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Abstrat

Reently, it has been shown that the small DL EL, whih allows for onjuntion

and existential restritions, has better algorithmi properties than its ounterpart

FL

0

, whih allows for onjuntion and value restritions. Whereas the subsumption

problem in FL

0

beomes already intratable in the presene of ayli TBoxes, it

remains tratable in EL even w.r.t. general onept inlusion axioms (GCIs). On the

one hand, we will extend the positive result for EL by identifying a set of expressive

means that an be added to EL without sari�ing tratability. On the other hand,

we will show that basially all other additions of typial DL onstrutors to EL with

GCIs make subsumption intratable, and in most ases even ExpTime-omplete. In

addition, we will show that subsumption in FL

0

with GCIs is ExpTime-omplete.

1 Introdution

The quest for tratable (i.e., polynomial-time deidable) desription logis (DLs), whih

started in the 1980s after the �rst intratability results for DLs were shown [6, 26℄,

was until reently restrited to DLs extending the basi language FL

0

, whih allows

for onjuntion (u) and value restritions (8r:C). The main reason was that, when

larifying the logial status of property ars in semanti networks and slots in frames,

the deision was taken that ars/slots should be read as value restritions rather than

existential restritions (9r:C).

For subsumption between onept desriptions, the tratability barrier was inves-

tigated in detail in the early 1990s [10℄. However, as soon as terminologies (TBoxes)

were taken into onsideration, tratability turned out to be unattainable: even with

the simplest form of ayli TBoxes, subsumption in FL

0

(and thus in all languages

extending it) is oNP-hard [27℄. Subsumption in FL

0

is PSpae-omplete w.r.t. yli

TBoxes [3, 21℄, and we show in this paper that it beomes even ExpTime-omplete in

the presene of general onept inlusion axioms (GCIs), whih are supported by all

modern DL systems.

For these reasons, and also beause of the need for expressive DLs supporting GCIs

in appliations, from the mid 1990s on the DL ommunity has mainly given up on

the quest of �nding tratable DLs. Instead, it investigated more and more expressive



DLs, for whih reasoning is worst-ase intratable. The goal was then to �nd prati-

al subsumption algorithms, i.e., algorithms that are easy to implement and optimize,

and whih|though worst-ase exponential or even worse|behave well in pratie (see,

e.g., [20℄). This line of researh has resulted in the availability of highly optimized DL

systems for expressive DLs [17, 14℄, and suessful appliations: most notably the re-

ommendation by the W3C of the DL-based language OWL [18℄ as the ontology language

for the Semanti Web.

Reently, the hoie of value restritions as a sine qua non of DLs has been reon-

sidered. On the one hand, it was shown that the DL EL, whih allows for onjuntion

and existential restritions, has better algorithmi properties than FL

0

. Subsumption

in EL stays tratable w.r.t. both ayli and yli TBoxes [4℄, and even in the presene

of GCIs [7℄. On the other hand, there are appliations where value restritions are not

needed, and where the expressive power of EL or small extensions thereof appear to be

suÆient. In fat, SNOMED, the Systematized Nomenlature of Mediine [9℄ employs

EL [30, 31℄ with an ayli TBox. Large parts of the Galen medial knowledge base an

also be expressed in EL with GCIs and transitive roles [28℄. Finally, the Gene Ontology

[32℄ an be seen as an ayli EL-TBox with one transitive role.

Motivated by the positive omplexity results ited above and the use of extensions

of EL in appliations, we start with the DL EL with GCIs, and investigate the ef-

fet on the omplexity of the subsumption problem that is aused by the addition of

standard DL onstrutors available in ontology languages like OWL. We prove that the

subsumption problem remains tratable when adding the bottom onept (and thus dis-

jointness statements), nominals (i.e., singleton onepts), a restrited form of onrete

domains (e.g., referenes to numbers and strings), and a restrited form of role-value

maps (whih an express transitivity and the right-identity rule required in medial

appliations [30℄). We then prove that basially, all other additions of standard DL

onstrutors lead to intratability of the subsumption problem, and in most ases even

to ExpTime-hardness.

2 Desription Logis

In DLs, onept desriptions are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names, a set N

R

of role names, and (possibly)

a set N

I

of individual names. In this setion, we introdue the extension EL

++

of EL,

whose onept desriptions are formed using the onstrutors shown in the upper part

of Table 1. There and in general, we use a and b to denote individual names, r and s

to denote role names, and C;D to denote onept desriptions.

The onrete domain onstrutor provides an interfae to so-alled onrete domains,

whih permits referene to, e.g., strings and integers. Formally, a onrete domain D is a

pair (�

D

;P

D

) with �

D

a set and P

D

a set of prediate names. Eah p 2 P is assoiated

with an arity n > 0 and an extension p

D

� (�

D

)

n

. To provide a link between the

DL and the onrete domain, we introdue a set of feature names N

F

. In Table 1, p

denotes a prediate of some onrete domain D and f

1

; : : : ; f

k

are feature names. The

DL EL

++

may be equipped with a number of onrete domains D

1

; : : : ;D

n

suh that
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Name Syntax Semantis

top > �

I

bottom ? ;

nominal fag fa

I

g

onjuntion C uD C

I

\D

I

existential

restrition

9r:C fx 2 �

I

j 9y 2 �

I

: (x; y) 2 r

I

^ y 2 C

I

g

onrete

domain

p(f

1

; : : : ; f

k

)

for p 2 P

D

j

fx 2�

I

j 9y

1

; : : : ; y

k

2 �

D

j

:

f

I

i

(x) = y

i

for 1 � i � k ^ (y

1

; : : : ; y

k

) 2 p

D

j

g

GCI C v D C

I

� D

I

RI r

1

Æ � � � Æ r

k

v r r

I

1

Æ � � � Æ r

I

k

� r

I

onept

assertion

C(a) a

I

2 C

I

role

assertion

r(a; b) (a

I

; b

I

) 2 r

I

Table 1: Syntax and semantis of EL

++

.

�

D

i

\ �

D

j

= ; for 1 � i < j � n. If we want to stress the use of partiular onrete

domains D

1

; : : : ;D

n

, we write EL

++

(D

1

; : : : ;D

n

) instead of EL

++

.

The semantis of EL

++

(D

1

; : : : ;D

n

)-onept desriptions is de�ned in terms of an

interpretation I = (�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the

interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset A

I

of �

I

, eah

role name r 2 N

R

to a binary relation r

I

on �

I

, eah individual name a 2 N

I

to an

individual a

I

2 �

I

, and eah feature name f 2 N

F

to a partial funtion f

I

from �

I

to

S

1�i�n

�

D

i

. The extension of �

I

to arbitrary onept desriptions is indutively de�ned

as shown in the third olumn of Table 1.

An EL

++

onstraint box (CBox) is a �nite set of general onept inlusions (GCIs)

and role inlusions (RIs), whose syntax an be found in Table 1. Note that a �nite set

of GCIs would ommonly be alled a general TBox. We use the term CBox due to the

presene of RIs. An interpretation I is a model of a CBox C if, for eah GCI and RI in

C, the onditions given in the third olumn of Table 1 are satis�ed. In the de�nition of

the semantis of RIs, the symbol \Æ" denotes omposition of binary relations.

An EL

++

assertional box (ABox) is a �nite set of onept assertions and role as-

sertions , whose syntax an also be found in Table 1. ABoxes are used to desribe a

snapshot of the world. An interpretation I is a model of an ABox A if, for eah onept

assertion and role assertion in A, the onditions given in the third olumn of Table 1

are satis�ed.

The most relevant inferene problems for desription logis an be desribed as

follows:

� Conept satis�ability. A onept C is satis�able w.r.t. a CBox C if there exists a

model I of C suh that C

I

6= ;.
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� Conept subsumption. A onept C subsumes a oneptD w.r.t. a CBox C (written

C v

C

D) if C

I

� D

I

in every model I of C.

� ABox onsisteny. An ABox A is onsistent w.r.t. a CBox C if A and C have a

ommon model.

� The instane problem. An individual name a is an instane of a onept C in an

ABox A w.r.t. a CBox C if a

I

2 C

I

for every ommon model I of A and C.

In the remainder of this paper, we will onentrate on subsumption as the basi reasoning

task. This is justi�ed by the fats that, �rst, all of the above reasoning tasks an be

mutually polynomially redued to one another, and seond, subsumption is the most

\traditional" reasoning servie in desription logis. We show mutual reduibility by

reduing all (other) reasoning tasks to subsumption, and vie versa:

� Satis�ability to (non-)subsumption: a onept C is satis�able w.r.t. a CBox C i�

C 6v

C

?.

� Instane problem to subsumption. We onvert an ABox A into a onept C

A

as

follows:

C

A

:= u

C(a)2A

9u:(fag u C) u u

r(a;b)2A

9u:(fag u 9r:fbg)

where u is a new role name not used in A. Then, an individual a is an instane

of a onept C in an ABox A w.r.t. a CBox C i� fag u C

A

v

C

C.

� Consisteny to subsumption: A is onsistent w.r.t. C i� C

A

6v ?.

� Subsumption to satis�ability: C v

C

D i� C u fag is unsatis�able w.r.t. the CBox

C [ fD u fag v ?g, where a is an individual name not ourring in C, D, and C.

� Subsumption to the instane problem: C v

C

D if a is an instane of D in the

ABox fa : Cg w.r.t. C.

� Subsumption to onsisteny: C v

C

D i� the ABox fC(a)g is inonsistent w.r.t.

the TBox C [ fD u fag v ?g.

Three remarks regarding the expressivity of EL

++

are in order. First, our RIs generalize

three means of expressivity important in ontology appliations: role hierarhies r v s;

transitive roles, whih an be expressed by writing r Æ r v r; and so-alled right-identity

rules r Æ s v s, whih are important in medial appliations [30, 19℄. Seond, the

bottom onept in ombination with GCIs an be used to express disjointness of omplex

onept desriptions: C uD v ? says that C;D are disjoint. Finally, the unique name

assumption for individual names an be enfored by writing fag u fbg v ? for all

relevant individual names a and b.

