inonsistent with

any model I of T . Summing up, to ahieve an e�et ' (an ABox assertion) starting

from a world desription A and given a TBox T , we need a servie S

1

; : : : ; S

k

suh that

10



S

1

; : : : ; S

k

is exeutable in A w.r.t T , S

i

is onsistent with T for 1 � i � k, and ' is a

onsequene of applying S

1

; : : : ; S

k

in A w.r.t. T .

We do not view onsisteny with the onsidered TBox T as a reasoning task, but

rather as a ondition that we generally expet to be satis�ed by all well-formed servies.

Still, we should be able to deide whether a servie is onsistent with a TBox. This

an be done by a redution to standard DL reasoning: given the haraterization of

onsisteny with a model stated above Lemma 9, it is not diÆult to see that an atomi

servie S with post-onditions post

i

is onsistent with a TBox T i� f'

1

= ; '

2

=: g �

post

i

implies that the ABox f'

1

; '

2

g is inonsistent w.r.t. T .

In our example, all three servies are onsistent with T . Given the ABox

A = fparent(a; d); permanent resident(a; UK)g;

the omposite servie S = S

1

; S

2

; S

3

is exeutable, and reeives  benef for(a; d) is a

onsequene of applying S in A w.r.t. T . Note that the presene of the TBox is ruial

for this result.

The main aim of this paper is to show how the two reasoning tasks exeutability and

projetion an be omputed, and how their omplexity depends on the desription logi

used within our framework. There is one partiularly simple ase: for atomi servies

S, omputing exeutability boils down to standard DL reasoning: S is exeutable in A

w.r.t. T i� A;T j= ' for all ' 2 pre. Exeutability for omposite servies is less trivial,

and the same holds for projetion of both atomi and omposite servies. We show now

that the two reasoning servies an be mutually polynomially redued to eah other.

This allows us to onentrate on projetion when proving deidability and omplexity

results.

Lemma 11. Exeutability and projetion an be redued in polynomial time to eah

other.

Proof. Let S

1

; : : : ; S

k

with S

i

= (pre

i

; o

i

; post

i

) be a omposite servie for the ayli

TBox T . This servie is exeutable in the ABox A i�

(i) pre

1

is satis�ed in every model of A and T and, for 1 � i < k,

(ii) all assertions in pre

i+1

are onsequenes of applying S

1

; : : : ; S

i

in A w.r.t. T .

Condition (ii) is obviously a projetion problem. Condition (i) an also be seen as a

projetion problem for the empty servie (;; ;; ;).

Conversely, assume that we want to know whether ' is a onsequene of applying

S

1

; : : : ; S

k

in A w.r.t. T . We onsider the omposite servie S

0

1

; : : : ; S

0

k

; S

0

, where S

0

i

=

(;; o

i

; post

i

) for 1 � i � k, and S

0

= (f'g; ;; ;). Then ' is a onsequene of applying

S

1

; : : : ; S

k

in A w.r.t. T i� S

0

1

; : : : ; S

0

k

; S

0

is exeutable. ❏
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It is interesting to note that the redution of projetion of a omposite servie S =

S

1

; : : : ; S

k

is to exeutability for servies of length k+1. Indeed, we shall later see that,

for some desription logis, projetion of atomi servies is omputationally harder than

exeutability of atomi servies.

2.4 Relation to Situation Calulus

We ompare our formalism for reasoning about servies with one of the most prominent

(families of) formalisms for reasoning about ations, the situation alulus [28℄. We show

how to translate the omponents of our formalism, i.e., ABoxes, TBoxes, and servie

desriptions, into the situation alulus. Based on this translation, we then establish

a orrespondene between the reasoning problems. This orrespondene shows that

the onsequenes of a servie appliation omputed in our framework are idential to

the onsequenes that would be omputed in the situation alulus. In partiular, this

means that our solution of the frame problem is idential to Reiter's as initially proposed

in [27℄.

The basi notions of the situation alulus are ations, whih orrespond to our

atomi servies, and situations, whih an be viewed as �rst-order strutures and roughly

orrespond to interpretations in our framework. The main purpose of the situation al-

ulus is to provide a framework for axiomatizing (i) to whih appliations an ation an

be applied and (ii) the e�et that ations have on situations. The former is ahieved

through so-alled ation pre-ondition axioms while the e�ets of ations are desribed

using so-alled suessor state axioms. Formally, the situation alulus is a three-sorted

seond-order theory, with the three sorts being ations, situations, and objets. Prop-

erties whose truth depends on the situation are represented by prediates that have

one additional parameter of type situation. For example, \likes(b; ; s)" would be read

as \b likes  in situation s". Suh situation dependant prediates are alled uents.

In its most ommon form, the situation alulus is restrited to deterministi e�ets

of ations in the sense disussed in Setion 2.2. Therefore, in this setion we restrit

ourselves to deterministi servies, i.e., to servies without olusions|.f. Lemma 9.

For more details on the situation alulus, see [28, 16, 25℄.

The foundation for translating our servie formalism into the situation alulus

is provided by the standard translation of desription logis into �rst order logi [2,

4℄. For our purposes, this translation needs to be slightly modi�ed: in the standard

translation, onept names orrespond to unary prediates, onepts orrespond to �rst-

oder formulae in one free variable, and role names orrespond to binary prediates. In

the situation alulus, all onept names and role names orrespond to uents sine

their extension depends on the atual situation. Thus, we need to extend the prediates

orresponding to onept names and role names by one additional argument of type

situation.

We now desribe the modi�ed translation for ALCQIO onepts. The translation is

based on two reursive mappings �

x;s

(�) and �

y;s

(�), whih translate ALCQIO onepts

into a formula in one free objet variable x or y and one free situation variable s. For

eah onept name A, we introdue a binary prediate of the same name with one

plae for objets and one for situations. For eah role name r, we introdue a ternary

12



prediate of the same name with two plaes for objets and one for situations. And for

eah individual variable a, we introdue an objet-typed onstant a. The mapping �

x;s

is de�ned as follows, and the mapping �

y;s

is de�ned like �

x;s

with the roles of x and y

swapped:

�

x;s

(A) = A(x; s); for onept names A 2 N

C

�

x;s

(fag) = (x = a); for nominals N 2 N

I

�

x;s

(:D) = :�

x;s

(D);

�

x;s

(C uD) = �

x;s

(C) ^ �

x;s

(D);

�

x;s

(C tD) = �

x;s

(C) _ �

x;s

(D);

�

x;s

(./ n r C) = 9

./n

y:r(x; y; s) ^ �

y;s

(C);

�

x;s

(./ n r

�

C) = 9

./n

y:r(y; x; s) ^ �

y;s

(C):

where ./ 2 f�;�g.

The next step is to translate ABoxes into �rst-order logi. This is easily ahieved

using the mapping �

x;s

that we have just introdued. In the following, '[a=x℄ denotes

the result of replaing eah free ourrene of x in ' with the objet onstant a:

�

s

(A) =

^

C(b)2A

�

x;s

(C)[b=x℄ ^

^

r(b;)2A

r(b; ; s) ^

^

:r(b;)2A

:r(b; ; s)

To translate a servie desription from our framework into a desription of an ation in

situation alulus form, we need to translate the pre-onditions into ation pre-ondition

axioms and the post-onditions into suessor state axioms. We begin with the former.

For eah servie S = (pre; ;; post), we introdue an ation-typed onstant u and de�ne

an ation pre-ondition axiom Poss(s) � �

u

(s), whih spei�es whether it is possible to

arry out the ation u in a situation s as follows:

1

Poss(u; s) � �

u

(s) :=

^

C(b)2pre

�

x;s

(C)[b=x℄(s) ^

^

r(b;)2pre

r(b; ; s) ^

^

:r(b;)2pre

:r(b; ; s):

To de�ne suessor state axioms, we �x a �nite set of servies S

1

; : : : ; S

n

with S

i

=

(pre

i

; o

i

; post

i

) and assoiated ation onstant u

i

, for 1 � i � n. Then, for eah

onept name A and eah role name r, we introdue suessor state axioms as follows,

where u denotes an ation-typed variable

A(x; do(u; s)) � �

A

(x; u; s) and r(x; y; do(u; s)) � �

r

(x; y; u; s)

1

We use u for ation onstants and u for ation variables instead of the more ommon a and a to

avoid onfusion with individual names and orresponding objet onstants.
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with �

A

(x; u; s) and �

r

(x; y; u; s) de�ned as follows:

�

A

(x; u; s) :=

_

f(';b;i) j '=A(b)2post

i

g

�

�

s

(f'g) ^ x = b ^ u = u

i

�

_

A(x; s) ^ :

_

f(';b;i) j '=:A(b)2post

i

g

�

�

s

(f'g) ^ x = b ^ u = u

i

�

�

r

(x; y; u; s) :=

_

f(';b;;i) j '=r(b;)2post

i

g

�

�

s

(f'g) ^ x = b ^ y =  ^ u = u

i

�

_

r(x; y; s) ^ :

_

f(';b;;i) j '=:r(b;)2post

i

g

�

�

s

(f'g) ^ x = b ^ y =  ^ u = u

i

�

It is easily seen that the syntati form of the formulas �

A

and �

r

is as required for

suessor state axioms in the situation alulus.

2

Reiter identi�es a speial form of

suessor state axioms, so-alled ontext-free ones, for whih there exists a partiularly

simple algorithm for regression, the basi omputational mehanism of the situation

alulus. It is interesting to note that our suessor state axioms are ontext-free i�

only unonditional post-onditions are used in servies.

The only omponent of our formalism for reasoning about servies that we have not

yet translated into a situation alulus form are TBoxes. Indeed, there is no need to

translate them, whih an be seen as follows. Sine we assume TBoxes to by ayli, we

may ompletely eliminate TBoxes using a proess alled unfolding : �rst, exhaustively

replae eah de�ned onept name appearing on the right-hand side of a onept def-

inition in the TBox T with its de�ning onept desription as given by A � C 2 T .

Seond, replae all de�ned onept names in the ABox and servie desriptions by their

de�ning onept desriptions and drop the TBox [2℄. This unfolding proess preserves

exeutability and onsequenes. For example, if A

0

, S

0

, and '

0

are the result of unfold-

ing a TBox T given the ABox A, the atomi servie S, and the assertion ', then ' is

a onsequene of applying S in A w.r.t. T i� '

0

is a onsequene of applying S

0

in A

0

.

Note that the unfolding of TBoxes may lead to an exponential blowup in the size of

ABox and servies. For our purposes, however, this is irrelevant: we only arry out the

translation to ompare reasoning in the two formalisms, and not to atually use it for

pratial reasoning.

Now that all omponents of our framework have been translated to ounterparts in

the situation alulus, we show how an ABox A and a set of atomi servies S

1

; : : : ; S

n

an be translated into a basi ation theory as de�ned in [28℄, where all free variables

are assumed to be universally quanti�ed:

� � is the set of the four foundational axioms for situations, where do is the binary

funtion symbol of type ation�situation ! situation relating a situation with the

situation that is reahed by exeuting an ation, s

0

is the situation-type onstant

denoting the initial situation, � is the binary prediate for de�ning an ordering

2

More preisely, these formulas are uniform in the situation variable s. See [28℄ for more information.
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on situations, and s v s

0

abbreviates s � s

0

_ s = s

0

:

do(u

1

; s

1

) = do(u

2

; s

2

)! u

1

= u

2

^ s

1

= s

2

8P:

�

P (s

0

) ^ 8u; s:(P (s)! P (do(u; s))) ! 8s:P (s)

�

:s � s

0

s � do(u; s

0

)$ s v s

0

� D

ss

is the set of suessor state axioms, one for eah onept and role name

ourring in A as de�ned above,

� D

ap

is the set of ation pre-ondition axioms, one for eah ation-typed onstant

u

1

; : : : ;u

n

orresponding to the servies S

1

; : : : ; S

n

,

� D

una

is the set of unique name axioms for ations:

^

1�i<j�n

u

i

6= u

j

� D

s

0

:= �

s

0

(A) is the desription of the initial situation.

We useD(A; S

1

; : : : ; S

n

) to denote the basi ation theory obtained fromA and S

1

; : : : ; S

n

,

i.e., � [ D

s

0

[D

ss

[ D

ap

[ D

una

.

Finally, we ompare our framework with reasoning in the situation alulus. The

ounterparts of our reasoning tasks exeutability and projetion are de�ned as follows:

Exeutability. We introdue the following abbreviation:

exeutable(s) := 8u; s

0

:

�

(do(u; s

0

) v s)! Poss(u; s

0

)

�

In the situation alulus, a sequene of ations u

1

; : : : ; u

n

is exeutable in a situation s

w.r.t. the basi ation theory D if D j= exeutable(do(u

n

; do(u

n�1

; � � � ; do(u

1

; s) � � � ).

Projetion. Let '(s) be a situation alulus formula with one free situation-typed vari-

able s. Then ' is a onsequene of applying the sequene of ations denoted by onstants

u

1

; : : : ; u

n

in the initial situation s

0

desribed by D

s

0

w.r.t. the basi ation theory D

i� we have that D j= '(do(u

n

; do(u

n�1

; � � � ; do(u

1

; s

0

) � � � ).

