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Abstrat

Desription logi (DL) ABoxes are a tool for desribing the state of

a�airs in an appliation domain. In this paper, we onsider the problem

of updating ABoxes when the state hanges. We assume that hanges

are desribed at an atomi level, i.e., in terms of possibly negated ABox

assertions that involve only atomi onepts and roles. We analyze suh

basi ABox updates in several standard DLs by investigating whether the

updated ABox an be expressed in these DLs and, if so, whether it is

omputable and what is its size. It turns out that DLs have to inlude

nominals and the \�" onstrutor of hybrid logi (or, equivalently, admit

Boolean ABoxes) for updated ABoxes to be expressible. We devise algo-

rithms to ompute updated ABoxes in several expressive DLs and show

that an exponential blowup in the size of the whole input (original ABox

+ update information) annot be avoided unless every PTime problem

is LogTime-parallelizable. We also exhibit ways to avoid an exponential

blowup in the size of the original ABox, whih is usually large ompared

to the update information.

1 Introdution

Desription logis (DLs) are a prominent family of logi-based formalisms for

the representation of and reasoning about oneptual knowledge [4℄. In DLs,

onepts are used to desribe lasses of individuals sharing ommon properties.

For example, the following onept desribes the lass of all parents with only

happy hildren:

Person u 9has-hild:Person u 8has-hild:(Person u Happy)

This onept is formulated in ALC, the basi DL that ontains all Boolean

operators [21℄. Conepts are the most important ingredient of desription logi
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ABoxes, whose purpose is to desribe a snapshot of the world. For example, the

following ABox, whih is also formulated in ALC, says that John is a parent

with only happy hildren, that Peter is his hild, and that Mary is a person:

john:Person u 9has-hild:Person u 8has-hild:(Person u Happy)

has-hild(john; peter)

mary:Person

In many appliations of DLs, an ABox is used to represent the urrent state

of a�airs in the appliation domain [4℄. In suh appliations, it is neessary to

update the ABox in the ase that the world has hanged. Suh an update should

inorporate the information about the new state while retaining all knowledge

that is not a�eted by the hange (as demanded by the priniple of inertia,

see e.g. [14℄). For example, if Mary is not happy any longer, we should up-

date the above ABox to the following one. This updated ABox is formulated

in ALCO, the extension of ALC with nominals (i.e., individual names inside

onept desriptions):

john:Person u 9has-hild:Person u 8has-hild:(Person u (Happy t fmaryg))

has-hild(john; peter)

mary:Person u :Happy

Observe that new information onerning Mary also resulted in an update of the

information onerning John beause the semantis for ABoxes adopts the open

world assumption and an therefore represent the domain in an inomplete way

[4℄, Page 68. In the example above, we have no information about whether or

not Mary is a hild of John.

Surprisingly, formal theories of ABox updates have never been developed. In

appliations, ABoxes are usually updated in an ad-ho way, and e�ets suh as

the information hange for John above are simply ignored. The urrent paper

aims at uring this de�ieny. Its purpose is to provide a �rst formal analysis

of ABox updates in many ommon desription logis, onentrating on the most

basi kind of updates. These basi updates are as follows: the new informa-

tion to be inorporated into the ABox is a set of possibly negated assertions

a:A and r(a; b), where A is an atomi onept. The motivation for onsidering

this restrited form of updates is three-fold: �rst, there is a single, unontro-

versial semantis for updates of this restrited form, whereas several di�erent

and equally natural semantis are available in the ase of updates with om-

plex onepts, see e.g. [26, 8, 11, 22℄. Seond, it follows from the results in [3℄

that, under Winslett-style PMA semantis [26℄, unrestrited ABox updates in

relatively simple DLs suh as ALCFI and its extensions are not omputable.

It seems very likely that the other available semantis su�er from similar om-

putational problems. Finally, we believe that the massive non-determinism of
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ABox updates with omplex onepts, in partiular those involving quanti�ers

nested in a omplex way, leads to unintuitive results under all of the available

semantis.

We onsider restrited ABox updates in the expressive DL ALCQIO and its

fragments. It turns out that, in many natural DLs suh as ALC, the updated

ABox annot be expressed. As an example, onsider the ALC ABox given above.

To express the ABox obtained by the (restrited) update with mary::Happy, we

had to resort to the more expressive DL ALCO. But even the introdution of

nominals does not suÆe to guarantee that updated ABoxes are expressible.

Only if we further add the \�" onept onstrutor from hybrid logi [1, 2℄

or Boolean ABoxes (we show that these two are equivalent in the presene of

nominals), updated ABoxes an be expressed. Here, the � onstrutor allows

the formation of onepts of the form �

a

C expressing that the individual a

satis�es C, and Boolean ABoxes are a generalization of standard ABoxes: while

the latter an be thought of as a onjuntion of ABox assertions of the form a:C

and r(a; b), Boolean ABoxes are a Boolean ombination of suh ABox assertions.

Our expressiveness results do not only onern ALC: similar proofs as those

given in this paper an be used to show that, in any standard DL in whih

nominals and the \�" onstrutor are not expressible, updated ABoxes annot

be expressed.