3 Deiding Subsumption in EL

++

(D

1

; : : : ;D

k

)

We develop a polynomial time algorithm for subsumption in EL

++

. To this end, it is

onvenient to �rst introdue an appropriate normal form for CBoxes.
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3.1 A Normal Form for CBoxes

Given a CBox C, we use BC

C

to denote the set of basi onept desriptions for C , i.e.,

the smallest set of onept desriptions that ontains

� the top onept >;

� all onept names used in C;

� all (sub)onepts of the form fag or p(f

1

; : : : ; f

k

) appearing in C.

Now, a normal form for CBoxes an be de�ned as follows.

De�nition 1 (Normal Form for CBoxes). An EL

++

-CBox C is in normal form if

1. all onept inlusions have one of the following forms, where C

1

; C

2

2 BC

C

and

D 2 BC

C

[ f?g:

C

1

v D

C

1

u C

2

v D

C

1

v 9r:C

2

9r:C

1

v D

2. all role inlusions are of the form r v s or r

1

Æ r

2

v s.

By introduing new onept and role names, any CBox C an be turned into a normalized

CBox C

0

that is a onservative extension of C, i.e., every model of C

0

is also a model

of C, and every model of C an be extended to a model of C

0

by appropriately the

interpretations of the additional onept and role names.

We now show that this transformation an atually be done in linear time, yielding

a normalized CBox C

0

whose size is linear in the size of C, where the size jCj of a CBox

C is the is the number of symbols needed to write down C.

Lemma 2. Subsumption w.r.t. CBoxes in EL

++

an be redued in linear time to sub-

sumption w.r.t. normalized CBoxes in EL

++

.

Proof. A CBox an be onverted into normal form using the translation rules shown

in Figure 1 in two phases:

1. exhaustively apply rules NF1 to NF4;

2. exhaustively apply rules NF5 to NF7.

Here \rule appliation" means that the onept inlusion on the left-hand side is replaed

with the set of onept inlusions on the right-hand-side. In Phase 1, the rule NF2 is

applied modulo ommutativity of onjuntion. It is easily veri�ed that the size of the

normalized CBox C

0

omputed by applying the normalization rules is linear in the size of

the original CBox C, and that C

0

is omputed using at most jCj rule appliations. ❏

5



NF1 r

1

Æ � � � Æ r

k

v s �! fr

1

Æ � � � Æ r

k�1

v u; u Æ r

k

v sg

NF2 C u

^

D v E �! f

^

D v A;C uA v E g

NF3 9r:

^

C v D �! f

^

C v A;9r:A v D g

NF4 ? v D �! ;

NF5

^

C v

^

D �! f

^

C v A;A v

^

D g

NF6 B v 9r:

^

C �! f B v 9r:A;A v

^

C g

NF7 B v C uD �! f B v C;B v D g

where

^

C;

^

D 62 BC

C

, u denotes a new role name, and A a new onept name.

Figure 1: Normalization Rules

Note that the CBox obtained by rule appliation is of linear size only sine we apply

normalization rules in two phases: if all rules are applied together in one phase, we

obtain a quadrati blowup in the worst ase due to the dupliation of the onept B by

Rule NF7.

3.2 The Algorithm

We now develop a polynomial-time algorithm for deiding subsumption in EL

++

w.r.t.

CBoxes in normal form. Here and in the remainder of the paper, we an restrit our

attention to subsumption between onept names. In fat, C v

C

D i� A v

C

0

B, where

C

0

= C [ fA v C;D v Bg with A and B new onept names. Our subsumption

algorithm not only omputes subsumption between two given onept names w.r.t. the

normalized input CBox C; it rather lassi�es C, i.e., it simultaneously omputes the

subsumption relationships between all pairs of onept names ourring in C.

Now, let C be a CBox in normal form that is to be lassi�ed. We use R

C

to denote

the set of all role names used in C. The algorithm omputes

� a mapping S from BC

C

to a subset of BC

C

[ f>;?g, and

� a mapping R from R

C

to a binary relation on BC

C

.

The intuition is that these mappings make impliit subsumption relationships expliit

in the following sense:

(I1) D 2 S(C) implies that C v

C

D,

(I2) (C;D) 2 R(r) implies that C v

C

9r:D.

In the algorithm, these mappings are initialized as follows:

� S(C) := fC;>g for eah C 2 BC

C

,

6



CR1 If C

0

2 S(C), C

0

v D 2 C, and D 62 S(C)

then S(C) := S(C) [ fDg

CR2 If C

1

; C

2

2 S(C), C

1

uC

2

v D 2 C, and D 62 S(C)

then S(C) := S(C) [ fDg

CR3 If C

0

2 S(C), C

0

v 9r:D 2 C, and (C;D) =2 R(r)

then R(r) := R(r) [ f(C;D)g

CR4 If (C;D) 2 R(r), D

0

2 S(D), 9r:D

0

v E 2 C, and E =2 S(C)

then S(C) := S(C) [ fEg

CR5 If (C;D) 2 R(r), ? 2 S(D), and ? =2 S(C),

then S(C) := S(C) [ f?g

CR6 If fag 2 S(C) \ S(D), C  D, and S(D) 6� S(C)

then S(C) := S(C) [ S(D)

CR7 If on

j

(S(C)) is unsatis�able in D

j

and ? =2 S(C),

then S(C) := S(C) [ f?g

CR8 If on

j

(S(C)) implies p(f

1

; : : : ; f

k

) 2 BC

C

in D

j

and p(f

1

; : : : ; f

k

) =2 S(C),

then S(C) := S(C) [ fp(f

1

; : : : ; f

k

)g

CR9 If p(f

1

; : : : ; f

k

); p

0

(f

0

1

; : : : ; f

0

k

0

) 2 S(C), p 2 P

D

j

,

p

0

2 P

D

`

, j 6= `, f

s

= f

0

t

for some s; t, and ? =2 S(C),

then S(C) := S(C) [ f?g

CR10 If (C;D) 2 R(r), r v s 2 C, and (C;D) =2 R(s)

then R(s) := R(s) [ f(C;D)g

CR11 If (C;D) 2 R(r

1

), (D;E) 2 R(r

2

), r

1

Æ r

2

v r

3

2 C, and (C;E) =2 R(r

3

)

then R(r

3

) := R

i

(r

3

) [ f(C;E)g

Table 2: Completion Rules

� R(r) := ; for eah r 2 R

C

.

Then the sets S(C) and R(r) are extended by applying the ompletion rules shown in

Table 2 until no more rule applies.

Some of the rules use abbreviations that still need to be introdued. First, CR6

uses the relation  � BC

C

� BC

C

, whih is de�ned as follows: C  D i� there are

C

1

; : : : ; C

k

2 BC

C

suh that

� C

1

= C or C

1

= fbg for some individual name b,

� (C

j

; C

j+1

) 2 R(r

j

) for some r

j

2 R

C

(1 � j < k),

� C

k

= D.

7



Seond, rules CR7 and CR8 use the notion on

j

(S

i

(C)), and satis�ability and impli-

ation in a onrete domain. If p is a prediate of the onrete domain D

j

, then the

EL

++

-onept desription p(f

1

; : : : ; f

n

) an be viewed as an atomi �rst-order formula

with variables f

1

; : : : ; f

n

. Thus, it makes sense to onsider Boolean ombinations of

suh atomi formulae, and to talk about whether suh a formula is satis�able in (the

�rst-order interpretation) D

j

, or whether in D

j

one suh formula implies another one.

For a set � of EL

++

(D

1

; : : : ;D

n

)-onept desriptions and 1 � j � n, we de�ne

on

j

(�) :=

^

p(f

1

;:::;f

k

)2� with p2P

D

j

p(f

1

; : : : ; f

k

):

For the rules CR7 and CR8 to be exeutable in polynomial time, satis�ability and im-

pliation in the onrete domains D

1

; : : : ;D

n

must be deidable in polynominal time.

However, for our algorithm to be omplete, we must impose an additional ondition on

the onrete domains.

De�nition 3. The onrete domain D is p-admissible if

1. satis�ability and impliation in D are deidable in polynominal time;

2. D is onvex : if a onjuntion of atoms of the form p(f

1

; : : : ; f

k

) implies a disjun-

tion of suh atoms, then it also implies one of its disjunts.

We investigate the property of p-admissibility in more detail in Setion 4, where we also

exhibit some useful onrete domains that are p-admissible.

The next lemma shows how all subsumption relationships between onept names

ourring in C an be determined one the ompletion algorithm has terminated.

Lemma 4. Let S be the mapping obtained after the appliation of the rules of Table 2

for the normalized CBox C has terminated, and let A;B be onept names ourring

in C. Then A v

C

B i� one of the following two onditions holds:

� S(A) \ fB;?g 6= ;,

� there is an fag 2 BC

C

suh that ? 2 S(fag).

Lemma 4 will be proved in the subsequent setion, where it is also shown that the algo-

rithm terminates after polynomially many rule appliations. Before going into formal

details, let us briey disuss soundness of the algorithm on an intuitive level. Soundness

immediately follows from the fat that (I1) and (I2) are satis�ed for the initial de�ni-

tion of S;R, and that appliation of the rules preserves (I1) and (I2). This is trivially

seen for most of the rules. However, it is worthwhile to onsider CR6 in more detail. If

fag 2 S(C)\S(D), then C;D v

C

fag. Now, C  D implies that C v

C

9r

1

: � � � 9r

k�1

:D

or fbg v

C

9r

1

: � � � 9r

k�1

:D for some individual name b. In the seond ase, this implies

that D annot be empty in any model of C, and in the �rst ase it implies that D is

non-empty in any model of C for whih C is non-empty. Together with C;D v

C

fag,

this implies that C v

C

D, whih shows that the rule CR6 is sound sine it preserves (I1).

When dropping the requirement C  D from this rule, (I1) is no longer preserved.

8



3.3 Soundness, Completeness,and Termination

We start with proving termination after polynomially many rule appliations.

Lemma 5. For a normalized CBox C, the rules of Table 2 an only be applied a poly-

nomial number of times, and eah rule appliation is polynomial.

