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Abstrat

Reent appliations of desription logis (DLs) strongly suggest the integration

of non-monotoni features into DLs, with partiular attention to defeasible inher-

itane. However, the existing non-monotoni extensions of DLs are usually based

on default logi or autoepistemi logi, and have to be seriously restrited in ex-

pressive power to preserve the deidability of reasoning. In partiular, suh DLs

allow the modelling of defeasible inheritane only in a very restrited form, where

non-monotoni reasoning is limited to individuals that are expliitly identi�ed

by onstants in the knowledge base. In this paper, we onsider non-monotoni

extensions of expressive DLs based on irumsription. We prove that reasoning

in suh DLs is deidable even without the usual, strong restritions in expressive

power. We pinpoint the exat omputational omplexity of reasoning as omplete

for NP

NExp

and NExp

NP

, depending on whether or not the number of minimized

and �xed prediates is assumed to be bounded by a onstant. These results as-

sume that only onept names (and no role names) an be minimized and �xed

during minimization. On the other hand, we show that �xing role names during

minimization makes reasoning undeidable.

1 Introdution

Early KR formalisms suh as semanti networks and frames usually inluded a wealth

of features in order to provide as powerful representational apabilities as possible

[27, 22℄. Most notably, suh formalisms admitted a strutured representation of lasses

and objets similar to modern desription logis (DLs), but also mehanisms for de-

feasible inheritane and other features nowadays provided by non-monotoni logis

(NMLs). When the theory of KR was developed further, these all-embraing ap-

proahes were largely given up due to semanti and omputational problems. The

subsequent foussing on more speialized formalisms aused DLs and NMLs to de-

velop into two independent sub�elds of KR. Consequently, modern desription logis

suh as SHIQ fail to inlude any non-monotoni features [15℄.

Sine the birth of DLs as a sub�eld of KR, there has been a ontinuous interest

in the (re-)integration of non-monotoni features into desription logis. Due to the

advent of several new appliation areas, this interest has reently reahed new peaks.
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For example, DLs are nowadays a popular tool for the formalization of biomedial

ontologies suh as GALEN [29℄ and SNOMED [9℄. As argued by Retor et al. in [28,

32℄, suh ontologies have to support defeasible inheritane to represent knowledge

suh as \in humans, the heart is usually loated on the left-hand side of the body; in

humans with situs inversus, the heart is loated on the right-hand side of the body".

Another reent appliation of DLs is their use as an ontology language for the semanti

web [3℄, and the feedbak of DL users from this �eld reveals substantial interest in the

typial nonmonotoni features of objet oriented languages suh as default attributes,

defeasible inheritane, and overriding.

Many di�erent approahes to adding non-monotoni features to DLs have been

proposed, but none of them is fully onvining for modelling defeasible inheritane

[1, 2, 34, 11, 10, 25, 16, 13, 31℄. The main problem is taming the omputational power

that arises when ombining the expressiveness of DLs and NMLs: it is nontrivial to

identify a non-monotoni DL that enjoys the expressive power of modern DLs, admits

non-monotoni reasoning without severe restritions, and is deidable. For example,

the non-monotoni DL proposed in [25℄ inludes a mehanism for default reasoning,

but has to impose severe restritions on DL expressiveness to keep reasoning deidable.

Another approah to non-monotoni DLs onsists in inluding the (auto)epistemi

operator \K" [11, 10℄. However, in all known deidability results onerning suh

DLs, operator K an be used in a non-monotoni way only in queries, but not in

the knowledge base. This is a serious limitation sine it preludes the modelling of

defeasible inheritane. The approahes [1, 2, 34, 16℄ are based on default logi [30℄ and

share a ommon restrition: default rules an be applied to an individual only if it has a

name, that is, it is denoted by an individual onstant ourring in the knowledge base.

Sine the models of DL knowledge bases usually inlude a large number of impliit

(nameless) individuals enfored via existential restritions, the limitation of default

rule appliation to named individuals is highly restritive. Finally, the approahes

desribed in [13, 31℄ aim at extending DLs with non-monotoni rules that, however,

apply only to named individuals.

In view of the omputational problems a�eting non-monotoni DLs based on

default logi or autoepistemi logi, it is surprising that irumsription [20℄ has never

been investigated in the ontext of DLs. After all, irumsription is known to be

slightly less expressive than the other major formalizations of non-monotoniity [5℄. In

this paper, we advoate the use of irumsription to obtain non-monotoni extensions

of expressive DLs that are deidable and impose no serious restritions on expressive

power. In partiular, we show how to obtain a family of DLs that allow to model

defeasible inheritane without the limitation to named individuals.

The entral tool for knowledge representation in our family of non-monotoni

DLs are irumsribed knowledge bases (KBs). Like standard DL knowledge bases,

a KB omprises a TBox for representing terminologial knowledge and an ABox

for representing knowledge about individuals. Additionally, a KB is equipped with

a irumsription pattern that lists prediates (i.e., onept and role names) to be

minimized: in models of the KB, the extension of minimized prediates is required

to be minimal w.r.t. set inlusion. Following MCarthy [21℄, the minimized prediates

will often be \abnormality prediates" identifying instanes that are not typial for
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their lass. Cirumsription patterns an require other prediates to be �xed during

minimization, or allow them to vary freely. Moreover, irumsription patterns allow

to express preferenes between minimized prediates in terms of a partial ordering.

As argued in [2℄, this is of great importane to ensure a smooth interplay between

defeasible inheritane and DL subsumption.

The main ontribution of this paper is a detailed analysis of the omputational

properties of non-monotoni DLs based on irumsription. We show that, in the

expressive DLs ALCIO and ALCQO, satis�ability and subsumption w.r.t. irum-

sribed knowledge bases are deidable if only onept names (and no role names) are

minimized and �xed. More preisely, we prove that satis�ability in both DLs w.r.t.

suh onept-irumsribed knowledge bases is NExp

NP

-omplete. In ontrast, rea-

soning beomes undeidable if role names are allowed to be �xed during minimization.

The undeidability result already applies to the basi propositionally-losed DL ALC,

and even if TBoxes are empty. We also give a �ner-grained analysis of the omplexity

of reasoning w.r.t. onept-irumsribed KBs: when imposing a onstant bound on

the number of minimized and �xed onept names, the omplexity of satis�ability

drops to NP

NExp

-ompleteness. All lower omplexity bounds apply to the desription

logi ALC.

It is interesting to note that our results are somewhat unusual from the perspetive

of NMLs. First, the arity of prediates has an impat on deidability: �xing onept

names (unary prediates) does not impair deidability, whereas �xing a single role

name (binary prediate) leads to a strong undeidability result. Seond, the number

of prediates that are minimized or �xed (bounded vs. unbounded) a�ets the ompu-

tational omplexity of reasoning. Although (as we briey argue) a similar e�et an

be observed in propositional logi with irumsription, this has, to the best of our

knowledge, never been expliitly noted.

2 Desription Logis and Cirumsription

In DLs, onepts are indutively de�ned with the help of a set of onstrutors, starting

with a set N

C

of onept names, a set N

R

of role names, and (possibly) a set N

I

of

individual names (all ountably in�nite). We use the term prediates to refer to

elements of N

C

[ N

R

. The onepts of the expressive DL ALCQIO are formed using

the onstrutors shown in Figure 1. There, the inverse role onstrutor is the only

role onstrutor, whereas the remaining six onstrutors are onept onstrutors.

In Figure 1 and throughout this paper, we use #S to denote the ardinality of a

set S, a and b to denote individual names, r and s to denote roles (i.e., role names

and inverses thereof), A;B to denote onept names, and C;D to denote (possibly

omplex) onepts. As usual, we use > as abbreviation for an arbitrary (but �xed)

propositional tautology, ? for :>, ! and $ for the usual Boolean abbreviations, 9r:C

(existential restrition) for (> 1 r C), and 8r:C (universal restrition) for (6 0 r :C).

In this paper, we will not be onerned with ALCQIO itself, but with several of

its fragments. The basi suh fragment allows only for negation, onjuntion, disjun-

tion, and universal and existential restritions, and is alled ALC. The availability
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Name Syntax Semantis

inverse role r

�

(r

I

)

`

= f(d; e) j (e; d) 2 r

I

g

nominal fag fa

I

g

negation :C �

I

n C

I

onjuntion C uD C

I

\D

I

disjuntion C tD C

I

[D

I

at-least restrition (> n r C) fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng

at-most restrition (6 n r C) fd 2 �

I

j #fe 2 C

I

j (d; e) 2 r

I

g � ng

Figure 1: Syntax and semantis of ALCQIO.

of additional onstrutors is indiated by onatenation of a orresponding letter: Q

stands for number restritions, I stands for inverse roles, and O for nominals. This

explains the name ALCQIO, and also allows us to refer to fragments suh as ALCIO,

ALCQO, and ALCQI.

The semantis of ALCQIO-onepts is de�ned in terms of an interpretation I =

(�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the interpretation

funtion �

I

maps eah onept name A 2 N

C

to a subset A

I

of �

I

, eah role name

r 2 N

R

to a binary relation r

I

on �

I

, and eah individual name a 2 N

I

to an individual

a

I

2 �

I

. The extension of �

I

to inverse roles and arbitrary onepts is indutively

de�ned as shown in the third olumn of Figure 1. An interpretation I is alled a

model of a onept C if C

I

6= ;. If I is a model of C, we also say that C is satis�ed

by I.

A TBox is a �nite set of general onept impliations (GCIs) C v D where C and

D are onepts. As usual, we use C

:

= D as an abbreviation for C v D and D v C.

An ABox is a �nite set of onept assertions C(a) and role assertions r(a; b), where

a; b are individual names, r is a role name, and C is a onept. An interpretation I

satis�es (i) a GCI C v D if C

I

� D

I

, (ii) an assertion C(a) if a

I

2 C

I

, and (iii)

an assertion r(a; b) if (a

I

; b

I

) 2 r

I

. Then, I is a model of a TBox T if it satis�es all

impliations in T , and a model of an ABox A if it satis�es all assertions in A.

Cirumsription with Partial Priority Ordering

Cirumsription is a logial approah suitable for modelling what normally or typi-

ally holds, and thus admits the modeling of defeasible inheritane [21, 18℄. The idea

is to de�ne, in a standard �rst-order language, both domain knowledge and so-alled

abnormality prediates that desribe what does not �t the normality riteria of the ap-

pliation domain. To apture the intuition that abnormality is exeptional, inferene

is not based on the set of all models of the resulting theory as in lassial logi, but

rather restrited to those models where the extension of the abnormality prediates is

minimal. Intuitively, this means that reasoning is done only on models that are \as

normal as possible".