We now formulate the main theorem of this setion stating that reasoning in our for-

malism oinides with reasoning in the situation alulus.

Theorem 12. Let A be an ABox, S = S

1

; : : : ; S

n

a omposite servie, and ' an asser-

tion. Then

1. S is exeutable in A i� the sequene u

1

; : : : ; u

n

is exeutable in s

0

w.r.t. the basi

ation theory D(A; S

1

; : : : ; S

n

).

2. ' is a onsequene of applying S in A i� �

s

(f'g) is a onsequene of applying the

sequene u

1

; : : : ; u

n

in s

0

w.r.t. the basi ation theory D(A; S

1

; : : : ; S

n

).
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Thus, the framework for reasoning about servies presented in this paper is fully

ompatible not only with ontology languages based on desription logis, but also with

the situation alulus.

We should like to note that there is a more expliite way for dealing with TBoxes

than unfolding: TBoxes an be translated into so-alled state or integrity onstraints of

the situation alulus:

�

s

(T ) =

^

A�C2T

8x:�

x;s

(A)$ �

x;s

(C):

To obtain an analogue of Theorem 12, we an then devise suessor state axioms only

for primitive onepts and role names, but not for de�ned onepts|although the latter

are uents. This orresponds to not minimizing de�ned onepts in De�nition 7. Note

that, if we admit also yli TBoxes, then the unfolding approah annot be used any

more and we are fored to translate into state onstraints. This poses semanti problems

as disussed in more detail in Setion 4.2, in Appendix B of [28℄, and in [18℄.

3 Deiding Exeutability and Projetion

The purpose of this setion is to develop reasoning proedures for the reasoning servies

introdued in Setion 2.3, and to analyze the omputational omplexity of exeutability

and projetion of di�erent fragments of ALCQIO. Throughout this setion, we assume

that all servies are onsistent with their TBox, and that TBoxes are ayli.

By Lemma 11, we an restrit the attention to the projetion problem. Basially, we

solve this problem by an approah that is similar to the regression operation used in the

situation alulus approah [28℄. The main idea is to redue projetion, whih onsiders

sequenes of interpretations I

0

; : : : ;I

k

obtained by servie appliation, to standard rea-

soning tasks for a single interpretation I. For the standard reasoning tasks, we onsider

two options:

Firstly, we may take are that the theory we obtain an again be expressed by a desrip-

tion logi TBox and ABox. This way, projetion is redued to ABox onsequene in DL,

from whih we obtain deidability results and upper omplexity bounds. Interestingly,

when taking this approah, we annot always stay within the DL we started with sine

we need to introdue nominals in the redution. We prove lower omplexity bounds

for projetion showing that the inrease in omplexity that is sometimes obtained by

introduing nominals annot be avoided.

Seondly, we an express the resulting theory in C

2

, the two-variable fragment of �rst-

order logi extended with ounting quanti�ers. This way, projetion is redued to

satis�ability in C

2

. We obtain a simpler redution, but less sharp omplexity results

sine satis�ability in C

2

is NExpTime-omplete [24, 26℄, and thus quite ostly from a

omputational perspetive. However, there are two exeptional ases where we obtain a

tight upper bound using the seond translation, but not the �rst: ALCQI andALCQIO

with numbers in number restritions oded in binary, i.e., the size of (> n r C) and

(6 n r C) is assumed to be log(n) + 1 plus the size of C.

The following results are proved in this setion:
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Theorem 13. Exeutability and projetion of omposite servies w.r.t. ayli TBoxes

are

1. PSpae-omplete for ALC, ALCO, ALCQ, and ALCQO if numbers in number

restritions are oded in unary;

2. ExpTime-omplete for ALCI and ALCIO;

3. o-NExpTime-omplete for ALCQI and ALCQIO, regardless of whether num-

bers in number restritions are oded in unary or binary.

Thus, in all ases onsidered, the omplexity of exeutability and projetion for a de-

sription logi L oinides with the omplexity of ABox onsequene in LO, the exten-

sion of L with nominals.

3.1 Redution to DL Reasoning

We redue projetion in fragments L of ALCQIO to ABox onsequene in the exten-

sion LO of L with nominals. Here, we assume unary oding of numbers in number

restritions, i.e., the size of (6 n r C) and (> n r C) is assumed to be n + 1 plus the

size of C.

Theorem 14. Let L 2 fALC;ALCI;ALCO;ALCIO; ALCQ;ALCQI;ALCQIOg.

Then projetion of omposite servies formulated in L an be polynomially redued to

ABox onsequene in LO w.r.t. ayli TBoxes.

Let L be one of the languages listed in Theorem 14, and let A be an ABox, S

1

; : : : ; S

n

a

omposite servie with S

i

= (pre

i

; o

i

; post

i

), T an ayli TBox, and '

0

an assertion,

all formulated in L. We are interested in deiding whether '

0

is a onsequene of

applying S

1

; : : : ; S

n

in A

0

w.r.t. T . Without loss of generality, we assume that '

0

is of

the form A

0

(a

0

), for a onept name A

0

:

1. Assertions r(a; b) and :r(a; b) an be replaed with (9r:fbg)(a) and (8r::fbg)(a),

respetively. This presupposes nominals, but nominals will be used in our redu-

tion, anyway.

2. If ' = C(a) with C not a onept name, we add a onept de�nition A

0

� C to

the TBox T , and then onsider ' = A

0

(a).

In the following, we all A, T , S

1

; : : : ; S

n

, and '

0

the input. We devise a redution

ABox A

red

, an (ayli) redution TBox T

red

, and a redution assertion '

red

suh that

'

0

is a onsequene of applying S

1

; : : : ; S

n

in A w.r.t. T i� A

red

;T

red

j= '

red

.

The main idea of the redution is to de�ne A

red

and T

red

suh that eah single model of

them enodes a sequene of interpretations I

0

; : : : ;I

n

obtained by applying S

1

; : : : ; S

n

in A (and all suh sequenes are enoded by redution models). To ensure this, we use

the following intuitions:
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� The redution ABox states that (i) the \I

0

-part" of a redution model I is a

model of A, and that (ii) the I

i

-part of I satis�es the post-onditions post

i

, for

1 � i � n.

� The redution TBox states that eah I

i

part of I is a model of T , for i � n.

� We need to desribe the law of inertia, i.e., the fat that we want to minimize the

hanges that are performed when applying a servie. This task is split among the

redution ABox and TBox.

To understand the splitting mentioned in the third item, it is important to distinguish

two kinds of elements in interpretations: we all an element d 2 �

I

named if a

I

=

d for some individual a used in the input, and unnamed otherwise. Intuitively, the

minimization of hanges on named elements an be desribed in a diret way through

the ABox A

red

, while the minimization of hanges on unnamed elements is ahieved

through a suitable enoding of T in T

red

. Indeed, minimizing hanges on unnamed

elements boils down to enforing that hanges in onept (non)membership and role

(non)membership involving (at least) one unnamed domain element never our: due

to the restrition to primitive onept names in post-onditions, our servies are not

expressive enough to enfore suh hanges.

In the redution, we use the following onept names, role names, and individual

names:

� The smallest set that ontains all onepts appearing in the input and is losed

under taking subonepts is denoted with Sub. For every C 2 Sub and every

i � n, we introdue a onept name T

(i)

C

. It will be ensured by the TBox T

red

that

the onept name T

(i)

C

stands for the interpretation of C in the i-th interpretation.

� We use a onept name A

(i)

for every primitive onept name A used in the input

and every i � n. Intuitively, A

(i)

represents the interpretation of the onept name

A in the i-th interpretation, but only with respet to the named domain elements.

Sine onept membership of unnamed elements never hanges, the \unnamed

part" of the interpretation of the onept name A an always be found in A

(0)

.

� We use a role name r

(i)

for every role name r used in the input and every i �

n. Similarly to onept names, r

(i)

stands for the interpretation of r in the i-

th interpretation, but only reords role relationships where both involved domain

elements are named.

� We use a onept name N that will be used to denote \named elements" of

interpretations.

� The set of individual names used in the input is denoted with Obj. For every

a 2 Obj, we introdue an auxiliary role name r

a

.

� An auxiliary individual name a

help

=2 Obj.
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The redution TBox T

red

onsists of several omponents. The �rst omponent simply

states that N denotes exatly the named domain elements:

T

N

:=

n

N � t

a2Obj

fag

o

:

The seond omponent T

sub

ontains one onept de�nition for every i � n and every

onept C 2 Sub that is not a de�ned onept name in T . These onept de�nitions

ensure that T

(i)

C

stands for the interpretation of C in the i-th interpretation as desired:

T

(i)

A

� (N uA

(i)

) t (:N uA

(0)

) if A primitive in T (a)

T

(i)

:C

� :T

(i)

C

(b)

T

(i)

CuD

� T

(i)

C

u T

(i)

D

()

T

(i)

CtD

� T

(i)

C

t T

(i)

D

(d)

T

(i)

(>m r C)

�

�

N u t

0�j�m

�

(> j r

(i)

(N u T

(i)

C

)) u (> (m� j) r

(0)

(:N u T

(i)

C

))

�

�

(e)

t

�

:N u (> m r

(0)

T

(i)

C

)

�

T

(i)

(6m r C)

�

�

N u t

0�j�m

��

(6 j r

(i)

(N u T

(i)

C

)) u (6 (m� j) r

(0)

(:N u T

(i)

C

))

�

�

(f)

t

�

:N u (6 m r

(0)

T

(i)

C

)

�

where r

�

(i)

denotes (r

(i)

)

�

in the onept de�nitions for number restritions. Line (a)

reets the fat that onept names A

(i)

only represent the extension of A in the i-th

interpretation for named domain elements. To get T

(i)

A

, the full extension of A in the i-

th interpretation, we use A

(i)

for named elements and A

(0)

for unnamed ones. A similar

splitting of role relationships into a named part and an unnamed part is reeted in the

translation of number restritions given in the last two lines.

Now we an assemble the redution TBox T

red

:

T

red

:= T

sub

[ T

N

[ fT

(i)

A

� T

(i)

E

j A � E 2 T ; i � ng

The last summand of T

red

ensures that all de�nitions from the input TBox T are satis�ed

by all interpretations I

0

; : : : ;I

n

.

The redution ABox A

red

also onsists of several omponents. The �rst omponent

ensures that, for eah individual a ourring in the input, the auxiliary role r

a

onnets

eah individual (inluding a

help

) with a, and only with a. This onstrution will simplify

the de�nition of the other omponents of A

red

:

A

aux

:=

�

a :

�

9r

b

:fbg u 8r

b

:fbg

�

ja 2 Obj [ fa

help

g; b 2 Obj

	

:

To ontinue, we �rst introdue the following abbreviations, for i � n:

p

i

(C(a)) := 8r

a

:T

(i)

C

p

i

(r(a; b)) := 8r

a

:9r

(i)

:fbg

p

i

(:r(a; b)) := 8r

a

:8r

(i)

::fbg:
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The next omponent of A

red

formalizes satisfation of the post-onditions. Note that

its formulation relies on A

aux

. For 1 � i � n, we de�ne

A

(i)

post

:=

�

a

help

:

�

p

i�1

(')! p

i

( )

�

j '= 2 post

i

	

:

The following omponent formalizes the minimization of hanges on named elements.

For 1 � i � n the ABox A

(i)

min

ontains

1. the following assertions for every a 2 Obj and every primitive onept name A

with A(a) =2 o

i

:

a :

�

�

A

(i�1)

u u

'=:A(a)2post

i

:p

i�1

(')

�

! A

(i)

�

a :

�

�

:A

(i�1)

u u

'=A(a)2post

i

:p

i�1

(')

�

! :A

(i)

�

;

2. the following assertions for all a; b 2 Obj and every role name r with r(a; b) =2 o

i

:

a :

�

�

9r

(i�1)

:fbg u u

'=:r(a;b)2post

i

:p

i�1

(')

�

! 9r

(i)

:fbg

�

a :

�

�

8r

(i�1)

::fbg u u

'=r(a;b)2post

i

:p

i�1

(')

�

! 8r

(i)

::fbg

�

:

The ABox A

ini

ensures that the �rst interpretation of the enoded sequene is a model

of the input ABox A:

A

ini

:= fT

(0)

C

(a) j C(a) 2 Ag [

fr

(0)

(a; b) j r(a; b) 2 Ag [

f:r

(0)

(a; b) j :r(a; b) 2 Ag:

We an now assemble A

red

:

A

red

:= A

ini

[A

aux

[

A

(1)

post

[ � � � [ A

(n)

post

[

A

(1)

min

[ � � � [ A

(n)

min

:

Finally, the redution assertion '

red

is de�ned as T

(n)

A

0

(a

0

). Then we have the following.

Lemma 15. ' is a onsequene of applying S

1

; : : : ; S

n

in A w.r.t. T i� A

red

;T

red

j= '

red

.