We show that updated ABoxes exist and are omputable in ALCQIO

�

,

the extension of ALCQIO (whih inludes nominals) with the � onstrutor.

The proposed algorithm an easily be adapted to the fragments ALCIO

�

and

ALCQO

�

. An important issue is the size of updated ABoxes: the updated

ABoxes omputed by our algorithm may be of size exponential both in the size

of the original ABox and in the size of the new information (heneforth alled

the update). We show that an exponential blowup annot be ompletely avoided

by proving that, even in the ase of propositional logi, updated theories are not

polynomial in the size of the (ombined) input unless every PTime-algorithm is

LogTime-parallelizable (the \P vs. NP" question of parallel omputation).

1

In

the update literature, an exponential blowup in the size of the update is viewed

as muh more tolerable than an exponential blowup in the size of the original

ABox sine the former tend to be very small ompared to the latter. We believe

that, in the ase of ALCQIO

�

and its two fragments mentioned above, the

exponential blowup in the size of the original ABox annot be avoided. While

we leave a proof as an open problem, we exhibit two ways around the blowup:

the �rst is to allow the introdution of new onept de�nitions in an ayli TBox

1

In ontrast to the results by Cadoli et al. [7℄, our result even applies to the restrited form

of updates, i.e., updates in propositional logi where the update is a onjuntion of literals.

Thus, our argument provides further evidene for the laims in [7℄, where it is shown that,

with unrestrited updates, an exponential blowup in the size of the update annot be avoided

unless the �rst levels of the polynomial hierarhy ollapse.
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Name Syntax Semantis

inverse role r

�

(r

I

)

�1

nominal fag fa

I

g

negation :C �

I

n C

I

onjuntion C uD C

I

\D

I

disjuntion C tD C

I

[D

I

at-least restrition (> n r C) fx 2 �

I

j #fy 2 C

I

j (x; y) 2 r

I

g � ng

at-most restrition (6 n r C) fx 2 �

I

j #fy 2 C

I

j (x; y) 2 r

I

g � ng

� onstrutor �

a

C �

I

if a

I

2 C

I

, and ; otherwise

Figure 1: Syntax and semantis of ALCQIO.

when omputing the update. The seond is to move to extensions of ALCQIO

�

that allow Boolean operators on roles, thus eliminating the asymmetry between

onepts and roles found in standard DLs. In both ases, we show how to

ompute updated ABoxes that are polynomial in the size of the original ABox

(and exponential in the size of the update). Thus, the blowup indued by

updates in these expressive DLs is not worse than in propositional logi. We

also show that the blowup produed by iterated updates is not worse than the

blowup produed by a single update.

This paper is organized as follows. In Setion 2, we introdue the relevant

DLs, formally de�ne ABox updates, and establish the result on the exponential

blowup indued by restrited updates in propositional logi. We then prove in

Setion 3 that updated ABoxes annot be expressed in ALC, in ALCO, ALC

�

,

and ALC with Boolean ABoxes. In Setion 4, we show how to ompute ABox

updates in ALCQIO

�

and analyze the size of the omputed ABoxes. Finally,

Setion 5 is onerned with the omputation of updated ABoxes whose size is

only polynomial in the size of the original ABox. We onlude in Setion 6,

whih is also used to disuss potential further work.

2 Preliminaries

2.1 Desription Logis

In DLs, onepts are indutively de�ned with the help of a set of onstru-

tors, starting with a set N

C

of onept names and a set N

R

of role names, and

(possibly) a set N

I

of individual names. In this setion, we introdue the DL

ALCQIO

�

, whose onepts are formed using the onstrutors shown in Figure 1.

There, the inverse onstrutor is the only role onstrutor, whereas the remain-
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Symbol Construtor ALC ALCO ALCQ ALCI ALCQO ALCIO ALCQI

Q (6 n r C) x x x

(> n r C)

I r

�

x x x

O fag x x x

Figure 2: Fragments of ALCQIO.

ing seven onstrutors are onept onstrutors. In Figure 1 and throughout this

paper, we use #S to denote the ardinality of a set S, a and b to denote individ-

ual names, r and s to denote roles (i.e., role names and inverses thereof), A;B

to denote onept names, and C;D to denote (possibly omplex) onepts. As

usual, we use > as abbreviation for an arbitrary (but �xed) propositional tautol-

ogy, ? for :>, ! and $ for the usual Boolean abbreviations, 9r:C (existential

restrition) for (> 1 r C), and 8r:C (universal restrition) for (6 0 r :C).

The DL that allows only for negation, onjuntion, disjuntion, and uni-

versal and existential restritions is alled ALC. The availability of additional

onstrutors is indiated by onatenation of a orresponding letter: Q stands

for number restritions; I stands for inverse roles, O for nominals and super-

sript � for the � onstrutor. This explains the name ALCQIO

�

for our DL,

and also allows us to refer to sublanguages as indiated in Figure 2. For eah

language L listed in Figure 2, we have an analogue L

�

obtained by adding the

� onstrutor.