Proof. It is readily heked that the ardinality of BC

C

and R

C

is linear in the size of C.

Eah rule appliation performed by the algorithm adds a new element of BC

C

[f?g to a

set S(C), for some C 2 BC

C

, or a new tuple (C;D) 2 BC

C

�BC

C

to a relation R(r), for

some r 2 R

C

. Sine no rule removes elements of these sets/relations, the total number

of rule appliations is polynomial. It is readily heked that eah rule appliation an be

performed in polynomial time. In partiular, note that the relation an be omputed

using (polytime) graph reahability, ❏

We now prove Lemma 4. For onveniene, we treat the \if" diretion (soundness) and

the \only if" diretion (ompleteness) separately. In the proofs, we will use the notion

of a solution for a onjuntion on

i

(S(C)). Suh a solution is a mapping Æ : N

F

! �

D

suh that (Æ(f

1

); : : : ; Æ(f

k

)) 2 p

D

i

(heneforth denoted with Æ j= p(f

1

; : : : ; f

k

)) for eah

onjunt p(f

1

; : : : ; f

k

) of . Clearly, a onjuntion on

i

(S(C)) is satis�able i� there

exists a solution for it.

Lemma 6 (Soundness). Let S be the mapping obtained after the appliation of the

rules of Table 2 for the normalized CBox C has terminated, and let A;B be onept

names ourring in C. Then A v

C

B if one of the following two onditions holds:

S1 S(A) \ fB;?g 6= ;,

S2 there is an fag 2 BC

C

suh that ? 2 S(fag).

Proof. Assume that the algorithm is applied to a normalized CBox C yielding the

sequenes of mappings S

0

; : : : ; S

m

and R

0

; : : : ; R

m

. Let A

0

and B

0

be two onept

names suh that (at least) one of the Conditions S1 and S2 is satis�ed. To show that

A

0

v

C

B

0

, we prove the following laim.

Claim. For all n 2 N, models I of C, r 2 R

C

, and x 2 C

I

, the following holds:

(a) if D 2 S

n

(C) then x 2 D

I

; and

(b) if (C;D) 2 R

n

(r) then there is a y 2 �

I

with (x; y) 2 r

I

and y 2 D

I

.

The laim is proved by indution on n. Let I be a model of C and x 2 C

I

. First for the

indution start. For (a), n = 0 implies S

n

(C) = fC;>g. Thus, x 2 C

I

implies x 2 D

I

for all D 2 S

n

(C). Point (b) is immediate sine R

0

(r) = ; for all r 2 R

C

. Now for the

indution step. For (a), we assume that D 2 S

n

(C) n S

n�1

(C) (for otherwise we are

done by the indution hypothesis). We make a ase distintion aording to the rule

that was used to add the onept D to S

n

:

CR1 Then there exists a C

0

2 S

n�1

(C) and a onept inlusion I = C

0

v D 2 C. By

Point (a) of the indution hypothesis (IH), we have x 2 C

0

I

implying by I that

also x 2 D

I

.
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CR2 Then there exist C

1

; C

2

2 S

n�1

(C) and a onept inlusion I = C

1

uC

2

v D 2 C.

By Point (a) of IH, C

1

; C

2

2 S

n�1

(A) yields x 2 C

I

1

and x 2 C

I

2

, implying by I

that x 2 D

I

.

CR4 Then there exist E;E

0

2 BC

C

, a role name r 2 R

C

, and a onept inlusion

I = 9r:E

0

v D 2 C suh that (C;E) 2 R

n�1

(r) and E

0

2 S

n�1

(E). By Point (b)

of IH, there is a y 2 �

I

suh that (x; y) 2 r

I

and y 2 E

I

. By Point (a) of IH, we

have y 2 E

0

I

. Thus I yields x 2 D

I

.

CR5 If this rule is used, then we have D = ? and there is an E 2 BC

C

suh that

(C;E) 2 R(r) for some r 2 R

C

and ? 2 S

n�1

(E). By Point (b) of IH, there is a

y 2 �

I

suh that (x; y) 2 r

I

and y 2 E

I

. By Point (a) of IH, we have y 2 ?

I

.

As this is impossible, we onlude that there are no models I of C with C

I

6= ;.

Thus, adding ? to S(C) (trivially) preserves Point (a).

CR6 Then there exists an E 2 BC

C

and an individual name a suh that fag 2 S

n�1

(C)\

S

n�1

(E), D 2 S

n�1

(E), and there are C

1

; : : : ; C

k

2 BC

C

suh that

(i) C

1

= C or C

1

= fbg for some individual name b;

(ii) C

k

= E;

(iii) (C

i

; C

i+1

) 2 R

n�1

(r

j

) for some r

j

2 R

C

(1 � i < k).

By Point (b) of IH and (iii), there are y

1

; : : : ; y

k

2 �

I

s.t. y

1

2 fxg [ fb

I

jb 2 N

I

g,

y

k

2 C

I

k

= E

I

, and (y

i

; y

i+1

) 2 r

I

j

for some r

j

2 R

C

(1 � i < k). By Point (a) of

IH, x 2 C

I

and fag 2 S

n�1

(C)\S

n�1

(E) implies x = a

I

= y

k

. Also by Point (a),

D 2 S

n�1

(E) implies y

k

2 D

I

. Thus, x 2 D

I

as required.

CR7 If this rule is used, then we have D = ? and on

i

(S

n�1

(C)) is unsatis�able

for some i. De�ne a funtion Æ : N

F

! �

D

i

by setting Æ(f) := f

I

(x). Using

Part (a) of IH, we get that x 2 p(f

1

; : : : ; f

k

)

I

for every onjunt p(f

1

; : : : ; f

k

) of

on

i

(S

n�1

(C)). Thus, Æ is a solution for on

i

(S

n�1

(C)), ontraditing its unsat-

is�ability. Thus, there an be no model I of C with C

I

6= ;. Thus, adding ? to

S(C) (trivially) preserves Point (a).

CR8 Then D is of the form p(f

1

; : : : ; f

k

) with p 2 P

D

i

for some i, and on

i

(S

n�1

(C))

implies D. As in the previous ase, we have x 2 p(f

1

; : : : ; f

k

)

I

for every onjunt

p(f

1

; : : : ; f

k

) of on

i

(S

n�1

(C)) by Part (a) of IH. Sine on

i

(S

n�1

(C)) implies D,

we thus have x 2 D

I

as required.

CR9 If this rule is used, then we have D = ? and there are p(f

1

; : : : ; f

k

) 2 S

n�1

(C)

and p

0

(f

0

1

; : : : ; f

0

k

0

) 2 S

n�1

(C) suh that p 2 P

D

i

and p

0

2 P

D

j

with i 6= j.

By Point (a) of IH, we have x 2 p(f

1

; : : : ; f

k

)

I

\ p

0

(f

0

1

; : : : ; f

0

k

0

)

I

. Thus f

I

i

2

�

D

i

\ �

D

j

, ontraditing the disjointness of �

D

i

and �

D

j

. Again, Point(a) is

trivially preserved.

For (b), we assume (C;D) 2 R

n

(r) n R

n�1

(r) and make a ase distintion aording to

the rule that was used to add (C;D) to R

n

(r):

10



CR3 Then there is a C

0

2 BC

C

with C

0

2 S

n�1

(C) and a onept inlusion I = C

0

v

9r:D 2 C. By Point (a) of IH, x 2 C

I

implies x 2 C

0

I

. By I, there is a y suh

that (x; y) 2 r

I

and y 2 D

I

as required.

CR10 Then (C;D) 2 R

n�1

(s) for some s with s v r 2 C. By Point (b) of IH, there is a

y 2 �

I

suh that (x; y) 2 s

I

and y 2 D

I

. Sine s v r 2 C, we have (x; y) 2 r

I

and are done.

CR11 Then there is an E 2 BC

C

suh that (C;E) 2 R

n�1

(r

1

) and (E;D) 2 R

n�1

(r

2

)

for some r

1

; r

2

with r

1

Æ r

2

v r 2 C. By Point (b) of IH, there is a y 2 �

I

suh

that (x; y) 2 r

I

1

and y 2 E

I

. Another appliation of Point (b) yields the existene

of a z 2 �

I

suh that (y; z) 2 r

I

2

and z 2 D

I

. Sine r

1

Æ r

2

v r 2 C, we have

(x; z) 2 r

I

and are done.

This �nishes the proof of Claim 1.

Using the laim, it is now easy to prove that A

0

v

C

B

0

. We make a ase distintion

aording to whether ondition S1 or S2 is satis�ed.

S1 Let B

0

2 S

m

(A

0

). By Point (a) of Claim 1, we have x 2 B

I

0

for all models I of C

and all x 2 A

I

0

. In other words, A

0

v

C

B

0

. Now let ? 2 S

m

(A

0

). By Point (a)

of Claim 1, we have x 2 ?

I

for all models I of C and all x 2 A

I

0

. In other words,

there are no models I of C with A

I

0

6= ;. Thus A

0

v

C

B

0

.

S2 Let ? 2 S

m

(fag) for some individual name a. By Point (a) of Claim 1, we have

a

I

2 ?

I

for all models I of C. In other words, there are no models of C. Thus

A

0

v

C

B

0

.

❏

Lemma 7 (Completeness). Let S be the mapping obtained after the appliation of

the rules of Table 2 for the normalized CBox C has terminated, and let A;B be onept

names ourring in C. Then A v

C

B implies that one of the following two onditions

holds:

S1 S(A) \ fB;?g 6= ;,

S2 there is an fag 2 BC

C

suh that ? 2 S(fag).

Proof. We show the ontrapositive. Thus assume that the algorithm does not satisfy

S1 and S2 after termination. We show that this implies A

0

6v

C

B

0

by onstruting a

model I of C suh that a 2 A

I

0

nB

I

0

for some a 2 �

I

.