Proof. We �rst introdue a few notions that we are going to use in the proof. With

Con, we denote the set of onept names that appear in the input, with Prim onept

names from the input whih are primitive in T , and with Rol the set of role names that

appear in the input. Moreover, if I is an interpretation, we denote with Obj

I

the set

fa

I

j a 2 Objg. Finally, Assert will denote the set of assertions that appear in the input.

\)" We prove this diretion by ontraposition. Assume that A

red

;T

red

6j= '

red

.

This means that there is an interpretation J suh that J j= A

red

, J j= T

red

, and
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J 6j= T

(n)

A

0

(a

0

). In order to show that ' = A

0

(a

0

) is not a onsequene of applying

S

1

; : : : ; S

n

in A w.r.t. T , we have to �nd interpretations I

0

; : : : ; I

n

suh that I

0

j= A,

I

i�1

)

T

S

i

I

i

for 1 � i � n, and I

n

6j= A

0

(a

0

).

Let us de�ne interpretations I

0

; : : : ; I

n

, based on J , in the following way:

� �

I

i

:= �

J

� a

I

i

:= a

J

for a 2 Obj

� A

I

i

:= (T

(i)

A

)

J

for A 2 Con

� r

I

i

:= (r

(i)

)

J

\ (N

J

�N

J

)[ (r

(0)

)

J

\

�

�

J

� (:N)

J

[ (:N)

J

��

J

�

for r 2 Rol

Claim 1. For i � n, the following holds:

(a) If a 2 Obj, then a

I

i

2 A

I

i

i� a

J

2 (A

(i)

)

J

, for all A 2 Prim

If x 62 Obj

J

, then x 2 A

I

i

i� x 2 (A

(0)

)

J

, for all A 2 Prim

(b) If a; b 2 Obj then, for all r 2 Rol:

(a

I

i

; b

I

i

) 2 r

I

i

i� (a

J

; b

J

) 2 (r

(i)

)

J

If x 62 Obj

J

or y 62 Obj

J

then, for all r 2 Rol:

(x; y) 2 r

I

i

i� (x; y) 2 (r

(0)

)

J

() E

I

i

= (T

(i)

E

)

J

for every E 2 Sub

(d) I

i

j= ' i� J j= a : p

i

(') for all ' 2 Assert and a 2 Obj [ fa

help

g

Proof.

(a) follows from the fat that A

I

i

= (T

(i)

A

)

J

= ((A

(i)

)

J

\ N

J

) [ ((A

(0)

)

J

\ (:N)

J

)

and N

J

= fa

J

j a 2 Objg (due to J j= T

red

and the de�nition of A

I

i

).

(b) follows diretly from the de�nition of r

I

i

.

() is proved by strutural indution on E:

{ E = A, where A 2 Con. We have that A

I

i

= (T

(i)

A

)

J

by de�nition of I

i

{ E = :C: (:C)

I

i

= �

I

i

n C

I

i

= �

J

n (T

(i)

C

)

J

= (:T

(i)

C

)

J

= (T

(i)

:C

)

J

holds

sine C

I

i

= (T

(i)

C

)

J

by indution, and sine J satis�es (b) of T

sub

.

{ E = C uD: (C uD)

I

i

= C

I

i

\D

I

i

= (T

(i)

C

)

J

\ (T

(i)

D

)

J

= (T

(i)

C

u T

(i)

D

)

J

=

(T

(i)

CuD

)

J

holds sine C

I

i

= (T

(i)

C

)

J

and D

I

i

= (T

(i)

D

)

J

by indution, and

sine J satis�es () of T

sub

.
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{ E = C tD is similar to the previous ase.

{ E = (� m r C): sine J satis�es (e) of T

sub

, we have that x 2 (T

(i)

(�m r C)

)

J

i� one of the following holds:

x 2

�

N u t

0�j�m

�

�

� j r

(i)

(N u T

(i)

C

)

�

u

�

� (m� j) r

(0)

(:N u T

(i)

C

)

�

�

�

J

or x 2

�

:N u

�

� m r

(0)

T

(i)

C

�

�

J

Thus, we obtain that:

x 2 N

J

^

_

0�j�m

�

#fy j (x; y) 2 (r

(i)

)

J

^ y 2

�

N

J

\ (T

(i)

C

)

J

�

g � j^

#fy j (x; y) 2 (r

(0)

)

J

^ y 2

�

(:N)

J

\ (T

(i)

C

)

J

�

g � (m� j)

�

or x 2 (:N)

J

^#fy j (x; y) 2 (r

(0)

)

J

^ y 2

�

(:N)

J

\ (T

(i)

C

)

J

�

g � m

By indution, we have that C

I

i

= (T

(i)

C

)

J

. Thus, using the de�nition of r

I

i

,

we have that the above disjuntion holds i�:

x 2 N

J

^

_

0�j�m

�

#fy j (x; y) 2 r

I

i

^ y 2

�

N

J

\ C

I

i

�

g � j^

#fy j (x; y) 2 r

I

i

^ y 2

�

(:N)

J

\ C

I

i

�

g � (m� j)

�

or x 2 (:N)

J

^#fy j (x; y) 2 r

I

i

^ y 2

�

(:N)

J

\ C

I

i

�

g � m

By the semantis, this is equivalent to:

x 2 (� m r C)

I

i

:

{ E = (� m r C): similar to the previous ase

(d) follows diretly from (b),(), and the fat that

J j= fa : (9r

b

:fbg u 8r

b

:fbg) j a 2 Obj [ fa

help

g; b 2 Objg:

This �nishes the proof of the laim. Next, we will show that I

0

j= A, I

i�1

)

T

S

i

I

i

for

all 1 � i � n, and I

n

6j= A

0

(a

0

):

� I

0

j= A: this follows immediately from Claim 1 ((b) and ()) and J j= A

ini

.

� I

i�1

)

T

S

i

I

i

for all 1 � i � n is split into three sub-tasks:

{ I

i�1

;I

i

j= post

i

: due to Claim 1(d), we have that:

If J j= a

help

:

�

p

i�1

(')! p

i

( )

�

then I

i�1

j= ' implies I

i

j=  

Thus, J j= A

(i)

post

implies I

i�1

;I

i

j= post

i

.
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{ I

i

is minimal: assume, to the ontrary of what is to be shown, that there is

an interpretation I

0

i

6= I

i

suh that I

i�1

)

T

S

i

I

0

i

and I

0

i

4

I

i�1

;S

i

;T

I

i

. The

latter an be split into two ases:

(i) (A

I

i�1

OA

I

0

i

) n fa

I

i

j A(a) 2 o

i

g ( A

I

i�1

OA

I

i

for some A 2 Prim

Claim 1 (a) implies, for all x 62 Obj

J

, that x 2 A

I

i

i� x 2 (A

(0)

)

J

i� x 2 A

I

i�1

. Thus, there is some a 2 Obj with A(a) 62 o

i

, a

I

i

2

A

I

i�1

OA

I

i

, and a

I

i

62 A

I

i�1

OA

I

0

i

. Let us assume that I

i�1

j= A(a),

I

0

i

j= A(a) and I

i

6j= A(a). By Claim 1 (a), we have that J j= A

(i�1)

(a)

and J 6j= A

(i)

(a). Then, due to J j= A

(i)

min

, we have that

a

J

62

�

u

'=:A(a)2post

i

:p

i�1

(')

�

J

;

i.e. there is a '=:A(a) 2 post

i

suh that J j= a : p

i�1

('). By Claim 1(d)

we obtain that I

i�1

j= '. But then I

0

i

j= A(a) implies I

i�1

;I

0

i

6j= post

i

in ontradition to I

i�1

)

T

S

i

I

0

i

.

The ase I

i�1

j= :A(a), I

0

i

j= :A(a) and I

i

j= A(a) is analogous.

(ii) (r

I

i�1

Or

I

0

i

) n f(a

I

i

; b

I

i

) j r(a; b) 2 o

i

g ( r

I

i�1

Or

I

i

for some r 2 Rol

is analogous to (i).

{ I

i

j= T , i � n, is an immediate onsequene of Claim 1(): Let A � E be a

onept de�nition in T . We have that T

(i)

A

� T

(i)

E

2 T

red

and, sine J j= T

red

,

obtain (T

(i)

A

)

J

= (T

(i)

E

)

J

. Claim 1() gives us that A

I

i

= (T

(i)

A

)

J

= (T

(i)

E

)

J

=

E

I

i

.

� Finally, it is obvious that Claim 1() and J 6j= T

(n)

A

0

(a

0

) imply I

n

6j= A

0

(a

0

).

\(": For this diretion, we also show the ontrapositive. Assume that ' = A

0

(a

0

) is

not a onsequene of applying S

1

; : : : ; S

n

in A w.r.t. T . Then there are interpretations

I

0

; : : : ;I

n

suh that I

0

j= A, I

i�1

)

T

S

i

I

i

for 1 � i � n, and I

n

6j= A

0

(a

0

). We show

that, then, T

(n)

A

0

(a

0

) is not a onsequene of A

red

w.r.t. T

red

.

Claim 2 The interpretations I

0

; : : : ;I

n

satisfy the following:

(a) For all a 2 Obj and A 2 Prim suh that A(a) 62 o

i

, the following holds:

if I

i�1

j= A(a) and, for eah '=:A(a) 2 post

i

, I

i�1

6j= ', then I

i

j= A(a), and

if I

i�1

j= :A(a) and, for eah '=A(a) 2 post

i

, I

i�1

6j= ', then I

i

j= :A(a).

For all a; b 2 Obj and r 2 Rol suh that r(a; b) 62 o

i

, the following holds:

if I

i�1

j= r(a; b) and, for eah '=:r(a; b) 2 post

i

, I

i�1

6j= ', then I

i

j= r(a; b)

if I

i�1

j= :r(a; b) and, for eah '=r(a; b) 2 post

i

, I

i�1

6j= ', then I

i

j= :r(a; b).
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(b) If x 62 Obj

I

0

, then x 2 A

I

i

i� x 2 A

I

0

, for all A 2 Prim

() If x 62 Obj

I

0

or y 62 Obj

I

0

, then (x; y) 2 r

I

i

i� (x; y) 2 r

I

0

, for all r 2 Rol

Proof. Assume that (a) does not hold, i.e., that, for example,

I

i�1

j= A(a) and, for eah '=:A(a) 2 post

i

; I

i�1

6j= ' and I

i

j= :A(a)

for an a 2 Obj and an A 2 Prim suh that A(a) 62 o

i

. De�ne an interpretation I

0

i

suh

that it interpretes all primitive onept and role names in the same way as I

i

with the

exeption that a

I

0

i

2 A

I

0

i

. Sine the TBox T is ayli we an de�ne B

I

0

i

for de�ned

onept names B, suh that I

0

i

j= T . Then we have that I

0

i

6= I

i

, I

0

i

4

I

i�1

;S

i

;T

I

i

,

I

0

i

j= T , and I

i�1

;I

0

i

j= post. But this implies that I

i�1

6)

T

S

i

I

i

.

(b) In an analogous way to (a), we an show that x 2 A

I

i

i� x 2 A

I

i�1

for all x 62 Obj

I

0

and 1 � i � n. As an immediate onsequene, we obtain (b).

() Analogous to (b).

This �nishes the proof of Claim 2.

We de�ne an interpretation J in the following way:

� �

J

:= �

I

0

(= �

I

1

= � � � = �

I

n

)

� a

J

:= a

I

0

(= a

I

1

= � � � = a

I

n

) for a 2 Obj

� a

J

help

:= d, for an arbitrary d 2 �

J

� N

J

:= fa

J

j a 2 Objg

� r

J

b

:= f(a

J

; b

J

) j a 2 Obj [ fa

help

gg, for all b 2 Obj

� (A

(i)

)

J

:= A

I

i

for A 2 Con and i � n

� (r

(i)

)

J

:= r

I

i

for r 2 Rol and i � n

� (T

(i)

C

)

J

:= C

I

i

for all C 2 Sub and i � n

Please note that the de�nition of J implies that, for all i � n, ' 2 Assert, and

a 2 Obj [ fa

help

g, we have the following:

I

i

j= ' i� J j= a : p

i

(') (�)

We will show now that J j= A

red

, J j= T

red

, and J 6j= T

A

0

(a

0

).

(i) J j= A

red

:

� J j= A

ini

follows diretly from I

0

j= A and the de�nition of J .

� J models A

aux

by de�nition of r

J

b

.
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� J j= A

(i)

post

, for eah 1 � i � n: by (�), we obtain that:

If I

i�1

j= ' implies I

i

j=  ; then J j= a

help

: (p

1

(')! p

2

( ))

for every '= 2 post

i

. Sine I

i�1

;I

i

j= post

i

, we have that J satis�es A

(i)

post

.

� J j= A

(i)

min

, for eah 1 � i � n: by (�) and de�nitions of (A

(i)

)

J

, we have that

If I

i�1

j= A(a) and, for all '=:A(a) 2 post

i

, I

i�1

6j= ' imply I

i

j= A(a),

then J j= a :

�

�

A

(i�1)

u u

'=:A(a)2post

i

:p

i�1

(')

�

! A

(i)

�

The symmetri ase for (:A)

J

and the ases for (r

(i)

)

J

an be onsidered in a

similar way. Thus, by Claim 2(a), we have that J satis�es A

(i)

min

.