Sine desription logis are fragments of �rst-order logi, irumsription an be
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readily applied. Using ALC syntax, we an assert that mammals normally inhabitate

land, and that whales do not live on land:

Mammal v 9habitat:Land t Ab

Mammal

Whale v Mammal u :9habitat:Land

The upper inlusion states that any mammal not inhabitating land is an abnormal

mammal, thus satisfying the abnormality prediate Ab

Mammal

. When applying irum-

sription to the above TBox, we should thus only onsider models where the extension

of Ab

Mammal

is minimal. However, there is more than one way of de�ning suh preferred

models. The reason is that there are essentially two options to treat the remaining

prediates during minimization of the abnormality prediate: we may either �x their

extensions or let them vary freely. It should not ome as a surprise that this dei-

sion may have a strong impat on the result of reasoning. In general, varying more

prediates means that more subsumptions beome derivable. For example, onsider

the above TBox. Even if all non-minimized prediates are �xed, we get the following

subsumptions:

Whale v Ab

Mammal

Ab

Mammal

:

= Mammalu :9habitat:Land:

(y)

If it is onsidered very unlikely for a mammal not to live on land, then one would

expet that only those mammals do not live on land for whih this was expliitly

stated: whales. Consequently, the following subsumption should be derivable:

Whale

:

= Ab

Mammal

: (z)

The way to ahieve this is to let the role habitat and the onept name Land vary

freely, and to �x only Mammal and Whale. The result is that both (y) and (z) are

derivable.

We an go even further and onsider whales abnormal to suh a degree that we

do not believe they exist unless there is evidene that they do. Then we should,

additionally, let Whale vary freely. The result is that (y) and (z) an still be derived,

and additionally we have Whale

:

= Ab

Mammal

:

= ?. We an then use an ABox to add

evidene that whales exist, e.g. through the assertion Whale(mobydik): As expeted,

the result of this hange is that

Whale

:

= Ab

Mammal

:

= fmobydikg:

Evidene for the existene of another, anonymous whale ould be generated by adding

the ABox assertion Male(mobydik) and the TBox statement

Whale v 9mother:(Whale u :Male)

with mother and Male varying freely. In general, it depends on the appliation whih

ombination of �xed and varying prediates is appropriate. Therefore, the formalisms

proposed in this paper leave the freedom to the user to hoose the prediates that are

minimized, �xed, and varying.
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It has been onviningly argued by Baader and Hollunder in [2℄ that there is an

interplay between subsumption and abnormality prediates that should be addressed

in non-monotoni DLs. Consider, for example, the following TBox:

User v :9hasAessTo:ConfidentialFilet Ab

User

Staff v User

Staff v 9hasAessTo:ConfidentialFilet Ab

Staff

BlaklistedStaff v Staff u :9hasAessTo:ConfidentialFile

To get models that are \as normal as possible", as a �rst attempt we ould

minimize the two abnormality prediates Ab

User

and Ab

Staff

in parallel. Assume

that hasAessTo and ConfidentialFile are varying, and User, Staff, and

BlaklistedStaff are �xed. Then, the result of parallel minimization is that sta�

members may or may not have aess to on�dential �les, with equal preferene. In

the �rst ase, they are abnormal users, and in the seond ase, they are abnormal sta�.

However, one may argue that the �rst option should be preferred: sine Staff v User

(but not the other way round), the normality information for sta� is more spei�

than the normality information for users and should have higher priority.

In the generalization of irumsription used in this paper, the user an speify

priorities between minimized prediates. Normally, these priorities will reet the

subsumption hierarhy (as omputed w.r.t. the lass of all models). Sine the sub-

sumption hierarhy is a partial order, the priorities between minimized prediates are

assumed to form a partial order, too. This is similar to partially ordered priorities on

default rules as proposed by Brewka [7℄, and more general than standard prioritized

irumsription whih assumes a total ordering [21, 17℄. More information an be

found in [2℄.

To de�ne DLs with irumsription, we start by introduing irumsription pat-

ters. Suh a pattern desribes how individual prediates are treated during minimiza-

tion.

De�nition 1 (Cirumsription pattern, <

CP

) A irumsription pattern is a tu-

ple CP = (�;M; F; V ) where � is a strit partial order over M , and M , F , and V

are subsets of N

C

[ N

R

, the minimized, �xed, and varying prediates, respetively.

By �, we denote the reexive losure of �. De�ne a preferene relation <

CP

on

interpretations by setting I <

CP

J i� the following onditions hold:

1. �

I

= �

J

and, for all a 2 N

I

, a

I

= a

J

,

2. for all p 2 F , p

I

= p

J

,

3. for all p 2M , if p

I

6� p

J

then there exists q 2M , q � p, suh that q

I

� q

J

,

4. there exists p 2 M suh that p

I

� p

J

and for all q 2 M suh that q � p,

q

I

= q

J

.

When M [ F � N

C

(i.e., the minimized and �xed prediates are all onepts) we all

(�;M; F; V ) a onept irumsription pattern. 4
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We use the term onept irumsription if only onept irumsription patterns

are admitted. Based on irumsription patterns, we an de�ne irumsribed DL

knowledge bases and their models.

De�nition 2 (Cirumsribed KB) A irumsribed knowledge base (KB) is an

expression Cir

CP

(T ;A), where T is a TBox, A an ABox, and CP = (�;M; F; V ) a

irumsription pattern suh that M;F; V partition the prediates used in T and A.

An interpretation I is a model of Cir

CP

(T ;A) if it is a model of T and A and there

exists no model I

0

of T and A suh that I

0

<

CP

I. 4

A KB Cir

CP

(T ;A) is alled a onept-irumsribed knowledge base (KB) if CP is a

onept irumsription pattern. The main reasoning tasks of desription logis are

de�ned with respet to irumsribed knowledge bases in the expeted way.

De�nition 3 (Reasoning problems)

� A onept C is satis�able w.r.t. a KB Cir

CP

(T ;A) if some model I of

Cir

CP

(T ;A) satis�es C

I

6= ;.

� A onept C is subsumed by a onept D w.r.t. a KB Cir

CP

(T ;A) (written

Cir

CP

(T ;A) j= C v D) if C

I

� D

I

for all models I of Cir

CP

(T ;A).

� An individual name a is an instane of a onept C w.r.t. a KB Cir

CP

(T ;A)

(written Cir

CP

(T ;A) j= C(a)) if a

I

2 C

I

for all models I of Cir

CP

(T ;A).

4

These reasoning problems an be polynomially redued to one another: �rst, C is

satis�able w.r.t. Cir

CP

(T ;A) i� Cir

CP

(T ;A) 6j= C v ?, and Cir

CP

(T ;A) j= C v D

i� C u :D is unsatis�able w.r.t. Cir

CP

(T ;A). And seond, C is satis�able w.r.t.

Cir

CP

(T ;A) i� Cir

CP

(T ;A) 6j= :C(a), where a is an individual name not appearing

in T and A; onversely, we have Cir

CP

(T ;A) j= C(a) i� Au:C is unsatis�able w.r.t.

Cir

CP

0

(T ;A [ fA(a)g), where A is a onept name not ourring in T and A, and

CP

0

is obtained from CP by adding A to M (and leaving � as it is). In this paper, we

use satis�ability w.r.t. KBs as the basi reasoning problem.

Note that partially ordered irumsription beomes standard parallel irumsrip-

tion if the empty relation is used for �. Tehnially, partially ordered irumsription

lies in between prioritized irumsription [21, 17℄ and nested irumsription [19℄.

It extends prioritized irumsription by admitting partial orders and, ompared to

nested irumsription, has the advantage of being tehnially simpler while still of-

fering suÆient expressive power to address the interation between subsumption and

irumsription in DLs.

It is folklore in irumsription that there is a lose onnetion between mini-

mized onepts and �xed onepts: using TBoxes, the latter an be simulated by

the former. Let C

0

be a onept and Cir

CP

(T ;A) a onept-irumsribed KB with

CP = (�;M; F; V ) and F = fA

1

; : : : ; A

k

g. De�ne a new pattern CP

0

= (�;M

0

; ;; V )

with

7



� M

0

= M [ fA

1

; : : : ; A

k

; A

0

1

; : : : ; A

0

k

g, A

0

1

; : : : ; A

0

k

onept names not ourring in

C

0

, M , F , T , and A;

� T

0

= T [ fA

0

i

:

= :A

i

j 1 � i � kg.

It is not diÆult to see that C

0

is satis�able w.r.t. Cir

CP

(T ;A) i� it is satis�able

w.r.t. Cir

CP

0

(T

0

;A). Thus, we get the following.

Lemma 4 Satis�ability w.r.t. onept-irumsribed KBs an be polynomially redued

to satis�ability w.r.t. onept-irumsribed KBs that have no �xed prediates.

Also in the ase of general KBs, �xed onept names an be simulated by minimized

onept names. However, suh a simulation annot be done for role names sine

Boolean operators on roles are not avaliable in standard DLs suh as ALCQIO.

3 Upper Bounds

The main ontribution of this paper is to show that there are many desription logis

with irumsription that are deidable, and to perform a detailed analysis of the

omputational omplexity of suh logis. In partiular, we will show that ALCIO

and ALCQO with onept irumsription are deidable. We prepare the deidability

proof for these logis by showing that if a onept is satis�able w.r.t. a onept-

irumsribed KB, then it is satis�able in a model of bounded size. We use jCj to

denote the length of the onept C, i.e., the number of symbols needed to write C.

The size jT j of a TBox T is

P

CvD2T

jCj+ jDj, and the size jAj of an ABox A is the

sum of the sizes of all assertions in A, where the size of eah role assertion is 1 and

the size of onept assertions C(a) is jCj.

Lemma 5 Let C

0

be a onept, Cir

CP

(T ;A) a onept-irumsribed KB, and n :=

jC

0

j+ jT j+ jAj. If C

0

is satis�able w.r.t. Cir

CP

(T ;A), then the following holds:

(i) If T , A and C

0

are formulated in ALCIO, then C

0

is satis�ed in a model I of

Cir

CP

(T ;A) with #�

I

� 2

2n

.

(ii) If T , A and C

0

are formulated in ALCQO and m is the maximal parameter

ouring in a number restrition in T , A, or C

0

, then C

0

is satis�ed in a model

I of Cir

CP

(T ;A) with #�

I

� 2

2n

� (m + 1)� n.

Proof. Let CP, T , A, and C

0

be as in the lemma. We may assume that A = ; as every

assertion C(a) an be expressed as an impliation fag v C, and every assertion r(a; b)

an be expressed as fag v 9r:fbg. Denote by l(C;T ) the smallest set of onepts

that ontains all subonepts of C, all subonepts of onepts appearing in T , and

is losed under single negations.

