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Abstra
t

Re
ent appli
ations of des
ription logi
s (DLs) strongly suggest the integration

of non-monotoni
 features into DLs, with parti
ular attention to defeasible inher-

itan
e. However, the existing non-monotoni
 extensions of DLs are usually based

on default logi
 or autoepistemi
 logi
, and have to be seriously restri
ted in ex-

pressive power to preserve the de
idability of reasoning. In parti
ular, su
h DLs

allow the modelling of defeasible inheritan
e only in a very restri
ted form, where

non-monotoni
 reasoning is limited to individuals that are expli
itly identi�ed

by 
onstants in the knowledge base. In this paper, we 
onsider non-monotoni


extensions of expressive DLs based on 
ir
ums
ription. We prove that reasoning

in su
h DLs is de
idable even without the usual, strong restri
tions in expressive

power. We pinpoint the exa
t 
omputational 
omplexity of reasoning as 
omplete

for NP

NExp

and NExp

NP

, depending on whether or not the number of minimized

and �xed predi
ates is assumed to be bounded by a 
onstant. These results as-

sume that only 
on
ept names (and no role names) 
an be minimized and �xed

during minimization. On the other hand, we show that �xing role names during

minimization makes reasoning unde
idable.

1 Introdu
tion

Early KR formalisms su
h as semanti
 networks and frames usually in
luded a wealth

of features in order to provide as powerful representational 
apabilities as possible

[27, 22℄. Most notably, su
h formalisms admitted a stru
tured representation of 
lasses

and obje
ts similar to modern des
ription logi
s (DLs), but also me
hanisms for de-

feasible inheritan
e and other features nowadays provided by non-monotoni
 logi
s

(NMLs). When the theory of KR was developed further, these all-embra
ing ap-

proa
hes were largely given up due to semanti
 and 
omputational problems. The

subsequent fo
ussing on more spe
ialized formalisms 
aused DLs and NMLs to de-

velop into two independent sub�elds of KR. Consequently, modern des
ription logi
s

su
h as SHIQ fail to in
lude any non-monotoni
 features [15℄.

Sin
e the birth of DLs as a sub�eld of KR, there has been a 
ontinuous interest

in the (re-)integration of non-monotoni
 features into des
ription logi
s. Due to the

advent of several new appli
ation areas, this interest has re
ently rea
hed new peaks.
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For example, DLs are nowadays a popular tool for the formalization of biomedi
al

ontologies su
h as GALEN [29℄ and SNOMED [9℄. As argued by Re
tor et al. in [28,

32℄, su
h ontologies have to support defeasible inheritan
e to represent knowledge

su
h as \in humans, the heart is usually lo
ated on the left-hand side of the body; in

humans with situs inversus, the heart is lo
ated on the right-hand side of the body".

Another re
ent appli
ation of DLs is their use as an ontology language for the semanti


web [3℄, and the feedba
k of DL users from this �eld reveals substantial interest in the

typi
al nonmonotoni
 features of obje
t oriented languages su
h as default attributes,

defeasible inheritan
e, and overriding.

Many di�erent approa
hes to adding non-monotoni
 features to DLs have been

proposed, but none of them is fully 
onvin
ing for modelling defeasible inheritan
e

[1, 2, 34, 11, 10, 25, 16, 13, 31℄. The main problem is taming the 
omputational power

that arises when 
ombining the expressiveness of DLs and NMLs: it is nontrivial to

identify a non-monotoni
 DL that enjoys the expressive power of modern DLs, admits

non-monotoni
 reasoning without severe restri
tions, and is de
idable. For example,

the non-monotoni
 DL proposed in [25℄ in
ludes a me
hanism for default reasoning,

but has to impose severe restri
tions on DL expressiveness to keep reasoning de
idable.

Another approa
h to non-monotoni
 DLs 
onsists in in
luding the (auto)epistemi


operator \K" [11, 10℄. However, in all known de
idability results 
on
erning su
h

DLs, operator K 
an be used in a non-monotoni
 way only in queries, but not in

the knowledge base. This is a serious limitation sin
e it pre
ludes the modelling of

defeasible inheritan
e. The approa
hes [1, 2, 34, 16℄ are based on default logi
 [30℄ and

share a 
ommon restri
tion: default rules 
an be applied to an individual only if it has a

name, that is, it is denoted by an individual 
onstant o

urring in the knowledge base.

Sin
e the models of DL knowledge bases usually in
lude a large number of impli
it

(nameless) individuals enfor
ed via existential restri
tions, the limitation of default

rule appli
ation to named individuals is highly restri
tive. Finally, the approa
hes

des
ribed in [13, 31℄ aim at extending DLs with non-monotoni
 rules that, however,

apply only to named individuals.

In view of the 
omputational problems a�e
ting non-monotoni
 DLs based on

default logi
 or autoepistemi
 logi
, it is surprising that 
ir
ums
ription [20℄ has never

been investigated in the 
ontext of DLs. After all, 
ir
ums
ription is known to be

slightly less expressive than the other major formalizations of non-monotoni
ity [5℄. In

this paper, we advo
ate the use of 
ir
ums
ription to obtain non-monotoni
 extensions

of expressive DLs that are de
idable and impose no serious restri
tions on expressive

power. In parti
ular, we show how to obtain a family of DLs that allow to model

defeasible inheritan
e without the limitation to named individuals.

The 
entral tool for knowledge representation in our family of non-monotoni


DLs are 
ir
ums
ribed knowledge bases (
KBs). Like standard DL knowledge bases,

a 
KB 
omprises a TBox for representing terminologi
al knowledge and an ABox

for representing knowledge about individuals. Additionally, a 
KB is equipped with

a 
ir
ums
ription pattern that lists predi
ates (i.e., 
on
ept and role names) to be

minimized: in models of the 
KB, the extension of minimized predi
ates is required

to be minimal w.r.t. set in
lusion. Following M
Carthy [21℄, the minimized predi
ates

will often be \abnormality predi
ates" identifying instan
es that are not typi
al for
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their 
lass. Cir
ums
ription patterns 
an require other predi
ates to be �xed during

minimization, or allow them to vary freely. Moreover, 
ir
ums
ription patterns allow

to express preferen
es between minimized predi
ates in terms of a partial ordering.

As argued in [2℄, this is of great importan
e to ensure a smooth interplay between

defeasible inheritan
e and DL subsumption.

The main 
ontribution of this paper is a detailed analysis of the 
omputational

properties of non-monotoni
 DLs based on 
ir
ums
ription. We show that, in the

expressive DLs ALCIO and ALCQO, satis�ability and subsumption w.r.t. 
ir
um-

s
ribed knowledge bases are de
idable if only 
on
ept names (and no role names) are

minimized and �xed. More pre
isely, we prove that satis�ability in both DLs w.r.t.

su
h 
on
ept-
ir
ums
ribed knowledge bases is NExp

NP

-
omplete. In 
ontrast, rea-

soning be
omes unde
idable if role names are allowed to be �xed during minimization.

The unde
idability result already applies to the basi
 propositionally-
losed DL ALC,

and even if TBoxes are empty. We also give a �ner-grained analysis of the 
omplexity

of reasoning w.r.t. 
on
ept-
ir
ums
ribed KBs: when imposing a 
onstant bound on

the number of minimized and �xed 
on
ept names, the 
omplexity of satis�ability

drops to NP

NExp

-
ompleteness. All lower 
omplexity bounds apply to the des
ription

logi
 ALC.

It is interesting to note that our results are somewhat unusual from the perspe
tive

of NMLs. First, the arity of predi
ates has an impa
t on de
idability: �xing 
on
ept

names (unary predi
ates) does not impair de
idability, whereas �xing a single role

name (binary predi
ate) leads to a strong unde
idability result. Se
ond, the number

of predi
ates that are minimized or �xed (bounded vs. unbounded) a�e
ts the 
ompu-

tational 
omplexity of reasoning. Although (as we brie
y argue) a similar e�e
t 
an

be observed in propositional logi
 with 
ir
ums
ription, this has, to the best of our

knowledge, never been expli
itly noted.

2 Des
ription Logi
s and Cir
ums
ription

In DLs, 
on
epts are indu
tively de�ned with the help of a set of 
onstru
tors, starting

with a set N

C

of 
on
ept names, a set N

R

of role names, and (possibly) a set N

I

of

individual names (all 
ountably in�nite). We use the term predi
ates to refer to

elements of N

C

[ N

R

. The 
on
epts of the expressive DL ALCQIO are formed using

the 
onstru
tors shown in Figure 1. There, the inverse role 
onstru
tor is the only

role 
onstru
tor, whereas the remaining six 
onstru
tors are 
on
ept 
onstru
tors.

In Figure 1 and throughout this paper, we use #S to denote the 
ardinality of a

set S, a and b to denote individual names, r and s to denote roles (i.e., role names

and inverses thereof), A;B to denote 
on
ept names, and C;D to denote (possibly


omplex) 
on
epts. As usual, we use > as abbreviation for an arbitrary (but �xed)

propositional tautology, ? for :>, ! and $ for the usual Boolean abbreviations, 9r:C

(existential restri
tion) for (> 1 r C), and 8r:C (universal restri
tion) for (6 0 r :C).

In this paper, we will not be 
on
erned with ALCQIO itself, but with several of

its fragments. The basi
 su
h fragment allows only for negation, 
onjun
tion, disjun
-

tion, and universal and existential restri
tions, and is 
alled ALC. The availability
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Name Syntax Semanti
s

inverse role r

�

(r

I

)

`

= f(d; e) j (e; d) 2 r

I

g

nominal fag fa

I

g

negation :C �

I

n C

I


onjun
tion C uD C

I

\D

I

disjun
tion C tD C

I

[D

I

at-least restri
tion (> n r C) fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng

at-most restri
tion (6 n r C) fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng

Figure 1: Syntax and semanti
s of ALCQIO.

of additional 
onstru
tors is indi
ated by 
on
atenation of a 
orresponding letter: Q

stands for number restri
tions, I stands for inverse roles, and O for nominals. This

explains the name ALCQIO, and also allows us to refer to fragments su
h as ALCIO,

ALCQO, and ALCQI.

The semanti
s of ALCQIO-
on
epts is de�ned in terms of an interpretation I =

(�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the interpretation

fun
tion �

I

maps ea
h 
on
ept name A 2 N

C

to a subset A

I

of �

I

, ea
h role name

r 2 N

R

to a binary relation r

I

on �

I

, and ea
h individual name a 2 N

I

to an individual

a

I

2 �

I

. The extension of �

I

to inverse roles and arbitrary 
on
epts is indu
tively

de�ned as shown in the third 
olumn of Figure 1. An interpretation I is 
alled a

model of a 
on
ept C if C

I

6= ;. If I is a model of C, we also say that C is satis�ed

by I.

A TBox is a �nite set of general 
on
ept impli
ations (GCIs) C v D where C and

D are 
on
epts. As usual, we use C

:

= D as an abbreviation for C v D and D v C.

An ABox is a �nite set of 
on
ept assertions C(a) and role assertions r(a; b), where

a; b are individual names, r is a role name, and C is a 
on
ept. An interpretation I

satis�es (i) a GCI C v D if C

I

� D

I

, (ii) an assertion C(a) if a

I

2 C

I

, and (iii)

an assertion r(a; b) if (a

I

; b

I

) 2 r

I

. Then, I is a model of a TBox T if it satis�es all

impli
ations in T , and a model of an ABox A if it satis�es all assertions in A.