Assume that the algorithm omputed the sequenes of mappings S

0

; : : : ; S

m

and

R

0

; : : : ; R

m

. For onveniene, denote S

m

with S and R

m

with R. Set BC

�

C

:= fC 2

BC

C

j A

0

 Cg. Then de�ne a relation � on BC

�

C

as follows:

C � D i� C = D or fag 2 S(C) \ S(D) for some individual name a:

Using Rule CR6, it is readily heked that \�" is an equivalene relation. We use [C℄ to

denote the equivalene lass of C 2 BC

�

C

w.r.t. \�". The equivalene lasses of \�" will
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be used to de�ne the domain elements of the model to be onstruted. Before atually

de�ning this model, we prove two laims:

Claim 1. For all C;C

0

2 BC

�

C

with C � C

0

and all r 2 R

C

, we have

1. S(C) = S(C

0

);

2. (C;D) 2 R(r) implies (C

0

;D) 2 R(r).

Proof: Point 1 is an immediate onsequene of non-appliability of CR6. The proof of

Point 2 is by indution on the smallest i suh that (C;D) 2 R

i

(r). As R

0

(r) = ;

for all role names r, the indution start is trivial. Now for the indution step. Let

(C;D) 2 R

i

(r) n R

i�1

(r) with i > 0. We make a ase distintion aording to the rule

applied:

CR3 Then there is an E 2 S

i�1

(C) and a onept inlusion I = E v 9r:D 2 C. Sine

C � C

0

, CR6 ensures that E 2 S

j

(C

0

) for some j � 0. Thus CR3 ensures that

(D;E) 2 R(r).

CR10 Then we have (C;D) 2 R

i�1

(s) for some role name s with s v r 2 C. By IH, this

implies (C

0

;D) 2 R

j

(s) for some j � 0. Thus, CR12 ensures that (C

0

;D) 2 R(r).

CR11 Then there is an E 2 BC

C

suh that (C;E) 2 R

i�1

(r

1

) and (E;D) 2 R

i�1

(r

2

)

for some role names r

1

; r

2

with r

1

Æ r

2

v r 2 C. By de�nition of \ ", C 2 BC

�

C

implies D 2 BC

�

C

. Thus, the IH yields (C;E) 2 R

i�1

(r

1

), whih implies (C

0

; E) 2

R

j

(r

1

) for some j � 0. CR13 will eventually be applied to (C

0

; E) 2 R

`

(r

1

) and

(E;D) 2 R

`

(r

2

) for some ` � 0, yielding (C

0

;D) 2 R

`+1

(r) � R(r).

This �nishes the proof of Claim 1. Point (1) allows us to unambigously identify a given

equivalene lass [C℄ of \�" with a set of onepts S(C). This will be used impliitly

in what followows.

Claim 2. For eah C 2 BC

�

C

and eah i 2 f1; : : : ; ng, we an �nd a solution Æ([C℄; i) for

on

i

(S(C)) suh that, for all onepts D 2 BC

C

of the form p(f

1

; : : : ; f

k

) with p 2 P

D

i

,

we have Æ([C℄; t) j= D i� D 2 S(C):

Proof: By Conditions S1 and S2, we have ? =2 S(A

0

) and ? =2 S(fag) for all fag 2 BC

C

.

Due to Rule CR5 and by de�nition of BC

�

C

, it follows that ? =2 S(C). Thus, by Rule CR7

there exists a solution for on

i

(S(C)). It remains to be shown that this solution an be

hosen suh that it does not satisfy any onept p(f

1

; : : : ; f

k

) 2 BC

C

n S(C). Let � be

the set of all solutions for on

i

(S(C)). Moreover, assume to the ontrary of what is to

be shown that there exists a set 	 � BC

C

n S(C) of onepts of the form p(f

1

; : : : ; f

k

)

with p 2 P

D

i

suh that eah solution from � satis�es a onept from 	, i.e., on

i

(S(C))

implies the disjuntion of all onepts in 	. By Property 2 of p-admissibility, on

i

(S(C))

implies a single onept X from 	. By rule CR8, this implies X 2 S(C) in ontradition

to X 2 	.

This �nishes the proof of Claim 2. For eah C 2 BC

�

C

and eah i 2 f1; : : : ; ng, �x a

solution Æ([C℄; i) for on

i

(S(C)) as in Claim 2. We now de�ne an interpretation I as

12



follows:

�

I

:= f[C℄ j C 2 BC

�

C

g;

A

I

:= f[C℄ 2 �

I

j A 2 S(C)g for all A 2 N

C

\ BC

C

;

a

I

:= [fag℄ for all fag 2 BC

C

;

r

I

:= f([C℄; [D℄) 2 �

I

��

I

j 9D

0

2 [D℄ : (C;D) 2 R(r)g for all r 2 R

C

;

f

I

([C℄) := Æ([C℄; i) if there exists a p(f

1

; : : : ; f

m

) 2 S(C) with p 2 P

�

i

and

f

j

= f for some j 2 f1; : : : ;mg, for all f 2 N

F

and [C℄ 2 �

I

:

All onept names not in BC

C

and all role names not in R

C

are mapped to the empty

set. Eah individual name a with fag =2 BC

C

is interpreted as a

I

:= [A

0

℄ (this hoie is

arbitrary). Note the following:

� the use of the equivalene relation \�" ensures that, for eah individual name a,

a

I

is well-de�ned;

� the interpretation of roles is well-de�ned due to Point 2 of Claim 1.

� the interpretation of features is well-de�ned sine ? =2 S(C) for all C 2 BC

�

C

and

due to Rule CR9.

We now erstablish an additional, entral laim.

Claim 3. For all [C℄ 2 �

I

and D 2 BC

C

[ f?g, we have [C℄ 2 D

I

i� D 2 S(C).

The proof makes a ase distintion aording to the form of D:

� D = >. Easy sine > 2 S(C) for all C 2 BC

�

C

.

� D = ?. Easy sine, in the proof of Claim 2, we already argued that ? =2 S(C) for

all C 2 BC

�

C

.

� D is a onept name. Then [C℄ 2 D

I

i� D 2 S(C) is immediate by de�nition

of I.

� D = fag. Then [C℄ 2 fag

I

implies a

I

= [C℄ and thus [C℄ = [fag℄ by de�nition

of fag

I

. This yields fag 2 S(C) sine fag 2 S

0

(fag). Conversely, fag 2 S(C)

implies [C℄ = [fag℄ by de�nition of \�" and thus a

I

= [C℄ implying [C℄ 2 fag

I

by the semantis.

� D = p(f

1

; : : : ; f

k

) with p 2 P

D

i

for some i. Then [C℄ 2 D

I

i� Æ([C℄; i) j= D i�

D 2 S(C). The �rst \i�" is by de�nition of I and the semantis and the latter

by hoie of Æ([C℄; i).

This �nishes the proof of Claim 3. We now show that I is a model of C with x 2 (A

I

0

nB

I

0

)

for some x 2 �

I

. Sine A

0

2 BC

�

C

by de�nition of BC

�

C

, we have [A

0

℄ 2 �

I

. By S1,

we have B

0

=2 S(A

0

). By de�nition of S

0

, we have A

0

2 S(A

0

). Thus, Claim 3 yields

[A

0

℄ 2 (A

I

0

n B

I

0

). It remains to be shown that I is a model of C. We make a ase

distintion aording to the form of onept and role inlusions:

13



� C v D. Let [C

0

℄ 2 C

I

. By Claim 3, we have C 2 S(C

0

). Due to Rule CR1, this

implies D 2 S(C

0

) and thus [C

0

℄ 2 D

I

by Claim 3.

� C uD v E. Similar to the previous ase using Rule CR2.

� C v 9r:D. Let [C

0

℄ 2 C

I

. Then C 2 S(C

0

) by Claim 3. By Rule CR3, we thus

have (C

0

;D) 2 R(r). By de�nition of r

I

, this implies ([C

0

℄; [D℄) 2 r

I

. Moreover,

D 2 S

0

(D) implies D 2 S(D). Thus, Claim 3 yields [D℄ 2 D

I

. Together, this

yields [C

0

℄ 2 (9r:D)

I

as required.

� 9r:C v D. Let [E℄ 2 (9r:C)

I

. Hene there is an [F ℄ 2 �

I

suh that ([E℄; [F ℄) 2 r

I

and [F ℄ 2 C

I

. By de�nition of I, this means that there is F

0

2 [F ℄ suh that

(E;F

0

) 2 R(r). Moreover, [F

0

℄ = [F ℄ 2 C

I

implies C 2 S(F

0

) by Claim 3. By

Rule CR4, we thus have D 2 S(E). Thus [E℄ 2 D

I

by Claim 3 as required.

� r v s. Let ([C℄; [D℄) 2 r

I

. Then there is a D

0

2 [D℄ suh that (C;D

0

) 2 R(r).

By CR10, we obtain (C;D

0

) 2 R(s). By de�nition of I, we thus have ([C℄; [D

0

℄) =

([C℄; [D℄) 2 s

I

as required.

� r

1

Æ r

2

v s. Let ([C℄; [D℄) 2 r

I

1

and ([D℄; [E℄) 2 r

I

2

. Then there are D

0

2 [D℄ and

E

0

2 [E℄ suh that (C;D

0

) 2 R(r) and (D;E

0

) 2 R(r). By Point 2 of Claim 1,

the latter yields (D

0

; E

0

) 2 R(r). By CR10, we thus obtain (C;E

0

) 2 R(s). By

de�nition of I, we thus have ([C℄; [E

0

℄) = ([C℄; [E℄) 2 s

I

as required.

❏

We obtain the following result as a onsequene of Lemmas 2, 5, and 4, and the redution

of satis�ability, onsisteny, and the instane problem to subsumption given in Setion 2.

Theorem 8. Satis�ability, subsumption, ABox onsisteny, and the instane problem

in EL

++

an be deided in polynomial time.

It is not hard to see that, taken together, the proofs of Lemma 6 and 7 yield a small

model property for EL

++

. To formulate it, let the size jCj of a onept C and the

site jAj of an ABox A be de�ned analogously to the size of CBoxes: it is simply the

number of symbols needed to write down C and A, respetively. Via the redutions of

satis�ability and ABox onsisteny to subsumption, we obtain the following.

