Dresden University of Technology Institute for Theoretical Computer Science Chair for Automata Theory

LTCS-Report

Connecting many-sorted theories

Franz Baader Silvio Ghilardi

LTCS-Report 05-04

Connecting many-sorted theories

Franz Baader
Institut für Theoretische Informatik, TU Dresden, baader@tcs.inf.tu-dresden.de
Silvio Ghilardi
Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, ghilardi@dsi.unimi.it

Abstract

Basically, the connection of two many-sorted theories is obtained by taking their disjoint union, and then connecting the two parts through connection functions that must behave like homomorphisms on the shared signature. We determine conditions under which decidability of the validity of universal formulae in the component theories transfers to their connection. In addition, we consider variants of the basic connection scheme.

Contents

1 Introduction 3
2 Notation and definitions 5
2.1 Many-sorted first-order logic 5
2.2 Basic connections 6
3 Positive algebraic completions and compatibility 9
4 The main combination results 11
4.1 Basic connections 11
4.2 Two-side connections 14
4.3 Examples 15
5 A variant of the connection scheme 19
5.1 A non-deterministic combination procedure 19
5.2 A deterministic combination procedure 21
6 Conditions on the connection functions 23
6.1 Embeddings as connection functions 24
6.2 Surjective connections 25
6.3 Isomorphisms as connection functions 29
7 Conclusion 31
8 Appendix A: \mathcal{E}-connections 35
9 Appendix B: Theory Completions 41
9.1 Model Completions 43
9.2 Positive Algebraic Completions 45
10 Appendix C: Alternative Proofs 47

1 Introduction

The combination of decision procedures for logical theories arises in many areas of logic in computer science, such as constraint solving, automated deduction, term rewriting, modal logics, and description logics. In general, one has two first-order theories T_{1} and T_{2} over signatures Σ_{1} and Σ_{2}, for which validity of a certain type of formulae (e.g., universal, existential positive, etc.) is decidable. These theories are then combined into a new theory T over a combination Σ of the signatures Σ_{1} and Σ_{2}. The question is whether decidability transfers from T_{1}, T_{2} to their combination T.

One way of combining the theories T_{1}, T_{2} is to build their union $T_{1} \cup T_{2}$. Both the Nelson-Oppen combination procedure [NO79, Nel84] and combination procedures for the word problem [Pig74, SS89, Nip91, BT97] address this type of combination, but for different types of formulae to be decided. Whereas the original combination procedures were restricted to the case of theories over disjoint signatures, there are now also solutions for the non-disjoint case [DKR94, TR03, BT02, FG03, Ghi05, BGT04], but they always require some additional restrictions since it is easy to see that in the unrestricted case decidability does not transfer. Similar combination problems have also been investigated in modal logic, where one asks whether decidability of (relativized) validity transfers from two modal logics to their fusion [KW91, Spa93, Wol98, BLSW02]. The approaches in [Ghi05, BGT04] actually generalize these results from equational theories induced by modal logics to more general first-order theories satisfying certain model-theoretic restrictions: the theories T_{1}, T_{2} must be compatible with their shared theory T_{0}, and this shared theory must be locally finite (i.e., its finitely generated models are finite). The theory T_{i} is compatible with the shared theory T_{0} iff (i) $T_{0} \subseteq T_{i}$; (ii) T_{0} has a model completion T_{0}^{*}; and (iii) every model of T_{i} embeds into a model of $T_{i} \cup T_{0}^{*}$.

In [KLWZ04], a new combination scheme for modal logics, called \mathcal{E}-connection, was introduced, for which decidability transfer is much simpler to show than in the case of the fusion. Intuitively, the difference between fusion and \mathcal{E}-connection can be explained as follows. A model of the fusion is obtained from two models of the component logics by identifying their domains. In contrast, a model of the \mathcal{E} connection consists of two separate models of the component logics together with certain connecting relations between their domains. There are also differences in the syntax of the combined logic. In the case of the fusion, the Boolean operators are shared, and all operators can be applied to each other without restrictions. In the case of the \mathcal{E}-connection, there are two copies of the Boolean operators, and operators of the different logics cannot be mixed; the only connection between the two logics are new (diamond) modal operators that are induced by the connecting relations.

If we want to adapt this approach to the more general setting of combining firstorder theories, then we must consider many-sorted theories since only the sorts
allow us to keep the domains separate and to restrict the way function symbols can be applied to each other. Let T_{1}, T_{2} be two many-sorted theories that may share some sorts as well as function and relation symbols. We first build the disjoint union $T_{1} \uplus T_{2}$ of these two theories (by using disjoint copies of the shared parts), and then connect them by introducing connection functions between the shared sorts. These connection functions must behave like homomorphisms for the shared function and predicate symbols, i.e., the axioms stating this are added to $T_{1} \uplus T_{2}$. This corresponds to the fact that the new diamond operators in the \mathcal{E}-connection approach distribute over disjunction and do not change the false formula \perp. We call the combined theory obtained this way the connection of T_{1} and T_{2}.

This kind of connection between theories has already been considered in automated deduction (see, e.g., [AK97, Zar02]), but only in very restricted cases where both T_{1} and T_{2} are fixed theories (e.g., the theory of sets and the theory of integers in [Zar02]) and the connection functions have a fixed meaning (like yielding the length of a list). In categorical logic, this type of connection can be seen as an instance of a more general co-comma construction in bicategories associated with theories and syntactic interpretations, see for instance [Zaw95]. However, in this general setting, computational properties of the combined theories have not been considered yet.

This paper is a first step towards providing general results on the transfer of decidability from component theories to their connection. We start by considering the simplest case where there is just one connection function, and show that decidability transfers whenever certain model-theoretic conditions are satisfied. These conditions are weaker than the ones required in [BGT04] for the case of the union of theories. ${ }^{1}$ In addition, both the combination procedure and its proof of correctness are much simpler than the ones in [Ghi05, BGT04]. The approach easily extends to the case of several connection functions. We will also consider variants of the general combination scheme where the connection function must satisfy additional properties (like being surjective, an embedding, an isomorphism), or where a theory is connected with itself. The first variant is, for example, interesting since the combination result for the union of theories shown in [Ghi05] can be obtained from the variant where one has an isomorphism as connection function. The second case is interesting since it can be used to reduce the global consequence problem in the modal logic \mathbf{K} to propositional satisfiability, which is a surprising result.

[^0]
2 Notation and definitions

In this section, we fix the notation and give some important definitions, in particular a formal definition of the connection of two theories.

2.1 Many-sorted first-order logic

We use standard many-sorted first-order logic (see, e.g., [Gal86]), but try to avoid the notational overhead caused by the presence of sorts as much as possible. Thus, a signature Ω consists of a non-empty set of sorts \mathcal{S} together with a set of function symbols \mathcal{F} and a set of predicate symbols \mathcal{P}. The function and predicate symbols are equipped with arities from \mathcal{S}^{*} in the usual way. For example, if the arity of $f \in \mathcal{F}$ is $S_{1} S_{2} S_{3}$, then this means that the function f takes tuples consisting of an element of sort S_{1} and an element of sort S_{2} as input, and produces an element of sort S_{3}. We consider logic with equality, i.e., the set of predicate symbols contains a symbol \approx_{S} for equality in every sort S. Usually, we will just use \approx without explicitly specifying the sort. In this paper we usually assume that signatures are countable.

Terms and first-order formulae over Ω are defined in the usual way, i.e., they must respect the arities of function and predicate symbols, and the variables occurring in them are also equipped with sorts. An Ω-atom is a predicate symbol applied to (sort-conforming) terms, and an Ω-literal is an atom or a negated atom. A ground literal is a literal that does not contain variables. We use the notation $\phi(\underline{x})$ to express that ϕ is a formula whose free variables are among the ones in the tuple of variables \underline{x}. An Ω-sentence is a formula over Ω without free variables. An Ω-theory T is a set of Ω-sentences (called the axioms of T). If T, T^{\prime} are Ω theories, then we write (by a sleight abuse of notation) $T \subseteq T^{\prime}$ to express that all the axioms of T are logical consequences of the axioms of T^{\prime}.

From the semantic side, we have the standard notion of an Ω-structure \mathcal{A}, which consists of non-empty and pairwise disjoint domains A_{S} for every sort S, and interprets function symbols f and predicate symbols P by functions $f^{\mathcal{A}}$ and predicates $P^{\mathcal{A}}$ according to their arities. By A (or sometimes by $|\mathcal{A}|$) we denote the union of all domains A_{S}. Validity of a formula ϕ in an Ω-structure $\mathcal{A}(\mathcal{A} \models$ $\phi)$, satisfiability, and logical consequence are defined in the usual way. The Ω structure \mathcal{A} is a model of the Ω-theory T iff all axioms of T are valid in \mathcal{A}. If $\phi(\underline{x})$ is a formula with free variables $\underline{x}=x_{1}, \ldots, x_{n}$ and $\underline{a}=a_{1}, \ldots, a_{n}$ is a (sortconforming) tuple of elements of A, then we write $\mathcal{A} \models \phi(\underline{a})$ to express that $\phi(\underline{x})$ is valid in \mathcal{A} under the assignment $\left\{x_{1} \mapsto a_{1}, \ldots, x_{n} \mapsto a_{n}\right\}$. Note that $\phi(\underline{x})$ is valid in \mathcal{A} iff it is valid under all assignments iff its universal closure is valid in \mathcal{A}.

An Ω-homomorphism between two Ω-structures \mathcal{A} and \mathcal{B} is a mapping $\mu: A \rightarrow B$ that is sort-conforming (i.e., maps elements of sort S in \mathcal{A} to elements of sort S
in \mathcal{B}), and satisfies the condition

$$
\begin{equation*}
\mathcal{A} \models A\left(a_{1}, \ldots, a_{n}\right) \quad \text { implies } \quad \mathcal{B} \models A\left(\mu\left(a_{1}\right), \ldots, \mu\left(a_{n}\right)\right) \tag{*}
\end{equation*}
$$

for all Ω-atoms $A\left(x_{1}, \ldots, x_{n}\right)$ and (sort-conforming) elements a_{1}, \ldots, a_{n} of A. In case the converse of $(*)$ holds too, μ is called an embedding. Note that an embedding is something more than just an injective homomorphism since the stronger condition must hold not only for the equality predicate, but for all predicate symbols. If the embedding μ is the identity on A, then we say that \mathcal{A} is a substructure of \mathcal{B}. In case ($*$) holds for all first order formulae, then μ is said to be an elementary embedding. If the elementary embedding μ is the identity on A, then we say that \mathcal{A} is an elementary substructure of \mathcal{B} or that \mathcal{B} is an elementary extension of \mathcal{A}. An isomorphism is a surjective embedding.

We say that Σ is a subsignature of Ω (written $\Sigma \subseteq \Omega$) iff Σ is a signature that can be obtained from Ω by removing some of its sorts and function and predicate symbols. If $\Sigma \subseteq \Omega$ and \mathcal{A} is an Ω-structure, then the Σ-reduct of \mathcal{A} is the Σ structure $\mathcal{A}_{\mid \Sigma}$ obtained from \mathcal{A} by forgetting the interpretations of sorts, function and predicate symbols from Ω that do not belong to Σ. Conversely, \mathcal{A} is called an expansion of the Σ-structure $\mathcal{A}_{\Sigma \Sigma}$ to the larger signature Ω. If $\mu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω homomorphism, then the Σ-reduct of μ is the Σ-homomorphism $\mu_{\mid \Sigma}: \mathcal{A}_{\mid \Sigma} \rightarrow \mathcal{B}_{\mid \Sigma}$ obtained by restricting μ to the sorts that belong to Σ, i.e., by restricting the mapping to the domain of $\mathcal{A}_{\mid \Sigma}$.
Given a set X of constant symbols not belonging to the signature Ω, but each equipped with a sort from Ω, we denote by Ω^{X} the extension of Ω by these new constants. If \mathcal{A} is an Ω-structure, then we can view the elements of A as a set of new constants, where $a \in A_{S}$ has sort S. By interpreting each $a \in A$ by itself, \mathcal{A} can also be viewed as an Ω^{A}-structure. The positive diagram $\Delta_{\Omega}^{+}(\mathcal{A})$ of \mathcal{A} is the set of all ground Ω^{A}-atoms that are true in \mathcal{A}, the diagram $\Delta_{\Omega}(A)$ of \mathcal{A} is the set of all ground Ω^{A}-literals that are true in \mathcal{A}, and the elementary diagram $\Delta_{\Omega}^{e}(\mathcal{A})$ of \mathcal{A} is the set of all Ω^{A}-sentences that are true in \mathcal{A}. The subscript Ω in $\Delta_{\Omega}^{+}(\mathcal{A}), \Delta_{\Omega}(\mathcal{A})$ and $\Delta_{\Omega}^{e}(\mathcal{A})$ is sometimes omitted if there is no danger of confusion. Robinson's diagram theorems [CK90] say that there is a homomorphism (embedding, elementary embedding) between the Ω-structures \mathcal{A} and \mathcal{B} iff it is possible to expand \mathcal{B} to an Ω^{A}-structure in such a way that it becomes a model of the positive diagram (diagram, elementary diagram) of \mathcal{A}.

2.2 Basic connections

In the remainder of this section, we introduce our basic scheme for connecting many-sorted theories, and illustrate it with the example of \mathcal{E}-connections of modal logics. Let T_{1}, T_{2} be theories over the respective signatures Ω_{1}, Ω_{2}, and let Ω_{0} be a common subsignature of Ω_{1} and Ω_{2}. We call Ω_{0} the connecting signature. In
addition, let T_{0} be an Ω_{0}-theory ${ }^{2}$ that is contained in both T_{1} and T_{2}. We defined the new theory $T_{1}>_{T_{0}} T_{2}$ (called the connection of T_{1} and T_{2} over T_{0}) as follows.

The signature Ω of $T_{1}>_{T_{0}} T_{2}$ contains the disjoint union $\Omega_{1} \uplus \Omega_{2}$ of the signatures Ω_{1} and Ω_{2}, where the shared sorts and the shared function and predicate symbols are appropriately renamed, e.g., by attaching labels 1 and 2 . Thus, if $S(f, P)$ is a sort (function symbol, predicate symbol) contained in both Ω_{1} and Ω_{2}, then $S^{i}\left(f^{i}, P^{i}\right)$ for $i=1,2$ are its renamed variants in the disjoint union, where the arities are accordingly renamed. In addition, Ω contains a new function symbol h_{S} of arity $S^{1} S^{2}$ for every sort S of Ω_{0}.

The axioms of $T_{1}>_{T_{0}} T_{2}$ are obtained as follows. Given an Ω_{i}-formula ϕ, its renamed variant ϕ^{i} is obtained by replacing all shared symbols by their renamed variants with label i. The axioms of $T_{1}>_{T_{0}} T_{2}$ consist of

$$
\left\{\phi^{1} \mid \phi \in T_{1}\right\} \cup\left\{\phi^{2} \mid \phi \in T_{2}\right\}
$$

together with the universal closures of the formulae

$$
\begin{aligned}
& h_{S}\left(f^{1}\left(x_{1}, \ldots, x_{n}\right)\right) \approx f^{2}\left(h_{S_{1}}\left(x_{1}\right), \ldots, h_{S_{n}}\left(x_{n}\right)\right), \\
& P^{1}\left(x_{1}, \ldots, x_{n}\right) \rightarrow P^{2}\left(h_{S_{1}}\left(x_{1}\right), \ldots, h_{S_{n}}\left(x_{n}\right)\right),
\end{aligned}
$$

for every function (predicate) symbol $f(P)$ in Ω_{0} of arity $S_{1} \ldots S_{n} S\left(S_{1} \ldots S_{n}\right)$.
Since the signatures Ω_{1} and Ω_{2} have been made disjoint, and since the additional axioms state that the family of mappings h_{S} behaves like an Ω_{0}-homomorphism, it is easy to see that the models of $T_{1}>_{T_{0}} T_{2}$ are formed by triples of the form $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, h^{\mathcal{M}}\right)$, where \mathcal{M}^{1} is a model of T_{1}, \mathcal{M}^{2} is a model of T_{2} and $h^{\mathcal{M}}$ is an Ω_{0}-homomorphism

$$
h^{\mathcal{M}}: \mathcal{M}_{\mid \Omega_{0}}^{1} \rightarrow \mathcal{M}_{\mid \Omega_{0}}^{2}
$$

between the respective Ω_{0}-reducts.
Example 2.1 The most basic variant of an \mathcal{E}-connection [KLWZ04] is an instance of our approach if one translates it into the algebraic setting. The abstract description systems considered in [KLWZ04], which cover all the usual modal and description logics, correspond to Boolean-based equational theories [BGT04]. The theory E is called Boolean-based equational theory iff its signature Σ has just one sort, equality is the only predicate symbol, the set of function symbols contains the Boolean operators $\sqcap, \sqcup, \neg, \top, \perp$, and its set of axioms consists of identities (i.e., the universal closures of atoms $s \approx t$) and contains the Boolean algebra axioms.
For example, consider the basic modal logic \mathbf{K}, where we use only the modal operator \diamond (since \square can then be defined). The Boolean-based equational theory

[^1]$E_{\mathbf{K}}$ corresponding to \mathbf{K} is obtained from the theory of Boolean algebras by adding the identities $\diamond(x \sqcup y) \approx \diamond(x) \sqcup \diamond(y)$ and $\diamond(\perp) \approx \perp$.
Let us illustrate the notion of an \mathcal{E}-connection also on this simple example (see Appendix A for a more general description of \mathcal{E}-connections and their relationship to the notion of a connection introduced in this report). To build the \mathcal{E}-connection of \mathbf{K} with itself, one takes two disjoint copies of \mathbf{K}, obtained by renaming the Boolean operators and the diamonds, e.g., into $\sqcap_{i}, \sqcup_{i}, \neg_{i}, \top_{i}, \perp_{i}, \diamond_{i}$ for $i=1,2$. The signature of the \mathcal{E}-connection contains all these renamed symbols together with a new symbol \diamond. However, it is now a two-sorted signature, where symbols with index i are applied to elements of sort S_{i} and yield as results an element of this sort. The new symbol has arity $S_{1} S_{2} \cdot{ }^{3}$ The semantics of this \mathcal{E}-connection can be given in terms of Kripke structures. A Kripke structure for the \mathcal{E}-connection consists of two Kripke structures $\mathcal{K}_{1}, \mathcal{K}_{2}$ for \mathbf{K} over disjoint domains W_{1} and W_{2}, together with an additional connecting relation $E \subseteq W_{2} \times W_{1}$. The symbols with index i are interpreted in \mathcal{K}_{i}, and the new symbol \diamond is interpreted as the diamond operator induced by E, i.e., for every $X \subseteq W_{1}$ we have
$$
\diamond(X):=\left\{x \in W_{2} \mid \exists y \in W_{1} .(x, y) \in E \wedge y \in X\right\} .
$$

This interpretation of the new operator implies that it satisfies the usual identities of a diamond operator, i.e., $\diamond\left(x \sqcup_{1} y\right) \approx \diamond(x) \sqcup_{2} \diamond(y)$ and $\diamond\left(\perp_{1}\right) \approx \perp_{2}$, and that these identities are sufficient to characterize its semantics. Thus, the equational theory corresponding to the \mathcal{E}-connection of \mathbf{K} with itself consists of these two axioms, together with the axioms of $E_{\mathbf{K}_{1}}$ and $E_{\mathbf{K}_{2}}$.
Obviously, this theory is also obtained as the connection of the theory $E_{\mathbf{K}}$ with itself, if the connecting signature Ω_{0} consists of the single sort of $E_{\mathbf{K}}$, the predicate symbol \approx, and the function symbols \sqcup, \perp. As theory T_{0} we can take the theory of semilattices, i.e., the axioms that say that \sqcup is associative, commutative, and idempotent, and that \perp is a unit for \sqcup.

