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Abstrat

Basially, the onnetion of two many-sorted theories is obtained by

taking their disjoint union, and then onneting the two parts through

onnetion funtions that must behave like homomorphisms on the shared

signature. We determine onditions under whih deidability of the validity

of universal formulae in the omponent theories transfers to their onne-

tion. In addition, we onsider variants of the basi onnetion sheme.
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1 Introdution

The ombination of deision proedures for logial theories arises in many areas of

logi in omputer siene, suh as onstraint solving, automated dedution, term

rewriting, modal logis, and desription logis. In general, one has two �rst-order

theories T

1

and T

2

over signatures �

1

and �

2

, for whih validity of a ertain type

of formulae (e.g., universal, existential positive, et.) is deidable. These theories

are then ombined into a new theory T over a ombination � of the signatures

�

1

and �

2

. The question is whether deidability transfers from T

1

; T

2

to their

ombination T .

One way of ombining the theories T

1

; T

2

is to build their union T

1

[T

2

. Both the

Nelson-Oppen ombination proedure [NO79, Nel84℄ and ombination proedures

for the word problem [Pig74, SS89, Nip91, BT97℄ address this type of ombina-

tion, but for di�erent types of formulae to be deided. Whereas the original

ombination proedures were restrited to the ase of theories over disjoint signa-

tures, there are now also solutions for the non-disjoint ase [DKR94, TR03, BT02,

FG03, Ghi05, BGT04℄, but they always require some additional restritions sine

it is easy to see that in the unrestrited ase deidability does not transfer. Similar

ombination problems have also been investigated in modal logi, where one asks

whether deidability of (relativized) validity transfers from two modal logis to

their fusion [KW91, Spa93, Wol98, BLSW02℄. The approahes in [Ghi05, BGT04℄

atually generalize these results from equational theories indued by modal logis

to more general �rst-order theories satisfying ertain model-theoreti restritions:

the theories T

1

; T

2

must be ompatible with their shared theory T

0

, and this shared

theory must be loally �nite (i.e., its �nitely generated models are �nite). The

theory T

i

is ompatible with the shared theory T

0

i� (i) T

0

� T

i

; (ii) T

0

has a

model ompletion T

�

0

; and (iii) every model of T

i

embeds into a model of T

i

[T

�

0

.

In [KLWZ04℄, a new ombination sheme for modal logis, alled E-onnetion,

was introdued, for whih deidability transfer is muh simpler to show than in

the ase of the fusion. Intuitively, the di�erene between fusion and E-onnetion

an be explained as follows. A model of the fusion is obtained from two models of

the omponent logis by identifying their domains. In ontrast, a model of the E-

onnetion onsists of two separate models of the omponent logis together with

ertain onneting relations between their domains. There are also di�erenes in

the syntax of the ombined logi. In the ase of the fusion, the Boolean operators

are shared, and all operators an be applied to eah other without restritions. In

the ase of the E-onnetion, there are two opies of the Boolean operators, and

operators of the di�erent logis annot be mixed; the only onnetion between the

two logis are new (diamond) modal operators that are indued by the onneting

relations.

If we want to adapt this approah to the more general setting of ombining �rst-

order theories, then we must onsider many-sorted theories sine only the sorts
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allow us to keep the domains separate and to restrit the way funtion symbols

an be applied to eah other. Let T

1

; T

2

be two many-sorted theories that may

share some sorts as well as funtion and relation symbols. We �rst build the

disjoint union T

1

℄T

2

of these two theories (by using disjoint opies of the shared

parts), and then onnet them by introduing onnetion funtions between the

shared sorts. These onnetion funtions must behave like homomorphisms for

the shared funtion and prediate symbols, i.e., the axioms stating this are added

to T

1

℄ T

2

. This orresponds to the fat that the new diamond operators in the

E-onnetion approah distribute over disjuntion and do not hange the false

formula ?. We all the ombined theory obtained this way the onnetion of T

1

and T

2

.

This kind of onnetion between theories has already been onsidered in auto-

mated dedution (see, e.g., [AK97, Zar02℄), but only in very restrited ases where

both T

1

and T

2

are �xed theories (e.g., the theory of sets and the theory of inte-

gers in [Zar02℄) and the onnetion funtions have a �xed meaning (like yielding

the length of a list). In ategorial logi, this type of onnetion an be seen as

an instane of a more general o-omma onstrution in biategories assoiated

with theories and syntati interpretations, see for instane [Zaw95℄. However, in

this general setting, omputational properties of the ombined theories have not

been onsidered yet.

This paper is a �rst step towards providing general results on the transfer of

deidability from omponent theories to their onnetion. We start by onsidering

the simplest ase where there is just one onnetion funtion, and show that

deidability transfers whenever ertain model-theoreti onditions are satis�ed.

These onditions are weaker than the ones required in [BGT04℄ for the ase of

the union of theories.

1

In addition, both the ombination proedure and its

proof of orretness are muh simpler than the ones in [Ghi05, BGT04℄. The

approah easily extends to the ase of several onnetion funtions. We will

also onsider variants of the general ombination sheme where the onnetion

funtion must satisfy additional properties (like being surjetive, an embedding,

an isomorphism), or where a theory is onneted with itself. The �rst variant

is, for example, interesting sine the ombination result for the union of theories

shown in [Ghi05℄ an be obtained from the variant where one has an isomorphism

as onnetion funtion. The seond ase is interesting sine it an be used to

redue the global onsequene problem in the modal logi K to propositional

satis�ability, whih is a surprising result.

1

Our onditions are in general not weaker than the ones in [Ghi05℄, alhough this is the ase

for all the theories we have onsidered until now.
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2 Notation and de�nitions

In this setion, we �x the notation and give some important de�nitions, in par-

tiular a formal de�nition of the onnetion of two theories.

2.1 Many-sorted �rst-order logi

We use standard many-sorted �rst-order logi (see, e.g., [Gal86℄), but try to avoid

the notational overhead aused by the presene of sorts as muh as possible. Thus,

a signature 
 onsists of a non-empty set of sorts S together with a set of funtion

symbols F and a set of prediate symbols P. The funtion and prediate symbols

are equipped with arities from S

�

in the usual way. For example, if the arity of

f 2 F is S

1

S

2

S

3

, then this means that the funtion f takes tuples onsisting of an

element of sort S

1

and an element of sort S

2

as input, and produes an element of

sort S

3

. We onsider logi with equality, i.e., the set of prediate symbols ontains

a symbol �

S

for equality in every sort S. Usually, we will just use � without

expliitly speifying the sort. In this paper we usually assume that signatures are

ountable.

Terms and �rst-order formulae over 
 are de�ned in the usual way, i.e., they must

respet the arities of funtion and prediate symbols, and the variables ourring

in them are also equipped with sorts. An 
-atom is a prediate symbol applied

to (sort-onforming) terms, and an 
-literal is an atom or a negated atom. A

ground literal is a literal that does not ontain variables. We use the notation

�(x) to express that � is a formula whose free variables are among the ones in the

tuple of variables x. An 
-sentene is a formula over 
 without free variables.

An 
-theory T is a set of 
-sentenes (alled the axioms of T ). If T; T

0

are 
-

theories, then we write (by a sleight abuse of notation) T � T

0

to express that

all the axioms of T are logial onsequenes of the axioms of T

0

.

From the semanti side, we have the standard notion of an 
-struture A, whih

onsists of non-empty and pairwise disjoint domains A

S

for every sort S, and

interprets funtion symbols f and prediate symbols P by funtions f

A

and

prediates P

A

aording to their arities. By A (or sometimes by jAj) we denote

the union of all domains A

S

. Validity of a formula � in an 
-struture A (A j=

�), satis�ability, and logial onsequene are de�ned in the usual way. The 
-

struture A is a model of the 
-theory T i� all axioms of T are valid in A. If

�(x) is a formula with free variables x = x

1

; : : : ; x

n

and a = a

1

; : : : ; a

n

is a (sort-

onforming) tuple of elements of A, then we write A j= �(a) to express that �(x)

is valid in A under the assignment fx

1

7! a

1

; : : : ; x

n

7! a

n

g. Note that �(x) is

valid in A i� it is valid under all assignments i� its universal losure is valid in A.

An 
-homomorphism between two 
-strutures A and B is a mapping � : A! B

that is sort-onforming (i.e., maps elements of sort S in A to elements of sort S
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in B), and satis�es the ondition

(�) A j= A(a

1

; : : : ; a

n

) implies B j= A(�(a

1

); : : : ; �(a

n

))

for all 
-atoms A(x

1

; : : : ; x

n

) and (sort-onforming) elements a

1

; : : : ; a

n

of A. In

ase the onverse of (�) holds too, � is alled an embedding. Note that an embed-

ding is something more than just an injetive homomorphism sine the stronger

ondition must hold not only for the equality prediate, but for all prediate

symbols. If the embedding � is the identity on A, then we say that A is a sub-

struture of B. In ase (�) holds for all �rst order formulae, then � is said to be

an elementary embedding. If the elementary embedding � is the identity on A,

then we say that A is an elementary substruture of B or that B is an elementary

extension of A. An isomorphism is a surjetive embedding.

We say that � is a subsignature of 
 (written � � 
) i� � is a signature that

an be obtained from 
 by removing some of its sorts and funtion and prediate

symbols. If � � 
 and A is an 
-struture, then the �-redut of A is the �-

struture A

j�

obtained from A by forgetting the interpretations of sorts, funtion

and prediate symbols from 
 that do not belong to �. Conversely, A is alled an

expansion of the �-struture A

j�

to the larger signature 
. If � : A! B is an 
-

homomorphism, then the �-redut of � is the �-homomorphism �

j�

: A

j�

! B

j�

obtained by restriting � to the sorts that belong to �, i.e., by restriting the

mapping to the domain of A

j�

.

Given a set X of onstant symbols not belonging to the signature 
, but eah

equipped with a sort from 
, we denote by 


X

the extension of 
 by these new

onstants. If A is an 
-struture, then we an view the elements of A as a set

of new onstants, where a 2 A

S

has sort S. By interpreting eah a 2 A by

itself, A an also be viewed as an 


A

-struture. The positive diagram �

+




(A)

of A is the set of all ground 


A

-atoms that are true in A, the diagram �




(A)

of A is the set of all ground 


A

-literals that are true in A, and the elementary

diagram �

e




(A) of A is the set of all 


A

-sentenes that are true in A. The

subsript 
 in �

+




(A), �




(A) and �

e




(A) is sometimes omitted if there is no

danger of onfusion. Robinson's diagram theorems [CK90℄ say that there is a

homomorphism (embedding, elementary embedding) between the 
-strutures A

and B i� it is possible to expand B to an 


A

-struture in suh a way that it

beomes a model of the positive diagram (diagram, elementary diagram) of A.

2.2 Basi onnetions

In the remainder of this setion, we introdue our basi sheme for onneting

many-sorted theories, and illustrate it with the example of E-onnetions of modal

logis. Let T

1

; T

2

be theories over the respetive signatures 


1

;


2

, and let 


0

be

a ommon subsignature of 


1

and 


2

. We all 


0

the onneting signature. In
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addition, let T

0

be an 


0

-theory

2

that is ontained in both T

1

and T

2

. We de�ned

the new theory T

1

>

T

0

T

2

(alled the onnetion of T

1

and T

2

over T

0

) as follows.

The signature 
 of T

1

>

T

0

T

2

ontains the disjoint union 


1

℄


2

of the signatures




1

and 


2

, where the shared sorts and the shared funtion and prediate symbols

are appropriately renamed, e.g., by attahing labels 1 and 2. Thus, if S (f , P )

is a sort (funtion symbol, prediate symbol) ontained in both 


1

and 


2

, then

S

i

(f

i

, P

i

) for i = 1; 2 are its renamed variants in the disjoint union, where the

arities are aordingly renamed. In addition, 
 ontains a new funtion symbol

h

S

of arity S

1

S

2

for every sort S of 


0

.

The axioms of T

1

>

T

0

T

2

are obtained as follows. Given an 


i

-formula �, its

renamed variant �

i

is obtained by replaing all shared symbols by their renamed

variants with label i. The axioms of T

1

>

T

0

T

2

onsist of

f�

1

j � 2 T

1

g [ f�

2

j � 2 T

2

g;

together with the universal losures of the formulae

h

S

(f

1

(x

1

; : : : ; x

n

)) � f

2

(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

P

1

(x

1

; : : : ; x

n

)! P

2

(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

for every funtion (prediate) symbol f (P ) in 


0

of arity S

1

: : : S

n

S (S

1

: : : S

n

).

Sine the signatures 


1

and 


2

have been made disjoint, and sine the additional

axioms state that the family of mappings h

S

behaves like an 


0

-homomorphism,

it is easy to see that the models of T

1

>

T

0

T

2

are formed by triples of the form

(M

1

;M

2

; h

M

), where M

1

is a model of T

1

, M

2

is a model of T

2

and h

M

is an




0

-homomorphism

h

M

:M

1

j


0

!M

2

j


0

between the respetive 


0

-reduts.

Example 2.1 The most basi variant of an E-onnetion [KLWZ04℄ is an in-

stane of our approah if one translates it into the algebrai setting. The abstrat

desription systems onsidered in [KLWZ04℄, whih over all the usual modal and

desription logis, orrespond to Boolean-based equational theories [BGT04℄. The

theory E is alled Boolean-based equational theory i� its signature � has just one

sort, equality is the only prediate symbol, the set of funtion symbols ontains

the Boolean operators u;t;:;>;?, and its set of axioms onsists of identities

(i.e., the universal losures of atoms s � t) and ontains the Boolean algebra

axioms.

For example, onsider the basi modal logi K, where we use only the modal

operator � (sine � an then be de�ned). The Boolean-based equational theory

2

When de�ning the onnetion of T

1

; T

2

, the theory T

0

is atually irrelevant; all we need

is its signature 


0

. However, for our deidability transfer results to hold, T

0

and the T

i

must

satisfy ertain model-theoreti properties.
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E

K

orresponding toK is obtained from the theory of Boolean algebras by adding

the identities �(x t y) � �(x) t �(y) and �(?) � ?.

Let us illustrate the notion of an E-onnetion also on this simple example (see

Appendix A for a more general desription of E-onnetions and their relationship

to the notion of a onnetion introdued in this report). To build the E-onnetion

of K with itself, one takes two disjoint opies of K, obtained by renaming the

Boolean operators and the diamonds, e.g., into u

i

;t

i

;:

i

;>

i

;?

i

;�

i

for i = 1; 2.