Let I be a ommon model of C

0

and Cir

CP

(T ;A), and let d

0

2 C

I

0

. De�ne an

equivalene relation \�" on �

I

by setting d � d

0

i�

fC 2 l(C

0

;T ) j d 2 C

I

g = fC 2 l(C

0

;T ) j d

0

2 C

I

g:

8



We use [d℄ to denote the equivalene lass of d 2 �

I

w.r.t. the \�" relation. Pik

from eah equivalene lass [d℄ exatly one member and denote the resulting subset

of �

I

by �

0

.

We �rst prove Point (i). Thus, assume that T and C

0

are formulated in ALCIO.

We de�ne a new interpretation J as follows:

�

J

:= �

0

A

J

:= fd 2 �

0

j d 2 A

I

g

r

J

:= f(d

1

; d

2

) 2 �

0

��

0

j 9d

0

1

2 [d

1

℄; d

0

2

2 [d

2

℄ : (d

0

1

; d

0

2

) 2 r

I

g

a

J

:= d 2 �

0

if a

I

2 [d℄:

The following laim is easily proved using indution on the struture of C.

Claim: For all C 2 l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

i� d

0

2 C

J

for the

element d

0

2 [d℄ of �

J

.

Thus, J is a model of T satisfying C

0

. To show that J is a model of Cir

CP

(T ;A), it

thus remains to show that there is no model J

0

of T with J

0

<

CP

J . Assume to the

ontrary that there is suh a J

0

. We de�ne an interpretation I

0

as follows:

�

I

0

:= �

I

A

I

0

:=

[

d2A

J

0

[d℄

r

I

0

:=

[

(d

1

;d

2

)2r

J

0

[d

1

℄� [d

2

℄

a

I

0

:= a

I

:

It is a matter of routine to show the following:

Claim: For all onepts C 2 l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

0

i� d

0

2 C

J

0

for the element d

0

2 [d℄ from �

J

.

It follows that I

0

is a model of T . Observe that A

I

ÆA

I

0

i� A

J

ÆA

J

0

for eah onept

name A and Æ 2 f�;�g. Therefore and sine CP is a onept irumsription pattern,

I

0

<

CP

I follows from J

0

<

CP

J . We have derived a ontradition and onlude that

J is a model of Cir

CP

(T ;A). Thus we are done sine the size of J is bounded by 2

2n

.

Now for Point (ii). Pik, for eah d 2 �

0

and onept (> n r C) 2 l(C

0

;T ) suh

that d 2 (> n r C)

I

, n elements from fd

0

j d

0

2 C

I

; (d; d

0

) 2 r

I

g. Also pik, for

eah onept (6 n r C) 2 l(C

0

;T ) suh that d 2 (:(6 n r C))

I

, n+ 1 elements from

fd

0

j d

0

2 C

I

; (d; d

0

) 2 r

I

g. Denote by �

00

the olletion of the elements piked. Take

for eah d 2 �

00

n�

0

an element d

s

2 �

0

suh that d � d

s

and de�ne an interpretation

J by

�

J

:= �

0

[�

00

A

J

:= fd 2 �

0

[�

00

j d 2 A

I

g

r

J

:= f(d

1

; d

2

) 2 �

0

� (�

0

[�

00

) j (d

1

; d

2

) 2 r

I

g

[f(d

1

; d

2

) 2 (�

00

n�

0

)� (�

0

[�

00

) j (d

s

1

; d

2

) 2 r

I

g

a

J

:= d if a

I

2 [d℄:
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The following laim is easily proved.

Claim: For all C 2 l(C

0

;T ), we have the following:

(i) for all d; d

0

2 �

J

, if d � d

0

, then d 2 C

J

i� d

0

2 C

J

;

(ii) for all d 2 �

I

, we have d 2 C

I

i� d

0

2 C

J

for an element d

0

2 [d℄ of �

J

.

Thus, J is a model of T satisfying C

0

. To show that J is a model of Cir

CP

(T ;A), it

thus remains to show that there is no model J

0

of T with J

0

<

CP

J . Assume to the

ontrary that there is suh a J

0

. We de�ne an interpretation I

0

. To this end, take for

eah d 2 �

I

n�

J

the d

p

2 �

0

suh that d � d

p

. Now de�ne I

0

as follows

�

I

0

:= �

I

A

I

0

:= A

J

0

[ fd 2 �

I

n�

J

j d

p

2 A

J

0

g

r

I

0

:= r

J

0

[ f(d

1

; d

2

) 2 (�

I

n�

J

)��

I

j (d

p

1

; d

2

) 2 r

J

0

g

a

I

0

:= a

I

:

Again, it is a matter of routine to show:

Claim: For all onepts C 2 l(C

0

;T ) and all d 2 �

I

, we have d 2 C

I

0

\ �

J

i�

d 2 C

J

0

and d 2 C

I

0

\ (�

I

n�

J

) i� d

p

2 C

J

0

for the element d

p

2 [d℄ from �

0

.

It follows that I

0

is a model for T . Observe that A

I

ÆA

I

0

i� A

J

ÆA

J

0

for eah onept

name A and Æ 2 f�;�g. Therefore and sine CP is a onept irumsription pattern,

I

0

<

CP

I follows from J

0

<

CP

J . We have derived a ontradition and onlude that

J is a model of Cir

CP

(T ;A). Thus we are done sine the size of J is learly bounded

by 2

2n

� (m+ 1)� n. ❏

It is interesting to note that the proof of Lemma 5 does not go through if role names

are minmized or �xed.

Using the bounded model property just established, we an now prove deidability

of reasoning in ALCIO and ALCQO with onept irumsription. More preisely,

Lemma 5 suggests a non-deterministi deision proedure for satis�ability w.r.t. on-

ept irumsription patterns: simply guess an interpretation of bounded size and

then hek whether it is a model. It turns out that this proedure shows ontainment

of satis�ability in the omplexity lass NExp

NP

, whih ontains those problems that

an be solved by a non-deterministi exponentially time-bounded Turing mahine that

has aess to an NP orale. It is known that NExp � NExp

NP

� 2-Exp.

Theorem 6 In ALCIO and ALCQO, it is in NExp

NP

to deide whether a onept

is satis�able w.r.t. a onept-irumsribed KB Cir

CP

(T ;A).

Proof. It is not hard to see that there exists an NP algorithm that takes as input

a KB Cir

CP

(T ;A) and an interpretation I, and heks whether I is not a model of

Cir

CP

(T ;A): the algorithm �rst veri�es in polynomial time whether I is a model of

T and A, answering \yes" if this is not the ase. Otherwise, the algorithm guesses an

interpretation J that has the same domain as I and interpretes all objet names in

the same way, and then heks whether (i) J is a model of T and A, and (ii) J <

CP

I.
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It answers \yes" if both of the heks sueed, and \no" otherwise. Clearly, heking

whether J <

CP

I an be done in time polynomial w.r.t. the size of J and I.

ThisNP algorithm may now be used as an orale in a NExp-algorithm for deiding

satis�ability of a onept C

0

w.r.t. a KB Cir

CP

(T ;A): by Lemma 5, it suÆes to

guess an interpretation of size 2

4k

with k = jC

0

j+ jT j+ jAj,

1

and then use the NP

algorithm to hek whether I is a model of Cir

CP

(T ;A). This proves that onept

satis�ability is in NExp

NP

. ❏

By the redutions given in Setion 2, Theorem 6 yields o-NExp

NP

upper bounds

for subsumption and the instane problem. We will show in Setion 4 that these up-

per bounds are tight. However, sine NExp

NP

is a relatively large omplexity lass,

it is a natural question whether we an impose restritions on onept irumsrip-

tion suh that reasoning beomes simpler. In the following, we identify suh a ase

by onsidering KBs in whih the number of minimized and �xed onept names is

bounded by some onstant. In this ase, the omplexity of satis�ability w.r.t. onept-

irumsribed KBs drops to NP

NExp

. For readers uninitiated to orale omplexity

lasses, we note that NExp � NP

NExp

� NExp

NP

� 2-Exp, and that NP

NExp

is

believed to be muh less powerful than NExp

NP

, see for example [13℄.

To prove the NP

NExp

upper bound, we �rst introdue ounting formulas as a

ommon generalization of TBoxes and ABoxes.

De�nition 7 (Counting Formula) A ounting formula � is a Boolean ombination

of GCIs, ABox assertions C(a), and ardinality assertions

(C = n) and (C � n);

where C is a onept and n a non-negative integer. We use ^, _, : and ! to denote

the Boolean operators of ounting formulas. An interpretation I satis�es a ardinality

assertion (C = n) if #C

I

= n, and (C < n) if #C

I

< n. The satisfation relation

I j= � between models I and ounting formulas � is de�ned in the obvious way. 4

In the following, we assume that the integers ourring in ardinality assertions are

oded in binary. The NP

NExp

algorithm to be devised will use an algorithm for

satis�ability of (non-irumsribed) ounting formulas as an orale. Therefore, we

should �rst determine the omputational omplexity of the latter. It follows from [35℄

that, in ALC, satis�ability of ounting formulas is NExp-hard. A mathing upper

bound for the DLs ALCIO and ALCQO is obtained from the fats that (i) there is a

polynomial translation of ounting formulas formulated in these languages into C2, the

two-variable fragment of �rst-order logi extended with ounting quanti�ers [14, 24℄,

and (ii) satis�ability in C2 is in NExp even if the numbers in ounting quanti�ers are

oded in binary [26℄.

Theorem 8 (Tobies, Pratt) In ALC, ALCIO and ALCQO, satis�ability of ount-

ing formulas is NExp-omplete even if numbers in number restritions are oded in

binary.

1

The bound 2

4k

learly dominates the two bounds given in Parts (i) and (ii) of Lemma 5.
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We now establish the improved upper bound.

Theorem 9 Let n be a onstant. In ALCIO and ALCQO, it is in NP

NExp

to deide

satis�ability w.r.t. onept-irumsribed KBs Cir

CP

(T ;A), where CP = (�;M; F; V )

is suh that jM j � n and jF j � n.

Proof. Assume that we want to deide satis�ability of the onept C

0

w.r.t. the KB

Cir

CP

(T ;A), where CP = (�;M; F; V ) with jM j � n and jF j � n. By Lemma 4,

we may assume that F = ; (we may have to inrease the onstant n appropriately).