Example 2.2 The previous example can be varied by additionally including Π in the connecting signature, and taking as theory T_{0} the theory of distributive lattices with a least element \perp. It is easy to see that this corresponds to the case of an \mathcal{E}-connection where the connecting relation E is required to be a partial function (we call such an \mathcal{E}-connection deterministic). Finally, if we additionally include both Π and \top in the connecting signature, and take T_{0} to be the theory of bounded distributive lattices (i.e., distributive lattices with a least and a greatest element), then the equational theory obtained through our connection corresponds to the case of an \mathcal{E}-connection where the connecting relation E is a (total) function (we call such an \mathcal{E}-connection functional).

[^2]
3 Positive algebraic completions and compatibility

In order to transfer decidability results from the component theories T_{1}, T_{2} to their connection $T_{1}>_{T_{0}} T_{2}$ over T_{0}, the theories T_{0}, T_{1}, T_{2} must satisfy certain model-theoretic conditions, which we introduce below. The most important one is that T_{0} has a positive algebraic completion. Before we can define this concept, we must introduce some notions from model theory.

The formula ϕ is called open iff it does not contain quantifiers; it is called universal iff it is obtained from an open formula by adding a prefix of universal quantifiers; and it is called geometric iff it is built from atoms by using conjunction, disjunction, and existential quantifiers. The latter formulae are called "geometric" in categorical logic [MR77] since they are preserved under inverse image geometric morphisms.

The main property of geometric formulae is that they are preserved under homomorphisms in the following sense: if $\mu: \mathcal{A} \rightarrow \mathcal{B}$ is a homomorphism between Ω-structures and $\phi\left(x_{1}, \ldots, x_{n}\right)$ is a geometric formula over Ω, then

$$
\mathcal{A} \models \phi\left(a_{1}, \ldots, a_{n}\right) \quad \text { implies } \quad \mathcal{B} \models \phi\left(\mu\left(a_{1}\right), \ldots, \mu\left(a_{n}\right)\right)
$$

for all (sort-conforming) $a_{1}, \ldots, a_{n} \in A$.
Open formulae are related to embeddings in various way. First, they are preserved under building sub- and superstructures, i.e., if \mathcal{A} is a substructure of \mathcal{B}, $\phi\left(x_{1}, \ldots, x_{n}\right)$ is an open formula, and $a_{1}, \ldots, a_{n} \in A$ are sort-conforming, then $\mathcal{A} \models \phi\left(a_{1}, \ldots, a_{n}\right)$ iff $\mathcal{B} \models \phi\left(a_{1}, \ldots, a_{n}\right)$. The following lemma is well-known [CK90]:

Lemma 3.1 Two Ω-theories T, T^{\prime} entail the same set of open formulae iff every model of T can be embedded into a model of T^{\prime} and vice versa.

Proof. The direction from right to left follows from the fact that open formulae are preserved under building substructures.

For the other direction, assume that T and T^{\prime} entail the same set of open formulae, and take any model \mathcal{M} of T (for T^{\prime} the argument is symmetric). First observe that $T^{\prime} \cup \Delta(\mathcal{M})$ is consistent. Otherwise, by compactness of first-order logic, $T^{\prime} \models \phi(\underline{a})$ for some ground sentence $\phi(\underline{a})$ with additional free constants \underline{a} from M that is false in \mathcal{M}. Since \underline{a} consists of free constants, it follows that $T^{\prime} \models \phi(\underline{x})$, and consequently $T \models \phi(\underline{x})$ by assumption. Since $T \models \phi(\underline{x})$ iff $T \models \forall \underline{x} . \phi(\underline{x})$, this is a contradiction since $\phi(\underline{a})$ is false in \mathcal{M}.

Now, let \mathcal{N} be a model of $T^{\prime} \cup \Delta(\mathcal{M})$. Thus, \mathcal{N} is a model of T^{\prime}, and by Robinson's diagram theorem, \mathcal{M} can be embedded into \mathcal{N}.

Since a theory entails an open formula iff it entails its universal closure, the lemma also says that two theories T, T^{\prime} entail the same universal sentences iff every model of T can be embedded into a model of T^{\prime} and vice versa.

The theory T is a universal theory iff its axioms are universal sentences; it is a geometric theory iff it can be axiomatized by using universal closures of geometric sequents, where a geometric sequent is an implication between two geometric formulae. Note that any universal theory is geometric since open formulae are conjunctions of clauses and clauses can be rewritten as geometric sequents.

Definition 3.2 Let T be a universal and T^{*} a geometric theory over Ω. We say that T^{*} is a positive algebraic completion of T iff the following properties hold:

1. $T \subseteq T^{*}$;
2. every model of T embeds into a model of T^{*};
3. for every geometric formula $\phi(\underline{x})$ there is an open geometric formula $\phi^{*}(\underline{x})$ such that $T^{*} \models \phi \leftrightarrow \phi^{*}$.

It can be shown that the models of T^{*} are exactly the algebraically closed models of T (see Appendix B below). In particular, this means that the positive algebraic completion of T is unique, provided that it exists.

When trying to show that Property 3 of Definition 3.2 holds for given theories T, T^{*}, then it is sufficient to consider simple existential formulae $\phi(\underline{x})$, i.e., formulae that are obtained from conjunctions of atoms by adding an existential quantifier prefix. In fact, any geometric formula ϕ can be normalized to a disjunction $\phi_{1} \vee \ldots \vee \phi_{n}$ of simple existential formulae ϕ_{i} by using distributivity of conjunction and existential quantification over disjunction. In addition, if $T^{*} \models \phi_{i} \leftrightarrow \phi_{i}^{*}$ for geometric open formulae $\phi_{i}^{*}(i=1, \ldots, n)$, then $\phi_{1}^{*} \vee \ldots \vee \phi_{n}^{*}$ is also a geometric open formula and $T^{*} \models\left(\phi_{1} \vee \ldots \vee \phi_{n}\right) \leftrightarrow\left(\phi_{1}^{*} \vee \ldots \vee \phi_{n}^{*}\right)$.

The following lemma will turn out to be useful later on.

Lemma 3.3 Assume that T, T^{*} satisfy Property 1 and 2 of Definition 3.2. If $\phi(\underline{x})$ is a simple existential formula and $\phi^{*}(\underline{x})$ is an open formula, then $T^{*} \models \phi \rightarrow \phi^{*}$ iff $T \models \phi \rightarrow \phi^{*}$.

This is an immediate consequence of the fact that $\phi \rightarrow \phi^{*}$ is then equivalent to an open formula, and hence Lemma 3.1 applies.

The first ingredient of our combinability condition is the following notion of compatibility, which is a variant of analogous compatibility conditions introduced in [Ghi05, BGT04] for the case of the union of theories.

[^3]Definition 3.4 Let $T_{0} \subseteq T$ be theories over the respective signatures $\Omega_{0} \subseteq \Omega_{1}$. We say that T is T_{0}-algebraically compatible iff T_{0} is universal, has a positive algebraic completion T_{0}^{*}, and every model of T embeds into a model of $T \cup T_{0}^{*}$.

The second ingredient is that T_{0} must be locally finite, i.e., all finitely generated models of T_{0} are finite. To be more precise, we need the following effective variant of local finiteness defined in [Ghi05, BGT04].

Definition 3.5 Let T_{0} be a universal theory over the finite signature Ω_{0}. Then T_{0} is called effectively locally finite iff for every tuple of variables \underline{x}, one can effectively determine terms $t_{1}(\underline{x}), \ldots, t_{k}(\underline{x})$ such that, for every further term $u(\underline{x})$, we have that $T_{0} \models u \approx t_{i}$ for some $i=1, \ldots, k$.

4 The main combination results

We are interested in deciding the universal fragments of our theories, i.e., validity of universal formulae (or, equivalently open formulae) in a theory T. This is the decision problem also treated by the Nelson-Oppen combination method (albeit for the union of theories). It is well know that this problem is equivalent to the problem of deciding whether a set of literals is satisfiable in some model of T. We call such a set of literals a constraint.

By introducing new free constants (i.e., constants not occurring in the axioms of the theory), we can assume without loss of generality that such constraints contain no variables. In addition, we can transform any ground constraint into an equisatisfiable set of ground flat literals, i.e., literals of the form

$$
a \approx f\left(a_{1}, \ldots, a_{n}\right), \quad P\left(a_{1}, \ldots, a_{n}\right), \quad \text { or } \neg P\left(a_{1}, \ldots, a_{n}\right),
$$

where a, a_{1}, \ldots, a_{n} are (sort-conforming) free constants, f is a function symbol, and P is a predicate symbol (possibly also equality).

In the following, we first treat the case of a basic connection, as introduced in Section 2. Then, we show that the combination result can be extended to connections with several connection functions, possibly going in both directions. Finally, we give examples of theories satisfying our combinability conditions.

4.1 Basic connections

In this subsection we show under what conditions decidability of the universal fragments of T_{1}, T_{2} transfers to their connection $T_{1}>_{T_{0}} T_{2}$.

Theorem 4.1 Let T_{0}, T_{1}, T_{2} be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, and that T_{2} is T_{0}-algebraically compatible. Then the decidability of the universal fragments of T_{1} and T_{2} entails the decidability of the universal fragment of $T_{1}>_{T_{0}} T_{2}$.

To prove the theorem, we consider a finite set Γ of ground flat literals over the signature Ω of $T_{1}>_{T_{0}} T_{2}$ (with additional free constants), and show how it can be tested for satisfiability in $T_{1}>_{T_{0}} T_{2}$. Since all literals in Γ are flat, we can divide Γ into three disjoint sets $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{i}(i=1,2)$ is a set of literals in the signature Ω_{i} (expanded with free constants), and Γ_{0} is of the form

$$
\Gamma_{0}=\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}
$$

for free constants $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$.

Proposition 4.2 The constraint $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in $T_{1}>_{T_{0}} T_{2}$ iff there exists a triple $(\mathcal{A}, \mathcal{B}, \nu)$ such that

1. \mathcal{A} is an Ω_{0}-model of T_{0}, which is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}$;
2. \mathcal{B} is an Ω_{0}-model of T_{0}, which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$;
3. $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω_{0}-homomorphism such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for $j=1, \ldots, n$;
4. $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ is satisfiable in T_{1};
5. $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T_{2}.

Proof. The only-if direction is simple. In fact, as noted in Section 2, a model \mathcal{M} of $T_{1}>_{T_{0}} T_{2}$ is given by a triple $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, h^{\mathcal{M}}\right)$, where \mathcal{M}^{1} is a model of T_{1}, \mathcal{M}^{2} is a model of T_{2} and $h^{\mathcal{M}}: \mathcal{M}_{\Omega_{0}}^{1} \rightarrow \mathcal{M}_{\Omega_{0}}^{2}$ is an Ω_{0}-homomorphism between the respective Ω_{0}-reducts. Assume that this model \mathcal{M} satisfies Γ. We can take as \mathcal{A} the substructure of $\mathcal{M}_{\Omega_{0}}^{1}$ generated by (the interpretations of) a_{1}, \ldots, a_{n}, as \mathcal{B} the substructure of $\mathcal{M}_{\Omega_{0}}^{2}$ generated by (the interpretations of) b_{1}, \ldots, b_{n}, and as homomorphism ν the restriction of $h^{\mathcal{M}}$ to \mathcal{A}. It is easy to see that the triple $(\mathcal{A}, \mathcal{B}, \nu)$ obtained this way satisfies $1 .-5$. of the proposition.

Conversely, assume that $(\mathcal{A}, \mathcal{B}, \nu)$ is a triple satisfying 1.-5. of the proposition. Because of 4. and 5., there is an Ω_{1}-model \mathcal{N}^{\prime} of T_{1} satisfying $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ and an Ω_{2}-model $\mathcal{N}^{\prime \prime}$ of T_{2} satisfying $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$. By Robinson's diagram theorem, \mathcal{N}^{\prime} has \mathcal{A} as an Ω_{0}-substructure and $\mathcal{N}^{\prime \prime}$ has \mathcal{B} as an Ω_{0}-substructure. We assume without loss of generality that \mathcal{N}^{\prime} is at most countable and that $\mathcal{N}^{\prime \prime}$ is a model of $T_{2} \cup T_{0}^{*}$. The latter assumption is by T_{0}-algebraic compatibility of T_{2}, and the
former assumption is by the Löwenheim-Skolem theorem since our signatures are at most countable. Let us enumerate the elements of \mathcal{N}^{\prime} as

$$
c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}, \ldots
$$

where we assume that $c_{i}=a_{i}^{\mathcal{A}}(i=1, \ldots, n)$, i.e., c_{1}, \ldots, c_{n} are generators of \mathcal{A}. We define an increasing sequence of sort-conforming functions $\nu_{k}:\left\{c_{1}, \ldots c_{k}\right\} \rightarrow$ $N^{\prime \prime}$ (for $k \geq n$) such that, for every ground $\Omega_{0}^{\left\{c_{1}, \ldots, c_{k}\right\}}$-atom A we have

$$
\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models A\left(c_{1}, \ldots, c_{k}\right) \quad \text { implies } \quad \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models A\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right)\right) .
$$

We first take ν_{n} to be ν. To define ν_{k+1} (for $k \geq n$), let us consider the conjunction $\psi\left(c_{1}, \ldots, c_{n}, c_{n+1}\right)$ of the $\Omega_{0}^{\left\{c_{1}, \ldots, c_{n+1}\right\}}$-atoms that are true in $\mathcal{N}_{\mid \Omega_{0}}^{\prime}$: this conjunction is finite (modulo taking representative terms, thanks to local finiteness of T_{0}). Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be $\exists x_{n+1} \cdot \psi\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ and let $\phi^{*}\left(x_{1}, \ldots, x_{n}\right)$ be a geometric open formula such that $T_{0}^{*} \models \phi \leftrightarrow \phi^{*}$.

By Lemma 3.3, $T_{0} \models \phi \rightarrow \phi^{*}$, and thus we have $\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models \phi^{*}\left(c_{1}, \ldots, c_{k}\right)$ and also $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models \phi^{*}\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right)\right)$ by the induction hypothesis. Since $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime}$ is a model of T_{0}^{*}, there is a b such that $\mathcal{N}_{\Omega_{0}}^{\prime \prime} \models \psi\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right), b\right)$ for some b. We now obtain the desired extension ν_{k+1} of ν_{k} by setting $\nu_{k+1}\left(c_{k+1}\right):=b$. Taking $\nu_{\infty}=\bigcup_{k \geq n} \nu_{k}$, we finally obtain a homomorphism $\nu_{\infty}: \mathcal{N}_{\mid \Omega_{0}}^{\prime} \rightarrow \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime}$ such that the triple $\left(\mathcal{N}^{\prime}, \mathcal{N}^{\prime \prime}, \nu_{\infty}\right)$ is a model of $T_{1}>_{T_{0}} T_{2}$ that satisfies $\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$.

The above proof uses the assumption that T_{0} is locally finite. By using heavier model-theoretic machinery, one can also prove the proposition without using local finiteness of T_{0} (see Appendix C below). However, since the proof of Theorem 4.1 needs this assumption anyway (see below), we gave the above proof since it is simpler.

To conclude the proof of Theorem 4.1, we describe a non-deterministic decision procedure that effectively guesses an appropriate triple $(\mathcal{A}, \mathcal{B}, \nu)$ and then checks whether it satisfies 1.-5. of Proposition 4.2. To guess an Ω_{0}-model of T_{0} that is generated by a finite set X, one uses effective local finiteness of T_{0} to obtain an effective bound on the size of such a model and guesses an Ω_{0}-structure that satisfies this size bound.

Once the Ω_{0}-structures \mathcal{A}, \mathcal{B} are given, one can build their diagrams, and use the decision procedures for T_{1} and T_{2} to check whether 4 . and 5 . of Proposition 4.2 are satisfied. If the answer is yes, then \mathcal{A}, \mathcal{B} are also models of T_{0} : in fact, if for instance $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ is satisfiable in the model \mathcal{M} of T_{1}, then \mathcal{M} has \mathcal{A} as a substructure, and this implies $\mathcal{A} \models T_{0}$ because T_{0} is universal and $T_{0} \subseteq T_{1}$.
Finally, one can guess a mapping $\nu: A \rightarrow B$ that satisfies $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$, and then use the diagrams of \mathcal{A}, \mathcal{B} to check whether ν satisfies the homomorphism condition (*).

4.2 Two-side connections

The proof of Proposition 4.2 basically shows that our decidability transfer result can easily be extended to the case of several connection functions, possibly going in both directions. For simplicity, we examine only the case of two connection functions, going in the two opposite directions.

The theory $T_{1}>_{T_{0}}<T_{2}$ is defined as the union of $T_{1}>_{T_{0}} T_{2}$ and $T_{2}>_{T_{0}} T_{1}$. Thus, a model of $T_{1}>_{T_{0}}<T_{2}$ is a 4 -tuple given by a model \mathcal{M}^{1} of T_{1}, a model \mathcal{M}^{2} of T_{2} and two homomorphisms

$$
h^{\mathcal{M}}: \mathcal{M}_{\mid \Omega_{0}}^{1} \longrightarrow \mathcal{M}_{\Omega_{0}}^{2} \quad \text { and } \quad g^{\mathcal{M}}: \mathcal{M}_{\Omega_{0}}^{2} \longrightarrow \mathcal{M}_{\Omega_{0}}^{1}
$$

among the respective Ω_{0}-reducts.

Theorem 4.3 Let T_{0}, T_{1}, T_{2} be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, and that T_{1}, T_{2} are both T_{0} algebraically compatible. Then the decidability of the universal fragments of T_{1} and T_{2} entails the decidability of the universal fragment of $T_{1}>_{T_{0}}<T_{2}$.

To prove the Theorem, notice that any finite set of ground flat literals (with free constants) Γ to be tested for $T_{1}>_{T_{0}}<T_{2}$-consistency can be divided into four disjoint sets

$$
\Gamma=\Theta_{1} \cup \Theta_{2} \cup \Gamma_{1} \cup \Gamma_{2},
$$

where $\Gamma_{i}(i=1,2)$ are sets of literals in the signature Ω_{i} (expanded with free constants), and

$$
\Theta_{1}=\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\} \text { and } \Theta_{2}=\left\{g\left(b_{1}^{\prime}\right) \approx a_{1}^{\prime}, \ldots, g\left(b_{m}^{\prime}\right) \approx a_{m}^{\prime}\right\} .
$$

Theorem 4.3 is an easy consequence of the following proposition.

Proposition 4.4 The constraint $\Gamma=\Theta_{1} \cup \Theta_{2} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in $T_{1}>_{T_{0}}<T_{2}$ iff there exist two triples $(\mathcal{A}, \mathcal{B}, \nu)$ and $\left(\mathcal{A}^{\prime}, \mathcal{B}^{\prime}, \nu^{\prime}\right)$ such that

1. \mathcal{A} is a Ω_{0}-model of T_{0} that is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}, \mathcal{B}$ is a Ω_{0}-model of T_{0} which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$ and $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is a Ω_{0}-homomorphism such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for all $j=1, \ldots, n$;
2. \mathcal{A}^{\prime} is a Ω_{0}-model of T_{0} that is generated by $\left\{a_{1}^{\prime} \mathcal{A}^{\prime}, \ldots, a_{m}^{\prime}{ }^{\mathcal{A}^{\prime}}\right\}, \mathcal{B}$ is a $\Omega_{0}-$ model of T_{0} that is generated by $\left\{b_{1}^{\mathcal{B}^{\prime}}, \ldots, b_{m}^{\prime}{ }^{\mathcal{B}^{\prime}}\right\}$ and $\mu: \mathcal{B}^{\prime} \rightarrow \mathcal{A}^{\prime}$ is a Ω_{0}-homomorphism such that $\nu^{\prime}\left(b_{j}^{\prime \mathcal{B}^{\prime}}\right)=a_{j}^{\prime \mathcal{A}^{\prime}}$ for all $j=1, \ldots, m$;
3. $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}\left(\mathcal{A}^{\prime}\right)$ is satisfiable in T_{1}, and $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B}) \cup \Delta_{\Omega_{0}}\left(\mathcal{B}^{\prime}\right)$ is satisfiable in T_{2}.