(ii) J j= T

red

:

� J satis�es the onept de�nition N � t

a2Obj

fag by de�nition of N

J

.

� J satis�es every onept de�nition T

(i)

A

� T

(i)

C

, where A � C 2 T and i � n:

by de�nition of (T

(i)

A

)

J

and sine I

i

j= T , we have that (T

(i)

A

)

J

= A

I

i

= C

I

i

=

(T

(i)

C

)

J

.

� Finally, we will show that J j= T

sub

. By strutural indution on E 2 Sub, we

show that J satis�es every onept de�nition with T

(i)

E

on the left-hand side:

{ E = A, where A 2 Prim. We have:

(T

(i)

A

)

J

= A

I

i

= N

J

\A

I

i

[ (:N)

J

\A

I

i

= N

J

\A

I

i

[ (:N)

J

\A

I

0

= N

J

\ (A

(i)

)

J

[ (:N)

J

\ (A

(0)

)

J

=

= ((N uA

(i)

) t (:N uA

(0)

))

J

The �rst equality holds by de�nition of (T

(i)

A

)

J

, the seond one by the se-

mantis, the third one by Claim 2 (b) and the de�nition of N

J

, the fourth

one by de�nition of (A

(j)

)

J

, and the last one by the semantis.

{ E = :C. By de�nition of (T

(i)

:C

)

J

and (T

(i)

C

)

J

, we have the following:

(T

(i)

:C

)

J

= (:C)

I

i

= :C

I

i

= :(T

(i)

C

)

J

:

{ E = C u D. By de�nition of (T

(i)

CuD

)

J

, (T

(i)

C

)

J

and (T

(i)

D

)

J

, we have the

following:

(T

(i)

CuD

)

J

= (C uD)

I

i

= C

I

i

\D

I

i

= (T

(i)

C

)

J

\ (T

(i)

D

)

J

= (T

(i)

C

u T

(i)

D

)

J

{ E = C tD is similar to the previous ase.
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{ E = (� m r C). By de�nition of J , we have that x 2 (T

(i)

(�m r C)

)

J

i�

x 2 (� m r C)

I

i

. Due to the de�nition of the semantis, the latter is the

ase i� #fy j (x; y) 2 r

I

i

^ y 2 C

I

i

g � m:

By Claim 2() and N

J

= fa

J

j a 2 Objg, the above expression is equivalent

to the following disjuntion:

x 2 N

J

^

W

0�j�m

�

#fy j (x; y) 2 r

I

i

^ y 2

�

N

J

\ C

I

i

�

g � j^

#fy j (x; y) 2 r

I

0

^ y 2

�

(:N)

J

\ C

I

i

�

g � (m� j)

�

or

x 2 (:N)

J

^#fy j (x; y) 2 r

I

0

^ y 2 C

I

i

g � m

Using the de�nitions of (T

(i)

C

)

J

and (r

(i)

)

J

, we obtain:

x 2 N

J

^

W

0�j�m

�

#fy j (x; y) 2 (r

(i)

)

J

^ y 2

�

N

J

\ (T

(i)

C

)

J

�

g � j^

#fy j (x; y) 2 (r

(0)

)

J

^ y 2

�

(:N)

J

\ (T

(i)

C

)

J

�

g � (m� j)

�

or

x 2 (:N)

J

^#fy j (x; y) 2 (r

(0)

)

J

^ y 2 (T

(i)

C

)

J

g � m;

whih is equivalent to:

x 2

��

N u t

0�j�m

�

�

� j r

(i)

(N u T

(i)

C

)

�

u

�

� (m� j) r

(0)

:(N u T

(i)

C

)

�

�

�

t

�

(:N)

J

u

�

� m r

(0)

T

(i)

C

�

��

J

:

{ E = (� m r C) is similar to the previous ase.

Hene J satis�es T

sub

.

(iii) Finally, it is easy to see that (A

0

)

I

n

= (T

(n)

A

0

)

J

and I

n

6j= A

0

(a

0

) imply J 6j=

T

(n)

A

0

(a

0

).

❏

Sine the size of A

red

, T

red

, and '

red

are learly polynomial in the size of the input

(reall that we assume unary oding of numbers in number restritions), Lemma 15

immediately yields Theorem 14. Thus, for the DLs L onsidered in Theorem 14, upper

omplexity bounds for ABox onsequene in LO arry over to projetion in L. Many

suh upper bounds are available from the literature. Indeed, there is only one ase

where we annot draw upon existing results: the omplexity of ABox onsequene in

ALCQO w.r.t. ayli TBoxes. For the sake of ompleteness, we prove that this problem

is PSpae-omplete in Appendix A. Lower omplexity bounds arry over from ABox

onsequene in a DL L to projetion in the same DL: A;T j= ' i� ' is a onsequene

of applying the empty servie (;; ;; ;) in A w.r.t. T . Thus, we obtain tight bounds

for projetion in those DLs L where the addition of nominals does not inrease the

omplexity of reasoning.
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Corollary 16. Exeutability and projetion w.r.t. ayli TBoxes are

1. PSpae-omplete for ALC, ALCO, ALCQ, and ALCQO;

2. in ExpTime for ALCI;

3. ExpTime-omplete for ALCIO;

4. in o-NExpTime for ALCQI;

5. o-NExpTime-omplete for ALCQIO.

Points 1, 4, and 5 presuppose that numbers in number restritions are oded in unary.

Proof. The orollary is a onsequene of Theorem 14 and the following results: ABox

onsequene in

� ALC w.r.t. ayli TBoxes is PSpae-hard [30℄ (yields lower bounds of Point 1);

� ALCQO w.r.t. ayli TBoxes is in PSpae, whih is proved in Appendix A

(yields upper bounds of Point 1);

� ALCIO w.r.t. ayli TBoxes is ExpTime-omplete, as follows from results in [1℄

(yields Points 2 and 3);

� ALCQIO is o-NExpTime-omplete as follows from results in [36℄ and [24℄ (yields

Points 4 and 5).

The bounds for exeutability are then obtained by the redutions of exeutability to

projetion and vie versa. ❏

In Setion 3.3, we prove mathing lower bounds for Points 2 and 4 of Corollary 13.

Note that the stated upper bounds inrease by one exponential if numbers in number

restritions are oded in binary: in this ase, the size of the redution TBox T

red

is

exponential in the size of the input.

3.2 Redution to C

2

Alternatively to reduing to standard DL reasoning, we an redue projetion to sat-

is�ability in C

2

. This yields a simpler translation and a o-NExpTime upper bound

for projetion in ALCQI and ALCQIO with numbers in number restritions oded in

binary|in ontrast to the redution given in the previous setion whih requires unary

oding to yield o-NExpTime upper bounds. However, we annot get any PSpae

or ExpTime upper bounds from the C

2

-translation sine satis�ability in C

2

is NExp-

Time-omplete [24, 26℄.

We assume that the two variables of C

2

are alled x and y, and write 9

�n

x:'(x)

and 9

�n

x:'(x) for the ounting quanti�ers. We show the following.

Theorem 17. Projetion of omposite servies formulated in ALCQIO an be polyno-

mially redued to satis�ability in C

2

.
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As in the previous setion, we assume that an input is given, namely an ayli TBox

T , an ABox A, a omposite servie with S

i

= (pre

i

; o

i

; post

i

), and an assertion '

0

,

all formulated in ALCQIO, and that we are interested in deiding whether '

0

is a

onsequene of applying S in A w.r.t. T . As in Setion 3.1, we assume that '

0

is of

the form A

0

(a

0

) with A

0

a onept name. The idea underlying the redution is very

similar to that underlying the redution presented in the previous setion, apart from

one signi�ant simpli�ation: sine C

2

is more expressive than ALCQIO, it is not

neessary to split the interpretations of onept and role names into a named part and

an unnamed part. We introdue the following signature for the redution formula '

red

that we are about to raft:

� Again, the smallest set that ontains all onepts appearing in the input and

that is losed under taking subonepts is denoted by Sub. We introdue a unary

prediate P

(i)

C

for every onept C 2 Sub. Intuitively, P

(i)

C

represents the extension

of C in the i-th interpretation.

� Again, let Rol := fr; r

�

j the role name r ours in the inputg. We introdue a

binary prediate P

(i)

r

for every r 2 Rol and every i � n;

� Again, the set of individual names used in the input is denoted with Obj. For

every a 2 Obj, we introdue a onstant 

a

.

We start with translating the TBox T into a C

2

-formula. The formula '

sub

ontains

one onjunt for every i � n and every onept C 2 Sub that is not a onept name:

8x: P

(i)

:C

(x) $ :P

(i)

C

(x)

8x: P

(i)

CuD

(x) $ P

(i)

C

(x) ^ P

(i)

D

(x)

8x: P

(i)

CtD

(x) $ P

(i)

C

(x) _ P

(i)

D

(x)

8x: P

(i)

(>m r C)

(x) $ 9

�

m

y:P

(i)

r

(x; y) ^ P

(i)

C

(y)

8x: P

(i)

(6m r C)

(x) $ 9

�

m

y:P

(i)

r

(x; y) ^ P

(i)

C

(y)

Next, the formula '

T

is de�ned as follows (reall that N

R

is the set of all role names):

'

T

:= '

sub

^

^

A�E2T

^

i�n

8x:(P

(i)

A

(x)$ P

(i)

C

(x)) ^

^

r2Rol\N

R

^

i�n

8x; y:(P

(i)

r

(x; y)$ P

(i)

r

�

(y; x))

Observe that the last line ensures a orret interpretation of inverse roles.

Next, we translate the input ABox and input servies. Similar to the previous

redution, we introdue the following abbreviations, for i � n:

p

i

(C(a)) := P

(i)

C

(

a

)

p

i

(r(a; b)) := P

(i)

r

(

a

; 

b

)

p

i

(:r(a; b)) := :P

(i)

r

(

a

; 

b

)
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The formula '

A;S

is de�ned as follows:

'

A;S

:=

^

'2A

p

0

(') ^

^

1�i�n

^

'= 2post

i

p

i�1

(')! p

i

( )

Next, we onstrut a formula that ensures the minimality of hanges made when apply-

ing a servie. For 1 � i � n, let '

(i)

min

be the onjuntion of the following formulas:

1. for every a 2 Obj and every primitive onept name A with A(a) =2 o

i

,

�

P

(i�1)

A

(

a

) ^

^

'=:A(a)2post

i

:p

i�1

(')

�

! P

(i)

A

(

a

)

�

:P

(i�1)

A

(

a

) ^

^

'=A(a)2post

i

:p

i�1

(')

�

! :P

(i)

A

(

a

)

2. for all a; b 2 Obj and every role name r with r(a; b) =2 o

i

:

�

P

(i�1)

r

(

a

; 

b

) ^

^

'=:r(a;b)2post

i

:p

i�1

(')

�

! P

(i)

r

(

a

; 

b

)

�

:P

(i�1)

r

(

a

; 

b

) ^

^

'=r(a;b)2post

i

:p

i�1

(')

�

! :P

(i)

r

(

a

; 

b

)

3. for every onept name A ourring in the input:

8x:

�

:(P

(i�1)

A

(x)$ P

(i)

A

(x))!

_

a2Obj

x = 

a

�

4. for every role name r ourring in the input:

8x; y:

�

:(P

(i�1)

r

(x; y)$ P

(i)

r

(x; y))! (

_

a2Obj

x = 

a

_

_

a2Obj

y = 

a

)

�

Observe that the last two items have no diret ounterpart in the redution given in the

previous setion. Intuitively, the formula from Item 3 says that a servie appliation

will not add or delete an element d to or from a set A

I

if d is unnamed. The formula

from Item 4 makes the analogous statement for role names. These statements annot be

expressed in ALCQIO whih neessitated the splitting of the interpretations of onept

and role names into a named and an unnamed part in the previous redution.

The formula '

min

is de�ned as follows:

'

min

:=

^

1�i�n

'

(i)

min

:

Finally, '

�

0

is de�ned as P

(n)

A

0

(

a

0

) and

'

red

:= '

A;S

^ '

min

^ '

T

^ :'

�

0

The following lemma an be proved analogously to Lemma 15.

Lemma 18. '

0

is a onsequene of applying S

1

; : : : ; S

n

in A w.r.t. T i� '

red

is unsat-

is�able.
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Together with the redution from exeutability to projetion, we obtain the following

result.

Corollary 19. Exeutability and projetion w.r.t. ayli TBoxes are in o-NExpTime

for ALCQIO even if the numbers in number restritions are oded in binary.

A mathing lower bound for ALCQIO is obtained from Point 5 of Corollary 13. As

shown in the following setion, Corollary 19 also yields a tight upper bound for the

fragment ALCQI of ALCQIO.