We may assume w.l.o.g. that the ardinality of M is exatly n. Thus, let M =

fA

0

; : : : ; A

n

g. By Lemma 5, C

0

is satis�able w.r.t. Cir

CP

(T ;A) i� there exists a

model of C

0

and Cir

CP

(T ;A) of size 2

4k

, with k = jC

0

j+ jT j+ jAj. Consider, for all

S �M , the onept

C

S

:= u

A2S

A u u

A2fA

1

;:::;A

n

gnS

:A:

As n is �xed, the number 2

n

of suh onepts is �xed as well. Clearly, the sets C

I

S

,

S � M , form a partition of the domain �

I

of any model I. Introdue, for eah

onept name B and role name r in T [ A, a fresh onept name B

0

and a fresh role

name r

0

, respetively. For a onept C, denote by C

0

the result of replaing in C eah

onept name B and role name r with B

0

and r

0

, respetively. The primed versions A

0

and T

0

of A and T are de�ned analogously. Denote by N the set of individual names

in T [ A [ fC

0

g.

The NExp-orale we are going to use in our algorithm heks whether a ounting

formula � is satis�able or not. Now, the NP

NExp

-algorithm is as follows (we use

C � D as an abbreviation for the ounting formula (C v D) ^ :(D v C)):

1. Guess

� a sequene (n

S

j S �M) of numbers n

S

� 2

4k

oded in binary;

� for eah individual name a 2 N , exatly one set S

a

�M ;

� a subset E of N �N .

2. By alling the orale, hek whether the ounting formula �

1

is satis�able, where

�

1

is the onjuntion over

� T [A [ f:(C

0

= 0)g;

� (C

S

= n

S

), for all S �M ;

� C

S

a

(a), for eah a 2 N ;

� f(fag v fbg) j (a; b) 2 Eg [ f:(fag v fbg) j (a; b) 2 N �Eg.

3. By alling the orale, hek whether the ounting formula �

2

is satis�able, where

�

2

is the onjuntion over

� T

0

[A

0

;

� (C

S

= n

S

), for all S �M (note that we use the unprimed versions);

� C

S

a

(a), for eah individual name a 2 N (we use the unprimed versions);
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� f(fag v fbg) j (a; b) 2 Eg [ f:(fag v fbg) j (a; b) 2 N �Eg;

� for all A 2M ,

:(A

0

v A) !

_

B2M;B�A

(B

0

� B);

� and, �nally,

_

A2M

((A

0

� A) ^

^

B2M;B�A

(B = B

0

)):

4. The algorithm states that C

0

is satis�able in a model of Cir

CP

(T ;A) if, and

only if, �

1

is satis�able and �

2

is not satis�able.

Using the ondition that n is �xed, is is lear that this is a NP

NExp

-algorithm. It

remains to show orretness and ompleteness.

Suppose that there exists a model of Cir

CP

(T ;A) satisfying C

0

. Then there is

suh a model I of size bounded by 2

4k

. Let the algorithm guess

� the numbers n

S

= jC

I

S

j, S �M ,

� the sets S

a

suh that a

I

2 C

I

S

a

,

� the set E = f(a; b); (b; a) j a

I

= b

I

; a; b 2 Ng.

Clearly, �

1

is satis�ed in I. It remains to show that �

2

is unsatis�able. But suppose

there exists a model J satisfying �

2

. By the onjunts under Item 2, 3, and 4 of the

de�nitions of �

1

and �

2

, we may assume that

� �

I

= �

J

;

� A

I

= A

J

for all A 2M ;

� a

I

= a

J

for all individual names a.

Moreover, as no unprimed role names our in �

2

and the only unprimed onept

names in �

2

are those in M , we may assume that the interpretation of all unprimed

onept and role names in I and J oinide. Thus, J is a model of Cir

CP

(T ;A)

satisfying C

0

. But now de�ne a model J

0

with domain �

J

by setting

� a

J

0

= a

J

, for all individual names a;

� r

J

0

= (r

0

)

J

, for all role names r;

� A

J

0

= (A

0

)

J

, for all onept names A.

Then, by the onjunt under Item 1 of the de�nition of �

2

, J

0

is a model for A[T . By

Items 5 and 6 of the de�nition of �

2

, J

0

<

CP

J , and we have derived a ontradition.

Conversely, suppose the algorithm says that there exists a model of Cir

CP

(T ;A)

satisfying C

0

. Then take a model I for �

1

. By the onjunt under Item 1 of �

1

, I is

a model for T [ A satisfying C

0

. It follows from the unsatis�ability of �

2

that I is a

model for Cir

CP

(T ;A). ❏
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As an immediate orollary, we obtain o-NP

NExp

upper bounds for subsumption and

the instane problem. A similar drop of omplexity ours in propositional logi,

where satis�ability w.r.t. irumsribed theories is omplete for NP

NP

and it is not

diÆult to see that bounding the minimized and �xed prediates allows to �nd a

P

NP

algorithm. To the best of our knowledge, this has never been expliitly observed

before.

4 Lower Bounds

We show that the upper bounds given in Setion 3 are tight. As usual, the lower

bounds are established by redution of a suitable problem that is omplete for the

omplexity lass under onsideration. Thus, we are given an input x of the hosen

problem, onstrut a KB and a onept from x, and show that the onept is sat-

is�able w.r.t. the KB i� x is a yes-instane of the problem. To ahieve a gentle

presentation of the redutions, it is onvenient to split up the onstruted KB into

independent parts. We �rst establish a general lemma failitating suh a splitting. A

onept C is simultaneously satis�able w.r.t. KBs Cir

CP

1

(T

1

;A

1

); : : : ;Cir

CP

k

(T

k

;A

k

)

if there exists an interpretation I that is a model of all the KBs and satis�es C

I

6= ;.

The following lemma says that simultaneous satis�ability oinides with separate sat-

is�ability if there are no shared role names in the two KBs.

Lemma 10 Let Cir

CP

1

(T

1

;A

1

); : : :Cir

CP

k

(T

k

;A

k

) be onept-irumsribed KBs

formulated in ALC suh that Cir

CP

i

(T

i

;A

i

) and Cir

CP

j

(T

j

;A

j

) have no shared

role names, for all 1 � i < j � k. Then, simultaneous satis�ability w.r.t.

Cir

CP

1

(T

1

;A

1

); : : :Cir

CP

k

(T

k

;A

k

), an be polynomially redued to satis�ability w.r.t. a

single onept-irumsribed KB Cir

CP

(T ;A) suh that the ardinality of eah ompo-

nent of CP is the sum of ardinalities of the orresponding omponents of CP

1

; : : : ;CP

k

.

Proof. We only give a proof for the ase k = 2. A generalization is straightforward.

Let C be an ALC onept and let Cir

CP

1

(T

1

;A

1

), Cir

CP

2

(T

2

;A

2

) be two onept-

irumsribed KBs formulated in ALC that have no shared role names. Moreover, let

A

0

; : : : ; A

k�1

be the onept names used in both KBs, R the role names used in the

two KBs, and CP

i

= (�

i

;M

i

; F

i

; V

i

) for i 2 f1; 2g. We obtain a new TBox T

0

2

from

T

2

by replaing eah onept name A

i

, i < k, with a new onept name A

0

i

. Let A

0

2

be

obtained from A

2

and CP

0

2

= (�

0

2

;M

0

2

; F

0

2

; V

0

2

) from CP

2

in an analogous way. De�ne

a TBox T

�

as follows, where P is a new onept name:

A

i

u :A

0

i

v P for all i < k

:A

i

uA

0

i

v P for all i < k

P v 8r:P for all r 2 R

9r:P v P for all r 2 R
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Now set:

T := T

1

[ T

0

2

[ T

�

A := A

1

[A

0

2

� := �

1

[ �

0

2

M := M

1

[M

0

2

F := F

1

[ F

0

2

V := V

1

[ V

0

2

CP := (�;M; F; V )

It remains to show the following:

Claim. C is simultaneously satis�able w.r.t. Cir

CP

1

(T

1

;A

1

) and Cir

CP

2

(T

2

;A

2

) i�

C u :P is satis�able w.r.t. Cir

CP

(T ;A).

\if". Assume that C u :P is satis�able w.r.t. Cir

CP

(T ;A), and let I be a model

witnessing this. We may w.l.o.g. assume that I is onneted. By onstrution of

Cir

CP

(T ;A), I is a model of C, T

1

, and A

1

. To show that C is satis�able w.r.t.

Cir

CP

1

(T

1

;A

1

), we prove that I is a model of Cir

CP

1

(T

1

;A

1

). Assume to the ontrary

that this is not the ase. Then there exists a model J of T

1

andA

1

suh that J <

CP

1

I.

De�ne a model J

0

as follows:

� �

J

0

= �

J

;

� all prediates used in T

1

and A

1

are interpreted as in J ;

� all prediates used in T

0

2

and A

0

2

are interpreted as in I.

� P

J

:=

(

�

I

if ((A

i

u :A

0

i

) t (:A

i

uA

0

i

))

J

6= ; for some i < k

; otherwise.

It is readily heked that J

0

is a model of T and A, and that J

0

<

CP

I. Thus, we

have derived a ontradition to the fat that I is a model of Cir

CP

(T ;A).

Sine I is onneted and satis�es :P and T

�

, we have that A

I

i

= (A

0

i

)

I

for all

i < k. Therefore, I is also a model of T

2

and A

2

. It remains to be shown that I is a

model of Cir

CP

2

(T

2

;A

2

), whih an be done analogously to the ase of Cir

CP

1

(T

1

;A

1

).

\only if". Assume that C is simultaneously satis�able w.r.t. Cir

CP

1

(T

1

;A

1

) and

Cir

CP

2

(T

2

;A

2

). Then there exists a model I of C that is a model of Cir

CP

1

(T

1

;A

1

)

and Cir

CP

2

(T

2

;A

2

). We modify I to a new model I

0

by setting

� (A

0

i

)

I

0

:= A

I

i

for all i < k;

� P

I

0

:= ;.

It should be lear that I

0

is a model of C u:P , T , and A. It remains to show that I

0

is also model of Cir

CP

(T ;A). To do this, we �rst show the following:

(a) I

0

is a model of Cir

CP

1

(T

1

;A

1

). This is the ase sine any model J of T

1

and

A

1

with J <

CP

1

I

0

satis�es J <

CP

1

I. Thus, the existene of suh a model

ontradits the fat that I is a model of Cir

CP

1

(T

1

;A

1

).
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(b) I

0

is a model of Cir

CP

0

2

(T

0

2

;A

0

2

). Assume to the ontrary that there is a model

J of T

0

2

and A

0

2

with J <

CP

0

2

I

0

. Convert J into an interpretation J

�

by

setting A

J

�

i

:= (A

0

i

)

J

for all i < k. Then, J

�

is a model of T

2

and A

2

and

satis�es J

�

<

CP

2

I. This is a ontradition to the fat that I is a model of

Cir

CP

2

(T

2

;A

2

).