Proof. The only-if direction is again simple. To proof the if direction, assume that for some $\nu: \mathcal{A} \rightarrow \mathcal{B}$ and $\mu: \mathcal{B}^{\prime} \rightarrow \mathcal{A}^{\prime}$, the set of literals $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}\left(\mathcal{A}^{\prime}\right)$ is satisfiable in an Ω_{1}-model \mathcal{N}^{\prime} of T_{1}, and the set of literals $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B}) \cup \Delta_{\Omega_{0}}\left(\mathcal{B}^{\prime}\right)$ is satisfiable in an Ω_{2}-model $\mathcal{N}^{\prime \prime}$ of T_{2}. By Robinson's diagram theorem, \mathcal{N}^{\prime} has \mathcal{A} and \mathcal{A}^{\prime} as Ω_{0}-substructures, and $\mathcal{N}^{\prime \prime}$ has \mathcal{B} and \mathcal{B}^{\prime} as Ω_{0}-substructures. We assume without loss of generality that \mathcal{N}^{\prime} and $\mathcal{N}^{\prime \prime}$ are at most countable models of $T_{1} \cup T_{0}^{*}$ and $T_{1} \cup T_{0}^{*}$, respectively.

Now, an argument identical to the one used in the proof of Proposition 4.2 yields the homomorphisms

$$
\nu_{\infty}: \mathcal{N}_{\Omega_{0}}^{\prime} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \quad \text { and } \quad \nu_{\infty}^{\prime}: \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}^{\prime}
$$

which are needed in order to obtain a full model of $T_{1}>_{T_{0}}<T_{2}$.

It should be clear how to adapt this proof to the case of more than one connection function going in each direction.

4.3 Examples

When trying to axiomatize the positive algebraic completion T_{0}^{*} of a given universal theory T_{0}, it is sufficient to produce for every simple existential formula $\phi(\underline{x})$ an appropriate geometric and open formula $\phi^{*}(\underline{x})$. Take as theory T_{0}^{*} the one axiomatized by T_{0} together with the formulae $\phi \leftrightarrow \phi^{*}$ for every simple existential formula ϕ. In order to complete the job, it is sufficient to show that every model of T_{0} embeds into a model of T_{0}^{*}. It should also be noted that one can without loss of generality restrict the attention to simple existential formulae with just one existential quantifier since more than one quantifier can then be treated by iterated elimination of single quantifiers.

In the next example we encounter a special case where the formulae $\phi \leftrightarrow \phi^{*}$ are already valid in T_{0}. In this case, we have $T_{0}=T_{0}^{*}$, and thus the modelembedding condition is trivially satisfied. In addition, any theory T with $T_{0} \subseteq T$ is T_{0}-algebraically compatible.

Example 4.5 Recall from [BGT04] the definition of a Gaussian theory. Let us call a conjunction of atoms an e-formula. The universal theory T_{0} is Gaussian iff for every e-formula $\phi(\underline{x}, y)$ it is possible to compute an e-formula $\psi(\underline{x})$ and a term $s(\underline{x}, \underline{z})$ with fresh variables \underline{z} such that

$$
\begin{equation*}
T_{0} \models \phi(\underline{x}, y) \leftrightarrow(\psi(\underline{x}) \wedge \exists \underline{z} \cdot(y \approx s(\underline{x}, \underline{z}))) . \tag{1}
\end{equation*}
$$

Any Gaussian theory T_{0} is its own positive algebraic completion. In fact, it is easy to see that (1) implies $T_{0} \models(\exists y . \phi(\underline{x}, y)) \leftrightarrow \psi(\underline{x})$, and thus the comment given above this example applies.

As a consequence, our combination result applies to all the examples of effectively locally finite Gaussian theories given in [BGT04] (e.g., Boolean algebras, vector spaces over a finite field, empty theory over a signature whose sets of predicates consists of \approx and whose set of function symbols is empty): if the universal theory T_{0} is effectively locally finite and Gaussian, and T_{1}, T_{2} are arbitrary theories containing T_{0} and with decidable universal fragment, then the universal fragment of $T_{1}>_{T_{0}} T_{2}$ is also decidable.

Example 4.6 Let T_{0} be the theory of semilattices (see Example 2.1). This theory is obviously effectively locally finite. In the following, we use the disequation $s \sqsubseteq t$ as an abbreviation for the equation $s \sqcup t \approx t$. Obviously, any equation $s \approx t$ can be expressed by the disequations $s \sqsubseteq t \wedge t \sqsubseteq s$.
The theory T_{0} has a positive algebraic completion, which can be axiomatized as follows. Let $\phi(\underline{x})$ be a simple existential formula with just one existential quantifier. Using the fact that $z_{1} \sqcup \ldots \sqcup z_{n} \sqsubseteq z$ is equivalent to $z_{1} \sqsubseteq z \wedge \ldots \wedge z_{n} \sqsubseteq z$, it is easy to see that $\phi(\underline{x})$ is equivalent to a formula of the form

$$
\begin{equation*}
\exists y \cdot\left(\left(y \sqsubseteq t_{1}\right) \wedge \cdots \wedge\left(y \sqsubseteq t_{n}\right) \wedge\left(u_{1} \sqsubseteq s_{1} \sqcup y\right) \wedge \cdots \wedge\left(u_{m} \sqsubseteq s_{m} \sqcup y\right)\right), \tag{2}
\end{equation*}
$$

where t_{i}, s_{j}, u_{k} are terms not involving y. Let $\phi^{*}(\underline{x})$ be the formula

$$
\begin{equation*}
\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{m}\left(u_{j} \sqsubseteq s_{j} \sqcup t_{i}\right), \tag{3}
\end{equation*}
$$

and let T_{0}^{*} be obtained from T_{0} by adding to it the universal closures of all formulae $\phi \leftrightarrow \phi^{*}$.
We prove that T_{0}^{*} is contained in the theory of Boolean algebras. In fact, the system of disequations (2) is equivalent, in the theory of Boolean algebras, to

$$
\begin{equation*}
\exists y \cdot\left(\left(y \sqsubseteq t_{1}\right) \wedge \cdots \wedge\left(y \sqsubseteq t_{n}\right) \wedge\left(u_{1} \sqcap \neg s_{1} \sqsubseteq y\right) \wedge \cdots \wedge\left(u_{m} \sqcap \neg s_{m} \sqsubseteq y\right),\right. \tag{4}
\end{equation*}
$$

and hence to

$$
\begin{equation*}
\left(u_{1} \sqcap \neg s_{1} \sqsubseteq t_{1} \sqcap \ldots \sqcap t_{n}\right) \wedge \cdots \wedge\left(u_{m} \sqcap \neg s_{m} \sqsubseteq t_{1} \sqcap \ldots \sqcap t_{n}\right) . \tag{5}
\end{equation*}
$$

Finally, it is easy to see that (5) and (3) are equivalent.
It is well-known that every semilattice embeds into a Boolean algebra. This can, for example, be shown as follows. Given a semilattice $\mathcal{S}=(S, \sqcup, \perp)$, just consider the Boolean algebra $\mathcal{B}=\left(2^{S}, \cap, S, \cup, \emptyset, \overline{(\cdot)}\right)$ given by the dual of the usual Boolean algebra formed by the powerset of S : this means that as join in \mathcal{B} we take the intersection of sets, as the least element S, as the meet the union of sets, as the greatest element \emptyset, and as the negation operation the set complement. It is easy to see that the map associating with $s \in S$ the set $\left\{s^{\prime} \mid s \sqsubseteq s^{\prime}\right\}$ is a semilattice embedding from \mathcal{S} into \mathcal{B}.
This shows that T_{0}^{*} is the positive algebraic completion of T_{0}. In addition, this implies that any Boolean-based theory T is T_{0}-algebraically compatible since T_{0}^{*} is contained in T. Consequently, Theorem 4.1 covers the case of a basic \mathcal{E} connection, as introduced in Example 2.1 (see Appendix A for details).

Example 4.7 Let us now turn to Example 2.2, i.e., to connections over the theory T_{0} of distributive lattices with a least element \perp. This theory is obviously effectively locally finite, and it has a positive algebraic completion, which can be obtained as follows. Every term is equivalent modulo T_{0} both to (i) a term that is a (possibly empty) finite join of (non-empty) finite meets of variables, and to (ii) a term that is a (non-empty) finite meet of (possibly empty) finite joins of variables. A simple existential formula with just one existential quantifier $\phi(\underline{x})$ is then easily seen to be equivalent to a formula of the form

$$
\begin{equation*}
\exists y \cdot\left(\bigwedge_{i}\left(y \sqsubseteq u_{i}\right) \wedge \bigwedge_{j}\left(t_{j} \sqcap y \sqsubseteq z_{j}\right) \wedge \bigwedge_{k}\left(v_{k} \sqsubseteq y \sqcup w_{k}\right)\right), \tag{6}
\end{equation*}
$$

where $u_{i}, t_{j}, v_{k}, w_{k}$ are terms not involving y. Let $\phi^{*}(\underline{x})$ be the formula

$$
\begin{equation*}
\bigwedge_{i, k}\left(v_{k} \sqsubseteq u_{i} \sqcup w_{k}\right) \wedge \bigwedge_{j, k}\left(v_{k} \sqcap t_{j} \sqsubseteq w_{k} \sqcup z_{j}\right), \tag{7}
\end{equation*}
$$

and let T_{0}^{*} be obtained from T_{0} by adding to it the universal closures of all formulae $\phi \leftrightarrow \phi^{*}$.
We prove that T_{0}^{*} is contained in the theory of Boolean algebras. In fact, the system of disequations (6) is equivalent, in the theory of Boolean algebras, to

$$
\begin{equation*}
\exists y \cdot\left(\bigwedge_{i}\left(y \sqsubseteq u_{i}\right) \wedge \bigwedge_{j}\left(y \sqsubseteq \neg t_{j} \sqcup z_{j}\right) \wedge \bigwedge_{k}\left(v_{k} \sqcap \neg w_{k} \sqsubseteq y\right)\right), \tag{8}
\end{equation*}
$$

and hence to

$$
\begin{equation*}
\bigwedge_{i, k}\left(v_{k} \sqcap \neg w_{k} \sqsubseteq u_{i}\right) \wedge \bigwedge_{j, k}\left(v_{k} \sqcap \neg w_{k} \sqsubseteq \neg t_{j} \sqcup z_{j}\right) . \tag{9}
\end{equation*}
$$

Finally, it is easy to see that (9) and (7) are equivalent.
Since every distributive lattice with least element embeds into a Boolean algebra, ${ }^{5}$ this shows that T_{0}^{*} is the positive algebraic completion of T_{0}. In addition, this implies that any Boolean-based equational theory T is T_{0}-algebraically compatible since T_{0}^{*} is contained in T. Consequently, Theorem 4.1 covers the case of a basic deterministic \mathcal{E}-connection, as introduced in Example 2.2 (see Appendix A for details).

Example 4.8 The previous example can be sleightly varied, by considering the theory T_{0} of bounded distributive lattices (i.e., distributive lattices with a least and a greatest element). Let us prove that its positive algebraic completion is the theory T_{0}^{*} axiomatized by T_{0} together with the (universal closure of the) formula

$$
\exists y \cdot((x \sqcap y \approx 0) \wedge(x \sqcup y \approx 1)) .
$$

[^4]Thus, T_{0}^{*} is simply the theory of Boolean algebras, formulated in a complementfree signature. Since every bounded distributive lattice embeds into a Boolean algebra, and since the theory of Boolean algebras coincides with its own positive algebraic completion because it is Gaussian (see Example 4.5), it is sufficient to show that every e-formula ϕ in the signature of Boolean algebras is equivalent to an e-formula in the complement-free subsignature. In fact, we can assume that ϕ is a conjunction of identities of the form

$$
1 \approx \bar{x}_{1} \sqcup \cdots \sqcup \bar{x}_{n} \sqcup y_{1} \sqcup \cdots \sqcup y_{m}
$$

these identities are in turn trivially equivalent to the inequations

$$
x_{1} \sqcap \cdots \sqcap x_{n} \sqsubseteq y_{1} \sqcup \cdots \sqcup y_{m}
$$

which can obviously be transformed into identities between term in the complementfree subsignature.
Again this implies that every Boolean-based equational theory is T_{0}-compatible and that Theorem 4.1 covers the case of a basic functional \mathcal{E}-connection, as introduced in Example 2.2 (see again Appendix A for details).

Example 4.9 Here we give an example with a non-functional signature. Let T_{0} be the (obviously locally finite) theory of partial orders (posets). The positive algebraic completion T_{0}^{*} of T_{0} is the theory axiomatized by T_{0} together with the axioms

$$
\exists x \cdot\left(\bigwedge_{i}\left(x \sqsubseteq a_{i}\right) \wedge \bigwedge_{j}\left(b_{j} \sqsubseteq x\right)\right) \leftrightarrow \bigwedge_{i, j}\left(b_{j} \sqsubseteq a_{i}\right),
$$

where i, j range over a finite index set and a_{i}, b_{j} are variables.
To embed a model (P, \sqsubseteq) of T_{0} into a model of T_{0}^{*}, just take the poset of downward closet subsets of (P, \sqsubseteq). A downward closed subset of P is a set $X \subseteq P$ such that $x \in X$ and $y \sqsubseteq x$ imply $y \in X$. These sets are ordered by set inclusion. It is easy to see that this yields a model of T_{0}^{*}. In fact, it is enough to show that, given downward closed sets A_{i}, B_{j} satisfying $\bigwedge_{i, j}\left(B_{j} \sqsubseteq A_{i}\right)$, there is a downward closed set X such that $\bigwedge_{i}\left(X \sqsubseteq A_{i}\right) \wedge \bigwedge_{j}\left(B_{j} \sqsubseteq X\right)$. Since the union of downward closed sets is again downward closed, we can take the union of the B_{j} as the set X. The embedding of (P, \sqsubseteq) into downward closed sets is obtained by associating with $a \in P$ the cone $a \downarrow:=\{b \mid b \sqsubseteq a\}$. It is easy to see that $a \sqsubseteq a^{\prime}$ iff $a \downarrow \subseteq a^{\prime} \downarrow$. In order to obtain a T_{0}-algebraically compatible theory, we consider again the theory T of semilattices, but now we assume that the symbol \sqsubseteq belongs to the signature, and satisfies the axiom $x \sqsubseteq y \leftrightarrow x \wedge y \approx y$. The theory T is $T_{0^{-}}$ algebraically compatible since every model of T is a model of T_{0}^{*} : in fact

$$
\exists x \cdot\left(\bigwedge_{i}\left(x \sqsubseteq a_{i}\right) \wedge \bigwedge_{j}\left(b_{j} \sqsubseteq x\right)\right)
$$

is equivalent (in the theory T) to

$$
\exists x \cdot\left(\bigwedge_{i}\left(x \sqsubseteq a_{i}\right) \wedge\left(\bigsqcup_{j} b_{j} \sqsubseteq x\right)\right),
$$

i.e., to

$$
\bigwedge_{i}\left(\bigsqcup_{j} b_{j} \sqsubseteq a_{i}\right)
$$

and thus to $\bigwedge_{i, j}\left(b_{j} \sqsubseteq a_{i}\right)$.
Other theories that extend T_{0}^{*} (and are hence T_{0}-algebraically compatible) are theories that extend the theory of total orders, as is easily seen.

5 A variant of the connection scheme

Here we consider a slightly different combination scheme where a theory T is connected with itself w.r.t. a subtheory T_{0}. Let $T_{0} \subseteq T$ be theories over the respective signatures $\Omega_{0} \subseteq \Omega$. We use $T_{>T_{0}}$ to denote the theory whose models are models \mathcal{M} of T endowed with a homomorphism $h: \mathcal{M}_{\mid \Omega_{0}} \rightarrow \mathcal{M}_{\mid \Omega_{0}}$. Thus, the signature Ω^{\prime} of $T_{>T_{0}}$ is obtained from the signature Ω of T by adding a new function symbol h_{S} of arity $S S$ for every sort S of Ω_{0}. The axioms of $T_{>T_{0}}$ are obtained from the axioms of T by adding

$$
\begin{aligned}
& h_{S}\left(f\left(x_{1}, \ldots, x_{n}\right)\right) \approx f\left(h_{S_{1}}\left(x_{1}\right), \ldots, h_{S_{n}}\left(x_{n}\right)\right), \\
& P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(h_{S_{1}}\left(x_{1}\right), \ldots, h_{S_{n}}\left(x_{n}\right)\right),
\end{aligned}
$$

for every function (predicate) symbol $f(P)$ in Ω_{0} of arity $S_{1} \ldots S_{n} S\left(S_{1} \ldots S_{n}\right)$.
Example 5.1 An interesting example of a theory obtained as such a connection is the theory $E_{\mathbf{K}}$ corresponding to the basic modal logic \mathbf{K}. In fact, let T be the theory of Boolean algebras, and T_{0} the theory of semilattices over the signature Ω_{0} as defined in Example 2.1. If we use the symbol \diamond for the connection function, then $T_{>T_{0}}$ is exactly the theory $E_{\mathbf{K}}$.

5.1 A non-deterministic combination procedure

In this subsection we state the main decidability transfer result. The approach is analogous to the one chosen in Section 4, and it leads to a non-deterministic combination procedure. In the next subsection we show that, under certain additional restrictions, this non-deterministic procedure can be replaced by a deterministic one.

Theorem 5.2 Let T_{0}, T be theories over the respective signatures Ω_{0}, Ω, where Ω_{0} is a subsignature of Ω. Assume that $T_{0} \subseteq T$, that T_{0} is universal and locally finite, and that T is T_{0}-algebraically compatible. Then the decidability of the universal fragment of T entails the decidability of the universal fragment of $T_{>T_{0}}$.

To prove the theorem, we consider a finite set $\Gamma \cup \Gamma_{0}$ of ground flat literals over the signature Ω^{\prime} of $T_{>T_{0}}$, where Γ is a set of literals in the signature Ω of T (expanded with free constants), and Γ_{0} is of the form

$$
\Gamma_{0}=\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}
$$

The theorem is an easy consequence of the following proposition, whose proof is similar to the one of Proposition 4.2.

Proposition 5.3 The constraint $\Gamma \cup \Gamma_{0}$ is satisfiable in $T_{>T_{0}}$ iff there exists a triple $(\mathcal{A}, \mathcal{B}, \nu)$ such that

1. \mathcal{A} is an Ω_{0}-model of T_{0}, which is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}$;
2. \mathcal{B} is an Ω_{0}-model of T_{0}, which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$;
3. $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω_{0}-homomorphism such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for $j=1, \ldots, n$;
4. $\Gamma \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T.

Proof. The only-if direction is again simple. To proof the if direction, assume that there is a triple $(\mathcal{A}, \mathcal{B}, \nu)$ satisfying 1.-4. of the proposition. In particular, this means that $\Gamma \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in a model \mathcal{N} of T. We can assume without loss of generality that \mathcal{N} is an at most countable model of $T \cup T_{0}^{*}$. By Robinson's diagram theorem, \mathcal{A}, \mathcal{B} are Ω_{0}-substructures of \mathcal{N}. Using the same argument as in the proof of Proposition 4.2, we can extend the Ω_{0}-homomorphism $\nu: \mathcal{A} \rightarrow \mathcal{B}$ to an Ω_{0}-endomorphism $\nu_{\infty}: \mathcal{N}_{\mid \Omega_{0}} \rightarrow \mathcal{N}_{\mid \Omega_{0}}$. The pair $\left(\mathcal{N}, \nu_{\infty}\right)$ yields a model of $T_{>T_{0}}$ that satisfies $\Gamma \cup \Gamma_{0}$.