3.3 Hardness Results

We show that the upper bounds for exeutability and projetion obtained in the previ-

ous two setions annot be improved. In Setion 3.1, we have already obtained mathing

lower bounds for DLs L where the omplexity of ABox inonsisteny oinides in L and

LO (L's extension with nominals). It thus remains to onsider ases where ABox inon-

sisteny in LO is harder than in L: we prove an ExpTime lower bound for projetion in

ALCI and a o-NExpTime lower bound for projetion in ALCQI with numbers oded

in unary. By Lemma 11, these bounds arry over to exeutability. They math Points 2

and 4 of Corollary 13 and, together with Corollary 19, establish o-NExpTime-om-

pleteness of projetion in ALCQI. The results established in this setion show that

the additional omplexity that is obtained by introduing nominals in the redution of

projetion to ABox onsequene annot be avoided.

The idea for proving the lower bounds is to redue, for L 2 fALCI;ALCQIg,

unsatis�ability of LO onepts to projetion in L. In the ase of ALCQI, we an even

obtain a slightly stronger result by reduing onept unsatis�ability in ALCFIO to

projetion in ALCFI, where ALCFIO is ALCQIO with numbers ourring in number

restritions limited to f0; 1g, and ALCFI is obtained from ALCFIO by dropping

nominals.

3

Observe that the oding of numbers, i.e. unary vs. binary, is not an issue in

ALCFIO and ALCFI, and thus a lower bound for projetion in ALCFI implies the

same bound for projetion in ALCQI with unary oding of numbers. Our aim is to

prove the following.

Theorem 20. There exists an ABox A and an atomi servie S formulated in ALCI

(ALCFI) suh that the following tasks are ExpTime-hard (o-NExpTime-hard): given

an assertion ',

� deide whether ' is a onsequene of applying S in A;

� deide whether S; (f'g; ;; ;) is exeutable in A.

3

We admit the number 0 to preserve the abbreviation 8r:C that stands for (6 0 r :C).
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Note that we annot obtain the same hardness results for exeutability of atomi servies

for the following reasons: (i) exeutability of atomi servies in any DL L an trivially

be redued to ABox onsequene in L, and (ii) the omplexity of ABox onsequene is

idential to the omplexity of onept unsatis�ability in ALCI and ALCFI.

For the proof of Theorem 20, let L 2 fALCIO;ALCFIOg and C an L-onept

whose (un)satis�ability is to be deided. For simpliity, we assume that C ontains only

a single nominal fng. This an be done w.l.o.g. sine the omplexity of unsatis�ability

in ALCIO (resp. ALCFIO) is already ExpTime-hard (resp. o-NExpTime-hard) if

only a single nominal is available and TBoxes are not admitted [1, 36, 37℄. We reserve

a onept name O and a role name u that do not our in C. Let

rol(C) := fr; r

�

j r 2 N

R

used in Cg

and let C[O=fng℄ denote the result of replaing the nominal fng in C with the onept

name O. We de�ne an ABox A, an atomi servie S = (;; ;; post

S

), and a onept D

C

as follows:

A

C

:= fa : (:O u 8u::O u 8u: u

r2rol(C)

8r:9u

�

::O)g

post

S

:= a : O

D

C

:= 9u:C[O=fng℄ u (8u: u

r2rol(C)

8r:8u

�

:O)

The following lemma immediately yields Theorem 20.

Lemma 21. The following statements are equivalent:

1. C is satis�able.

2. there are interpretations I and I

0

suh that I j= A

C

, I )

S

I

0

, and I

0

j= a : D

C

.

3. a : :D

C

is not a onsequene of applying S in A

C

.

4. the omposite servie S; (fa : :D

C

g; ;; ;) is not exeutable in A

C

.

Proof. We only prove that (1) and (2) are equivalent sine the other equivalenes are

immediate onsequenes of the de�nitions of predition and exeutability.

(2) implies (1). Assume that there are interpretations I and I

0

suh that I j= A

C

,

I )

S

I

0

, and I

0

j= a : D

C

. By the �rst onjunt of (the onept in the only assertion

of) A

C

, by post

S

, and Lemma 9, we have that I is idential to I

0

with the only exeption

that a

I

= a

I

0

2 O

I

0

n O

I

. For simpliity, we will all this relationship quasi-identity

of I and I

0

in what follows. By the �rst onjunt of D

C

, there is an x

0

2 �

I

= �

I

0

suh that (a

I

0

; x

0

) = (a

I

; x

0

) 2 u

I

0

= u

I

, and x

0

2 C[O=fng℄

I

0

. We �rst identify the

\relevant part" of I and I

0

: set

rel

0

:= fx

0

g

rel

i+1

:= rel

i

[ fx 2 �

I

j (y; x) 2 r

I

for some y 2 rel

i

and r 2 rol(C)g

rel :=

[

i�0

rel

i
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The relevant part of I

0

an be de�ned analogously. Due to the quasi-identity of I and

I

0

, it is idential to the relevant part of I. We now show the following:

Claim 1. For all x 2 rel, we have (a

I

; x) = (a

I

0

; x) 2 u

I

= u

I

0

.

The proof of the laim is by indution on the smallest i suh that x 2 rel

i

. First let

i = 0. Then x = x

0

and the laim holds sine (a

I

; x

0

) 2 u

I

by hoie of x

0

. Now let

i > 0. Sine i is smallest with x 2 rel

i

, there is a y 2 rel

i�1

suh that (y; x) 2 r

I

= r

I

0

for

some r 2 rol(C). By indution, we have (a

I

; y) 2 u

I

= u

I

0

. Thus, the third onjunt of

A

C

implies that y 2 (8r:9u

�

::O)

I

, and thus x 2 (9u

�

::O)

I

. Let z be the witness for

this, i.e. (z; x) 2 u

I

= u

I

0

and z =2 O

I

. Sine (a

I

; y) 2 u

I

0

, (y; x) 2 r

I

0

, and (z; x) 2 u

I

0

,

we have z 2 O

I

0

by the seond onjunt of D

C

. Sine the only di�erene between I

and I

0

is a

I

2 O

I

0

n O

I

, z 2 O

I

0

n O

I

implies z = a

I

. Sine (z; x) 2 u

I

, we are done.

This �nishes the proof of Claim 1. Now we show that the onept name O may serve

as a nominal on the relevant part of I

0

extended with a

I

0

.

Claim 2. O

I

0

\ (rel [ fa

I

0

g) is a singleton.

Proof: By post

S

, we have a

I

0

2 O

I

0

. Thus, O

I

0

is non-empty. Now let x 2 O

I

0

\ rel.

By Claim 1, we have (a

I

0

; x) 2 u

I

0

. Then, (a

I

; x) 2 u

I

. Thus, the seond onjunt of

A

C

yields x =2 O

I

. Sine the only di�erene between I and I

0

is a

I

0

2 O

I

0

n O

I

, this

implies that x = a

I

0

. Hene, O

I

0

\ (rel [ fa

I

0

g) is a singleton.

Now de�ne an interpretation J as I

0

extended with n

J

:= x if O

I

0

\ (rel[fa

I

0

g) = fxg

(suh an x exists and is unique by Claim 2). It is standard to prove the following laim

by strutural indution. The only interesting aspets are the ase of the nominal fng

where we use that fng

J

= O

I

0

, and the fat that all domain elements enountered

during the proof are from rel.

Claim 3. For all x 2 rel and all subonepts D of C, we have x 2 D[O=fng℄

J

i�

x 2 D

J

.

Finally, x

0

2 C[O=fng℄

I

0

yields x

0

2 C

J

by Claim 3, and thus C is satis�able.

\only if". Let J be a model of C, and let x

0

2 C

J

. Let I be the interpretation that is

idential to J , but for the following modi�ations:

� O

I

= ;;

� a

I

= n

J

;

� u

I

= f(a

I

; x) j x 2 �

I

g.

Moreover, let I

0

be the interpretation that is idential to I exept that O

I

0

= fng

J

. It

is readily heked that I j= A

C

, I )

S

I

0

, and I

0

j= a : D

C

. ❏

4 Syntati Restritions

The purpose of this setion is to provide a justi�ation for the syntati restritions that

we have adopted in our formalism for desribing servies:
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1. we do not allow for transitive roles, whih are available in OWL-DL;

2. we only allow for ayli TBoxes rather than arbitrary (also yli) ones or even

so-alled general onept inlusions (GCIs), whih are also available in OWL-DL;

3. in post-onditions '=C(a), we require C to be a primitive onept or its negation,

rather than admitting arbitrary onepts.

We will show that removing the �rst restrition leads to semanti problems, while remov-

ing the seond and third restrition leads to both semanti and omputational problems.

4.1 Transitive Roles

Transitive roles are o�ered by most modern DL systems [10, 8℄, and also by the ontology

languages OWL, DAML+OIL, and OIL [12, 11, 7℄. They are added to ALCQIO by

reserving a subset of roles N

tR

of N

R

suh that all r 2 N

tR

are interpreted as transitive

relations r

I

in all models I. We show that admitting the use of transitive roles in

post-onditions yields semanti problems.

By Lemma 9, servies without olusions S = (pre; ;; post) are deterministi in the

sense that I )

T

S

I

0

, and I )

T

S

I

00

implies I

0

= I

00

. This is not any more the ase for ser-

vies referring to transitive roles: onsider the servie S = (;; ;; fhas-part(ar; engine)g)

that adds an engine to a ar. Let has-part be a transitive role and take the model

�

I

:= far; engine; valveg

has-part

I

:= f(engine; valve)g

z

I

:= z for z 2 �

I

:

Then we have both I )

S

I

0

and I )

S

I

00

, where I

0

is obtained from I by setting

has-part

I

0

:= f(ar; engine); (engine; valve); (ar; valve)g

and I

00

is obtained from I by setting

has-part

I

00

:= f(ar; engine)g:

Observe that, in I

00

, the valve is no longer part of the engine sine adding only (ar; engine)

to has-part

I

violates the transitivity of has-part

I

.

In the area of reasoning about ations, it is well-known that non-determinism of

this kind requires extra e�ort to obtain sensible onsequenes of ation/servie exeu-

tions [19, 35℄. In the above example, it is unlikely that both outomes of the servie

appliation are equally desirable. Thus, we need a mehanism for eliminating unwanted

outomes or preferring the desired ones. We leave suh extensions as future work.

4.2 Cyli TBoxes and GCIs

Assume that we admit arbitrary (also yli) TBoxes as de�ned in Setion 2.1. Then

semanti problems arise due to a ruial di�erene between yli and ayli TBoxes:
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for ayli TBoxes, the interpretation of primitive onepts uniquely determines the

extension of the de�ned ones, while this is not the ase for yli ones. Together with the

fat that the preferene relation between interpretations �

I;S;T

only takes into aount

primitive onepts, this means that the minimization of hanges indued by servie

appliation does not work as expeted. To see this, onsider the following example:

A := fDog(a)g

T := fDog � 9parent:Dogg

post := fCat(b)g

Then, Dog(a) is not a onsequene of applying S = (;; ;; post) in A w.r.t. T , as one

would intuitively expet. This is due to the following ountermodel. De�ne an inter-

pretation I as follows:

�

I

:= fbg [ fd

0

; d

1

; d

2

; : : :g

Dog

I

:= fd

0

; d

1

; d

2

; : : :g

Cat

I

:= ;

parent

I

:= f(d

i

; d

i+1

) j i 2 Ng

a

I

:= d

0

b

I

:= b

The interpretation I

0

is de�ned as I, with the exeption that Cat

I

0

= fbg and Dog

I

0

:= ;.

Using the fat that Dog is a de�ned onept and thus not onsidered in the de�nition

of �

I;S;T

, it is easy to see that I j= A, I )

T

S

I

0

, and I

0

6j= Dog(a).

There appear to be two possible ways to solve this problem: either inlude de�ned

onepts in the minimization of hanges, i.e., treat them in the de�nition of �

I;S;T

in the same way as primitive onepts, or use a semantis that regains the \de�nito-

rial power" of ayli TBoxes, namely that an interpretation of the primitive onepts

uniquely determines the interpretation of de�ned onepts. The �rst option is infeasi-

ble sine minimizing a de�ned onept A with TBox de�nition A � C orresponds to

minimizing the omplex onept C, and it is well-known that even the minimization

of arbitrary Boolean onepts (in partiular of disjuntions) indues tehnial problems

and ounterintuitive results [18℄. The seond option seems more feasible: if we adopt

the least or greatest �xpoint semantis for TBoxes as �rst proposed by Nebel [23℄, it is

indeed the ase that primitive onepts uniquely determine de�ned onepts. Thus, it

may be interesting to analyze servies with yli TBoxes under �xpoint semantis as

future work.

Even more general than admitting yli TBoxes is to allow general onept in-

lusions (GCIs). A GCI is an expression C v D, with C and D (possibly omplex)

onepts. An interpretation I satis�es a GCI C v D i� C

I

� D

I

. As we an rewrite a

onept equation A � C as two GCIs A v C and C v A, it should be obvious that (sets

of) GCIs stritly generalize (also yli) TBoxes. When admitting GCIs in onnetion

with servies, we thus run into the same problems as with yli TBoxes. However, the

problems are even more serious in the ase of GCIs: �rst, GCIs do not allow an obvious
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partitioning of onept names into primitive and de�ned ones. Thus, in the de�nition

of �

I;S;T

, the only hoie is to minimize all onept names, whih orresponds to the

problemati minimization of omplex onepts mentioned above. Seond, the vanished

distintion between primitive and de�ned onepts means that we an no longer restrit

onepts C in post-onditions '=C(a) to literals over primitive onept names. The

best we an do is to restrit suh onepts to literals over arbitrary onept names.