Theorem 9. Let C and D be onepts, A an ABox, and C a CBox. Then the following

holds:

1. If C is satis�able w.r.t. C, then C and C have a ommon model of size linear in

jCj+ jCj;

2. if C is not subsumed by D w.r.t. C, then there exists a model I of C of size linear

in jCj+ jDj+ jCj suh that a 2 C

I

nD

I

for some a 2 �

I

;

3. If A is onsistent w.r.t. C, then A and C have a ommon model of size linear in

jAj+ jCj;

4. if an individual a is not an instane of C in A w.r.t. C, then there exists a model

I of A and C of size linear in jCj+ jAj+ jCj suh that a

I

=2 C

I

.
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4 P-admissible and Non-admissible Conrete Domains

In order to obtain onrete DLs of the form EL

++

(D

1

; : : : ;D

n

) for n > 0 to whih

Theorem 8 applies, we need onrete domains that are p-admissible. In the following,

we introdue two onrete domains that are p-admissible, and show that small extensions

of them are no longer p-admissible. To simplify notation, we all every �nite onjuntion

of atomi formulae p(f

1

; : : : ; f

k

) from a onrete domain D a D-onjuntion.

The onrete domain Q = (Q;P

Q

) has as its domain the set Q of rational numbers,

and its set of prediates P

Q

onsists of the following prediates:

� a unary prediate >

Q

with (>

Q

)

Q

= Q;

� unary prediates =

q

and >

q

for eah q 2 Q;

� a binary prediate =;

� a binary prediate +

q

, for eah q 2 Q, with

(+

q

)

Q

= f(q

0

; q

00

) 2 Q

2

j q

0

+ q = q

00

g.

The onrete domain S is de�ned as (�

�

;P

S

), where � is the ISO 8859-1 (Latin-1)

harater set and P

S

onsistes of the following prediates:

� a unary prediate >

S

with (>

S

)

S

= �

�

;

� a unary prediate =

w

, for eah w 2 �

�

;

� a binary prediate =;

� a binary prediate on

w

, for eah w 2 �

�

, with

on

Q

w

= f(w

0

; w

00

) j w

00

= w

0

wg.

We now show that both Q and S are p-admissible.

Proposition 10. The onrete domain Q is p-admissible.

Proof. First for Point 1 of p-admissibility. Assume that, in Q-onjuntions, we admit

the following additional prediates:

� a unary prediate <

q

for eah q 2 Q with (P

<

)

Q

= fq

0

2 Q j q

0

< qg;

� a binary prediate < with the obvious extension.

If this extended set of prediates is available, we an redue Q-impliation to Q-satis-

�ability: assume that we want to deide whether a Q-onjuntion  implies a formula

p(f

1

; : : : ; f

k

) with p 2 P

Q

. We make a ase distintion aording to p:

=

q

the impliation holds if neither  ^<

q

(f

1

) nor  ^>

q

(f

1

) is satis�able;

>

q

the impliation holds if neither  ^<

q

(f

1

) nor  ^=

q

(f

1

) is satis�able;

= the impliation holds if neither  ^<(f

1

; f

2

) nor  ^<(f

2

; f

1

) is satis�able;
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+

q

the impliation holds if neither ^+

q

(f

1

; f)^<(f; f

2

) nor ^+

q

(f

1

; f)^<(f

2

; f)

is satis�able, where f is a feature name not appearing in .

Using a straightforward redution to linear programming, it is shown in [24℄ that satis�-

ability of Q-onjuntions using the extended set of prediates is deidable in polynomial

time.

Now for Point 2 of p-admissibility. First, let  be a Q-onjuntion, and let � be a

�nite set of formulae of the form p(f

1

; : : : ; f

k

) suh that  implies no formula from �.

Obviously,  must be satis�able. Assume that  implies the disjuntion over all formulae

in �. W.l.o.g, we may assume that  does not ontain onjunts of the form >

Q

(f) sine

the onjuntion that is obtained from  by dropping suh onjunts is equivalent to .

Moreover, the fat that  does not imply any formula from � means that � also ontains

no onepts of the form >

Q

(f). Our aim is to onstrut a solution Æ for  suh that

Æ 6j= C for all C 2 �, in ontradition to our assumption. The onstrution is done in

two steps: �rst, we de�ne a solution for  that does not satisfy any formula >

q

(f) 2 �,

and then we tweak this solution suh that no other formulae from � are satis�ed. For

the �rst step, we start with de�ning a relation � on the set of features N

F

as follows:

f � f

0

i� f = f

0

or f and f

0

our jointly in a onjunt of :

Clearly, the transitive losure �

�

of � is an equivalene relation. We now de�ne, for

eah equivalene lass � of �

�

, a distane funtion d

�

that takes eah pair of features

f; f

0

2 � to a rational number as follows:

� d

�

(f; f) = 0;

� d

�

(f; f

0

) = 0 if =(f; f

0

) 2  or =(f

0

; f) 2 ;

� d

�

(f; f

0

) = q if +

q

(f; f

0

) 2 ;

� d

�

(f; f

0

) = �q if +

q

(f

0

; f) 2 ;

� d

�

(f; f

0

) = d

�

(f; f

00

) + d

�

(f

00

; f

0

).

Note that d

�

is total on � due to the de�nition of� and well-de�ned sine  is satis�able.

We say that a feature f is �xed by  if there exists a feature f

0

with f �

�

f

0

and =

q

(f

0

) 2 

for some q 2 Q. Observe that, for a given �

�

-equivalene lass, either all the features in

the lass are �xed or all are not �xed. Thus we an also talk about equivalene lasses

to be �xed.

Let �

1

; : : : ;�

k

be the equivalene lasses of �

�

. We de�ne a solution Æ

0

for . This

is done separately for eah �

i

, 1 � i � k:

1. If �

i

is �xed, then take a feature f 2 �

i

with =

q

(f) 2  and set Æ

0

(f) = q. For

all other features f

0

2 �

i

, set Æ

0

(f

0

) = Æ

0

(f) + d

�

i

(f; f

0

).

2. If �

i

is not �xed, then hoose a feature f 2 �

i

. Next, hoose a value Æ

0

(f) 2 Q

suh that the following onditions are satis�ed:

� Æ

0

(f) + d

�

i

(f; f

0

) > q for all f

0

2 �

i

and all q with >

q

(f

0

) 2 .
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� Æ

0

(f) + d

�

i

(f; f

0

) � q for all f

0

2 �

i

and all q with >

q

(f

0

) 2 �.

For all other f

0

2 �

i

, set Æ

0

(f

0

) = Æ

0

(f) + d

�

i

(f; f

0

).

To verify that a rational number Æ

0

(f) as required above indeed exists, let us

assume the opposite. Then there is a >

q

(f

0

) 2  and a >

q

0

(f

00

) 2 � suh that

d

�

i

(f; f

0

) � d

�

i

(f; f

00

) = d

�

i

(f

0

; f

00

) � q � q

0

. By de�nition of d

�

i

, there is thus

no solution Æ

0

for  that does not satisfy >

q

0

(f

00

) 2 �. This ontradits the fat

that  does not imply any element of �.

Using the de�nition of d

�

and of Æ

0

, it is readily heked that Æ

0

is a solution for 

satisfying none of the formulae >

q

(f) in �. The latter is obvious if Æ(f) has been

de�ned in Point 2 above. If it has been de�ned in Point 1, then Æ(f) > q learly yields

that  implies >

q

(f), and thus >

q

(f) =2 �.

Now for the seond step, whih deals with formulae =

q

(f), =(f; f

0

), and +

q

(f; f

0

) in

� that may be \aidentally" satis�ed by Æ

0

. We destroy suh satisfations by arefully

\shifting down" values of Æ

0

. To this end, hoose a b 2 Q suh that the following

onditions are satis�ed:

1. b > 0;

2. for all onjunts >

q

(f) of , b < Æ

0

(f)� q;

3. for all =

q

(f) 2 � with Æ

0

(f) 6= q, b < jÆ

0

(f)� qj;

4. for all =(f; f

0

) 2 � with Æ

0

(f) 6= Æ

0

(f

0

), b < jÆ

0

(f)� Æ

0

(f

0

)j;

5. for all +

q

(f; f

0

) 2 � with Æ

0

(f

0

) 6= Æ

0

(f) + q, b < jÆ

0

(f

0

)� (Æ

0

(f) + q)j;

We de�ne a new solution Æ of  as follows:

Æ(f) :=

(

Æ

0

(f)� b if f is not �xed by 

Æ

0

(f) otherwise

It is not hard to show that Æ is indeed a solution of : onjunts >

q

(f) are satis�ed

by hoie of b (Point 2); onjunts =

q

(f) are satis�ed sine they are satis�ed by Æ

0

and their presene implies that f is �xed by ; and onjunts =

(

f; f

0

) and +

q

(f; f

0

) are

satis�ed sine they are satis�ed by Æ

0

and their presene implies that f is �xed by  i�

f

0

is �xed by .

Moreover, the new solution Æ does not satisfy any formula in �: formulae >

q

(f)

have not been satis�ed by Æ

0

, and we only shifted down when moving to Æ; formulae of

the other form are not satis�ed by de�nition of Æ and hoie of b. ❏

Proposition 11. The onrete domain S is p-admissible.
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Proof. First for Point 1 of p-admissibility. Consider the onrete domain S

0

= (�

�

;P

S

0

),

with P

S

0

ontaining the following properties:

1. a unary prediate >

S

as in S;

2. a unary prediate =

"

as in S (but only for the empty word), and it's negation 6=

"

with the obvious extension;

3. binary prediates = and 6= with the obvious extension;

4. binary prediate on

w

and on

w

for eah w 2 �

�

, where the extension of on

w

is as in S, and the extension of S

0

is omplementary.

We laim that satis�ability and impliation in S an be polynomially redued to satis-

�ability in S

0

:

� To hek satis�ability of an S-onjuntion , �rst extend  with the onjunt =

"

(e),

where e is a feature name not ourring in , and then replae eah onjunt =

w

(f)

in  with w 6= " by the onjunt on

w

(e; f). Finally, hek satis�ability of the

resulting onjuntion 

0

in S

0

.