The signature of the E-onnetion ontains all these renamed symbols together

with a new symbol �. However, it is now a two-sorted signature, where symbols

with index i are applied to elements of sort S

i

and yield as results an element of

this sort. The new symbol has arity S

1

S

2

.

3

The semantis of this E-onnetion an

be given in terms of Kripke strutures. A Kripke struture for the E-onnetion

onsists of two Kripke strutures K

1

;K

2

for K over disjoint domains W

1

and W

2

,

together with an additional onneting relation E � W

2

�W

1

. The symbols with

index i are interpreted in K

i

, and the new symbol � is interpreted as the diamond

operator indued by E, i.e., for every X � W

1

we have

�(X) := fx 2 W

2

j 9y 2 W

1

: (x; y) 2 E ^ y 2 Xg:

This interpretation of the new operator implies that it satis�es the usual identities

of a diamond operator, i.e., �(x t

1

y) � �(x) t

2

�(y) and �(?

1

) � ?

2

, and that

these identities are suÆient to haraterize its semantis. Thus, the equational

theory orresponding to the E-onnetion of K with itself onsists of these two

axioms, together with the axioms of E

K

1

and E

K

2

.

Obviously, this theory is also obtained as the onnetion of the theory E

K

with

itself, if the onneting signature 


0

onsists of the single sort of E

K

, the prediate

symbol �, and the funtion symbols t;?. As theory T

0

we an take the theory

of semilatties, i.e., the axioms that say that t is assoiative, ommutative, and

idempotent, and that ? is a unit for t.

Example 2.2 The previous example an be varied by additionally inluding u

in the onneting signature, and taking as theory T

0

the theory of distributive

latties with a least element ?. It is easy to see that this orresponds to the ase

of an E-onnetion where the onneting relation E is required to be a partial

funtion (we all suh an E-onnetion deterministi). Finally, if we additionally

inlude both u and > in the onneting signature, and take T

0

to be the the-

ory of bounded distributive latties (i.e., distributive latties with a least and a

greatest element), then the equational theory obtained through our onnetion

orresponds to the ase of an E-onnetion where the onneting relation E is a

(total) funtion (we all suh an E-onnetion funtional).

3

In the general E-onnetion sheme, there is also be an inverse diamond operator �

�

with

arity S

2

S

1

, but we urrently annot treat this ase (see the onlusion for a disussion).
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3 Positive algebrai ompletions and ompati-

bility

In order to transfer deidability results from the omponent theories T

1

; T

2

to

their onnetion T

1

>

T

0

T

2

over T

0

, the theories T

0

; T

1

; T

2

must satisfy ertain

model-theoreti onditions, whih we introdue below. The most important one

is that T

0

has a positive algebrai ompletion. Before we an de�ne this onept,

we must introdue some notions from model theory.

The formula � is alled open i� it does not ontain quanti�ers; it is alled universal

i� it is obtained from an open formula by adding a pre�x of universal quanti�ers;

and it is alled geometri i� it is built from atoms by using onjuntion, disjun-

tion, and existential quanti�ers. The latter formulae are alled \geometri" in

ategorial logi [MR77℄ sine they are preserved under inverse image geometri

morphisms.

The main property of geometri formulae is that they are preserved under ho-

momorphisms in the following sense: if � : A ! B is a homomorphism between


-strutures and �(x

1

; : : : ; x

n

) is a geometri formula over 
, then

A j= �(a

1

; : : : ; a

n

) implies B j= �(�(a

1

); : : : ; �(a

n

))

for all (sort-onforming) a

1

; : : : ; a

n

2 A.

Open formulae are related to embeddings in various way. First, they are pre-

served under building sub- and superstrutures, i.e., if A is a substruture of B,

�(x

1

; : : : ; x

n

) is an open formula, and a

1

; : : : ; a

n

2 A are sort-onforming, then

A j= �(a

1

; : : : ; a

n

) i� B j= �(a

1

; : : : ; a

n

). The following lemma is well-known

[CK90℄:

Lemma 3.1 Two 
-theories T; T

0

entail the same set of open formulae i� every

model of T an be embedded into a model of T

0

and vie versa.

Proof. The diretion from right to left follows from the fat that open formulae

are preserved under building substrutures.

For the other diretion, assume that T and T

0

entail the same set of open formulae,

and take any model M of T (for T

0

the argument is symmetri). First observe

that T

0

[ �(M) is onsistent. Otherwise, by ompatness of �rst-order logi,

T

0

j= �(a) for some ground sentene �(a) with additional free onstants a from

M that is false inM. Sine a onsists of free onstants, it follows that T

0

j= �(x),

and onsequently T j= �(x) by assumption. Sine T j= �(x) i� T j= 8x:�(x), this

is a ontradition sine �(a) is false in M.

Now, letN be a model of T

0

[�(M). Thus, N is a model of T

0

, and by Robinson's

diagram theorem, M an be embedded into N . a

9



Sine a theory entails an open formula i� it entails its universal losure, the

lemma also says that two theories T; T

0

entail the same universal sentenes i�

every model of T an be embedded into a model of T

0

and vie versa.

The theory T is a universal theory i� its axioms are universal sentenes; it is a

geometri theory i� it an be axiomatized by using universal losures of geometri

sequents, where a geometri sequent is an impliation between two geometri

formulae. Note that any universal theory is geometri sine open formulae are

onjuntions of lauses and lauses an be rewritten as geometri sequents.

De�nition 3.2 Let T be a universal and T

�

a geometri theory over 
. We say

that T

�

is a positive algebrai ompletion of T i� the following properties hold:

1. T � T

�

;

2. every model of T embeds into a model of T

�

;

4

3. for every geometri formula �(x) there is an open geometri formula �

�

(x)

suh that T

�

j= �$ �

�

.

It an be shown that the models of T

�

are exatly the algebraially losed models

of T (see Appendix B below). In partiular, this means that the positive algebrai

ompletion of T is unique, provided that it exists.

When trying to show that Property 3 of De�nition 3.2 holds for given theo-

ries T; T

�

, then it is suÆient to onsider simple existential formulae �(x), i.e.,

formulae that are obtained from onjuntions of atoms by adding an existen-

tial quanti�er pre�x. In fat, any geometri formula � an be normalized to a

disjuntion �

1

_ : : : _ �

n

of simple existential formulae �

i

by using distributiv-

ity of onjuntion and existential quanti�ation over disjuntion. In addition, if

T

�

j= �

i

$ �

�

i

for geometri open formulae �

�

i

(i = 1; : : : ; n), then �

�

1

_ : : : _ �

�

n

is also a geometri open formula and T

�

j= (�

1

_ : : : _ �

n

)$ (�

�

1

_ : : : _ �

�

n

).

The following lemma will turn out to be useful later on.

Lemma 3.3 Assume that T; T

�

satisfy Property 1 and 2 of De�nition 3.2. If �(x)

is a simple existential formula and �

�

(x) is an open formula, then T

�

j= �! �

�

i� T j= �! �

�

.

This is an immediate onsequene of the fat that � ! �

�

is then equivalent to

an open formula, and hene Lemma 3.1 applies.

The �rst ingredient of our ombinability ondition is the following notion of om-

patibility, whih is a variant of analogous ompatibility onditions introdued in

[Ghi05, BGT04℄ for the ase of the union of theories.

4

equivalently, T and T

�

entail the same universal sentenes.

10



De�nition 3.4 Let T

0

� T be theories over the respetive signatures 


0

� 


1

.

We say that T is T

0

-algebraially ompatible i� T

0

is universal, has a positive

algebrai ompletion T

�

0

, and every model of T embeds into a model of T [ T

�

0

.

The seond ingredient is that T

0

must be loally �nite, i.e., all �nitely generated

models of T

0

are �nite. To be more preise, we need the following e�etive variant

of loal �niteness de�ned in [Ghi05, BGT04℄.

De�nition 3.5 Let T

0

be a universal theory over the �nite signature 


0

. Then

T

0

is alled e�etively loally �nite i� for every tuple of variables x, one an

e�etively determine terms t

1

(x); : : : ; t

k

(x) suh that, for every further term u(x),

we have that T

0

j= u � t

i

for some i = 1; : : : ; k.

4 The main ombination results

We are interested in deiding the universal fragments of our theories, i.e., validity

of universal formulae (or, equivalently open formulae) in a theory T . This is the

deision problem also treated by the Nelson-Oppen ombination method (albeit

for the union of theories). It is well know that this problem is equivalent to the

problem of deiding whether a set of literals is satis�able in some model of T .

We all suh a set of literals a onstraint.

By introduing new free onstants (i.e., onstants not ourring in the axioms

of the theory), we an assume without loss of generality that suh onstraints

ontain no variables. In addition, we an transform any ground onstraint into

an equisatis�able set of ground at literals, i.e., literals of the form

a � f(a

1

; : : : ; a

n

); P (a

1

; : : : ; a

n

); or :P (a

1

; : : : ; a

n

);

where a; a

1

; : : : ; a

n

are (sort-onforming) free onstants, f is a funtion symbol,

and P is a prediate symbol (possibly also equality).

In the following, we �rst treat the ase of a basi onnetion, as introdued

in Setion 2. Then, we show that the ombination result an be extended to

onnetions with several onnetion funtions, possibly going in both diretions.

Finally, we give examples of theories satisfying our ombinability onditions.

4.1 Basi onnetions

In this subsetion we show under what onditions deidability of the universal

fragments of T

1

; T

2

transfers to their onnetion T

1

>

T

0

T

2

.
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Theorem 4.1 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, and that T

2

is T

0

-algebraially

ompatible. Then the deidability of the universal fragments of T

1

and T

2

entails

the deidability of the universal fragment of T

1

>

T

0

T

2

.

To prove the theorem, we onsider a �nite set � of ground at literals over the

signature 
 of T

1

>

T

0

T

2

(with additional free onstants), and show how it an be

tested for satis�ability in T

1

>

T

0

T

2

. Sine all literals in � are at, we an divide

� into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2) is a set of literals

in the signature 


i

(expanded with free onstants), and �

0

is of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g

for free onstants a

1

; b

1

; : : : ; a

n

; b

n

.

Proposition 4.2 The onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

T

0

T

2

i�

there exists a triple (A;B; �) suh that

1. A is an 


0

-model of T

0

, whih is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whih is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism suh that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. The only-if diretion is simple. In fat, as noted in Setion 2, a model M

of T

1

>

T

0

T

2

is given by a triple (M

1

;M

2

; h

M

), where M

1

is a model of T

1

, M

2

is a model of T

2

and h

M

: M

1

j


0

! M

2

j


0

is an 


0

-homomorphism between the

respetive 


0

-reduts. Assume that this model M satis�es �. We an take as

A the substruture of M

1

j


0

generated by (the interpretations of) a

1

; : : : ; a

n

, as

B the substruture of M

2

j


0

generated by (the interpretations of) b

1

; : : : ; b

n

, and

as homomorphism � the restrition of h

M

to A. It is easy to see that the triple

(A;B; �) obtained this way satis�es 1.{5. of the proposition.

Conversely, assume that (A;B; �) is a triple satisfying 1.{5. of the proposition.

Beause of 4. and 5., there is an 


1

-model N

0

of T

1

satisfying �

1

[�




0

(A) and an




2

-model N

00

of T

2

satisfying �

2

[�




0

(B). By Robinson's diagram theorem, N

0

has A as an 


0

-substruture and N

00

has B as an 


0

-substruture. We assume

without loss of generality that N

0

is at most ountable and that N

00

is a model

of T

2

[ T

�

0

. The latter assumption is by T

0

-algebrai ompatibility of T

2

, and the
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former assumption is by the L�owenheim-Skolem theorem sine our signatures are

at most ountable. Let us enumerate the elements of N

0

as



1

; 

2

; : : : ; 

n

; 

n+1

; : : :

where we assume that 

i

= a

A

i

(i = 1; : : : ; n), i.e., 

1

; : : : ; 

n

are generators of A.

We de�ne an inreasing sequene of sort-onforming funtions �

k

: f

1

; : : : 

k

g !

N

00

(for k � n) suh that, for every ground 


f

1

;:::;

k

g

0

-atom A we have

N

0

j


0

j= A(

1

; : : : ; 

k

) implies N

00

j


0

j= A(�

k

(

1

); : : : ; �

k

(

k

)):

We �rst take �

n

to be �. To de�ne �

k+1

(for k � n), let us onsider the onjuntion

 (

1

; : : : ; 

n

; 

n+1

) of the 


f

1

;:::;

n+1

g

0

-atoms that are true in N

0

j


0

: this onjuntion

is �nite (modulo taking representative terms, thanks to loal �niteness of T

0

). Let

�(x

1

; : : : ; x

n

) be 9x

n+1

: (x

1

; : : : ; x

n

; x

n+1

) and let �

�

(x

1

; : : : ; x

n

) be a geometri

open formula suh that T

�

0

j= �$ �

�

.

By Lemma 3.3, T

0

j= � ! �

�

, and thus we have N

0

j


0

j= �

�

(

1

; : : : ; 

k

) and

also N

00

j


0

j= �

�

(�

k

(

1

); : : : ; �

k

(

k

)) by the indution hypothesis. Sine N

00

j


0

is a

model of T

�

0

, there is a b suh that N

00

j


0

j=  (�

k

(

1

); : : : ; �

k

(

k

); b) for some b. We

now obtain the desired extension �

k+1

of �

k

by setting �

k+1

(

k+1

) := b. Taking

�

1

=

S

k�n

�

k

, we �nally obtain a homomorphism �

1

: N

0

j


0

! N

00

j


0

suh that

the triple (N

0

;N

00

; �

1

) is a model of T

1

>

T

0

T

2

that satis�es �

0

[ �

1

[ �

2

. a

The above proof uses the assumption that T

0

is loally �nite. By using heavier

model-theoreti mahinery, one an also prove the proposition without using loal

�niteness of T

0

(see Appendix C below). However, sine the proof of Theorem 4.1

needs this assumption anyway (see below), we gave the above proof sine it is

simpler.