However, together with the two GCIs A v C and C v A with C a omplex onept, the

literal post-ondition '=A(a) is equivalent to the omplex one '=C(a). Thus, it seems

that GCIs annot be admitted without simultaneously admitting arbitrarily omplex

onepts in post-onditions. As we will disuss in the following setion, this step indues

additional semanti problems as well as omputational problems.

4.3 Complex Conepts in Post-Conditions

Let a generalized servie be a servie where post-onditions are of the form '= for

arbitrary assertions ' and  . In other words,  is no longer restrited to be a literal over

primitive onepts. For simpliity, further assume that olusions are disallowed and

that neither TBoxes nor GCIs are admitted. As we shall disuss in the following, there

are both semanti and omputational problems with generalized servies: �rstly, they

o�er an expressivity that is diÆult to ontrol and often yields unexpeted onsequenes.

Seondly, reasoning with generalized servies easily beomes undeidable.

Semanti Problems

Clearly, generalized servies suh as the trivial S = (;; ;; fa : A tBg) are not determin-

isti and thus introdue similar ompliations as disussed for transitive roles in Se-

tion 4.1. However, disjuntion is not the only onstrutor to introdue non-determinism

when allowed in post-onditions. An even \higher degree" of non-determinsm is intro-

dued by existential and universal value restritions:

� If a post-ondition ontains a : 9r:A and this assertion was not already satis�ed

before the exeution of the servie, then the non-determinism lies in the hoie

of a witness objet, i.e., any domain element x 2 �

I

may be hosen to satisfy

(a

I

; x) 2 r

I

and x 2 A

I

after exeution of the servie. Note that some suh x

may already satisfy the former ondition, some may satisfy the latter, and some

neither.

The fat that any domain element is a potential witness objet implies that, e.g.,

mary : Female is not a onsequene of applying the servie

(;; ;; fmary : 9has-hild::Femaleg)

in the ABox fmary : Femaleg|an e�et that may not be intended.

� If a post-ondition ontains a : 8r:A and this assertion was not already satis�ed

before the exeution of the servie, we also have a non-deterministi situation: for

eah objet x 2 �

I

suh that (a

I

; x) 2 r

I

and x 62 A

I

holds before the exeution
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of the servie, we have to deide whether (a

J

; x) =2 r

J

or x 2 A

J

should be

satis�ed after exeution of the servie.

4

Similarly to the existential ase, we may obtain surprising results due to the

fat that any domain element x 2 �

I

may satisfy (a

I

; x) 2 r

I

and x 2 A

I

unless

expliitly stated otherwise. This means that, e.g., tire2::Filled is not a onsequene

of applying the servie

(;; ;; far1:8tire:Filledg)

in the ABox ftire(ar2; tire2); tire2::Filledg.

Complex onepts with many nested operators may obviously introdue a rather high

degree of non-determinism. While simple non-determinism suh as the one introdued

by transitive roles or post-onditions a : C tD may be dealt with in a satisfatory way

[19, 35℄, none of the mainstream ation formalisms allows arbitrary formulas in post-

onditions to avoid having to deal with the resulting massive degree of non-determinism.

Indeed, most formalisms suh as the basi situation alulus restrit themselves to lit-

erals in post-onditions [28, 34℄|just as our non-generalized servies do.

Computational Problems

Exeutability and projetion for generalized servies easily beomes undeidable. To

illustrate this, we prove undeidability of these reasoning tasks for the DL ALCFI

that has been introdued in Setion 3.3. Reall that ALCFI is obtained from ALCQI

by limiting numbers ourring in number restritions to f0; 1g. This result should be

ontrasted with the fat that, by Theorem 13, reasoning with non-generalized servies

is deidable even for powerful extensions of ALCFI. We leave it as an open problem

whether the presented undeidability result an be strengthened to simpler desription

logis, in partiular ALC.

Theorem 22. There exists a generalized atomi servie S and an ABox A formulated

in ALCFI suh that the following problems are undeidable: given a onept C,

� deide whether the assertion a : C is a onsequene of applying S in A;

� deide whether the omposite servie S; S

0

is exeutable in A, where S

0

= (fa :

Cg; ;; ;).

The proof of Theorem 22 is by redution of the domino problem to non-onsequene

and non-exeutability.

De�nition 23. Let D = (T;H; V ) be a domino system, where T is a �nite set of tile

types and H;V � T � T represent the horizontal and vertial mathing onditions. We

say that D tiles the plane i� there exists a mapping � : Z � Z ! T suh that, for all

(x; y) 2 Z� Z, we have

� if �(x; y) = t and �(x+ 1; y) = t

0

, then (t; t

0

) 2 H

4

There may even be ases where it is intended that both onditions are satis�ed after servie exeu-

tion; this is, however, not justi�ed by the PMA semantis of generalized servies.
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A = f a : :A (1)

a : 8u:( u

r2fx;y;u;x

�

;y

�

;u

�

g

8r::A) (2)

a : 8u::B g (3)

post = f a : 8u:A (4)

a : 8u:((8x

�

:8y

�

::Q) tB) g with Q := 8x:8y:B ! 9y:9x:B (5)

C

D

= A u (6)

8u:( u

r2fx;y;u;x

�

;y

�

;u

�

g

8r:A) u (7)

8u:B u (8)

8u:(9x:>u 9y:> u 9x

�

:> u 9y

�

:>) u (9)

8u:((� 1 x) u (� 1 y) u (� 1 x

�

) u (� 1 y

�

)) u (10)

8u:( u

t;t

0

2T

with t6=t

0

:(D

t

uD

t

0

)) u (11)

8u:( t

(t;t

0

)2H

(D

t

u 8x:D

t

0

)) u (12)

8u:( t

(t;t

0

)2V

(D

t

u 8y:D

t

0

) (13)

Figure 2: The ABox A, the post-onditions of S, and the onept C

D

.

� if �(x; y) = t and �(x; y + 1) = t

0

, then (t; t

0

) 2 V

Suh a mapping � is alled a solution for D. 4

For a domino system D = (T;H; V ), the ABox A, the servie S = (;; ;; post) and the

onept C

D

are de�ned in Figure 2, where A;B;B

0

; C, and C

0

are onept names, D

t

is

a onept name for eah t 2 T , and x; y, and u are role names. For a better readibility,

we write (6 1 r) instead of (6 1 r >). Our aim is to prove the following lemma, whih

immediately yields Theorem 22.

Lemma 24. The following statements are equivalent:

1. The domino system D has a solution.

2. There are interpretations I and I

0

suh that I j= A, I )

S

I

0

, and I

0

j= a : C

D

.

3. a : :C

D

is not a onsequene of applying S in A.

4. the omposite servie S; (fa : :C

D

g; ;; ;) is not exeutable in A.
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We only prove the equivalene of (1) and (2) sine the other equivalenes hold by

de�nition of projetion and exeutability. It is onvenient to �rst establish a series of

lemmas.

Lemma 25. Let I, I

0

be interpretations suh that I )

S

I

0

. Then, for all r 2

fx; y; u; x

�

; y

�

; u

�

g, we have that r

I

0

� r

I

;

Proof. We onentrate on r = x as the ases r = y and r = u are analogous and

the ases for inverse roles follow immediately by de�nition of the semantis. Thus let

(d; d

0

) 2 x

I

0

and suppose that (d; d

0

) =2 x

I

, to the ontrary of what is to be shown. Let

J be the interpretation that is idential to I

0

exept that (d; d

0

) =2 x

J

. Clearly, J 6= I

and J �

I

I

0

. We show that J satis�es all post-onditions, thus ontraditing I )

S

I

0

.

Sine only the interpretation of x has hanged and Line (4) does not mention x, we only

need to onsider Line (5): it is satis�ed by J sine it is satis�ed by I

0

and it is easily

seen that this line annot be invalidated by shrinking x (only by growing it). ❏

Let I be an interpretation and d; d

0

2 �

I

. Then

� d

0

is reahable from d if there exists a sequene of elements d

1

; : : : ; d

k

2 �

I

suh

that d

1

= d, d

k

= d

0

, and (d

i

; d

i+1

) 2 x

I

[ y

I

[ u

I

[ (x

�

)

I

[ (y

�

)

I

[ (u

�

)

I

for

1 � i < k; suh as sequene is alled a path from d to d

0

; as we may have k = 1,

every d 2 �

I

is reahable from itself;

� we use Æ

I

(d; d

0

) to denote the length of the shortest path from d to d

0

; if d

0

is not

reahable from d, then Æ

I

(d; d

0

) is unde�ned.

Lemma 26. Let I, I

0

be interpretations suh that I j= A, I )

S

I

0

, and I

0

j= a : C

D

.

Then we have (a

I

0

; d) 2 u

I

\ u

I

0

if d is reahable from a

I

0

.

Proof. The proof is by indution on Æ

I

0

(a

I

0

; d) whih we abbreviate by Æ(d) for onve-

niene. Note that Æ(d) is de�ned for all d that are reahable from a

I

0

.

First for the indution start, i.e. Æ(d) = 0. Then d = a

I

0

. By Line (1) of Figure 2,

5

we have a

I

0

=2 A

I

. By Line (6), a

I

0

2 A

I

0

. We �rst show that (a

I

0

; a

I

0

) 2 u

I

0

. Assume to

the ontrary that (a

I

0

; a

I

0

) =2 u

I

0

holds. Then let J be the interpretation that is de�ned

as I

0

exept that a

I

0

=2 A

J

. Clearly, J 6= I

0

and J �

I

I

0

. Moreover, it is easily veri�ed

that J satis�es all post-onditions (only Line (4) needs to be onsidered): ontradition

to the fat that I )

S

I

0

. Finally, (a

I

0

; a

I

0

) 2 u

I

is an immediate onsequene of

Lemma 25.

Now for the indution step, i.e. Æ(d) > 0. Then there is a d

0

2 �

I

0

suh that d

0

is

reahable from a

I

0

, Æ(d

0

) = Æ(d) � 1, and

(d; d

0

) 2 x

I

0

[ y

I

0

[ u

I

0

[ (x

�

)

I

0

[ (y

�

)

I

0

[ (u

�

)

I

0

: (�)

By indution, we have (a

I

0

; d

0

) 2 u

I

\ u

I

0

. This together with (�) and Line (7) yields

that d 2 A

I

0

. Moreover, d =2 A

I

: With (�), Lemma 25 yields

(d; d

0

) 2 x

I

[ y

I

[ u

I

[ (x

�

)

I

[ (y

�

)

I

[ (u

�

)

I

0

5

In the remainder of this proof, we use Line (j) as an abbreviation for Line (j) of Figure 2.
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and thus (a

I

0

; d

0

) 2 u

I

together with Line (2) yields d 62 A

I

. We an now ontinue

exatly as in the indution start to show �rst that (a

I

0

; d) 2 u

I

0

, and then onlude

that (a

I

0

; d) 2 u

I

. ❏

Let I be an interpretation. For a 2 N

I

, we de�ne

reah

I

(a) := fd 2 �

I

j d is reahable from a

I

in Ig:

For two interpretations I and I

0

and a 2 N

I

, we say that I and I

0

agree on the a-rooted

part if the following onditions are satis�ed:

� a

I

= a

I

0

;

� reah

I

(a) = reah

I

0

(a);

� d 2 A

I

i� d 2 A

I

0

for all d 2 reah

I

(a) and onept names A;

� (d; e) 2 r

I

i� (d; e) 2 r

I

0

for all d; e 2 reah

I

(a) and r 2 fx; y; ug.

The following lemma an be proved by strutural indution in a straightforward way.

Details are left to the reader.

Lemma 27. Let I and I

0

be interpretations that agree on the a-rooted part for some

a 2 N

I

. Then d 2 C

I

i� d 2 C

I

0

for all d 2 reah

I

(a) and ALCFI onepts C using

only the roles x, y, u, and their inverses.

We say that I is a-rooted if every d 2 �

I

is reahable from a

I

.

Lemma 28. If there exist interpretations I and I

0

suh that I j= A, I )

S

I

0

, and

I

0

j= a : C

D

, then there exist a-rooted interpretations J ;J

0

suh that I j= A, J )

S

J

0

,

and J

0

j= a : C

D

.

Proof. Let I and I

0

be interpretations suh that I )

S

I

0

and I

0

j= a : C

D

. Let J be

the restrition of I to reah

I

(a), i.e.

� �

J

:= reah

I

(a);

� A

J

:= A

I

\ reah

I

(a); for all onept names A;

� r

J

:= r

I

\ (reah

I

(a)� reah

I

(a)) for all role names r;

� b

J

:= b

I

if b

I

2 reah

I

(a), and b

J

:= a

I

otherwise, for all individual names b.

