TECHNlSCHE Dresden University of Technology
UNIVERSITAT Institute for Theoretical Computer Science
DRESDEN Chair for Automata Theory

LTCS—Report

Expressive Non-Monotonic Description Logics Based on
Circumscription

Piero Bonatti, Carsten Lutz, Frank Wolter

LTCS-Report 05-06

Lehrstuhl fur Automatentheorie

Institut fiir Theoretische Informatik Hans-Grundig-Str. 25
TU Dresden 01062 Dresden
http://lat.inf.tu-dresden.de Germany

Expressive Non-Monotonic Description Logics Based on

Circumscription
Piero Bonatti Carsten Lutz Frank Wolter
Dept. of Physics Inst. for Theoretical CS Dept. of CS
U. of Naples TU Dresden U. of Liverpool
Italy Germany UK
Abstract

Recent applications of description logics (DLs) strongly suggest the integration
of non-monotonic features into DLs, with particular attention to defeasible inher-
itance. However, the existing non-monotonic extensions of DLs are usually based
on default logic or autoepistemic logic, and have to be seriously restricted in ex-
pressive power to preserve the decidability of reasoning. In particular, such DLs
allow the modelling of defeasible inheritance only in a very restricted form, where
non-monotonic reasoning is limited to individuals that are explicitly identified
by constants in the knowledge base. In this paper, we consider non-monotonic
extensions of expressive DLs based on circumscription. We prove that reasoning
in such DLs is decidable even without the usual, strong restrictions in expressive
power. We pinpoint the exact computational complexity of reasoning as complete
for NPYEX” and NExp™, depending on whether or not the number of minimized
and fixed predicates is assumed to be bounded by a constant. These results as-
sume that only concept names (and no role names) can be minimized and fixed
during minimization. On the other hand, we show that fixing role names during
minimization makes reasoning undecidable.

1 Introduction

Early KR formalisms such as semantic networks and frames usually included a wealth
of features in order to provide as powerful representational capabilities as possible
[27, 22]. Most notably, such formalisms admitted a structured representation of classes
and objects similar to modern description logics (DLs), but also mechanisms for de-
feasible inheritance and other features nowadays provided by non-monotonic logics
(NMLs). When the theory of KR was developed further, these all-embracing ap-
proaches were largely given up due to semantic and computational problems. The
subsequent focussing on more specialized formalisms caused DLs and NMLs to de-
velop into two independent subfields of KR. Consequently, modern description logics
such as SHZQ fail to include any non-monotonic features [15].

Since the birth of DLs as a subfield of KR, there has been a continuous interest
in the (re-)integration of non-monotonic features into description logics. Due to the
advent of several new application areas, this interest has recently reached new peaks.

For example, DLs are nowadays a popular tool for the formalization of biomedical
ontologies such as GALEN [29] and SNOMED [9]. As argued by Rector et al. in [28,
32], such ontologies have to support defeasible inheritance to represent knowledge
such as “in humans, the heart is usually located on the left-hand side of the body; in
humans with situs inversus, the heart is located on the right-hand side of the body”.
Another recent application of DLs is their use as an ontology language for the semantic
web [3], and the feedback of DL users from this field reveals substantial interest in the
typical nonmonotonic features of object oriented languages such as default attributes,
defeasible inheritance, and overriding.

Many different approaches to adding non-monotonic features to DLs have been
proposed, but none of them is fully convincing for modelling defeasible inheritance
[1, 2,34, 11, 10, 25, 16, 13, 31]. The main problem is taming the computational power
that arises when combining the expressiveness of DLs and NMLs: it is nontrivial to
identify a non-monotonic DL that enjoys the expressive power of modern DLs, admits
non-monotonic reasoning without severe restrictions, and is decidable. For example,
the non-monotonic DL proposed in [25] includes a mechanism for default reasoning,
but has to impose severe restrictions on DL expressiveness to keep reasoning decidable.
Another approach to non-monotonic DLs consists in including the (auto)epistemic
operator “K” [11, 10]. However, in all known decidability results concerning such
DLs, operator K can be used in a non-monotonic way only in queries, but not in
the knowledge base. This is a serious limitation since it precludes the modelling of
defeasible inheritance. The approaches [1, 2, 34, 16] are based on default logic [30] and
share a common restriction: default rules can be applied to an individual only if it has a
name, that is, it is denoted by an individual constant occurring in the knowledge base.
Since the models of DL knowledge bases usually include a large number of implicit
(nameless) individuals enforced via existential restrictions, the limitation of default
rule application to named individuals is highly restrictive. Finally, the approaches
described in [13, 31] aim at extending DLs with non-monotonic rules that, however,
apply only to named individuals.

In view of the computational problems affecting non-monotonic DLs based on
default logic or autoepistemic logic, it is surprising that circumscription [20] has never
been investigated in the context of DLs. After all, circumscription is known to be
slightly less expressive than the other major formalizations of non-monotonicity [5]. In
this paper, we advocate the use of circumscription to obtain non-monotonic extensions
of expressive DLs that are decidable and impose no serious restrictions on expressive
power. In particular, we show how to obtain a family of DLs that allow to model
defeasible inheritance without the limitation to named individuals.

The central tool for knowledge representation in our family of non-monotonic
DLs are circumscribed knowledge bases (cKBs). Like standard DL knowledge bases,
a cKB comprises a TBox for representing terminological knowledge and an ABox
for representing knowledge about individuals. Additionally, a ¢cKB is equipped with
a circumscription pattern that lists predicates (i.e., concept and role names) to be
minimized: in models of the cKB, the extension of minimized predicates is required
to be minimal w.r.t. set inclusion. Following McCarthy [21], the minimized predicates
will often be “abnormality predicates” identifying instances that are not typical for

their class. Circumscription patterns can require other predicates to be fixed during
minimization, or allow them to vary freely. Moreover, circumscription patterns allow
to express preferences between minimized predicates in terms of a partial ordering.
As argued in [2], this is of great importance to ensure a smooth interplay between
defeasible inheritance and DL subsumption.

The main contribution of this paper is a detailed analysis of the computational
properties of non-monotonic DLs based on circumscription. We show that, in the
expressive DLs ALCZO and ALCQQ, satisfiability and subsumption w.r.t. circum-
scribed knowledge bases are decidable if only concept names (and no role names) are
minimized and fixed. More precisely, we prove that satisfiability in both DLs w.r.t.
such concept-circumscribed knowledge bases is NEXPN-complete. In contrast, rea-
soning becomes undecidable if role names are allowed to be fixed during minimization.
The undecidability result already applies to the basic propositionally-closed DL ALC,
and even if TBoxes are empty. We also give a finer-grained analysis of the complexity
of reasoning w.r.t. concept-circumscribed KBs: when imposing a constant bound on
the number of minimized and fixed concept names, the complexity of satisfiability
drops to NPNEXP_completeness. All lower complexity bounds apply to the description
logic ALC.

It is interesting to note that our results are somewhat unusual from the perspective
of NMLs. First, the arity of predicates has an impact on decidability: fixing concept
names (unary predicates) does not impair decidability, whereas fixing a single role
name (binary predicate) leads to a strong undecidability result. Second, the number
of predicates that are minimized or fixed (bounded vs. unbounded) affects the compu-
tational complexity of reasoning. Although (as we briefly argue) a similar effect can
be observed in propositional logic with circumscription, this has, to the best of our
knowledge, never been explicitly noted.

2 Description Logics and Circumscription

In DLs, concepts are inductively defined with the help of a set of constructors, starting
with a set N¢ of concept names, a set Nr of role names, and (possibly) a set N; of
individual names (all countably infinite). We use the term predicates to refer to
elements of Nc U Ng. The concepts of the expressive DL ALCQTZO are formed using
the constructors shown in Figure 1. There, the inverse role constructor is the only
role constructor, whereas the remaining six constructors are concept constructors.
In Figure 1 and throughout this paper, we use #S5 to denote the cardinality of a
set S, a and b to denote individual names, r and s to denote roles (i.e., role names
and inverses thereof), A, B to denote concept names, and C, D to denote (possibly
complex) concepts. As usual, we use T as abbreviation for an arbitrary (but fixed)
propositional tautology, L for =T, — and < for the usual Boolean abbreviations, dr.C’
(existential restriction) for (= 1 r C), and Vr.C' (universal restriction) for (< 0 r =C).

In this paper, we will not be concerned with ALCQTQO itself, but with several of
its fragments. The basic such fragment allows only for negation, conjunction, disjunc-
tion, and universal and existential restrictions, and is called ALC. The availability

|Name | Syntax |Semantics |

‘ inverse role ‘ ro ‘ (r1)y” ={(d,e) | (e,d) € r*} ‘
nominal {a} {a*}
negation -C AT\ C*
conjunction cnbD ctnD*
disjunction cub | ctuD®
at-least restriction | (=nr C) | {d€ AT | #{ee CT | (d,e) € r’} >n}
at-most restriction | (<nr C) | {d€ AT | #{e€ CT | (d,e) € r’} <n}

Figure 1: Syntax and semantics of ALCQZO.

of additional constructors is indicated by concatenation of a corresponding letter: Q
stands for number restrictions, Z stands for inverse roles, and O for nominals. This
explains the name ALCQZO, and also allows us to refer to fragments such as ALCZO,
ALCQO, and ALCOT.

The semantics of ALCQZO-concepts is defined in terms of an interpretation T =
(AT, I). The domain AT is a non-empty set of individuals and the interpretation
function T maps each concept name A € N¢ to a subset A% of AT, each role name
r € NR to a binary relation % on A7, and each individual name a € N to an individual
al € AT. The extension of - to inverse roles and arbitrary concepts is inductively
defined as shown in the third column of Figure 1. An interpretation Z is called a
model of a concept C if CT # . If T is a model of C, we also say that C is satisfied
by Z.

A TBoz is a finite set of general concept implications (GCIs) C € D where C' and
D are concepts. As usual, we use C' = D as an abbreviation for C C D and D C C.
An ABozx is a finite set of concept assertions C(a) and role assertions r(a,b), where
a, b are individual names, r is a role name, and C' is a concept. An interpretation Z
satisfies (i) a GCI €' C D if C* C DZ, (ii) an assertion C(a) if aZ € C%, and (iii)
an assertion r(a, b) if (aZ,b%) € rI. Then, T is a model of a TBox T if it satisfies all
implications in 7, and a model of an ABox A if it satisfies all assertions in 4.