Cir
ums
ription with Partial Priority Ordering

Cir
ums
ription is a logi
al approa
h suitable for modelling what normally or typi-


ally holds, and thus admits the modeling of defeasible inheritan
e [21, 18℄. The idea

is to de�ne, in a standard �rst-order language, both domain knowledge and so-
alled

abnormality predi
ates that des
ribe what does not �t the normality 
riteria of the ap-

pli
ation domain. To 
apture the intuition that abnormality is ex
eptional, inferen
e

is not based on the set of all models of the resulting theory as in 
lassi
al logi
, but

rather restri
ted to those models where the extension of the abnormality predi
ates is

minimal. Intuitively, this means that reasoning is done only on models that are \as

normal as possible".

Sin
e des
ription logi
s are fragments of �rst-order logi
, 
ir
ums
ription 
an be
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readily applied. Using ALC syntax, we 
an assert that mammals normally inhabitate

land, and that whales do not live on land:

Mammal v 9habitat:Land t Ab

Mammal

Whale v Mammal u :9habitat:Land

The upper in
lusion states that any mammal not inhabitating land is an abnormal

mammal, thus satisfying the abnormality predi
ate Ab

Mammal

. When applying 
ir
um-

s
ription to the above TBox, we should thus only 
onsider models where the extension

of Ab

Mammal

is minimal. However, there is more than one way of de�ning su
h preferred

models. The reason is that there are essentially two options to treat the remaining

predi
ates during minimization of the abnormality predi
ate: we may either �x their

extensions or let them vary freely. It should not 
ome as a surprise that this de
i-

sion may have a strong impa
t on the result of reasoning. In general, varying more

predi
ates means that more subsumptions be
ome derivable. For example, 
onsider

the above TBox. Even if all non-minimized predi
ates are �xed, we get the following

subsumptions:

Whale v Ab

Mammal

Ab

Mammal

:

= Mammalu :9habitat:Land:

(y)

If it is 
onsidered very unlikely for a mammal not to live on land, then one would

expe
t that only those mammals do not live on land for whi
h this was expli
itly

stated: whales. Consequently, the following subsumption should be derivable:

Whale

:

= Ab

Mammal

: (z)

The way to a
hieve this is to let the role habitat and the 
on
ept name Land vary

freely, and to �x only Mammal and Whale. The result is that both (y) and (z) are

derivable.

We 
an go even further and 
onsider whales abnormal to su
h a degree that we

do not believe they exist unless there is eviden
e that they do. Then we should,

additionally, let Whale vary freely. The result is that (y) and (z) 
an still be derived,

and additionally we have Whale

:

= Ab

Mammal

:

= ?. We 
an then use an ABox to add

eviden
e that whales exist, e.g. through the assertion Whale(mobydi
k): As expe
ted,

the result of this 
hange is that

Whale

:

= Ab

Mammal

:

= fmobydi
kg:

Eviden
e for the existen
e of another, anonymous whale 
ould be generated by adding

the ABox assertion Male(mobydi
k) and the TBox statement

Whale v 9mother:(Whale u :Male)

with mother and Male varying freely. In general, it depends on the appli
ation whi
h


ombination of �xed and varying predi
ates is appropriate. Therefore, the formalisms

proposed in this paper leave the freedom to the user to 
hoose the predi
ates that are

minimized, �xed, and varying.
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It has been 
onvin
ingly argued by Baader and Hollunder in [2℄ that there is an

interplay between subsumption and abnormality predi
ates that should be addressed

in non-monotoni
 DLs. Consider, for example, the following TBox:

User v :9hasA

essTo:ConfidentialFilet Ab

User

Staff v User

Staff v 9hasA

essTo:ConfidentialFilet Ab

Staff

Bla
klistedStaff v Staff u :9hasA

essTo:ConfidentialFile

To get models that are \as normal as possible", as a �rst attempt we 
ould

minimize the two abnormality predi
ates Ab

User

and Ab

Staff

in parallel. Assume

that hasA

essTo and ConfidentialFile are varying, and User, Staff, and

Bla
klistedStaff are �xed. Then, the result of parallel minimization is that sta�

members may or may not have a

ess to 
on�dential �les, with equal preferen
e. In

the �rst 
ase, they are abnormal users, and in the se
ond 
ase, they are abnormal sta�.

However, one may argue that the �rst option should be preferred: sin
e Staff v User

(but not the other way round), the normality information for sta� is more spe
i�


than the normality information for users and should have higher priority.

In the generalization of 
ir
ums
ription used in this paper, the user 
an spe
ify

priorities between minimized predi
ates. Normally, these priorities will re
e
t the

subsumption hierar
hy (as 
omputed w.r.t. the 
lass of all models). Sin
e the sub-

sumption hierar
hy is a partial order, the priorities between minimized predi
ates are

assumed to form a partial order, too. This is similar to partially ordered priorities on

default rules as proposed by Brewka [7℄, and more general than standard prioritized


ir
ums
ription whi
h assumes a total ordering [21, 17℄. More information 
an be

found in [2℄.

To de�ne DLs with 
ir
ums
ription, we start by introdu
ing 
ir
ums
ription pat-

ters. Su
h a pattern des
ribes how individual predi
ates are treated during minimiza-

tion.

De�nition 1 (Cir
ums
ription pattern, <

CP

) A 
ir
ums
ription pattern is a tu-

ple CP = (�;M; F; V ) where � is a stri
t partial order over M , and M , F , and V

are subsets of N

C

[ N

R

, the minimized, �xed, and varying predi
ates, respe
tively.

By �, we denote the re
exive 
losure of �. De�ne a preferen
e relation <

CP

on

interpretations by setting I <

CP

J i� the following 
onditions hold:

1. �

I

= �

J

and, for all a 2 N

I

, a

I

= a

J

,

2. for all p 2 F , p

I

= p

J

,

3. for all p 2M , if p

I

6� p

J

then there exists q 2M , q � p, su
h that q

I

� q

J

,

4. there exists p 2 M su
h that p

I

� p

J

and for all q 2 M su
h that q � p,

q

I

= q

J

.

When M [ F � N

C

(i.e., the minimized and �xed predi
ates are all 
on
epts) we 
all

(�;M; F; V ) a 
on
ept 
ir
ums
ription pattern. 4
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We use the term 
on
ept 
ir
ums
ription if only 
on
ept 
ir
ums
ription patterns

are admitted. Based on 
ir
ums
ription patterns, we 
an de�ne 
ir
ums
ribed DL

knowledge bases and their models.

De�nition 2 (Cir
ums
ribed KB) A 
ir
ums
ribed knowledge base (
KB) is an

expression Cir


CP

(T ;A), where T is a TBox, A an ABox, and CP = (�;M; F; V ) a


ir
ums
ription pattern su
h that M;F; V partition the predi
ates used in T and A.

An interpretation I is a model of Cir


CP

(T ;A) if it is a model of T and A and there

exists no model I

0

of T and A su
h that I

0

<

CP

I. 4

A 
KB Cir


CP

(T ;A) is 
alled a 
on
ept-
ir
ums
ribed knowledge base (KB) if CP is a


on
ept 
i
r
ums
ription pattern. The main reasoning tasks of des
ription logi
s are

de�ned with respe
t to 
ir
ums
ribed knowledge bases in the expe
ted way.

De�nition 3 (Reasoning problems)

� A 
on
ept C is satis�able w.r.t. a 
KB Cir


CP

(T ;A) if some model I of

Cir


CP

(T ;A) satis�es C

I

6= ;.

� A 
on
ept C is subsumed by a 
on
ept D w.r.t. a 
KB Cir


CP

(T ;A) (written

Cir


CP

(T ;A) j= C v D) if C

I

� D

I

for all models I of Cir


CP

(T ;A).

� An individual name a is an instan
e of a 
on
ept C w.r.t. a 
KB Cir


CP

(T ;A)

(written Cir


CP

(T ;A) j= C(a)) if a

I

2 C

I

for all models I of Cir


CP

(T ;A).

4

These reasoning problems 
an be polynomially redu
ed to one another: �rst, C is

satis�able w.r.t. Cir


CP

(T ;A) i� Cir


CP

(T ;A) 6j= C v ?, and Cir


CP

(T ;A) j= C v D

i� C u :D is unsatis�able w.r.t. Cir


CP

(T ;A). And se
ond, C is satis�able w.r.t.

Cir


CP

(T ;A) i� Cir


CP

(T ;A) 6j= :C(a), where a is an individual name not appearing

in T and A; 
onversely, we have Cir


CP

(T ;A) j= C(a) i� Au:C is unsatis�able w.r.t.

Cir


CP

0

(T ;A [ fA(a)g), where A is a 
on
ept name not o

urring in T and A, and

CP

0

is obtained from CP by adding A to M (and leaving � as it is). In this paper, we

use satis�ability w.r.t. 
KBs as the basi
 reasoning problem.

Note that partially ordered 
ir
ums
ription be
omes standard parallel 
ir
ums
rip-

tion if the empty relation is used for �. Te
hni
ally, partially ordered 
ir
ums
ription

lies in between prioritized 
ir
ums
ription [21, 17℄ and nested 
ir
ums
ription [19℄.

It extends prioritized 
ir
ums
ription by admitting partial orders and, 
ompared to

nested 
ir
ums
ription, has the advantage of being te
hni
ally simpler while still of-

fering suÆ
ient expressive power to address the intera
tion between subsumption and


ir
ums
ription in DLs.

It is folklore in 
ir
ums
ription that there is a 
lose 
onne
tion between mini-

mized 
on
epts and �xed 
on
epts: using TBoxes, the latter 
an be simulated by

the former. Let C

0

be a 
on
ept and Cir


CP

(T ;A) a 
on
ept-
ir
ums
ribed KB with

CP = (�;M; F; V ) and F = fA

1

; : : : ; A

k

g. De�ne a new pattern CP

0

= (�;M

0

; ;; V )

with

7



� M

0

= M [ fA

1

; : : : ; A

k

; A

0

1

; : : : ; A

0

k

g, A

0

1

; : : : ; A

0

k


on
ept names not o

urring in

C

0

, M , F , T , and A;

� T

0

= T [ fA

0

i

:

= :A

i

j 1 � i � kg.

It is not diÆ
ult to see that C

0

is satis�able w.r.t. Cir


CP

(T ;A) i� it is satis�able

w.r.t. Cir


CP

0

(T

0

;A). Thus, we get the following.

Lemma 4 Satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs 
an be polynomially redu
ed

to satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs that have no �xed predi
ates.

Also in the 
ase of general 
KBs, �xed 
on
ept names 
an be simulated by minimized


on
ept names. However, su
h a simulation 
annot be done for role names sin
e

Boolean operators on roles are not avaliable in standard DLs su
h as ALCQIO.

3 Upper Bounds

The main 
ontribution of this paper is to show that there are many des
ription logi
s

with 
ir
ums
ription that are de
idable, and to perform a detailed analysis of the


omputational 
omplexity of su
h logi
s. In parti
ular, we will show that ALCIO

and ALCQO with 
on
ept 
ir
ums
ription are de
idable. We prepare the de
idability

proof for these logi
s by showing that if a 
on
ept is satis�able w.r.t. a 
on
ept-


ir
ums
ribed KB, then it is satis�able in a model of bounded size. We use jCj to

denote the length of the 
on
ept C, i.e., the number of symbols needed to write C.

The size jT j of a TBox T is

P

CvD2T

jCj+ jDj, and the size jAj of an ABox A is the

sum of the sizes of all assertions in A, where the size of ea
h role assertion is 1 and

the size of 
on
ept assertions C(a) is jCj.

Lemma 5 Let C

0

be a 
on
ept, Cir


CP

(T ;A) a 
on
ept-
ir
ums
ribed KB, and n :=

jC

0

j+ jT j+ jAj. If C

0

is satis�able w.r.t. Cir


CP

(T ;A), then the following holds:

(i) If T , A and C

0

are formulated in ALCIO, then C

0

is satis�ed in a model I of

Cir


CP

(T ;A) with #�

I

� 2

2n

.