Obviously, this proposition gives rise to a non-deterministic decision procedure for the universal fragment of $T_{>T_{0}}$, which is analogous to the one described in the proof of Theorem 4.1

Applied to the connection of $B A$ with itself w.r.t. the theory of semilattices considered in Example 5.1, the proof of Theorem 5.2 shows that deciding the universal theory of $E_{\mathbf{K}}$ can be reduced to deciding the universal theory of $B A$. It is wellknown that deciding the universal theory of $E_{\mathbf{K}}$ is equivalent to deciding global consequence in \mathbf{K}, and that deciding the universal theory of $B A$ is equivalent to propositional reasoning. Thus, we have shown the (rather surprising) result that the global consequence problem in \mathbf{K} can be reduced to purely propositional reasoning. However, if we directly apply the non-deterministic combination algorithm suggested by Proposition 5.3, then the complexity of the obtained decision procedure is worse then the known ExpTime-complexity [Spa93] of the problem. The deterministic combination procedure described below overcomes this problem.

5.2 A deterministic combination procedure

As pointed out in [Opp80], Nelson-Oppen style combination procedures can be made deterministic in the presence of a certain convexity condition. Let T be a theory over the signature Ω, and let Ω_{0} be a subsignature of Ω. Following [Tin03], we say that T is Ω_{0}-convex iff every finite set of ground Ω^{X}-literals (using additional free constants from X) T-entailing a disjunction of $n>1 \Omega_{0}^{X}$-atoms, already T-entails one of the disjuncts. Note that universal Horn Ω-theories are always Ω-convex. In particular, this means that equational theories (like $B A$) are convex w.r.t. any subsignature.

Let $T_{0} \subseteq T$ be theories over the respective signatures Ω_{0}, Ω, where Ω_{0} is a subsignature of Ω. If T is Ω_{0}-convex, then Theorem 5.2 can be shown with the help of a deterministic combination procedure. (The same is actually also true for Theorem 4.1 and Theorem 4.3, but this will not explicitly be shown here.)

Let $\Gamma \cup \Gamma_{0}$ be a finite set of ground flat literals (with free constants) in the signature of $T_{>T_{0}}$; suppose also that Γ does not contain the symbol h and that $\Gamma_{0}=\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}$. We say that Γ is Γ_{0}-saturated iff for every Ω_{0}-atom $A\left(x_{1}, \ldots, x_{n}\right), T \cup \Gamma \models A\left(a_{1}, \ldots, a_{n}\right)$ implies $A\left(b_{1}, \ldots, b_{n}\right) \in \Gamma$.

Theorem 5.4 Let T_{0}, T be theories over the respective signatures Ω_{0}, Ω, where Ω_{0} is a subsignature of Ω. Assume that $T_{0} \subseteq T$, that T_{0} is universal and locally finite, and that T is Ω_{0}-convex and T_{0}-algebraically compatible. Then the following deterministic procedure decides whether $\Gamma \cup \Gamma_{0}$ is satisfiable in $T_{>T_{0}}$ (where Γ, Γ_{0} are as above):

1. Γ_{0}-saturate Γ;

2. check whether the Γ_{0}-saturated set $\widehat{\Gamma}$ obtained this way is satisfiable in T.

Proof. The saturation process (and thus the procedure) terminates because T_{0} is locally finite (it should be clear that saturation is done modulo T_{0}). In addition, if $\Gamma \cup \Gamma_{0}$ is satisfied in a model \mathcal{M} of $T_{>T_{0}}$, then the reduct of \mathcal{M} to the signature Ω obviously satisfies $\widehat{\Gamma}$.
Conversely, if the Γ_{0}-saturated set $\widehat{\Gamma}$ is satisfiable in T, then we use $\widehat{\Gamma}$ to construct a triple $(\mathcal{A}, \mathcal{B}, \nu)$ satisfying 1. -4 of Proposition 5.3. Since $\widehat{\Gamma}$ is satisfiable in T, and T is Ω_{0}-convex, the following two finite ${ }^{6}$ sets of literals are both satisfiable in T_{0} (where \underline{a} abbreviate a_{1}, \ldots, a_{n} and let \underline{b} abbreviate b_{1}, \ldots, b_{n}):

$$
\begin{aligned}
& \Gamma_{\underline{a}}:=\{A(\underline{a}) \mid T \cup \widehat{\Gamma} \models A(\underline{a})\} \quad \cup \quad\{\neg A(\underline{a}) \mid T \cup \widehat{\Gamma} \not \models A(\underline{a})\}, \\
& \Gamma_{\underline{b}}:=\{A(\underline{b}) \mid T \cup \widehat{\Gamma} \models A(\underline{b})\} \quad \cup \quad\{\neg A(\underline{b}) \mid T \cup \widehat{\Gamma} \not \models A(\underline{b})\},
\end{aligned}
$$

[^5]where $A(\underline{x})$ ranges over Ω_{0}-atoms (modulo T_{0}). In fact, assume (without loss of generality) that $\Gamma_{\underline{a}}$ is not satisfiable in T_{0}. This means that
$$
T_{0} \cup\{A(\underline{a}) \mid T \cup \hat{\Gamma} \models A(\underline{a})\} \models \bigvee_{T \cup \hat{\Gamma} \mid \neq A(\underline{a})} A(\underline{a}),
$$

Since $T_{0} \subseteq T$ and T is Ω_{0}-convex, this implies that $T \cup\{A(\underline{a}) \mid T \cup \widehat{\Gamma} \models A(\underline{a})\} \models$ $A^{\prime}(\underline{a})$ for some Ω_{0}-atom $A^{\prime}(\underline{x})$ such that $T \cup \widehat{\Gamma} \not \neq A^{\prime}(\underline{a})$. However, $T \cup\{A(\underline{a}) \mid$ $T \cup \widehat{\Gamma} \models A(\underline{a})\} \models A^{\prime}(\underline{a})$ obviously implies $T \cup \widehat{\Gamma} \models A^{\prime}(\underline{a})$, which yields the desired contradiction.

Pick a pair of models of T_{0} satisfying $\Gamma_{\underline{a}}$ and $\Gamma_{\underline{b}}$, and let \mathcal{A}, \mathcal{B} be their $\Omega_{0^{-}}$ substructures generated by (the interpretations of) \underline{a} and \underline{b}, respectively. Since T_{0} is universal, \mathcal{A} and \mathcal{B} are models of T_{0}. Moreover, by construction, for every $\Omega_{0^{-}}$ atom $A(\underline{x})$ we have that $T \cup \widehat{\Gamma} \models A(\underline{a})$ iff $\mathcal{A} \models A(\underline{a})$ and, similarly, $T \cup \widehat{\Gamma} \models A(\underline{b})$ iff $\mathcal{B} \models A(\underline{b})$. As a consequence, the Γ_{0}-saturatedness of $\widehat{\Gamma}$ and Robinson's diagram theorem guarantee that the map associating b_{i} with a_{i} can be extended to a homomorphism $\nu: \mathcal{A} \rightarrow \mathcal{B}$.
It remains to show that $\widehat{\Gamma} \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T (since $\Gamma \subseteq \widehat{\Gamma}$, this implies that $\Gamma \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in $\left.T\right)$. Taking into consideration the Ω_{0}-convexity of T and the fact that $\widehat{\Gamma}$ is satisfiable in T, satisfiability of $\widehat{\Gamma} \cup \Delta_{\Omega_{0}}(\mathcal{A}) \cup \Delta_{\Omega_{0}}(\mathcal{B})$ in T means that for no atom $A(\underline{a})$ false in $\mathcal{A}(A(\underline{b})$ false in $\mathcal{B})$ we have that $T \cup \widehat{\Gamma} \cup \Delta_{\Omega_{0}}^{+}(\mathcal{A}) \cup \Delta_{\Omega_{0}}^{+}(\mathcal{B}) \models A(\underline{a})\left(T \cup \widehat{\Gamma} \cup \Delta_{\Omega_{0}}^{+}(\mathcal{A}) \cup \Delta_{\Omega_{0}}^{+}(\underline{\mathcal{B}}) \models A(\underline{b})\right) .^{7}$ However, as remarked above, $T \cup \widehat{\Gamma} \models A(\underline{a})$ holds iff $\mathcal{A} \models A(\underline{a})$ holds (and similarly for \mathcal{B}). This means that $T \cup \widehat{\Gamma} \cup \Delta_{\Omega_{0}}^{+}(\mathcal{A}) \cup \Delta_{\Omega_{0}}^{+}(\mathcal{B})$ is the same theory as $T \cup \widehat{\Gamma}$. But then the claim that "for no atom $A(\underline{a})$ false in \mathcal{A} (or $A(\underline{b})$ false in \mathcal{B}) we have that $T \cup \widehat{\Gamma} \models A(\underline{a})(T \cup \widehat{\Gamma} \models A(\underline{b}))$ " becomes trivial, once again because $T \cup \widehat{\Gamma} \models A(\underline{a})$ is equivalent to $\mathcal{A} \models A(\underline{a})(T \cup \widehat{\Gamma} \models A(\underline{b})$ is equivalent to $\mathcal{B} \models A(\underline{b}))$.

Example 5.1 (continued) Let us come back to the connection of $T:=B A$ with itself w.r.t. the theory T_{0} of semilattices, which yields as combined theory the equational theory $E_{\mathbf{K}}$ corresponding to the basic modal logic \mathbf{K}. In this case, checking during the saturation process whether $T \cup \Gamma \models A(\underline{a})$ amounts to checking whether a propositional formula ϕ_{Γ} (whose size is linear in the size of Γ) implies a propositional formula of the form $\psi_{1} \Leftrightarrow \psi_{2}$, where ψ_{1}, ψ_{2} are disjunctions of the propositional variables from \underline{a}. Since propositional reasoning can be done in time exponential in the number of propositional variables, and there are only exponentially many different formulae of the form $\psi_{1} \Leftrightarrow \psi_{2}$, the saturation process needs at most exponential time. The size of the Γ_{0}-saturated set $\widehat{\Gamma}$ may be exponential in the size of Γ, but it still contains only the free constants $\underline{\text { a }}$. Consequently, testing satisfiability of $\widehat{\Gamma}$ in T is again a propositional

[^6]reasoning problem that can be done in time exponential in the number of free constants \underline{a}.

Consequently, we have shown that Theorem 5.4 yields an ExpTime decision procedure for the global consequence relation in \mathbf{K}, which thus matches the known worst-case complexity of the problem.

6 Conditions on the connection functions

Until now, we have considered connection functions that are arbitrary homomorphisms. In this section we impose the additional conditions that the connection functions be surjective, embeddings, or isomorphisms: in this way, we obtain new combined theories, which we denote by $T_{1}>{ }_{T_{0}}^{e m} T_{2}, T_{1}>_{T_{0}}^{s} T_{2}, T_{1}>_{T_{0}}^{i s o} T_{2}$, respectively. This defines the combined theories in a model-theoretic way. One can also give an axiomatic description of $T_{1}>_{T_{0}}^{e m} T_{2}, T_{1}>_{T_{0}}^{s} T_{2}$, and $T_{1}>_{T_{0}}^{i s o} T_{2}$. For example, the axioms of $T_{1}>_{T_{0}}^{s} T_{2}$ are obtained from the ones of $T_{1}>_{T_{0}} T_{2}$ by adding axioms expressing that h is surjective, i.e., for every sort S in Ω_{0} we add the axiom

$$
\forall y \cdot \exists x \cdot h_{S}(x)=y,
$$

where x is a variable of sort S^{1} and y a variable of sort S^{2}.
For these combined theories one can show combination results that are analogous to Theorem 4.1: one just needs different compatibility conditions. To treat embeddings and isomorphisms, we use the compatibility condition introduced in [Ghi05, BGT04] for the case of unions of theories. Following [Ghi05, BGT04], we call this condition T_{0}-compatibility in the following.

In order to define this notion of compatiblity, we need to introduce the notion of a model completion. The definition given below differs from the one given in [Ghi05, BGT04]. However, the two notions can be shown to be equivalent (see Proposition 9.6 in Appendix B below). The reason for giving an alternative formulation is that it makes the connection between a model completion and a positive algebraic completion more transparent.

Definition 6.1 Let T be a universal Ω-theory and let T^{*} be an Ω-theory. We say that T^{*} is a model completion of T iff the following conditions are satisfied:
(i) $T \subseteq T^{*}$;
(ii) every model of T embeds into a model of T^{*};
(iii) for every formula $\phi(\underline{x})$ there is an open formula $\phi^{*}(\underline{x})$ such that

$$
T^{*} \models \phi \leftrightarrow \phi^{*} .
$$

It can be shown that models of T^{*} are just the existentially closed models of T (see [CK90] or Appendix B below).

Definition 6.2 Let $T_{0} \subseteq T$ be theories over the respective signatures $\Omega_{0} \subseteq \Omega$. We say that T is T_{0}-compatible iff T_{0} is universal, has a model completion T_{0}^{*}, and every model of T embeds into a model of $T \cup T_{0}^{*}$.

6.1 Embeddings as connection functions

Let us first investigate the case of connection functions that are embeddings.

Theorem 6.3 Let T_{0}, T_{1}, T_{2} be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, and that T_{0} is universal and locally finite. If T_{2} is T_{0}-compatible, then the decidability the universal fragments of T_{1} and T_{2} entails the decidability of the universal fragment of $T_{1}>\frac{e m}{T_{0}} T_{2}$.

As usual, in order to prove the Theorem, we consider a finite set Γ of ground flat literals over the signature Ω of $T_{1} \gg_{T_{0}}^{e m} T_{2}$ (with additional free constants), and show how it can be tested for satisfiability in $T_{1}>_{T_{0}}^{e m} T_{2}$. Since all literals in Γ are flat, we can divide Γ into three disjoint sets $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{i}(i=1,2)$ is a set of literals in the signature Ω_{i} (expanded with free constants), and Γ_{0} is of the form

$$
\Gamma_{0}=\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}
$$

for free constants $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$. Theorem 6.3 easily follows from the next proposition:

Proposition 6.4 The constraint $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in $T_{1}>{ }_{T_{0}}^{e m} T_{2}$ iff there exists a triple $(\mathcal{A}, \mathcal{B}, \nu)$ such that

1. \mathcal{A} is an Ω_{0}-model of T_{0}, which is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}$;
2. \mathcal{B} is an Ω_{0}-model of T_{0}, which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$;
3. $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω_{0}-embedding such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for $j=1, \ldots, n$;
4. $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ is satisfiable in T_{1};
5. $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T_{2}.

Proof. Again, the only-if direction is simple. Conversely, assume that $(\mathcal{A}, \mathcal{B}, \nu)$ is a triple satisfying 1.-5. of the proposition. Because of 4 . and 5 , there is an Ω_{1}-model \mathcal{N}^{\prime} of T_{1} satisfying $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ and an Ω_{2}-model $\mathcal{N}^{\prime \prime}$ of T_{2} satisfying $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$. By Robinson's diagram theorem, \mathcal{N}^{\prime} has \mathcal{A} as an Ω_{0}-substructure and $\mathcal{N}^{\prime \prime}$ has \mathcal{B} as an Ω_{0}-substructure. As in the proof of Proposition 4.2, we assume without loss of generality that \mathcal{N}^{\prime} is at most countable and that $\mathcal{N}^{\prime \prime}$ is a model of $T_{2} \cup T_{0}^{*}$. Let us enumerate the elements of \mathcal{N}^{\prime} as

$$
c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}, \ldots
$$

where we assume that $c_{i}=a_{i}^{\mathcal{A}}(i=1, \ldots, n)$, i.e., c_{1}, \ldots, c_{n} are generators of \mathcal{A}. We define an increasing sequence of sort-conforming functions $\nu_{k}:\left\{c_{1}, \ldots c_{k}\right\} \rightarrow$ $N^{\prime \prime}$ (for $k \geq n$) such that, for every ground $\Omega_{0}^{\left\{c_{1}, \ldots, c_{k}\right\}}$-literal A we have

$$
\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models A\left(c_{1}, \ldots, c_{k}\right) \quad \text { implies } \quad \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models A\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right)\right)
$$

Since this condition is asked for literals and not just for atoms, it follows that the mappings ν_{k} are injective.

We first take ν_{n} to be ν. To define ν_{k+1} (for $k \geq n$), let us consider the conjunction $\psi\left(c_{1}, \ldots, c_{n}, c_{n+1}\right)$ of the $\Omega_{0}^{\left\{c_{1}, \ldots, c_{n+1}\right\}}$-literals that are true in $\mathcal{N}_{\mid \Omega_{0}}^{\prime}$: this conjunction is finite (modulo taking representative terms, thanks to local finiteness of T_{0}). Let $\phi\left(x_{1}, \ldots, x_{n}\right)$ be $\exists x_{n+1} \cdot \psi\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$ and let $\phi^{*}\left(x_{1}, \ldots, x_{n}\right)$ be an open formula such that $T_{0}^{*} \models \phi \leftrightarrow \phi^{*}$.

By (i) and (ii) of Definition 6.1, Lemma 3.1, and the fact that $\phi \rightarrow \phi^{*}$ is equivalent to an open formula, we have $T_{0} \models \phi \rightarrow \phi^{*}$. This implies $\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models \phi^{*}\left(c_{1}, \ldots, c_{k}\right)$, and thus $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models \phi^{*}\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right)\right)$ by the induction hypothesis. Since $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime}$ is a model of T_{0}^{*} and $T_{0}^{*} \models \phi^{*} \rightarrow \phi$, there is an element b of $\mathcal{N}_{\Omega_{0}}^{\prime \prime}$ such that $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models \psi\left(\nu_{k}\left(c_{1}\right), \ldots, \nu_{k}\left(c_{k}\right), b\right)$. We now obtain the desired extension ν_{k+1} of ν_{k} by setting $\nu_{k+1}\left(c_{k+1}\right):=b$. Taking $\nu_{\infty}=\bigcup_{k \geq n} \nu_{k}$, we finally obtain an embedding $\nu_{\infty}: \mathcal{N}_{\Omega_{0}}^{\prime \prime} \rightarrow \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime}$ such that the triple $\left(\mathcal{N}^{\prime}, \mathcal{N}^{\prime \prime}, \nu_{\infty}\right)$ is a model of $T_{1}>_{T_{0}}^{e m} T_{2}$ that satisfies $\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$.

6.2 Surjective connections

To treat $T_{1}>_{T_{0}}^{s} T_{2}$, we must dualize the notions "algebraic completion" and "algebraic compatibility". These notions are based on co-geometric formulae, which the dual of geometric formulae in the sense that existential quantification is replaced by universal quantification. A co-geometric formula is a formula built from atoms by using conjunction, disjunction and universal quantification. Similarly, a co-geometric theory is a theory axiomatized by (universal closure of) implications of co-geometric formulae.

Definition 6.5 Let T be a universal Ω-theory, and let T^{*} be an Ω-theory. We say that T^{*} is a positive co-algebraic completion of T iff the following conditions are satisfied:
(i) $T \subseteq T^{*}$;
(ii) every model of T embeds into a model of T^{*};
(iii) for every co-geometric formula $\phi(\underline{x})$ there is an open co-geometric formula $\phi^{*}(\underline{x})$ such that

$$
T^{*} \models \phi \leftrightarrow \phi^{*} .
$$

The new notion of compatibility defined below differs from the one introduced in Section 3 in that positive algebraic completions are replaced by positive coalgebraic completions.

Definition 6.6 Let $T_{0} \subseteq T$ be theories over the respective signatures $\Omega_{0} \subseteq \Omega_{1}$. We say that T is T_{0}-co-algebraically compatible iff T_{0} is universal, has a positive co-algebraic completion T_{0}^{*}, and every model of T embeds into a model of $T \cup T_{0}^{*}$.