Circumscription with Partial Priority Ordering

Circumscription is a logical approach suitable for modelling what normally or typi-
cally holds, and thus admits the modeling of defeasible inheritance [21, 18]. The idea
is to define, in a standard first-order language, both domain knowledge and so-called
abnormality predicates that describe what does not fit the normality criteria of the ap-
plication domain. To capture the intuition that abnormality is exceptional, inference
is not based on the set of all models of the resulting theory as in classical logic, but
rather restricted to those models where the extension of the abnormality predicates is
minimal. Intuitively, this means that reasoning is done only on models that are “as
normal as possible”.

Since description logics are fragments of first-order logic, circumscription can be

readily applied. Using ALC syntax, we can assert that mammals normally inhabitate
land, and that whales do not live on land:

Mammal C Jhabitat.Land U Abyammal
Whale C Mammal M -—Jhabitat.Land

The upper inclusion states that any mammal not inhabitating land is an abnormal
mammal, thus satisfying the abnormality predicate Abyamai. When applying circum-
scription to the above TBox, we should thus only consider models where the extension
of Abyamma1 1S minimal. However, there is more than one way of defining such preferred
models. The reason is that there are essentially two options to treat the remaining
predicates during minimization of the abnormality predicate: we may either fix their
extensions or let them vary freely. It should not come as a surprise that this deci-
sion may have a strong impact on the result of reasoning. In general, varying more
predicates means that more subsumptions become derivable. For example, consider
the above TBox. Even if all non-minimized predicates are fixed, we get the following
subsumptions:

Whale 5 Abyammal)

Abyammal Mammal [N —Jhabitat.Land.

If it is considered wvery unlikely for a mammal not to live on land, then one would
expect that only those mammals do not live on land for which this was explicitly
stated: whales. Consequently, the following subsumption should be derivable:

Whale = AbMamma1 - (i)

The way to achieve this is to let the role habitat and the concept name Land vary
freely, and to fix only Mammal and Whale. The result is that both (f) and (f) are
derivable.

We can go even further and consider whales abnormal to such a degree that we
do not believe they exist unless there is evidence that they do. Then we should,
additionally, let Whale vary freely. The result is that (f) and (f) can still be derived,
and additionally we have Whale = Abyama1 = L. We can then use an ABox to add
evidence that whales exist, e.g. through the assertion Whale(mobydick). As expected,
the result of this change is that

Whale = Abyamma1 = {mobydick}.

Evidence for the existence of another, anonymous whale could be generated by adding
the ABox assertion Male(mobydick) and the TBox statement

Whale C Jmother.(Whale 1 —Male)

with mother and Male varying freely. In general, it depends on the application which
combination of fixed and varying predicates is appropriate. Therefore, the formalisms
proposed in this paper leave the freedom to the user to choose the predicates that are
minimized, fixed, and varying.

It has been convincingly argued by Baader and Hollunder in [2] that there is an
interplay between subsumption and abnormality predicates that should be addressed
in non-monotonic DLs. Consider, for example, the following TBox:

1

User L -—JhasAccessTo.ConfidentialFile Ll Abyger

Staff L User
Staff [DhasAccessTo.ConfidentialFile Ll Abgtass
BlacklistedStaff [Staff[l1—-JhasAccessTo.ConfidentialFile

To get models that are “as normal as possible”, as a first attempt we could
minimize the two abnormality predicates Abyger and Absiass in parallel. Assume
that hasAccessTo and ConfidentialFile are varying, and User, Staff, and
BlacklistedStaff are fixed. Then, the result of parallel minimization is that staff
members may or may not have access to confidential files, with equal preference. In
the first case, they are abnormal users, and in the second case, they are abnormal staff.
However, one may argue that the first option should be preferred: since Staff C User
(but not the other way round), the normality information for staff is more specific
than the normality information for users and should have higher priority.

In the generalization of circumscription used in this paper, the user can specify
priorities between minimized predicates. Normally, these priorities will reflect the
subsumption hierarchy (as computed w.r.t. the class of all models). Since the sub-
sumption hierarchy is a partial order, the priorities between minimized predicates are
assumed to form a partial order, too. This is similar to partially ordered priorities on
default rules as proposed by Brewka [7], and more general than standard prioritized
circumscription which assumes a total ordering [21, 17]. More information can be
found in [2].

To define DLs with circumscription, we start by introducing circumscription pat-
ters. Such a pattern describes how individual predicates are treated during minimiza-
tion.

Definition 1 (Circumscription pattern, <cp) A circumscription pattern is a tu-
ple CP = (<, M, F,V') where < is a strict partial order over M, and M, F, and V
are subsets of Nc U Nr, the minimized, fixed, and varying predicates, respectively.
By <, we denote the reflexive closure of <. Define a preference relation <cp on
interpretations by setting T <cp J iff the following conditions hold:

1. AT = A7 and, for alla € N, o = a7,
2. forallp e F, pr =p7,
3. for allp € M, if p* Z p7 then there exists ¢ € M, q < p, such that ¢* C ¢7,

4. there exists p € M such that p* C p7 and for all ¢ € M such that q¢ < p,
r_,J
a =q .

When M U F C Nc¢ (i.e., the minimized and fized predicates are all concepts) we call
(<, M,F,V) a concept circumscription pattern. A

We use the term concept circumscription if only concept circumscription patterns
are admitted. Based on circumscription patterns, we can define circumscribed DL
knowledge bases and their models.

Definition 2 (Circumscribed KB) A circumscribed knowledge base (cKB) is an
expression Circcp(T,.A), where T is a TBoz, A an ABox, and CP = (<X, M,F,V) a
circumscription pattern such that M, F,V partition the predicates used in T and A.
An interpretation I is a model of Circcp(T,A) if it is a model of T and A and there
exists no model ' of T and A such that T' <cp T. AN

A ¢KB Circcp(T, A) is called a concept-circumscribed knowledge base (KB) if CP is a
concept cicrcumscription pattern. The main reasoning tasks of description logics are
defined with respect to circumscribed knowledge bases in the expected way.

Definition 3 (Reasoning problems)

e A concept C' 1is satisfiable w.r.t. a cKB Circcp(T,A) if some model T of
Circep (T, A) satisfies CT # ().

e A concept C is subsumed by a concept D w.r.t. a ¢KB Circcp(T,.A) (written
Circcp(T, A) = C C D) if CT C D? for all models T of Circep (T, A).

e An individual name a is an instance of a concept C' w.r.t. a ¢KB Circcp(T,.A)
(written Circcp (T, A) |= C(a)) if a € O for all models T of Circcp (T, A).
A

These reasoning problems can be polynomially reduced to one another: first, C' is
satisfiable w.r.t. Circcp(7,.A) iff Circcp(T,A) = C C L, and Circcp(T,A) EC C D
iff C' M =D is unsatisfiable w.r.t. Circcp(7,A). And second, C' is satisfiable w.r.t.
Circcp(T, A) iff Circcp(T, A) = =C(a), where a is an individual name not appearing
in 7 and A; conversely, we have Circcp(7, A) = C(a) iff AN -C is unsatisfiable w.r.t.
Circep (T, AU {A(a)}), where A is a concept name not occurring in 7 and A, and
CP’ is obtained from CP by adding A to M (and leaving < as it is). In this paper, we
use satisfiability w.r.t. cKBs as the basic reasoning problem.

Note that partially ordered circumscription becomes standard parallel circumscrip-
tion if the empty relation is used for <. Technically, partially ordered circumscription
lies in between prioritized circumscription [21, 17] and nested circumscription [19].
It extends prioritized circumscription by admitting partial orders and, compared to
nested circumscription, has the advantage of being technically simpler while still of-
fering sufficient expressive power to address the interaction between subsumption and
circumscription in DLs.

It is folklore in circumscription that there is a close connection between mini-
mized concepts and fixed concepts: using TBoxes, the latter can be simulated by
the former. Let Cy be a concept and Circcp(7T,.A) a concept-circumscribed KB with
CP=(<,M,F,V)and F = {Ay,...,A;}. Define a new pattern CP' = (<, M', 0, V)
with

o M'=MU{Ay,..., A, AL, ... AL}, Al ..., A} concept names not occurring in
CO? M, F, 7-7 and Aa

o T'=TU{A =-4;|1<i<k}

It is not difficult to see that Cj is satisfiable w.r.t. Circcp(7,.A) iff it is satisfiable
w.r.t. Circepr (T',.A). Thus, we get the following.

Lemma 4 Satisfiability w.r.t. concept-circumscribed KBs can be polynomially reduced
to satisfiability w.r.t. concept-circumscribed KBs that have no fixed predicates.

Also in the case of general cKBs, fixed concept names can be simulated by minimized
concept names. However, such a simulation cannot be done for role names since
Boolean operators on roles are not avaliable in standard DLs such as ALCQTO.

3 Upper Bounds

The main contribution of this paper is to show that there are many description logics
with circumscription that are decidable, and to perform a detailed analysis of the
computational complexity of such logics. In particular, we will show that ALCZO
and ALC QO with concept circumscription are decidable. We prepare the decidability
proof for these logics by showing that if a concept is satisfiable w.r.t. a concept-
circumscribed KB, then it is satisfiable in a model of bounded size. We use |C| to
denote the length of the concept C, i.e., the number of symbols needed to write C'.
The size |T| of a TBox T is) per |C| +|D|, and the size |A] of an ABox A is the
sum of the sizes of all assertions in A, where the size of each role assertion is 1 and
the size of concept assertions C'(a) is |C].

Lemma 5 Let Cy be a concept, Circcp(T,.A) a concept-circumscribed KB, and n :=
|Col + |T|+ |A]. If Cy is satisfiable w.r.t. Circcp(T,.A), then the following holds:

(i) If T, A and Cy are formulated in ALCZO, then Cy is satisfied in a model T of
Circep(T, A) with #AT < 227,

(i) If T, A and Cy are formulated in ALCQO and m is the mazimal parameter
occuring in a number restriction in T, A, or Cy, then Cy is satisfied in a model
T of Circcp (T, A) with #AT < 22" x (m +1) x n.

Proof. Let CP, T, A, and Cj be as in the lemma. We may assume that A = () as every
assertion C'(a) can be expressed as an implication {a} C C, and every assertion r(a,b)
can be expressed as {a} T Jr.{b}. Denote by cl(C,T) the smallest set of concepts
that contains all subconcepts of C', all subconcepts of concepts appearing in 7, and
is closed under single negations.