Now, assume to the ontrary of what remains to be shown that there is a model J

0

of T and A with J

0

<

CP

I

0

. By de�nition of CP, J

0

<

CP

I

0

implies that we have

J

0

<

CP

1

I

0

or J

0

<

CP

0

2

I

0

. Sine J

0

learly satis�es T

1

, A

1

, T

0

2

, and A

0

2

, we obtain a

ontradition to (a) and (b). ❏

We start our study of lower omplexity bounds by proving a mathing lower bound for

Theorem 6: we show that, in ALC, satis�ability w.r.t. onept-irumsribed KBs is

NExp

NP

-hard. Therefore, satis�ability w.r.t. onept-irumsribed KBs is NExp

NP

-

omplete in ALC, ALCIO, and ALCQO. The proof is by redution of a suint

version of the problem o-CERT3COL [12℄. Let us �rst introdue the regular (non-

suint) version of this problem:

Instane of size n: an undireted graph G on the verties f0; 1; : : : ; n� 1g suh that

every edge is labelled with a disjuntion of two literals over the Boolean variables

fV

i;j

j i; j < ng.

Yes-Instane of size n: an instane G of size n suh that, for some truth value assign-

ment t to the Boolean variables, the graph t(G) obtained from G by inluding only

those edges whose label evaluates to true under t is not 3-olorable.

As shown in [33℄, o-CERT3COL is omplete forNP

NP

. To obtain a problem omplete

for NExp

NP

, Eiter et al. use the omplexity upgrade tehnique: by enoding the input

in a suint form using Boolean iruits, the omplexity is raised by one exponential to

NExp

NP

[12℄. More preisely, the suint version o-CERT3COL

S

of o-CERT3COL

is obtained by representing the input graph G with nodes f0; : : : ; 2

n

� 1g as 4n + 3

Boolean iruits with 2n inputs (and one output) eah. The Boolean iruits are

named 

E

, 

(1)

S

, 

(2)

S

, and 

(i)

j

, with i 2 f1; 2; 3; 4g and j < n. For all iruits, the

2n inputs are the bits of the binary representation of two nodes of the graph. The

purpose of the iruits is as follows:

� iruit 

E

outputs 1 if there is an edge between the two input nodes, and 0

otherwise;

� if there is an edge between the input nodes, iruit 

(1)

S

outputs 1 if the �rst

literal in the disjuntion labelling this edge is positive, and 0 otherwise; the

iruit 

(2)

S

does the same for the seond literal;

� if there is an edge between the input nodes, the iruits 

(i)

j

ompute the labelling

V

k

1

;k

2

_ V

k

3

;k

4

of this edge between the input nodes by generating the numbers

k

1

; : : : ; k

4

: the iruit 

(i)

j

outputs the j-th bit of k

i

.
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Now for the redution of o-CERT3COL

S

to satis�ability of onept-irumsribed

KBs. Let

G = (n; 

E

; 

(1)

S

; 

(2)

S

; f

(i)

j

g

i2f1;::;4g;j<n

)

be the (suint representation of the) input graph with 2

n

nodes. We will onstrut

two TBoxes T

G

and T

0

G

, irumsription patterns CP and CP

0

, and a onept C

G

suh that C

G

is simultaneously satis�able w.r.t. Cir

CP

(T

G

; ;) and Cir

CP

0

(T

0

G

; ;) i�

G is a yes-instane of o-CERT3COL

S

. By Lemma 10, we then obtain a redution

to (non-simultaneous) satis�ability w.r.t. onept-irumsribed KBs. Intuitively,

the purpose of the �rst TBox T

G

is to �x a truth assignment t for the variables

fV

i;j

j i; j < ng, and to onstrut (an isomorphi image of) the graph t(G) obtained

from G by inluding only those edges whose label evaluates to true under t. Then,

the purpose of T

0

G

is to make sure that t(G) is not 3-olorable.

When formulating the redution TBoxes, we use several binary ounters for ount-

ing modulo 2

n

(the number of nodes in the input graph). The main ounters X and

Y use onept names X

0

; : : : ;X

n�1

and Y

0

; : : : ; Y

n�1

as their bits, respetively. Ad-

ditionally, we introdue onept names K

(i)

0

; : : : ;K

(i)

n�1

, i 2 f1; 2; 3; 4g that binarily

enode numbers from the range 0; : : : ; 2

n

� 1, but are never inremented as a ounter.

The main part of the TBox T

G

an be found in Figure 2, where the following abbrevia-

tions are used: �rst, 8r:(K

(i)

= X) is a onept expressing that, for all its instanes x,

the values of X

0

; : : : ;X

n�1

at all r-suessors agree with the values of K

(i)

0

; : : : ;K

(i)

n�1

at x. And seond, 8r:(X++) is an abbreviation for the well-known onept stating

that the value of the ounter X

0

; : : : ;X

n�1

is inremented when going to r-suessors:

u

k=0::n�1

�

u

j=0::k�1

X

j

�

!

�

(X

k

! 8r::X

k

) u (:X

k

! 8r:X

k

)

�

u

k=0::n�1

�

t

j=0::k�1

:X

j

�

!

�

(X

k

! 8r:X

k

) u (:X

k

! 8r::X

k

)

�

The intuitions of T

G

are as follows: Lines (1) to (3) ensure that, for eah possible

value of the ounters X and Y , there is at least one domain element in Val

I

with this

ounter value. We will minimize Val to ensure that there is exatly one domain element

in Val

I

for eah possible value i of X and j of Y . Intuitively, these domain elements

are used to store informaion about the variables V

ij

and the (potential) edges (i; j).

Conerning the variables, eah element of Val

I

with X = i and Y = j orresponds to

the variable V

i;j

of o-3CERTCOL

S

and determines a truth value for this variable via

the onept name Tr. Thus, the elements of Val

I

jointly desribe a truth assignment

for the variables of o-3CERTCOL

S

. Line (4) introdues Edge as another name for

Val. We do this to distinguish the use of the elements of Val as variables and as

edges. Intuitively, an element of d 2 Edge

I

with X = i and Y = j orresponds to the

(potential) edge between the nodes i and j To explain this more properly, we must

�rst disuss the part of T

G

that is missing in Figure 2.

It is easily seen that eah Boolean iruit  with 2n inputs an be onverted into a

TBox T



in the following sense: if the output of  upon input b

0

; : : : ; b

2n�1

is b, then,

for all models I of T



and all domain elements x 2 �

I

suh that the truth value of the

onept names X

0

; : : : ;X

n�1

; Y

0

; : : : ; Y

n�1

at x is desribed by b

0

; : : : ; b

n�1

, the truth

17



> v 9aux:Val (1)

Val v 9nextx:> u 8nextx:Val u 8nextx:(X++) u 8nextx:(Y=Y ) (2)

Val v 9nexty:> u 8nexty:Val u 8nexty:(Y++) u 8nexty:(X=X) (3)

Edge

:

= Val (4)

Edge v 9var1:> u 8var1:Val u 8var1:(K

(1)

=X) u 8var1:(K

(2)

=Y ) (5)

Edge v 9var2:> u 8var2:Val u 8var2:(K

(3)

=X) u 8var2:(K

(4)

=Y ) (6)

Edge v S

1

! (Tr

1

$ 8var1:Tr) (7)

Edge v :S

1

! (:Tr

1

$ 8var1:Tr) (8)

Edge v S

2

! (Tr

2

$ 8var2:Tr) (9)

Edge v :S

2

! (:Tr

2

$ 8var1:Tr) (10)

Edge v Elim$ (:E t :(Tr

1

t Tr

2

)) (11)

Figure 2: The TBox T

G

(partly).

value of some onept name Out at x is desribed by b. By introduing one auxiliary

onept name for every inner gate of , the translation an be done suh that the size

of T



is linear in the size of . Now, the part of T

G

not shown in Figure 2 is obtained by

onverting the Boolean iruits desribing the graph G into a TBox in the desribed

way. More preisely, this is done suh that the following onept names are used as

output:

� the translation of 

E

uses the onept name E as output;

� the translation of 

(i)

S

uses the onept name S

i

as output, for i 2 f1; 2g;

� the translation of 

(i)

j

uses the onept name K

(i)

j

as output, for i 2 f1; : : : ; 4g

and j < n.

Note that the evaluation of Boolean iruits takes plae loally at every domain ele-

ment. In priniple, it suÆes to evaluate the iruits only at instanes of Edge: there,

X

0

; : : : ;X

n�1

desribe the left-hand node of the orresponding edge, and Y

0

; : : : ; Y

n�1

desribe the right-hand node of the orresponding edge.

With this in mind, it is easy to see that Line (5) ensures the following: eah

element d 2 Edge

I

representing an edge (i; j) is onneted via the role var1 to the

element of Val

I

that represents the variable in the �rst disjunt of the label of (i; j).

Line (6) is analogous for the role var2 and the variable in the seond disjunt of the

edge label. Then, Lines (7) to (11) ensure that d 2 Edge

I

is an instane of Elim i�

the edge orresponding to d is not present in the graph t(G) indued by the truth

assignment t desribed by Val.

The TBox T

0

G

an be found in Figure 3. Here, (X = i) stands for the onepts

expressing that X

0

; : : : ;X

n�1

are the binary enoding of the number i. As already said,

18



Node

:

= Val u (Y = 0) (12)

Node v R tB tG (13)

Node v :(R uB) u :(R uG) u :(B uG) (14)

Edge v 9ol1:> u 8ol1:Node u 8ol1:(X=X) (15)

Edge v 9ol2:> u 8ol2:Node u 8ol2:(Y =X) (16)

P w Edge u :Elim u 9ol1:R u 9ol2:R (17)

P w Edge u :Elim u 9ol1:G u 9ol2:G (18)

P w Edge u :Elim u 9ol1:B u 9ol2:B (19)

Figure 3: The TBox T

0

G

.

the purpose of T

0

G

is to ensure that the graph t(G) indued by the truth assignment

t desribed by Val does not have a 3-oloring. The strategy for ensuring this is as

follows: we use the 2

n

elements of (Val u (Y = 0))

I

to store the olors of the nodes.

By Line (12), these elements are identi�ed by the onept name Node, and there is a

unique oloring due to Lines (13) and (14). Then, Line (15) ensures that eah element

d 2 Edge

I

is onneted via the role ol1 to the element of Node

I

storing the olor of

the �rst node of the edge orresponding to d. Line (16) is analogous for the role ol2

and the seond node of the edge. Lines (17) to (19) guarantee that instanes of Edge

orresponding to problemati edges are instanes of the onept name P . Here, an

edge is problemati if it exists in the original graph, is not dropped by the urrent

truth assignment, and the onneted nodes have the same olor. The idea is that P

will be minimized with all onept names �xed exept R, G, and B. Then, we have

P

I

non-empty i� there is no 3-oloring of t(G). Please observe that �xing all onept

names exept R;G;B also means that the used roles are �xes on instanes of Edge

and Val.