To onlude the proof of Theorem 4.1, we desribe a non-deterministi deision

proedure that e�etively guesses an appropriate triple (A;B; �) and then heks

whether it satis�es 1.{5. of Proposition 4.2. To guess an 


0

-model of T

0

that

is generated by a �nite set X, one uses e�etive loal �niteness of T

0

to obtain

an e�etive bound on the size of suh a model and guesses an 


0

-struture that

satis�es this size bound.

One the 


0

-strutures A;B are given, one an build their diagrams, and use the

deision proedures for T

1

and T

2

to hek whether 4. and 5. of Proposition 4.2

are satis�ed. If the answer is yes, then A;B are also models of T

0

: in fat, if for

instane �

1

[ �




0

(A) is satis�able in the model M of T

1

, then M has A as a

substruture, and this implies A j= T

0

beause T

0

is universal and T

0

� T

1

.

Finally, one an guess a mapping � : A ! B that satis�es �(a

A

j

) = b

B

j

, and

then use the diagrams of A;B to hek whether � satis�es the homomorphism

ondition (�).
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4.2 Two-side onnetions

The proof of Proposition 4.2 basially shows that our deidability transfer result

an easily be extended to the ase of several onnetion funtions, possibly going

in both diretions. For simpliity, we examine only the ase of two onnetion

funtions, going in the two opposite diretions.

The theory T

1

>

T

0

<T

2

is de�ned as the union of T

1

>

T

0

T

2

and T

2

>

T

0

T

1

. Thus, a

model of T

1

>

T

0

<T

2

is a 4-tuple given by a model M

1

of T

1

, a model M

2

of T

2

and two homomorphisms

h

M

:M

1

j


0

�!M

2

j


0

and g

M

:M

2

j


0

�!M

1

j


0

among the respetive 


0

-reduts.

Theorem 4.3 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, and that T

1

; T

2

are both T

0

-

algebraially ompatible. Then the deidability of the universal fragments of T

1

and T

2

entails the deidability of the universal fragment of T

1

>

T

0

<T

2

.

To prove the Theorem, notie that any �nite set of ground at literals (with free

onstants) � to be tested for T

1

>

T

0

< T

2

-onsisteny an be divided into four

disjoint sets

� = �

1

[�

2

[ �

1

[ �

2

;

where �

i

(i = 1; 2) are sets of literals in the signature 


i

(expanded with free

onstants), and

�

1

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g and �

2

= fg(b

0

1

) � a

0

1

; : : : ; g(b

0

m

) � a

0

m

g:

Theorem 4.3 is an easy onsequene of the following proposition.

Proposition 4.4 The onstraint � = �

1

[�

2

[�

1

[�

2

is satis�able in T

1

>

T

0

<T

2

i� there exist two triples (A;B; �) and (A

0

;B

0

; �

0

) suh that

1. A is a 


0

-model of T

0

that is generated by fa

A

1

; : : : ; a

A

n

g, B is a 


0

-model of

T

0

whih is generated by fb

B

1

; : : : ; b

B

n

g and � : A! B is a 


0

-homomorphism

suh that �(a

A

j

) = b

B

j

for all j = 1; : : : ; n;

2. A

0

is a 


0

-model of T

0

that is generated by fa

0

1

A

0

; : : : ; a

0

m

A

0

g, B is a 


0

-

model of T

0

that is generated by fb

0

1

B

0

; : : : ; b

0

m

B

0

g and � : B

0

! A

0

is a




0

-homomorphism suh that �

0

(b

0

j

B

0

) = a

0

j

A

0

for all j = 1; : : : ; m;

3. �

1

[�




0

(A) [�




0

(A

0

) is satis�able in T

1

, and

�

2

[�




0

(B) [�




0

(B

0

) is satis�able in T

2

.
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Proof. The only-if diretion is again simple. To proof the if diretion, assume that

for some � : A! B and � : B

0

!A

0

, the set of literals �

1

[�




0

(A)[�




0

(A

0

) is

satis�able in an 


1

-model N

0

of T

1

, and the set of literals �

2

[�




0

(B)[�




0

(B

0

)

is satis�able in an 


2

-model N

00

of T

2

. By Robinson's diagram theorem, N

0

has

A and A

0

as 


0

-substrutures, and N

00

has B and B

0

as 


0

-substrutures. We

assume without loss of generality that N

0

and N

00

are at most ountable models

of T

1

[ T

�

0

and T

1

[ T

�

0

, respetively.

Now, an argument idential to the one used in the proof of Proposition 4.2 yields

the homomorphisms

�

1

: N

0

j


0

�! N

00

j


0

and �

0

1

: N

00

j


0

�! N

0

j


0

;

whih are needed in order to obtain a full model of T

1

>

T

0

<T

2

. a

It should be lear how to adapt this proof to the ase of more than one onnetion

funtion going in eah diretion.

4.3 Examples

When trying to axiomatize the positive algebrai ompletion T

�

0

of a given univer-

sal theory T

0

, it is suÆient to produe for every simple existential formula �(x)

an appropriate geometri and open formula �

�

(x). Take as theory T

�

0

the one

axiomatized by T

0

together with the formulae �$ �

�

for every simple existential

formula �. In order to omplete the job, it is suÆient to show that every model

of T

0

embeds into a model of T

�

0

. It should also be noted that one an without

loss of generality restrit the attention to simple existential formulae with just

one existential quanti�er sine more than one quanti�er an then be treated by

iterated elimination of single quanti�ers.

In the next example we enounter a speial ase where the formulae � $ �

�

are already valid in T

0

. In this ase, we have T

0

= T

�

0

, and thus the model-

embedding ondition is trivially satis�ed. In addition, any theory T with T

0

� T

is T

0

-algebraially ompatible.

Example 4.5 Reall from [BGT04℄ the de�nition of a Gaussian theory. Let us

all a onjuntion of atoms an e-formula. The universal theory T

0

is Gaussian

i� for every e-formula �(x; y) it is possible to ompute an e-formula  (x) and a

term s(x; z) with fresh variables z suh that

T

0

j= �(x; y)$ ( (x) ^ 9z:(y � s(x; z))): (1)

Any Gaussian theory T

0

is its own positive algebrai ompletion. In fat, it is

easy to see that (1) implies T

0

j= (9y:�(x; y)) $  (x), and thus the omment

given above this example applies.
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As a onsequene, our ombination result applies to all the examples of e�etively

loally �nite Gaussian theories given in [BGT04℄ (e.g., Boolean algebras, vetor

spaes over a �nite �eld, empty theory over a signature whose sets of prediates

onsists of � and whose set of funtion symbols is empty): if the universal theory

T

0

is e�etively loally �nite and Gaussian, and T

1

; T

2

are arbitrary theories

ontaining T

0

and with deidable universal fragment, then the universal fragment

of T

1

>

T

0

T

2

is also deidable.

Example 4.6 Let T

0

be the theory of semilatties (see Example 2.1). This theory

is obviously e�etively loally �nite. In the following, we use the disequation s v t

as an abbreviation for the equation s t t � t. Obviously, any equation s � t an

be expressed by the disequations s v t ^ t v s.

The theory T

0

has a positive algebrai ompletion, whih an be axiomatized

as follows. Let �(x) be a simple existential formula with just one existential

quanti�er. Using the fat that z

1

t: : :tz

n

v z is equivalent to z

1

v z^: : :^z

n

v z,

it is easy to see that �(x) is equivalent to a formula of the form

9y:((y v t

1

) ^ � � � ^ (y v t

n

) ^ (u

1

v s

1

t y) ^ � � � ^ (u

m

v s

m

t y)); (2)

where t

i

; s

j

; u

k

are terms not involving y. Let �

�

(x) be the formula

n

^

i=1

m

^

j=1

(u

j

v s

j

t t

i

); (3)

and let T

�

0

be obtained from T

0

by adding to it the universal losures of all

formulae �$ �

�

.

We prove that T

�

0

is ontained in the theory of Boolean algebras. In fat, the

system of disequations (2) is equivalent, in the theory of Boolean algebras, to

9y:((y v t

1

) ^ � � � ^ (y v t

n

) ^ (u

1

u :s

1

v y) ^ � � � ^ (u

m

u :s

m

v y); (4)

and hene to

(u

1

u :s

1

v t

1

u : : : u t

n

) ^ � � � ^ (u

m

u :s

m

v t

1

u : : : u t

n

): (5)

Finally, it is easy to see that (5) and (3) are equivalent.

It is well-known that every semilattie embeds into a Boolean algebra. This an,

for example, be shown as follows. Given a semilattie S = (S;t;?), just onsider

the Boolean algebra B = (2

S

;\; S;[; ;; (�)) given by the dual of the usual Boolean

algebra formed by the powerset of S: this means that as join in B we take the

intersetion of sets, as the least element S, as the meet the union of sets, as the

greatest element ;, and as the negation operation the set omplement. It is easy

to see that the map assoiating with s 2 S the set fs

0

j s v s

0

g is a semilattie

embedding from S into B.

This shows that T

�

0

is the positive algebrai ompletion of T

0

. In addition, this

implies that any Boolean-based theory T is T

0

-algebraially ompatible sine T

�

0

is ontained in T . Consequently, Theorem 4.1 overs the ase of a basi E-

onnetion, as introdued in Example 2.1 (see Appendix A for details).
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Example 4.7 Let us now turn to Example 2.2, i.e., to onnetions over the

theory T

0

of distributive latties with a least element ?. This theory is obviously

e�etively loally �nite, and it has a positive algebrai ompletion, whih an be

obtained as follows. Every term is equivalent modulo T

0

both to (i) a term that

is a (possibly empty) �nite join of (non-empty) �nite meets of variables, and to

(ii) a term that is a (non-empty) �nite meet of (possibly empty) �nite joins of

variables. A simple existential formula with just one existential quanti�er �(x)

is then easily seen to be equivalent to a formula of the form

9y:(

^

i

(y v u

i

) ^

^

j

(t

j

u y v z

j

) ^

^

k

(v

k

v y t w

k

)); (6)

where u

i

; t

j

; v

k

; w

k

are terms not involving y. Let �

�

(x) be the formula

^

i;k

(v

k

v u

i

t w

k

) ^

^

j;k

(v

k

u t

j

v w

k

t z

j

); (7)

and let T

�

0

be obtained from T

0

by adding to it the universal losures of all

formulae �$ �

�

.

We prove that T

�

0

is ontained in the theory of Boolean algebras. In fat, the

system of disequations (6) is equivalent, in the theory of Boolean algebras, to

9y:(

^

i

(y v u

i

) ^

^

j

(y v :t

j

t z

j

) ^

^

k

(v

k

u :w

k

v y)); (8)

and hene to

^

i;k

(v

k

u :w

k

v u

i

) ^

^

j;k

(v

k

u :w

k

v :t

j

t z

j

): (9)

Finally, it is easy to see that (9) and (7) are equivalent.

Sine every distributive lattie with least element embeds into a Boolean algebra,

5

this shows that T

�

0

is the positive algebrai ompletion of T

0

. In addition, this

implies that any Boolean-based equational theory T is T

0

-algebraially ompatible

sine T

�

0

is ontained in T . Consequently, Theorem 4.1 overs the ase of a basi

deterministi E-onnetion, as introdued in Example 2.2 (see Appendix A for

details).

Example 4.8 The previous example an be sleightly varied, by onsidering the

theory T

0

of bounded distributive latties (i.e., distributive latties with a least

and a greatest element). Let us prove that its positive algebrai ompletion is the

theory T

�

0

axiomatized by T

0

together with the (universal losure of the) formula

9y:((x u y � 0) ^ (x t y � 1)):

5

It is well-known that distributive latties with least and greatest elements embed into

Boolean algebras, and it is easy to embed a distributive lattie with least element into one with

least and greatest elements by just adding a greatest element.
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Thus, T

�

0

is simply the theory of Boolean algebras, formulated in a omplement-

free signature. Sine every bounded distributive lattie embeds into a Boolean

algebra, and sine the theory of Boolean algebras oinides with its own positive

algebrai ompletion beause it is Gaussian (see Example 4.5), it is suÆient to

show that every e-formula � in the signature of Boolean algebras is equivalent to

an e-formula in the omplement-free subsignature. In fat, we an assume that

� is a onjuntion of identities of the form

1 � x

1

t � � � t x

n

t y

1

t � � � t y

m

;

these identities are in turn trivially equivalent to the inequations

x

1

u � � � u x

n

v y

1

t � � � t y

m

;

whih an obviously be transformed into identities between term in the omplement-

free subsignature.

Again this implies that every Boolean-based equational theory is T

0

-ompatible

and that Theorem 4.1 overs the ase of a basi funtional E-onnetion, as

introdued in Example 2.2 (see again Appendix A for details).

Example 4.9 Here we give an example with a non-funtional signature. Let T

0

be the (obviously loally �nite) theory of partial orders (posets). The positive

algebrai ompletion T

�

0

of T

0

is the theory axiomatized by T

0

together with the

axioms

9x:(

^

i

(x v a

i

) ^

^

j

(b

j

v x))$

^

i;j

(b

j

v a

i

);

where i; j range over a �nite index set and a

i

; b

j

are variables.

To embed a model (P;v) of T

0

into a model of T

�

0

, just take the poset of downward

loset subsets of (P;v). A downward losed subset of P is a set X � P suh that

x 2 X and y v x imply y 2 X. These sets are ordered by set inlusion. It is easy

to see that this yields a model of T

�

0

. In fat, it is enough to show that, given

downward losed sets A

i

; B

j

satisfying

V

i;j

(B

j

v A

i

), there is a downward losed

set X suh that

V

i

(X v A

i

)^

V

j

(B

j

v X). Sine the union of downward losed

sets is again downward losed, we an take the union of the B

j

as the set X. The

embedding of (P;v) into downward losed sets is obtained by assoiating with

a 2 P the one a# := fb j b v ag. It is easy to see that a v a

0

i� a# � a

0

#.

In order to obtain a T

0

-algebraially ompatible theory, we onsider again the

theory T of semilatties, but now we assume that the symbol v belongs to the

signature, and satis�es the axiom x v y $ x ^ y � y. The theory T is T

0

-

algebraially ompatible sine every model of T is a model of T

�

0

: in fat

9x:(

^

i

(x v a

i

) ^

^

j

(b

j

v x))

is equivalent (in the theory T ) to

9x:(

^

i

(x v a

i

) ^ (

G

j

b

j

v x));
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i.e., to

^

i

(

G

j

b

j

v a

i

)

and thus to

V

i;j

(b

j

v a

i

):

Other theories that extend T

�

0

(and are hene T

0

-algebraially ompatible) are

theories that extend the theory of total orders, as is easily seen.