Let Z be a common model of Cy and Circcp(T,.A), and let dy € CZ. Define an
equivalence relation “~” on A’ by setting d ~ d' iff

{Ced(Cy,T)|deCT} ={C€clCy,T)|d € CT}.

We use [d] to denote the equivalence class of d € AT w.r.t. the “~” relation. Pick
from each equivalence class [d] exactly one member and denote the resulting subset
of AT by A'.

We first prove Point (i). Thus, assume that 7 and Cy are formulated in ALCZO.
We define a new interpretation 7 as follows:

AT = A

A7 = {deA'|de AT}

r7 = {(d1,dy) € A x A" | 3d, € [dh],db € [da] : (dy, dby) € rT}
a? = deAifal €ld

The following claim is easily proved using induction on the structure of C.

Claim: For all C' € cl(Cy,T) and all d € AT, we have d € C7T iff d € C7 for the
element d’ € [d] of A7.

Thus, J is a model of T satisfying Cy. To show that 7 is a model of Circcp(T, A), it
thus remains to show that there is no model J' of 7 with J' <cp J. Assume to the
contrary that there is such a J’'. We define an interpretation 7’ as follows:

AT = AT

AT = [d)
de AT’

P = U (] x [do]
(dy,d2)erd’

aII = aI.

It is a matter of routine to show the following:

Claim: For all concepts C' € cl(Cp,T) and all d € AT, we have d € CT iff d' € C7'
for the element d’ € [d] from A7.

It follows that Z' is a model of 7. Observe that AT o AT iff A7 0 A7 for each concept
name A and o € {D, C}. Therefore and since CP is a concept circumscription pattern,
I' <cp I follows from J' <cp J. We have derived a contradiction and conclude that
J is a model of Circcp(7T,.A). Thus we are done since the size of 7 is bounded by 22n

Now for Point (ii). Pick, for each d € A’ and concept (= nr C') € cl(Cy,T) such
that d € (=nr C)F, n elements from {d' | d € CT,(d,d') € rT}. Also pick, for
each concept (< nr C) € cl(Cy, T) such that d € (-(< nr C))E, n+ 1 elements from
{d"|d € CT,(d,d) e rt}. Denote by A” the collection of the elements picked. Take
for each d € A"\ A" an element d° € A’ such that d ~ d° and define an interpretation
J by

AT = Alua”
AT = {de A'UA"|de AT}
rd = {(dy,dy) € A" x (ATUA") | (dy,ds) € rT}

U{(dy,dy) € (A" \ A") x (A"UA") | (d,ds) € rT}
a? = dif o €d].

The following claim is easily proved.
Claim: For all C' € cl(Cy,T), we have the following:
(i) forall d,d' € A7, if d ~ d', then d € C7 iff d' € C7;
(ii) for all d € AT, we have d € CT iff d' € C7 for an element d’ € [d] of A7.

Thus, J is a model of T satisfying Cy. To show that 7 is a model of Circcp(T,.A), it
thus remains to show that there is no model J’ of T with J' <cp J. Assume to the
contrary that there is such a 7'. We define an interpretation Z'. To this end, take for
each d € AT\ A7 the d” € A’ such that d ~ d”. Now define 7’ as follows

AT = AT

AT = AT U{de AT\ AT |d» e AT}

T = T U{(dy,dy) € (AT\ AT) x AT | (&8, dy) € rT'}
CLII = CLI.

Again, it is a matter of routine to show:

Claim: For all concepts C' € cl(Cp, T) and all d € AT, we have d € CcT N A7 iff
de 07 and de CT N (AT\ A7) iff d? € C7' for the element d” € [d] from A’

It follows that Z’ is a model for 7. Observe that Ao AT iff A7 0 A7" for each concept
name A and o € {D, C}. Therefore and since CP is a concept circumscription pattern,
T' <cp T follows from J' <cp J. We have derived a contradiction and conclude that

J is a model of Circcp(7,.A). Thus we are done since the size of 7 is clearly bounded
by 22" x (m +1) x n. O

It is interesting to note that the proof of Lemma 5 does not go through if role names
are minmized or fixed.

Using the bounded model property just established, we can now prove decidability
of reasoning in ALCZTO and ALCQQO with concept circumscription. More precisely,
Lemma 5 suggests a non-deterministic decision procedure for satisfiability w.r.t. con-
cept circumscription patterns: simply guess an interpretation of bounded size and
then check whether it is a model. It turns out that this procedure shows containment
of satisfiability in the complexity class NEXPNT, which contains those problems that
can be solved by a non-deterministic exponentially time-bounded Turing machine that
has access to an NP oracle. Tt is known that NExp C NExpN C 2-Exp.

Theorem 6 In ALCIO and ALCQQO, it is in NEXPNY to decide whether a concept
is satisfiable w.r.t. a concept-circumscribed KB Circcp (T, A).

Proof. It is not hard to see that there exists an NP algorithm that takes as input
a ¢cKB Circcp(T,.A) and an interpretation Z, and checks whether Z is not a model of
Circcp(T, A): the algorithm first verifies in polynomial time whether 7 is a model of
T and A, answering “yes” if this is not the case. Otherwise, the algorithm guesses an
interpretation J that has the same domain as Z and interpretes all object names in
the same way, and then checks whether (i) 7 is a model of 7 and A, and (ii) J <cp Z.

10

It answers “yes” if both of the checks succeed, and “no” otherwise. Clearly, checking
whether J <cp Z can be done in time polynomial w.r.t. the size of J and Z.

This NP algorithm may now be used as an oracle in a NEXP-algorithm for deciding
satisfiability of a concept Cy w.r.t. a ¢cKB Circcp(T,.A): by Lemma 5, it suffices to
guess an interpretation of size 2* with & = |Cp| 4+ |T| + |A|, ! and then use the NP
algorithm to check whether Z is a model of Circcp(7T,.A). This proves that concept
satisfiability is in NExpNT, O

By the reductions given in Section 2, Theorem 6 yields co-NExPNT upper bounds
for subsumption and the instance problem. We will show in Section 4 that these up-
per bounds are tight. However, since NExp" is a relatively large complexity class,
it is a natural question whether we can impose restrictions on concept circumscrip-
tion such that reasoning becomes simpler. In the following, we identify such a case
by considering cKBs in which the number of minimized and fixed concept names is
bounded by some constant. In this case, the complexity of satisfiability w.r.t. concept-
circumscribed KBs drops to NPNPXP - For readers uninitiated to oracle complexity
classes, we note that NExp C NPVFXP ¢ NExp" C 2-Exp, and that NPNFXP g

believed to be much less powerful than NEXp™T| see for example [13].

To prove the NPNPXP upper bound, we first introduce counting formulas as a

common generalization of TBoxes and ABoxes.

Definition 7 (Counting Formula) A counting formula ¢ is a Boolean combination
of GCIs, ABox assertions C'(a), and cardinality assertions

(C =n) and (C < n),

where C' is a concept and n a non-negative integer. We use A\, V, = and — to denote
the Boolean operators of counting formulas. An interpretation T satisfies a cardinality
assertion (C' = n) if #CT = n, and (C < n) if #CT < n. The satisfaction relation
T = ¢ between models I and counting formulas ¢ is defined in the obvious way. A

In the following, we assume that the integers occurring in cardinality assertions are
coded in binary. The NPNEXP algorithm to be devised will use an algorithm for
satisfiability of (non-circumscribed) counting formulas as an oracle. Therefore, we
should first determine the computational complexity of the latter. It follows from [35]
that, in ALC, satisfiability of counting formulas is NEXP-hard. A matching upper
bound for the DLs ALCZO and ALCQQO is obtained from the facts that (i) there is a
polynomial translation of counting formulas formulated in these languages into C2, the
two-variable fragment of first-order logic extended with counting quantifiers [14, 24],
and (ii) satisfiability in C2 is in NEXP even if the numbers in counting quantifiers are
coded in binary [26].

Theorem 8 (Tobies, Pratt) In ALC, ALCZO and ALCQO, satisfiability of count-
ing formulas is NEXP-complete even if numbers in number restrictions are coded in
binary.

!The bound 2** clearly dominates the two bounds given in Parts (i) and (ii) of Lemma 5.

11

We now establish the improved upper bound.

Theorem 9 Let n be a constant. In ALCZO and ALCQQO, it is in NPNFXP to decide
satisfiability w.r.t. concept-circumscribed KBs Circcp(T,.A), where CP = (<, M, F, V)
is such that |M| <n and |F| < n.

Proof. Assume that we want to decide satisfiability of the concept Cy w.r.t. the cKB
Circcp(T,A), where CP = (<, M, F,V) with |M| < n and |F| < n. By Lemma 4,
we may assume that F' = () (we may have to increase the constant n appropriately).
We may assume w.l.o.g. that the cardinality of M is exactly n. Thus, let M =
{Ap,..., Ay}. By Lemma 5, Cy is satisfiable w.r.t. Circcp(7T,.A) iff there exists a
model of Cy and Circcp(T, A) of size 2*%, with k = |Cy| + |T| + |A|. Consider, for all
S C M, the concept
Co=1lan [1 -4
Aes AE{A1,.. . An\S

As n is fixed, the number 2" of such concepts is fixed as well. Clearly, the sets Cg ,
S C M, form a partition of the domain AT of any model Z. Introduce, for each
concept name B and role name r in 7 U A, a fresh concept name B’ and a fresh role
name 7', respectively. For a concept C, denote by C” the result of replacing in C' each
concept name B and role name r with B’ and r/, respectively. The primed versions A’
and 7' of A and T are defined analogously. Denote by N the set of individual names
in T U A U {Oo}

The NEXP-oracle we are going to use in our algorithm checks whether a counting
formula ¢ is satisfiable or not. Now, the NPNFXP_aloorithm is as follows (we use
C C D as an abbreviation for the counting formula (C'C D) A=(D C (C)):

1. Guess

e asequence (ng | S C M) of numbers ng < 2% coded in binary;
e for each individual name a € N, exactly one set S, C M;
e a subset F of N x N.

2. By calling the oracle, check whether the counting formula ¢4 is satisfiable, where
¢1 is the conjunction over

e TUAU{=(Cyh=0)};
e (Cg =ng), forall S C M;
e Cg, (a), for each a € N;

o {({a} E{b}) | (a,0) € E} U{=({a} E {b}) | (a,0) € N - E}.