The semantis of ALCQIO

�

-onepts is de�ned in terms of an interpreta-

tion I = (�

I

; �

I

). The domain �

I

is a non-empty set of individuals and the

interpretation funtion �

I

maps eah onept name A 2 N

C

to a subset A

I

of

�

I

, eah role name r 2 N

R

to a binary relation r

I

on �

I

, and eah individual

name a 2 N

I

to an individual a

I

2 �

I

. The extension of �

I

to inverse roles

and arbitrary onepts is indutively de�ned as shown in the third olumn of

Figure 1.

An ALCQIO

�

assertional box (ABox) is a �nite set of onept assertions

C(a) and role assertions r(a; b) and :r(a; b) (where r may be an inverse role).

For readability, we sometimes write onept assertions as a:C. Observe that

there is no need for expliitly introduing negated onept assertions as negation

is available as a onept onstrutor in ALCQIO

�

. An ABox A is simple if

C(a) 2 A implies that C is a onept literal, i.e., a onept name or a negated

onept name.

An interpretation I satis�es a onept assertion C(a) i� a

I

2 C

I

, a role

assertion r(a; b) i� (a

I

; b

I

) 2 r

I

, and a role assertion :r(a; b) i� (a

I

; b

I

) =2 r

I

.

We denote satisfation of an ABox assertion  by an intepretation I with I j=  .

An interpretation I is a model of an ABox A (written I j= A) if it satis�es all

assertions in A. An ABox is onsistent i� it has a model. Two ABoxes A and
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A

0

are equivalent (written A � A

0

) i� they have the same models.

The length of a onept C, denoted by jCj, is the number of symbols needed

to write C. The size of an ABox assertion C(a) is jCj, the size of r(a; b) and

:r(a; b) is 1. Finally, the size of an ABox A, denoted by jAj, is the sum of the

sizes of all assertions in A.

2.2 ABox Updates

We introdue a simple form of ABox update where omplex onepts are not

allowed in the update information.

De�nition 1 (Interpretation Update). An update U is a simple ABox that

is onsistent. Let U be an update and I, I

0

interpretations suh that �

I

= �

I

0

and I and I

0

agree on the interpretation of individual names. Then I

0

is the

result of updating I with U , written I =)

U

I

0

, if the following hold:

� for all onept names A, A

I

0

= (A

I

[fa

I

j A(a) 2 Ug)nfa

I

j :A(a) 2 Ug;

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j r(a; b) 2 Ug) n f(a

I

; b

I

) j :r(a; b) 2 Ug:

4

Now let A be an ABox and U an update. Then, up to equivalene, there exists

at most one ABox A

0

satisfying the onditions

(U1) 8I; I

0

:

�

( I j= A ^ I =)

U

I

0

) ! I

0

j= A

0

�

and

(U2) 8I

0

:

�

I

0

j= A

0

! 9I : ( I j= A ^ I =)

U

I

0

)

�

.

In other words, whenever ABoxes A

0

and A

00

satisfy (U1) and (U2), then A

0

�

A

00

. This observation justi�es the following de�nition.

De�nition 2 (ABox Update). Let A be an ABox and U an update. An ABox

A

0

is the result of updating A with U , in symbols A � U � A

0

, if A

0

satis�es

the onditions (U1) and (U2). We then all A the original ABox and A

0

the

updated ABox. 4

As mentioned in the introdution, there are two tehnial reasons for restriting

ourselves to updates of this simple form. First, it allows us to use the unontro-

versial semantis given above, whih oinides with all standard semantis for

updates onsidered in the literature, see e.g., [23, 20, 26, 18℄. In ontrast, for

unrestrited updates involving omplex onepts there exist several ompeting

semantis suh as the ones proposed by Winslett [25℄ and Forbus [8℄. Semantis

for theory revision are losely related as well, but yield di�erent results even
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in our restrited setting [5, 19℄. Seond, we onsider it quite likely that, under

many of these semantis and for many DLs, unrestrited ABox updates are not

omputable even if the updated ABoxes exist. Some evidene is given by the

results in [3℄, whih imply that this is the ase under Winslett-style semantis

for the DL ALCFI and all of its extensions.

2

Pratially, our restrition means that the user has to desribe updates at an

atomi level. It is lear that more omplex updates suh as Boolean ombinations

of onept names an be useful in appliations. On the other hand, we believe

that the utility of arbitrarily omplex onepts in updates is limited sine using

suh onepts together with a standard update semantis introdues massive

non-determinism into updates. For example, the very simply update f8r:A(a)g

applied to an interpretation I under most standard semantis for updates means

that for eah individual x 2 A

I

with (a

I

; x) 2 r

I

, we have to deide whether

to hange (a

I

; x) 2 r

I

to (a

I

; x) =2 r

I

or x 2 A

I

to x =2 A

I

(but we are

not allowed apply both hanges). With omplex nested onepts, this non-

determinism quikly grows out of bounds.