(ii) If T , A and C

0

are formulated in ALCQO and m is the maximal parameter

o

uring in a number restri
tion in T , A, or C

0

, then C

0

is satis�ed in a model

I of Cir


CP

(T ;A) with #�

I

� 2

2n

� (m + 1)� n.

Proof. Let CP, T , A, and C

0

be as in the lemma. We may assume that A = ; as every

assertion C(a) 
an be expressed as an impli
ation fag v C, and every assertion r(a; b)


an be expressed as fag v 9r:fbg. Denote by 
l(C;T ) the smallest set of 
on
epts

that 
ontains all sub
on
epts of C, all sub
on
epts of 
on
epts appearing in T , and

is 
losed under single negations.

Let I be a 
ommon model of C

0

and Cir


CP

(T ;A), and let d

0

2 C

I

0

. De�ne an

equivalen
e relation \�" on �

I

by setting d � d

0

i�

fC 2 
l(C

0

;T ) j d 2 C

I

g = fC 2 
l(C

0

;T ) j d

0

2 C

I

g:
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We use [d℄ to denote the equivalen
e 
lass of d 2 �

I

w.r.t. the \�" relation. Pi
k

from ea
h equivalen
e 
lass [d℄ exa
tly one member and denote the resulting subset

of �

I

by �

0

.

We �rst prove Point (i). Thus, assume that T and C

0

are formulated in ALCIO.

We de�ne a new interpretation J as follows:

�

J

:= �

0

A

J

:= fd 2 �

0

j d 2 A

I

g

r

J

:= f(d

1

; d

2

) 2 �

0

��

0

j 9d

0

1

2 [d

1

℄; d

0

2

2 [d

2

℄ : (d

0

1

; d

0

2

) 2 r

I

g

a

J

:= d 2 �

0

if a

I

2 [d℄:

The following 
laim is easily proved using indu
tion on the stru
ture of C.

Claim: For all C 2 
l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

i� d

0

2 C

J

for the

element d

0

2 [d℄ of �

J

.

Thus, J is a model of T satisfying C

0

. To show that J is a model of Cir


CP

(T ;A), it

thus remains to show that there is no model J

0

of T with J

0

<

CP

J . Assume to the


ontrary that there is su
h a J

0

. We de�ne an interpretation I

0

as follows:

�

I

0

:= �

I

A

I

0

:=

[

d2A

J

0

[d℄

r

I

0

:=

[

(d

1

;d

2

)2r

J

0

[d

1

℄� [d

2

℄

a

I

0

:= a

I

:

It is a matter of routine to show the following:

Claim: For all 
on
epts C 2 
l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

0

i� d

0

2 C

J

0

for the element d

0

2 [d℄ from �

J

.

It follows that I

0

is a model of T . Observe that A

I

ÆA

I

0

i� A

J

ÆA

J

0

for ea
h 
on
ept

name A and Æ 2 f�;�g. Therefore and sin
e CP is a 
on
ept 
ir
ums
ription pattern,

I

0

<

CP

I follows from J

0

<

CP

J . We have derived a 
ontradi
tion and 
on
lude that

J is a model of Cir


CP

(T ;A). Thus we are done sin
e the size of J is bounded by 2

2n

.

Now for Point (ii). Pi
k, for ea
h d 2 �

0

and 
on
ept (> n r C) 2 
l(C

0

;T ) su
h

that d 2 (> n r C)

I

, n elements from fd

0

j d

0

2 C

I

; (d; d

0

) 2 r

I

g. Also pi
k, for

ea
h 
on
ept (6 n r C) 2 
l(C

0

;T ) su
h that d 2 (:(6 n r C))

I

, n+ 1 elements from

fd

0

j d

0

2 C

I

; (d; d

0

) 2 r

I

g. Denote by �

00

the 
olle
tion of the elements pi
ked. Take

for ea
h d 2 �

00

n�

0

an element d

s

2 �

0

su
h that d � d

s

and de�ne an interpretation

J by

�

J

:= �

0

[�

00

A

J

:= fd 2 �

0

[�

00

j d 2 A

I

g

r

J

:= f(d

1

; d

2

) 2 �

0

� (�

0

[�

00

) j (d

1

; d

2

) 2 r

I

g

[f(d

1

; d

2

) 2 (�

00

n�

0

)� (�

0

[�

00

) j (d

s

1

; d

2

) 2 r

I

g

a

J

:= d if a

I

2 [d℄:
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The following 
laim is easily proved.

Claim: For all C 2 
l(C

0

;T ), we have the following:

(i) for all d; d

0

2 �

J

, if d � d

0

, then d 2 C

J

i� d

0

2 C

J

;

(ii) for all d 2 �

I

, we have d 2 C

I

i� d

0

2 C

J

for an element d

0

2 [d℄ of �

J

.

Thus, J is a model of T satisfying C

0

. To show that J is a model of Cir


CP

(T ;A), it

thus remains to show that there is no model J

0

of T with J

0

<

CP

J . Assume to the


ontrary that there is su
h a J

0

. We de�ne an interpretation I

0

. To this end, take for

ea
h d 2 �

I

n�

J

the d

p

2 �

0

su
h that d � d

p

. Now de�ne I

0

as follows

�

I

0

:= �

I

A

I

0

:= A

J

0

[ fd 2 �

I

n�

J

j d

p

2 A

J

0

g

r

I

0

:= r

J

0

[ f(d

1

; d

2

) 2 (�

I

n�

J

)��

I

j (d

p

1

; d

2

) 2 r

J

0

g

a

I

0

:= a

I

:

Again, it is a matter of routine to show:

Claim: For all 
on
epts C 2 
l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

0

\ �

J

i�

d 2 C

J

0

and d 2 C

I

0

\ (�

I

n�

J

) i� d

p

2 C

J

0

for the element d

p

2 [d℄ from �

0

.

It follows that I

0

is a model for T . Observe that A

I

ÆA

I

0

i� A

J

ÆA

J

0

for ea
h 
on
ept

name A and Æ 2 f�;�g. Therefore and sin
e CP is a 
on
ept 
ir
ums
ription pattern,

I

0

<

CP

I follows from J

0

<

CP

J . We have derived a 
ontradi
tion and 
on
lude that

J is a model of Cir


CP

(T ;A). Thus we are done sin
e the size of J is 
learly bounded

by 2

2n

� (m+ 1)� n. ❏

It is interesting to note that the proof of Lemma 5 does not go through if role names

are minmized or �xed.

Using the bounded model property just established, we 
an now prove de
idability

of reasoning in ALCIO and ALCQO with 
on
ept 
ir
ums
ription. More pre
isely,

Lemma 5 suggests a non-deterministi
 de
ision pro
edure for satis�ability w.r.t. 
on-


ept 
ir
ums
ription patterns: simply guess an interpretation of bounded size and

then 
he
k whether it is a model. It turns out that this pro
edure shows 
ontainment

of satis�ability in the 
omplexity 
lass NExp

NP

, whi
h 
ontains those problems that


an be solved by a non-deterministi
 exponentially time-bounded Turing ma
hine that

has a

ess to an NP ora
le. It is known that NExp � NExp

NP

� 2-Exp.

Theorem 6 In ALCIO and ALCQO, it is in NExp

NP

to de
ide whether a 
on
ept

is satis�able w.r.t. a 
on
ept-
ir
ums
ribed KB Cir


CP

(T ;A).

Proof. It is not hard to see that there exists an NP algorithm that takes as input

a 
KB Cir


CP

(T ;A) and an interpretation I, and 
he
ks whether I is not a model of

Cir


CP

(T ;A): the algorithm �rst veri�es in polynomial time whether I is a model of

T and A, answering \yes" if this is not the 
ase. Otherwise, the algorithm guesses an

interpretation J that has the same domain as I and interpretes all obje
t names in

the same way, and then 
he
ks whether (i) J is a model of T and A, and (ii) J <

CP

I.
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It answers \yes" if both of the 
he
ks su

eed, and \no" otherwise. Clearly, 
he
king

whether J <

CP

I 
an be done in time polynomial w.r.t. the size of J and I.

ThisNP algorithm may now be used as an ora
le in a NExp-algorithm for de
iding

satis�ability of a 
on
ept C

0

w.r.t. a 
KB Cir


CP

(T ;A): by Lemma 5, it suÆ
es to

guess an interpretation of size 2

4k

with k = jC

0

j+ jT j+ jAj,

1

and then use the NP

algorithm to 
he
k whether I is a model of Cir


CP

(T ;A). This proves that 
on
ept

satis�ability is in NExp

NP

. ❏

By the redu
tions given in Se
tion 2, Theorem 6 yields 
o-NExp

NP

upper bounds

for subsumption and the instan
e problem. We will show in Se
tion 4 that these up-

per bounds are tight. However, sin
e NExp

NP

is a relatively large 
omplexity 
lass,

it is a natural question whether we 
an impose restri
tions on 
on
ept 
ir
ums
rip-

tion su
h that reasoning be
omes simpler. In the following, we identify su
h a 
ase

by 
onsidering 
KBs in whi
h the number of minimized and �xed 
on
ept names is

bounded by some 
onstant. In this 
ase, the 
omplexity of satis�ability w.r.t. 
on
ept-


ir
ums
ribed KBs drops to NP

NExp

. For readers uninitiated to ora
le 
omplexity


lasses, we note that NExp � NP

NExp

� NExp

NP

� 2-Exp, and that NP

NExp

is

believed to be mu
h less powerful than NExp

NP

, see for example [13℄.

To prove the NP

NExp

upper bound, we �rst introdu
e 
ounting formulas as a


ommon generalization of TBoxes and ABoxes.

De�nition 7 (Counting Formula) A 
ounting formula � is a Boolean 
ombination

of GCIs, ABox assertions C(a), and 
ardinality assertions

(C = n) and (C � n);

where C is a 
on
ept and n a non-negative integer. We use ^, _, : and ! to denote

the Boolean operators of 
ounting formulas. An interpretation I satis�es a 
ardinality

assertion (C = n) if #C

I

= n, and (C < n) if #C

I

< n. The satisfa
tion relation

I j= � between models I and 
ounting formulas � is de�ned in the obvious way. 4

In the following, we assume that the integers o

urring in 
ardinality assertions are


oded in binary. The NP

NExp

algorithm to be devised will use an algorithm for

satis�ability of (non-
ir
ums
ribed) 
ounting formulas as an ora
le. Therefore, we

should �rst determine the 
omputational 
omplexity of the latter. It follows from [35℄

that, in ALC, satis�ability of 
ounting formulas is NExp-hard. A mat
hing upper

bound for the DLs ALCIO and ALCQO is obtained from the fa
ts that (i) there is a

polynomial translation of 
ounting formulas formulated in these languages into C2, the

two-variable fragment of �rst-order logi
 extended with 
ounting quanti�ers [14, 24℄,

and (ii) satis�ability in C2 is in NExp even if the numbers in 
ounting quanti�ers are


oded in binary [26℄.

Theorem 8 (Tobies, Pratt) In ALC, ALCIO and ALCQO, satis�ability of 
ount-

ing formulas is NExp-
omplete even if numbers in number restri
tions are 
oded in

binary.

1

The bound 2

4k


learly dominates the two bounds given in Parts (i) and (ii) of Lemma 5.

11



We now establish the improved upper bound.

Theorem 9 Let n be a 
onstant. In ALCIO and ALCQO, it is in NP

NExp

to de
ide

satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs Cir


CP

(T ;A), where CP = (�;M; F; V )

is su
h that jM j � n and jF j � n.

Proof. Assume that we want to de
ide satis�ability of the 
on
ept C

0

w.r.t. the 
KB

Cir


CP

(T ;A), where CP = (�;M; F; V ) with jM j � n and jF j � n. By Lemma 4,

we may assume that F = ; (we may have to in
rease the 
onstant n appropriately).