3. By calling the oracle, check whether the counting formula ¢- is satisfiable, where
@2 is the conjunction over

o T'UA;
e (Cs =ng), for all S C M (note that we use the unprimed versions);

e Cg, (a), for each individual name a € N (we use the unprimed versions);

12

o {({a} E{b}) | (a,b) € E}U{~({a} E{b}) | (a,0) € N — E};
e forall A e M,
-A'Cc4) -~ \/ (BCB);
BeM,B=<A

e and, finally,

VA@can A (B=5).

AeM BEM,B<A

4. The algorithm states that Cj is satisfiable in a model of Circcp(T,.A) if, and
only if, ¢; is satisfiable and ¢ is not satisfiable.

Using the condition that n is fixed, is is clear that this is a NPNEXP

remains to show correctness and completeness.
Suppose that there exists a model of Circcp(7,.A) satisfying Cy. Then there is
such a model Z of size bounded by 2**. Let the algorithm guess

-algorithm. It

e the numbers ng = |C%|, S C M,
e the sets S, such that o’ € Cga,
e the set £ = {(a,b),(b,a) | aZ =b%,a,b € N}.

Clearly, ¢ is satisfied in Z. It remains to show that ¢, is unsatisfiable. But suppose
there exists a model J satisfying ¢o. By the conjuncts under Item 2, 3, and 4 of the
definitions of ¢; and ¢, we may assume that

o AT=A7,
o AT = A7 for all A € M;

e o = o7 for all individual names a.

Moreover, as no unprimed role names occur in ¢» and the only unprimed concept
names in ¢o are those in M, we may assume that the interpretation of all unprimed
concept and role names in Z and J coincide. Thus, J is a model of Circcp(T,.A)
satisfying Cy. But now define a model 7/ with domain A7 by setting

e o7 = a7, for all individual names a;
e 17" = (/)7 for all role names r;
o A7 = (47 for all concept names A.

Then, by the conjunct under Item 1 of the definition of ¢», 7' is a model for AUT . By
Items 5 and 6 of the definition of ¢o, J' <cp J, and we have derived a contradiction.

Conversely, suppose the algorithm says that there exists a model of Circcp(T,.A)
satisfying Cy. Then take a model Z for ¢¢. By the conjunct under Item 1 of ¢y, 7 is
a model for T U A satisfying Cy. It follows from the unsatisfiability of ¢o that 7 is a
model for Circcp(T, A). 0

13

As an immediate corollary, we obtain co-NPNP* upper bounds for subsumption and

the instance problem. A similar drop of complexity occurs in propositional logic,
where satisfiability w.r.t. circumscribed theories is complete for NPNT and it is not
difficult to see that bounding the minimized and fixed predicates allows to find a
PP algorithm. To the best of our knowledge, this has never been explicitly observed
before.

4 Lower Bounds

We show that the upper bounds given in Section 3 are tight. As usual, the lower
bounds are established by reduction of a suitable problem that is complete for the
complexity class under consideration. Thus, we are given an input = of the chosen
problem, construct a cKB and a concept from x, and show that the concept is sat-
isfiable w.r.t. the cKB iff x is a yes-instance of the problem. To achieve a gentle
presentation of the reductions, it is convenient to split up the constructed cKB into
independent parts. We first establish a general lemma facilitating such a splitting. A
concept C'is simultaneously satisfiable w.r.t. cKBs Circcp, (T1, A1), . .., Circep, (T, Ak)
if there exists an interpretation Z that is a model of all the cKBs and satisfies C # ().
The following lemma says that simultaneous satisfiability coincides with separate sat-
isfiability if there are no shared role names in the two cKBs.

Lemma 10 Let Circcp,(71,A1),. .. Circep, (Ti, Ar) be concept-circumscribed cKBs
formulated in ALC such that Circcp, (T, Ai) and Circcp, (Tj, Aj) have no shared
role names, for all 1 < i < 57 < k. Then, simultaneous satisfiability w.r.t.
Circcp, (T, A1), ... Circep, (Ts Ak), can be polynomially reduced to satisfiability w.r.t. a
single concept-circumscribed KB Circcp (T, A) such that the cardinality of each compo-
nent of CP is the sum of cardinalities of the corresponding components of CPq, ..., CPy.

Proof. We only give a proof for the case k = 2. A generalization is straightforward.
Let C' be an ALC concept and let Circcp,(71,.41), Circep,(72,.A2) be two concept-
circumscribed KBs formulated in ALC that have no shared role names. Moreover, let
Ag, ..., Ar_1 be the concept names used in both ¢cKBs, R the role names used in the
two ¢KBs, and CP; = (=<;, M;, F;,V;) for i € {1,2}. We obtain a new TBox 7, from
T2 by replacing each concept name A;, i < k, with a new concept name A’. Let A} be
obtained from Ay and CP, = (<4, M}, F3, VJ) from CP5 in an analogous way. Define
a TBox T* as follows, where P is a new concept name:

A;N=Al T Pforali<k

-A;NA, C Pforalli<k
P C Vr.PforallreR

dr.P C PforallreR

14

Now set:

= TTUTJUT*
= A UA,

<1 U<l
My, U M,
FiUF}

= Nuvy,

= (<X,M,F,V)

. B U
i

It remains to show the following:

Claim. C is simultaneously satisfiable w.r.t. Circcp,(71,.41) and Circcp, (72, A2) iff
C' N =P is satisfiable w.r.t. Circcp(T, A).

“if”. Assume that C'M =P is satisfiable w.r.t. Circcp(7T,.A), and let Z be a model
witnessing this. We may w.l.o.g. assume that Z is connected. By construction of
Circcp(T,A), T is a model of C, T;, and A;. To show that C is satisfiable w.r.t.
Circep, (T1,.A1), we prove that Z is a model of Circcp, (71,.41). Assume to the contrary
that this is not the case. Then there exists a model J of 7; and A; such that J <cp, Z.
Define a model 7' as follows:

e NI = AT :
e all predicates used in 77 and Ay are interpreted as in J;

e all predicates used in 7, and A} are interpreted as in 7.

pI AT if ((A4; =AU (=A; 1 ALY #) for some i < k
[=
0 otherwise.

It is readily checked that J’ is a model of 7 and A, and that J' <cp Z. Thus, we
have derived a contradiction to the fact that Z is a model of Circcp(T, A).

Since Z is connected and satisfies =P and T*, we have that A7 = (A})? for all
i < k. Therefore, Z is also a model of 75 and As. It remains to be shown that Z is a
model of Circcp, (72, .A2), which can be done analogously to the case of Circcp, (71,.A1).

“only if”. Assume that C' is simultaneously satisfiable w.r.t. Circcp, (71,.41) and
Circcp, (72, A2). Then there exists a model Z of C' that is a model of Circcp, (71,.41)
and Circcp, (72, A2). We modify Z to a new model Z’ by setting

o (AT := A7 for all i < k;
o PT' .= .

It should be clear that Z’ is a model of C'M =P, T, and A. It remains to show that 7’
is also model of Circcp(7,.A). To do this, we first show the following:

(a) Z' is a model of Circcp, (71,.41). This is the case since any model [of 77 and
Ay with J <cp, T’ satisfies J <cp, Z. Thus, the existence of such a model
contradicts the fact that Z is a model of Circcp, (71,.41).

15

(b) Z" is a model of Circepy (73,.A5). Assume to the contrary that there is a model
J of T) and A}, with J <cp, 7'. Convert J into an interpretation [J* by
setting A7 := (A!)7 for all i < k. Then, J* is a model of 75 and Ay and
satisfies J* <cp, Z. This is a contradiction to the fact that Z is a model of
Cit‘Ccp2 (75,./42)

Now, assume to the contrary of what remains to be shown that there is a model 7’
of T and A with J" <cp Z'. By definition of CP, J' <cp Z' implies that we have
J' <cp, T' or J' <cp, I'. Since J' clearly satisfies T1, A1, 75, and Aj, we obtain a
contradiction to (a) and (b). O

We start our study of lower complexity bounds by proving a matching lower bound for
Theorem 6: we show that, in ALC, satisfiability w.r.t. concept-circumscribed KBs is
NExPNP-hard. Therefore, satisfiability w.r.t. concept-circumscribed KBs is NExpNP-
complete in ALC, ALCZO, and ALCQQO. The proof is by reduction of a succinct
version of the problem co-CERT3COL [12]. Let us first introduce the regular (non-
succinct) version of this problem:

Instance of size n: an undirected graph G on the vertices {0, 1,...,n — 1} such that
every edge is labelled with a disjunction of two literals over the Boolean variables

{Vijli,j <n}

Yes-Instance of size n: an instance G of size n such that, for some truth value assign-
ment ¢t to the Boolean variables, the graph ¢(G) obtained from G by including only
those edges whose label evaluates to true under ¢ is not 3-colorable.

As shown in [33], co-CERT3COL is complete for NPNP. To obtain a problem complete
for NExP\T, Eiter et al. use the complexity upgrade technique: by encoding the input
in a succinct form using Boolean circuits, the complexity is raised by one exponential to
NExPNT [12]. More precisely, the succinct version co-CERT3COLg of co-CERT3COL
is obtained by representing the input graph G with nodes {0,...,2" — 1} as 4n + 3
Boolean circuits with 2n inputs (and one output) each. The Boolean circuits are
named cp, cg), Cg), and cg-t), with i € {1,2,3,4} and j < n. For all circuits, the
2n inputs are the bits of the binary representation of two nodes of the graph. The
purpose of the circuits is as follows:

e circuit c¢p outputs 1 if there is an edge between the two input nodes, and 0
otherwise;

e if there is an edge between the input nodes, circuit c(sl) outputs 1 if the first
literal in the disjunction labelling this edge is positive, and 0 otherwise; the

(2)

circuit cg’ does the same for the second literal;

e if there is an edge between the input nodes, the circuits cg.i) compute the labelling
Vi ks V Vig iy of this edge between the input nodes by generating the numbers

ki,...,ks: the circuit cg.i) outputs the j-th bit of ;.