Similarly, let J

0

be the restrition of I

0

to reah

I

(a). Then, I and J agree on the

a-rooted part, and so do I

0

and J

0

. It is thus not hard to show that J j= A, J )

S

J

0

,

and J

0

j= a : C

D

as required:

� J j= A and J

0

j= a : C

D

is an immediate onsequene of Lemma 27.

� To show J )

S

J

0

, we have to prove that J

0

j= post and there is no J

00

suh that

J

0

6= J

00

, J

00

�

J

J

0

, and J

00

j= post. Sine the former is again an immediate

onsequene of Lemma 27, we onentrate on the latter.

Suppose to the ontrary of what is to be shown that there is a J

00

suh that

J

0

6= J

00

, J

00

�

J

J

0

, and J

00

j= post. De�ne an interpretation I

00

by setting
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{ �

I

00

:= �

I

0

;

{ A

I

00

:= A

J

00

[ (A

I

0

n reah

I

(a)); for all onept names A;

{ r

I

00

:= r

J

00

[ (r

I

0

n (reah

I

(a)� reah

I

(a))) for all role names r;

{ b

I

00

:= b

I

0

for all individual names b.

It is not hard to verify that I

00

6= I

0

, I

00

�

I

I

0

, and I

00

j= post. Thus, we have

established a ontradition to I )

S

I

0

.

❏

A frame is a pair (�

F

; �

F

), where �

F

is a non-empty set and �

F

maps eah role name

r to a binary relation r

F

� �

F

� �

F

. An interpretation I is said to be based on F

if �

F

= �

I

and �

F

and �

I

agree on the interpretation of all role names. A frame F

validates a onept C if we have C

I

= �

I

, for all interpretations I based on F .

Lemma 29. Let I and I

0

be a-rooted interpretations suh that I j= A, I )

S

I

0

, and

I

0

j= a : C

D

. Then I

0

is based on a frame F that satis�es the following:

1. for eah d 2 �

F

, there is a unique d

0

with (d; d

0

) 2 x

F

and a unique d

00

with

(d; d

00

) 2 (x

�

)

F

;

2. for eah d 2 �

F

, there is a unique d

0

with (d; d

0

) 2 y

F

and a unique d

00

with

(d; d

00

) 2 (y

�

)

F

;

3. F validates the following onepts:

� 8x:8y:B ! 9y:9x:B;

� 8y:8x:B ! 9x:9y:B.

Proof. Points 1 and 2 are an immediate onsequene of a-rootedness of I

0

, Lemma 26,

and Lines (9) and (10). Conerning Point 3, it suÆes to prove validity of the �rst listed

onept: the seond onept an be obtained from the �rst one by ontraposition and

replaing B with :B. Thus, validity of the �rst onept implies validity of the seond

one. For onveniene, we abbreviate the �rst listed onept with Q as in Figure 2.

Let I and I

0

be a-rooted interpretations suh that I j= A, I )

S

I

0

, and I

0

j= a : C

D

,

and let F be the frame that I

0

is based upon. Assume that F does not validate Q, to

the ontrary of what is to be shown. Hene there is an interpretation I

�

based on F

suh that Q

I

�

6= �

I

�

(= �

I

0

= �

I

). Fix a d

0

2 (:Q)

I

�

. Let d

0

0

be the unique element

suh that (d

0

; d) 2 y

I

0

and (d; d

0

0

) 2 x

I

0

for some element d|suh a d

0

0

exists (and is

unique) by Points 1 and 2. Then de�ne a new interpretation J that is de�ned as I

0

,

but with the following di�erene:

B

J

= �

I

�

n fd

0

0

g:

By Lemma 26, a-rootedness of I

0

, and Line (8), we have B

I

0

= �

I

0

. Thus B

J

( B

I

0

.

By Lemma 26, a-rootedness of I, and Line (3) we have B

I

= ;. Thus, J �

I

I

0

.
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Moreover, J satis�es all the post-onditions. This is trivial for Line (4) but less trivial

for Line (5). Thus, let us show that every d 2 �

J

is in the J -extension of the onept

(8x

�

:8y

�

::Q) tB (�)

Sine we learly have d 2 B

J

for all d 2 �

J

n fd

0

0

g, it remains to deal with d

0

0

. This is

done in what follows. Sine d

0

2 (:Q)

I

�

, we have d

0

2 (8x:8y:B u 8y:8x::B)

I

�

. Let

d

00

0

be the unique element suh that (d

0

; d) 2 x

I

0

and (d; d

00

0

) 2 y

I

0

for some element d.

Due to the fat that d

0

2 (8x:8y:B u 8y:8x::B)

I

�

, we have d

0

0

6= d

00

0

. Thus, d

00

0

2 B

J

by de�nition of J . Sine we also have d

0

0

=2 B

J

, we get d

0

2 (8x:8y:B u 8y:8x::B)

J

=

(:Q)

J

. Thus, d

0

0

is in the J -extension of the �rst disjunt of (�).

We have shown that J indeed satis�es all post-onditions. Together with J �

I

I

0

,

we have a ontradition to I )

S

I

0

. ❏

De�nition 30. Let F be a frame and d 2 �

F

. We say that a frame F ontains a

morphi image of Z � Z with origin d if there exists a total funtion � : Z � Z ! �

F

suh that, for all i; j:

1. (0; 0) 7! d

2. (�(i; j); �(i + 1; j)) 2 x

F

;

3. (�(i; j); �(i; j + 1)) 2 y

F

.

4

Lemma 31. Let I and I

0

be a-rooted interpretations suh that I j= A, I )

S

I

0

, and

I

0

j= a : C

D

. Then I

0

is based on a frame F that ontains a morphi image of Z � Z

with origin a

I

0

.

Proof. We onstrut the desired funtion � in an inremental way:

� The �rst step is to de�ne �(i; j) for a \stairase" through (0; 0), namely for eah

(i; j) 2 f: : : ; (�2;�1); (�1;�1); (�1; 0); (0; 0); (0; 1); (1; 1); (2; 1); : : : g:

This is done by indution on ji+ jj:

start. Then i = j = 0. Set �(i; j) = a

I

0

;

step. Let �(i; j) be already de�ned for all i; j with ji + jj < n for some

n 2 N. Intuitively, we extend the stairase in both diretions. First for going

up the stairase. Let i; j 2 N suh that i+ j = n. We distinguish two ases:

{ j > i. By Point 2 of Lemma 29, there is a d suh that (�(i; j�1); d) 2 y

I

0

.

Set �(i; j) = d;

{ j = i. By Point 1 of Lemma 29, there is a d suh that (�(i�1; j); d) 2 x

I

0

.

Set �(i; j) = d.

Now for going \down". Let i; j 2 Z suh that i + j = �n. Again, we

distinguish two ases:
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{ j > i. By Point 2 of Lemma 29, there is a d suh that (d; �(i; j+1)) 2 y

I

0

.

Set �(i; j) = d;

{ j = i. By Point 1 of Lemma 29, there is a d suh that (d; �(i+1; j)) 2 x

I

0

.

Set �(i; j) = d.

� Starting from the stairase, we an now exhaustively \�ll up" the mapping � by

repeating the following steps ad in�nitum:

Suppose that �(i; j), �(i; j + 1), and �(i + 1; j + 1) are already de�ned (i.e. one

\positive stair" of the stairase). We show that there is a d 2 �

I

0

with (�(i; j); d) 2

x

I

0

and (d; �(i + 1; j + 1)) 2 y

I

0

. Assume to the ontrary that no suh d exists.

Then let J be an interpretation based on the same frame as I

0

with B

J

= f�(i+

1; j+1)g. As x

J

and y

J

are funtional by Points (1) and (2) of Lemma 29, we have

�(i; j) 2 (8y:8x:B)

J

. If there is no d with (�(i; j); d) 2 x

I

0

and (d; �(i+1; j+1)) 2

y

I

0

, then B

J

= f�(i + 1; j + 1)g implies that �(i; j) =2 (9x:9y:B)

J

, ontraditing

that F validates 8y:8x:B ! 9x:9y:B as stated by Point 3 of Lemma 29. Thus,

we �nd a d as stated. Set �(i+ 1; j) = d.

Suppose that �(i; j), �(i + 1; j), and �(i + 1; j + 1) are already de�ned (i.e. one

\negative stair" of the stairase). This is ompletely analogous to the �rst ase,

using the fat that F validates the onept 8x:8y:B ! 9y:9x:B.

Hene we have de�ned the mapping � as required. ❏

Proving Lemma 24 is now simple. First assume that there are interpretations I and I

0

suh that I j= A, I )

S

I

0

, and I

0

j= a : C

D

. By Lemma 31, I

0

is based on a frame

F that ontains a morphi image of Z � Z with origin a

I

0

. Thus, there exists a total

funtion � : Z � Z! �

F

suh that Conditions 1 to 3 from De�nition 30 are satis�ed.

Now de�ne a mapping � : Z�Z! T by setting �(i; j) := t if �(i; j) 2 D

I

0

t

. By referring

to Lines (11) to (13) and Conditions 1 to 3 from De�nition 30, it is straightforward to

verify that � is a solution to D.

Conversely, from a solution � to D, we de�ne two interpretations I and I

0

as follows:

�

I

:= �

I

0

:= Z�Z;

a

I

:= a

I

0

:= (0; 0);

A

I

:= B

I

:= ;;

A

I

0

:= B

I

0

:= �

I

;

x

I

:= x

I

0

:= f((i; j); (i + 1; j)) j i; j 2 Zg;

y

I

:= y

I

0

:= f((i; j); (i; j + 1)) j i; j 2 Zg;

u

I

:= u

I

0

:= �

I

��

I

;

D

I

t

:= D

I

0

t

:= f(i; j) j �(i; j) = tg; for eah t 2 T:

It is straightforward to verify that I j= A, and I

0

j= a : C

D

. We now show that I )

S

I

0

.

First, it is easily veri�ed that I

0

satis�es the post-onditions of S. Now assume that

there is an interpretation J suh that J satis�es the post-onditions of S, J �

I

I

0

,
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and J 6= I

0

. Observe that, sine I and I

0

are based on the same frame, J must also

be based on the same frame. This means that one of the following two ases applies:

� A

J

( A

I

0

. Then we have a ontradition to the assumption that J satis�es the

post-ondition, in partiular Line (4).

� B

J

( B

I

0

. Let (i; j) 2 (:B)

J

\ B

I

0

. Sine J satis�es Post-ondition (6), we

have d 2 (8x

�

:8y

�

::Q)

J

, whih implies that (i � 1; j � 1) 62 Q

J

. Thus, (i �

1; j � 1) 2 (8x:8y:B u 8y:8x::B)

J

, whih implies (i; j) 2 B

J

, thus ontraditing

(i; j) 2 (:B)

J

.

This �nishes the proof of Lemma 24.

5 Conlusion

The main tehnial result of this paper is that standard problems in reasoning about a-

tion (projetion, exeutability) beome deidable if one restrits the logi for desribing

pre- and post-onditions as well as the state of the world to ertain deidable desrip-

tion logis L. The omplexity of these inferenes is determined by the omplexity of

standard DL reasoning in L extended with nominals.

The framework presented here is a �rst proposal for a formalism desribing the fun-

tionality of Web servies that takes into aount the researh undertaken both in the

�eld of knowledge representation and reasoning for ontology engineering, and in the �eld

of reasoning about ations. Clearly, this framework an be extended in several dire-

tions. Firstly, instead of using an approah similar to regression to deide the projetion

problem, one ould also try to apply progression, i.e., to alulate a suessor ABox that

has as its models all the suessors of the models of the original ABox. Seondly, the

expressiveness of the basi ation formalism introdued by Reiter has been extended in

several diretions, and we need to hek for whih of these extensions our results still

hold. Thirdly, we have used only omposition to onstrut omposite servies, whereas

OWL-S proposes also more omplex operators. These ould, for example, be modeled by

appropriate GOLOG programs. Finally, to allow for automati omposition of servies,

one would need to look at how planning an be done in our formalism.
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A Complexity of ALCQO with ayli TBoxes

We show that, in ALCQO, ABox onsequene w.r.t. ayli TBoxes an be deided in

PSpae. For simpliity, we presuppose that numbers in number restritions are oded

in unary: the same result ould be proved for the binary oding ase, but this would

neessitate the introdution of binary ounters and further ompliate the presentation

of the algorithm. We proeed in two steps: �rst, we redue ABox onsequene to

satis�ability, and seond, we develop a K-worlds style algorithm, as known from modal

logis [14℄, for deiding satis�ability in ALCQO w.r.t. ayli TBoxes.

First for the redution. LetA an ABox, T an ayli TBox, and ' an ABox assertion.

As noted at the beginning of Setion 3.1, we may w.l.o.g. assume that ' = A

0

(a

0

) for

some onept nameA

0

. ThenA;T j= ' i� the following onept is unsatis�able w.r.t. T ,

where u is a role name not ourring in A and T :

u

C(a)2A

9u:(fag uC)u u

r(a;b)2A

9u:(fag u 9r:fbg)u u

:r(a;b)2A

9u:(fag u 8r::fbg)u:A

0

(a

0

):

Now for the K-worlds style algorithm for deiding satis�ability. Let C be a onept and

T an ayli TBox. We start with introduing a number of notions.