If the prerequisites of Theorem 4.1 hold and T_{1} is additionally T_{0}-co-algebraically compatible, then decidability of the universal fragment transfers from T_{1}, T_{2} to $T_{1}>_{T_{0}}^{s} T_{2}$.

Theorem 6.7 Let T_{0}, T_{1}, T_{2} be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, that T_{1} is T_{0}-co-algebraically compatible, and that T_{2} is T_{0}-algebraically compatible. Then the decidability of the universal fragments of T_{1} and T_{2} entails the decidability of the universal fragment of $T_{1}>_{T_{0}}^{s} T_{2}$.

To prove the theorem, let $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ be a finite set of ground flat literals over the signature Ω of $T_{1}>{ }_{T_{0}}^{s} T_{2}$ (with additional free constants), where $\Gamma_{i}(i=1,2)$ is a set of literals in the signature Ω_{i} (expanded with free constants), and Γ_{0} is of the form

$$
\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}
$$

for free constants $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$. The following proposition, whose formulation is identical to the formulation of Proposition 4.2, immediately entails Theorem 6.7.

Proposition 6.8 The constraint $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in $T_{1}>_{T_{0}}^{s} T_{2}$ iff there exists a triple $(\mathcal{A}, \mathcal{B}, \nu)$ such that

1. \mathcal{A} is an Ω_{0}-model of T_{0}, which is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}$;
2. \mathcal{B} is an Ω_{0}-model of T_{0}, which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$;
3. $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω_{0}-homomorphism such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for $j=1, \ldots, n$;
4. $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ is satisfiable in T_{1};
5. $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T_{2}.

Proof. The only-if direction is again simple. The proof of the if direction requires now a back-and-forth argument. Suppose we are given $\mathcal{A}, \mathcal{B}, \nu$ as in 1.-5. of the proposition, and let \mathcal{N}^{\prime} be an Ω_{1}-model of T_{1} satisfying $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$, and $\mathcal{N}^{\prime \prime}$ be an Ω_{2}-model of T_{2} satisfying $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$. We can assume without loss of generality that $\mathcal{N}^{\prime}, \mathcal{N}^{\prime \prime}$ are both at most countable, that \mathcal{N}^{\prime} is a model of the positive co-algebraic completion of T_{0}, and that $\mathcal{N}^{\prime \prime}$ is a model of the positive algebraic completion of T_{0}. By Robinson's diagram theorem, \mathcal{N}^{\prime} has \mathcal{A} as an Ω_{0}-substructure, and $\mathcal{N}^{\prime \prime}$ has \mathcal{B} as an Ω_{0}-substructure. Let us enumerate the elements of N^{\prime} as

$$
c_{1}, c_{3}, \ldots, c_{2 k+1}, \ldots
$$

and the elements of $N^{\prime \prime}$ as

$$
d_{2}, d_{4}, \ldots, d_{2 k}, \ldots
$$

(here we prefer, for uniformity, both lists to be infinite, so we may tolerate repetitions in each list). We define an increasing sequence of sort-conforming surjective mappings $\nu_{k}: S_{k} \longrightarrow T_{k}$, such that:

- S_{k} is a finite subset of N^{\prime} including all the elements from A as well as $c_{2 j+1}$, for $2 j+1 \leq k$;
- T_{k} is a finite subset of $N^{\prime \prime}$ including all the elements from B as well as $d_{2 j}$, for $2 j \leq k$;
- for all Ω_{0}-atoms $C(\underline{x})$ we have

$$
\begin{equation*}
\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models C(\underline{a}) \quad \text { implies } \quad \mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \models C\left(\nu_{k}(\underline{a})\right) \tag{10}
\end{equation*}
$$

for every tuple \underline{a} from S_{k}.
Once this is settled, \mathcal{N}^{\prime} and $\mathcal{N}^{\prime \prime}$ together with the surjective homomorphism $\nu_{\infty}=\bigcup_{k \geq n} \nu_{k}$ give, as usual, the desired model of $T_{1}>_{T_{0}}^{s} T_{2}$ satisfying Γ.

We first take ν_{0} to be ν. To define $\nu_{k}(k>0)$, we distinguish the case in which k is even from the case in which k is odd. In the latter case, we proceed as in the proof of Proposition 4.2. As to the former case, let $b=d_{2 k}$ and let \underline{a} be a tuple collecting all the elements from S_{k-1}. We want to find a suitable $a \in N^{\prime}$ in order
to extend ν_{k-1} by defining $\nu_{k}(a):=b$. For this purpose, it is sufficient to show that $\mathcal{N}^{\prime} \neq \forall y . \phi(\underline{a}, y)$, where $\phi(\underline{x}, y)$ is the disjunction of all atoms $C(\underline{x}, y)$ such that $\mathcal{N}^{\prime \prime} \not \equiv C\left(\nu_{k-1}(\underline{a}), b\right)$. In fact, if $\mathcal{N}^{\prime} \not \equiv \forall y . \phi(\underline{a}, y)$, then there is a (sort-conforming) $a \in N^{\prime}$ such that $\mathcal{N}^{\prime} \models \neg \phi(\underline{a}, a)$, and we can set $\nu_{k}(a):=b$. Assume that C is an atom such that $\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models C(\underline{a}, a)$, but $\mathcal{N}_{\mid \Omega_{0}}^{\prime \prime} \not \equiv C\left(\nu_{k}(\underline{a}, a)\right)=C\left(\nu_{k-1}(\underline{a}), b\right)$. However, this means that $C(\underline{x}, y)$ occurs as a disjunct in $\phi(\underline{x}, y)$, and thus $\mathcal{N}^{\prime} \models$ $\neg \phi(\underline{a}, a)$ implies that $\mathcal{N}^{\prime} \models \neg C(\underline{a}, a)$, which is a contradiction to our assumption that $\mathcal{N}_{\mid \Omega_{0}}^{\prime} \models C(\underline{a}, a)$.

To show that $\mathcal{N}^{\prime} \not \models \forall y \cdot \phi(\underline{a}, y)$, we consider the positive co-algebraic completion T_{0}^{*} of T_{0}. In this theory, $\forall y \cdot \phi(\underline{x}, y) \leftrightarrow \phi^{*}(\underline{x})$ is provable for some (co-)geometric open formula ${ }^{8} \phi^{*}(\underline{x})$. As usual, the implication $\phi^{*}(\underline{x}) \rightarrow \forall y . \phi(\underline{x}, y)$ must already hold in T_{0} because T_{0} and its co-algebraic completion T_{0}^{*} entail the same open formulae, and $\phi^{*}(\underline{x}) \rightarrow \forall y . \phi(\underline{x}, y)$ is equivalent to the open formula $\phi^{*}(\underline{x}) \rightarrow \phi(\underline{x}, y)$.

Since \mathcal{N}^{\prime} is a model of T_{0}^{*}, and $T_{0}^{*} \models \forall y \cdot \phi(\underline{x}, y) \rightarrow \phi^{*}(\underline{x})$, it is enough to prove that $\mathcal{N}^{\prime} \notin \phi^{*}(\underline{a})$. However, $\mathcal{N}^{\prime \prime} \neq \forall y . \phi\left(\nu_{k-1}(\underline{a}), y\right)$, by the definition of ϕ. Since $\mathcal{N}^{\prime \prime}$ is a model of T_{0}, and $T_{0} \models \phi^{*}(\underline{x}) \rightarrow \forall y \cdot \phi(\underline{x}, y)$, this implies $\mathcal{N}^{\prime \prime} \not \models \phi^{*}\left(\nu_{k-1}(\underline{a})\right)$. Finally, the induction hypothesis on the validity of (10) yields $\mathcal{N}^{\prime} \not \neq \phi^{*}(\underline{a}) . \quad \dashv$

The following example shows that there are natural examples of theories T_{0} admitting both a positive algebraic and a positive co-algebraic completion.

Example 6.9 Consider the theory of join semilattices with a greatest element. These are join semilattices as introduced in Example 4.6, but endowed with a further element \top such that $x \sqcup \top=\top$ holds for all x. The positive algebraic completion of this theory is axiomatized as in Example 4.6 above. In order to axiomatize the co-algebraic completion of this theory, we need a theory that allows us to eliminate the universal quantifier from formulae $\forall y \cdot \phi(\underline{x}, y)$ of the form

$$
\begin{equation*}
\forall y \cdot\left(\left(y \sqsubseteq t_{1}\right) \vee \cdots \vee\left(y \sqsubseteq t_{n}\right) \vee\left(u_{1} \sqsubseteq s_{1} \sqcup y\right) \vee \cdots \vee\left(u_{m} \sqsubseteq s_{m} \sqcup y\right)\right), \tag{11}
\end{equation*}
$$

where t_{i}, s_{j}, u_{k} are terms not involving y. Let $\phi^{*}(\underline{x})$ be the formula

$$
\begin{equation*}
\bigvee_{i=1}^{n}\left(t_{i} \approx \mathrm{~T}\right) \vee \bigvee_{j=1}^{m}\left(u_{j} \sqsubseteq s_{j}\right), \tag{12}
\end{equation*}
$$

and let T_{0}^{*} be obtained from T_{0} by adding to it the universal closures of the sentences $\phi \leftrightarrow \phi^{*}$. The theory T_{0}^{*} is included in the theory $B A^{*}$ of atomless Boolean algebras (recall that a Boolean algebra is said to be atomless iff it does not have non-zero minimal elements): the axioms of T_{0}^{*} are in fact provable in $B A^{*}$, as it is evident from the quantifier elimination procedure for $B A^{*}$ (see, e.g., [GZ02]). Since every join semilattice with a greatest element embeds into an

[^7]atomless Boolean algebra, ${ }^{9}$ this shows both that T_{0}^{*} is the positive co-algebraic completion of T_{0}, and that the theory of Boolean algebras is co-algebraically compatible with the theory of join semilattices with a greatest element.

Since the formulation of Proposition 6.8 coincides with the one of Proposition 4.2, we know that the universal fragments of $T_{1}>_{T_{0}}^{s} T_{2}$ and $T_{1}>_{T_{0}} T_{2}$ coincide if the conditions of Theorem 6.7 are satisfied.

Corollary 6.10 $\operatorname{Let} T_{0}, T_{1}, T_{2}$ be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, that T_{1} is T_{0}-co-algebraically compatible, and that T_{2} is T_{0}-algebraically compatible. Then the universal fragment of $T_{1}>_{T_{0}} T_{2}$ coincides with the universal fragment of $T_{1}>_{T_{0}}^{s} T_{2}$.

6.3 Isomorphisms as connection functions

Finally, let us consider the problem of deciding the universal fragment of $T_{1}>_{T_{0}}^{\text {iso }}$ T_{2}.

Theorem 6.11 Let T_{0}, T_{1}, T_{2} be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, and that T_{1}, T_{2} are both T_{0} compatible. Then the decidability of the universal fragments of T_{1} and T_{2} entails the decidability of the universal fragment of $T_{1}>_{T_{0}}^{i s o} T_{2}$.

To prove the theorem, let $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ be a finite set of ground flat literals over the signature Ω of $T_{1}>{ }_{T_{0}}^{i s o} T_{2}$ (with additional free constants), where $\Gamma_{i}(i=1,2)$ is a set of literals in the signature Ω_{i} (expanded with free constants), and Γ_{0} is of the form

$$
\left\{h\left(a_{1}\right) \approx b_{1}, \ldots, h\left(a_{n}\right) \approx b_{n}\right\}
$$

for free constants $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$. The following proposition, whose formulation is identical to the formulation of Proposition 6.4, immediately entails Theorem 6.11.

Proposition 6.12 The constraint $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in $T_{1}>_{T_{0}}^{i s o} T_{2}$ iff there exists a triple $(\mathcal{A}, \mathcal{B}, \nu)$ such that

[^8]1. \mathcal{A} is an Ω_{0}-model of T_{0}, which is generated by $\left\{a_{1}^{\mathcal{A}}, \ldots, a_{n}^{\mathcal{A}}\right\}$;
2. \mathcal{B} is an Ω_{0}-model of T_{0}, which is generated by $\left\{b_{1}^{\mathcal{B}}, \ldots, b_{n}^{\mathcal{B}}\right\}$;
3. $\nu: \mathcal{A} \rightarrow \mathcal{B}$ is an Ω_{0}-embedding such that $\nu\left(a_{j}^{\mathcal{A}}\right)=b_{j}^{\mathcal{B}}$ for $j=1, \ldots, n$;
4. $\Gamma_{1} \cup \Delta_{\Omega_{0}}(\mathcal{A})$ is satisfiable in T_{1};
5. $\Gamma_{2} \cup \Delta_{\Omega_{0}}(\mathcal{B})$ is satisfiable in T_{2}.

Proof. To prove the if direction, we must extend ν to an isomorphism between the Ω_{0}-reducts of $\mathcal{N}^{\prime}, \mathcal{N}^{\prime \prime}$, where $\mathcal{N}^{\prime}, \mathcal{N}^{\prime \prime}$ are at most countable models of the diagrams of \mathcal{A}, \mathcal{B} and of $T_{1} \cup T_{0}^{*}, T_{2} \cup T_{0}^{*}$, respectively. The back-and-forth argument used in the proof of Proposition 6.8 can be easily adapted to the present case: it sufficient to ask in condition (10) for truth of ground $\Omega_{0}^{S_{k}}$-literals rather than just atoms to be preserved.

In the case of k being odd, one can proceed as in the proof of Proposition 6.4. In the case of k being even, one must adapt the construction given in Proposition 6.8 appropriately to the stronger condition. We leave this simple adaptation to the reader.

Since the formulation of Proposition 6.12 coincides with the one of Proposition 6.4, we know that the universal fragments of $T_{1}>_{T_{0}}^{e m} T_{2}$ and $T_{1}>_{T_{0}}^{i s o} T_{2}$ coincide if the conditions of Theorem 6.11 are satisfied.

Corollary 6.13 $\operatorname{Let} T_{0}, T_{1}, T_{2}$ be theories over the respective signatures $\Omega_{0}, \Omega_{1}, \Omega_{2}$, where Ω_{0} is a common subsignature of Ω_{1} and Ω_{2}. Assume that $T_{0} \subseteq T_{1}$ and $T_{0} \subseteq T_{2}$, that T_{0} is universal and locally finite, and that T_{1}, T_{2} are T_{0}-compatible. Then the universal fragment of $T_{1}>{ }_{T_{0}}^{e m} T_{2}$ coincides with the universal fragment of $T_{1}>_{T_{0}}^{i s o} T_{2}$.

It is easy to see that the problem of deciding the universal fragment of $T_{1}>_{T_{0}}^{i s o} T_{2}$ is interreducable in polynomial time with the problem of deciding the universal fragment of $T_{1} \cup T_{2}$. Consequently, the proof of Theorem 6.11 yields an alternative proof of the combination result in [Ghi05].
The main reason for this is that there is a close connection between models of $T_{1} \cup T_{2}$ and $T_{1}>_{T_{0}}^{i s o} T_{2}$. In fact, if \mathcal{M} is a model of $T_{1} \cup T_{2}$, then it can be turned into a model $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, \nu\right)$ of $T_{1}>{ }_{T_{0}}^{\text {iso }} T_{2}$ by taking as \mathcal{M}^{1} the reduct of \mathcal{M} to Ω_{1}, as \mathcal{M}^{2} the reduct of \mathcal{M} to Ω_{2}, and as isomorphism ν the identity mapping on the domain of the reduct of \mathcal{M} to Ω_{0}. Conversely, if $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, \nu\right)$ is a model of $T_{1} \gg_{T_{0}}^{i s o} T_{2}$, then one can turn it into a model of $T_{1} \cup T_{2}$ by adapting the well-known fusion construction [TR03] to the many-sorted case.

Now, given a conjunction Γ of (sort-conforming) literals to be tested for satisfiability in $T_{1}>_{T_{0}}^{i s o} T_{2}$, we can simply remove the connection function h and the superscripts introduced through the renaming done in the construction of $T_{1}>{ }_{T_{0}}^{i s o} T_{2}$, and test the resulting conjunction Γ^{\prime} of literals for satisfiability in $T_{1} \cup T_{2}$. If \mathcal{M} is a model of $T_{1} \cup T_{2}$ satisfying Γ^{\prime}, then it is easy to see that the corresponding model $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, \nu\right)$ of $T_{1}>_{T_{0}}^{\text {iso }} T_{2}$ satisfies Γ. Conversely, if $\left(\mathcal{M}^{1}, \mathcal{M}^{2}, \nu\right)$ is a model of $T_{1}>_{T_{0}}^{i s o} T_{2}$ satisfying Γ, then it is easy to see that the model \mathcal{M} of $T_{1} \cup T_{2}$ obtained from this model by applying the fusion construction satisfies Γ^{\prime}.

Conversely, given a conjunction Γ of flat ground literals to be tested for satisfiability in $T_{1} \cup T_{2}$, we can partition Γ into $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ where Γ_{1} is over the signature Ω_{1} and Γ_{2} is over the signature Ω_{2}. For every free constant c occurring in Γ, we introduce two free constants c^{1} and c^{2}. We replace c in Γ_{1} by c^{1} and c in Γ_{2} by c^{2}, and also do the appropriate renamings of the shared function and predicate symbols. In addition, we add the identity $c^{2} \approx h\left(c^{1}\right)$ for each free constant c occurring in Γ. Let Γ^{\prime} be the conjunction of literals over the signature of $T_{1}>_{T_{0}}^{i s o} T_{2}$ obtained this way. Again, it is easy to see that Γ is satisfiable in $T_{1} \cup T_{2}$ iff Γ^{\prime} is satisfiable in $T_{1}>_{T_{0}}^{i s o} T_{2}$.

7 Conclusion

We have introduced a new scheme for combining many-sorted theories, and have shown under which conditions decidability of the universal fragment of the component theories transfers to their combination. Though this kind of combination has been considered before in restricted cases [KLWZ04, AK97, Zar02], it has not been investigated in the general algebraic setting considered here.

In contrast to the results in [KLWZ04], our results are not restricted to Booleanbased equational theories [BGT04]. However, our results do not imply the algebraic counterpart of the more general combination results in [KLWZ04]: there, a connecting relation E (see Example 2.1) introduces two connection function: the diamond operators induced by E and its inverse E^{-1}. These two connection functions are not unrelated, but they are not inverses of each other (as functions). An important topic for future work is to try to extend our framework such that it can also handle this type of a connection.