16

Now for the reduction of co-CERT3COLg to satisfiability of concept-circumscribed
KBs. Let

G = (nv CE, Cg’l)a Cg’Z)v {652)}i€{1,..,4},j<n)

be the (succinct representation of the) input graph with 2" nodes. We will construct
two TBoxes T¢ and T/, circumscription patterns CP and CP’, and a concept Cg
such that C¢ is simultaneously satisfiable w.r.t. Circcp(7e,0) and Circepr (74, 0) iff
G is a yes-instance of co-CERT3COLg. By Lemma 10, we then obtain a reduction
to (non-simultaneous) satisfiability w.r.t. concept-circumscribed ¢KBs. Intuitively,
the purpose of the first TBox T is to fix a truth assignment ¢ for the variables
{Vi,j | i,j < n}, and to construct (an isomorphic image of) the graph #(G) obtained
from G by including only those edges whose label evaluates to true under ¢. Then,
the purpose of 7/ is to make sure that ¢(G) is not 3-colorable.

When formulating the reduction TBoxes, we use several binary counters for count-
ing modulo 2" (the number of nodes in the input graph). The main counters X and
Y use concept names Xg,..., X1 and Yy,...,Y,_1 as their bits, respectively. Ad-
ditionally, we introduce concept names I&’ét),...,lx’&l, i € {1,2,3,4} that binarily
encode numbers from the range 0,...,2" — 1, but are never incremented as a counter.
The main part of the TBox T can be found in Figure 2, where the following abbrevia-
tions are used: first, Vr.(K @) = x) is a concept expressing that, for all its instances x,
the values of Xy,..., X1 at all r-successors agree with the values of Kéz), e ,Kfﬁl
at x. And second, Vr.(X++) is an abbreviation for the well-known concept stating
that the value of the counter Xy, ..., X, 1 is incremented when going to r-successors:

k:D_l (j:ﬂ_lXj) = (X = Vr—=Xg) N (= Xy — Vr.Xp))

k:D_l (J.ZH_;X]') — ((Xp = Vr.Xy,) N (=X), = Vr-Xy,))

The intuitions of 7¢ are as follows: Lines (1) to (3) ensure that, for each possible
value of the counters X and Y, there is at least one domain element in Val* with this
counter value. We will minimize Val to ensure that there is exactly one domain element
in Val? for each possible value i of X and j of Y. Intuitively, these domain elements
are used to store informaion about the variables V;; and the (potential) edges (i, j).
Concerning the variables, each element of Val¥ with X =i and Y = j corresponds to
the variable V; ; of co-3CERTCOLg and determines a truth value for this variable via
the concept name Tr. Thus, the elements of ValZ jointly describe a truth assignment
for the variables of co-3CERTCOLg. Line (4) introduces Edge as another name for
Val. We do this to distinguish the use of the elements of Val as variables and as
edges. Intuitively, an element of d € Edge’ with X =i and Y = j corresponds to the
(potential) edge between the nodes i and j To explain this more properly, we must
first discuss the part of 7 that is missing in Figure 2.

It is easily seen that each Boolean circuit ¢ with 2n inputs can be converted into a
TBox 7. in the following sense: if the output of ¢ upon input by, ..., ba,_1 is b, then,
for all models 7 of 7, and all domain elements = € AT such that the truth value of the
concept names Xo, ..., X,—1,Yy,...,Y,—1 at x is described by by, ..., b,—1, the truth

17

T LC daux.Val (1)
Val C Fnextx.T M Vnextx.Val M Vnextx.(X++) M Vnextx.(Y=Y) (2)
Val C 3nexty.T M Vnexty.Val M Vnexty.(Y++) M Vnexty. (X=X) (3)

Edge = Val (4)
Edge T 3Jvarl.T MVvarl.Val NWvarl.(K(M=X) N vvarl.(K?)=Y) (5)
Edge T Jvar2.T MYvar2.Val MWvar2.(K®=X) N vvar2. (K=Y (6
Edge T S, — (Try <> Yvarl.Tr) (7)
Edge T =51 — (=Try <> Vvarl.Tr) (8)
Edge T Sy — (Try > Yvar2.Tr) 9)
Edge T —S53 — (=Trz <> Vvarl.Tr) (10)
Edge C Elim < (=FE U —(Try UTrg)) (11)

Figure 2: The TBox 7¢ (partly).

value of some concept name Out at z is described by b. By introducing one auxiliary
concept name for every inner gate of ¢, the translation can be done such that the size
of 7. is linear in the size of ¢. Now, the part of T not shown in Figure 2 is obtained by
converting the Boolean circuits describing the graph G into a TBox in the described
way. More precisely, this is done such that the following concept names are used as
output:

e the translation of cp uses the concept name E as output;

(2)

e the translation of ¢y’ uses the concept name S; as output, for i € {1,2};
e the translation of cg.i) uses the concept name K](-i) as output, for i € {1,...,4}
and j < n.

Note that the evaluation of Boolean circuits takes place locally at every domain ele-
ment. In principle, it suffices to evaluate the circuits only at instances of Edge: there,
Xo, ..., X1 describe the left-hand node of the corresponding edge, and Yy, ..., Y, 1
describe the right-hand node of the corresponding edge.

With this in mind, it is easy to see that Line (5) ensures the following: each
element d € Edge’ representing an edge (i,7) is connected via the role varl to the
element of Val? that represents the variable in the first disjunct of the label of (i,).
Line (6) is analogous for the role var2 and the variable in the second disjunct of the
edge label. Then, Lines (7) to (11) ensure that d € Edge’ is an instance of Elim iff
the edge corresponding to d is not present in the graph ¢(G) induced by the truth
assignment ¢ described by Val.

The TBox T/ can be found in Figure 3. Here, (X = i) stands for the concepts
expressing that X, ..., X,,_1 are the binary encoding of the number ¢. As already said,

18

Node = Valn (Y =0) (12)
Node C RUBUG (13)
Node C —(RMB)MN=(RMNG)N~(BMNG) (14)
Edge T Jcoll.T MVcoll.Node M Veoll.(X=X) (15)
Edge C Jcol2.T M Vcol2.Node M Vcol2.(Y=X) (16)
P 3 Edgeln —Elimmdcoll.R M 3col2.R (17)
P 3 Edge —Elim M 3coll.G M dcol2.G (18)
P EdgeMn —Elim M 3coll.B M 3col2.B (19)

Figure 3: The TBox 7/.

the purpose of 7/ is to ensure that the graph ¢(G) induced by the truth assignment
t described by Val does not have a 3-coloring. The strategy for ensuring this is as
follows: we use the 2" elements of (Val M (Y = 0))% to store the colors of the nodes.
By Line (12), these elements are identified by the concept name Node, and there is a
unique coloring due to Lines (13) and (14). Then, Line (15) ensures that each element
d € Edge” is connected via the role coll to the element of Node” storing the color of
the first node of the edge corresponding to d. Line (16) is analogous for the role col2
and the second node of the edge. Lines (17) to (19) guarantee that instances of Edge
corresponding to problematic edges are instances of the concept name P. Here, an
edge is problematic if it exists in the original graph, is not dropped by the current
truth assignment, and the connected nodes have the same color. The idea is that P
will be minimized with all concept names fixed except R, G, and B. Then, we have
PT non-empty iff there is no 3-coloring of ¢(G). Please observe that fixing all concept
names except R, G, B also means that the used roles are fixes on instances of Edge
and Val.

Lemma 11 G s a yes-instance of co-3CERTCOLg iff P is simultaneously satisfiable
w.r.t. Circcp(Ta,0) and Circepr (T4, 0), where

e CP = (<X,M,F,V) with < = 0, M = {Val}, F = 0, and V all remaining
predicates in T

o CP' = (=<',M',F'\V') with <' =0, M' = {P}, F' =0, and V' the set of all

remaining predicates used in T

Proof. “If”. Suppose that P is simultaneously satisfiable w.r.t. Circcp(7¢,0) and
Circcpr (T4, 0), and let 7 be a model of P and a model of both Circcp(7¢,0) and
Circcpr (T4, 0). We have to show that G is a yes-instance of co-CERT3COLg. We first
note that, for all 4,5 € {0,...,n — 1}, Val¥ contains exactly one element

The reasons for this are as follows: (i) Lines (1)-(3) force Val” to contain at least
one such element for each pair (i,7); (ii) since Z is a model of Circcp(7g,0) and CP
minimizes Val while varying all other predicates, there cannot be more than one such
x in Valf. In the following, we use xj; to denote the unique element of (Val M (X =
)Ny =4))".

Now suppose, to the contrary of what is to be shown, that G is not a yes-instance.
Then, for all truth assignments ¢, the subgraph ¢(G) is 3-colorable. In particular this
holds for the assignment ¢ defined by setting

t(Vij) = true iff x;; € TrE .

Let ¢:{0,...,n—1} = {R,G, B} be a 3-coloring of ¢(G) and construct an interpre-
tation J as follows:

AJ — AI

r7 = T for all role names

A7 = AT for all concept names except R, G, and B
Cc7 = {xi|c(i)=C}for C =R,G,B

P = .

Clearly, J <cp' Z, because the minimized predicate P is non-empty in Z and empty
in 7. Thus, to obtain a contradiction, it suffices to show that 7 is a model of Té.

Since Z and J agree on all predicates but R, G, B, and P, Inclusions (12), (15),
and (16) that do not mention these concepts must hold in J. Line (12) implies
Node” = {zj0 | 0 < i < n}, and hence J satisfies (13) by construction. Moreover,
since ¢ is a function, (14) is satisfied, too. The following claim is a consequence of the
definition of the truth assignment ¢ and the facts that (i) Z is a model of T and (ii) Z
and J interpret the concept names Edge and Elim in the same way.

Claim 1: (i,7) is an edge of ¢(G) iff ;; € (Edge M —Elim)7.

Now, we prove that (17) to (19) are satisfied in J. Let C' € {R,G,B} and z;; €
(Edge M —Elim)7. By Claim 1, we get ¢(i) # c(j) since ¢ is a 3-coloring of ¢(G)). Thus,
by construction of 7, ;0 and x;o cannot belong to C' together. Moreover, by (15)
and (16), coll and col2 connect x;; precisely to xjy and xjo, respectively. Therefore,
25 ¢ (3coll.C M Jcol2.C)7. Since this holds for any z;; € (Edge M —Elim)7, it follows

that the right-hand sides of (17) to (19) are empty in 7. Thus, these implications are
satisfied.