We now give another example of updating ABoxes. The following ALCO

ABox expresses that John and Mary are married. We also know that one of

them is happy, and the other is not. However, we do not know whih of the two

is unhappy. Moreover, Peter and Sarah both have happy parents:

spouse(john;mary)

peter:9parent:Happy

sarah:9parent:Happy

john:

�

Happy u 9spouse:(fmaryg u :Happy)

�

t

�

:Happy u 9spouse:(fmaryg u Happy)

�

Suppose that, beause one of them is unhappy, John and Mary have an argu-

ment. This results in both John and Mary being unhappy. Hene, we should

apply the following update to the above ABox:

:Happy(john); :Happy(mary):

Then, the updated ABox an be expressed in ALCO

�

as follows:

3

:Happy(john)

:Happy(mary)

spouse(john;mary)

john:

�

�

peter

9parent:(Happy t fjohng) u �

sarah

9parent:(Happy t fjohng)

�

t

�

�

peter

9parent:(Happy t fmaryg) u�

sarah

9parent:(Happy t fmaryg)

�

2

ALCFI is the extension of ALCI with at-least and at-most restritions that admit only

the number 1.

3

To save brakets, we assume that the � onstrutor has higher preedene than onjun-

tion.
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The only surprising assertion in the updated ABox is the last one. Intuitively,

it represents the update of the last two assertions of the original ABox: the �rst

disjunt aptures the ase where John was the unhappy person, and the seond

disjunt aptures the ase when Mary was the unhappy person. There is no

update of the seond line of the original ABox as this assertion is ompletely

invalidated by the update. We shall later prove that the updated ABox an-

not be expressed in ALCO. This illustrates that, as was already noted in the

introdution, the presene of nominals alone does not suÆe to guarantee the

existene of updates.

2.3 A Lower Bound on the Size of Updates

Later on, we will see that the existene and size of updated ABoxes strongly

depends on the underlying desription logi. In this setion, we establish a

general lower bound on the size of the updated ABox: even in propositional

logi, updated ABoxes an beome exponential in the size of the whole input,

whih onsists of the original ABox and the update. At least, this holds unless

every PTime algorithm is LogTime-parallelizable, i.e., unless the omplexity

lasses PTime and NC are idential. As disussed by Papadimitriou in [16℄, this

is believed to be similarly unlikely as PTime = NP. This lower bound on the

size of updated ABoxes transfers to all DLs onsidered in this paper. Note that

our result omplements the one from [7℄, where it is shown that an exponential

blowup of propositional updates annot be avoided if arbitrary formulas are

allowed as updates unless the �rst levels of the polynomial hierarhy ollapses.

Our argument uses a muh more restrited form of updates (onjuntions of

literals) and refers to a di�erent omplexity-theoreti assumption.

For the following de�nitions, we �x an individual name a. A propositional

ABox A is of the form fC(a)g with C a propositional onept, i.e., a onept

that uses only the onept onstrutors :, u, and t. A propositional update U

ontains only assertions of the form A(a) and :A(a). Observe that propositional

ABoxes and propositional updates are only allowed to refer to the single, �xed

individual name a.

For the semantis, we �x a single individual x. Sine we are dealing with

propositional ABoxes and updates, we assume that interpretations do not in-

teprete role names, and that interpretation domains have only a single element x

with a

I

= x. We introdue a ouple of notions. For a onept C, let C(C) denote

the set of onept names used in C. For an interpretation I and a set of onept

names �, let Ij

�

denote the restrition of I that interpretes only the onept

names in �. Let C be a onept and � � C(C). Then a onept D is alled a

uniform �-interpolant of C i� C(D) � � and fIj

�

j x 2 C

I

g = fIj

�

j x 2 D

I

g.

It is easily seen that, for any propositional onept C and subset � � C(C),

the uniform �-interpolant of C exists and is unique up to equivalene. The fol-

8



lowing lemma establishes a tight onnetion between uniform interpolants and

propositional updates.

Lemma 3. Let A = fC(a)g be a propositional ABox, U a propositional update,

� the set of onept names in C not ourring in U ,

b

C the shortest uniform

�-interpolant of C, and

A

0

= fa : (

b

C u

l

A(a)2U

A)g:

Then we have the following:

(i) A � U � A

0

;

(ii) if A � U � A

00

, then jA

0

j � jUj+ jA

00

j.

Proof. Let A = fC(a)g, U , �,

b

C, and A

0

be as in the lemma. To prove (i), we

have to show that A

0

satis�es Conditions (U1) and (U2) from De�nition 2:

(U1) Let I, I

0

be interpretations suh that I j= A and I =)

U

I

0

. We have to

show that I

0

j= U and I

0

j=

b

C(a). By de�nition of \=)

U

" and sine the

onept names in � do not appear in U , we have I

0

j= U and Ij

�

= I

0

j

�

.

The latter together with I j= C(a) and the fat that

b

C is the uniform

�-interpolant of C yields that I

0

j=

b

C(a) as required.

(U2) Let I

0

be an interpretation suh that I j= A

0

. In partiular, I

0

j=

b

C(a).

Sine

b

C is the uniform �-interpolant of C, there is thus an interpretation

I suh that a

I

2 C

I

and Ij

�

= I

0

j

�

. We have to show that I =)

U

I

0

and

I j= A. The latter is lear sine a

I

2 C

I

. For the former, we have to show

that (i) a

I

2 A

I

0

n A

I

implies A(a) 2 U , and (ii) a

I

2 A

I

n A

I

0

implies

:A(a) 2 U . For (i), let a

I

2 A

I

0

n A

I

. As Ij

�

= I

0

j

�

, we have A =2 �.