We may assume w.l.o.g. that the 
ardinality of M is exa
tly n. Thus, let M =

fA

0

; : : : ; A

n

g. By Lemma 5, C

0

is satis�able w.r.t. Cir


CP

(T ;A) i� there exists a

model of C

0

and Cir


CP

(T ;A) of size 2

4k

, with k = jC

0

j+ jT j+ jAj. Consider, for all

S �M , the 
on
ept

C

S

:= u

A2S

A u u

A2fA

1

;:::;A

n

gnS

:A:

As n is �xed, the number 2

n

of su
h 
on
epts is �xed as well. Clearly, the sets C

I

S

,

S � M , form a partition of the domain �

I

of any model I. Introdu
e, for ea
h


on
ept name B and role name r in T [ A, a fresh 
on
ept name B

0

and a fresh role

name r

0

, respe
tively. For a 
on
ept C, denote by C

0

the result of repla
ing in C ea
h


on
ept name B and role name r with B

0

and r

0

, respe
tively. The primed versions A

0

and T

0

of A and T are de�ned analogously. Denote by N the set of individual names

in T [ A [ fC

0

g.

The NExp-ora
le we are going to use in our algorithm 
he
ks whether a 
ounting

formula � is satis�able or not. Now, the NP

NExp

-algorithm is as follows (we use

C � D as an abbreviation for the 
ounting formula (C v D) ^ :(D v C)):

1. Guess

� a sequen
e (n

S

j S �M) of numbers n

S

� 2

4k


oded in binary;

� for ea
h individual name a 2 N , exa
tly one set S

a

�M ;

� a subset E of N �N .

2. By 
alling the ora
le, 
he
k whether the 
ounting formula �

1

is satis�able, where

�

1

is the 
onjun
tion over

� T [A [ f:(C

0

= 0)g;

� (C

S

= n

S

), for all S �M ;

� C

S

a

(a), for ea
h a 2 N ;

� f(fag v fbg) j (a; b) 2 Eg [ f:(fag v fbg) j (a; b) 2 N �Eg.

3. By 
alling the ora
le, 
he
k whether the 
ounting formula �

2

is satis�able, where

�

2

is the 
onjun
tion over

� T

0

[A

0

;

� (C

S

= n

S

), for all S �M (note that we use the unprimed versions);

� C

S

a

(a), for ea
h individual name a 2 N (we use the unprimed versions);
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� f(fag v fbg) j (a; b) 2 Eg [ f:(fag v fbg) j (a; b) 2 N �Eg;

� for all A 2M ,

:(A

0

v A) !

_

B2M;B�A

(B

0

� B);

� and, �nally,

_

A2M

((A

0

� A) ^

^

B2M;B�A

(B = B

0

)):

4. The algorithm states that C

0

is satis�able in a model of Cir


CP

(T ;A) if, and

only if, �

1

is satis�able and �

2

is not satis�able.

Using the 
ondition that n is �xed, is is 
lear that this is a NP

NExp

-algorithm. It

remains to show 
orre
tness and 
ompleteness.

Suppose that there exists a model of Cir


CP

(T ;A) satisfying C

0

. Then there is

su
h a model I of size bounded by 2

4k

. Let the algorithm guess

� the numbers n

S

= jC

I

S

j, S �M ,

� the sets S

a

su
h that a

I

2 C

I

S

a

,

� the set E = f(a; b); (b; a) j a

I

= b

I

; a; b 2 Ng.

Clearly, �

1

is satis�ed in I. It remains to show that �

2

is unsatis�able. But suppose

there exists a model J satisfying �

2

. By the 
onjun
ts under Item 2, 3, and 4 of the

de�nitions of �

1

and �

2

, we may assume that

� �

I

= �

J

;

� A

I

= A

J

for all A 2M ;

� a

I

= a

J

for all individual names a.

Moreover, as no unprimed role names o

ur in �

2

and the only unprimed 
on
ept

names in �

2

are those in M , we may assume that the interpretation of all unprimed


on
ept and role names in I and J 
oin
ide. Thus, J is a model of Cir


CP

(T ;A)

satisfying C

0

. But now de�ne a model J

0

with domain �

J

by setting

� a

J

0

= a

J

, for all individual names a;

� r

J

0

= (r

0

)

J

, for all role names r;

� A

J

0

= (A

0

)

J

, for all 
on
ept names A.

Then, by the 
onjun
t under Item 1 of the de�nition of �

2

, J

0

is a model for A[T . By

Items 5 and 6 of the de�nition of �

2

, J

0

<

CP

J , and we have derived a 
ontradi
tion.

Conversely, suppose the algorithm says that there exists a model of Cir


CP

(T ;A)

satisfying C

0

. Then take a model I for �

1

. By the 
onjun
t under Item 1 of �

1

, I is

a model for T [ A satisfying C

0

. It follows from the unsatis�ability of �

2

that I is a

model for Cir


CP

(T ;A). ❏

13



As an immediate 
orollary, we obtain 
o-NP

NExp

upper bounds for subsumption and

the instan
e problem. A similar drop of 
omplexity o

urs in propositional logi
,

where satis�ability w.r.t. 
ir
ums
ribed theories is 
omplete for NP

NP

and it is not

diÆ
ult to see that bounding the minimized and �xed predi
ates allows to �nd a

P

NP

algorithm. To the best of our knowledge, this has never been expli
itly observed

before.

4 Lower Bounds

We show that the upper bounds given in Se
tion 3 are tight. As usual, the lower

bounds are established by redu
tion of a suitable problem that is 
omplete for the


omplexity 
lass under 
onsideration. Thus, we are given an input x of the 
hosen

problem, 
onstru
t a 
KB and a 
on
ept from x, and show that the 
on
ept is sat-

is�able w.r.t. the 
KB i� x is a yes-instan
e of the problem. To a
hieve a gentle

presentation of the redu
tions, it is 
onvenient to split up the 
onstru
ted 
KB into

independent parts. We �rst establish a general lemma fa
ilitating su
h a splitting. A


on
ept C is simultaneously satis�able w.r.t. 
KBs Cir


CP

1

(T

1

;A

1

); : : : ;Cir


CP

k

(T

k

;A

k

)

if there exists an interpretation I that is a model of all the 
KBs and satis�es C

I

6= ;.

The following lemma says that simultaneous satis�ability 
oin
ides with separate sat-

is�ability if there are no shared role names in the two 
KBs.

Lemma 10 Let Cir


CP

1

(T

1

;A

1

); : : :Cir


CP

k

(T

k

;A

k

) be 
on
ept-
ir
ums
ribed 
KBs

formulated in ALC su
h that Cir


CP

i

(T

i

;A

i

) and Cir


CP

j

(T

j

;A

j

) have no shared

role names, for all 1 � i < j � k. Then, simultaneous satis�ability w.r.t.

Cir


CP

1

(T

1

;A

1

); : : :Cir


CP

k

(T

k

;A

k

), 
an be polynomially redu
ed to satis�ability w.r.t. a

single 
on
ept-
ir
ums
ribed KB Cir


CP

(T ;A) su
h that the 
ardinality of ea
h 
ompo-

nent of CP is the sum of 
ardinalities of the 
orresponding 
omponents of CP

1

; : : : ;CP

k

.

Proof. We only give a proof for the 
ase k = 2. A generalization is straightforward.

Let C be an ALC 
on
ept and let Cir


CP

1

(T

1

;A

1

), Cir


CP

2

(T

2

;A

2

) be two 
on
ept-


ir
ums
ribed KBs formulated in ALC that have no shared role names. Moreover, let

A

0

; : : : ; A

k�1

be the 
on
ept names used in both 
KBs, R the role names used in the

two 
KBs, and CP

i

= (�

i

;M

i

; F

i

; V

i

) for i 2 f1; 2g. We obtain a new TBox T

0

2

from

T

2

by repla
ing ea
h 
on
ept name A

i

, i < k, with a new 
on
ept name A

0

i

. Let A

0

2

be

obtained from A

2

and CP

0

2

= (�

0

2

;M

0

2

; F

0

2

; V

0

2

) from CP

2

in an analogous way. De�ne

a TBox T

�

as follows, where P is a new 
on
ept name:

A

i

u :A

0

i

v P for all i < k

:A

i

uA

0

i

v P for all i < k

P v 8r:P for all r 2 R

9r:P v P for all r 2 R
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Now set:

T := T

1

[ T

0

2

[ T

�

A := A

1

[A

0

2

� := �

1

[ �

0

2

M := M

1

[M

0

2

F := F

1

[ F

0

2

V := V

1

[ V

0

2

CP := (�;M; F; V )

It remains to show the following:

Claim. C is simultaneously satis�able w.r.t. Cir


CP

1

(T

1

;A

1

) and Cir


CP

2

(T

2

;A

2

) i�

C u :P is satis�able w.r.t. Cir


CP

(T ;A).

\if". Assume that C u :P is satis�able w.r.t. Cir


CP

(T ;A), and let I be a model

witnessing this. We may w.l.o.g. assume that I is 
onne
ted. By 
onstru
tion of

Cir


CP

(T ;A), I is a model of C, T

1

, and A

1

. To show that C is satis�able w.r.t.

Cir


CP

1

(T

1

;A

1

), we prove that I is a model of Cir


CP

1

(T

1

;A

1

). Assume to the 
ontrary

that this is not the 
ase. Then there exists a model J of T

1

andA

1

su
h that J <

CP

1

I.

De�ne a model J

0

as follows:

� �

J

0

= �

J

;

� all predi
ates used in T

1

and A

1

are interpreted as in J ;

� all predi
ates used in T

0

2

and A

0

2

are interpreted as in I.

� P

J

:=

(

�

I

if ((A

i

u :A

0

i

) t (:A

i

uA

0

i

))

J

6= ; for some i < k

; otherwise.

It is readily 
he
ked that J

0

is a model of T and A, and that J

0

<

CP

I. Thus, we

have derived a 
ontradi
tion to the fa
t that I is a model of Cir


CP

(T ;A).

Sin
e I is 
onne
ted and satis�es :P and T

�

, we have that A

I

i

= (A

0

i

)

I

for all

i < k. Therefore, I is also a model of T

2

and A

2

. It remains to be shown that I is a

model of Cir


CP

2

(T

2

;A

2

), whi
h 
an be done analogously to the 
ase of Cir


CP

1

(T

1

;A

1

).

\only if". Assume that C is simultaneously satis�able w.r.t. Cir


CP

1

(T

1

;A

1

) and

Cir


CP

2

(T

2

;A

2

). Then there exists a model I of C that is a model of Cir


CP

1

(T

1

;A

1

)

and Cir


CP

2

(T

2

;A

2

). We modify I to a new model I

0

by setting

� (A

0

i

)

I

0

:= A

I

i

for all i < k;

� P

I

0

:= ;.

It should be 
lear that I

0

is a model of C u:P , T , and A. It remains to show that I

0

is also model of Cir


CP

(T ;A). To do this, we �rst show the following:

(a) I

0

is a model of Cir


CP

1

(T

1

;A

1

). This is the 
ase sin
e any model J of T

1

and

A

1

with J <

CP

1

I

0

satis�es J <

CP

1

I. Thus, the existen
e of su
h a model


ontradi
ts the fa
t that I is a model of Cir


CP

1

(T

1

;A

1

).
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(b) I

0

is a model of Cir


CP

0

2

(T

0

2

;A

0

2

). Assume to the 
ontrary that there is a model

J of T

0

2

and A

0

2

with J <

CP

0

2

I

0

. Convert J into an interpretation J

�

by

setting A

J

�

i

:= (A

0

i

)

J

for all i < k. Then, J

�

is a model of T

2

and A

2

and

satis�es J

�

<

CP

2

I. This is a 
ontradi
tion to the fa
t that I is a model of

Cir


CP

2

(T

2

;A

2

).