“Only if”. Suppose that G is a yes-instance and let ¢ be a truth assignment
such that ¢(G) is not 3-colorable. Let ¢ : {0,...,n — 1} — {R,G, B} be a color
assignment that minimizes (w.r.t. set inclusion) the set {(i,7) | ¢(i) = ¢(j)}. Define
an interpretation Z as follows:

AT = {(i.j)|0<i<2", 0<j<2"}
Vall = Edge? = A7
T = {(i,§) | t(Vij) = true}

20

(Vi) & 26,5} (i=1,2)

i {(,9) |
Elim® = {(i,5) | (i,4) is an edge of t(G)}
Node® = {(i,0)]|0<i<2"}
ct = {(i,0)|c(i)=C} (C=R,G,B)
PT = {(i,5)] (i,7) is an edge of t(G) and c(i) = ¢(j)}
nextx?! = {((i,7),(i +1mod 2",5)) | 0 <i,j < 2"}
nexty? = {((i,5),(i,j +1mod 2")) |0 <i,j < 2" —1}
coll = {((i,7),(i,0)) |0 <i < 2"}
col2” = {((i,5),(j,0)) |0 <i < 2"}
varl? = {((i,5), (k,1)) | the first variable in the label of (i,7) is Vi }
var2Z = {((4,7), (k,1)) | the second variable in the label of (i, ;) is Vi;}

Moreover, the concept names X ,Z: and Ykz are interpreted in such a way that (i,j) €
(X = i) (Y =) holds for all i,j < 2". For each Boolean circuit ¢ the corre-
sponding output concept name Out? contains precisely those (i,) such that ¢(i, j) is
true.

Since ¢ is not a 3-coloring, P is satisfied in Z. Thus, it remains to show that
T is a model of Circcp(7¢,0) and Circepr (74, 0). We start with the former. Tt is
straightforward to see that Z is a model of 7. To see that Z is also a model of
Circcp(Ta, D), note that by inclusions (1)—(3), there must be at least one instance of
Val in each of the (mutually disjoint) concepts (X =) M (Y = j). Since Z has exactly
one element for each such concept, the extension of Val is minimal in Z.

Now for Circcpr (74, D). The reader may easily verify that 7 satisfies 7/ by con-
struction. To prove that Z is also a <cp-minimal model of T/, first note that if
there existed a model J <cpr Z, then P7 ¢ PT would hold. Moreover, the min-
imization of PY would make its extension equal to the disjunction of the right-
hand sides of (17)—(19). As a consequence, to satisfy (17)-(19), we should have
(i) (3coll.C M 3col2.C)7 C (Fcoll.C M Icol2.0)T for C = R, G, B, and (ii) for some
color C,

(3coll.C M 3col2.0)7 € (Fcoll.C M Feol2.C)F

But then, the coloring ¢ defined by
d(i)=Ciff (i,0) e 7 (C=R,G,B)
would be such that
{(@5) 1 () = (3)} C{i5) | ei) = e(i)}-
This inclusion contradicts the minimality assumption on c. O

Since it is easily checked that the size of 7 and 7/ is polynomial in n, we get the
following result.

Theorem 12 In ALC, satisfiability w.r.t. concept-circumscribed KBs is NEXpN' -
hard.

21

It is interesting to observe that the reduction works even if we assume ABoxes and
preference relations to be empty. Corresponding lower bounds for subsumption and
the instance problems follow from the reduction given in Section 2.

We now establish a matching lower bound for Theorem 9: we show that, in ALC,
satisfiability w.r.t. concept-circumscribed KBs is NPNFPXP_hard even if only a constant
number of predicates are allowed to be minimized and fixed. Recall that a (non-
deterministic) k-tape Turing machine is described by a tuple

(Qv 27 q0, Av Gacc; Qrej)a

with @ a set of states, ¥ a finite alphabet, ¢y € Q) a starting state,
ACQxSFxQx3kx{L R*

a transition relation, and gacc, qrej € @ the accepting and rejecting states. For our
purposes, an oracle Turing machine is a 2-tape Turing machine M that is, additionally,
equipped with the following:

e a l-tape Turing machine M’ (the oracle) whose alphabet contains that of M,
e a query state ¢», and
e two answer states gyes and ¢no.

When M enters ¢7, the oracle determines the next state of M: if the content of M’s
second tape is contained in the language accepted by the oracle, the next state is gyes.
Otherwise, it is ¢p,. During this transition, the head is not moved and no symbols
are written. The state ¢» cannot occur as the left-most component of a tuple in M’s
transition relation.

Let M = (Q, X, g0, A, qaces Grejs M, q2, Gyess Gno) be an oracle Turing machine such
that the following holds:

PNEXP

e M solves an N -complete problem:;

e the time consumption of M is bounded by a polynomial p;

o the time consumption of M' = (Q', X', g, A', gjcc, ¢r¢j) is bounded by 20" with
q a polynomial.

Our NPNFXP_hardness proof uses a reduction of the word problem of M. Thus, let
w € ¥* be an input for M of length n, and let m = p(n) and m' = ¢(p(n)). We
will construct three TBoxes Ty, 7,,, and T/, circumscription patterns CP, CP’, and
CP”, and a concept C' such that M accepts w iff C' is simultaneously satisfiable w.r.t.
Circcp(Tuw, 0), Circepr (T, 0), and Circcpr (T,/,0). Then, Lemma 10 yields a reduction
to (non-simultaneous) satisfiability w.r.t. concept-circumscribed ¢KBs. Intuitively,
the purpose of the first TBox 7, is to impose a basic structure on the domain, while
T, describes computations of M, and 7, describes computations of M’.

The details of T, can be found in Figure 4, where we use the same abbreviations

22

T LC Jaux.NExp (20)
NExp C 3r.NExp M 3Ju.NExp (21)
NExp C Vr.(Y=Y) (22)
NExp C Vr.(X++) (23)
NExp C Vu.(X=X) (24)
NExp C Vu.(Y++) (25)

T C [1 3aux(Result 1 R;) (26)

i<m
Result C <|]_<|m ~(R;NR) (27)
T C HJaux.NP (28)

Figure 4: The TBox Ty.

as in the previous reduction. The circumscription pattern for 7, is
CP := (0, {NExp, Result, NP}, 0, V),

with V' containing all remaining predicates used in 7,,. The purpose of Lines 20 to 25
is to ensure that, for each possible value (i,j) of the counters X and Y, there is
at least one instance of NExp that satisfies (X = i) and (Y = j). By minimizing
NExp, we thus enforce that NExp has ezactly 2™ x 2™ elements. These elements are
interconnected via the roles r (“right”) and u (“up”). Indeed, it is not difficult to see
that the structure (NExp?, ", u”) is isomorphic to the 2™ x 2™ -torus in each model
T of Circep(Ty,?). Later on, we use this grid to encode computations of the oracle
machine M’

Together with the minimization of Result, Lines 26 and 27 guarantee that there is
exactly one instances of the concept Result M R;, for all ¢ < m. Intuitively, if M makes
a call to the oracle in the i-th step, then the result of this call will be stored in the
(unique) instance of Result M R;: this instance will satisfy the concept name Rej iff M’
rejected the input. Finally, Line 28 and the minimization of NP guarantee that there
is exactly one instance of NP. This instance will be used to represent the computation
of M.

The purpose of T, is to describe computations of M. We use the following concept
names:

e Forall a € ¥, i,7 < m, and k € {1,2}, we introduce a concept name Shik,
Intuitively, SiIk expresses that @ is the symbol in the j-th cell of the k-th tape
in the i-th step of M’s computation. We start our numbering of tape cells and
steps with 0.

e Forall g € @Q and i« < m, QZ is a concept name expressing that M is in state ¢
in the i-th step of the computation.

23

NP T 3Fres;.(Result M R;) M Vres;.(Result M R;) (29)

NP C (Q., M dres;.Rej) — QL (30)

NP T (Q), N 3res;.—Rej) = QiF! (31)
; i,k i+1,k

NP C (Q),NH") — H ™ (k=1,2) (32)

e oo P (@) nsi) = s0) (33)

Figure 5: The TBox 7, (partly).

e Forall g € Q, i,7 <m, and k € {1,2}, H;k is a concept name expressing that
the k-th head of M is on cell j in the i-th step of the computation.

In 7, we describe computations of M employing the usual set of axioms: each tape
cell contains exactly one alphabet symbol in each step, there is exactly one current
state at each step, the transition table is obeyed, etc. We leave details to the reader
and give, in Figure 5, only the part of 7., that deals with the oracle. We assume that
copies of Lines 29 to 33 are contained in 7, for every i < m. The circumscription
pattern is simply CP’ := (0, 0,0, V), with V the set of all predicates used in 7,,. Line 29
ensures that the instance of NP can reach the (unique) instance of Result M R; via
the role res;, for all ¢ < m. Lines 30 and 31 deal with transitions of M in the query
state: the result of the oracle call is looked up in the corresponding instance of Result.
Finally, Lines 32 and 33 merely ensure that the head position and symbol under the
head does not change when querying the oracle.

The purpose of 7,/ is to describe computations of M'. As already noted, such
computations are represented using the instances of NExp: the 2™ instances satisfying
(X = i) represent the i-th configuration of M’, for i < 2. Here, the instance of
(Y = 0) represents the first tape cell and the instance of (Y = 2™') represents the last
tape cell. Note that we may have to describe more than a single computation of M’
as M may visit the state ¢g» more than once. All these computations are “overlayed”
in the NExp grid using different concept names for different computations. More
precisely, we use the following concept names:

e For all a € ¥ and i < m, a concept name S!. If S! is satisfied by some instance
of NExp with X = j and Y = k, then the i-th computation of M’ has, in it’s
j-th step, label a on the k-th cell.

e For all ¢ € Q) and i < m, a concept name Qz. The purpose of this concept name
is two-fold: first, it represents the current state of M’ in the i-th computation.
And second, it indicates the head position in the i-th computation.

The behaviour of M’ is again described via the usual axioms. Details are omitted.
In Figure 6, we only show the GCIs of 7, that deal with the interaction with M.
Similarly to the case of 7, we assume that 7, contains a copy of Lines 34 to 39 for

24

NExp T (=(X =2™ —1) = 3 .NExp) 1 (=(Y = 2™ — 1) — Ju'.NExp) (34)
NExp C Vr.(Y=Y)nVr' . (X++)NVe . (X=X)NVd .(Y++) (35)
NExp C Fres,.(Result M R;) M Vres,.(Result M R;) (36)
NExp C 3toNP.NP 1VtoNP.NP (37)
NExp C |<_| |_E| (((X = 0) 1 (Y = j) N VtoNP.S#2) — i) (38)
j<mac
NExp T Qi — Vres).Rej (39)
rej

Figure 6: The TBox 7, (partly).

all i < m. With 7, we use the circumscription pattern CP” := (0, {Rej}, 0, V'), where
V' contains all other predicates used in 7).