References

[AK97] Farid Ajili and Claude Kirchner. A modular framework for the combination of symbolic and built-in constraints. In Lee Naish, editor,

Proceedings of Fourteenth International Conference on Logic Programming, pages 331-345, Leuven, Belgium, 1997. The MIT press.
[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
[BGT04] Franz Baader, Silvio Ghilardi, and Cesare Tinelli. A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. In Proceedings of the Second International Joint Conference on Automated Reasoning (IJCAR'04), volume 3097 of Lecture Notes in Artificial Intelligence, pages 183-197, Cork (Ireland), 2004. Springer-Verlag.
[BLSW02] Franz Baader, Carsten Lutz, Holger Sturm, and Frank Wolter. Fusions of description logics and abstract description systems. Journal of Artificial Intelligence Research), 16:1-58, 2002.
[BT97] Franz Baader and Cesare Tinelli. A new approach for combining decision procedures for the word problem, and its connection to the Nelson-Oppen combination method. In W. McCune, editor, Proceedings of the 14 th International Conference on Automated Deduction (Townsville, Australia), volume 1249 of Lecture Notes in Artificial Intelligence, pages 19-33. Springer-Verlag, 1997.
[BT02] Franz Baader and Cesare Tinelli. Deciding the word problem in the union of equational theories. Information and Computation, 178(2):346-390, December 2002.
[CK90] Chen-Chung Chang and H. Jerome Keisler. Model Theory. NorthHolland, Amsterdam-London, IIIrd edition, 1990.
[DKR94] Eric Domenjoud, Francis Klay, and Christophe Ringeissen. Combination techniques for non-disjoint equational theories. In A. Bundy, editor, Proceedings of the 12th International Conference on Automated Deduction, Nancy (France), volume 814 of Lecture Notes in Artificial Intelligence, pages 267-281. Springer-Verlag, 1994.
[FG03] Camillo Fiorentini and Silvio Ghilardi. Combining word problems through rewriting in categories with products. Theoretical Computer Science, 294:103-149, 2003.
[Gal86] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper \& Row, 1986.
[Ghi03] Silvio Ghilardi. Reasoners' cooperation and quantifier elimination. Technical Report 288-03, Dipartimento di Scienze dell'Informazione,

Università degli Studi di Milano, 2003. Available on-line at http://homes.dsi.unimi.it/ ghilardi/allegati/eqfin.ps.
[Ghi05] Silvio Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning, 2005. To appear.
[GZ02] Silvio Ghilardi and Marek Zawadowski. Sheaves, Games and Model Completions, volume 14 of Trends in Logic. Kluwer Academic Publishers, 2002.
[KLWZ04] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. \mathcal{E}-connections of abstract description systems. Artificial Intelligence, 156:1-73, 2004.
[KW91] Marcus Kracht and Frank Wolter. Properties of independently axiomatizable bimodal logics. The Journal of Symbolic Logic, 56(4):14691485, December 1991.
[MR77] Michael Makkai and Gonzalo E. Reyes. First-Order Categorical Logic, volume 611 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1977.
[Nel84] Greg Nelson. Combining satisfiability procedures by equality-sharing. In W. W. Bledsoe and D. W. Loveland, editors, Automated Theorem Proving: After 25 Years, volume 29 of Contemporary Mathematics, pages 201-211. American Mathematical Society, Providence, RI, 1984.
[Nip91] Tobias Nipkow. Combining matching algorithms: The regular case. Journal of Symbolic Computation, 12:633-653, 1991.
[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems, 1(2):245-257, October 1979.
[Opp80] Derek C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer Science, 12:291-302, 1980.
[Pig74] Don Pigozzi. The join of equational theories. Colloquium Mathematicum, 30(1):15-25, 1974.
[Spa93] Edith Spaan. Complexity of Modal Logics. PhD thesis, Department of Mathematics and Computer Science, University of Amsterdam, The Netherlands, 1993.
[SS89] Manfred Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. Journal of Symbolic Computation, 8(1-2):51-100, July/August 1989. Special issue on unification. Part II.
[Tin03] Cesare Tinelli. Cooperation of background reasoners in theory reasoning by residue sharing. Journal of Automated Reasoning, 30(1):1-31, January 2003.
[TR03] Cesare Tinelli and Christophe Ringeissen. Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science, 290(1):291-353, January 2003.
[Wol98] Frank Wolter. Fusions of modal logics revisited. In M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic. CSLI, Stanford, CA, 1998.
[Zar02] Calogero Zarba. Combining multisets with integers. In Andrei Voronkov, editor, Proc. of the 18th International Conference on $A u$ tomated Deduction (CADE'18), volume 2392 of Lecture Notes in Artificial Intelligence, pages 363-376. Springer-Verlag, 2002.
[Zaw95] Marek W. Zawadowski. Descent and duality. Ann. Pure Appl. Logic, 71(2):131-188, 1995.

8 Appendix A: \mathcal{E}-connections

The purpose of this appendix is to give a more detailed comparison between the notion of an \mathcal{E}-connections, as introduced in [KLWZ04], and our notion of a connection of many-sorted theories.

First of all, [KLWZ04] consider connections that are more general than ours, in the sense that more complex modalities (n-ary modalities, inverse modalities, Boolean combinations of modalities, counting modalities, etc.) can be used as connection functions. Using such sophisticated modalities as connection function is, currently, beyond the scope of our methods, but they will be the subject of future research.

Here, we will content ourselves with examining the special case of plain unary modalities as connection functions, which is the most basic case of an \mathcal{E}-connection considered in [KLWZ04]. However, even with this restriction, there are still significant differences between our approach and the approach in [KLWZ04]. The main difference is that, seen from the modal logic point of view, our approach for defining the connection is syntactic (or algebraic), in the sense that we consider an equational axiomatization of the logic. In contrast, in [KLWZ04] the emphasis is on the model-theoretic side, meaning that \mathcal{E}-connections are defined at the semantic level as enrichments of suitable Kripke-like structures. Because of this difference, it is not a priori clear that our results specialize to decidability transfer results for \mathcal{E}-connections defined in the framework of [KLWZ04] (even within the limitation to plain unary modalities as connection functions). In this appendix, we show that this is indeed the case (but this proof turns out to be not entirely trivial). To simplify matters further, we will not consider abstract description systems (as used in [KLWZ04]) in their full generality, but restrict our considerations to normal modal logics and to standard uni-modal Kripke frames (most of these further restrictions are, however, without loss of generality; they are assumed just for the sake of simplicity).

Propositional modal formulae are built using the Boolean connectives and a diamond operator \diamond. A Kripke frame is a pair $\mathcal{F}=(W, R)$, where W is a non-empty set, the set of possible worlds, and R is a binary relation on W, the transition relation. A Kripke model is a triple $\mathcal{M}=(W, R, V)$, where (W, R) is a Kripke frame and V is a map, called valuation, associating with each propositional letter a subset of W. The forcing relation $w \models^{\mathcal{M}} \alpha$, which expresses that the modal formula α is true in the Kripke model \mathcal{M} at world w, is defined in the standard way (see, e.g., [BdRV01]).

For a given class of Kripke frames \mathcal{C}, the modal constraint problem for \mathcal{C} is the problem of deciding whether a finite set of modal formulae is satisfiable w.r.t. a set of global constraints. ${ }^{10}$

[^9]Definition 8.1 A modal constraint is a pair of finite sets of modal formulae, written as $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}(n, m \geq 0)$; we say that such a modal constraint is satisfiable in a Kripke model $\mathcal{M}=(W, R, V)$ iff there are worlds $w_{1}, \ldots, w_{m} \in$ W such that

1. $w_{1} \models^{\mathcal{M}} \beta_{1}, \ldots, w_{m} \models^{\mathcal{M}} \beta_{m}$;
2. for all $v \in W$ and for all $i=1, \ldots$, n, we have $v \models^{\mathcal{M}} \alpha_{i}$.

The modal constraint $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}$ is satisfiable in a class of Kripke frames \mathcal{C} iff it is satisfiable in some $\mathcal{M}=(W, R, V)$, for $(W, R) \in \mathcal{C}$.

Thus, the satisfiability of a modal constraint $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}$ means that there is a model in which the β_{j} are satisfied in some worlds w_{j}, and in which $\alpha_{1}, \ldots, \alpha_{n}$ hold globally, i.e., in every world.

In order to algebraize the above decision problem, let us introduce the signature B_{M} : this is the single-sorted signature obtained by expanding the signature of Boolean algebras by a new unary operator that we still call \diamond. Notice that there is an obvious bijective correspondence in this way between modal formulae and terms of the signature B_{M} (thus, from now on, we identify modal formulae and terms of the signature $\left.B_{M}\right)$. Also, a Kripke frame $\mathcal{F}=(W, R)$ can be converted into a B_{M}-structure called $\mathcal{B}_{\mathcal{F}}$ as follows: we take as underlying Boolean algebra the powerset Boolean algebra $\mathcal{P}(W)$ and interpret \diamond as the function associating with $X \subseteq W$ the subset of W given by

$$
\diamond(X):=\left\{w_{2} \in W \mid \exists w_{1} \in W .\left(w_{2}, w_{1}\right) \in R \wedge w_{1} \in X\right\} .
$$

Valuations V of \mathcal{F} correspond in an obvious way to assignments of variables to elements of $\mathcal{P}(W)$. It is easy to see that, for any modal formula θ, we have $w \models^{(W, R, V)} \theta$ iff w belongs to the set obtained by evaluating the term θ in $\mathcal{B}_{\mathcal{F}}$ under the assignment V.

With every class of Kripke frames \mathcal{C} we associate the B_{M}-theory $\mathcal{T}_{\mathcal{C}}$ whose axioms are the formulae

$$
\begin{equation*}
\left(\alpha_{1} \approx \top\right) \wedge \cdots \wedge\left(\alpha_{n} \approx \top\right) \rightarrow\left(\beta_{1} \approx \perp\right) \vee \cdots \vee\left(\beta_{m} \approx \perp\right) \tag{13}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}$ are the modal constraints that are not satisfiable in \mathcal{C}. If \mathcal{F} is a Kripke frame in \mathcal{C}, then the corresponding B_{M}-structure $\mathcal{B}_{\mathcal{F}}$ is a model of $\mathcal{T}_{\mathcal{C}}$.

[^10]Proposition 8.2 The problem of deciding satisfiability of modal constraints in \mathcal{C} is equivalent to the problem of deciding the universal fragment of the theory $\mathcal{T}_{\mathcal{C}}$.

Proof. First, notice that a modal constraint

$$
\begin{equation*}
\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m} \tag{14}
\end{equation*}
$$

is unsatisfiable in \mathcal{C} iff the formula (13) is a logical consequence of $\mathcal{T}_{\mathcal{C}}$. In fact, if (14) is unsatisfiable in \mathcal{C}, then (13) is an axiom of $\mathcal{T}_{\mathcal{C}}$. Conversely, if (14) is satisfiable in a frame $\mathcal{F}=(W, R) \in \mathcal{C}$, then (13) cannot be a logical consequence of $\mathcal{T}_{\mathcal{C}}$, because it it is easy to see that it is then false in the B_{M}-structure $\mathcal{B}_{\mathcal{F}}$.

Given that, it is sufficient to observe that identities in $\mathcal{T}_{\mathcal{C}}$ are all equivalent ${ }^{11}$ to identities of the kind $\alpha \approx \top$ as well as to identities of the kind $\beta \approx \perp$. Thus an arbitrary open formula in the signature B_{M} is in fact a conjunction of formulae of the kind (13). Together with what we have shown about the connection between such formulae and modal constraints, this implies the claim of the proposition. \dashv

Let us now show that this correspondence

$$
\mathcal{C} \longmapsto \mathcal{T}_{\mathcal{C}}
$$

is compatible with building connections, where on the left-hand side the connections are the \mathcal{E}-connections as introduced in [KLWZ04], and on the right-hand side the connections are the connections of many-sorted theories as introduced in the present paper. To show this, we need to recall the definition of an \mathcal{E}-connection (in the present simplified case of classes of Kripke frames).

For \mathcal{E}-connections, we use two-sorted propositional modal formulae. The formulae of sort 1 are just the standard propositional modal formulae (where, however, the modal operator \diamond is renamed to \diamond_{1}); the formulae of sort 2 are built from propositional variables ${ }^{12}$ of sort 2 and formulae of the form $\diamond_{E} \phi$ where ϕ is a formula of sort 1 , by applying the Boolean connectives and the modal operator \diamond_{2}.
From the semantic side, suppose we are given two classes $\mathcal{C}_{1}, \mathcal{C}_{2}$ of Kripke frames. The class of connection frames $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is formed by all triples $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ such that $\mathcal{F}_{1}=\left(W_{1}, R_{1}\right) \in \mathcal{C}_{1}, \mathcal{F}_{2}=\left(W_{2}, R_{2}\right) \in \mathcal{C}_{2}$ and $E^{\mathcal{F}} \subseteq W_{2} \times W_{1}$ is an arbitrary binary relation.

An $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$-connection Kripke model is a 4 -tuple $\mathcal{M}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}, V\right)$, where $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right) \in \mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is a connection frame and V is a map associating with propositional letters of sort i subsets of $W_{i}(i=1,2)$. The forcing relation $w \models^{\mathcal{M}} \alpha$, which says that the modal formula α is true in \mathcal{M} at world w, is

[^11]defined in the standard way (see [KLWZ04]), where the only non-obvious case is the following: for $w_{2} \in W_{2}$ and for a formula α of sort 1 , we have:
$$
w_{2} \models^{\mathcal{M}} \diamond_{E} \alpha \quad \text { iff } \quad\left(\exists w_{1} \in W_{1} .\left(w_{2}, w_{1}\right) \in E^{\mathcal{F}} \text { and } w_{2} \models^{\mathcal{M}} \alpha\right) .
$$

Now, $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$-satisfiability of a modal constraint $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}$ is defined as above (but notice that the α_{i} and the β_{j} may be formulae of sort 1 or 2 , indifferently).
When connecting the theories corresponding to two frame classes, we build the two-sorted signature B_{M}^{2} : this consists of two renamed copies of the signature B_{M} and, in addition, of the new unary function symbol \rangle_{E} of arity $S_{1} S_{2}$ (where S_{1}, S_{2} are the single sorts of the renamed copies of B_{M}). Again, terms in the signature B_{M}^{2} can be identified with the two-sorted modal formulae introduced above; moreover any connection frame $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ can be turned into a $B_{M^{-}}^{2}$-structure (which we still call $\mathcal{B}_{\mathcal{F}}$) by interpreting the two sorts by powerset Boolean algebras, as described above, and by defining \diamond_{E} as the function associating with $X \subseteq W_{1}$ the subset of W_{2} given by

$$
\diamond_{E}(X):=\left\{w_{2} \in W_{2} \mid \exists w_{1} \in W .\left(w_{2}, w_{1}\right) \in E^{\mathcal{F}} \wedge w_{1} \in X\right\} .
$$

We can then build the theory $\mathcal{T}_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$, whose axioms are the formulae

$$
\begin{equation*}
\left(\alpha_{1} \approx \top\right) \wedge \cdots \wedge\left(\alpha_{n} \approx \top\right) \rightarrow\left(\beta_{1} \approx \perp\right) \vee \cdots \vee\left(\beta_{m} \approx \perp\right) \tag{15}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{n} ; \beta_{1}, \ldots, \beta_{m}$ are the modal constraints that are not satisfiable in $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$. As in the proof of Proposition 8.2 , it can be shown that the problem of deciding satisfiability of modal constraints in $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is equivalent to the problem of deciding the universal fragment of the theory $\mathcal{T}_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$.
The following proposition states a precise relationship between \mathcal{E}-connections and our connections of many-sorted theories.

Proposition 8.3 Let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be classes of Kripke frames; $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ coincides with $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$, where T_{0} is the theory of semilattices. ${ }^{13}$

Proof. Both theories $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ and $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$ are universal and relative to the same signature $B D^{2}$, so it is sufficient to show that a finite set of literals is satisfiable in a model of one of them iff it is satisfiable in a model of the other. First, note that a finite set of literals is satisfied in a model of $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ iff it is satisfied in a model of the form $\mathcal{B}_{\mathcal{F}}$, where $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ is such that $\mathcal{F}_{1} \in \mathcal{C}_{1}$ and $\mathcal{F}_{2} \in \mathcal{C}_{2}$. This can be shown by basically repeating the arguments used in the proof of Proposition 8.2: every universal B_{M}^{2}-formula is equivalent to conjunction of formulae of the kind (13), and (13) is a logical consequence of the

[^12]theory $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ iff the modal constraint (14) is unsatisfiable in frames of the kind $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ (for $\mathcal{F}_{1} \in \mathcal{C}_{1}$ and $\mathcal{F}_{2} \in \mathcal{C}_{2}$), i.e., iff (13) is true in models of the kind $\mathcal{B}_{\mathcal{F}}$, where $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ is such that $\mathcal{F}_{1} \in \mathcal{C}_{1}$ and $\mathcal{F}_{2} \in \mathcal{C}_{2}$.
Clearly, models of the form $\mathcal{B}_{\mathcal{F}}$ for a connection frame $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ are models of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$. However, the converse is far from being true: in fact, models of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$ may interpret the two sorts S_{1} and S_{2} by Boolean algebras that are not powerset Boolean algebras. Moreover, in models of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$, the connecting diamond \diamond_{E} is taken to be any semilattice homomorphism and, as such, it need not preserve infinitary joins (as is the case, on the contrary, for the interpretation of \rangle_{E} in all models of the kind $\mathcal{B}_{\mathcal{F}}$).

Thus, the key point of the proof is to show that any finite set of B_{M}^{2}-literals Γ satisfiable in a model of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$, is also satisfiable in a model of the form $\mathcal{B}_{\mathcal{F}}$, where $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$ is a connection frame such that $\mathcal{F}_{1} \in \mathcal{C}_{1}$ and $\mathcal{F}_{2} \in \mathcal{C}_{2}$.

We can, as usual, replace variables with constants and assume Γ to be flat, so that we can divide Γ into three disjoint sets $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$, where $\Gamma_{i}(i=1,2)$ is a set of literals in the i-th copy of the signature B_{M} (expanded with free constants), and Γ_{0} is of the form

$$
\Gamma_{0}=\left\{\diamond_{E}\left(a_{1}\right) \approx b_{1}, \ldots, \diamond_{E}\left(a_{n}\right) \approx b_{n}\right\}
$$

for free constants $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$.
This observation is not sufficient yet: we need to modify $\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ further. Let Θ be the set of terms of the form

$$
\pm a_{1} \sqcap \cdots \sqcap \pm a_{n}
$$

where $+a_{i}$ is a_{i} and $-a_{i}$ is $\overline{a_{i}}$. Notice that the equations

$$
a_{i} \approx \bigsqcup\left\{\theta \mid \theta \in \Theta, \theta \sqsubseteq a_{i}\right\}
$$

are logical consequence of the Boolean algebra axioms, and hence are always valid in our models (here $\theta \sqsubseteq a_{i}$ means that a_{i} (and not $\overline{a_{i}}$) appears as conjunct in θ).
Let $\tilde{\Gamma}_{1}$ be any set of B_{M}^{1}-literals obtained from Γ_{1} by adding either $\theta \approx \perp$ or $\theta \not \approx \perp$ for every $\theta \in \Theta$. For any $\theta \in \Theta$, introduce a new constant c_{θ} and replace Γ_{0} with

$$
\tilde{\Gamma}_{0}:=\left\{\diamond_{E}(\theta) \approx c_{\theta} \mid \theta \in \Theta\right\}
$$

Finally, let

$$
\tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right):=\Gamma_{2} \cup\left\{c_{\theta} \approx \perp \mid \theta \approx \perp \in \tilde{\Gamma}_{1}\right\} \cup\left\{\left(\bigsqcup_{\theta \sqsubseteq a_{i}} c_{\theta}\right) \approx b_{i} \mid i=1, \ldots, n\right\} .
$$

It is easily seen that $\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$ is satisfiable in a model of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$ iff there is a $\tilde{\Gamma}_{1}$ such that $\tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{1} \cup \tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$ is satisfiable in a model of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$. The
same observation applies to satisfiability in models of $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$. So, let us fix a set $\tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{1} \cup \tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$, and assume that it is satisfiable in a model of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$. We must show that it is satisfiable in a model of $T_{\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$.
Now, if $\tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{1} \cup \tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$ is satisfiable in a model of $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$, then $\tilde{\Gamma}_{1}$ is satisfiable in a model of $T_{\mathcal{C}_{1}}$ and $\tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$ is satisfiable in a model of $T_{\mathcal{C}_{2}}$. By the definition of $T_{\mathcal{C}_{i}}$, it follows that $\tilde{\Gamma}_{i}$ must be satisfiable in a model of the form $\mathcal{B}_{\mathcal{F}_{i}}$, where $\mathcal{F}_{i}=\left(W_{i}, R_{i}\right) \in \mathcal{C}_{i}(i=1,2)$. So we simply need to define the interpretation $E^{\mathcal{F}}$ of the connecting relation E in such a way that also $\tilde{\Gamma}_{0}$ is satisfied in $\mathcal{F}=\left(\mathcal{F}_{1}, E^{\mathcal{F}}, \mathcal{F}_{2}\right)$. This is done as follows: pick $s_{1} \in W_{1}$ and $s_{2} \in W_{2}$; we say that $\left(s_{2}, s_{1}\right) \in E^{\mathcal{F}}$ iff $s_{2} \in c_{\theta}^{\mathcal{B}_{\mathcal{F}_{2}}},{ }^{14}$ where θ is the unique element ${ }^{15}$ of Θ such that $s_{1} \in \theta^{\mathcal{B}_{\mathcal{F}_{1}}}$. This implies that, for every $\theta \in \Theta$, we have $\diamond_{E}^{\mathcal{B}_{\mathcal{F}}}\left(\theta^{\mathcal{B}_{\mathcal{F}_{1}}}\right) \subseteq c_{\theta}^{\mathcal{B}_{\mathcal{F}_{2}}}$. For the converse inclusion, suppose that $s_{2} \in c_{\theta}^{\mathcal{B}_{\mathcal{F}_{2}}}$. Then $\mathcal{B}_{\mathcal{F}_{2}} \not \vDash c_{\theta} \approx \perp$. By the definition of $\tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$ and by the fact that either $\theta \approx \perp \in \tilde{\Gamma}_{1}$ or $\theta \not \approx \perp \in \tilde{\Gamma}_{1}$, we have that $\mathcal{B}_{\mathcal{F}_{1}} \neq \theta \approx \perp$. This means that there is some $s_{1} \in \theta^{\mathcal{B}_{\mathcal{F}_{1}}}$; for such s_{1} we have that $\left(s_{2}, s_{1}\right) \in E^{\mathcal{F}}$, i.e. that $s_{2} \in \diamond_{E}^{\mathcal{B}_{\mathcal{F}}}\left(\theta^{\mathcal{B}_{\mathcal{F}_{1}}}\right)$.