5 A variant of the onnetion sheme

Here we onsider a slightly di�erent ombination sheme where a theory T is

onneted with itself w.r.t. a subtheory T

0

. Let T

0

� T be theories over the

respetive signatures 


0

� 
. We use T

>T

0

to denote the theory whose models

are models M of T endowed with a homomorphism h : M

j


0

! M

j


0

: Thus,

the signature 


0

of T

>T

0

is obtained from the signature 
 of T by adding a new

funtion symbol h

S

of arity SS for every sort S of 


0

. The axioms of T

>T

0

are

obtained from the axioms of T by adding

h

S

(f(x

1

; : : : ; x

n

)) � f(h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

P (x

1

; : : : ; x

n

)! P (h

S

1

(x

1

); : : : ; h

S

n

(x

n

));

for every funtion (prediate) symbol f (P ) in 


0

of arity S

1

: : : S

n

S (S

1

: : : S

n

).

Example 5.1 An interesting example of a theory obtained as suh a onnetion

is the theory E

K

orresponding to the basi modal logi K. In fat, let T be the

theory of Boolean algebras, and T

0

the theory of semilatties over the signature




0

as de�ned in Example 2.1. If we use the symbol � for the onnetion funtion,

then T

>T

0

is exatly the theory E

K

.

5.1 A non-deterministi ombination proedure

In this subsetion we state the main deidability transfer result. The approah is

analogous to the one hosen in Setion 4, and it leads to a non-deterministi om-

bination proedure. In the next subsetion we show that, under ertain additional

restritions, this non-deterministi proedure an be replaed by a deterministi

one.

Theorem 5.2 Let T

0

; T be theories over the respetive signatures 


0

;
, where




0

is a subsignature of 
. Assume that T

0

� T , that T

0

is universal and loally

�nite, and that T is T

0

-algebraially ompatible. Then the deidability of the

universal fragment of T entails the deidability of the universal fragment of T

>T

0

.
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To prove the theorem, we onsider a �nite set �[�

0

of ground at literals over the

signature 


0

of T

>T

0

, where � is a set of literals in the signature 
 of T (expanded

with free onstants), and �

0

is of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g:

The theorem is an easy onsequene of the following proposition, whose proof is

similar to the one of Proposition 4.2.

Proposition 5.3 The onstraint � [ �

0

is satis�able in T

>T

0

i� there exists a

triple (A;B; �) suh that

1. A is an 


0

-model of T

0

, whih is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whih is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism suh that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. � [�




0

(A) [�




0

(B) is satis�able in T .

Proof. The only-if diretion is again simple. To proof the if diretion, assume

that there is a triple (A;B; �) satisfying 1.{4. of the proposition. In partiular,

this means that � [�




0

(A) [�




0

(B) is satis�able in a model N of T . We an

assume without loss of generality that N is an at most ountable model of T [T

�

0

.

By Robinson's diagram theorem, A;B are 


0

-substrutures of N . Using the same

argument as in the proof of Proposition 4.2, we an extend the 


0

-homomorphism

� : A! B to an 


0

-endomorphism �

1

: N

j


0

! N

j


0

. The pair (N ; �

1

) yields a

model of T

>T

0

that satis�es � [ �

0

. a

Obviously, this proposition gives rise to a non-deterministi deision proedure

for the universal fragment of T

>T

0

, whih is analogous to the one desribed in the

proof of Theorem 4.1

Applied to the onnetion of BA with itself w.r.t. the theory of semilatties onsid-

ered in Example 5.1, the proof of Theorem 5.2 shows that deiding the universal

theory of E

K

an be redued to deiding the universal theory of BA. It is well-

known that deiding the universal theory of E

K

is equivalent to deiding global

onsequene in K, and that deiding the universal theory of BA is equivalent

to propositional reasoning. Thus, we have shown the (rather surprising) result

that the global onsequene problem in K an be redued to purely propositional

reasoning. However, if we diretly apply the non-deterministi ombination algo-

rithm suggested by Proposition 5.3, then the omplexity of the obtained deision

proedure is worse then the known ExpTime-omplexity [Spa93℄ of the prob-

lem. The deterministi ombination proedure desribed below overomes this

problem.

20



5.2 A deterministi ombination proedure

As pointed out in [Opp80℄, Nelson-Oppen style ombination proedures an be

made deterministi in the presene of a ertain onvexity ondition. Let T be

a theory over the signature 
, and let 


0

be a subsignature of 
. Following

[Tin03℄, we say that T is 


0

-onvex i� every �nite set of ground 


X

-literals (using

additional free onstants from X) T -entailing a disjuntion of n > 1 


X

0

-atoms,

already T -entails one of the disjunts. Note that universal Horn 
-theories are

always 
-onvex. In partiular, this means that equational theories (like BA) are

onvex w.r.t. any subsignature.

Let T

0

� T be theories over the respetive signatures 


0

;
, where 


0

is a sub-

signature of 
. If T is 


0

-onvex, then Theorem 5.2 an be shown with the help

of a deterministi ombination proedure. (The same is atually also true for

Theorem 4.1 and Theorem 4.3, but this will not expliitly be shown here.)

Let � [ �

0

be a �nite set of ground at literals (with free onstants) in the

signature of T

>T

0

; suppose also that � does not ontain the symbol h and that

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g. We say that � is �

0

-saturated i� for every




0

-atom A(x

1

; : : : ; x

n

), T [ � j= A(a

1

; : : : ; a

n

) implies A(b

1

; : : : ; b

n

) 2 �:

Theorem 5.4 Let T

0

; T be theories over the respetive signatures 


0

;
, where




0

is a subsignature of 
. Assume that T

0

� T , that T

0

is universal and loally

�nite, and that T is 


0

-onvex and T

0

-algebraially ompatible. Then the following

deterministi proedure deides whether � [ �

0

is satis�able in T

>T

0

(where �;�

0

are as above):

1. �

0

-saturate �;

2. hek whether the �

0

-saturated set

b

� obtained this way is satis�able in T .

Proof. The saturation proess (and thus the proedure) terminates beause T

0

is

loally �nite (it should be lear that saturation is done modulo T

0

). In addition,

if �[�

0

is satis�ed in a modelM of T

>T

0

, then the redut ofM to the signature


 obviously satis�es

b

�.

Conversely, if the �

0

-saturated set

b

� is satis�able in T , then we use

b

� to onstrut

a triple (A;B; �) satisfying 1.{4 of Proposition 5.3. Sine

b

� is satis�able in T ,

and T is 


0

-onvex, the following two �nite

6

sets of literals are both satis�able

in T

0

(where a abbreviate a

1

; : : : ; a

n

and let b abbreviate b

1

; : : : ; b

n

):

�

a

:= fA(a) j T [

b

� j= A(a)g [ f:A(a) j T [

b

� 6j= A(a)g;

�

b

:= fA(b) j T [

b

� j= A(b)g [ f:A(b) j T [

b

� 6j= A(b)g;

6

It goes without saying that \�niteness" here means \�niteness modulo T

0

;" see the de�nition

of loal �niteness.
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where A(x) ranges over 


0

-atoms (modulo T

0

). In fat, assume (without loss of

generality) that �

a

is not satis�able in T

0

. This means that

T

0

[ fA(a) j T [

b

� j= A(a)g j=

_

T[

b

� 6j=A(a)

A(a);

Sine T

0

� T and T is 


0

-onvex, this implies that T [ fA(a) j T [

b

� j= A(a)g j=

A

0

(a) for some 


0

-atom A

0

(x) suh that T [

b

� 6j= A

0

(a). However, T [ fA(a) j

T [

b

� j= A(a)g j= A

0

(a) obviously implies T [

b

� j= A

0

(a), whih yields the desired

ontradition.

Pik a pair of models of T

0

satisfying �

a

and �

b

, and let A, B be their 


0

-

substrutures generated by (the interpretations of) a and b, respetively. Sine

T

0

is universal, A and B are models of T

0

. Moreover, by onstrution, for every 


0

-

atom A(x) we have that T[

b

� j= A(a) i� A j= A(a) and, similarly, T[

b

� j= A(b) i�

B j= A(b). As a onsequene, the �

0

-saturatedness of

b

� and Robinson's diagram

theorem guarantee that the map assoiating b

i

with a

i

an be extended to a

homomorphism � : A! B.

It remains to show that

b

�[�




0

(A)[�




0

(B) is satis�able in T (sine � �

b

�, this

implies that � [�




0

(A) [�




0

(B) is satis�able in T ). Taking into onsideration

the 


0

-onvexity of T and the fat that

b

� is satis�able in T , satis�ability of

b

�[�




0

(A)[�




0

(B) in T means that for no atom A(a) false in A (A(b) false in B)

we have that T [

b

�[�

+




0

(A)[�

+




0

(B) j= A(a) (T [

b

�[�

+




0

(A)[�

+




0

(B) j= A(b)).

7

However, as remarked above, T[

b

� j= A(a) holds i�A j= A(a) holds (and similarly

for B). This means that T [

b

�[�

+




0

(A)[�

+




0

(B) is the same theory as T [

b

�. But

then the laim that \for no atom A(a) false in A (or A(b) false in B) we have that

T [

b

� j= A(a) (T [

b

� j= A(b))" beomes trivial, one again beause T [

b

� j= A(a)

is equivalent to A j= A(a) (T [

b

� j= A(b) is equivalent to B j= A(b)). a

Example 5.1 (ontinued) Let us ome bak to the onnetion of T := BA

with itself w.r.t. the theory T

0

of semilatties, whih yields as ombined theory

the equational theory E

K

orresponding to the basi modal logi K. In this

ase, heking during the saturation proess whether T [ � j= A(a) amounts

to heking whether a propositional formula �

�

(whose size is linear in the size

of �) implies a propositional formula of the form  

1

,  

2

, where  

1

;  

2

are

disjuntions of the propositional variables from a. Sine propositional reasoning

an be done in time exponential in the number of propositional variables, and

there are only exponentially many di�erent formulae of the form  

1

,  

2

, the

saturation proess needs at most exponential time. The size of the �

0

-saturated

set

b

� may be exponential in the size of �, but it still ontains only the free

onstants a. Consequently, testing satis�ability of

b

� in T is again a propositional

7

Reall that �

+




0

(A) denotes the positive diagram of A, i.e., it onsists of those atoms true

in A. Also note that :A(a) 2 �




0

(A) n�

+




0

(A) i� the atom A(a) is false in A.
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reasoning problem that an be done in time exponential in the number of free

onstants a.

Consequently, we have shown that Theorem 5.4 yields an ExpTime deision pro-

edure for the global onsequene relation in K, whih thus mathes the known

worst-ase omplexity of the problem.

6 Conditions on the onnetion funtions

Until now, we have onsidered onnetion funtions that are arbitrary homomor-

phisms. In this setion we impose the additional onditions that the onnetion

funtions be surjetive, embeddings, or isomorphisms: in this way, we obtain new

ombined theories, whih we denote by T

1

>

em

T

0

T

2

; T

1

>

s

T

0

T

2

; T

1

>

iso

T

0

T

2

, respe-

tively. This de�nes the ombined theories in a model-theoreti way. One an also

give an axiomati desription of T

1

>

em

T

0

T

2

; T

1

>

s

T

0

T

2

, and T

1

>

iso

T

0

T

2

. For example,

the axioms of T

1

>

s

T

0

T

2

are obtained from the ones of T

1

>

T

0

T

2

by adding axioms

expressing that h is surjetive, i.e., for every sort S in 


0

we add the axiom

8y:9x:h

S

(x) = y;

where x is a variable of sort S

1

and y a variable of sort S

2

.

For these ombined theories one an show ombination results that are analo-

gous to Theorem 4.1: one just needs di�erent ompatibility onditions. To treat

embeddings and isomorphisms, we use the ompatibility ondition introdued in

[Ghi05, BGT04℄ for the ase of unions of theories. Following [Ghi05, BGT04℄, we

all this ondition T

0

-ompatibility in the following.

In order to de�ne this notion of ompatiblity, we need to introdue the notion

of a model ompletion. The de�nition given below di�ers from the one given

in [Ghi05, BGT04℄. However, the two notions an be shown to be equivalent

(see Proposition 9.6 in Appendix B below). The reason for giving an alternative

formulation is that it makes the onnetion between a model ompletion and a

positive algebrai ompletion more transparent.

De�nition 6.1 Let T be a universal 
-theory and let T

�

be an 
-theory. We

say that T

�

is a model ompletion of T i� the following onditions are satis�ed:

(i) T � T

�

;

(ii) every model of T embeds into a model of T

�

;

(iii) for every formula �(x) there is an open formula �

�

(x) suh that

T

�

j= �$ �

�

:
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It an be shown that models of T

�

are just the existentially losed models of T

(see [CK90℄ or Appendix B below).

De�nition 6.2 Let T

0

� T be theories over the respetive signatures 


0

� 
.

We say that T is T

0

-ompatible i� T

0

is universal, has a model ompletion T

�

0

,

and every model of T embeds into a model of T [ T

�

0

.

6.1 Embeddings as onnetion funtions

Let us �rst investigate the ase of onnetion funtions that are embeddings.

Theorem 6.3 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, and that T

0

is universal and loally �nite. If T

2

is T

0

-ompatible, then

the deidability the universal fragments of T

1

and T

2

entails the deidability of the

universal fragment of T

1

>

em

T

0

T

2

.

As usual, in order to prove the Theorem, we onsider a �nite set � of ground at

literals over the signature 
 of T

1

>

em

T

0

T

2

(with additional free onstants), and

show how it an be tested for satis�ability in T

1

>

em

T

0

T

2

. Sine all literals in � are

at, we an divide � into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free onstants), and �

0

is

of the form

�

0

= fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g

for free onstants a

1

; b

1

; : : : ; a

n

; b

n

. Theorem 6.3 easily follows from the next

proposition:

Proposition 6.4 The onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

em

T

0

T

2

i�

there exists a triple (A;B; �) suh that

1. A is an 


0

-model of T

0

, whih is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whih is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-embedding suh that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.
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Proof. Again, the only-if diretion is simple. Conversely, assume that (A;B; �)

is a triple satisfying 1.{5. of the proposition. Beause of 4. and 5, there is an




1

-model N

0

of T

1

satisfying �

1

[�




0

(A) and an 


2

-model N

00

of T

2

satisfying

�

2

[�




0

(B). By Robinson's diagram theorem, N

0

has A as an 


0

-substruture

and N

00

has B as an 


0

-substruture. As in the proof of Proposition 4.2, we

assume without loss of generality that N

0

is at most ountable and that N

00

is a

model of T

2

[ T

�

0

. Let us enumerate the elements of N

0

as



1

; 

2

; : : : ; 

n

; 

n+1

; : : :

where we assume that 

i

= a

A

i

(i = 1; : : : ; n), i.e., 

1

; : : : ; 

n

are generators of A.