The purpose of Lines 34 and 35 is to regenerate the grid structure of NExp using
the roles ' und u'. This is necessary since the roles r and u are used in 7, and,
with simultaneous satisfiability, the TBoxes cannot share any role names. Lines 36
and 37 ensure that every instance of NExp reaches (only) the instance of NP via the
role toNP, and (only) the instance of ResultMR; via the role res], for all i < m. Line 38
guarantees that the i-th computation of M’ uses as its input the contents of the second
tape of M, as it is at the i-th step of M. Finally, Line 39 ensures that, if the i-th
computation of M is rejecting, then Rej is true in the instance of Result M R;.

Note that M is a non-deterministic machine and may have more than one compu-
tation. For storing Rej in Resultl R;, we need to know that all these computations are
rejecting. To deal with this issue, Rej is minimized with all other predicates varying:
if there exists an accepting computation of M’ on i-th input, then we can represent
this computation in NExp and make Rej false in the instance of ResultM R;. Hence, Rej
holds at Result R; iff there exists no accepting computation. Note that we cannot fix
the concept names Xg,..., X;m_1,Y0,..., Y1 while minimizing Rej since we would
get an unbounded number of fixed concept names. Intuitively, the result is that the
elements of NExp may change their position during minimization, and with them the
roles 7" and u’. However, this is not harmful since T, and Lines 34 and 35 ensure that
that (NExpZ, ()T, (u/)%) is always isomorphic to a grid, and (the omitted part of) 7,”
ensures that the elements of NExp always encode computations of M’.

The proof of the following lemma is left to the reader.

Lemma 13 M accepts w iff NP |<_| Qém is simultaneously satisfiable w.r.t.
<<m
Circcp(Tw, 0), Circepr (T, 0), and Circepn (T, ,0).

Since it is easily checked that the size of the constructed TBoxes is polynomial in n,
we get the following result.

Theorem 14 In ALC, satisfiability w.r.t. simple cKBs is hard for NPNEXP

25

It is interesting to observe that the reduction even works if we assume ABoxes to
be empty. Corresponding lower bounds for subsumption and the instance problems
follow from the reduction given in Section 2.

5 Undecidability

In the preceeding sections, we have pinpointed the exact computational complexity
of reasoning w.r.t. concept-circumscribed KBs. In particular, we have proved that
reasoning w.r.t. such KBs is decidable. In this section, we extend the framework of
concept-circumscribed KBs by allowing role names to be fixed during the minimization
of concept names. Interestingly, it turns out that this seemingly harmless modifica-
tion leads to undecidability of reasoning. More precisely, we prove that reasoning is
undecidable already in ALC, and that this holds even with empty TBoxes.

A circumscribed knowledge base Circcp(7T,.A) is called concept-minimizing if
CP = (X, M,F,V) with M a set of concept names. We prove that, in ALC, the
instance problem w.r.t. concept-minimizing cKBs is undecidable. By the reductions
given in Section 2, this implies undecidability of the other reasoning problems as well.
The proof is by a reduction of the semantic consequence problem of modal logic on
transitive frames, which has been proved undecidable in [8].

A frame is a structure § = (AS,-5), where § a non-empty domain, r a role name,
and 5 C AS x AS. A pointed frame is a pair (§,d) such that d € AS. For § =
(AS,rS) a frame, d,e € AS, and n € N, we write d(r)="¢ iff there exists a sequence
do,...,d, € AS with d = dy, e = dy, and d; rSd; for i < n. Moreover, d € AS
is called a root of § if for every e € AS, there exists m such that d(r$)<™e. An
interpretation Z = (AZ,.T) is based on a frame § iff AS = AT and r? = rS. We say
that a concept C' is valid on § and write § |= C iff T = AT for every interpretation
7T based on §, and (3, d) = C iff d € C? for every interpretation Z based on §. The
following theorem restates, in a DL formulation, the undecidability of the semantic
consequence problem of modal logic on transitive frames.

Theorem 15 (Chagrov) There exists an ALC concept E containing only the con-
cept name A and the role r such that the following problem is undecidable: given an
ALC concept D, does there exist a transitive frame § such that § = E and § £ D.

For convenience, we will use the following abbreviation: for m € N, we use V"'r.C' to
denote C' if m = 0, and V"r.C NVr.V"r.C' if m > 0. As usual, the role depth rd(C)
of a concept C' is defined as the nesting depth of the constructors Jr.D and Vr.D
in C'. The following lemma establishes a connection between the instance problem
w.r.t. concept-minimizing cKBs and a bounded version of the semantic consequence
problem (not yet on transitive frames). For the sake of readability, we write concept
assertions C'(a) in the form a : C'

Lemma 16 Let C' be an ALC concept whose only role is r and whose only concept

name is A. Let D be a concept not containing A and whose only role is r. Then, for
every m > 0, the following conditions are equivalent:

26

(i) Circcp(0, A) = a:V"r.C N =D with CP = (0,{A},{r},0) and
A={a:(=V"r.c LY A)),

(i1) there exists a pointed frame (§,d) such that (§,d) =VY"r.C and (F,d) & D.

Proof. (i) implies (ii). Let Z be a model of Circcp((),.A) such that aZ € (V"r.CM-D)L.
Suppose Z is based on the frame §, and set d := a. We show that (§,d) E V"r.C
and (§,d) [~= D. The latter is easy as it is witnessed by the interpretation Z. To show
the former, let 7 be an interpretation based on F. We distinguish two cases:

o A7 D {ee AT | d(rj)gnﬂ—rd(c*)e}_
Since a” € (V"r.C)" and T is a model of Circcp((,.A), it is not hard to see that
AT — {e c AT | d(rI)§m+rd(C)e}, (*)

Moreover, d € (V"r.C')t. Since Z and J are based on the same frame and the
truth of V™r.C at d depends on the truth value of A only at those objects e € AT
with d(rZ)=m+d(e. we have d € (V"r.C')7 and are done.

o AT P {e e AT | d(rj)§m+rd(c)e}.

Let 7' be the modification of J where A7 = A7 N{e € AT | d(r7)=m+rd(C)e),
By (%), J' <cp Z. If d € (=V™r.C)7", then [J' is a model of A and we have a
contradiction to the fact that Z is a model of Circcp (@, A). Thus, d € (Y™r.C)7 .
Since the truth of V"'r.C' at d depends on the truth value of A only at those
objects e € AT with d(r7")=m+d(©) ¢ we have d € (V™r.C')7 and are done.

(ii) implies (i). Suppose there exists a pointed frame (§,d) such that (§,d) = V"r.C
and (§,d) = D. We may assume that d is a root of §. Let Z be an interpretation based
on § such that d € (-D)%. We may assume that AZ = {e € AT | d(rT)=m+dO)q}
(since A does not occur in D) and a” = d. Then o € (V™r.C M =D)%. It remains to
show that there does not exist an 7' <cp Z such that aZ € (=V™r.CUY" () AT,
This is straightforward: from (§,d) = V"r.C', we obtain that there does not exist any
T’ such that d € (=V™r.C)I' and clearly there does not exist any AT ¢ AT such that
d e (Yt)T O

The following lemma relates the bounded version of the semantic consequence problem
(on unrestricted frames) to the semantic consequence problem on transitive frames. Tt
utilizes the concept Vr.A — Vr.Vr.A, the DL version of the modal formula Cp — O0Op
that is well-known to be valid on a frame iff the frame is transitive.

Lemma 17 Let Cy = =Vr.AUVr.Yr.A, Cy be an ALC concept containing only the
role r and the concept name A, and let D be a concept containing only the role r.
Then the following conditions are equivalent:

(i) there exists a transitive frame § such that § = Cy and § = D;

(ii) There exists a pointed frame (F,w) such that (F,w) E V'r.(Cy N Cs) and
(8, w) % D.

27

Proof. (i) implies (ii). Let F be a transitive frame such that § = Cy and § & D.
Take a w € AS such that (§,w) £ D. We may assume that w is a root of F. Since
§ | Cy and § |= € for every transitive frame §', (§,w) is as required for (ii).

(ii) implies (i). Let (F,w) be a pointed frame such that (F,w) | V'r.(Cy 1 o)
and (§,w) = D. We may assume that w is a root of §. It is not difficult to show
that (F,w) = V'r.C; implies that S is transitive. Therefore, from (F,w) = V'r.Co
we obtain § = Cy. We conclude that § is as required for (i). O

We are now in a position to prove the undecidability result.

Theorem 18 In ALC, the instance problem w.r.t. concept-minimizing cKBs is un-
decidable. This even holds in the case of empty TBozxes.

Proof. Take the concept E from Theorem 15, the concept C from Lemma 17, and
set Cy := F and C := C1 M C5. Then, by Theorem 15 and Lemma 17, the following
is undecidable: given a concept D, does there exists a pointed frame (§, w) such that
(F,w) E Vr.C and (§,w) [~ D. Since we are concerned with validity on frames,
we may w.lo.g. assume that D does not contain the concept name A. Therefore,
by Lemma 16, the following is undecidable: given a concept D not containing A,
is a an instance of V'7.C'M =D w.r.t. Circcp(D, {a : (=V'r.C U VT4 A)}, where
CP = (0,{A},{r},0). O

By the reductions given in Section 2, it follows that satsfiability and subsumption
w.r.t. concept-minimizing cKBs are undecidable as well (also in the case of empty
TBoxes).

Minimized vs. Fixed Role Names

Unlike fixed concept names, fixed role names cannot be simulated using minimized
role names. This is due to the fact that Boolean operators on roles are not avail-
able in standard DLs. Thus, Theorem 18 does not imply undecidability of reasoning
w.r.t. concept-firing cKBs, in which role names are allowed to be minimized, but only
concept names can be fixed. In general, we have to leave decidability of reasoning
w.r.t. concept-fixing ¢cKBs as an open problem. However, we show in the following
that reasoning w.r.t. such cKBs is decidable when TBoxes are empty. Together with
Theorem 18, which also applies to the case of empty TBoxes, we have thus identified
a case where reasoning with minimized role names is decidable, but reasoning with
fixed role names is not.