The above proposition, together with our main combination result (Theorem 4.1), and the fact that Boolean-based theories are algebraically compatible with respect to the theory of semilattices (Example 4.6), immediately entails the following result:

Corollary 8.4 Let \mathcal{C}_{1} and \mathcal{C}_{2} be classes of modal frames. If the modal constraint problems for \mathcal{C}_{1} and \mathcal{C}_{2} are both decidable, then so is the modal constraint problem for $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$.

This decidability transfer result can be proved directly by an argument similar to the one we used to prove Proposition 8.3. Notice, however, that Theorem 4.1 gives in fact more, as it applies to any Boolean-based theory, i.e., also to theories that are not of the kind $T_{\mathcal{C}}$ for a class \mathcal{C} of Kripke frames.

Let us now turn to \mathcal{E}-connections that correspond to connections of theories where more than the theory of semilattices is shared. The frame classes $\mathcal{E}_{d}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ and $\mathcal{E}_{f}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ are defined similarly to $\mathcal{E}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$: the only difference is that now the connecting relation E is respectively taken to be a partial function and a function. For such deterministic or functional connections, we can show results that are analogous to Proposition 8.3.

Proposition 8.5 Let \mathcal{C}_{1} and \mathcal{C}_{2} be classes of modal frames.

[^13]1. $T_{\mathcal{E}_{d}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ coincides with $T_{\mathcal{C}_{1}}>_{T_{0}} T_{\mathcal{C}_{2}}$, where T_{0} is the theory of distributive lattices with a least element.
2. $T_{\mathcal{E}_{f}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)}$ coincides with $T_{\mathcal{C}_{1}}>T_{0} T_{\mathcal{C}_{2}}$, where T_{0} is the theory of bounded distributive lattices.

Proof. Only slight modifications to the proof of Proposition 8.3 are needed. When building $\tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$, we add also the atoms $c_{\theta_{1}} \sqcap c_{\theta_{2}} \approx \perp$, for $\theta_{1} \neq \theta_{2}$. In the case of a functional connection, we additionally add $T \approx \bigsqcup_{\theta \in \Theta} c_{\theta}$.

To define $E^{\mathcal{F}}$, we now proceed as follows: first, the definition domain of the partial function $E^{\mathcal{F}}$ is $\left(\bigsqcup_{\theta \in \Theta} c_{\theta}\right)^{\mathcal{B}_{\mathcal{F}_{2}}}$. Now notice that any s_{2} in this definition domain belongs to exactly one $c_{\theta}^{\mathcal{B}_{\mathcal{F}_{2}}}$; moreover, if $s_{2} \in c_{\theta}^{\mathcal{B}_{\mathcal{F}_{2}}}$, then $\mathcal{B}_{\mathcal{F}_{2}} \models c_{\theta} \not \approx \perp$ and thus $\mathcal{B}_{\mathcal{F}_{1}} \models \theta \not \approx \perp$. Select just one $s_{1} \in \theta^{\mathcal{B}_{\mathcal{F}_{1}}}$ and let $E^{\mathcal{F}}\left(s_{2}\right):=s_{1}$. This definition of $E^{\mathcal{F}}$ guarantees that $\left.\mathcal{B}_{\mathcal{F}} \models\right\rangle_{E} \theta \approx c_{\theta}$ again holds for all $\theta \in \Theta$. In addition, in the case of a functional connection, the presence of $T \approx \bigsqcup_{\theta \in \Theta} c_{\theta}$ in $\tilde{\Gamma}_{2}\left(\tilde{\Gamma}_{1}\right)$ enforces that the definition domain of the partial function $E^{\mathcal{F}}$ is the whole domain.

The algebraic compatibility of any Boolean-based theory with respect to the theory of distributive lattices with a least element and with respect to the theory of bounded distributive lattices (see Examples 4.7 and 4.8), now yields the following decidability transfer results:

Corollary 8.6 Let \mathcal{C}_{1} and \mathcal{C}_{2} be classes of modal frames. If the modal constraint problems for \mathcal{C}_{1} and \mathcal{C}_{2} are both decidable, then so are the modal constraint problems for $\mathcal{E}_{d}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ and $\mathcal{E}_{f}\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$.

9 Appendix B: Theory Completions

In this Appendix we develop some model theory concerning our notions of completions of a theory T. Such model theory gives further insight into some important ingredients of the paper, although it is not needed in order to understand and justify our combination procedures. We shall recall classical well-known results for model completions and show how they can be adapted to the case of positive algebraic completions. ${ }^{16}$

Let us call a model \mathcal{M} of a theory T :

- algebraically closed iff every sentence of the kind $\exists \underline{x}\left(A_{1}(\underline{a}, \underline{x}) \wedge \cdots \wedge A_{n}(\underline{a}, \underline{x})\right)$ which is satisfied in some $\mathcal{N} \supseteq \mathcal{M}$ such that $\mathcal{N} \models T$, is satisfied in \mathcal{M} itself (here \underline{a} are parameters from \mathcal{M} and the $A_{i}(\underline{y}, \underline{x})$ are atoms);

[^14]- existentially closed iff every sentence of the kind $\exists \underline{x}\left(A_{1}(\underline{a}, \underline{x}) \wedge \cdots \wedge A_{n}(\underline{a}, \underline{x})\right)$ which is satisfied in some $\mathcal{N} \supseteq \mathcal{M}$ such that $\mathcal{N} \models T$, is satisfied in \mathcal{M} itself (here \underline{a} are parameters from \mathcal{M} and the $A_{i}(\underline{y}, \underline{x})$ are literals).

The following Lemma is taken from [CK90]:

Lemma 9.1 If T is universal, then every model \mathcal{M} of T embeds into a model of T which is existentially (hence also algebraically) closed.

Proof. Take a well-order $\left\{\phi_{i}\right\}_{i<\alpha}$ of the existential sentences with parameters from \mathcal{M}. Define a first chain $\left\{\mathcal{M}_{i}\right\}_{i}$ of models of T, by letting \mathcal{M}_{i} to be an extension of $\bigcup_{j<i} \mathcal{M}_{j}$ in which ϕ_{i} is true (if this extension does not exists, \mathcal{M}_{i} is just $\left.\bigcup_{j<i} \mathcal{M}_{j}\right)$. Now let \mathcal{M}_{1} be $\bigcup_{j<\alpha} \mathcal{M}_{j}$; repeating the construction, ${ }^{17}$ we produce a countable chain $\mathcal{M} \subseteq \mathcal{M}_{1} \subseteq \mathcal{M}_{2} \subseteq \cdots$. The union of this chain is the desired existentially closed extension of \mathcal{M} (notice that this argument works because T is preserved under union of chains, being universal).

Proposition 9.2 Suppose that T has a positive algebraic (model) completion T^{*}; then the models of T^{*} are precisely those models of T which are algebraically (resp. existentially) closed.

Proof. We show the proof just for the case of the positive algebraic completion T^{*} (the other case being analogous and well-known [CK90]). Recall that, according to Definition 3.2 and Lemma 3.3, for every geometric formula $\phi(\underline{x})$ there is a geometric open formula $\phi^{*}(\underline{x})$ such that $T \models \phi \rightarrow \phi^{*}$ and $T^{*} \models \phi^{*} \rightarrow \phi$.

Suppose that $\mathcal{M} \models T^{*}$, that $\mathcal{N} \supseteq \mathcal{M}$ is an extension of \mathcal{M} which is also a model of T. Let $\phi(\underline{a})$ be a geometric sentence with parameters \underline{a} from \mathcal{M} which is true in \mathcal{N}. Then we have $\mathcal{N} \models \phi^{*}(\underline{a})$ and also $\mathcal{M} \models \phi^{*}(\underline{a})$ (because ϕ^{*} is open); as \mathcal{M} is a model of T^{*}, this implies that $\mathcal{M} \models \phi(\underline{a})$.

Conversely, suppose that \mathcal{M} is algebraically closed as a model of T and let $\phi(\underline{a})$ be a geometric sentence with parameters in \mathcal{M} such that $\mathcal{M} \models \phi^{*}(\underline{a})$. By definition $3.2(i i), \mathcal{M}$ can be embedded into a model \mathcal{N} of T^{*}. Since ϕ^{*} is open and since $T^{*} \models \phi^{*} \rightarrow \phi$, in \mathcal{N} we have $\mathcal{N} \models \phi(\underline{a})$ and also $\mathcal{M} \models \phi(\underline{a})$, because \mathcal{M} is algebraically closed. Thus $\mathcal{M} \models \phi \leftrightarrow \phi^{*}$ holds for all geometric ϕ (the implication $\phi \rightarrow \phi^{*}$ being already a logical consequence of T). It is now easy to show that $\mathcal{M} \models T^{*}$: let $\phi_{1} \rightarrow \phi_{2}$ be a geometric sequent in the axiomatization of T^{*}. We have that $\mathcal{M} \models \phi_{1} \rightarrow \phi_{2}$ iff $\mathcal{M} \models \phi_{1}^{*} \rightarrow \phi_{2}^{*}$; however, from $T^{*} \models \phi_{1} \rightarrow \phi_{2}$, we get $T^{*} \models \phi_{1}^{*} \rightarrow \phi_{2}^{*}$, hence also $T \models \phi_{1}^{*} \rightarrow \phi_{2}^{*}$, because T and T^{*} agree on open formulae (see Definition 6.1(i)-(ii) and Lemma 3.1). Since $\mathcal{M} \models T, \mathcal{M} \models \phi_{1}^{*} \rightarrow \phi_{2}^{*}$ follows; consequently we have $\mathcal{M} \models \phi_{1} \rightarrow \phi_{2}$ (i.e. $\mathcal{M} \models T^{*}$).

[^15]Notice that Proposition 9.2 implies that T^{*}, when it exists, is unique. Clearly not all universal theories T have a positive algebraic or a model completion: there is no general guarantee, for instance, that the class of algebraically or existentially closed models of T is elementary (i.e. that it is the class of the models of some first order theory at all).

9.1 Model Completions

A classical result [CK90] says that a universal theory T has a model completion iff T has the amalgamation property and the class of the existentially closed models of T is an elementary class. We shall recall here the proof of this result and in next subsections we show how a similar statement can be proved for the case of positive algebraic completions.

We say that a theory T has the amalgamation property (AP for short) iff for every triple $\mathcal{M}, \mathcal{N}_{1}, \mathcal{N}_{2}$ of models of T, for every pair of embeddings $\mu_{1}: \mathcal{M} \longrightarrow \mathcal{N}_{1}$ and $\mu_{2}: \mathcal{M} \longrightarrow \mathcal{N}_{2}$, there are a further model \mathcal{N} of T, and embeddings $\nu_{1}: \mathcal{N}_{1} \longrightarrow \mathcal{N}$ and $\nu_{2}: \mathcal{N}_{2} \longrightarrow \mathcal{N}$ such that the square

commutes.

Proposition 9.3 If the universal Ω-theory T has a model completion T^{*}, then T has AP.

Proof. Given embeddings $\mu_{1}: \mathcal{M} \longrightarrow \mathcal{N}_{1}$ and $\mu_{2}: \mathcal{M} \longrightarrow \mathcal{N}_{2}$, we can freely suppose that $\mathcal{N}_{1}, \mathcal{N}_{2}$ are models of T^{*} and that μ_{1}, μ_{2} are inclusions. By diagrams theorems, it is sufficient to show the consistency of $T \cup \Delta\left(\mathcal{N}_{1}\right) \cup \Delta\left(\mathcal{N}_{2}\right)$. Suppose this is not consistent; by compactness there are $\theta_{1}\left(\underline{m}, \underline{n}_{1}\right), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)$, such that $T \cup\left\{\theta_{1}\left(\underline{m}, \underline{n}_{1}\right), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)\right\}$ is inconsistent. Here: a) \underline{m} are parameters from $\mathcal{M} ;$ b) $\underline{n}_{1}, \underline{n}_{2}$ are parameters from $\mathcal{N}_{1}, \mathcal{N}_{2}$ (not belonging to the image of μ_{1}, μ_{2}, respectively); c) $\theta_{1}\left(\underline{m}, \underline{n}_{1}\right)$ is a conjunction of ground literals true in \mathcal{N}_{1}; d) $\theta_{2}\left(\underline{m}, \underline{n}_{2}\right)$ is a conjunction of ground literals true in \mathcal{N}_{2}. Let $\phi(\underline{m})$ be $\exists \underline{y} \theta_{1}(\underline{m}, \underline{y})$ and recall from Definition 6.1 that there is an open formula ϕ^{*} such that $T^{*} \models \phi^{*} \leftrightarrow \phi$. We consequently have $\mathcal{N}_{1} \models \phi^{*}(\underline{m})$; since $\phi^{*}(\underline{m})$ is open, we get that it is true in \mathcal{M} and in \mathcal{N}_{2} too. The latter is a model of T^{*}, hence $\mathcal{N}_{2} \models \phi(\underline{m})$, contradiction because $T \cup\left\{\phi(\underline{m}), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)\right\}$ is inconsistent.

Lemma 9.4 Suppose that the universal Ω-theory T has $A P$ and that $T^{*} \supseteq T$ is an extension of T (in the same signature of T) whose models are all existentially closed for T. Then T^{*} admits quantifier elimination.

Proof. Let $\phi(\underline{x})$ be an existential formula: it is sufficient to show that $\phi(\underline{x})$ is equivalent modulo T^{*} to a quantifier free formula $\phi^{*}(\underline{x})$. For new constants \underline{a} consider the set of sentences

$$
\Theta:=T^{*} \cup\{\phi(\underline{a})\} \cup\left\{\neg \psi(\underline{a}) \mid \psi \text { is quantifier free and } T^{*} \models \psi(\underline{a}) \rightarrow \phi(\underline{a})\right\} .
$$

If Θ is inconsistent, then we have $T^{*} \models \phi(\underline{a}) \rightarrow \psi_{1}(\underline{a}) \vee \cdots \vee \psi_{n}(\underline{a})$ for quantifierfree ψ_{i} implying ϕ, so that we can take the disjunction of such ψ_{i} as ϕ^{*}.

Consequently it suffices to show that Θ cannot be consistent. Suppose it is and let \mathcal{M} be a model of it. Let \mathcal{A} be the substructure of \mathcal{M} generated by the \underline{a}; we distinguish two cases, depending on whether we have $T^{*} \cup \Delta(\mathcal{A}) \models \phi(\underline{a})$ or not.
If we do not have $T^{*} \cup \Delta(\mathcal{A}) \models \phi(\underline{a})$, then we can build a model \mathcal{N} of T^{*} containing \mathcal{A} as a substructure and falsifying $\phi(\underline{a})$. By $A P$, there is a common extension \mathcal{N}^{\prime} of \mathcal{M} and \mathcal{N} (over $\mathcal{A})$; since $\mathcal{M} \models \phi(\underline{a})$ and $\phi(\underline{a})$ is existential, $\mathcal{N}^{\prime} \models \phi(\underline{a})$, which cannot be because \mathcal{N} is existentially closed (it is a model of T^{*}) and $\mathcal{N} \neq \phi(\underline{a})$.
If we have $T^{*} \cup \Delta(\mathcal{A}) \models \phi(\underline{a})$, for some quantifier-free sentence $\psi(\underline{a})$ true in \mathcal{A} we have that $T^{*} \models \psi(\underline{a}) \rightarrow \phi(\underline{a})$. According to the definition of $\Theta, \neg \psi(\underline{a})$ is true in \mathcal{M} and also in \mathcal{A} (because it is quantifier-free), contradiction.

Theorem 9.5 Let T be a universal theory; then T has a model completion iff it has AP and the class of existentially closed models of T is elementary.

Proof. One side is covered by Propositions 9.2 and 9.3 and the other side by Lemmas 9.4 and 9.1.

We finally recall that the definition of a model completion given in Definition 6.1 above agrees with the standard definition used e.g. in most textbooks and a also in [Ghi05, BGT04]: ${ }^{18}$

Proposition 9.6 Let T be a universal Ω-theory and let T^{*} be a further Ω-theory extending T. We have that T^{*} is a model completion of T iff the following two conditions are satisfied: (i) every model of T embeds into a model of T^{*}; (ii) for every Ω-structure \mathcal{A} which is a model of T, we have that $T^{*} \cup \Delta(\mathcal{A})$ is a complete $\Omega^{|\mathcal{A}|}$-theory.

[^16]Proof. The left-to-right side is trivial (just observe that ground formulae are preserved by both sub- and super-structures). For the other side, suppose that $T^{*} \cup \Delta(\mathcal{A})$ is a complete $\Sigma^{|\mathcal{A}|}$-theory for every \mathcal{A} which is a model of T^{*}. We want to apply Lemma 9.4, so we need to show that all models of T^{*} are existentially closed and that T enjoys $A P$.

The former is shown as follows: let \mathcal{M} be a model of T^{*} and let $\mathcal{N} \supseteq \mathcal{M}$ be a model of T in which a certain existential formula (with parameters from \mathcal{M}) $\phi(\underline{m})$ is true. Since models of T embeds into models of T^{*}, we can suppose that $\mathcal{N} \models T^{*}$. But then, \mathcal{N} and \mathcal{M} itself are both extensions of \mathcal{M} to a model of T^{*}, whence they are both models of the complete theory $T^{*} \cup \Delta(\mathcal{M})$, which means that $\phi(\underline{m})$ is true in \mathcal{M} (since it is true in \mathcal{N}).

We finally show that $A P$ holds for T. Given embeddings $\mu_{1}: \mathcal{M} \longrightarrow \mathcal{N}_{1}$ and $\mu_{2}: \mathcal{M} \longrightarrow \mathcal{N}_{2}$ (to be amalgamated), we can freely suppose that $\mathcal{N}_{1}, \mathcal{N}_{2}$ are models of T^{*} and that μ_{1}, μ_{2} are inclusions. Both \mathcal{N}_{1} and \mathcal{N}_{2} are then models of the complete theory $T^{*} \cup \Delta(\mathcal{M})$, hence the union of their elementary diagrams (in the signature of T expanded with the constants $|\mathcal{M}|$) is consistent: any model of such union gives a model of T amalgamating \mathcal{M}_{1} and \mathcal{M}_{2} over \mathcal{M}.

9.2 Positive Algebraic Completions

We wish to get a result analogous to Theorem 9.5 for the case of positive algebraic completions. To this aim, we need to identify the semantic properties playing the role of amalgamation in our context.