Therefore, A appears in U . This an be either in the form A(a) or :A(a).

As the seond yields a ontradition to a

I

2 A

I

0

and I

0

j= U , we are done.

Case (ii) is symmetri.

Now for Point (ii). Suppose A � U � A

00

. Then A

00

= fa : Dg for ome onept

D. We may assume that all onept names ouring in D our in A [ U as

well. Now, for all onept names A suh that a : A 2 U replae every ourene

of A in D by >. For a : :A 2 U , replae every ourene of A in D by ?.

Denote the resulting onept by D

0

. Then A � U � fa : D

0

g [ U . Moreover, as

D

0

and U do not have any onept names in ommon and A

0

� fa : D

0

g[U , we

have fa :

b

Cg � fa : Dg. It follows that D

0

is a �-interpolant for C. We derive

j

b

Cj � jD

0

j beause

b

C is the shortest �-interpolant for C. But then

jA

0

j � j

b

Cj+ jUj � jD

0

j+ jUj � jDj+ jUj � jA

00

j+ jUj:

❏
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It thus remains to show that the size of (smallest) uniform interpolants of propo-

sitional onepts is not bounded polynomially in the size of the interpolated

onept unless PTime = NC.

The size of uniform interpolants of propositional onepts is losely related

to the relative suintness of propositional logi (PL) formulas and Boolean ir-

uits. We remind that both PL formulas and Boolean iruits ompute Boolean

funtions and refer, e.g., to [16℄ for exat de�nitions. We use jj to denote the

number of gates in the Boolean iruit , and j'j to denote the length of the PL

formula '. It is known that, unless PTime = NC, there exists no polynomial

p suh that every Boolean iruit  an be onverted into a PL formula ' that

omputes the same funtion as 

i

and satis�es j'j � p(j

i

j), see e.g. Exerise

15.5.4 of [16℄.

We show that non-existene of suh a polynomial p implies that uniform

interpolants are not bounded polynomially in the size of the interpolated on-

ept. Take a Boolean iruit  with k inputs. Then  an be translated into a

propositional onept D



by introduing onept names I

1

; : : : ; I

k

for the inputs

and, additionally, one auxiliary onept name for the output of every gate. Let

G be the set of onept names introdued for gate outputs, and let O 2 G be

the onept name for the output of the gate omputing the �nal output of . It

is not diÆult to see that this translation an be done suh that there exists a

polynomial q suh that, for all Boolean iruits ,

(i) jD



j � p(jj) and

(ii) for all interpretations I and all x 2 D

I



, x 2 O

I

i�  outputs \true" on

input b

1

; : : : ; b

k

, where b

j

= 1 if x 2 I

I

j

and b

j

= 0 otherwise.

Now, set � := G n fOg. Then the uniform �-interpolant

b

D



of D



also satis�es

(ii). Thus,

b

D



is a (notational variant of a) propositional logi formula omput-

ing the same Boolean funtion as . If the size of (smallest) �-interpolants of

propositional onepts was bounded polynomially in the size of the interpolated

onept, we thus had obtained a ontradition to our assumption on the non-

existene of the polynomial p. Together with Lemma 3, we obtain the following

theorem.

Theorem 4. Unless PTime = NC, there exists no polynomial p suh that, for

all propositional ABoxes A and propositional updates U , there exists a proposi-

tional ABox A

0

suh that

� A � U � A

0

and

� jA

0

j � p(jAj+ jUj).

10
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Figure 3: I and I

0

In the terminology of Cadoli et al. [7℄, this result states that the ommon

update operators for propositional theories are not logially ompatable even

for updates with onjuntions of literals (unless PTime = NC). Sine the

additional onstrutors do not add to Boolean expressivity, it is not diÆult to

prove that Theorem 4 arries over to all desription logis onsidered in this

paper.

3 Desription Logis without Updates

We say that a desription logi L has ABox updates i�, for every ABox A

formulated in L and every update U , there exists an ABox A

0

formulated in L

suh that A�U � A

0

. In this setion, we show that a lot of basi DLs are laking

ABox updates.

3.1 Updates in ALC

We analyze the basi desription logi ALC and show that it does not have

ABox updates. In partiular, we onsider the following ombination of original

ABox A, update U , and updated ABox A

0

. Note that A is formulated in ALC,

and A

0

is formulated in ALCO.

Lemma 5. Let A = f8r:A(a)g, U := f:A(b)g, and

A

0

= f:A(b); 8r:(A t fbg)(a)g:

Then A � U � A

0

.

Lemma 5 is readily heked by verifying that Conditions (U1) and (U2) of Def-

inition 2 are satis�ed.