Theorem 19 In ALC, satisfiability w.r.t. concept-fiving cKBs Circcp(T,.A) is decid-
able in NExpY if T is empty.

Proof. We establish a bounded model property using a “selective filtration”-style
argument. To prove Theorem 19, we can then proceed as in Theorem 6. Details are
omitted.

28

Let Circcp (0, A) be a concept-fixing cKB with CP = (<, M, F, V), and let Cj be a
concept that is satisfiable w.r.t. Circcp(#,.4).? Set

n := max({rd(Cy)} U{rd(C) | C(a) € A}) and m := (|A| +|Co|)" !,

We show that there exists a model 7 of Circcp (0, .A) satisfying Cp such that |A7| < m.
Let Z be a model of Circcp (), A) such that there exists a dy € CF. Let ex(Cp, A) be the
set of concepts of the form Jr.C' that occur as a (not necessarily proper) subconcept in
Co or A. For each d € AT, fix a minimal set D(d) C AT such that, for every concept
Jr.C' € ex(Cp, A), there exists e € D(d) such that (d,e) € r¥ and e € CT. Clearly,
|D(e)| < |Co| + |.A| for each e € AT. Next, define a set Dy C AT by setting

Dy := {do} U{a® | a € Ny occurs is A}.
Define sets D; C AT, 1 < i < n, inductively by

Diyi = (|J D(a))

deD;

and set A, 1= Jy<;<, Di. Define an interpretation Z' with domain AT as follows:

! .
o o' = dZ, for all object names a;

o forre MUV, (de) erl ifde A, \ D,, e € D(d), and (d,e) € rL;
o for Ac MUV, AT = ATNA,;
o for Ac F, AT = AT,

A straighforward inductive argument shows that Z’ is a model of A such that dy € C’UI,.
Note that we did not change the interpretation of the A € F. Moreover, we have
pT C pT for every p € M. Together with the fact that Z' is a model of A and 7' £ T,
we even get p~ = p” for every p € M. It follows that Z’ is a model for Circcp (0, .A)
because J <cp Z' would imply J <cp T.

Note that 72" C A,, x A, for every role r. Now define an interpretation J with
domain AY = A, by putting

o A7 = AT' N A, for every concept name A;
e 7 =T for every role name r;
e o/ = a”, for every object name a from A.

We still have that 7 is a model for A satisfying Cy. Moreover, any interpretation
J' <cp J satisfying A can be easily extended to an interpretation Z"” <cp Z' satisfying
A. Hence, no such interpretation exists and 7 is a model for Circcp((),.A). From
|A,| < m we derive |[AT] < m. 0

2Note that we cannot eliminate fixed atomic concepts from the circumscription pattern because
this would require the introduction of a TBox.

29

We leave it as an open problem whether satisfiability w.r.t. concept-fixing cKBs is
decidable in the case of non-empty TBoxes.

6 Conclusions and Perspectives

We have shown that non-monotonic extensions of DLs based on circumscription can re-
sult in formalisms that are much less restricted than existing non-monotonic DLs, but
for which reasoning is still decidable. In particular, the resulting family of DLs allows
to model defeasible inheritance without the usual and severe restriction to named indi-
viduals. However, we view this paper only as a first step towards usable non-monotonic
DLs. In particular, our upper bounds are based on massive non-deterministic guess-
ing, and are thus far from being implementable in efficient systems. Ideally, one would
like to have well-behaved extensions of the tableau algorithms that underly state-of-
the-art DL reasoners [4]. It seems that existing sequent calculi for (propositional)
circumscription and minimal entailment [6, 23] could provide a good starting point.
Additionally to having a usable implementation, it is desirable to develop a design
methodology for modelling defeasible inheritance. In particular, such a methodol-
ogy should address the problem of finding appropriate circumscription patterns. Also
from a theoretical perspective, our initial investigation leaves open a number of excit-
ing questions. First, it is open whether or not minimizing roles leads to undecidability
in the presence of non-empty TBoxes. Second, our current techniques are limited to
non-monotonic extensions of DLs that have the finite model property, and it would be
desirable to aleviate this limitation. And third, it is interesting whether the observed
impact of predicate number and arity on computational complexity can be observed
in other formalisms such as the extension of the two-variable fragment of first-order
logic with circumscription.

References

[1] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological
knowledge representation formalisms. J. Autom. Reasoning, 14(1):149-180, 1995.

[2] Franz Baader and Bernhard Hollunder. Priorities on defaults with prerequisites,
and their application in treating specificity in terminological default logic. J.
Autom. Reasoning, 15(1):41-68, 1995.

[3] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as ontology
languages for the semantic web. In Dieter Hutter and Werner Stephan, editors,
Festschrift in honor of Jorg Siekmann, Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2003.

[4] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics. In
R. Dyckhoff, editor, Proceedings of the International Conference on Automated
Reasoning with Tableaux and Related Methods (Tableauz 2000), volume 1847 of
Lecture Notes in Artificial Intelligence, pages 1-18. Springer-Verlag, 2000.

30

[5]

[17]

Piero A. Bonatti and Thomas Eiter. Querying disjunctive databases through
nonmonotonic logics. Theor. Comput. Sci., 160(1&2):321-363, 1996.

Piero A. Bonatti and Nicola Olivetti. Sequent calculi for propositional nonmono-
tonic logics. ACM Trans. Comput. Log., 3(2):226-278, 2002.

Gerhard Brewka. Adding priorities and specificity to default logic. In Logics
in Artificial Intelligence, European Workshop, JELIA 94, York, UK, September
5-8, 199/, Proceedings, volume 838 of Lecture Notes in Computer Science, pages
247-260. Springer, 1994.

A. Chagrov. Undecidable properties of superintuitionistic logics. In S.V. Jablon-
skij, editor, Mathematical Problems of Cybernetics, volume 5, pages 67 — 108.
Physmatlit, 1994. in Russian.

R.A. Cote, D.J. Rothwell, J.L.. Palotay, R.S. Beckett, and L. Brochu. The sys-
tematized nomenclature of human and veterinary medicine. Technical report,
SNOMED International, Northfield, IL: College of American Pathologists, 1993.

Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and An-
drea Schaerf. An epistemic operator for description logics. Artif. Intell., 100(1-
2):225-274, 1998.

Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Autoepistemic de-
scription logics. In IJCAI (1), pages 136-141, 1997.

Thomas Fiter, Georg Gottlob, and Heikki Mannila. Disjunctive Datalog. ACM
Transactions on Database Systems, 22(3):364-418, September 1997.

Thomas Eiter, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web.
In Proceedings of the Ninth International Conference on the Principles of Knowl-
edge Representation and Reasoning (KR 2004), pages 141-151, 2004.

E. Griadel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decid-
able. In Proceedings of Twelfth IEEE Symposium on Logic in Computer Science
(LICS’97), 1997.

I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3):239-264, 2000.

Patrick Lambrix, Nahid Shahmehri, and Niclas Wahlloef. A default extension
to description logics for use in an intelligent search engine. In HICSS ’98: Pro-
ceedings of the Thirty-First Annual Hawaii International Conference on System
Sciences-Volume 5, page 28, Washington, DC, USA, 1998. IEEE Computer So-
ciety.

V. Lifschitz. Computing circumscription. In Proceedings of IJCAI'85, pages
121-127, 1985.

31

[18]

[19]

[20]

[21]

[22]

[26]

[27]

28]

Vladimir Lifschitz. Circumscription. In D.M. Gabbay, C.J. Hogger, and J.A.
Robinson, editors, The Handbook of Logic in AI and Logic Programming 3, pages
298-352. Oxford University Press, 1993.

Vladimir Lifschitz. Nested abnormality theories. Artif. Intell., 74(2):351-365,
1995.

J. McCarthy. Circumscription: a form of nonmonotonic reasoning. Artificial
Intelligence, 13:27-39, 1980.

J. McCarthy. Applications of circumscription in formalizing common sense knowl-
edge. Artificial Intelligence, 28:39-116, 1986.

Marvin Minsky. A framework for representating knowledge. In Patrick Henry
Winston, editor, The Psychology of Computer Vision, pages 211-277. McGraw-
Hill, New York, USA, 1975.

N. Olivetti. Tableaux and sequent calculus for minimal entailment. Journal of
Automated Reasoning, 9:99-139, 1992.

Leszek Pacholski, Wiestaw Szwast, and Lidia Tendera. Complexity results
for first-order two-variable logic with counting. SIAM Journal on Computing,
29(4):1083-1117, August 2000.

Lin Padgham and Tingting Zhang. A terminological logic with defaults: A defini-
tion and an application. In Ruzena Bajcsy, editor, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence, pages 662668, San Ma-
teo, California, 1993. Morgan Kaufmann.

Tan Pratt-Hartmann. Complexity of the two-variable fragment with counting
quantifiers. Journal of Logic, Language, and Information, 14(3):369-395, 2005.

M. R. Quillian. Semantic memory. In M. Minsky, editor, Semantic Information
Processing, pages 227-270. MIT Press, Cambridge, MA, USA, 1968.

Alan Rector. Defaults, context, and knowledge: Alternatives for owl-indexed
knowledge bases. In Proceedings of the Pacific Symposium on Biocomputing,
pages 226-237, 2004.

Alan Rector and Tan Horrocks. Experience building a large, re-usable medical
ontology using a description logic with transitivity and concept inclusions. In Pro-
ceedings of the Workshop on Ontological Engineering, AAAI Spring Symposium
(AAAT’97), Stanford, CA, 1997. AAAT Press.

R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

Riccardo Rosati. On the decidability and complexity of integrating ontologies
and rules. Journal of Web Semantics, 2005. To appear.

32

[32] Robert Stevens, Mikel Egana Aranguren, Katy Wolstencroft, Ulrike Sattler, Nick
Drummond, Matthew Horridge, and Alan Rector. Managing OWL’s limitations
in modelling biomedical knowledge. Submitted, 2005.

[33] Tain A. Stewart. Complete problems involving Boolean labelled structures and
projection transactions. Journal of Logic and Computation, 1(6):861-882, De-
cember 1991.

[34] Umberto Straccia. Default inheritance reasoning in hybrid kl-one-style logics. In
LJCAL pages 676681, 1993.

[35] Stephan Tobies. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence Re-
search, 12:199-217, 2000.

33