We say that a theory T has the injection-transfer property (IT for short) iff for every triple $\mathcal{M}, \mathcal{N}_{1}, \mathcal{N}_{2}$ of models of T, for every homomorphism $\mu: \mathcal{M} \longrightarrow \mathcal{N}_{2}$ and for every embedding $\iota: \mathcal{M} \longrightarrow \mathcal{N}_{1}$, there are a further model \mathcal{N} of T, an embedding $\iota^{\prime}: \mathcal{N}_{2} \longrightarrow \mathcal{N}$ and a homomorphism $\mu^{\prime}: \mathcal{N}_{1} \longrightarrow \mathcal{N}$ such that the square

commutes.

Proposition 9.7 If the universal Ω-theory T has a positive algebraic completion T^{*}, then T has IT.

Proof. Let $\mu: \mathcal{M} \longrightarrow \mathcal{N}_{2}$ be a homomorphism and let $\iota: \mathcal{M} \longrightarrow \mathcal{N}_{1}$ be an embedding ($\mathcal{M}, \mathcal{N}_{1}, \mathcal{N}_{2}$ are supposed to be models of $\left.T\right)$; by Definition 3.2(ii), we can freely suppose that \mathcal{N}_{2} is a model of T^{*}. By diagrams theorems, it is sufficient to show the consistency of $T \cup \Delta^{+}\left(\mathcal{N}_{1}\right) \cup \Delta\left(\mathcal{N}_{2}\right)$. Suppose this is not consistent; by compactness there are $\theta_{1}\left(\underline{m}, \underline{n}_{1}\right), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)$, such that $T \cup\left\{\theta_{1}\left(\underline{m}, \underline{n}_{1}\right), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)\right\}$ is inconsistent. Here: a) \underline{m} are parameters from \mathcal{M}; b) $\underline{n}_{1}, \underline{n}_{2}$ are parameters from $\mathcal{N}_{1}, \mathcal{N}_{2}$ (not belonging to the image of ι, μ, respectively); c) $\theta_{1}\left(\underline{m}, \underline{n}_{1}\right)$ is a conjunction of ground atoms true in \mathcal{N}_{1}; d) $\theta\left(\underline{m}, \underline{n}_{2}\right)$ is a conjunction of ground literals true in \mathcal{N}_{2}. Let $\phi(\underline{m})$ be $\exists \underline{y} \theta_{1}(\underline{m}, \underline{y})$; we have $\mathcal{N}_{1} \models \phi^{*}(\underline{m})$, as $\phi(\underline{m}) \rightarrow$ $\phi^{*}(\underline{m})$ is a logical consequence of \bar{T} (see Lemma 3.1). Since $\phi^{*}(\underline{m})$ is geometric and open, we get that it is true in \mathcal{M} and in \mathcal{N}_{2} too. The latter is a model of T^{*}, hence $\mathcal{N}_{2} \models \phi(\underline{m})$, contradiction because $T \cup\left\{\phi(\underline{m}), \theta_{2}\left(\underline{m}, \underline{n}_{2}\right)\right\}$ is inconsistent. \dashv

Propositions 9.2 and 9.7 can be inverted, in the following sense:

Theorem 9.8 Let T be a universal theory; then T has a positive algebraic completion iff it has IT and the class of algebraically closed models of T is elementary.

Proof. One side is covered by Propositions 9.2 and 9.7. Suppose now that T has $I T$ and that there is a first-order theory T^{\prime} (in principle, not necessarily a geometric one) such that the models of T^{\prime} are exactly the algebraically closed models of T. Let $\phi(\underline{x})$ be a geometric formula and let \underline{a} be free constants. Define Γ as the set of geometric, open and ground formulae in $\Omega^{\underline{a}}$ (here Ω is obviously the signature of T) which are logical consequences of $T^{\prime} \cup\{\phi(\underline{a})\}$.

We first claim that $\Gamma \cup T^{\prime} \models \phi(\underline{a})$. Let in fact \mathcal{M} be a model of $T^{\prime} \cup \Gamma$. Let $\Delta^{-}(\underline{a})$ be the set of negative ground $\Omega^{\underline{a}}$-literals which are true in \mathcal{M}. By the definition of Γ, the set $T^{\prime} \cup \Delta^{-}(\underline{a}) \cup\{\phi(\underline{a})\}$ is consistent and hence has a model \mathcal{N}. Let \mathcal{A} be the substructure of \mathcal{N} generated by the \underline{a} (notice that \mathcal{A} is a model of T because T is universal): if we apply diagrams theorems and $I T$, we get a commutative square

From $\mathcal{N} \models \phi(\underline{a})$, we get $\mathcal{N}^{\prime} \models \phi(\underline{a})$ (because ϕ is geometric) and finally $\mathcal{M} \models \phi(\underline{a})$ because \mathcal{M} is algebraically closed. This ends the proof of the claim.

From the claim and compactness, we realize that for every geometric ϕ, there is a geometric open ϕ^{*} such that

$$
T^{\prime} \models \phi \rightarrow \phi^{*} \quad \text { and } \quad T^{\prime} \models \phi^{*} \rightarrow \phi .
$$

Let T^{*} be the extension of T axiomatized by the universal closure of the geometric sequents $\phi \rightarrow \phi^{*}$ and $\phi^{*} \rightarrow \phi$ (we have $T \subseteq T^{*} \subseteq T^{\prime}$). As every model of T embeds into a model of T^{\prime} by Lemma 9.1, condition (ii) of Definition 3.2 is satisfied; since condition (iii) comes directly from the construction, T^{*} is a positive algebraic completion of T.

10 Appendix C: Alternative Proofs

Here we give alternative proofs of some relevant Propositions from Sections 4 and 5 , relying on some slightly deeper model theoretic machinery. ${ }^{19}$ The main feature of these alternative proofs is that they do not use use either local finiteness of T_{0} or countability of the involved signatures.

We first need the following extended $I T$ property which is an interesting consequence of T_{0}-algebraic compatibility:

Proposition 10.1 Let $T_{0} \subseteq T$ be theories in signatures $\Omega_{0} \subseteq \Omega$ such that T is T_{0}-algebraically compatible. Let \mathcal{A}, \mathcal{C} be Ω_{0}-structures which are models of T_{0} and let \mathcal{M} be a Ω-structures which is a models of T; for every Ω_{0}-homomorphism μ : $\mathcal{A} \longrightarrow \mathcal{M}_{\mid \Omega_{0}}$ and for every Ω_{0}-embedding $\iota: \mathcal{A} \longrightarrow \mathcal{C}$, there are a further Ω-model \mathcal{N} of T, an Ω-embedding $\iota^{\prime}: \mathcal{M} \longrightarrow \mathcal{N}$ and a Ω_{0}-homomorphism $\mu^{\prime}: \mathcal{C} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}$ such that the square

commutes. Moreover, if $\mathcal{M} \models T \cup T_{0}^{*}$, then the embedding ι^{\prime} can be taken to be elementary.

Proof. Similarly to the proof of Proposition 9.7, we need to show that $T \cup$ $\Delta_{\Omega_{0}}^{+}(\mathcal{C}) \cup \Delta_{\Omega}(\mathcal{M})$ is consistent. Again, if this is not the case, we have that there are $\theta_{1}(\underline{a}, \underline{c}), \theta_{2}(\underline{a}, \underline{m})$, such that $T \cup\left\{\theta_{1}(\underline{a}, \underline{c}), \theta_{2}(\underline{a}, \underline{m})\right\}$ is inconsistent. Here: a) \underline{a} are parameters from $\mathcal{A} ;$ b) $\underline{c}, \underline{m}$ are parameters from \mathcal{C}, \mathcal{M} (not belonging to the image of ι, μ, respectively); c) $\theta_{1}(\underline{a}, \underline{c})$ is a conjunction of ground $\Omega_{0}^{\underline{a}, \underline{c}}$-atoms

[^17]true in \mathcal{C}; d) $\theta(\underline{a}, \underline{m})$ is a conjunction of ground $\Omega^{\underline{a}, \underline{m}}$-literals true in \mathcal{M}. Let $\phi(\underline{a})$ be $\exists \underline{y} \theta_{1}(\underline{a}, \underline{y})$; we have $\mathcal{C} \models \phi^{*}(\underline{a})$, as $\phi(\underline{a}) \rightarrow \phi^{*}(\underline{a})$ is a logical consequence of T_{0}. $\overline{\text { Since }} \bar{\phi}^{*}(\underline{a})$ is geometric and open, we get that it is true in \mathcal{A} and in \mathcal{M} too. The latter can be embedded into a model \mathcal{M}_{0} of $T \cup T_{0}^{*}$, hence $\mathcal{M}_{0} \models \phi(\underline{a})$, contradiction because $T \cup\left\{\phi(\underline{a}), \theta_{2}(\underline{a}, \underline{m})\right\}$ was supposed to be inconsistent (notice that $\mathcal{M}_{0} \models \theta_{2}(\underline{a}, \underline{m})$ follows from $\mathcal{M} \models \theta_{2}(\underline{a}, \underline{m})$ because θ_{2} is open).

In case \mathcal{M} is a model of $T \cup T_{0}^{*}$, we can replace $\Delta_{\Omega}(\mathcal{M})$ by the elementary diagram $\Delta_{\Omega}^{e}(\mathcal{M})$ of \mathcal{M} and get an elementary ι^{\prime}, because there is no need of considering the extension \mathcal{M}_{0}.

Let us now give an alternative proof of Proposition 4.2. Such an alternative proof is indeed quite simple, from the information we have now: from the data 1-5 of Proposition 4.2, we can get a Ω_{0}-homomorphism $\nu: \mathcal{A} \longrightarrow \mathcal{B}$ among a $\Omega_{0^{-}}$ substructure \mathcal{A} of a model \mathcal{N}^{\prime} of T_{1} and a Ω_{0}-substructure \mathcal{B} of a model $\mathcal{N}^{\prime \prime}$ of T_{2}. Proposition 4.2 is proved if we build an extension of ν to a Ω_{0}-homomorphism $\mathcal{N}_{\mid \Omega_{0}}^{\prime} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}$, where $\mathcal{N}_{\mid \Omega_{0}}$ is a suitable Ω_{2}-superstructure of $\mathcal{N}^{\prime \prime}$. But such extension is immediately provided by an application of Proposition 10.1: take as ι the inclusion of \mathcal{A} into \mathcal{N}^{\prime} and as μ the composition of ν with the inclusion of \mathcal{B} into $\mathcal{N}^{\prime \prime}$.

Similar arguments (but iterations are needed!) give alternative proofs of the remaining relevant Propositions from Sections 4 and 5.

An alternative proof of Proposition 4.4 is as follows. We are given models $\mathcal{N}^{0}, \mathcal{M}^{0}$ of T_{1}, T_{2} respectively; \mathcal{N}^{0} has Ω_{0}-substructures $\mathcal{A}, \mathcal{A}^{\prime}$, whereas \mathcal{M}^{0} has Ω_{0}-substructures $\mathcal{B}, \mathcal{B}^{\prime}$. We are also given Ω_{0}-homomorphisms $\nu: \mathcal{A} \longrightarrow \mathcal{B}$ and $\mu: \mathcal{B}^{\prime} \longrightarrow \mathcal{A}^{\prime}$. We can freely suppose that $\mathcal{N}^{0}, \mathcal{M}^{0}$ are models of T_{0}^{*} too, by the algebraic compatibility assumptions.

The Proposition is proved, if we succeed in producing elementary extensions $\mathcal{N}^{\infty}, \mathcal{M}^{\infty}$ of \mathcal{N}, \mathcal{M} endowed with Ω_{0}-homomorphisms

$$
\nu^{\infty}: \mathcal{N}_{\mid \Omega_{0}}^{\infty} \longrightarrow \mathcal{M}_{\mid \Omega_{0}}^{\infty}, \quad \mu^{\infty}: \mathcal{M}_{\mid \Omega_{0}}^{\infty} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}^{\infty}
$$

extending ν and μ, respectively. To this aim, we define elementary chains of models

$$
\begin{aligned}
& \mathcal{N}^{0} \subseteq \mathcal{N}^{1} \subseteq \cdots \\
& \mathcal{M}^{0} \subseteq \mathcal{M}^{1} \subseteq \cdots
\end{aligned}
$$

as well as homomorphisms

$$
\nu^{k}: \mathcal{N}_{\mid \Omega_{0}}^{k} \longrightarrow \mathcal{M}_{\mid \Omega_{0}}^{k+1}, \quad \mu^{j}: \mathcal{M}_{\mid \Omega_{0}}^{j} \longrightarrow \mathcal{N}_{\mid \Omega_{0}}^{j}
$$

($k \geq 0, j \geq 1$) such that $\nu \subseteq \nu^{k} \subseteq \nu^{k+1}$ and $\mu \subseteq \mu^{j} \subseteq \mu^{j+1}$ (once this is settled, ${ }^{20}$ it is sufficient to take unions in order to get the desired $\left.\mathcal{N}^{\infty}, \mathcal{M}^{\infty}, \nu^{\infty}, \mu^{\infty}\right)$. All

[^18]these data can be easily built by using Proposition 10.1. For instance, to get \mathcal{M}_{1} and ν_{0} it is sufficient to fill the square

where the top horizontal morphism is the composite of ν with the inclusion $\mathcal{B} \subseteq$ $\mathcal{M}_{\Omega_{0}}^{0}$ (notice that we can get an elementary embedding $\mathcal{M}^{0} \hookrightarrow \mathcal{M}^{\prime}$, since $\mathcal{M}^{0} \models$ $T_{0}^{*} \cup T_{2}$). To get \mathcal{N}_{1} and μ_{1} it is sufficient to fill the square

where the top horizontal morphism is the composite of μ with the inclusion $\mathcal{A}^{\prime} \subseteq$ $\mathcal{N}_{\mid \Omega_{0}}^{0}$ and the left vertical morphism is the composite inclusion $\mathcal{B}^{\prime} \subseteq \mathcal{M}_{0} \subseteq \mathcal{M}_{1}$. For the inductive cases, the same argument can be applied.

An alternative proof of Proposition 5.3 is as follows. Here we are given a model \mathcal{M} of T endowed with a pair of Ω_{0}-substructures \mathcal{A}, \mathcal{B}; we are also given a Ω_{0}-homomorphism $\nu: \mathcal{A} \longrightarrow \mathcal{B}$. Again we can suppose that $\mathcal{M} \models T \cup T_{0}^{*}$.

The Proposition is proved, if we succeed in producing an elementary extension \mathcal{M}^{∞} of \mathcal{M} endowed with an Ω_{0}-homomorphism

$$
\nu^{\infty}: \mathcal{M}_{\mid \Omega_{0}}^{\infty} \longrightarrow \mathcal{M}_{\mid \Omega_{0}}^{\infty}
$$

extending ν. To this aim, we define an elementary chain of models

$$
\mathcal{M}^{0} \subseteq \mathcal{M}^{1} \subseteq \ldots
$$

as well as homomorphisms

$$
\nu^{k}: \mathcal{M}_{\mid \Omega_{0}}^{k} \longrightarrow \mathcal{M}_{\mid \Omega_{0}}^{k+1}
$$

($k \geq 0$) such that $\nu \subseteq \nu^{k} \subseteq \nu^{k+1}$ (once this is settled, it is sufficient to take unions in order to get the desired \mathcal{M}^{∞} and $\left.\nu^{\infty}\right)$. To get \mathcal{M}_{1} and ν_{0} it is sufficient to fill the square

where the top horizontal morphism is the composite of ν with the inclusion $\mathcal{B} \subseteq$ $\mathcal{M}_{\mid \Omega_{0}}^{0}$. To get inductively \mathcal{M}_{k+1} and ν_{k}, one proceeds similarly.

[^0]: ${ }^{1}$ Our conditions are in general not weaker than the ones in [Ghi05], alhough this is the case for all the theories we have considered until now.

[^1]: ${ }^{2}$ When defining the connection of T_{1}, T_{2}, the theory T_{0} is actually irrelevant; all we need is its signature Ω_{0}. However, for our decidability transfer results to hold, T_{0} and the T_{i} must satisfy certain model-theoretic properties.

[^2]: ${ }^{3}$ In the general \mathcal{E}-connection scheme, there is also be an inverse diamond operator \diamond^{-}with arity $S_{2} S_{1}$, but we currently cannot treat this case (see the conclusion for a discussion).

[^3]: ${ }^{4}$ equivalently, T and T^{*} entail the same universal sentences.

[^4]: ${ }^{5}$ It is well-known that distributive lattices with least and greatest elements embed into Boolean algebras, and it is easy to embed a distributive lattice with least element into one with least and greatest elements by just adding a greatest element.

[^5]: ${ }^{6}$ It goes without saying that "finiteness" here means "finiteness modulo $T_{0} ;$ " see the definition of local finiteness.

[^6]: ${ }^{7}$ Recall that $\Delta_{\Omega_{0}}^{+}(\mathcal{A})$ denotes the positive diagram of \mathcal{A}, i.e., it consists of those atoms true in \mathcal{A}. Also note that $\neg A(\underline{a}) \in \Delta_{\Omega_{0}}(\mathcal{A}) \backslash \Delta_{\Omega_{0}}^{+}(\mathcal{A})$ iff the atom $A(\underline{a})$ is false in \mathcal{A}.

[^7]: ${ }^{8}$ In the open case, geometric and co-geometric formulae trivially coincide.

[^8]: ${ }^{9}$ One can embed a join semilattice with greatest element into a bounded distributive lattice by taking the dual of the lattice of non-empty upward closed subsets; that bounded distributive lattices embed into Boolean algebras, and that Boolean algebras embed into atomless Boolean algebras are standard lattice-theoretic facts.

[^9]: ${ }^{10}$ This is the kind of problem considered in [KLWZ04], where satisfiability of an A-Box con-

[^10]: taining many individual constants, with respect to a given T-Box, is taken into consideration. Notice that, by contrast, relativized satisfiability as traditionally intended in modal logic concerns local satisfiability of just one formula with respect to a global constraint formed by a finite set of formulae.

[^11]: ${ }^{11}$ Use Boolean bi-implication and complement to show this.
 ${ }^{12}$ Propositional variables of sort 1 are kept disjoint from propositional variables of sort 2.

[^12]: ${ }^{13}$ See Example 2.1.

[^13]: ${ }^{14} \mathrm{We}$ use $t^{\mathcal{B}_{\mathcal{F}_{2}}}$ to denote the interpretation of the ground term t in the structure $\mathcal{B}_{\mathcal{F}_{2}}$ (and similarly for \mathcal{F}_{1}).
 ${ }^{15}$ By the definition of Θ, different elements of Θ are interpreted by disjoint sets in \mathcal{F}_{1}, and the union of the interpretations of all elements of Θ in \mathcal{F}_{1} is W_{1}.

[^14]: ${ }^{16}$ Similar adaptations can be done also for the coalgebraic completions case, but we do not insist on them, for simplicity.

[^15]: ${ }^{17}$ The construction needs to be repeated, in order to take care of existential formulae with parameters from $\left|\mathcal{M}_{1}\right| \backslash|\mathcal{M}|$.

[^16]: ${ }^{18}$ For a slightly different proof of Proposition 9.6 (which is nevertheless well-known), see [Ghi03], Appendix B. The alternative definition suggested by Proposition 9.6 is actually preferable, because it conveniently applies also to theories which might not be universal. We adopted Definition 6.1, just to make it parallel to Definition 3.2.

[^17]: ${ }^{19}$ Similar alternative proofs can be given also for the relevant Propositions from Section 6, but we do not insist on them. Moreover, the experienced model-theorist will realize that further alternative proofs can be obtained by using the cumbersome formalism of saturated/special models.

[^18]: ${ }^{20}$ Recall the elementary chain theorem [CK90], according to which the union of an elementary chain of models is elementarily equivalent to each member of the chain.