We de�ne an inreasing sequene of sort-onforming funtions �

k

: f

1

; : : : 

k

g !

N

00

(for k � n) suh that, for every ground 


f

1

;:::;

k

g

0

-literal A we have

N

0

j


0

j= A(

1

; : : : ; 

k

) implies N

00

j


0

j= A(�

k

(

1

); : : : ; �

k

(

k

))

Sine this ondition is asked for literals and not just for atoms, it follows that the

mappings �

k

are injetive.

We �rst take �

n

to be �. To de�ne �

k+1

(for k � n), let us onsider the onjuntion

 (

1

; : : : ; 

n

; 

n+1

) of the 


f

1

;:::;

n+1

g

0

-literals that are true inN

0

j


0

: this onjuntion

is �nite (modulo taking representative terms, thanks to loal �niteness of T

0

).

Let �(x

1

; : : : ; x

n

) be 9x

n+1

: (x

1

; : : : ; x

n

; x

n+1

) and let �

�

(x

1

; : : : ; x

n

) be an open

formula suh that T

�

0

j= �$ �

�

.

By (i) and (ii) of De�nition 6.1, Lemma 3.1, and the fat that �! �

�

is equivalent

to an open formula, we have T

0

j= � ! �

�

. This implies N

0

j


0

j= �

�

(

1

; : : : ; 

k

),

and thus N

00

j


0

j= �

�

(�

k

(

1

); : : : ; �

k

(

k

)) by the indution hypothesis. Sine N

00

j


0

is a model of T

�

0

and T

�

0

j= �

�

! �, there is an element b of N

00

j


0

suh that

N

00

j


0

j=  (�

k

(

1

); : : : ; �

k

(

k

); b). We now obtain the desired extension �

k+1

of �

k

by setting �

k+1

(

k+1

) := b. Taking �

1

=

S

k�n

�

k

, we �nally obtain an embedding

�

1

: N

0

j


0

! N

00

j


0

suh that the triple (N

0

;N

00

; �

1

) is a model of T

1

>

em

T

0

T

2

that

satis�es �

0

[ �

1

[ �

2

. a

6.2 Surjetive onnetions

To treat T

1

>

s

T

0

T

2

, we must dualize the notions \algebrai ompletion" and

\algebrai ompatibility". These notions are based on o-geometri formulae,

whih the dual of geometri formulae in the sense that existential quanti�ation

is replaed by universal quanti�ation. A o-geometri formula is a formula

built from atoms by using onjuntion, disjuntion and universal quanti�ation.

Similarly, a o-geometri theory is a theory axiomatized by (universal losure of)

impliations of o-geometri formulae.
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De�nition 6.5 Let T be a universal 
-theory, and let T

�

be an 
-theory. We

say that T

�

is a positive o-algebrai ompletion of T i� the following onditions

are satis�ed:

(i) T � T

�

;

(ii) every model of T embeds into a model of T

�

;

(iii) for every o-geometri formula �(x) there is an open o-geometri formula

�

�

(x) suh that

T

�

j= �$ �

�

:

The new notion of ompatibility de�ned below di�ers from the one introdued

in Setion 3 in that positive algebrai ompletions are replaed by positive o-

algebrai ompletions.

De�nition 6.6 Let T

0

� T be theories over the respetive signatures 


0

� 


1

.

We say that T is T

0

-o-algebraially ompatible i� T

0

is universal, has a positive

o-algebrai ompletion T

�

0

, and every model of T embeds into a model of T [T

�

0

.

If the prerequisites of Theorem 4.1 hold and T

1

is additionally T

0

-o-algebraially

ompatible, then deidability of the universal fragment transfers from T

1

; T

2

to

T

1

>

s

T

0

T

2

.

Theorem 6.7 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, that T

1

is T

0

-o-algebraially

ompatible, and that T

2

is T

0

-algebraially ompatible. Then the deidability of the

universal fragments of T

1

and T

2

entails the deidability of the universal fragment

of T

1

>

s

T

0

T

2

.

To prove the theorem, let � = �

0

[�

1

[�

2

be a �nite set of ground at literals over

the signature 
 of T

1

>

s

T

0

T

2

(with additional free onstants), where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free onstants), and �

0

is

of the form

fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g;

for free onstants a

1

; b

1

; : : : ; a

n

; b

n

. The following proposition, whose formula-

tion is idential to the formulation of Proposition 4.2, immediately entails Theo-

rem 6.7.

Proposition 6.8 The onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

s

T

0

T

2

i�

there exists a triple (A;B; �) suh that
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1. A is an 


0

-model of T

0

, whih is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whih is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-homomorphism suh that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. The only-if diretion is again simple. The proof of the if diretion requires

now a bak-and-forth argument. Suppose we are given A, B, � as in 1.{5. of

the proposition, and let N

0

be an 


1

-model of T

1

satisfying �

1

[ �




0

(A), and

N

00

be an 


2

-model of T

2

satisfying �

2

[ �




0

(B). We an assume without loss

of generality that N

0

;N

00

are both at most ountable, that N

0

is a model of the

positive o-algebrai ompletion of T

0

, and that N

00

is a model of the positive

algebrai ompletion of T

0

. By Robinson's diagram theorem, N

0

has A as an




0

-substruture, and N

00

has B as an 


0

-substruture. Let us enumerate the

elements of N

0

as



1

; 

3

; : : : ; 

2k+1

; : : :

and the elements of N

00

as

d

2

; d

4

; : : : ; d

2k

; : : :

(here we prefer, for uniformity, both lists to be in�nite, so we may tolerate repeti-

tions in eah list). We de�ne an inreasing sequene of sort-onforming surjetive

mappings �

k

: S

k

�! T

k

, suh that:

� S

k

is a �nite subset of N

0

inluding all the elements from A as well as 

2j+1

,

for 2j + 1 � k;

� T

k

is a �nite subset of N

00

inluding all the elements from B as well as d

2j

,

for 2j � k;

� for all 


0

-atoms C(x) we have

N

0

j


0

j= C(a) implies N

00

j


0

j= C(�

k

(a)) (10)

for every tuple a from S

k

.

One this is settled, N

0

and N

00

together with the surjetive homomorphism

�

1

=

S

k�n

�

k

give, as usual, the desired model of T

1

>

s

T

0

T

2

satisfying �.

We �rst take �

0

to be �. To de�ne �

k

(k > 0), we distinguish the ase in whih k

is even from the ase in whih k is odd. In the latter ase, we proeed as in the

proof of Proposition 4.2. As to the former ase, let b = d

2k

and let a be a tuple

olleting all the elements from S

k�1

. We want to �nd a suitable a 2 N

0

in order
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to extend �

k�1

by de�ning �

k

(a) := b. For this purpose, it is suÆient to show that

N

0

6j= 8y:�(a; y), where �(x; y) is the disjuntion of all atoms C(x; y) suh that

N

00

6j= C(�

k�1

(a); b). In fat, if N

0

6j= 8y:�(a; y), then there is a (sort-onforming)

a 2 N

0

suh that N

0

j= :�(a; a), and we an set �

k

(a) := b. Assume that C

is an atom suh that N

0

j


0

j= C(a; a), but N

00

j


0

6j= C(�

k

(a; a)) = C(�

k�1

(a); b).

However, this means that C(x; y) ours as a disjunt in �(x; y), and thus N

0

j=

:�(a; a) implies that N

0

j= :C(a; a), whih is a ontradition to our assumption

that N

0

j


0

j= C(a; a).

To show thatN

0

6j= 8y:�(a; y), we onsider the positive o-algebrai ompletion T

�

0

of T

0

. In this theory, 8y:�(x; y)$ �

�

(x) is provable for some (o-)geometri open

formula

8

�

�

(x). As usual, the impliation �

�

(x) ! 8y:�(x; y) must already hold

in T

0

beause T

0

and its o-algebrai ompletion T

�

0

entail the same open formulae,

and �

�

(x)! 8y:�(x; y) is equivalent to the open formula �

�

(x)! �(x; y).

Sine N

0

is a model of T

�

0

, and T

�

0

j= 8y:�(x; y) ! �

�

(x), it is enough to prove

that N

0

6j= �

�

(a). However, N

00

6j= 8y:�(�

k�1

(a); y), by the de�nition of �. Sine

N

00

is a model of T

0

, and T

0

j= �

�

(x)! 8y:�(x; y), this implies N

00

6j= �

�

(�

k�1

(a)).

Finally, the indution hypothesis on the validity of (10) yields N

0

6j= �

�

(a). a

The following example shows that there are natural examples of theories T

0

ad-

mitting both a positive algebrai and a positive o-algebrai ompletion.

Example 6.9 Consider the theory of join semilatties with a greatest element.

These are join semilatties as introdued in Example 4.6, but endowed with a

further element > suh that x t > = > holds for all x. The positive algebrai

ompletion of this theory is axiomatized as in Example 4.6 above. In order to

axiomatize the o-algebrai ompletion of this theory, we need a theory that

allows us to eliminate the universal quanti�er from formulae 8y:�(x; y) of the

form

8y: ((y v t

1

) _ � � � _ (y v t

n

) _ (u

1

v s

1

t y) _ � � � _ (u

m

v s

m

t y)) ; (11)

where t

i

; s

j

; u

k

are terms not involving y. Let �

�

(x) be the formula

n

_

i=1

(t

i

� >) _

m

_

j=1

(u

j

v s

j

); (12)

and let T

�

0

be obtained from T

0

by adding to it the universal losures of the

sentenes � $ �

�

. The theory T

�

0

is inluded in the theory BA

�

of atomless

Boolean algebras (reall that a Boolean algebra is said to be atomless i� it does

not have non-zero minimal elements): the axioms of T

�

0

are in fat provable in

BA

�

, as it is evident from the quanti�er elimination proedure for BA

�

(see, e.g.,

[GZ02℄). Sine every join semilattie with a greatest element embeds into an

8

In the open ase, geometri and o-geometri formulae trivially oinide.
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atomless Boolean algebra,

9

this shows both that T

�

0

is the positive o-algebrai

ompletion of T

0

, and that the theory of Boolean algebras is o-algebraially

ompatible with the theory of join semilatties with a greatest element.

Sine the formulation of Proposition 6.8 oinides with the one of Proposition 4.2,

we know that the universal fragments of T

1

>

s

T

0

T

2

and T

1

>

T

0

T

2

oinide if the

onditions of Theorem 6.7 are satis�ed.

Corollary 6.10 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, that T

1

is T

0

-o-algebraially om-

patible, and that T

2

is T

0

-algebraially ompatible. Then the universal fragment

of T

1

>

T

0

T

2

oinides with the universal fragment of T

1

>

s

T

0

T

2

.

6.3 Isomorphisms as onnetion funtions

Finally, let us onsider the problem of deiding the universal fragment of T

1

>

iso

T

0

T

2

.

Theorem 6.11 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, and that T

1

; T

2

are both T

0

-

ompatible. Then the deidability of the universal fragments of T

1

and T

2

entails

the deidability of the universal fragment of T

1

>

iso

T

0

T

2

.

To prove the theorem, let � = �

0

[�

1

[�

2

be a �nite set of ground at literals over

the signature 
 of T

1

>

iso

T

0

T

2

(with additional free onstants), where �

i

(i = 1; 2)

is a set of literals in the signature 


i

(expanded with free onstants), and �

0

is

of the form

fh(a

1

) � b

1

; : : : ; h(a

n

) � b

n

g;

for free onstants a

1

; b

1

; : : : ; a

n

; b

n

. The following proposition, whose formula-

tion is idential to the formulation of Proposition 6.4, immediately entails Theo-

rem 6.11.

Proposition 6.12 The onstraint � = �

0

[ �

1

[ �

2

is satis�able in T

1

>

iso

T

0

T

2

i�

there exists a triple (A;B; �) suh that

9

One an embed a join semilattie with greatest element into a bounded distributive lattie

by taking the dual of the lattie of non-empty upward losed subsets; that bounded distributive

latties embed into Boolean algebras, and that Boolean algebras embed into atomless Boolean

algebras are standard lattie-theoreti fats.
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1. A is an 


0

-model of T

0

, whih is generated by fa

A

1

; : : : ; a

A

n

g;

2. B is an 


0

-model of T

0

, whih is generated by fb

B

1

; : : : ; b

B

n

g;

3. � : A! B is an 


0

-embedding suh that �(a

A

j

) = b

B

j

for j = 1; : : : ; n;

4. �

1

[�




0

(A) is satis�able in T

1

;

5. �

2

[�




0

(B) is satis�able in T

2

.

Proof. To prove the if diretion, we must extend � to an isomorphism between the




0

-reduts ofN

0

;N

00

, where N

0

;N

00

are at most ountable models of the diagrams

of A;B and of T

1

[T

�

0

, T

2

[T

�

0

, respetively. The bak-and-forth argument used in

the proof of Proposition 6.8 an be easily adapted to the present ase: it suÆient

to ask in ondition (10) for truth of ground 


S

k

0

-literals rather than just atoms to

be preserved.

In the ase of k being odd, one an proeed as in the proof of Proposition 6.4. In

the ase of k being even, one must adapt the onstrution given in Proposition 6.8

appropriately to the stronger ondition. We leave this simple adaptation to the

reader. a

Sine the formulation of Proposition 6.12 oinides with the one of Proposi-

tion 6.4, we know that the universal fragments of T

1

>

em

T

0

T

2

and T

1

>

iso

T

0

T

2

oinide if the onditions of Theorem 6.11 are satis�ed.

Corollary 6.13 Let T

0

; T

1

; T

2

be theories over the respetive signatures 


0

;


1

;


2

,

where 


0

is a ommon subsignature of 


1

and 


2

. Assume that T

0

� T

1

and

T

0

� T

2

, that T

0

is universal and loally �nite, and that T

1

; T

2

are T

0

-ompatible.