Lemma 11 G is a yes-instane of o-3CERTCOL

S

i� P is simultaneously satis�able

w.r.t. Cir

CP

(T

G

; ;) and Cir

CP

0

(T

0

G

; ;), where

� CP = (�;M; F; V ) with � = ;, M = fValg, F = ;, and V all remaining

prediates in T

G

;

� CP

0

= (�

0

;M

0

; F

0

; V

0

) with �

0

= ;, M

0

= fPg, F

0

= ;, and V

0

the set of all

remaining prediates used in T

0

G

.

Proof. \If". Suppose that P is simultaneously satis�able w.r.t. Cir

CP

(T

G

; ;) and

Cir

CP

0

(T

0

G

; ;), and let I be a model of P and a model of both Cir

CP

(T

G

; ;) and

Cir

CP

0

(T

0

G

; ;). We have to show that G is a yes-instane of o-CERT3COL

S

. We �rst

note that, for all i; j 2 f0; : : : ; n� 1g, Val

I

ontains exatly one element

x 2 ((X = i) u (Y = j))

I

:
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The reasons for this are as follows: (i) Lines (1)-(3) fore Val

I

to ontain at least

one suh element for eah pair (i; j); (ii) sine I is a model of Cir

CP

(T

G

; ;) and CP

minimizes Val while varying all other prediates, there annot be more than one suh

x in Val

I

. In the following, we use x

ij

to denote the unique element of (Val u (X =

i) u (Y = j))

I

.

Now suppose, to the ontrary of what is to be shown, that G is not a yes-instane.

Then, for all truth assignments t, the subgraph t(G) is 3-olorable. In partiular this

holds for the assignment t de�ned by setting

t(V

ij

) := true i� x

ij

2 Tr

I

:

Let  : f0; : : : ; n� 1g ! fR;G;Bg be a 3-oloring of t(G) and onstrut an interpre-

tation J as follows:

�

J

= �

I

r

J

= r

I

for all role names

A

J

= A

I

for all onept names exept R;G, and B

C

J

= fx

i0

j (i) = Cg for C = R;G;B

P

J

= ; :

Clearly, J <

CP

0

I, beause the minimized prediate P is non-empty in I and empty

in J . Thus, to obtain a ontradition, it suÆes to show that J is a model of T

0

G

.

Sine I and J agree on all prediates but R;G;B, and P , Inlusions (12), (15),

and (16) that do not mention these onepts must hold in J . Line (12) implies

Node

J

= fx

i0

j 0 � i < ng, and hene J satis�es (13) by onstrution. Moreover,

sine  is a funtion, (14) is satis�ed, too. The following laim is a onsequene of the

de�nition of the truth assignment t and the fats that (i) I is a model of T

G

and (ii) I

and J interpret the onept names Edge and Elim in the same way.

Claim 1: (i; j) is an edge of t(G) i� x

ij

2 (Edge u :Elim)

J

.

Now, we prove that (17) to (19) are satis�ed in J . Let C 2 fR;G;Bg and x

ij

2

(Edge u :Elim)

J

. By Claim 1, we get (i) 6= (j) sine  is a 3-oloring of t(G). Thus,

by onstrution of J , x

i0

and x

j0

annot belong to C together. Moreover, by (15)

and (16), ol1 and ol2 onnet x

ij

preisely to x

i0

and x

j0

, respetively. Therefore,

x

ij

=2 (9ol1:C u 9ol2:C)

J

. Sine this holds for any x

ij

2 (Edge u :Elim)

J

, it follows

that the right-hand sides of (17) to (19) are empty in J . Thus, these impliations are

satis�ed.

\Only if". Suppose that G is a yes-instane and let t be a truth assignment

suh that t(G) is not 3-olorable. Let  : f0; : : : ; n � 1g ! fR;G;Bg be a olor

assignment that minimizes (w.r.t. set inlusion) the set f(i; j) j (i) = (j)g. De�ne

an interpretation I as follows:

�

I

= f(i; j) j 0 � i < 2

n

; 0 � j < 2

n

g

Val

I

= Edge

I

= �

I

Tr

I

= f(i; j) j t(V

ij

) = trueg
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Tr

I

i

= f(i; j) j t(V

ij

) $ 

(i)

S

(i; j)g (i = 1; 2)

Elim

I

= f(i; j) j (i; j) is an edge of t(G)g

Node

I

= f(i; 0) j 0 � i < 2

n

g

C

I

= f(i; ;) j (i) = Cg (C = R;G;B)

P

I

= f(i; j) j (i; j) is an edge of t(G) and (i) = (j)g

nextx

I

= f((i; j); (i + 1 mod 2

n

; j)) j 0 � i; j < 2

n

g

nexty

I

= f((i; j); (i; j + 1 mod 2

n

)) j 0 � i; j < 2

n

� 1g

ol1

I

= f((i; j); (i; 0)) j 0 � i < 2

n

g

ol2

I

= f((i; j); (j; 0)) j 0 � i < 2

n

g

var1

I

= f((i; j); (k; l)) j the �rst variable in the label of (i; j) is V

kl

g

var2

I

= f((i; j); (k; l)) j the seond variable in the label of (i; j) is V

kl

g

Moreover, the onept names X

I

k

and Y

I

k

are interpreted in suh a way that (i; j) 2

((X = i) u (Y = j))

I

holds for all i; j < 2

n

. For eah Boolean iruit  the orre-

sponding output onept name Out

I



ontains preisely those (i; j) suh that (i; j) is

true.

Sine  is not a 3-oloring, P is satis�ed in I. Thus, it remains to show that

I is a model of Cir

CP

(T

G

; ;) and Cir

CP

0

(T

0

G

; ;). We start with the former. It is

straightforward to see that I is a model of T

G

. To see that I is also a model of

Cir

CP

(T

G

; ;), note that by inlusions (1){(3), there must be at least one instane of

Val in eah of the (mutually disjoint) onepts (X = i)u (Y = j). Sine I has exatly

one element for eah suh onept, the extension of Val is minimal in I.

Now for Cir

CP

0

(T

0

G

; ;). The reader may easily verify that I satis�es T

0

G

by on-

strution. To prove that I is also a <

CP

0

-minimal model of T

0

G

, �rst note that if

there existed a model J <

CP

0

I, then P

J

� P

I

would hold. Moreover, the min-

imization of P

J

would make its extension equal to the disjuntion of the right-

hand sides of (17){(19). As a onsequene, to satisfy (17){(19), we should have

(i) (9ol1:C u 9ol2:C)

J

� (9ol1:C u 9ol2:C)

I

for C = R;G;B, and (ii) for some

olor C,

(9ol1:C u 9ol2:C)

J

� (9ol1:C u 9ol2:C)

I

:

But then, the oloring 

0

de�ned by



0

(i) = C i� (i; 0) 2 C

J

(C = R;G;B)

would be suh that

f(i; j) j 

0

(i) = 

0

(j)g � f(i; j) j (i) = (j)g:

This inlusion ontradits the minimality assumption on . ❏

Sine it is easily heked that the size of T

G

and T

0

G

is polynomial in n, we get the

following result.

Theorem 12 In ALC, satis�ability w.r.t. onept-irumsribed KBs is NExp

NP

-

hard.
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It is interesting to observe that the redution works even if we assume ABoxes and

preferene relations to be empty. Corresponding lower bounds for subsumption and

the instane problems follow from the redution given in Setion 2.

We now establish a mathing lower bound for Theorem 9: we show that, in ALC,

satis�ability w.r.t. onept-irumsribed KBs is NP

NExp

-hard even if only a onstant

number of prediates are allowed to be minimized and �xed. Reall that a (non-

deterministi) k-tape Turing mahine is desribed by a tuple

(Q;�; q

0

;�; q

a

; q

rej

);

with Q a set of states, � a �nite alphabet, q

0

2 Q a starting state,

� � Q� �

k

�Q� �

k

� fL;Rg

k

a transition relation, and q

a

; q

rej

2 Q the aepting and rejeting states. For our

purposes, an orale Turing mahine is a 2-tape Turing mahine M that is, additionally,

equipped with the following:

� a 1-tape Turing mahine M

0

(the orale) whose alphabet ontains that of M ,

� a query state q

?

, and

� two answer states q

yes

and q

no

.

When M enters q

?

, the orale determines the next state of M : if the ontent of M 's

seond tape is ontained in the language aepted by the orale, the next state is q

yes

.

Otherwise, it is q

no

. During this transition, the head is not moved and no symbols

are written. The state q

?

annot our as the left-most omponent of a tuple in M 's

transition relation.

Let M = (Q;�; q

0

;�; q

a

; q

rej

;M

0

; q

?

; q

yes

; q

no

) be an orale Turing mahine suh

that the following holds:

� M solves an NP

NExp

-omplete problem;

� the time onsumption of M is bounded by a polynomial p;

� the time onsumption of M

0

= (Q

0

;�

0

; q

0

0

;�

0

; q

0

a

; q

0

rej

) is bounded by 2

q(n)

, with

q a polynomial.

Our NP

NExp

-hardness proof uses a redution of the word problem of M . Thus, let

w 2 �

�

be an input for M of length n, and let m = p(n) and m

0

= q(p(n)). We

will onstrut three TBoxes T

w

, T

0

w

, and T

00

w

, irumsription patterns CP, CP

0

, and

CP

00

, and a onept C suh that M aepts w i� C is simultaneously satis�able w.r.t.

Cir

CP

(T

w

; ;), Cir

CP

0

(T

0

w

; ;), and Cir

CP

00

(T

00

w

; ;). Then, Lemma 10 yields a redution

to (non-simultaneous) satis�ability w.r.t. onept-irumsribed KBs. Intuitively,

the purpose of the �rst TBox T

w

is to impose a basi struture on the domain, while

T

0

w

desribes omputations of M , and T

00

w

desribes omputations of M

0

.

The details of T

w

an be found in Figure 4, where we use the same abbreviations
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> v 9aux:NExp (20)

NExp v 9r:NExp u 9u:NExp (21)

NExp v 8r:(Y =Y ) (22)

NExp v 8r:(X++) (23)

NExp v 8u:(X=X) (24)

NExp v 8u:(Y ++) (25)

> v u

i<m

9aux:(Result uR

i

) (26)

Result v u

i<j<m

:(R

i

uR

j

) (27)

> v 9aux:NP (28)

Figure 4: The TBox T

w

.

as in the previous redution. The irumsription pattern for T

w

is

CP := (;; fNExp;Result;NPg; ;; V );

with V ontaining all remaining prediates used in T

w

. The purpose of Lines 20 to 25

is to ensure that, for eah possible value (i; j) of the ounters X and Y , there is

at least one instane of NExp that satis�es (X = i) and (Y = j). By minimizing

NExp, we thus enfore that NExp has exatly 2

m

0

� 2

m

0

elements. These elements are

interonneted via the roles r (\right") and u (\up"). Indeed, it is not diÆult to see

that the struture (NExp

I

; r

I

; u

I

) is isomorphi to the 2

m

0

� 2

m

0

-torus in eah model

I of Cir

CP

(T

w

; ;). Later on, we use this grid to enode omputations of the orale

mahine M

0

.