To show thatALC does not have ABox updates, it suÆes to prove that there

is noALC-ABox equivalent to the ALCO-ABoxA

0

. Consider the interpretations

I and I

0

displayed in Figure 3. We assume that the individual names a and b are

11



mapped to the individuals of the same name as shown in the �gure. Moreover,

all other individual names are mapped to the individual y, and every onept

name is interpreted as the empty set. Clearly, I j= A

0

and I

0

6j= A

0

. To show

that noALC-ABox is equivalent toA

0

, it thus suÆes to prove thatALC-ABoxes

annot distinguish I and I

0

: for every ALC ABox, we have I j= A

0

i� I

0

j= A

0

.

We �rst establish the following lemma.

Lemma 6. For all ALC-onepts C and all individual names �, we have I j=

C(�) i� I

0

j= C(�).

Proof. The truth of an assertion C(�), C an ALC-onept, in a model J only

depends on the set of points reahable from �

J

using paths along the relations

r

J

, where r ours in C. Therefore, the lemma is lear for � 6= a. For � = a, the

lemma an be proved by observing that the submodel of I indued by fa

I

; b

I

g is

bisimilar to the submodel of I

0

indued by fa

I

0

; b

I

0

; xg, see [10℄ for a disussion of

the notion of bisimulation for ALC. Thus, for � = a, the lemma is an immediate

onsequene of the fat that the extension C

I

of ALC onepts C is preserved

under bisimulations. ❏

Lemma 7. There exists no ALC-ABox that is equivalent to the ALCO-ABox

A

0

= f:A(b); 8r:(A t fbg)(a)g.

Proof. Assume to the ontrary of what is to be shown that there exists an

ALC-ABox B that is equivalent to A

0

. Then I j= B and I

0

6j= B. We show

that, for all assertions ' 2 B, we have I

0

j= ', thus obtaining a ontradition to

I

0

6j= B. First, let ' be a (positive or negative) role assertion. Then I

0

j= ' is a

onsequene of I j= ' and the fat that I and I

0

satisfy exatly the same role

assertions. Now, let ' be a onept assertion. Then, I

0

j= ' is a onsequene of

I j= ' and Lemma 6. ❏

We have thus established the following result:

Theorem 8. ALC does not have ABox updates.

Note that Theorem 8 even applies to the ase where the update ontains only

onept assertions, but no role assertions. The fat that the updated ABox A

0

used in this setion is atually an ALCO-ABox may give rise to the onjeture

that adding nominals to ALC reovers the existene of updates. Unfortunately,

as shown in the following setion, this is not the ase.

3.2 Updates in ALCO

We onsider the DL ALCO, whih is obtained by extending ALC with nominals,

and show that ALCO does not have ABox updates. More preisely, we proeed

12
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00

in two steps: we �rst give a relatively straightforward proof of the non-existene

of updated ABoxes in ALCO that relies on the use of role assertions in updates.

This proof raises the question whether the restrition of updates to only onept

assertions reovers the existene of updates. In the seond step, we answer this

question to the negative by using a slightly more omplex onstrution.

For presenting the ounterexample to the existene of ABox updates in

ALCO, it is onvenient to desribe the updated ABox in ALCO

�

, the exten-

sion of ALCO with the � onstrutor. Note that the original ABox is even

formulated in ALC.

Lemma 9. Let A = f9r:A(a)g, U := f:r(a; b)g, and

A

0

= f(9r:(A u :fbg) t�

b

A)(a);:r(a; b)g:

Then A � U � A

0

.

It is not hard to see that A

0

satis�es Conditions (U1) and (U2) of De�nition 2.

We now show that there exists noALCO-ABox that is equivalent to theALCO

�

-

ABox A

0

. As in the previous setion, it follows that ALCO does not have ABox

updates.

Consider the interpretations I, I

0

and I

00

depited in Figure 4. We assume

that the individual names a, b, and  are mapped to the individuals of the

same name, and that all other individual names are mapped to the individual .

Moreover, the onept name A is interpreted as shown in the �gure and all other

onept names are interpreted as the empty set in all three interpretations. It

an easily be heked that I j= A

0

, I

0

j= A

0

and I

00

6j= A

0

. We will show that, if

an ALCO-ABox B is equivalent to A

0

, then I

00

j= B, whih is a ontradition.

First, we prove the following lemma:

Lemma 10. For all ALCO-onepts C and all individual names � 6= b, we have

I j= C(�) i� I

00

j= C(�), and I

0

j= C(b) i� I

00

j= C(b).

Proof. The truth of an assertion C(�), C an ALCO-onept, in a model J

only depends on the set of points reahable from �

J

by paths along relations

r

J

, where r ours in C. The lemma follows immediately from this observation.

❏
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The next lemma shows that A

0

in Lemma 9 annot be formulated in ALCO.

Lemma 11. There is no ALCO-ABox that is equivalent to the ALCO

�

-ABox

A

0

= f(9r:(A u :fbg) t �

b

A)(a);:r(a; b)g.