� We use ind(C;T ) to denote the number of individual names ourring in C or T ,

and a

1

; : : : ; a

ind(C;T )

to denote these names.

� max

C;T

denotes the sum of over all numbers that our in number restritions in

C and T , i.e.,

max

C;T

:=

X

(./ nrD) ours in C or T

n:

� We use _:D to denote the negation normal form (NNF) of :D: _:D is obtained

from :D by pushing negation inwards using de Morgan's laws and the duality

between atleast and atmost number restritions [13℄. It is well-known that _:D

an be omputed in polynomial time and that it is of length linear in the length

of :D.

� With l

T

(C), we denote the smallest set of onepts S suh that C 2 S, S is losed

under taking negation normal forms, and

fD j A

:

= D 2 T and some D

0

2 S uses A in T g � S;

where \uses" is de�ned as in De�nition 3. ForX a set of onepts, we set l

T

(X) :=

S

D2X

l

T

(D).

We now de�ne a ruial notion underlying the algorithm. Let X be a set of onepts.

A set S � l

T

(X) is alled a type for X and T , written S 2 Type(X;T ), if S satis�es

the following onditions:

1. S does not ontain both D and _:D, for all onepts C,

2. for eah D 2 X, either D 2 S or _:D 2 S,
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3. if D

1

uD

2

2 S, then fD

1

;D

2

g � S,

4. if D

1

tD

2

2 S, then fD

1

;D

2

g \ S 6= ;, and

5. if A

:

= D 2 T and fA;Dg � l

T

(X), then A 2 S i� D 2 S.

Finally, we use a funtion RandomType(X;T ) whih non-deterministially returns a

type S 2 Type(X;T ).

We are now ready to formulate the algorithm SatNom(C;T ) for deiding satis�abil-

ity in ALCQO. Together with its auxiliary funtion Sat(S; S

1

; : : : ; S

`

), the algorithm

is given in pseudo ode in Figure 3. The following lemma states that it is indeed a

PSpae deision proedure for satis�ability in ALCQO w.r.t. ayli TBoxes. We use

jCj to denote the size of C, i.e., the number of symbols used to write C. The size jT j

of T is de�ned analogously.

Lemma 32. Let C be an ALCQO-onept and T be an ayli ALCQO TBox.

1. The reursion depth of Sat(�) is bounded by jCj+ jT j.

2. SatNom(C;T ) uses spae bounded polynomially by jCj+ jT j.

3. SatNom(C;T ) returns \satis�able" i� C is satis�able w.r.t. T .

Proof. Let C be an ALCQO-onept and T be an ayli ALCQO TBox. To prove

Point 1 of Lemma 32, it is onvenient to �rst introdue some additional notions: the

depth of onepts is de�ned indutively as follows:

depth(A) := depth(:A) := 0 for A 2 N

C

depth(D

1

uD

2

) := depth(D

1

tD

2

) := maxfdepth(D

1

); depth(D

2

)g

depth(> n r D) := depth(6 n r D) := 1 + depth(D)

The unfolding depth of a onept C is de�ned as udepth(C) := depth(unfold(C;T )),

where unfold(C;T ) denotes the result of reursively and exhaustively replaing eah

onept A used by C with D for eah A

:

= D 2 T . For a set of onepts S, the depth

of S is de�ned as the maximum depth of onepts in S, and the unfolding depth of S is

de�ned analogously.

To show Point 1, onsider the random types T

i

guessed by RandomType(X;T ) in

Sat(S; S

1

; : : : ; S

`

). Eah E 2 X is a sub-onept of some (./ mr E) 2 S, and thus

depth(X) < depth(S). Sine eah subonept of a onept in E is also a subon-

ept of a onept in S, this yields udepth(X) < udepth(S). Sine T

i

� l

T

(X), we

have udepth(T

i

) � udepth(l

T

(X)) implying udepth(T

i

) � udepth(X) sine udepth(X) =

udepth(l

T

(X)). Taking together udepth(T

i

) � udepth(X) and udepth(X) < udepth(S),

we obtain

udepth(T

i

) < udepth

(

S):

As this holds in every reursion all, the reursion depth of Sat(�) is bounded by

udepth(C) � jCj+ jT j.

The seond point is then an easy onsequene of the �rst point and the fat that

the information we need to store in eah all to Sat(�) needs spae O((jCj+ jT j)

2

):
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DEFINE PROC SatNom(C;T )

Guess some ` � ind(C;T ) and a mapping � : fa

1

; : : : ; a

ind

(C;T )g ! f0; : : : ; `g

FOR EACH 0 � i � ` DO

S

i

:= RandomType(fC; fa

1

g; : : : ; fa

ind(C;T )

gg;T )

OD

IF (FORSOME 0 � i � `; ffa

j

g j �(a

j

) = ig 6= ffa

j

g j fa

j

g 2 S

i

g)

THEN RETURN \unsatis�able"

IF (FORALL 0 � i � `, C 62 S

i

)

THEN RETURN \unsatis�able"

IF (FORALL 0 � i � `, Sat(S

i

; S

1

; : : : ; S

`

) = \satis�able")

THEN RETURN \satis�able"

RETURN \unsatis�able"

DEFINE PROC Sat(S; S

1

; : : : ; S

`

)

FOR EACH r with (./ n rD) 2 S DO

GUESS some n

r

with 0 � n

r

� max

C;T

FOR EACH 1 � i � n

r

DO

T

i

:= RandomType(fE j (./ mr E) 2 Sg;T ) OD

FOR EACH (� n rD) 2 S DO

IF (there are more than n T

i

with D 2 T

i

)

THEN RETURN \unsatis�able" OD

FOR EACH (� n rD) 2 S DO

IF (there are less than n T

i

with D 2 T

i

)

THEN RETURN \unsatis�able" OD

FOR EACH 1 � j � ind(C;T ) DO

IF (there more than 2 T

i

with fa

j

g 2 T

i

) OR

(there is a T

i

with fa

j

g 2 T

i

and T

i

6� S

�(a

j

)

)

THEN RETURN \unsatis�able" OD

FOR EACH i with 1 � i � n

r

and

EACH T

i

with T

i

\ ffa

1

g; : : : ; fa

ind(C;T )

gg = ; DO

IF Sat(T

i

; S

1

; : : : ; S

`

) = \unsatis�able"

RETURN \unsatis�able" OD

OD

RETURN \satis�able"

Figure 3: The algorithms SatNom(C;T ) and Sat(S; S

1

; : : : ; S

`

)
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For the \if" diretion of the third point, we use a model I of C w.r.t. T to \guide" the

non-deterministi guesses of SatNom and Sat suh that \satis�able" is returned. Sine

I is a model of C, we �nd a sequene of pairwise distint elements x

0

; : : : ; x

`

2 �

I

, for

some ` � ind(C;T ), suh that

1. there is an i < ` suh that x

i

2 C

I

;

2. there is a mapping � : fa

1

; : : : ; a

ind(C;T )

g ! f0; : : : ; `g suh that, for 0 � i � `; we

have x

i

2 f�(a

i

)g

I

.

Use the number ` and the mapping � obtained in this way for the guess made by

SatNom(C;T ) in Line 2. Next, we determine SatNom's remaining guesses S

0

; : : : ; S

`

:

for 0 � i � `, set

S

i

:= type(x

i

; fC; fa

1

g; : : : ; fa

ind(C;T )

gg;T ):

where type(x;X;T ) denotes the largest set S 2 Type(X;T ) suh that x 2 D

I

for all

D 2 S.

It remains to determine the numbers n

r

and the types T

i

guessed in the funtion

Sat. To determine them, we simultaneously de�ne a mapping

� : N! �

I

that assoiates, with the i-th all to Sat, a domain element �(i) 2 �

I

suh that

�(i) 2 D

I

for eah D in the �rst argument of the ith all to Sat (�)

Intuitively, the domain element �(i) realizes the type that is passed as the �rst argument

to the ith all of Sat. To determine the remaining guesses and de�ne �, we distinguish

two ases:

1. The ith all Sat(S; S

1

; : : : ; S

`

) is performed by NomSat. Set �(i) := x

j

if S is the

set S

j

guessed by NomSat, for 0 � j � `. It is easily heked that (�) is satis�ed.

Now �x an r with (./ n rD) 2 S. The guess n

r

is de�ned to be the minimum of

� #fy 2 �

I

j (�(i); y) 2 r

I

g and

� max

C;T

.

Sine �(i) satis�es (�) and by de�nition of max

C;T

, we �nd a sequene hy

1

; : : : ; y

n

r

i

of pairwise distint elements of �

I

suh that (�(i); y

j

) 2 r

I

for 1 � j � n

r

and,

for eah (> n r D) 2 S, there are at least n y

j

in P with y

j

2 D

I

.

We set, for eah 1 � j � n

r

,

T

j

:= type(y

j

; fE j (./ mr E) 2 Sg;T ): (y)

2. Let the ith all Sat(S; S

1

; : : : ; S

`

) be performed by Sat itself. Then S = T

j

has

been de�ned in the ith all to Sat using some domain element y

j

in (y). We set

�(i) := y

j

, whih learly preserves (�). The guesses n

r

and T

1

; : : : ; T

n

r

are then

de�ned as in the previous ase.
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We prove that, if guided in the indiated way, Sat never returns \unsatis�able". Due

to Point 1, it thus terminates returning \satis�able". There are several ways in whih

the algorithm may return \unsatis�able":

� In SatNom, we may have ffa

j

g j �(a

j

) = ig 6= ffa

j

g j fa

j

g 2 S

i

g for some i with

0 � i � `.

Clearly, this is impossible by our hoie of � and S

i

.

� In the ith all to Sat, there is a role r and a (6 n r D) 2 S suh that there are

more than n T

j

with D 2 T

j

.

By (�), we have �(i) 2 (6 n r D)

I

, and thus the de�nition of the semantis

implies that there are at most n y 2 �

I

with (�(i); y) 2 r

I

and y 2 D

I

. Hene,

by de�nition of T

j

and due to the �rst property of types, there annot be more

than n T

j

with D 2 T

j

.

� In the ith all to Sat, there is a role r and a (> n r D) 2 S suh that there are

less than n T

j

with D 2 T

j

.

Impossible by our de�nition of the types T

1

; : : : ; T

n

r

.

� In the ith all to Sat, there is a role r and a j with 1 � j � ind(C;T ) suh that

there are more than 2 T

k

with fa

j

g 2 T

k

or there is a T

k

with fa

j

g 2 T

k

and

T

k

6� S

�(j)

.

The former is impossible by the semantis and our hoie of types T

1

; : : : ; T

n

r

, and

the latter is impossible by the semantis, our hoie of T

1

; : : : ; T

n

r

, and our hoie

of S

�(j)

.

This �nishes the proof of the \if" diretion.

For the \only if" diretion of the third point, we use a run of SatNom(C;T ) returning

\satis�able" to build a model I of C w.r.t. T . Let ` be the number, � the mapping,

and S

j

, 0 � j � `, the types guessed by SatNom(C;T ). Moreover, let n

i

r

be the number

guessed in the i-th all to the Sat funtion for the role r, and let T

i;r

1

; : : : ; T

i;r

n

i

r

be the

types guessed for r in that all. Finally, we use T

i

to denote the type that was passed

as the �rst argument to the ith all of SatNom and write T

i;r

j

 i

0

if the i

0

th all of Sat

was performed during the ithe all to Sat with argument T

i;r

j

. De�ne an interpretation

I as follows:

�

I

:= fx

j

j 0 � j � `g [ fy

i;r

j

j T

i;r

j

\ ffa

1

g; : : : ; fa

ind(C;T )

gg = ;g

A

I

:= fx

j

j A 2 S

j

g [ fx

i;r

j

j A 2 T

i;r

j

g

r

I

:= f(x

j

; x

k

) j 9i; n;m : S

j

= T

i

and fa

n

g 2 T

i;r

m

\ S

k

g [

f(x

j

; y

i;r

k

) j S

j

= T

i

and y

i;r

k

2 �

I

g [

f(y

i;s

j

; y

i

0

;r

k

) j T

i;s

j

 i

0

and y

i;r

k

2 �

I

g [

f(y

i;s

j

; x

k

) j 9i

0

; n;m : T

i;s

j

 i

0

and fa

n

g 2 T

i

0

;r

m

\ S

k

g

By indution on the struture of onepts, we an show that x

j

2 D

I

for all D 2 S

j

and all x

j

2 �

I

, and that y

i;r

j

2 D

I

for all D 2 T

i;r

j

and all y

i;r

j

2 �

I

. Sine C 2 S

k

for
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some 0 � k � ` and due to Property 5 in the de�nition of types, we thus have that I is

indeed a model of C w.r.t. T . ❏

As an immediate onsequene of Lemma 32 and PSpae-hardness of ALC [30℄, we thus

have the following result.

Theorem 33. Satis�ability of ALCQO-onepts w.r.t. ayli TBoxes is PSpae-

omplete if numbers inside number restritions are oded in unary.
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