Then the universal fragment of T

1

>

em

T

0

T

2

oinides with the universal fragment

of T

1

>

iso

T

0

T

2

.

It is easy to see that the problem of deiding the universal fragment of T

1

>

iso

T

0

T

2

is interreduable in polynomial time with the problem of deiding the universal

fragment of T

1

[T

2

. Consequently, the proof of Theorem 6.11 yields an alternative

proof of the ombination result in [Ghi05℄.

The main reason for this is that there is a lose onnetion between models of

T

1

[ T

2

and T

1

>

iso

T

0

T

2

. In fat, if M is a model of T

1

[ T

2

, then it an be turned

into a model (M

1

;M

2

; �) of T

1

>

iso

T

0

T

2

by taking as M

1

the redut of M to 


1

,

as M

2

the redut of M to 


2

, and as isomorphism � the identity mapping on

the domain of the redut of M to 


0

. Conversely, if (M

1

;M

2

; �) is a model of

T

1

>

iso

T

0

T

2

, then one an turn it into a model of T

1

[T

2

by adapting the well-known

fusion onstrution [TR03℄ to the many-sorted ase.
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Now, given a onjuntion � of (sort-onforming) literals to be tested for sat-

is�ability in T

1

>

iso

T

0

T

2

, we an simply remove the onnetion funtion h and

the supersripts introdued through the renaming done in the onstrution of

T

1

>

iso

T

0

T

2

, and test the resulting onjuntion �

0

of literals for satis�ability in

T

1

[ T

2

. If M is a model of T

1

[ T

2

satisfying �

0

, then it is easy to see that

the orresponding model (M

1

;M

2

; �) of T

1

>

iso

T

0

T

2

satis�es �. Conversely, if

(M

1

;M

2

; �) is a model of T

1

>

iso

T

0

T

2

satisfying �, then it is easy to see that the

modelM of T

1

[T

2

obtained from this model by applying the fusion onstrution

satis�es �

0

.

Conversely, given a onjuntion � of at ground literals to be tested for satis�a-

bility in T

1

[T

2

, we an partition � into � = �

1

[�

2

where �

1

is over the signature




1

and �

2

is over the signature 


2

. For every free onstant  ourring in �, we

introdue two free onstants 

1

and 

2

. We replae  in �

1

by 

1

and  in �

2

by



2

, and also do the appropriate renamings of the shared funtion and prediate

symbols. In addition, we add the identity 

2

� h(

1

) for eah free onstant  o-

urring in �. Let �

0

be the onjuntion of literals over the signature of T

1

>

iso

T

0

T

2

obtained this way. Again, it is easy to see that � is satis�able in T

1

[ T

2

i� �

0

is

satis�able in T

1

>

iso

T

0

T

2

.

7 Conlusion

We have introdued a new sheme for ombining many-sorted theories, and have

shown under whih onditions deidability of the universal fragment of the om-

ponent theories transfers to their ombination. Though this kind of ombination

has been onsidered before in restrited ases [KLWZ04, AK97, Zar02℄, it has not

been investigated in the general algebrai setting onsidered here.

In ontrast to the results in [KLWZ04℄, our results are not restrited to Boolean-

based equational theories [BGT04℄. However, our results do not imply the alge-

brai ounterpart of the more general ombination results in [KLWZ04℄: there,

a onneting relation E (see Example 2.1) introdues two onnetion funtion:

the diamond operators indued by E and its inverse E

�1

. These two onnetion

funtions are not unrelated, but they are not inverses of eah other (as funtions).

An important topi for future work is to try to extend our framework suh that

it an also handle this type of a onnetion.
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8 Appendix A: E-onnetions

The purpose of this appendix is to give a more detailed omparison between

the notion of an E-onnetions, as introdued in [KLWZ04℄, and our notion of a

onnetion of many-sorted theories.

First of all, [KLWZ04℄ onsider onnetions that are more general than ours, in

the sense that more omplex modalities (n-ary modalities, inverse modalities,

Boolean ombinations of modalities, ounting modalities, et.) an be used as

onnetion funtions. Using suh sophistiated modalities as onnetion funtion

is, urrently, beyond the sope of our methods, but they will be the subjet of

future researh.

Here, we will ontent ourselves with examining the speial ase of plain unary

modalities as onnetion funtions, whih is the most basi ase of an E-onnetion

onsidered in [KLWZ04℄. However, even with this restrition, there are still sig-

ni�ant di�erenes between our approah and the approah in [KLWZ04℄. The

main di�erene is that, seen from the modal logi point of view, our approah

for de�ning the onnetion is syntati (or algebrai), in the sense that we on-

sider an equational axiomatization of the logi. In ontrast, in [KLWZ04℄ the

emphasis is on the model-theoreti side, meaning that E-onnetions are de�ned

at the semanti level as enrihments of suitable Kripke-like strutures. Beause

of this di�erene, it is not a priori lear that our results speialize to deidability

transfer results for E-onnetions de�ned in the framework of [KLWZ04℄ (even

within the limitation to plain unary modalities as onnetion funtions). In this

appendix, we show that this is indeed the ase (but this proof turns out to be

not entirely trivial). To simplify matters further, we will not onsider abstrat

desription systems (as used in [KLWZ04℄) in their full generality, but restrit our

onsiderations to normal modal logis and to standard uni-modal Kripke frames

(most of these further restritions are, however, without loss of generality; they

are assumed just for the sake of simpliity).

Propositional modal formulae are built using the Boolean onnetives and a dia-

mond operator �. A Kripke frame is a pair F = (W;R), where W is a non-empty

set, the set of possible worlds, and R is a binary relation on W , the transition

relation. A Kripke model is a triple M = (W;R; V ), where (W;R) is a Kripke

frame and V is a map, alled valuation, assoiating with eah propositional letter

a subset of W . The foring relation w j=

M

�, whih expresses that the modal

formula � is true in the Kripke model M at world w, is de�ned in the standard

way (see, e.g., [BdRV01℄).

For a given lass of Kripke frames C, the modal onstraint problem for C is the

problem of deiding whether a �nite set of modal formulae is satis�able w.r.t. a

set of global onstraints.

10

10

This is the kind of problem onsidered in [KLWZ04℄, where satis�ability of an A-Box on-
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De�nition 8.1 A modal onstraint is a pair of �nite sets of modal formulae,

written as �

1

; : : : ; �

n

; �

1

; : : : ; �

m

(n;m � 0); we say that suh a modal onstraint

is satis�able in a Kripke model M = (W;R; V ) i� there are worlds w

1

; : : : ; w

m

2

W suh that

1. w

1

j=

M

�

1

; : : : ; w

m

j=

M

�

m

;

2. for all v 2 W and for all i = 1; : : : ; n, we have v j=

M

�

i

.

The modal onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

is satis�able in a lass of Kripke

frames C i� it is satis�able in some M = (W;R; V ), for (W;R) 2 C.

Thus, the satis�ability of a modal onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

means that

there is a model in whih the �

j

are satis�ed in some worlds w

j

, and in whih

�

1

; : : : ; �

n

hold globally, i.e., in every world.

In order to algebraize the above deision problem, let us introdue the signature

B

M

: this is the single-sorted signature obtained by expanding the signature of

Boolean algebras by a new unary operator that we still all �. Notie that there

is an obvious bijetive orrespondene in this way between modal formulae and

terms of the signature B

M

(thus, from now on, we identify modal formulae and

terms of the signature B

M

). Also, a Kripke frame F = (W;R) an be onverted

into a B

M

-struture alled B

F

as follows: we take as underlying Boolean algebra

the powerset Boolean algebra P(W ) and interpret � as the funtion assoiating

with X � W the subset of W given by

�(X) := fw

2

2 W j 9w

1

2 W: (w

2

; w

1

) 2 R ^ w

1

2 Xg:

Valuations V of F orrespond in an obvious way to assignments of variables to

elements of P(W ). It is easy to see that, for any modal formula �, we have

w j=

(W;R;V )

� i� w belongs to the set obtained by evaluating the term � in B

F

under the assignment V .

With every lass of Kripke frames C we assoiate the B

M

-theory T

C

whose axioms

are the formulae

(�

1

� >) ^ � � � ^ (�

n

� >) ! (�

1

� ?) _ � � � _ (�

m

� ?); (13)

where �

1

; : : : ; �

n

; �

1

; : : : ; �

m

are the modal onstraints that are not satis�able in

C. If F is a Kripke frame in C, then the orresponding B

M

-struture B

F

is a

model of T

C

.

taining many individual onstants, with respet to a given T-Box, is taken into onsideration.

Notie that, by ontrast, relativized satis�ability as traditionally intended in modal logi on-

erns loal satis�ability of just one formula with respet to a global onstraint formed by a

�nite set of formulae.

36



Proposition 8.2 The problem of deiding satis�ability of modal onstraints in C

is equivalent to the problem of deiding the universal fragment of the theory T

C

.

Proof. First, notie that a modal onstraint

�

1

; : : : ; �

n

; �

1

; : : : ; �

m

(14)

is unsatis�able in C i� the formula (13) is a logial onsequene of T

C

. In fat,

if (14) is unsatis�able in C, then (13) is an axiom of T

C

. Conversely, if (14) is

satis�able in a frame F = (W;R) 2 C, then (13) annot be a logial onsequene

of T

C

, beause it it is easy to see that it is then false in the B

M

-struture B

F

.

Given that, it is suÆient to observe that identities in T

C

are all equivalent

11

to

identities of the kind � � > as well as to identities of the kind � � ?. Thus an

arbitrary open formula in the signature B

M

is in fat a onjuntion of formulae of

the kind (13). Together with what we have shown about the onnetion between

suh formulae and modal onstraints, this implies the laim of the proposition. a

Let us now show that this orrespondene

C 7�! T

C

is ompatible with building onnetions, where on the left-hand side the onne-

tions are the E-onnetions as introdued in [KLWZ04℄, and on the right-hand side

the onnetions are the onnetions of many-sorted theories as introdued in the

present paper. To show this, we need to reall the de�nition of an E-onnetion

(in the present simpli�ed ase of lasses of Kripke frames).

For E-onnetions, we use two-sorted propositional modal formulae. The formulae

of sort 1 are just the standard propositional modal formulae (where, however,

the modal operator � is renamed to �

1

); the formulae of sort 2 are built from

propositional variables

12

of sort 2 and formulae of the form �

E

� where � is a

formula of sort 1, by applying the Boolean onnetives and the modal operator

�

2

.

From the semanti side, suppose we are given two lasses C

1

; C

2

of Kripke frames.

The lass of onnetion frames E(C

1

; C

2

) is formed by all triples F = (F

1

; E

F

;F

2

)

suh that F

1

= (W

1

; R

1

) 2 C

1

, F

2

= (W

2

; R

2

) 2 C

2

and E

F

� W

2

� W

1

is an

arbitrary binary relation.

An E(C

1

; C

2

)-onnetion Kripke model is a 4-tuple M = (F

1

; E

F

;F

2

; V ), where

F = (F

1

; E

F

;F

2

) 2 E(C

1

; C

2

) is a onnetion frame and V is a map assoiating

with propositional letters of sort i subsets of W

i

(i = 1; 2). The foring relation

w j=

M

�, whih says that the modal formula � is true in M at world w, is

11

Use Boolean bi-impliation and omplement to show this.

12

Propositional variables of sort 1 are kept disjoint from propositional variables of sort 2.
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de�ned in the standard way (see [KLWZ04℄), where the only non-obvious ase is

the following: for w

2

2 W

2

and for a formula � of sort 1, we have:

w

2

j=

M

�

E

� i� (9w

1

2 W

1

: (w

2

; w

1

) 2 E

F

and w

2

j=

M

�):

Now, E(C

1

; C

2

)-satis�ability of a modal onstraint �

1

; : : : ; �

n

; �

1

; : : : ; �

m

is de�ned

as above (but notie that the �

i

and the �

j

may be formulae of sort 1 or 2,

indi�erently).

When onneting the theories orresponding to two frame lasses, we build the

two-sorted signature B

2

M

: this onsists of two renamed opies of the signature

B

M

and, in addition, of the new unary funtion symbol �

E

of arity S

1

S

2

(where

S

1

; S

2

are the single sorts of the renamed opies of B

M

). Again, terms in the

signature B

2

M

an be identi�ed with the two-sorted modal formulae introdued

above; moreover any onnetion frame F = (F

1

; E

F

;F

2

) an be turned into a

B

2

M

-struture (whih we still all B

F

) by interpreting the two sorts by power-

set Boolean algebras, as desribed above, and by de�ning �

E

as the funtion

assoiating with X � W

1

the subset of W

2

given by

�

E

(X) := fw

2

2 W

2

j 9w

1

2 W: (w

2

; w

1

) 2 E

F

^ w

1

2 Xg:

We an then build the theory T

E(C

1

;C

2

)

, whose axioms are the formulae

(�

1

� >) ^ � � � ^ (�

n

� >) ! (�

1

� ?) _ � � � _ (�

m

� ?); (15)

where �

1

; : : : ; �

n

; �

1

; : : : ; �

m

are the modal onstraints that are not satis�able in

E(C

1

; C

2

). As in the proof of Proposition 8.2, it an be shown that the problem

of deiding satis�ability of modal onstraints in E(C

1

; C

2

) is equivalent to the

problem of deiding the universal fragment of the theory T

E(C

1

;C

2

)

.

The following proposition states a preise relationship between E-onnetions and

our onnetions of many-sorted theories.

Proposition 8.3 Let C

1

; C

2

be lasses of Kripke frames; T

E(C

1

;C

2

)

oinides with

T

C

1

>

T

0

T

C

2

, where T

0

is the theory of semilatties.

13

Proof. Both theories T

E(C

1

;C

2

)

and T

C

1

>

T

0

T

C

2

are universal and relative to the

same signature BD

2

, so it is suÆient to show that a �nite set of literals is

satis�able in a model of one of them i� it is satis�able in a model of the other.