Proof. Assume there is an ALCO-ABox B that is equivalent to A

0

. Then

I j= B, I

0

j= B, and I

00

6j= B. We show that, for all assertions ' 2 B, we have

I

00

j= ', thus obtaining a ontradition to I

00

6j= B. First, B does not ontain

any positive role assertion sine I j= B and I does not satisfy any positive

role assertions. Seond, if ' is a negative role assertion, then I

00

j= ' sine I

00

satis�es all negative role assertions. Finally, let ' be a onept assertion. Then,

I

00

j= ' is a onsequene of I j= ', I

0

j= ', and Lemma 10. ❏

The proof also shows that ALC does not have ABox updates even if we

restrit ourselves to updates ontaining only role assertions, thus omplementing

the result from Setion 3.1 where ALC updates with only onept assertions are

onsidered.

As stated initially, the above proof raises the question whether or not restrit-

ing updates to onept assertions regains the existene of updated ABoxes in

ALCO. We answer this question to the negative. The following ounterexample

is quite similar to the example for ABox updates given in Setion 2.2:

Lemma 12. Let A = f9r:A(a); 9r:A(a

0

); r(b; );:A t 8r:(fg ! :A)(b)g, U :=

f:A(b);:A()g, and A

0

= fC

0

(a); r(b; );:A(b);:A()g with

C

0

=

�

�

a

9r:(A t fbg) u�

a

0

9r:(A t fbg)

�

t

�

�

a

9r:(A t fg) u �

a

0

9r:(A t fg)

�

:

Then A � U � A

0

.

By verifying Conditions (U1) and (U2) in De�nition 2, one an hek that A

0

is

indeed the result of updating A with U . Intuitively, the ABox assertions r(b; )

and :A t 8r:(fg ! :A)(b) in A enfore that, in every model I of A, b

I

=2 A

I

or 

I

=2 A

I

. The assertion C

0

(a) represents the update of the assertions 9r:A(a)

and 9r:A(a

0

) in A. The �rst disjunt aptures the ase where b 2 A

I

and  =2 A

I

,

and the seond disjunt aptures the ase where b =2 A

I

and  2 A

I

. In the

remaining ase b =2 A

I

and  =2 A

I

, the update of the mentioned assertions is

�

a

9r:A u�

a

0

9r:A. A orresponding disjunt is not needed sine it would imply

the �rst two disjunts. The assertion 8r:(fg ! :A)(b) an simply be dropped

sine all the information it provides is invalidated by the update.

In order to show thatALCO does not have ABox updates even if only onept

assertions are allowed in updates, we prove that there is no ALCO-ABox that

is equivalent to A

0

.
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Consider the interpretations I, I

0

and I

00

depited in Figure 5. We assume

that the individual names a, a

0

, b, , and d are mapped to the individuals of the

same name, and that all other individual names are mapped to the individual d.

Moreover, A

I

= A

I

0

= A

I

00

= fdg and all other onept names are interpreted

as the empty set. Clearly, I j= A

0

, I

0

j= A

0

, but I

00

6j= A

0

.

Lemma 13. For all ALCO-onepts C and all individuals � 6= a

0

, we have

I j= C(�) i� I

00

j= C(�), and I

0

j= C(a

0

) i� I

00

j= C(a

0

).

Proof. Reall from the proof of Lemma 10 that the truth of an assertion C(�),

C an ALCO-onept, in a model J only depends on the set of points reahable

from �

J

by paths along relations r

J

, where r ours in C. Again, the lemma

follows immediately from this observation. ❏

Thus, we are ready to prove that A

0

is not expressible in ALCO.

Lemma 14. There is no ALCO-ABox that is equivalent to the ALCO

�

-ABox

A

0

from Lemma 12.

Proof. Assume there is some ALCO-ABox B with A

0

� B. Then I j= A

0

,

I

0

j= A

0

and A

0

� B implies that I j= B and I

0

j= B. We show that I

00

satis�es

every assertion in B, ontraditing the fats that I

00

6j= A

0

and A

0

� B. We make

a ase distintion aording to the type of assertion:

� ' is a onept assertion. Sine ' 2 B, we have I j= ' and I

0

j= '. Thus,

Lemma 13 implies I

00

j= '.

� ' is a positive role assertion. Then ' = r(b; ) sine, otherwise, we have

I 6j= ' or I

0

6j= ' ontraditing I j= B and I

0

j= B. Clearly, ' = r(b; )

implies I

00

j= '.

� ' is a negative role assertion. Sine ' 2 B, we have I j= ' and I

0

j= '.

Assume to the ontrary of what is to be shown that I

00

6j= '. Then

' 2 f:r(a; b);:r(a

0

; );:r(b; )g. However, in eah of the three ases we

obtain a ontradition to I j= ' or I

0

j= '. Hene, I

00

j= '.

❏
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Summing up, we obtain the following result:

Theorem 15. ALCO is laking ABox updates, even if updates ontain only

onept assertions or only role assertions.

3.3 Updates in ALC

�

and Boolean ABoxes in ALC

Due to the fat that, in the previous setion, the ABoxes A

0

are expressed in

ALCO

�

, one may onjeture that the existene of updated ABoxes in ALCO

is reovered by adding the � onstrutor. We will later see that this is indeed

the ase. However, one may even rekon that adding only the � onstrutor to

ALC does suÆe to guarantee the existene of updated ABoxes. In this setion,

we show that this is not the ase. Indeed, we even show a stronger result related

to Boolean ABoxes.