� To hek whether an S-onjuntion  implies a formula p(f

1

; : : : ; f

n

), �rst trans-

form  into 

0

as in the satis�ability ase above. If p is of the form =

"

, =, or

on

w

, then simply hek whether 

0

extended with the onjunt p(f

1

; : : : ; f

n

) is

unsatis�able. If p is of the form =

w

with w 6= ", then hek whether 

0

extended

with the onjunt on

w

(e; f

1

) is unsatis�able.

Sine it is shown in [22℄ that satis�ability in S

0

are deidable in polynomial time, we

thus obtain the same result for satis�ability and impliation in S.

Now for Point 2 of p-admissibility. First, let  be an S-onjuntion, and let � be

a �nite set of formulae of the form p(f

1

; : : : ; f

k

) suh that  implies no formula from

�. Again, in this ase  is satis�able. Assume that  implies the disjuntion over all

formulae in �. As in the ase of the onrete domain Q, we may assume that the

prediate >

S

(f) does not our in  and �. Our aim is to onstrut a solution Æ for 

suh that Æ 6j= C for all C 2 �, in ontradition to the assumption.

To this end, let Æ

0

be an arbitrary solution for . Let us tweak this solution suh

that no formula from � is satis�ed. We start with de�ning a relation � on the set of

features N

F

as follows:

f � f

0

i� f = f

0

or f and f

0

our jointly in a onjunt of :

The transitive losure �

�

of � is an equivalene relation. We say that a feature f

is �xed by  if there exists a feature f

0

with f �

�

f

0

and =

w

(f

0

) 2  for some w 2

�

�

. Observe that, for a given �

�

-equivalene lass, either all the features in the lass

are �xed or all are not �xed. Thus we an also talk about equivalene lasses to be

(non-)�xed. Let �

1

; : : : ; �

n

denote the non-�xed equivalene lasses of �

�

. Then �x

words w

1

; : : : ; w

n

2 �

�

suh that the following onditions are satis�ed:

1. w

i

is not a pre�x of w, for 1 � i � n and =

w

a prediate ourring in �;
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2. w

i

is not a pre�x of w

j

, for 1 � i; j � n and i 6= j;

3. w

i

is not a pre�x of Æ(f) for 1 � i � n and eah f 2 N

F

ourring in .

Now de�ne a new solution Æ of  as follows:

Æ(f) :=

(

w

i

� Æ

0

(f) if f 2 �

i

Æ

0

(f) if there is no suh �

i

:

It remains to show that Æ j=  and Æ 6j= C for all C 2 �. For the former, we argue as

follows:

� For all prediates in  of the form =

w

(f), f is, by de�nition, non-�xed. Thus

Æ(f) = Æ

0

(f) = w.

� All prediates in  of the form =(f; g) remain satis�ed beause their existene

implies that f and g are in the same equivalene lass and thus Æ(f) = w � Æ

0

(f)

and Æ(g) = w � Æ

0

(g) for some w 2 �

�

.

� All prediates on

w

(f; g) remain satis�ed for the same reason.

Now for the latter.

� Consider some =

w

(f) 2 �. If f is is �xed and Æ

0

j= =

w

(f), then  implies =

w

(f)

in ontradition to the assumption that  does not imply any element of �. Thus,

either f is not �xed or Æ

0

6j= =

w

(f). If f is not �xed, then Æ 6j= =

w

(f) beause of

Property 1 of the words w

1

; : : : ; w

n

. If f is �xed and Æ

0

6j= =

w

(f), then we learly

also have Æ 6j= =

w

(f).

� Now onsider =(f; g) 2 �. If f and g are in the same equivalene lass and

Æ

0

j= =(f; g) then  implies =(f; g) ontraditing our assumption. Thus either f

and g are not in the same equivalene lass or Æ

0

6j= =(f; g). In f and g are not

in the same equivalene lass, we have Æ 6j= =(f; g) due to Properties 2 and 3 of

the words w

1

; : : : ; w

n

. If they are in the same equivalene lass and Æ

0

6j= =(f; g),

then we learly also have Æ 6j= =(f; g).

� The ase on

w

(f; g) 2 � is analogous.

❏

Note that p-admissibility of onrete domains is easily broken. Consider e.g. the follow-

ing examples:

� The onrete domain Q

<

q

;>

q

with domainQ that has the prediates (>

q

)

q2Q

from

Q and, additionally, unary prediates (<

q

)

q2Q

with

(<

q

)

Q

<

q

;>

q

:= fq

0

2Q j q

0

< qg:

Then the Q

<

q

;>

q

-onjuntion  := >

0

(f

0

) does not imply any onept from � :=

f<

0

(f);=

0

(f); >

0

(f)g, but every solution of  satis�es some onept of �.
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Name Syntax Semantis

negation :C �

I

n C

I

disjuntion C tD C

I

[D

I

value restrition 8r:C fx 2 �

I

j 8y 2 �

I

: (x; y) 2 r

I

! y 2 C

I

g

at-least restrition (> n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng

at-most restrition (6 n r) fx 2 �

I

j #fy 2 �

I

j (x; y) 2 r

I

g � ng

inverse roles 9r

�

:C fx j 9y 2 �

I

: (y; x) 2 r

I

^ y 2 C

I

g

role negation 9:r:C fx j 9y 2 �

I

: (y; x) =2 r

I

^ y 2 C

I

g

role union 9r [ s:C fx j 9y 2 �

I

: (y; x) 2 r

I

[ s

I

^ y 2 C

I

g

transitive losure 9r

�

:C fx j 9y 2 �

I

: (y; x) 2 (r

I

)

+

^ y 2 C

I

g

Table 3: The additional onstrutors.

� Any onrete domain S

�

with domain �

�

for some �nite alphabet � and the unary

prediates pref

s

and su�

s

for every s 2 �

�

with

pref

S

�

s

:= fs

0

j s is a pre�x of s

0

g

su�

S

�

s

:= fs

0

j s is a suÆx of s

0

g

Assume a 2 �. Then the S

�

-onjuntion  := su�

a

(f) implies no formula from

� := fpref

�

(f) j � 2 �g, but every solution of  satis�es some formula from �.

� Any onrete domain S

�

with domain �

�

for some �nite alphabet �, the unary

prediates >

S

�

and =

"

with the obvious semantis, and the unary prediates pref

s

,

s 2 �

�

, as in the previous example. Then the S

�

-onjuntion  := >

S

�

(f) implies

no onept from � := f=

"

(f)g[fpref

�

(f) j � 2 �g, but every solution of  satis�es

some onept from �.

5 Lower Bounds

The purpose of this setion is to justify our hoie of onstrutors in the language

EL

++

. To this end, we onsider the sublanguage EL of EL

++

and restrit the attention

to general TBoxes, i.e., �nite sets of GCIs. Reall that EL is obtained from EL

++

by dropping all onept onstrutors exept onjuntion, existential restrition, and

top. We will show that the extension of EL with basially any typial DL onstrutor

not present in EL

++

results in intratability of subsumption w.r.t. general TBoxes.

Syntax and semantis of the additional onstrutors used in this setion an be found in

Table 3, where #S denotes the ardinality of a set S and (r

I

)

+

denotes the transitive

losure of the relation r

I

. As in the previous setion, we an restrit the attention to

satis�ability/subsumption of onept names w.r.t. general TBoxes.

Before onsidering onept and role onstrutors, we briey disuss a natural ex-

tension of CBoxes: role inlusions an be strengthened to so-alled role-value-maps

(RVMs), i.e., to inlusions r

1

Æ � � � Æ r

k

v s

1

Æ � � � Æ s

`

whose right-hand side is a ompo-

sition of role names. The semantis of RVMs is de�ned in analogy with the semantis

of EL

++

's role inlusions. By a result of Baader [4℄, subsumption in EL is undeidable

already if only RVMs, but no onept inlusions are admitted in CBoxes.
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Theorem 12 (Baader). Subsumption of EL-onepts w.r.t. RVMs is undeidable.

In the following, we walk through the onstrutors listed in Table 3 and, for eah of

them, prove that subsumption w.r.t. general TBoxes is not tratable.

Atomi negation

Let EL

:

be the extension of EL with negation, and let EL

(:)

be obtained from EL

:

by restriting the appliability of negation to onept names (atomi negation). Sine

EL

:

is a notational variant of the DL ALC, ExpTime-ompleteness of satis�ability

and subsumption in ALC w.r.t. general TBoxes [29℄ arries over to EL

:

. ExpTime-

ompleteness even arries over to EL

(:)

sine :C with C omplex an be replaed with

:A for a new onept name A if we add the two GCIs A v C and C v A.

Theorem 13. In EL

(:)

, satis�ability and subsumption w.r.t. general TBoxes is ExpTime-

omplete.

For many other extensions of EL presented in this setion, satis�ability is trivial in the

sense that every onept is satis�able w.r.t. every TBox. In the following, we will only

expliitly mention satis�ability if it is not trivial.

Disjuntion

Let ELU be the extension of EL with disjuntion. Our aim is to show that subsumption

in ELU w.r.t. general TBoxes is ExpTime-omplete. The upper bound follows from ELU

being a fragment of ALC. For the lower bound, we redue satis�ability of EL

(:)

-onepts

w.r.t. general TBoxes to subsumption of ELU -onepts. The former is ExpTime-hard

by Theorem 13.

Let A

0

be an EL

(:)

onept name and T a general EL

(:)

TBox. To deide satis�a-

bility of A

0

w.r.t. T , take a new (i.e. distint from A

0

and not ourring in T ) onept

name A

0

for eah onept name A ourring in T . Also �x an additional new onept

name L. Then the TBox T

�

is obtained from T by �rst replaing eah subonept :A

with A

0

, and then adding the following GCIs:

� > v A tA

0

and A uA

0

v L for eah onept name A ourring in T ;

� 9r:L v L.

Note that the onept inlusion 9r:L v L is equivalent to :L v 8r::L. It thus ensures

that L ats as the bottom onept in (onneted) ountermodels of the subsumption

A

0

v

T

�

L. Using this observation, it is not hard to verify that C is satis�able w.r.t. T

if, and only if, A

0

6v

T

�

L.