First, note that a �nite set of literals is satis�ed in a model of T

E(C

1

;C

2

)

i� it

is satis�ed in a model of the form B

F

, where F = (F

1

; E

F

;F

2

) is suh that

F

1

2 C

1

and F

2

2 C

2

. This an be shown by basially repeating the arguments

used in the proof of Proposition 8.2: every universal B

2

M

-formula is equivalent to

onjuntion of formulae of the kind (13), and (13) is a logial onsequene of the

13

See Example 2.1.
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theory T

E(C

1

;C

2

)

i� the modal onstraint (14) is unsatis�able in frames of the kind

F = (F

1

; E

F

;F

2

) (for F

1

2 C

1

and F

2

2 C

2

), i.e., i� (13) is true in models of the

kind B

F

, where F = (F

1

; E

F

;F

2

) is suh that F

1

2 C

1

and F

2

2 C

2

.

Clearly, models of the form B

F

for a onnetion frame F = (F

1

; E

F

;F

2

) are

models of T

C

1

>

T

0

T

C

2

. However, the onverse is far from being true: in fat,

models of T

C

1

>

T

0

T

C

2

may interpret the two sorts S

1

and S

2

by Boolean algebras

that are not powerset Boolean algebras. Moreover, in models of T

C

1

>

T

0

T

C

2

, the

onneting diamond �

E

is taken to be any semilattie homomorphism and, as

suh, it need not preserve in�nitary joins (as is the ase, on the ontrary, for the

interpretation of �

E

in all models of the kind B

F

).

Thus, the key point of the proof is to show that any �nite set of B

2

M

-literals �

satis�able in a model of T

C

1

>

T

0

T

C

2

, is also satis�able in a model of the form B

F

,

where F = (F

1

; E

F

;F

2

) is a onnetion frame suh that F

1

2 C

1

and F

2

2 C

2

.

We an, as usual, replae variables with onstants and assume � to be at, so that

we an divide � into three disjoint sets � = �

0

[ �

1

[ �

2

; where �

i

(i = 1; 2) is a

set of literals in the i-th opy of the signature B

M

(expanded with free onstants),

and �

0

is of the form

�

0

= f�

E

(a

1

) � b

1

; : : : ;�

E

(a

n

) � b

n

g

for free onstants a

1

; b

1

; : : : ; a

n

; b

n

.

This observation is not suÆient yet: we need to modify �

0

[�

1

[�

2

further. Let

� be the set of terms of the form

�a

1

u � � � u �a

n

;

where +a

i

is a

i

and �a

i

is a

i

. Notie that the equations

a

i

�

G

f� j � 2 �; � v a

i

g

are logial onsequene of the Boolean algebra axioms, and hene are always valid

in our models (here � v a

i

means that a

i

(and not a

i

) appears as onjunt in �).

Let

~

�

1

be any set of B

1

M

-literals obtained from �

1

by adding either � � ? or

� 6� ? for every � 2 �. For any � 2 �, introdue a new onstant 

�

and replae

�

0

with

~

�

0

:= f�

E

(�) � 

�

j � 2 �g:

Finally, let

~

�

2

(

~

�

1

) := �

2

[ f

�

� ? j � � ? 2

~

�

1

g [ f(

G

�va

i



�

) � b

i

j i = 1; : : : ; ng:

It is easily seen that �

0

[ �

1

[ �

2

is satis�able in a model of T

C

1

>

T

0

T

C

2

i� there

is a

~

�

1

suh that

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

) is satis�able in a model of T

C

1

>

T

0

T

C

2

. The
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same observation applies to satis�ability in models of T

E(C

1

;C

2

)

. So, let us �x a set

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

), and assume that it is satis�able in a model of T

C

1

>

T

0

T

C

2

. We

must show that it is satis�able in a model of T

E(C

1

;C

2

)

.

Now, if

~

�

0

[

~

�

1

[

~

�

2

(

~

�

1

) is satis�able in a model of T

C

1

>

T

0

T

C

2

, then

~

�

1

is

satis�able in a model of T

C

1

and

~

�

2

(

~

�

1

) is satis�able in a model of T

C

2

. By the

de�nition of T

C

i

, it follows that

~

�

i

must be satis�able in a model of the form

B

F

i

, where F

i

= (W

i

; R

i

) 2 C

i

(i = 1; 2). So we simply need to de�ne the

interpretation E

F

of the onneting relation E in suh a way that also

~

�

0

is

satis�ed in F = (F

1

; E

F

;F

2

). This is done as follows: pik s

1

2 W

1

and s

2

2 W

2

;

we say that (s

2

; s

1

) 2 E

F

i� s

2

2 

B

F

2

�

,

14

where � is the unique element

15

of � suh

that s

1

2 �

B

F

1

. This implies that, for every � 2 �, we have �

B

F

E

(�

B

F

1

) � 

B

F

2

�

.

For the onverse inlusion, suppose that s

2

2 

B

F

2

�

. Then B

F

2

6j= 

�

� ?. By the

de�nition of

~

�

2

(

~

�

1

) and by the fat that either � � ? 2

~

�

1

or � 6� ? 2

~

�

1

, we

have that B

F

1

6j= � � ?. This means that there is some s

1

2 �

B

F

1

; for suh s

1

we

have that (s

2

; s

1

) 2 E

F

, i.e. that s

2

2 �

B

F

E

(�

B

F

1

). a

The above proposition, together with our main ombination result (Theorem 4.1),

and the fat that Boolean-based theories are algebraially ompatible with respet

to the theory of semilatties (Example 4.6), immediately entails the following

result:

Corollary 8.4 Let C

1

and C

2

be lasses of modal frames. If the modal onstraint

problems for C

1

and C

2

are both deidable, then so is the modal onstraint problem

for E(C

1

; C

2

).

This deidability transfer result an be proved diretly by an argument similar

to the one we used to prove Proposition 8.3. Notie, however, that Theorem 4.1

gives in fat more, as it applies to any Boolean-based theory, i.e., also to theories

that are not of the kind T

C

for a lass C of Kripke frames.

Let us now turn to E-onnetions that orrespond to onnetions of theories where

more than the theory of semilatties is shared. The frame lasses E

d

(C

1

; C

2

) and

E

f

(C

1

; C

2

) are de�ned similarly to E(C

1

; C

2

): the only di�erene is that now the

onneting relation E is respetively taken to be a partial funtion and a funtion.

For suh deterministi or funtional onnetions, we an show results that are

analogous to Proposition 8.3.

Proposition 8.5 Let C

1

and C

2

be lasses of modal frames.

14

We use t

B

F

2

to denote the interpretation of the ground term t in the struture B

F

2

(and

similarly for F

1

).

15

By the de�nition of �, di�erent elements of � are interpreted by disjoint sets in F

1

, and

the union of the interpretations of all elements of � in F

1

is W

1

.
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1. T

E

d

(C

1

;C

2

)

oinides with T

C

1

>

T

0

T

C

2

, where T

0

is the theory of distributive

latties with a least element.

2. T

E

f

(C

1

;C

2

)

oinides with T

C

1

>

T

0

T

C

2

, where T

0

is the theory of bounded dis-

tributive latties.

Proof. Only slight modi�ations to the proof of Proposition 8.3 are needed. When

building

~

�

2

(

~

�

1

), we add also the atoms 

�

1

u 

�

2

� ?, for �

1

6= �

2

. In the ase of

a funtional onnetion, we additionally add > �

F

�2�



�

.

To de�ne E

F

, we now proeed as follows: �rst, the de�nition domain of the partial

funtion E

F

is (

F

�2�



�

)

B

F

2

. Now notie that any s

2

in this de�nition domain

belongs to exatly one 

B

F

2

�

; moreover, if s

2

2 

B

F

2

�

, then B

F

2

j= 

�

6� ? and thus

B

F

1

j= � 6� ?. Selet just one s

1

2 �

B

F

1

and let E

F

(s

2

) := s

1

. This de�nition of

E

F

guarantees that B

F

j= �

E

� � 

�

again holds for all � 2 �. In addition, in the

ase of a funtional onnetion, the presene of > �

F

�2�



�

in

~

�

2

(

~

�

1

) enfores

that the de�nition domain of the partial funtion E

F

is the whole domain. a

The algebrai ompatibility of any Boolean-based theory with respet to the the-

ory of distributive latties with a least element and with respet to the theory of

bounded distributive latties (see Examples 4.7 and 4.8), now yields the following

deidability transfer results:

Corollary 8.6 Let C

1

and C

2

be lasses of modal frames. If the modal onstraint

problems for C

1

and C

2

are both deidable, then so are the modal onstraint prob-

lems for E

d

(C

1

; C

2

) and E

f

(C

1

; C

2

).

9 Appendix B: Theory Completions

In this Appendix we develop some model theory onerning our notions of omple-

tions of a theory T . Suh model theory gives further insight into some important

ingredients of the paper, although it is not needed in order to understand and

justify our ombination proedures. We shall reall lassial well-known results

for model ompletions and show how they an be adapted to the ase of positive

algebrai ompletions.

16

Let us all a model M of a theory T :

- algebraially losed i� every sentene of the kind 9x(A

1

(a; x) ^ � � � ^ A

n

(a; x))

whih is satis�ed in some N �M suh that N j= T , is satis�ed inM itself

(here a are parameters from M and the A

i

(y; x) are atoms);

16

Similar adaptations an be done also for the oalgebrai ompletions ase, but we do not

insist on them, for simpliity.
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- existentially losed i� every sentene of the kind 9x(A

1

(a; x) ^ � � � ^ A

n

(a; x))

whih is satis�ed in some N �M suh that N j= T , is satis�ed inM itself

(here a are parameters from M and the A

i

(y; x) are literals).

The following Lemma is taken from [CK90℄:

Lemma 9.1 If T is universal, then every model M of T embeds into a model of

T whih is existentially (hene also algebraially) losed.

Proof. Take a well-order f�

i

g

i<�

of the existential sentenes with parameters

from M. De�ne a �rst hain fM

i

g

i

of models of T , by letting M

i

to be an

extension of

S

j<i

M

j

in whih �

i

is true (if this extension does not exists, M

i

is just

S

j<i

M

j

). Now let M

1

be

S

j<�

M

j

; repeating the onstrution,

17

we

produe a ountable hain M � M

1

� M

2

� � � � . The union of this hain is

the desired existentially losed extension of M (notie that this argument works

beause T is preserved under union of hains, being universal). a

Proposition 9.2 Suppose that T has a positive algebrai (model) ompletion T

�

;

then the models of T

�

are preisely those models of T whih are algebraially (resp.

existentially) losed.

Proof. We show the proof just for the ase of the positive algebrai ompletion T

�

(the other ase being analogous and well-known [CK90℄). Reall that, aording

to De�nition 3.2 and Lemma 3.3, for every geometri formula �(x) there is a

geometri open formula �

�

(x) suh that T j= �! �

�

and T

�

j= �

�

! �.

Suppose thatM j= T

�

, that N �M is an extension ofM whih is also a model

of T . Let �(a) be a geometri sentene with parameters a from M whih is true

in N . Then we have N j= �

�

(a) and alsoM j= �

�

(a) (beause �

�

is open); asM

is a model of T

�

, this implies that M j= �(a).

Conversely, suppose thatM is algebraially losed as a model of T and let �(a) be

a geometri sentene with parameters inM suh thatM j= �

�

(a). By de�nition

3.2(ii), M an be embedded into a model N of T

�

. Sine �

�

is open and sine

T

�

j= �

�

! �, in N we have N j= �(a) and also M j= �(a), beause M is

algebraially losed. ThusM j= �$ �

�

holds for all geometri � (the impliation

� ! �

�

being already a logial onsequene of T ). It is now easy to show that

M j= T

�

: let �

1

! �

2

be a geometri sequent in the axiomatization of T

�

. We

have that M j= �

1

! �

2

i� M j= �

�

1

! �

�

2

; however, from T

�

j= �

1

! �

2

, we

get T

�

j= �

�

1

! �

�

2

, hene also T j= �

�

1

! �

�

2

, beause T and T

�

agree on open

formulae (see De�nition 6.1(i)-(ii) and Lemma 3.1). SineM j= T ,M j= �

�

1

! �

�

2

follows; onsequently we have M j= �

1

! �

2

(i.e. M j= T

�

). a

17

The onstrution needs to be repeated, in order to take are of existential formulae with

parameters from jM

1

j n jMj.
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Notie that Proposition 9.2 implies that T

�

, when it exists, is unique. Clearly not

all universal theories T have a positive algebrai or a model ompletion: there is

no general guarantee, for instane, that the lass of algebraially or existentially

losed models of T is elementary (i.e. that it is the lass of the models of some

�rst order theory at all).

9.1 Model Completions

A lassial result [CK90℄ says that a universal theory T has a model ompletion i�

T has the amalgamation property and the lass of the existentially losed models

of T is an elementary lass. We shall reall here the proof of this result and in

next subsetions we show how a similar statement an be proved for the ase of

positive algebrai ompletions.

We say that a theory T has the amalgamation property (AP for short) i� for every

tripleM;N

1

;N

2

of models of T , for every pair of embeddings �

1

:M�!N

1

and

�

2

:M�!N

2

, there are a further model N of T , and embeddings �

1

: N

1

�! N

and �

2

: N

2

�! N suh that the square

N

2

N

--

�

2

M N

1

--

�

1

?

?

�

2

?

?

�

1

ommutes.

Proposition 9.3 If the universal 
-theory T has a model ompletion T

�

, then

T has AP .

Proof. Given embeddings �

1

: M �! N

1

and �

2

: M �! N

2

, we an freely

suppose that N

1

;N

2

are models of T

�

and that �

1

; �

2

are inlusions. By diagrams

theorems, it is suÆient to show the onsisteny of T [�(N

1

)[�(N

2

). Suppose

this is not onsistent; by ompatness there are �

1

(m;n

1

); �

2

(m;n

2

), suh that

T [f�

1

(m;n

1

); �

2

(m;n

2

)g is inonsistent. Here: a) m are parameters fromM; b)

n

1

; n

2

are parameters from N

1

;N

2

(not belonging to the image of �

1

; �

2

, respe-

tively); ) �

1

(m;n

1

) is a onjuntion of ground literals true in N

1

; d) �

2

(m;n

2

) is

a onjuntion of ground literals true in N

2

. Let �(m) be 9y�

1

(m; y) and reall

from De�nition 6.1 that there is an open formula �

�

suh that T

�

j= �

�

$ �.

We onsequently have N

1

j= �

�

(m); sine �

�

(m) is open, we get that it is true in

M and in N

2

too. The latter is a model of T

�

, hene N

2

j= �(m), ontradition

beause T [ f�(m); �

2

(m;n

2

)g is inonsistent. a
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Lemma 9.4 Suppose that the universal 
-theory T has AP and that T

�

� T is

an extension of T (in the same signature of T ) whose models are all existentially

losed for T . Then T

�

admits quanti�er elimination.