Together with the minimization of Result, Lines 26 and 27 guarantee that there is

exatly one instanes of the onept ResultuR

i

, for all i < m. Intuitively, if M makes

a all to the orale in the i-th step, then the result of this all will be stored in the

(unique) instane of ResultuR

i

: this instane will satisfy the onept name Rej i� M

0

rejeted the input. Finally, Line 28 and the minimization of NP guarantee that there

is exatly one instane of NP. This instane will be used to represent the omputation

of M .

The purpose of T

0

w

is to desribe omputations of M . We use the following onept

names:

� For all a 2 �, i; j < m, and k 2 f1; 2g, we introdue a onept name S

i;j;k

a

.

Intuitively, S

i;j;k

a

expresses that a is the symbol in the j-th ell of the k-th tape

in the i-th step of M 's omputation. We start our numbering of tape ells and

steps with 0.

� For all q 2 Q and i < m, Q

i

q

is a onept name expressing that M is in state q

in the i-th step of the omputation.
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NP v 9res

i

:(Result uR

i

) u 8res

i

:(Result uR

i

) (29)

NP v (Q

i

q

?

u 9res

i

:Rej) ! Q

i+1

q

no

(30)

NP v (Q

i

q

?

u 9res

i

::Rej) ! Q

i+1

q

yes

(31)

NP v (Q

i

q

?

uH

i;k

j

) ! H

i+1;k

j

(k = 1; 2) (32)

NP v u

a2�

u

j<m

�

(Q

i

q

?

u S

i;j

a

) ! S

i;j

a

�

(33)

Figure 5: The TBox T

0

w

(partly).

� For all q 2 Q, i; j < m, and k 2 f1; 2g, H

i;k

j

is a onept name expressing that

the k-th head of M is on ell j in the i-th step of the omputation.

In T

0

w

, we desribe omputations of M employing the usual set of axioms: eah tape

ell ontains exatly one alphabet symbol in eah step, there is exatly one urrent

state at eah step, the transition table is obeyed, et. We leave details to the reader

and give, in Figure 5, only the part of T

0

w

that deals with the orale. We assume that

opies of Lines 29 to 33 are ontained in T

0

w

for every i < m. The irumsription

pattern is simply CP

0

:= (;; ;; ;; V ), with V the set of all prediates used in T

0

w

. Line 29

ensures that the instane of NP an reah the (unique) instane of Result u R

i

via

the role res

i

, for all i < m. Lines 30 and 31 deal with transitions of M in the query

state: the result of the orale all is looked up in the orresponding instane of Result.

Finally, Lines 32 and 33 merely ensure that the head position and symbol under the

head does not hange when querying the orale.

The purpose of T

00

w

is to desribe omputations of M

0

. As already noted, suh

omputations are represented using the instanes of NExp: the 2

m

0

instanes satisfying

(X = i) represent the i-th on�guration of M

0

, for i < 2

m

0

. Here, the instane of

(Y = 0) represents the �rst tape ell and the instane of (Y = 2

m

0

) represents the last

tape ell. Note that we may have to desribe more than a single omputation of M

0

as M may visit the state q

?

more than one. All these omputations are \overlayed"

in the NExp grid using di�erent onept names for di�erent omputations. More

preisely, we use the following onept names:

� For all a 2 � and i < m, a onept name S

i

a

. If S

i

a

is satis�ed by some instane

of NExp with X = j and Y = k, then the i-th omputation of M

0

has, in it's

j-th step, label a on the k-th ell.

� For all q 2 Q and i < m, a onept name Q

i

q

. The purpose of this onept name

is two-fold: �rst, it represents the urrent state of M

0

in the i-th omputation.

And seond, it indiates the head position in the i-th omputation.

The behaviour of M

0

is again desribed via the usual axioms. Details are omitted.

In Figure 6, we only show the GCIs of T

00

w

that deal with the interation with M .

Similarly to the ase of T

0

w

, we assume that T

00

w

ontains a opy of Lines 34 to 39 for
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NExp v (:(X = 2

m

0

� 1) ! 9r

0

:NExp) u (:(Y = 2

m

0

� 1) ! 9u

0

:NExp) (34)

NExp v 8r

0

:(Y =Y ) u 8r

0

:(X++) u 8u

0

:(X=X) u 8u

0

:(Y ++) (35)

NExp v 9res

0

i

:(Result uR

i

) u 8res

0

i

:(Result uR

i

) (36)

NExp v 9toNP:NP u 8toNP:NP (37)

NExp v u

j<m

u

a2�

�

�

(X = 0) u (Y = j) u 8toNP:S

i;j;2

a

�

! S

i

a

�

(38)

NExp v Q

i

q

0

rej

! 8res

0

i

:Rej (39)

Figure 6: The TBox T

00

w

(partly).

all i < m. With T

00

w

, we use the irumsription pattern CP

00

:= (;; fRejg; ;; V

0

); where

V

0

ontains all other prediates used in T

00

w

.

The purpose of Lines 34 and 35 is to regenerate the grid struture of NExp using

the roles r

0

und u

0

. This is neessary sine the roles r and u are used in T

w

, and,

with simultaneous satis�ability, the TBoxes annot share any role names. Lines 36

and 37 ensure that every instane of NExp reahes (only) the instane of NP via the

role toNP, and (only) the instane of ResultuR

i

via the role res

0

i

, for all i < m. Line 38

guarantees that the i-th omputation of M

0

uses as its input the ontents of the seond

tape of M , as it is at the i-th step of M . Finally, Line 39 ensures that, if the i-th

omputation of M is rejeting, then Rej is true in the instane of Result uR

i

.

Note that M is a non-deterministi mahine and may have more than one ompu-

tation. For storing Rej in ResultuR

i

, we need to know that all these omputations are

rejeting. To deal with this issue, Rej is minimized with all other prediates varying:

if there exists an aepting omputation of M

0

on i-th input, then we an represent

this omputation in NExp and make Rej false in the instane of ResultuR

i

. Hene, Rej

holds at ResultuR

i

i� there exists no aepting omputation. Note that we annot �x

the onept names X

0

; : : : ;X

m�1

; Y

0

; : : : ; Y

m�1

while minimizing Rej sine we would

get an unbounded number of �xed onept names. Intuitively, the result is that the

elements of NExp may hange their position during minimization, and with them the

roles r

0

and u

0

. However, this is not harmful sine T

w

and Lines 34 and 35 ensure that

that (NExp

I

; (r

0

)

I

; (u

0

)

I

) is always isomorphi to a grid, and (the omitted part of) T

00

w

ensures that the elements of NExp always enode omputations of M

0

.

The proof of the following lemma is left to the reader.

Lemma 13 M aepts w i� NP u t

i<m

Q

i

q

a

is simultaneously satis�able w.r.t.

Cir

CP

(T

w

; ;), Cir

CP

0

(T

0

w

; ;), and Cir

CP

00

(T

00

w

; ;).

Sine it is easily heked that the size of the onstruted TBoxes is polynomial in n,

we get the following result.

Theorem 14 In ALC, satis�ability w.r.t. simple KBs is hard for NP

NExp

.
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It is interesting to observe that the redution even works if we assume ABoxes to

be empty. Corresponding lower bounds for subsumption and the instane problems

follow from the redution given in Setion 2.

5 Undeidability

In the preeeding setions, we have pinpointed the exat omputational omplexity

of reasoning w.r.t. onept-irumsribed KBs. In partiular, we have proved that

reasoning w.r.t. suh KBs is deidable. In this setion, we extend the framework of

onept-irumsribed KBs by allowing role names to be �xed during the minimization

of onept names. Interestingly, it turns out that this seemingly harmless modi�a-

tion leads to undeidability of reasoning. More preisely, we prove that reasoning is

undeidable already in ALC, and that this holds even with empty TBoxes.

A irumsribed knowledge base Cir

CP

(T ;A) is alled onept-minimizing if

CP = (�;M; F; V ) with M a set of onept names. We prove that, in ALC, the

instane problem w.r.t. onept-minimizing KBs is undeidable. By the redutions

given in Setion 2, this implies undeidability of the other reasoning problems as well.

The proof is by a redution of the semanti onsequene problem of modal logi on

transitive frames, whih has been proved undeidable in [8℄.

A frame is a struture F = (�

F

; �

F

), where F a non-empty domain, r a role name,

and r

F

� �

F

� �

F

. A pointed frame is a pair (F; d) suh that d 2 �

F

. For F =

(�

F

; r

F

) a frame, d; e 2 �

F

, and n 2 N, we write d(r

F

)

�n

e i� there exists a sequene

d

0

; : : : ; d

n

2 �

F

with d = d

0

, e = d

n

, and d

i

r

F

d

i+1

for i < n. Moreover, d 2 �

F

is alled a root of F if for every e 2 �

F

, there exists m suh that d(r

F

)

�m

e. An

interpretation I = (�

I

; �

I

) is based on a frame F i� �

F

= �

I

and r

I

= r

F

. We say

that a onept C is valid on F and write F j= C i� C

I

= �

I

for every interpretation

I based on F, and (F; d) j= C i� d 2 C

I

for every interpretation I based on F. The

following theorem restates, in a DL formulation, the undeidability of the semanti

onsequene problem of modal logi on transitive frames.

Theorem 15 (Chagrov) There exists an ALC onept E ontaining only the on-

ept name A and the role r suh that the following problem is undeidable: given an

ALC onept D, does there exist a transitive frame F suh that F j= E and F 6j= D.

For onveniene, we will use the following abbreviation: for m 2 N, we use 8

m

r:C to

denote C if m = 0, and 8

m

r:C u 8r:8

m

r:C if m > 0. As usual, the role depth rd(C)

of a onept C is de�ned as the nesting depth of the onstrutors 9r:D and 8r:D

in C. The following lemma establishes a onnetion between the instane problem

w.r.t. onept-minimizing KBs and a bounded version of the semanti onsequene

problem (not yet on transitive frames). For the sake of readability, we write onept

assertions C(a) in the form a : C

Lemma 16 Let C be an ALC onept whose only role is r and whose only onept

name is A. Let D be a onept not ontaining A and whose only role is r. Then, for

every m > 0, the following onditions are equivalent:
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(i) Cir

CP

(;;A) j= a : 8

m

r:C u :D with CP = (;; fAg; frg; ;) and

A = fa : (:8

m

r:C t 8

m+rd(C)

r:A)g;

(ii) there exists a pointed frame (F; d) suh that (F; d) j= 8

m

r:C and (F; d) 6j= D.