Theorem 14. In ELU, subsumption w.r.t. general TBoxes is ExpTime-omplete.
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This theorem improves upon the result of Brandt that subsumption of ELU onepts

w.r.t. general TBoxes is NP-hard [7℄, and it improves upon the result of Hladik and

Sattler that satis�ability of ELU onepts extended with funtional roles and the bottom

onept w.r.t. general TBoxes is ExpTime-hard [15℄.

At-Least Restritions

Let EL

�

2

be the extension of EL with at-least restritions of the form (> 2 r). Sub-

sumption in EL

�

2

w.r.t. general TBoxes is in ExpTime sine EL

�

2

is a fragment of

ALC extended with number restritions [12℄. We establish a mathing lower bound by

reduing subsumption in ELU w.r.t. general TBoxes. Let A

0

and B

0

be onept names

and T a general ELU TBox. We assume that all onept inlusions in T have one of

the following forms:

C v D

C

1

u C

2

v C

C v C

1

t C

2

C v 9r:D

9r:C v D

where C, D, C

1

, and C

2

are onept names or>. It is easily veri�ed that this assumption

an be made without loss of generality sine every general TBox an be onverted into

normal form using normalization rules similar to the one presented in Figure 1. Note

in partiular that C

1

t C

2

v C an be replaed by the two rules C

1

v C and C

2

v C.

To onvert T into an EL

�

2

CBox, we only need to rephrase onept impliations of the

form C v C

1

tC

2

. This is done as follows: introdue two new onept names A and B

and a new role name r, and replae the mentioned impliation with

C v 9r:A u 9r:B

C u 9r:(A uB) v C

1

C u (> 2 r) v C

2

Call the resulting TBox T

�

. It is easily seen that A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Theorem 15. In EL

�

2

, subsumption w.r.t. general TBoxes is ExpTime-omplete.

Role Construtors :, [, �

�

We onsider the extension EL

R:

of EL with role negation, EL

[

with role union, and

EL

�

with transitive losure. For these three DLs, subsumption w.r.t. general TBoxes

an be proved ExpTime-hard using a tehnique similar to the one employed for at-

least restritions in the previous setion: the lower bounds are established by reduing

subsumption in ELU w.r.t. general TBoxes. Thus, let A

0

and B

0

be onept names

and T a general ELU TBox. As in the proof of Theorem 15, we assume that T is in

normal form. We onvert T into a new IBox T

�

by replaing eah onept inlusion

C v C

1

t C

2

as follows:
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� In EL

R:

, we introdue a new onept name A and two new role names r and s.

Then we replae the above inlusion by the following:

C v 9r:A

C u 9s:A v C

1

C u 9:s:A v C

2

� In EL

[

, we introdue a new onept name A and two new role names r and s.

Then we replae the above inlusion by the following:

C v 9r [ s:A

C u 9r:A v C

1

C u 9s:A v C

2

� In EL

�

, we introdue a new onept name A and a new role name r. Then we

replae the above inlusion by the following:

C v 9r

+

:A

C u 9r:A v C

1

C u 9r:9r

+

:A v C

2

The ExpTime upper bound is obtained from the fat that in ALC extended with the

Boolean operators on roles, subsumption w.r.t. general TBoxes is in ExpTime [25℄, and

the same holds for the desription logi ALC

reg

[11, 29, 2℄.

Theorem 16. In ELR:, EL

[

, and EL

�

, subsumption w.r.t. general TBoxes is ExpTime-

omplete.

Non-p-admissible Conrete Domains

We now show that p-admissibility of the onrete domains is not only a suÆient on-

dition for polynomiality of reasoning in EL

++

, but also a neessary one: if D is a non-

onvex onrete domain, then subsumption in EL(D) is ExpTime-hard, where EL(D)

is the extension of EL with the onrete domain D, i.e., with features f that are mapped

to partial funtions from �

I

to �

D

, and with a onept onstrutor p(f

1

; : : : ; f

k

) for

eah k-ary prediate p 2 P

D

.

To prove ExpTime-hardness, we �rst strengthen Theorem 14 as follows. Let a single-

disjuntion TBox (sd-TBox) be a general EL TBox that, additionally, ontains zero or

one onept impliation of the form A v B

1

t B

2

with A, B

1

, and B

2

onept names.

We show that subsumption of EL-onepts w.r.t. sd-TBoxes is ExpTime-omplete.

The lower bound is proved by redution of subsumption in ELU w.r.t. general TBoxes,

whih is ExpTime-hard by Theorem 14. Thus, let A

0

and B

0

be onept names and T

a general ELU TBox. We again assume that T is in the usual normal form introdued

above. For the redution, introdue new onept names U and U

0

and a new role name

r

A;B;B

0

for eah onept impliation A v B tB

0

2 T . We onvert T into a sd-TBox T

�
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by adding the onept impliation > v U t U

0

: and replaing eah onept impliation

A v B tB

0

with

> v 9r

A;B;B

0

:>

A u 9r

A;B;B

0

:U v B

A u 9r

A;B;B

0

:U

0

v B

0

It is easy to hek that A

0

v

T

B

0

i� A

0

v

T

�

B

0

. Together with the upper bound from

Theorem 13, we thus obtain the following:

Theorem 17. Subsumption of EL-onepts w.r.t. sd-TBoxes is ExpTime-omplete.

Now bak to the ExpTime-hardness of subsumption in EL(D), where D is a non-

onvex onrete domain. We redue subsumption in EL w.r.t. sd-TBoxes. Let A

0

and

B

0

be onept names and T an sd-TBox. Sine D is not onvex, there is a satis�able

onjuntion  of atoms of the form p(f

1

; : : : ; f

k

) that implies a disjuntion a

1

_ : : :_ a

m

of suh atoms, but none of its disjunts. If we assume that this is a minimal suh

ounterexample (i.e., m is minimal), then we also know that  does not imply a

2

_: : :_a

m

,

and that eah of the a

i

is sati�able. Then we have

(i) eah assignment of values from D that satis�es  satis�es a

1

or a

2

_ : : : _ a

m

;

(ii) there is an assignment satisfying  and a

1

, but not a

2

_ : : : _ a

m

;

(iii) there is an assignment satisfying  and a

2

_ : : : _ a

m

, but not a

1

.

Now, let T

�

be obtained from T by replaing the single GCI A v B t B

0

by A v ,

a

1

v B, and a

i

v B

0

for i = 2; : : : ;m. It is easy to see that A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Theorem 18. For any non-onvex onrete domain D, subsumption in EL(D) w.r.t.

general TBoxes is ExpTime-hard.

For example, this theorem applies to the onrete domains introdued at the end of

Setion 4. We obtain the following orollary.

Corollary 19. For the following onrete domains D, subsumption in EL(D) w.r.t.

general TBoxes is ExpTime-hard:

� the onrete domain Q

<

q

;>

q

;

� any onrete domain S

�

with domain �

�

for some �nite alphabet � and the unary

prediates pref

s

and su�

s

for every s 2 �

�

;

� any onrete domain S

�

with domain �

�

for some �nite alphabet �, the unary

prediates >

S

�

and =

"

, and the unary prediates pref

s

, for eah s 2 �

�

.
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Using results from [23℄, a mathing upper bound an be obtainted for the ase where

D-satis�ability is in ExpTime. This is e.g. the ase for the �rst item of Corollary 19 [24℄.

Inverse Roles

Let ELI be the extension of EL with inverse roles. We show that subsumption in ELI

w.r.t. general TBoxes is PSpae-hard by reduing satis�ability in the desription logi

ALE w.r.t. so-alled primitive TBoxes:

� ALE is obtained by extending EL

8

with atomi negation;

� primitive TBoxes are general TBoxes whose onept inlusions have the form

A v C, with A a onept name.

It has been shown by Calvanese that satis�ability in ALE w.r.t. primitive TBoxes is

PSpae-omplete [8℄.

Let A

0

be a onept name, and T a primitive ALE TBox. We assume that T is in

normal form: every onept inlusion is of one of the following forms:

A v B

A v :B

A v B uB

0

A v 9r:B

A v 8r:B

where A, B, and B

0

are onept names. It is easily veri�ed that this assumption an

be made without loss of generality sine every primitive TBox an be onverted into

normal form using normalization rules similar to the one presented in Figure 1.

For the redution, we take a new onept name L and de�ne a general ELI TBox

T

�

ontaining the following onept inlusions:

� A v D for all A v D 2 T if D is a onept name or of the form 9r:B;

� 9r

�

:A v B for all A v 8r:B 2 T ;

� A uB v L for all A v :B 2 T ;

� 9r:L v L.

As in the ase of ELU , the onept inlusion 9r:L v L is equivalent to :L v 8r::L

and ensures that L ats as the bottom onept in onneted ountermodels of the

subsumption A

0

v

T

�

L. Additionally, 9r

�

:A v B is learly equivalent to A v 8r:B.

Thus, it is not hard to verify that A

0

is satis�able w.r.t. T if, and only if, A

0

6v

C

L.

Theorem 20. in ELI, subsumption w.r.t. general TBoxes is PSpae-hard.
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The exat omplexity of this problem is still open (the best upper bound we know of is

ExpTime, stemming from results for the DL ALCI [12℄).

At-Most Restritions

Let EL

�

1

be the extension of EL with at-most restritions of the form (6 1 r). As

in the ase of EL

�

2

, subsumption in EL

�

1

w.r.t. general TBoxes is in ExpTime sine

EL

�

1

is a fragment of ALC with number restritions. We prove a mathing lower

bound by reduing subsumption in the DL FL

tf

0

w.r.t. general TBoxes. FL

tf

0

o�ers

only the onept onstrutors onjuntion and value restrition and requires all roles to

be interpreted as total funtions. Subsumption in this DL w.r.t. general TBoxes was

proved ExpTime-omplete by Toman and Wedell: as noted below Corollary 12 of [33℄,

this is an immediate onsequene of the proof of Theorem 11 in the same paper. Note

that FL

0

is often assumed to additionally o�er the >-onept. For our purposes, it is

simpler to exlude it. This is justi�ed by the fat that ExpTime-hardness of subsumption

in FL

tf

0

also does not presuppose the presene of the >-onept as well.