Proof. Let �(x) be an existential formula: it is suÆient to show that �(x) is

equivalent modulo T

�

to a quanti�er free formula �

�

(x). For new onstants a

onsider the set of sentenes

� := T

�

[ f�(a)g [ f: (a) j is quanti�er free and T

�

j=  (a)! �(a)g:

If � is inonsistent, then we have T

�

j= �(a)!  

1

(a)_ � � � _ 

n

(a) for quanti�er-

free  

i

implying �, so that we an take the disjuntion of suh  

i

as �

�

.

Consequently it suÆes to show that � annot be onsistent. Suppose it is and

let M be a model of it. Let A be the substruture of M generated by the a; we

distinguish two ases, depending on whether we have T

�

[�(A) j= �(a) or not.

If we do not have T

�

[�(A) j= �(a), then we an build a modelN of T

�

ontaining

A as a substruture and falsifying �(a). By AP , there is a ommon extension N

0

ofM and N (over A); sineM j= �(a) and �(a) is existential, N

0

j= �(a), whih

annot be beause N is existentially losed (it is a model of T

�

) and N 6j= �(a).

If we have T

�

[ �(A) j= �(a), for some quanti�er-free sentene  (a) true in A

we have that T

�

j=  (a)! �(a). Aording to the de�nition of �, : (a) is true

in M and also in A (beause it is quanti�er-free), ontradition. a

Theorem 9.5 Let T be a universal theory; then T has a model ompletion i� it

has AP and the lass of existentially losed models of T is elementary.

Proof. One side is overed by Propositions 9.2 and 9.3 and the other side by

Lemmas 9.4 and 9.1. a

We �nally reall that the de�nition of a model ompletion given in De�nition 6.1

above agrees with the standard de�nition used e.g. in most textbooks and a also

in [Ghi05, BGT04℄:

18

Proposition 9.6 Let T be a universal 
-theory and let T

�

be a further 
-theory

extending T . We have that T

�

is a model ompletion of T i� the following two

onditions are satis�ed: (i) every model of T embeds into a model of T

�

; (ii) for

every 
-struture A whih is a model of T , we have that T

�

[�(A) is a omplete




jAj

-theory.

18

For a slightly di�erent proof of Proposition 9.6 (whih is nevertheless well-known), see

[Ghi03℄, Appendix B. The alternative de�nition suggested by Proposition 9.6 is atually prefer-

able, beause it onveniently applies also to theories whih might not be universal. We adopted

De�nition 6.1, just to make it parallel to De�nition 3.2.
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Proof. The left-to-right side is trivial (just observe that ground formulae are

preserved by both sub- and super-strutures). For the other side, suppose that

T

�

[�(A) is a omplete �

jAj

-theory for every A whih is a model of T

�

. We want

to apply Lemma 9.4, so we need to show that all models of T

�

are existentially

losed and that T enjoys AP .

The former is shown as follows: let M be a model of T

�

and let N � M be

a model of T in whih a ertain existential formula (with parameters from M)

�(m) is true. Sine models of T embeds into models of T

�

, we an suppose that

N j= T

�

. But then, N and M itself are both extensions of M to a model of T

�

,

whene they are both models of the omplete theory T

�

[ �(M), whih means

that �(m) is true in M (sine it is true in N ).

We �nally show that AP holds for T . Given embeddings �

1

: M �! N

1

and

�

2

: M �! N

2

(to be amalgamated), we an freely suppose that N

1

;N

2

are

models of T

�

and that �

1

; �

2

are inlusions. Both N

1

and N

2

are then models of

the omplete theory T

�

[ �(M), hene the union of their elementary diagrams

(in the signature of T expanded with the onstants jMj) is onsistent: any model

of suh union gives a model of T amalgamating M

1

and M

2

over M. a

9.2 Positive Algebrai Completions

We wish to get a result analogous to Theorem 9.5 for the ase of positive algebrai

ompletions. To this aim, we need to identify the semanti properties playing the

role of amalgamation in our ontext.

We say that a theory T has the injetion-transfer property (IT for short) i� for

every triple M;N

1

;N

2

of models of T , for every homomorphism � : M �! N

2

and for every embedding � : M �! N

1

, there are a further model N of T , an

embedding �

0

: N

2

�! N and a homomorphism �

0

: N

1

�! N suh that the

square

N

2

N

--

�

0

M N

1

--

�

?

�

?

�

0

ommutes.

Proposition 9.7 If the universal 
-theory T has a positive algebrai ompletion

T

�

, then T has IT .
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Proof. Let � : M �! N

2

be a homomorphism and let � : M �! N

1

be an

embedding (M;N

1

;N

2

are supposed to be models of T ); by De�nition 3.2(ii), we

an freely suppose that N

2

is a model of T

�

. By diagrams theorems, it is suÆient

to show the onsisteny of T [�

+

(N

1

)[�(N

2

). Suppose this is not onsistent; by

ompatness there are �

1

(m;n

1

); �

2

(m;n

2

), suh that T [ f�

1

(m;n

1

); �

2

(m;n

2

)g

is inonsistent. Here: a) m are parameters from M; b) n

1

; n

2

are parameters

from N

1

;N

2

(not belonging to the image of �; �, respetively); ) �

1

(m;n

1

) is a

onjuntion of ground atoms true in N

1

; d) �(m;n

2

) is a onjuntion of ground

literals true in N

2

. Let �(m) be 9y�

1

(m; y); we have N

1

j= �

�

(m), as �(m) !

�

�

(m) is a logial onsequene of T (see Lemma 3.1). Sine �

�

(m) is geometri

and open, we get that it is true inM and in N

2

too. The latter is a model of T

�

,

hene N

2

j= �(m), ontradition beause T [f�(m); �

2

(m;n

2

)g is inonsistent. a

Propositions 9.2 and 9.7 an be inverted, in the following sense:

Theorem 9.8 Let T be a universal theory; then T has a positive algebrai om-

pletion i� it has IT and the lass of algebraially losed models of T is elementary.

Proof. One side is overed by Propositions 9.2 and 9.7. Suppose now that T

has IT and that there is a �rst-order theory T

0

(in priniple, not neessarily a

geometri one) suh that the models of T

0

are exatly the algebraially losed

models of T . Let �(x) be a geometri formula and let a be free onstants. De�ne

� as the set of geometri, open and ground formulae in 


a

(here 
 is obviously

the signature of T ) whih are logial onsequenes of T

0

[ f�(a)g.

We �rst laim that �[T

0

j= �(a). Let in fatM be a model of T

0

[�. Let �

�

(a)

be the set of negative ground 


a

-literals whih are true in M. By the de�nition

of �, the set T

0

[�

�

(a)[f�(a)g is onsistent and hene has a model N . Let A be

the substruture of N generated by the a (notie that A is a model of T beause

T is universal): if we apply diagrams theorems and IT , we get a ommutative

square

M N

0
--

A N

--

?

�

?

�

0

FromN j= �(a), we getN

0

j= �(a) (beause � is geometri) and �nallyM j= �(a)

beause M is algebraially losed. This ends the proof of the laim.

From the laim and ompatness, we realize that for every geometri �, there is

a geometri open �

�

suh that

T

0

j= �! �

�

and T

0

j= �

�

! �:
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Let T

�

be the extension of T axiomatized by the universal losure of the geometri

sequents �! �

�

and �

�

! � (we have T � T

�

� T

0

). As every model of T embeds

into a model of T

0

by Lemma 9.1, ondition (ii) of De�nition 3.2 is satis�ed; sine

ondition (iii) omes diretly from the onstrution, T

�

is a positive algebrai

ompletion of T . a

10 Appendix C: Alternative Proofs

Here we give alternative proofs of some relevant Propositions from Setions 4 and

5, relying on some slightly deeper model theoreti mahinery.

19

The main feature

of these alternative proofs is that they do not use use either loal �niteness of T

0

or ountability of the involved signatures.

We �rst need the following extended IT property whih is an interesting onse-

quene of T

0

-algebrai ompatibility:

Proposition 10.1 Let T

0

� T be theories in signatures 


0

� 
 suh that T is

T

0

-algebraially ompatible. Let A; C be 


0

-strutures whih are models of T

0

and

let M be a 
-strutures whih is a models of T ; for every 


0

-homomorphism � :

A �!M

j


0

and for every 


0

-embedding � : A �! C, there are a further 
-model

N of T , an 
-embedding �

0

:M�!N and a 


0

-homomorphism �

0

: C �! N

j


0

suh that the square

C N

j


0

-

�

0

A M

j


0

-

�

?

?

�

?

?

�

0

j


0

ommutes. Moreover, if M j= T [ T

�

0

, then the embedding �

0

an be taken to be

elementary.

Proof. Similarly to the proof of Proposition 9.7, we need to show that T [

�

+




0

(C) [�




(M) is onsistent. Again, if this is not the ase, we have that there

are �

1

(a; ); �

2

(a;m), suh that T [ f�

1

(a; ); �

2

(a;m)g is inonsistent. Here: a)

a are parameters from A; b) ;m are parameters from C;M (not belonging to

the image of �; �, respetively); ) �

1

(a; ) is a onjuntion of ground 


a;

0

-atoms

19

Similar alternative proofs an be given also for the relevant Propositions from Setion 6, but

we do not insist on them. Moreover, the experiened model-theorist will realize that further

alternative proofs an be obtained by using the umbersome formalism of saturated/speial

models.
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true in C; d) �(a;m) is a onjuntion of ground 


a;m

-literals true inM. Let �(a)

be 9y�

1

(a; y); we have C j= �

�

(a), as �(a) ! �

�

(a) is a logial onsequene of

T

0

. Sine �

�

(a) is geometri and open, we get that it is true in A and in M

too. The latter an be embedded into a model M

0

of T [ T

�

0

, hene M

0

j= �(a),

ontradition beause T[f�(a); �

2

(a;m)g was supposed to be inonsistent (notie

that M

0

j= �

2

(a;m) follows from M j= �

2

(a;m) beause �

2

is open).

In aseM is a model of T[T

�

0

, we an replae �




(M) by the elementary diagram

�

e




(M) of M and get an elementary �

0

, beause there is no need of onsidering

the extension M

0

. a

Let us now give an alternative proof of Proposition 4.2. Suh an alternative

proof is indeed quite simple, from the information we have now: from the data

1-5 of Proposition 4.2, we an get a 


0

-homomorphism � : A �! B among a 


0

-

substruture A of a model N

0

of T

1

and a 


0

-substruture B of a model N

00

of T

2

.

Proposition 4.2 is proved if we build an extension of � to a 


0

-homomorphism

N

0

j


0

�! N

j


0

, where N

j


0

is a suitable 


2

-superstruture of N

00

. But suh

extension is immediately provided by an appliation of Proposition 10.1: take as

� the inlusion of A into N

0

and as � the omposition of � with the inlusion of

B into N

00

. a

Similar arguments (but iterations are needed!) give alternative proofs of the

remaining relevant Propositions from Setions 4 and 5.

An alternative proof of Proposition 4.4 is as follows. We are given models

N

0

;M

0

of T

1

; T

2

respetively; N

0

has 


0

-substrutures A;A

0

, whereas M

0

has




0

-substrutures B;B

0

. We are also given 


0

-homomorphisms � : A �! B and

� : B

0

�! A

0

. We an freely suppose that N

0

;M

0

are models of T

�

0

too, by the

algebrai ompatibility assumptions.

The Proposition is proved, if we sueed in produing elementary extensions

N

1

;M

1

of N ;M endowed with 


0

-homomorphisms

�

1

: N

1

j


0

�!M

1

j


0

; �

1

:M

1

j


0

�! N

1

j


0

extending � and �, respetively. To this aim, we de�ne elementary hains of

models

N

0

� N

1

� � � �

M

0

�M

1

� � � �

as well as homomorphisms

�

k

: N

k

j


0

�!M

k+1

j


0

; �

j

:M

j

j


0

�! N

j

j


0

(k � 0, j � 1) suh that � � �

k

� �

k+1

and � � �

j

� �

j+1

(one this is settled,

20

it is suÆient to take unions in order to get the desired N

1

;M

1

; �

1

; �

1

). All

20

Reall the elementary hain theorem [CK90℄, aording to whih the union of an elementary

hain of models is elementarily equivalent to eah member of the hain.
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these data an be easily built by using Proposition 10.1. For instane, to getM

1

and �

0

it is suÆient to �ll the square

N

0

j


0

M

1

j


0

-

�

0

j


0

A M

0

j


0

-

?

?

?

?

where the top horizontal morphism is the omposite of � with the inlusion B �

M

0

j


0

(notie that we an get an elementary embedding M

0

,!M

0

, sine M

0

j=

T

�

0

[ T

2

). To get N

1

and �

1

it is suÆient to �ll the square

M

1

j


0

N

1

j


0

-

�

1

j


0

B

0

N

0

j


0

-

?

?

?

?

where the top horizontal morphism is the omposite of � with the inlusion A

0

�

N

0

j


0

and the left vertial morphism is the omposite inlusion B

0

� M

0

� M

1

.

For the indutive ases, the same argument an be applied. a

An alternative proof of Proposition 5.3 is as follows. Here we are given a

model M of T endowed with a pair of 


0

-substrutures A;B; we are also given

a 


0

-homomorphism � : A �! B. Again we an suppose that M j= T [ T

�

0

.

The Proposition is proved, if we sueed in produing an elementary extension

M

1

of M endowed with an 


0

-homomorphism

�

1

:M

1

j


0

�!M

1

j


0

;

extending �. To this aim, we de�ne an elementary hain of models

M

0

�M

1

� � � �

as well as homomorphisms

�

k

:M

k

j


0

�!M

k+1

j


0

;

(k � 0) suh that � � �

k

� �

k+1

(one this is settled, it is suÆient to take

unions in order to get the desiredM

1

and �

1

). To getM

1

and �

0

it is suÆient

to �ll the square
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M

0

j


0

M

1

j


0

-

�

0

j


0

A M

0

j


0

-

?

?

?

?

where the top horizontal morphism is the omposite of � with the inlusion B �

M

0

j


0

. To get indutively M

k+1

and �

k

, one proeeds similarly. a
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