Now, assume to the 
ontrary of what remains to be shown that there is a model J

0

of T and A with J

0

<

CP

I

0

. By de�nition of CP, J

0

<

CP

I

0

implies that we have

J

0

<

CP

1

I

0

or J

0

<

CP

0

2

I

0

. Sin
e J

0


learly satis�es T

1

, A

1

, T

0

2

, and A

0

2

, we obtain a


ontradi
tion to (a) and (b). ❏

We start our study of lower 
omplexity bounds by proving a mat
hing lower bound for

Theorem 6: we show that, in ALC, satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs is

NExp

NP

-hard. Therefore, satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs is NExp

NP

-


omplete in ALC, ALCIO, and ALCQO. The proof is by redu
tion of a su

in
t

version of the problem 
o-CERT3COL [12℄. Let us �rst introdu
e the regular (non-

su

in
t) version of this problem:

Instan
e of size n: an undire
ted graph G on the verti
es f0; 1; : : : ; n� 1g su
h that

every edge is labelled with a disjun
tion of two literals over the Boolean variables

fV

i;j

j i; j < ng.

Yes-Instan
e of size n: an instan
e G of size n su
h that, for some truth value assign-

ment t to the Boolean variables, the graph t(G) obtained from G by in
luding only

those edges whose label evaluates to true under t is not 3-
olorable.

As shown in [33℄, 
o-CERT3COL is 
omplete forNP

NP

. To obtain a problem 
omplete

for NExp

NP

, Eiter et al. use the 
omplexity upgrade te
hnique: by en
oding the input

in a su

in
t form using Boolean 
ir
uits, the 
omplexity is raised by one exponential to

NExp

NP

[12℄. More pre
isely, the su

in
t version 
o-CERT3COL

S

of 
o-CERT3COL

is obtained by representing the input graph G with nodes f0; : : : ; 2

n

� 1g as 4n + 3

Boolean 
ir
uits with 2n inputs (and one output) ea
h. The Boolean 
ir
uits are

named 


E

, 


(1)

S

, 


(2)

S

, and 


(i)

j

, with i 2 f1; 2; 3; 4g and j < n. For all 
ir
uits, the

2n inputs are the bits of the binary representation of two nodes of the graph. The

purpose of the 
ir
uits is as follows:

� 
ir
uit 


E

outputs 1 if there is an edge between the two input nodes, and 0

otherwise;

� if there is an edge between the input nodes, 
ir
uit 


(1)

S

outputs 1 if the �rst

literal in the disjun
tion labelling this edge is positive, and 0 otherwise; the


ir
uit 


(2)

S

does the same for the se
ond literal;

� if there is an edge between the input nodes, the 
ir
uits 


(i)

j


ompute the labelling

V

k

1

;k

2

_ V

k

3

;k

4

of this edge between the input nodes by generating the numbers

k

1

; : : : ; k

4

: the 
ir
uit 


(i)

j

outputs the j-th bit of k

i

.

16



Now for the redu
tion of 
o-CERT3COL

S

to satis�ability of 
on
ept-
ir
ums
ribed

KBs. Let

G = (n; 


E

; 


(1)

S

; 


(2)

S

; f


(i)

j

g

i2f1;::;4g;j<n

)

be the (su

in
t representation of the) input graph with 2

n

nodes. We will 
onstru
t

two TBoxes T

G

and T

0

G

, 
ir
ums
ription patterns CP and CP

0

, and a 
on
ept C

G

su
h that C

G

is simultaneously satis�able w.r.t. Cir


CP

(T

G

; ;) and Cir


CP

0

(T

0

G

; ;) i�

G is a yes-instan
e of 
o-CERT3COL

S

. By Lemma 10, we then obtain a redu
tion

to (non-simultaneous) satis�ability w.r.t. 
on
ept-
ir
ums
ribed 
KBs. Intuitively,

the purpose of the �rst TBox T

G

is to �x a truth assignment t for the variables

fV

i;j

j i; j < ng, and to 
onstru
t (an isomorphi
 image of) the graph t(G) obtained

from G by in
luding only those edges whose label evaluates to true under t. Then,

the purpose of T

0

G

is to make sure that t(G) is not 3-
olorable.

When formulating the redu
tion TBoxes, we use several binary 
ounters for 
ount-

ing modulo 2

n

(the number of nodes in the input graph). The main 
ounters X and

Y use 
on
ept names X

0

; : : : ;X

n�1

and Y

0

; : : : ; Y

n�1

as their bits, respe
tively. Ad-

ditionally, we introdu
e 
on
ept names K

(i)

0

; : : : ;K

(i)

n�1

, i 2 f1; 2; 3; 4g that binarily

en
ode numbers from the range 0; : : : ; 2

n

� 1, but are never in
remented as a 
ounter.

The main part of the TBox T

G


an be found in Figure 2, where the following abbrevia-

tions are used: �rst, 8r:(K

(i)

= X) is a 
on
ept expressing that, for all its instan
es x,

the values of X

0

; : : : ;X

n�1

at all r-su

essors agree with the values of K

(i)

0

; : : : ;K

(i)

n�1

at x. And se
ond, 8r:(X++) is an abbreviation for the well-known 
on
ept stating

that the value of the 
ounter X

0

; : : : ;X

n�1

is in
remented when going to r-su

essors:

u

k=0::n�1

�

u

j=0::k�1

X

j

�

!

�

(X

k

! 8r::X

k

) u (:X

k

! 8r:X

k

)

�

u

k=0::n�1

�

t

j=0::k�1

:X

j

�

!

�

(X

k

! 8r:X

k

) u (:X

k

! 8r::X

k

)

�

The intuitions of T

G

are as follows: Lines (1) to (3) ensure that, for ea
h possible

value of the 
ounters X and Y , there is at least one domain element in Val

I

with this


ounter value. We will minimize Val to ensure that there is exa
tly one domain element

in Val

I

for ea
h possible value i of X and j of Y . Intuitively, these domain elements

are used to store informaion about the variables V

ij

and the (potential) edges (i; j).

Con
erning the variables, ea
h element of Val

I

with X = i and Y = j 
orresponds to

the variable V

i;j

of 
o-3CERTCOL

S

and determines a truth value for this variable via

the 
on
ept name Tr. Thus, the elements of Val

I

jointly des
ribe a truth assignment

for the variables of 
o-3CERTCOL

S

. Line (4) introdu
es Edge as another name for

Val. We do this to distinguish the use of the elements of Val as variables and as

edges. Intuitively, an element of d 2 Edge

I

with X = i and Y = j 
orresponds to the

(potential) edge between the nodes i and j To explain this more properly, we must

�rst dis
uss the part of T

G

that is missing in Figure 2.

It is easily seen that ea
h Boolean 
ir
uit 
 with 2n inputs 
an be 
onverted into a

TBox T




in the following sense: if the output of 
 upon input b

0

; : : : ; b

2n�1

is b, then,

for all models I of T




and all domain elements x 2 �

I

su
h that the truth value of the


on
ept names X

0

; : : : ;X

n�1

; Y

0

; : : : ; Y

n�1

at x is des
ribed by b

0

; : : : ; b

n�1

, the truth
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> v 9aux:Val (1)

Val v 9nextx:> u 8nextx:Val u 8nextx:(X++) u 8nextx:(Y=Y ) (2)

Val v 9nexty:> u 8nexty:Val u 8nexty:(Y++) u 8nexty:(X=X) (3)

Edge

:

= Val (4)

Edge v 9var1:> u 8var1:Val u 8var1:(K

(1)

=X) u 8var1:(K

(2)

=Y ) (5)

Edge v 9var2:> u 8var2:Val u 8var2:(K

(3)

=X) u 8var2:(K

(4)

=Y ) (6)

Edge v S

1

! (Tr

1

$ 8var1:Tr) (7)

Edge v :S

1

! (:Tr

1

$ 8var1:Tr) (8)

Edge v S

2

! (Tr

2

$ 8var2:Tr) (9)

Edge v :S

2

! (:Tr

2

$ 8var1:Tr) (10)

Edge v Elim$ (:E t :(Tr

1

t Tr

2

)) (11)

Figure 2: The TBox T

G

(partly).

value of some 
on
ept name Out at x is des
ribed by b. By introdu
ing one auxiliary


on
ept name for every inner gate of 
, the translation 
an be done su
h that the size

of T




is linear in the size of 
. Now, the part of T

G

not shown in Figure 2 is obtained by


onverting the Boolean 
ir
uits des
ribing the graph G into a TBox in the des
ribed

way. More pre
isely, this is done su
h that the following 
on
ept names are used as

output:

� the translation of 


E

uses the 
on
ept name E as output;

� the translation of 


(i)

S

uses the 
on
ept name S

i

as output, for i 2 f1; 2g;

� the translation of 


(i)

j

uses the 
on
ept name K

(i)

j

as output, for i 2 f1; : : : ; 4g

and j < n.

Note that the evaluation of Boolean 
ir
uits takes pla
e lo
ally at every domain ele-

ment. In prin
iple, it suÆ
es to evaluate the 
ir
uits only at instan
es of Edge: there,

X

0

; : : : ;X

n�1

des
ribe the left-hand node of the 
orresponding edge, and Y

0

; : : : ; Y

n�1

des
ribe the right-hand node of the 
orresponding edge.

With this in mind, it is easy to see that Line (5) ensures the following: ea
h

element d 2 Edge

I

representing an edge (i; j) is 
onne
ted via the role var1 to the

element of Val

I

that represents the variable in the �rst disjun
t of the label of (i; j).

Line (6) is analogous for the role var2 and the variable in the se
ond disjun
t of the

edge label. Then, Lines (7) to (11) ensure that d 2 Edge

I

is an instan
e of Elim i�

the edge 
orresponding to d is not present in the graph t(G) indu
ed by the truth

assignment t des
ribed by Val.

The TBox T

0

G


an be found in Figure 3. Here, (X = i) stands for the 
on
epts

expressing that X

0

; : : : ;X

n�1

are the binary en
oding of the number i. As already said,
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Node

:

= Val u (Y = 0) (12)

Node v R tB tG (13)

Node v :(R uB) u :(R uG) u :(B uG) (14)

Edge v 9
ol1:> u 8
ol1:Node u 8
ol1:(X=X) (15)

Edge v 9
ol2:> u 8
ol2:Node u 8
ol2:(Y =X) (16)

P w Edge u :Elim u 9
ol1:R u 9
ol2:R (17)

P w Edge u :Elim u 9
ol1:G u 9
ol2:G (18)

P w Edge u :Elim u 9
ol1:B u 9
ol2:B (19)

Figure 3: The TBox T

0

G

.

the purpose of T

0

G

is to ensure that the graph t(G) indu
ed by the truth assignment

t des
ribed by Val does not have a 3-
oloring. The strategy for ensuring this is as

follows: we use the 2

n

elements of (Val u (Y = 0))

I

to store the 
olors of the nodes.

By Line (12), these elements are identi�ed by the 
on
ept name Node, and there is a

unique 
oloring due to Lines (13) and (14). Then, Line (15) ensures that ea
h element

d 2 Edge

I

is 
onne
ted via the role 
ol1 to the element of Node

I

storing the 
olor of

the �rst node of the edge 
orresponding to d. Line (16) is analogous for the role 
ol2

and the se
ond node of the edge. Lines (17) to (19) guarantee that instan
es of Edge


orresponding to problemati
 edges are instan
es of the 
on
ept name P . Here, an

edge is problemati
 if it exists in the original graph, is not dropped by the 
urrent

truth assignment, and the 
onne
ted nodes have the same 
olor. The idea is that P

will be minimized with all 
on
ept names �xed ex
ept R, G, and B. Then, we have

P

I

non-empty i� there is no 3-
oloring of t(G). Please observe that �xing all 
on
ept

names ex
ept R;G;B also means that the used roles are �xes on instan
es of Edge

and Val.