Let A

0

and B

0

be onept names and T a general FL

tf

0

TBox. We onvert T into a

general EL

�

1

TBox T

�

by replaing eah subonept 8r:C appearing on the left-hand

side of a GCI with 9r:C, and eah subonept 8r:C appearing on the right-hand side of

a GCI with (6 1 r) u 9r:C. Then the following holds:

Lemma 21. A

0

v

T

B

0

i� A

0

v

T

�

B

0

.

Proof. We show the ontrapositives of both diretions. First assume that A

0

6v

T

�

B

0

,

i.e., there is an EL

�

1

model I of T

�

and an x

0

2 A

I

0

nB

I

0

. First modify I to a model I

0

as follows: for eah x 2 �

I

and eah role name r suh that jfy 2 �

I

j (x; y) 2 r

I

gj > 1,

delete all out-going r-edges starting at x. To show that I

0

is still a model of T

�

, it

suÆes to prove that C

I

0

� C

I

for onepts C appearing on the left-hand side of

GCIs, and C

I

0

= C

I

for onepts C

0

appearing on the right-hand side of GCIs. The

former is easy sine left-hand sides of GCIs are EL onepts, and the latter is easy

sine existential restritions 9r:C on right-hand sides of GCIs are always onjoined with

(6 1 r). Clearly, all role names are interpreted as partial funtions in I

0

. We now

extend these interpretations to total funtions: Let �

I

00

be de�ned as follows:

�

I

00

:= �

I

0

℄ fx

?

g

A

I

00

:= A

I

0

for all onept names A

r

I

00

:= r

I

0

[ f(x; x

?

) j (x; y) =2 r

I

0

for all y 2 �

I

0

g for all role names r:

Observe that the new domain element x

?

is in the extension of no onept name. It is

readily heked that x 2 C

I

0

i� x 2 C

I

00

for all x 2 �

I

and EL onepts C not using

the > onept. Thus, I

00

is still a model of T

�

. Sine role names are interpreted as total

funtions, it is easy to show by strutural indution that

C

I

00

= (C

y

)

I

00

= (C

z

)

I

00

(�)

for every FL

tf

0

onept C, where C

y

denotes the result of replaing eah subonept

8r:C with 9r:C, and C

z

denotes the result of replaing eah subonept 8r:C with
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(6 1 r)u9r:C. Sine I

00

is a model of T

�

, this learly yields that I

00

is a model of T as

well. Sine x

0

2 A

I

00

0

n B

I

00

0

, we have A

0

6v

T

B

0

as required.

Now for the other diretion. Assume that A

0

6v

T

B

0

, i.e., there is an FL

tf

0

model I

of T and an x

0

2 A

I

0

nB

I

0

. As in the diretion onsidered �rst, the fat that all relations

are interpreted as total funtions implies that we have x 2 (9r:C)

I

i� x 2 (8r:C)

I

for

all x 2 �

I

, EL onepts C, and role names r. Sine I is a model of T , it is thus also a

model of T

�

yielding A

0

6v

T

�

B

0

as required. ❏

We thus obtain the following theorem:

Theorem 22. Subsumption in EL

�

1

w.r.t. general TBoxes is ExpTime-omplete.

Ana analogous result an be proved if the onept onstrutor (6 1 r) is replaed by

CBox assertions Funt(r), whih are satis�ed by an interpretation I if r

I

is a partial

funtion.

6 Comparison with FL

0

The purpose of this paper is to investigate the omplexity of reasoning w.r.t. general

TBoxes in extensions of the basi desription logi EL. To fully appreiate the result

from [7℄ that subsumption in EL w.r.t. general TBoxes is polynomial and the results

from this paper that polynomiality is even preserved for several extensions of EL, it

is worthwhile to ompare the omputational omplexity of EL with that of it's sibling

DL FL

0

providing only for the onept onstrutors u and 8r:C. Suh a omparison is

performed in this setion yielding the result that, although looking just as harmless as

EL, FL

0

is muh less robust than EL w.r.t. the addition of TBox formalisms: we prove

that subsumption in FL

0

with general TBoxes is ExpTime-omplete.

Summing up the work on EL arried out in this and previous papers, we obtain the

following piture:

� Subsumption of EL onepts without referene to a TBox is of polynomial om-

plexity [5℄.

� Subsumption in EL w.r.t. standard TBoxes is still of polynomial omplexity, where

a standard TBox is a �nite set of onept de�nitions A

:

= C with A a onept

name. Suh a onept de�nition is satis�ed by an interpretation I if A

I

= C

I

[4℄.

� Subsumption in EL w.r.t. general TBoxes is still of polynomial omplexity [7℄.

� Even for several extensions of EL, subsumption w.r.t. general TBoxes remains

polynomial (urrent paper).

When we summarize the work on FL

0

, we obtain a dramatially di�erent piture: in

this ase, adding a more powerful TBox formalism usually results in an inrease of the

omplexity of reasoning:

� Subsumption of FL

0

onepts without referene to a TBox is of polynomial om-

plexity [6℄.
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� Subsumption in FL

0

w.r.t. ayli TBoxes is o-NP-omplete, where an ayli

TBox is a standard TBox that does not ontain onept de�nitions

A

0

:

= C

0

; : : : ; A

k

1

:

= C

k�1

suh that A

i+1 mod k

is used in C

i

for all i < k [27℄.

� Subsumption in FL

0

w.r.t. (possibly yli) standard TBoxes is PSpae-omplete

[1, 3, 21℄.

To omplete the piture for FL

0

and to illustrate that the robust omputational be-

havior of EL is rather surprising, in the following we prove that subsumption in FL

0

w.r.t. general TBoxes is ExpTime-omplete. As ontainment in ExpTime follows from

the fat that subsumption in ALC w.r.t. general TBoxes is in ExpTime, it remains to

establish the lower bound.

The proof is by a redution of subsumption in FL

tf

0

w.r.t. general TBoxes. As has

already been mentioned, this problem is ExpTime-omplete by results from [33℄. Let

A

0

and B

0

be onept names and T a general FL

tf

0

TBox. For simpliity, we assume

that T is in normal form, i.e., it only ontains onept de�nitions of the following forms:

A v B

A v 8r:B

A uA

0

v B

8r:A v B

where A, A

0

, B, and B

0

are onept names. It is not hard to verify that every general

FL

tf

0

TBox an be onverted into normal form in polynomial time by using normaliza-

tion rules similar to the one presented in Figure 1. Then we have the following:

Lemma 23. A

0

v

T

B

0

in FL

0

i� A

0

v

T

B

0

in FL

tf

0

.

Proof. The \only if" diretion is trivial: onsider the ontrapositive, i.e., A

0

6v

T

B

0

in

FL

tf

0

implies A

0

6v

T

B

0

in FL

0

. As every interpretation witnessing the former is also

a witness for the latter, there is nothing to be done.

Now for the (ontrapositive of the) \if" diretion. Assume that A

0

6v

T

B

0

, i.e.,

there is an FL

0

model I of T and an x

0

2 A

I

0

n B

I

0

. We show how to onvert I into

an FL

tf

0

interpretation witnessing A

0

6v

T

B

0

in FL

tf

0

. Let R

T

denote the set of role

names ourring in T , and S the set of all sequenes of role names from R

T

, inluding

the empty sequene ". For eah S 2 S and x 2 �

I

, we use S

I

(x) to denote the set

fy 2 �

I

j (x; y) 2 S

I

g, where S

I

is de�ned in the obvious way using omposition of

relations (and "

I

(x) = fxg). Now we onstrut a FL

tf

0

interpretation J as follows:

� �

J

= S.

� A

J

:= fS j S

I

(x

0

) � A

I

g;

� r

J

:= f(S; S

0

) j S

0

= Srg for all r 2 R

T

;
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By de�nition of J , we have that " 2 A

J

0

nB

J

0

. It is readily heked that all role names

are interpreted as total funtions. To show that A

0

6v

T

B

0

, it thus remains to show

that J satis�es all onept inlusions in T :

1. A v B. Let S 2 A

J

. Then S

I

(x

0

) � A

I

. Sine I satis�es A

:

= B, this yields

S

I

(x

0

) � B

I

and thus S 2 B

J

as required.

2. A uA

0

v B. Similar to the previous ase.

3. 8r:A v B. Let S 2 (8r:A)

J

. Then Sr 2 A

J

. Thus, Sr

I

(x

0

) � A

I

implying

S

I

(x

0

) � (8r:A)

I

. Hene, S

I

(x

0

) � B

I

sine I satis�es 8r:A v B. It follows that

S 2 B

J

as required.

4. A v 8r:B. Let S 2 A

J

. Then S

I

(x

0

) � A

I

, and, sine I satis�es A v 8r:B, we

have Sr

I

(x

0

) � B

I

. It follows that Sr 2 B

J

implying S 2 (8r:B)

J

sine Sr is

the only r-suessor of S in J .

❏

We thus obtain the following theorem, improving a result from [13℄ whih states that

subsumption in EL extended with value restritions is ExpTime-omplete.

Theorem 24. Subsumption in FL

0

w.r.t. general TBoxes is ExpTime-omplete.

Thus, subsumption w.r.t. general TBoxes is polynomial in the fragment EL of ALC,

but it is ExpTime-omplete in the equally harmless looking fragment FL

0

|and thus

just as hard as subsumption in full ALC. In parallel to our work, Theorem 24 was

independently proved by Martin Hofmann using a redution of (the existene of winning

stratiegies in) pushdown games [16℄.

7 Conlusion

We believe that the results of this paper show that|in ontrast to the negative on-

lusions drawn from early omplexity results in the area|the quest for tratable DLs

that are expressive enough to be useful in pratie an be suessful. Our DL EL

++

is tratable even w.r.t. GCIs, and it o�ers many onstrutors that are important in

ontology appliations.
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