Proof. (i) implies (ii). Let I be a model of Cir

CP

(;;A) suh that a

I

2 (8

m

r:Cu:D)

I

.

Suppose I is based on the frame F, and set d := a

I

. We show that (F; d) j= 8

m

r:C

and (F; d) 6j= D. The latter is easy as it is witnessed by the interpretation I. To show

the former, let J be an interpretation based on F . We distinguish two ases:

� A

J

� fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

Sine a

I

2 (8

m

r:C)

I

and I is a model of Cir

CP

(;;A), it is not hard to see that

A

I

= fe 2 �

I

j d(r

I

)

�m+rd(C)

eg: (�)

Moreover, d 2 (8

m

r:C)

I

. Sine I and J are based on the same frame and the

truth of 8

m

r:C at d depends on the truth value of A only at those objets e 2 �

I

with d(r

I

)

�m+rd(C)

e, we have d 2 (8

m

r:C)

J

and are done.

� A

J

6� fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

Let J

0

be the modi�ation of J where A

J

0

= A

J

\fe 2 �

J

j d(r

J

)

�m+rd(C)

eg.

By (�), J

0

�

CP

I. If d 2 (:8

m

r:C)

J

0

, then J

0

is a model of A and we have a

ontradition to the fat that I is a model of Cir

CP

(;;A). Thus, d 2 (8

m

r:C)

J

0

.

Sine the truth of 8

m

r:C at d depends on the truth value of A only at those

objets e 2 �

J

0

with d(r

J

0

)

�m+rd(C)

e, we have d 2 (8

m

r:C)

J

and are done.

(ii) implies (i). Suppose there exists a pointed frame (F; d) suh that (F; d) j= 8

m

r:C

and (F; d) 6j= D. We may assume that d is a root of F. Let I be an interpretation based

on F suh that d 2 (:D)

I

. We may assume that A

I

= fe 2 �

I

j d(r

I

)

�m+rd(C)

dg

(sine A does not our in D) and a

I

= d. Then a

I

2 (8

m

r:C u :D)

I

. It remains to

show that there does not exist an I

0

�

CP

I suh that a

I

0

2 (:8

m

r:Ct8

m+rd(C)

r:A))

I

0

.

This is straightforward: from (F; d) j= 8

m

r:C, we obtain that there does not exist any

I

0

suh that d 2 (:8

m

r:C)

I

0

and learly there does not exist any A

I

0

� A

I

suh that

d 2 (8

m+rd(C)

r:A)

I

0

. ❏

The following lemma relates the bounded version of the semanti onsequene problem

(on unrestrited frames) to the semanti onsequene problem on transitive frames. It

utilizes the onept 8r:A! 8r:8r:A, the DL version of the modal formula �p! ��p

that is well-known to be valid on a frame i� the frame is transitive.

Lemma 17 Let C

1

= :8r:A t 8r:8r:A, C

2

be an ALC onept ontaining only the

role r and the onept name A, and let D be a onept ontaining only the role r.

Then the following onditions are equivalent:

(i) there exists a transitive frame F suh that F j= C

2

and F 6j= D;

(ii) There exists a pointed frame (F; w) suh that (F; w) j= 8

1

r:(C

1

u C

2

) and

(F; w) 6j= D.
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Proof. (i) implies (ii). Let F be a transitive frame suh that F j= C

2

and F 6j= D.

Take a w 2 �

F

suh that (F; w) 6j= D. We may assume that w is a root of F. Sine

F j= C

2

and F

0

j= C

1

for every transitive frame F

0

, (F; w) is as required for (ii).

(ii) implies (i). Let (F; w) be a pointed frame suh that (F; w) j= 8

1

r:(C

1

u C

2

)

and (F; w) 6j= D. We may assume that w is a root of F. It is not diÆult to show

that (F; w) j= 8

1

r:C

1

implies that r

F

is transitive. Therefore, from (F; w) j= 8

1

r:C

2

we obtain F j= C

2

. We onlude that F is as required for (i). ❏

We are now in a position to prove the undeidability result.

Theorem 18 In ALC, the instane problem w.r.t. onept-minimizing KBs is un-

deidable. This even holds in the ase of empty TBoxes.

Proof. Take the onept E from Theorem 15, the onept C

1

from Lemma 17, and

set C

2

:= E and C := C

1

u C

2

. Then, by Theorem 15 and Lemma 17, the following

is undeidable: given a onept D, does there exists a pointed frame (F; w) suh that

(F; w) j= 8

1

r:C and (F; w) 6j= D. Sine we are onerned with validity on frames,

we may w.l.o.g. assume that D does not ontain the onept name A. Therefore,

by Lemma 16, the following is undeidable: given a onept D not ontaining A,

is a an instane of 8

1

r:C u :D w.r.t. Cir

CP

(;; fa : (:8

1

r:C t 8

1+rd(C)

r:A)g; where

CP = (;; fAg; frg; ;). ❏

By the redutions given in Setion 2, it follows that sats�ability and subsumption

w.r.t. onept-minimizing KBs are undeidable as well (also in the ase of empty

TBoxes).

Minimized vs. Fixed Role Names

Unlike �xed onept names, �xed role names annot be simulated using minimized

role names. This is due to the fat that Boolean operators on roles are not avail-

able in standard DLs. Thus, Theorem 18 does not imply undeidability of reasoning

w.r.t. onept-�xing KBs, in whih role names are allowed to be minimized, but only

onept names an be �xed. In general, we have to leave deidability of reasoning

w.r.t. onept-�xing KBs as an open problem. However, we show in the following

that reasoning w.r.t. suh KBs is deidable when TBoxes are empty. Together with

Theorem 18, whih also applies to the ase of empty TBoxes, we have thus identi�ed

a ase where reasoning with minimized role names is deidable, but reasoning with

�xed role names is not.

Theorem 19 In ALC, satis�ability w.r.t. onept-�xing KBs Cir

CP

(T ;A) is deid-

able in NExp

NP

if T is empty.

Proof. We establish a bounded model property using a \seletive �ltration"-style

argument. To prove Theorem 19, we an then proeed as in Theorem 6. Details are

omitted.
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Let Cir

CP

(;;A) be a onept-�xing KB with CP = (�;M; F; V ), and let C

0

be a

onept that is satis�able w.r.t. Cir

CP

(;;A).

2

Set

n := max(frd(C

0

)g [ frd(C) j C(a) 2 Ag) and m := (jAj+ jC

0

j)

n+1

;

We show that there exists a model J of Cir

CP

(;;A) satisfying C

0

suh that j�

J

j � m.

Let I be a model of Cir

CP

(;;A) suh that there exists a d

0

2 C

I

0

. Let ex(C

0

;A) be the

set of onepts of the form 9r:C that our as a (not neessarily proper) subonept in

C

0

or A. For eah d 2 �

I

, �x a minimal set D(d) � �

I

suh that, for every onept

9r:C 2 ex(C

0

;A), there exists e 2 D(d) suh that (d; e) 2 r

I

and e 2 C

I

. Clearly,

jD(e)j � jC

0

j+ jAj for eah e 2 �

I

. Next, de�ne a set D

0

� �

I

by setting

D

0

:= fd

0

g [ fa

I

j a 2 N

I

ours is Ag:

De�ne sets D

i

� �

I

, 1 � i � n, indutively by

D

i+1

:= (

[

d2D

i

D(d))

and set �

n

:=

S

0�i�n

D

i

. De�ne an interpretation I

0

with domain �

I

as follows:

� a

I

0

= a

I

, for all objet names a;

� for r 2M [ V , (d; e) 2 r

I

0

if d 2 �

n

nD

n

, e 2 D(d), and (d; e) 2 r

I

;

� for A 2M [ V , A

I

0

= A

I

\�

n

;

� for A 2 F , A

I

0

= A

I

.

A straighforward indutive argument shows that I

0

is a model of A suh that d

0

2 C

I

0

0

.

Note that we did not hange the interpretation of the A 2 F . Moreover, we have

p

I

0

� p

I

for every p 2M . Together with the fat that I

0

is a model of A and I

0

6� I,

we even get p

I

0

= p

I

for every p 2 M . It follows that I

0

is a model for Cir

CP

(;;A)

beause J <

CP

I

0

would imply J <

CP

I.

Note that r

I

0

� �

n

� �

n

, for every role r. Now de�ne an interpretation J with

domain �

J

= �

n

by putting

� A

J

= A

I

0

\�

n

, for every onept name A;

� r

J

= r

I

0

, for every role name r;

� a

J

= a

I

, for every objet name a from A.

We still have that J is a model for A satisfying C

0

. Moreover, any interpretation

J

0

<

CP

J satisfying A an be easily extended to an interpretation I

00

<

CP

I

0

satisfying

A. Hene, no suh interpretation exists and J is a model for Cir

CP

(;;A). From

j�

n

j � m we derive j�

J

j � m. ❏

2

Note that we annot eliminate �xed atomi onepts from the irumsription pattern beause

this would require the introdution of a TBox.
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We leave it as an open problem whether satis�ability w.r.t. onept-�xing KBs is

deidable in the ase of non-empty TBoxes.

6 Conlusions and Perspetives

We have shown that non-monotoni extensions of DLs based on irumsription an re-

sult in formalisms that are muh less restrited than existing non-monotoni DLs, but

for whih reasoning is still deidable. In partiular, the resulting family of DLs allows

to model defeasible inheritane without the usual and severe restrition to named indi-

viduals. However, we view this paper only as a �rst step towards usable non-monotoni

DLs. In partiular, our upper bounds are based on massive non-deterministi guess-

ing, and are thus far from being implementable in eÆient systems. Ideally, one would

like to have well-behaved extensions of the tableau algorithms that underly state-of-

the-art DL reasoners [4℄. It seems that existing sequent aluli for (propositional)

irumsription and minimal entailment [6, 23℄ ould provide a good starting point.

Additionally to having a usable implementation, it is desirable to develop a design

methodology for modelling defeasible inheritane. In partiular, suh a methodol-

ogy should address the problem of �nding appropriate irumsription patterns. Also

from a theoretial perspetive, our initial investigation leaves open a number of exit-

ing questions. First, it is open whether or not minimizing roles leads to undeidability

in the presene of non-empty TBoxes. Seond, our urrent tehniques are limited to

non-monotoni extensions of DLs that have the �nite model property, and it would be

desirable to aleviate this limitation. And third, it is interesting whether the observed

impat of prediate number and arity on omputational omplexity an be observed

in other formalisms suh as the extension of the two-variable fragment of �rst-order

logi with irumsription.
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