Lemma 11 G is a yes-instan
e of 
o-3CERTCOL

S

i� P is simultaneously satis�able

w.r.t. Cir


CP

(T

G

; ;) and Cir


CP

0

(T

0

G

; ;), where

� CP = (�;M; F; V ) with � = ;, M = fValg, F = ;, and V all remaining

predi
ates in T

G

;

� CP

0

= (�

0

;M

0

; F

0

; V

0

) with �

0

= ;, M

0

= fPg, F

0

= ;, and V

0

the set of all

remaining predi
ates used in T

0

G

.

Proof. \If". Suppose that P is simultaneously satis�able w.r.t. Cir


CP

(T

G

; ;) and

Cir


CP

0

(T

0

G

; ;), and let I be a model of P and a model of both Cir


CP

(T

G

; ;) and

Cir


CP

0

(T

0

G

; ;). We have to show that G is a yes-instan
e of 
o-CERT3COL

S

. We �rst

note that, for all i; j 2 f0; : : : ; n� 1g, Val

I


ontains exa
tly one element

x 2 ((X = i) u (Y = j))

I

:

19



The reasons for this are as follows: (i) Lines (1)-(3) for
e Val

I

to 
ontain at least

one su
h element for ea
h pair (i; j); (ii) sin
e I is a model of Cir


CP

(T

G

; ;) and CP

minimizes Val while varying all other predi
ates, there 
annot be more than one su
h

x in Val

I

. In the following, we use x

ij

to denote the unique element of (Val u (X =

i) u (Y = j))

I

.

Now suppose, to the 
ontrary of what is to be shown, that G is not a yes-instan
e.

Then, for all truth assignments t, the subgraph t(G) is 3-
olorable. In parti
ular this

holds for the assignment t de�ned by setting

t(V

ij

) := true i� x

ij

2 Tr

I

:

Let 
 : f0; : : : ; n� 1g ! fR;G;Bg be a 3-
oloring of t(G) and 
onstru
t an interpre-

tation J as follows:

�

J

= �

I

r

J

= r

I

for all role names

A

J

= A

I

for all 
on
ept names ex
ept R;G, and B

C

J

= fx

i0

j 
(i) = Cg for C = R;G;B

P

J

= ; :

Clearly, J <

CP

0

I, be
ause the minimized predi
ate P is non-empty in I and empty

in J . Thus, to obtain a 
ontradi
tion, it suÆ
es to show that J is a model of T

0

G

.

Sin
e I and J agree on all predi
ates but R;G;B, and P , In
lusions (12), (15),

and (16) that do not mention these 
on
epts must hold in J . Line (12) implies

Node

J

= fx

i0

j 0 � i < ng, and hen
e J satis�es (13) by 
onstru
tion. Moreover,

sin
e 
 is a fun
tion, (14) is satis�ed, too. The following 
laim is a 
onsequen
e of the

de�nition of the truth assignment t and the fa
ts that (i) I is a model of T

G

and (ii) I

and J interpret the 
on
ept names Edge and Elim in the same way.

Claim 1: (i; j) is an edge of t(G) i� x

ij

2 (Edge u :Elim)

J

.

Now, we prove that (17) to (19) are satis�ed in J . Let C 2 fR;G;Bg and x

ij

2

(Edge u :Elim)

J

. By Claim 1, we get 
(i) 6= 
(j) sin
e 
 is a 3-
oloring of t(G). Thus,

by 
onstru
tion of J , x

i0

and x

j0


annot belong to C together. Moreover, by (15)

and (16), 
ol1 and 
ol2 
onne
t x

ij

pre
isely to x

i0

and x

j0

, respe
tively. Therefore,

x

ij

=2 (9
ol1:C u 9
ol2:C)

J

. Sin
e this holds for any x

ij

2 (Edge u :Elim)

J

, it follows

that the right-hand sides of (17) to (19) are empty in J . Thus, these impli
ations are

satis�ed.

\Only if". Suppose that G is a yes-instan
e and let t be a truth assignment

su
h that t(G) is not 3-
olorable. Let 
 : f0; : : : ; n � 1g ! fR;G;Bg be a 
olor

assignment that minimizes (w.r.t. set in
lusion) the set f(i; j) j 
(i) = 
(j)g. De�ne

an interpretation I as follows:

�

I

= f(i; j) j 0 � i < 2

n

; 0 � j < 2

n

g

Val

I

= Edge

I

= �

I

Tr

I

= f(i; j) j t(V

ij

) = trueg
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Tr

I

i

= f(i; j) j t(V

ij

) $ 


(i)

S

(i; j)g (i = 1; 2)

Elim

I

= f(i; j) j (i; j) is an edge of t(G)g

Node

I

= f(i; 0) j 0 � i < 2

n

g

C

I

= f(i; ;) j 
(i) = Cg (C = R;G;B)

P

I

= f(i; j) j (i; j) is an edge of t(G) and 
(i) = 
(j)g

nextx

I

= f((i; j); (i + 1 mod 2

n

; j)) j 0 � i; j < 2

n

g

nexty

I

= f((i; j); (i; j + 1 mod 2

n

)) j 0 � i; j < 2

n

� 1g


ol1

I

= f((i; j); (i; 0)) j 0 � i < 2

n

g


ol2

I

= f((i; j); (j; 0)) j 0 � i < 2

n

g

var1

I

= f((i; j); (k; l)) j the �rst variable in the label of (i; j) is V

kl

g

var2

I

= f((i; j); (k; l)) j the se
ond variable in the label of (i; j) is V

kl

g

Moreover, the 
on
ept names X

I

k

and Y

I

k

are interpreted in su
h a way that (i; j) 2

((X = i) u (Y = j))

I

holds for all i; j < 2

n

. For ea
h Boolean 
ir
uit 
 the 
orre-

sponding output 
on
ept name Out

I





ontains pre
isely those (i; j) su
h that 
(i; j) is

true.

Sin
e 
 is not a 3-
oloring, P is satis�ed in I. Thus, it remains to show that

I is a model of Cir


CP

(T

G

; ;) and Cir


CP

0

(T

0

G

; ;). We start with the former. It is

straightforward to see that I is a model of T

G

. To see that I is also a model of

Cir


CP

(T

G

; ;), note that by in
lusions (1){(3), there must be at least one instan
e of

Val in ea
h of the (mutually disjoint) 
on
epts (X = i)u (Y = j). Sin
e I has exa
tly

one element for ea
h su
h 
on
ept, the extension of Val is minimal in I.

Now for Cir


CP

0

(T

0

G

; ;). The reader may easily verify that I satis�es T

0

G

by 
on-

stru
tion. To prove that I is also a <

CP

0

-minimal model of T

0

G

, �rst note that if

there existed a model J <

CP

0

I, then P

J

� P

I

would hold. Moreover, the min-

imization of P

J

would make its extension equal to the disjun
tion of the right-

hand sides of (17){(19). As a 
onsequen
e, to satisfy (17){(19), we should have

(i) (9
ol1:C u 9
ol2:C)

J

� (9
ol1:C u 9
ol2:C)

I

for C = R;G;B, and (ii) for some


olor C,

(9
ol1:C u 9
ol2:C)

J

� (9
ol1:C u 9
ol2:C)

I

:

But then, the 
oloring 


0

de�ned by




0

(i) = C i� (i; 0) 2 C

J

(C = R;G;B)

would be su
h that

f(i; j) j 


0

(i) = 


0

(j)g � f(i; j) j 
(i) = 
(j)g:

This in
lusion 
ontradi
ts the minimality assumption on 
. ❏

Sin
e it is easily 
he
ked that the size of T

G

and T

0

G

is polynomial in n, we get the

following result.

Theorem 12 In ALC, satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs is NExp

NP

-

hard.
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It is interesting to observe that the redu
tion works even if we assume ABoxes and

preferen
e relations to be empty. Corresponding lower bounds for subsumption and

the instan
e problems follow from the redu
tion given in Se
tion 2.

We now establish a mat
hing lower bound for Theorem 9: we show that, in ALC,

satis�ability w.r.t. 
on
ept-
ir
ums
ribed KBs is NP

NExp

-hard even if only a 
onstant

number of predi
ates are allowed to be minimized and �xed. Re
all that a (non-

deterministi
) k-tape Turing ma
hine is des
ribed by a tuple

(Q;�; q

0

;�; q

a



; q

rej

);

with Q a set of states, � a �nite alphabet, q

0

2 Q a starting state,

� � Q� �

k

�Q� �

k

� fL;Rg

k

a transition relation, and q

a



; q

rej

2 Q the a

epting and reje
ting states. For our

purposes, an ora
le Turing ma
hine is a 2-tape Turing ma
hine M that is, additionally,

equipped with the following:

� a 1-tape Turing ma
hine M

0

(the ora
le) whose alphabet 
ontains that of M ,

� a query state q

?

, and

� two answer states q

yes

and q

no

.

When M enters q

?

, the ora
le determines the next state of M : if the 
ontent of M 's

se
ond tape is 
ontained in the language a

epted by the ora
le, the next state is q

yes

.

Otherwise, it is q

no

. During this transition, the head is not moved and no symbols

are written. The state q

?


annot o

ur as the left-most 
omponent of a tuple in M 's

transition relation.

Let M = (Q;�; q

0

;�; q

a



; q

rej

;M

0

; q

?

; q

yes

; q

no

) be an ora
le Turing ma
hine su
h

that the following holds:

� M solves an NP

NExp

-
omplete problem;

� the time 
onsumption of M is bounded by a polynomial p;

� the time 
onsumption of M

0

= (Q

0

;�

0

; q

0

0

;�

0

; q

0

a



; q

0

rej

) is bounded by 2

q(n)

, with

q a polynomial.

Our NP

NExp

-hardness proof uses a redu
tion of the word problem of M . Thus, let

w 2 �

�

be an input for M of length n, and let m = p(n) and m

0

= q(p(n)). We

will 
onstru
t three TBoxes T

w

, T

0

w

, and T

00

w

, 
ir
ums
ription patterns CP, CP

0

, and

CP

00

, and a 
on
ept C su
h that M a

epts w i� C is simultaneously satis�able w.r.t.

Cir


CP

(T

w

; ;), Cir


CP

0

(T

0

w

; ;), and Cir


CP

00

(T

00

w

; ;). Then, Lemma 10 yields a redu
tion

to (non-simultaneous) satis�ability w.r.t. 
on
ept-
ir
ums
ribed 
KBs. Intuitively,

the purpose of the �rst TBox T

w

is to impose a basi
 stru
ture on the domain, while

T

0

w

des
ribes 
omputations of M , and T

00

w

des
ribes 
omputations of M

0

.

The details of T

w


an be found in Figure 4, where we use the same abbreviations
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> v 9aux:NExp (20)

NExp v 9r:NExp u 9u:NExp (21)

NExp v 8r:(Y =Y ) (22)

NExp v 8r:(X++) (23)

NExp v 8u:(X=X) (24)

NExp v 8u:(Y ++) (25)

> v u

i<m

9aux:(Result uR

i

) (26)

Result v u

i<j<m

:(R

i

uR

j

) (27)

> v 9aux:NP (28)

Figure 4: The TBox T

w

.

as in the previous redu
tion. The 
ir
ums
ription pattern for T

w

is

CP := (;; fNExp;Result;NPg; ;; V );

with V 
ontaining all remaining predi
ates used in T

w

. The purpose of Lines 20 to 25

is to ensure that, for ea
h possible value (i; j) of the 
ounters X and Y , there is

at least one instan
e of NExp that satis�es (X = i) and (Y = j). By minimizing

NExp, we thus enfor
e that NExp has exa
tly 2

m

0

� 2

m

0

elements. These elements are

inter
onne
ted via the roles r (\right") and u (\up"). Indeed, it is not diÆ
ult to see

that the stru
ture (NExp

I

; r

I

; u

I

) is isomorphi
 to the 2

m

0

� 2

m

0

-torus in ea
h model

I of Cir


CP

(T

w

; ;). Later on, we use this grid to en
ode 
omputations of the ora
le

ma
hine M

0

.

Together with the minimization of Result, Lines 26 and 27 guarantee that there is

exa
tly one instan
es of the 
on
ept ResultuR

i

, for all i < m. Intuitively, if M makes

a 
all to the ora
le in the i-th step, then the result of this 
all will be stored in the

(unique) instan
e of ResultuR

i

: this instan
e will satisfy the 
on
ept name Rej i� M

0

reje
ted the input. Finally, Line 28 and the minimization of NP guarantee that there

is exa
tly one instan
e of NP. This instan
e will be used to represent the 
omputation

of M .

The purpose of T

0

w

is to des
ribe 
omputations of M . We use the following 
on
ept

names:

� For all a 2 �, i; j < m, and k 2 f1; 2g, we introdu
e a 
on
ept name S

i;j;k

a

.

Intuitively, S

i;j;k

a

expresses that a is the symbol in the j-th 
ell of the k-th tape

in the i-th step of M 's 
omputation. We start our numbering of tape 
ells and

steps with 0.

� For all q 2 Q and i < m, Q

i

q

is a 
on
ept name expressing that M is in state q

in the i-th step of the 
omputation.
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NP v 9res

i

:(Result uR

i

) u 8res

i

:(Result uR

i

) (29)

NP v (Q

i

q

?

u 9res

i

:Rej) ! Q

i+1

q

no

(30)

NP v (Q

i

q

?

u 9res

i

::Rej) ! Q

i+1

q

yes

(31)

NP v (Q

i

q

?

uH

i;k

j

) ! H

i+1;k

j

(k = 1; 2) (32)

NP v u

a2�

u

j<m

�

(Q

i

q

?

u S

i;j

a

) ! S

i;j

a

�

(33)

Figure 5: The TBox T

0

w

(partly).

� For all q 2 Q, i; j < m, and k 2 f1; 2g, H

i;k

j

is a 
on
ept name expressing that

the k-th head of M is on 
ell j in the i-th step of the 
omputation.

In T

0

w

, we des
ribe 
omputations of M employing the usual set of axioms: ea
h tape


ell 
ontains exa
tly one alphabet symbol in ea
h step, there is exa
tly one 
urrent

state at ea
h step, the transition table is obeyed, et
. We leave details to the reader

and give, in Figure 5, only the part of T

0

w

that deals with the ora
le. We assume that


opies of Lines 29 to 33 are 
ontained in T

0

w

for every i < m. The 
ir
ums
ription

pattern is simply CP

0

:= (;; ;; ;; V ), with V the set of all predi
ates used in T

0

w

. Line 29

ensures that the instan
e of NP 
an rea
h the (unique) instan
e of Result u R

i

via

the role res

i

, for all i < m. Lines 30 and 31 deal with transitions of M in the query

state: the result of the ora
le 
all is looked up in the 
orresponding instan
e of Result.

Finally, Lines 32 and 33 merely ensure that the head position and symbol under the

head does not 
hange when querying the ora
le.

The purpose of T

00

w

is to des
ribe 
omputations of M

0

. As already noted, su
h


omputations are represented using the instan
es of NExp: the 2

m

0

instan
es satisfying

(X = i) represent the i-th 
on�guration of M

0

, for i < 2

m

0

. Here, the instan
e of

(Y = 0) represents the �rst tape 
ell and the instan
e of (Y = 2

m

0

) represents the last

tape 
ell. Note that we may have to des
ribe more than a single 
omputation of M

0

as M may visit the state q

?

more than on
e. All these 
omputations are \overlayed"

in the NExp grid using di�erent 
on
ept names for di�erent 
omputations. More

pre
isely, we use the following 
on
ept names:

� For all a 2 � and i < m, a 
on
ept name S

i

a

. If S

i

a

is satis�ed by some instan
e

of NExp with X = j and Y = k, then the i-th 
omputation of M

0

has, in it's

j-th step, label a on the k-th 
ell.

� For all q 2 Q and i < m, a 
on
ept name Q

i

q

. The purpose of this 
on
ept name

is two-fold: �rst, it represents the 
urrent state of M

0

in the i-th 
omputation.

And se
ond, it indi
ates the head position in the i-th 
omputation.

The behaviour of M

0

is again des
ribed via the usual axioms. Details are omitted.

In Figure 6, we only show the GCIs of T

00

w

that deal with the intera
tion with M .

Similarly to the 
ase of T

0

w

, we assume that T

00

w


ontains a 
opy of Lines 34 to 39 for
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NExp v (:(X = 2

m

0

� 1) ! 9r

0

:NExp) u (:(Y = 2

m

0

� 1) ! 9u

0

:NExp) (34)

NExp v 8r

0

:(Y =Y ) u 8r

0

:(X++) u 8u

0

:(X=X) u 8u

0

:(Y ++) (35)

NExp v 9res

0

i

:(Result uR

i

) u 8res

0

i

:(Result uR

i

) (36)

NExp v 9toNP:NP u 8toNP:NP (37)

NExp v u

j<m

u

a2�

�

�

(X = 0) u (Y = j) u 8toNP:S

i;j;2

a

�

! S

i

a

�

(38)

NExp v Q

i

q

0

rej

! 8res

0

i

:Rej (39)

Figure 6: The TBox T

00

w

(partly).

all i < m. With T

00

w

, we use the 
ir
ums
ription pattern CP

00

:= (;; fRejg; ;; V

0

); where

V

0


ontains all other predi
ates used in T

00

w

.

The purpose of Lines 34 and 35 is to regenerate the grid stru
ture of NExp using

the roles r

0

und u

0

. This is ne
essary sin
e the roles r and u are used in T

w

, and,

with simultaneous satis�ability, the TBoxes 
annot share any role names. Lines 36

and 37 ensure that every instan
e of NExp rea
hes (only) the instan
e of NP via the

role toNP, and (only) the instan
e of ResultuR

i

via the role res

0

i

, for all i < m. Line 38

guarantees that the i-th 
omputation of M

0

uses as its input the 
ontents of the se
ond

tape of M , as it is at the i-th step of M . Finally, Line 39 ensures that, if the i-th


omputation of M is reje
ting, then Rej is true in the instan
e of Result uR

i

.

Note that M is a non-deterministi
 ma
hine and may have more than one 
ompu-

tation. For storing Rej in ResultuR

i

, we need to know that all these 
omputations are

reje
ting. To deal with this issue, Rej is minimized with all other predi
ates varying:

if there exists an a

epting 
omputation of M

0

on i-th input, then we 
an represent

this 
omputation in NExp and make Rej false in the instan
e of ResultuR

i

. Hen
e, Rej

holds at ResultuR

i

i� there exists no a

epting 
omputation. Note that we 
annot �x

the 
on
ept names X

0

; : : : ;X

m�1

; Y

0

; : : : ; Y

m�1

while minimizing Rej sin
e we would

get an unbounded number of �xed 
on
ept names. Intuitively, the result is that the

elements of NExp may 
hange their position during minimization, and with them the

roles r

0

and u

0

. However, this is not harmful sin
e T

w

and Lines 34 and 35 ensure that

that (NExp

I

; (r

0

)

I

; (u

0

)

I

) is always isomorphi
 to a grid, and (the omitted part of) T

00

w

ensures that the elements of NExp always en
ode 
omputations of M

0

.

The proof of the following lemma is left to the reader.

Lemma 13 M a

epts w i� NP u t

i<m

Q

i

q

a



is simultaneously satis�able w.r.t.

Cir


CP

(T

w

; ;), Cir


CP

0

(T

0

w

; ;), and Cir


CP

00

(T

00

w

; ;).

Sin
e it is easily 
he
ked that the size of the 
onstru
ted TBoxes is polynomial in n,

we get the following result.

Theorem 14 In ALC, satis�ability w.r.t. simple 
KBs is hard for NP

NExp

.
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It is interesting to observe that the redu
tion even works if we assume ABoxes to

be empty. Corresponding lower bounds for subsumption and the instan
e problems

follow from the redu
tion given in Se
tion 2.

5 Unde
idability

In the pre
eeding se
tions, we have pinpointed the exa
t 
omputational 
omplexity

of reasoning w.r.t. 
on
ept-
ir
ums
ribed KBs. In parti
ular, we have proved that

reasoning w.r.t. su
h KBs is de
idable. In this se
tion, we extend the framework of


on
ept-
ir
ums
ribed KBs by allowing role names to be �xed during the minimization

of 
on
ept names. Interestingly, it turns out that this seemingly harmless modi�
a-

tion leads to unde
idability of reasoning. More pre
isely, we prove that reasoning is

unde
idable already in ALC, and that this holds even with empty TBoxes.

A 
ir
ums
ribed knowledge base Cir


CP

(T ;A) is 
alled 
on
ept-minimizing if

CP = (�;M; F; V ) with M a set of 
on
ept names. We prove that, in ALC, the

instan
e problem w.r.t. 
on
ept-minimizing 
KBs is unde
idable. By the redu
tions

given in Se
tion 2, this implies unde
idability of the other reasoning problems as well.

The proof is by a redu
tion of the semanti
 
onsequen
e problem of modal logi
 on

transitive frames, whi
h has been proved unde
idable in [8℄.

A frame is a stru
ture F = (�

F

; �

F

), where F a non-empty domain, r a role name,

and r

F

� �

F

� �

F

. A pointed frame is a pair (F; d) su
h that d 2 �

F

. For F =

(�

F

; r

F

) a frame, d; e 2 �

F

, and n 2 N, we write d(r

F

)

�n

e i� there exists a sequen
e

d

0

; : : : ; d

n

2 �

F

with d = d

0

, e = d

n

, and d

i

r

F

d

i+1

for i < n. Moreover, d 2 �

F

is 
alled a root of F if for every e 2 �

F

, there exists m su
h that d(r

F

)

�m

e. An

interpretation I = (�

I

; �

I

) is based on a frame F i� �

F

= �

I

and r

I

= r

F

. We say

that a 
on
ept C is valid on F and write F j= C i� C

I

= �

I

for every interpretation

I based on F, and (F; d) j= C i� d 2 C

I

for every interpretation I based on F. The

following theorem restates, in a DL formulation, the unde
idability of the semanti



onsequen
e problem of modal logi
 on transitive frames.

Theorem 15 (Chagrov) There exists an ALC 
on
ept E 
ontaining only the 
on-


ept name A and the role r su
h that the following problem is unde
idable: given an

ALC 
on
ept D, does there exist a transitive frame F su
h that F j= E and F 6j= D.

For 
onvenien
e, we will use the following abbreviation: for m 2 N, we use 8

m

r:C to

denote C if m = 0, and 8

m

r:C u 8r:8

m

r:C if m > 0. As usual, the role depth rd(C)

of a 
on
ept C is de�ned as the nesting depth of the 
onstru
tors 9r:D and 8r:D

in C. The following lemma establishes a 
onne
tion between the instan
e problem

w.r.t. 
on
ept-minimizing 
KBs and a bounded version of the semanti
 
onsequen
e

problem (not yet on transitive frames). For the sake of readability, we write 
on
ept

assertions C(a) in the form a : C

Lemma 16 Let C be an ALC 
on
ept whose only role is r and whose only 
on
ept

name is A. Let D be a 
on
ept not 
ontaining A and whose only role is r. Then, for

every m > 0, the following 
onditions are equivalent:
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(i) Cir


CP

(;;A) j= a : 8

m

r:C u :D with CP = (;; fAg; frg; ;) and

A = fa : (:8

m

r:C t 8

m+rd(C)

r:A)g;

(ii) there exists a pointed frame (F; d) su
h that (F; d) j= 8

m

r:C and (F; d) 6j= D.

Proof. (i) implies (ii). Let I be a model of Cir


CP

(;;A) su
h that a

I

2 (8

m

r:Cu:D)

I

.

Suppose I is based on the frame F, and set d := a

I

. We show that (F; d) j= 8

m

r:C

and (F; d) 6j= D. The latter is easy as it is witnessed by the interpretation I. To show

the former, let J be an interpretation based on F . We distinguish two 
ases:

� A

J

� fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

Sin
e a

I

2 (8

m

r:C)

I

and I is a model of Cir


CP

(;;A), it is not hard to see that

A

I

= fe 2 �

I

j d(r

I

)

�m+rd(C)

eg: (�)

Moreover, d 2 (8

m

r:C)

I

. Sin
e I and J are based on the same frame and the

truth of 8

m

r:C at d depends on the truth value of A only at those obje
ts e 2 �

I

with d(r

I

)

�m+rd(C)

e, we have d 2 (8

m

r:C)

J

and are done.

� A

J

6� fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

Let J

0

be the modi�
ation of J where A

J

0

= A

J

\fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

By (�), J

0

�

CP

I. If d 2 (:8

m

r:C)

J

0

, then J

0

is a model of A and we have a


ontradi
tion to the fa
t that I is a model of Cir


CP

(;;A). Thus, d 2 (8

m

r:C)

J

0

.

Sin
e the truth of 8

m

r:C at d depends on the truth value of A only at those

obje
ts e 2 �

J

0

with d(r

J

0

)

�m+rd(C)

e, we have d 2 (8

m

r:C)

J

and are done.

(ii) implies (i). Suppose there exists a pointed frame (F; d) su
h that (F; d) j= 8

m

r:C

and (F; d) 6j= D. We may assume that d is a root of F. Let I be an interpretation based

on F su
h that d 2 (:D)

I

. We may assume that A

I

= fe 2 �

I

j d(r

I

)

�m+rd(C)

dg

(sin
e A does not o

ur in D) and a

I

= d. Then a

I

2 (8

m

r:C u :D)

I

. It remains to

show that there does not exist an I

0

�

CP

I su
h that a

I

0

2 (:8

m

r:Ct8

m+rd(C)

r:A))

I

0

.

This is straightforward: from (F; d) j= 8

m

r:C, we obtain that there does not exist any

I

0

su
h that d 2 (:8

m

r:C)

I

0

and 
learly there does not exist any A

I

0

� A

I

su
h that

d 2 (8

m+rd(C)

r:A)

I

0

. ❏

The following lemma relates the bounded version of the semanti
 
onsequen
e problem

(on unrestri
ted frames) to the semanti
 
onsequen
e problem on transitive frames. It

utilizes the 
on
ept 8r:A! 8r:8r:A, the DL version of the modal formula �p! ��p

that is well-known to be valid on a frame i� the frame is transitive.

Lemma 17 Let C

1

= :8r:A t 8r:8r:A, C

2

be an ALC 
on
ept 
ontaining only the

role r and the 
on
ept name A, and let D be a 
on
ept 
ontaining only the role r.

Then the following 
onditions are equivalent:

(i) there exists a transitive frame F su
h that F j= C

2

and F 6j= D;

(ii) There exists a pointed frame (F; w) su
h that (F; w) j= 8

1

r:(C

1

u C

2

) and

(F; w) 6j= D.
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Proof. (i) implies (ii). Let F be a transitive frame su
h that F j= C

2

and F 6j= D.

Take a w 2 �

F

su
h that (F; w) 6j= D. We may assume that w is a root of F. Sin
e

F j= C

2

and F

0

j= C

1

for every transitive frame F

0

, (F; w) is as required for (ii).

(ii) implies (i). Let (F; w) be a pointed frame su
h that (F; w) j= 8

1

r:(C

1

u C

2

)

and (F; w) 6j= D. We may assume that w is a root of F. It is not diÆ
ult to show

that (F; w) j= 8

1

r:C

1

implies that r

F

is transitive. Therefore, from (F; w) j= 8

1

r:C

2

we obtain F j= C

2

. We 
on
lude that F is as required for (i). ❏

We are now in a position to prove the unde
idability result.

Theorem 18 In ALC, the instan
e problem w.r.t. 
on
ept-minimizing 
KBs is un-

de
idable. This even holds in the 
ase of empty TBoxes.

Proof. Take the 
on
ept E from Theorem 15, the 
on
ept C

1

from Lemma 17, and

set C

2

:= E and C := C

1

u C

2

. Then, by Theorem 15 and Lemma 17, the following

is unde
idable: given a 
on
ept D, does there exists a pointed frame (F; w) su
h that

(F; w) j= 8

1

r:C and (F; w) 6j= D. Sin
e we are 
on
erned with validity on frames,

we may w.l.o.g. assume that D does not 
ontain the 
on
ept name A. Therefore,

by Lemma 16, the following is unde
idable: given a 
on
ept D not 
ontaining A,

is a an instan
e of 8

1

r:C u :D w.r.t. Cir


CP

(;; fa : (:8

1

r:C t 8

1+rd(C)

r:A)g; where

CP = (;; fAg; frg; ;). ❏

By the redu
tions given in Se
tion 2, it follows that sats�ability and subsumption

w.r.t. 
on
ept-minimizing 
KBs are unde
idable as well (also in the 
ase of empty

TBoxes).

Minimized vs. Fixed Role Names

Unlike �xed 
on
ept names, �xed role names 
annot be simulated using minimized

role names. This is due to the fa
t that Boolean operators on roles are not avail-

able in standard DLs. Thus, Theorem 18 does not imply unde
idability of reasoning

w.r.t. 
on
ept-�xing 
KBs, in whi
h role names are allowed to be minimized, but only


on
ept names 
an be �xed. In general, we have to leave de
idability of reasoning

w.r.t. 
on
ept-�xing 
KBs as an open problem. However, we show in the following

that reasoning w.r.t. su
h 
KBs is de
idable when TBoxes are empty. Together with

Theorem 18, whi
h also applies to the 
ase of empty TBoxes, we have thus identi�ed

a 
ase where reasoning with minimized role names is de
idable, but reasoning with

�xed role names is not.

Theorem 19 In ALC, satis�ability w.r.t. 
on
ept-�xing 
KBs Cir


CP

(T ;A) is de
id-

able in NExp

NP

if T is empty.

Proof. We establish a bounded model property using a \sele
tive �ltration"-style

argument. To prove Theorem 19, we 
an then pro
eed as in Theorem 6. Details are

omitted.
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Let Cir


CP

(;;A) be a 
on
ept-�xing 
KB with CP = (�;M; F; V ), and let C

0

be a


on
ept that is satis�able w.r.t. Cir


CP

(;;A).

2

Set

n := max(frd(C

0

)g [ frd(C) j C(a) 2 Ag) and m := (jAj+ jC

0

j)

n+1

;

We show that there exists a model J of Cir


CP

(;;A) satisfying C

0

su
h that j�

J

j � m.

Let I be a model of Cir


CP

(;;A) su
h that there exists a d

0

2 C

I

0

. Let ex(C

0

;A) be the

set of 
on
epts of the form 9r:C that o

ur as a (not ne
essarily proper) sub
on
ept in

C

0

or A. For ea
h d 2 �

I

, �x a minimal set D(d) � �

I

su
h that, for every 
on
ept

9r:C 2 ex(C

0

;A), there exists e 2 D(d) su
h that (d; e) 2 r

I

and e 2 C

I

. Clearly,

jD(e)j � jC

0

j+ jAj for ea
h e 2 �

I

. Next, de�ne a set D

0

� �

I

by setting

D

0

:= fd

0

g [ fa

I

j a 2 N

I

o

urs is Ag:

De�ne sets D

i

� �

I

, 1 � i � n, indu
tively by

D

i+1

:= (

[

d2D

i

D(d))

and set �

n

:=

S

0�i�n

D

i

. De�ne an interpretation I

0

with domain �

I

as follows:

� a

I

0

= a

I

, for all obje
t names a;

� for r 2M [ V , (d; e) 2 r

I

0

if d 2 �

n

nD

n

, e 2 D(d), and (d; e) 2 r

I

;

� for A 2M [ V , A

I

0

= A

I

\�

n

;

� for A 2 F , A

I

0

= A

I

.

A straighforward indu
tive argument shows that I

0

is a model of A su
h that d

0

2 C

I

0

0

.

Note that we did not 
hange the interpretation of the A 2 F . Moreover, we have

p

I

0

� p

I

for every p 2M . Together with the fa
t that I

0

is a model of A and I

0

6� I,

we even get p

I

0

= p

I

for every p 2 M . It follows that I

0

is a model for Cir


CP

(;;A)

be
ause J <

CP

I

0

would imply J <

CP

I.

Note that r

I

0

� �

n

� �

n

, for every role r. Now de�ne an interpretation J with

domain �

J

= �

n

by putting

� A

J

= A

I

0

\�

n

, for every 
on
ept name A;

� r

J

= r

I

0

, for every role name r;

� a

J

= a

I

, for every obje
t name a from A.

We still have that J is a model for A satisfying C

0

. Moreover, any interpretation

J

0

<

CP

J satisfying A 
an be easily extended to an interpretation I

00

<

CP

I

0

satisfying

A. Hen
e, no su
h interpretation exists and J is a model for Cir


CP

(;;A). From

j�

n

j � m we derive j�

J

j � m. ❏

2

Note that we 
annot eliminate �xed atomi
 
on
epts from the 
ir
ums
ription pattern be
ause

this would require the introdu
tion of a TBox.
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We leave it as an open problem whether satis�ability w.r.t. 
on
ept-�xing 
KBs is

de
idable in the 
ase of non-empty TBoxes.

6 Con
lusions and Perspe
tives

We have shown that non-monotoni
 extensions of DLs based on 
ir
ums
ription 
an re-

sult in formalisms that are mu
h less restri
ted than existing non-monotoni
 DLs, but

for whi
h reasoning is still de
idable. In parti
ular, the resulting family of DLs allows

to model defeasible inheritan
e without the usual and severe restri
tion to named indi-

viduals. However, we view this paper only as a �rst step towards usable non-monotoni


DLs. In parti
ular, our upper bounds are based on massive non-deterministi
 guess-

ing, and are thus far from being implementable in eÆ
ient systems. Ideally, one would

like to have well-behaved extensions of the tableau algorithms that underly state-of-

the-art DL reasoners [4℄. It seems that existing sequent 
al
uli for (propositional)


ir
ums
ription and minimal entailment [6, 23℄ 
ould provide a good starting point.

Additionally to having a usable implementation, it is desirable to develop a design

methodology for modelling defeasible inheritan
e. In parti
ular, su
h a methodol-

ogy should address the problem of �nding appropriate 
ir
ums
ription patterns. Also

from a theoreti
al perspe
tive, our initial investigation leaves open a number of ex
it-

ing questions. First, it is open whether or not minimizing roles leads to unde
idability

in the presen
e of non-empty TBoxes. Se
ond, our 
urrent te
hniques are limited to

non-monotoni
 extensions of DLs that have the �nite model property, and it would be

desirable to aleviate this limitation. And third, it is interesting whether the observed

impa
t of predi
ate number and arity on 
omputational 
omplexity 
an be observed

in other formalisms su
h as the extension of the two-variable fragment of �rst-order

logi
 with 
ir
ums
ription.
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