A Boolean ABox is a �nite set of Boolean ABox assertions, i.e., Boolean

ombinations of ABox assertions expressed in terms of the onnetives ^ and

_. We do not need to expliitly introdue negation sine we admit negated

role assertions and onept negation is ontained in every DL onsidered in this

paper. For example, the following is a Boolean ABox:

fB(a); (A(a) ^ r(a; b)) _ :9s:A(b)g:

An interpretation I satis�es a Boolean ABox A if every Boolean ABox assertion

in A evaluates to true. There exists a rather lose onnetion between the �

onstrutor and Boolean ABoxes:

Lemma 16.

1. For every non-Boolean ALC

�

-ABox, there exists an equivalent Boolean

ALC-ABox;

2. for every Boolean ALCO-ABox, there exists an equivalent non-Boolean

ALCO

�

-ABox.

Proof. Conerning Point 1, let A be a non-Boolean ALC

�

-ABox, and let C(a)

be an assertion from A suh that �

b

D is a subonept of C. Then the ABox A

0

is obtained from A by replaing the assertion C(a) with (D(b) ^ C[>=�

b

D℄) _

(:D(b) ^ C[?=�

b

D℄), where C[X=�

b

D℄ denotes the onept obtained from C

by replaing all ourrenes of �

b

D with X. It is readily heked that A

0

is

equivalent to A. By repeating this replaement, we will eventually obtain a

Boolean ALC-ABox.
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Conerning Point 2, de�ne a mapping �

�

from ABox assertions to ALCO

�

-

onepts as follows:

C(a)

�

:= �

a

C

r(a; b)

�

:= �

a

9r:fbg

:r(a; b)

�

:= �

a

8r::fbg

Now every Boolean ABox assertion � an be onverted into an ALCO

�

-onept

�

�

by replaing ^ with u, _ with t, and every assertion  with  

�

. Now, let

A = f�

1

; : : : ; �

n

g be a Boolean ALCO-ABox. De�ne a non-Boolean ALCO

�

-

ABox A

0

:= f(�

�

1

u � � � u �

�

n

)(a)g, where a is an arbitrary individual name. It is

readily heked that A

0

is equivalent to A. ❏

Thus, non-Boolean ALCO

�

-ABoxes have exatly the same expressive power as

BooleanALCO-ABoxes. Note that the same does not hold forALC: while every

non-Boolean ALC

�

-ABox an be translated into an equivalent Boolean ALC-

ABox, there are Boolean ALC-ABoxes for whih no equivalent non-Boolean

ALC

�

-ABox exists. For example, it is relatively easy to prove that the Boolean

ALC-ABox fA(a) _ r(a; b)g has this property.

Sine, for ALC, Boolean ABoxes are more expressive than the � onstrutor,

we prove that ALC does not have ABox updates, even if we allow Boolean

ABoxes for the updated ABox.

Theorem 17. There exists an ALC-ABox A and an update U suh that there

exists no Boolean ALC-ABox A

0

with A � U � A

0

.

Proof. Consider the ALC-ABox A, the update U , and the ALCO-ABox A

0

given in Lemma 5. To prove Theorem 17, it is enough to show that there is no

Boolean ALC-ABox that is equivalent to A

0

.

Assume that there exists a Boolean ALC-ABox B with A

0

� B. We an

assume w.l.o.g. that B is in disjuntive normal form, i.e., that

B =

^

B

0

_ � � � _

^

B

n�1

;

where B

1

; : : : ;B

n

are ALC-ABoxes. Now take the interpretations I and I

0

dis-

played in Figure 3. Reall that I j= A

0

and I

0

6j= A

0

. Then, A

0

� B and I j= A

0

imply that there is an i < n suh that I j= B

i

. Sine I

0

6j= A

0

, we have I

0

6j= B

i

.

We an proeed as in the proof of Lemma 7 to show that I

0

j= ' for every

' 2 B

i

, thus obtaining a ontradition to I

0

6j= B

i

. ❏

By Lemma 16, we obtain the following orollary.

Corollary 18. ALC

�

does not have ABox updates.
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Observe that both Theorem 17 and Corollary 18 remain true if we restrit up-

dates to only onept assertions.

4 Computing Updates in ALCQIO

�

The results obtained in the previous setion imply that, if an extension of ALC

does not allow to express nominals and the � onstrutor, then we annot hope

that it has ABox updates. In this setion, we show that, for the ommon exten-

sions of ALC introdued in Setion 2.1, adding nominals and the � onstrutor

suÆes to have ABox updates. More presiely, we prove that the expressive DL

ALCQIO

�

has ABox updates, and show that the proof is easily adapted to

the fragments of ALCQIO

�

obtained by dropping number restritions, inverse

roles, or both.

Our onstrution of updated ABoxes is an extension of the orresponding

onstrution for propositional logi desribed in [26℄, and proeeds as follows.

First, we onsider updates of onepts on the level of interpretations. More

preisely, we show how to onvert a onept C and an update U into a onept C

U

suh that the following holds: for all interpretations I and I

0

suh that I satis�es

no assertion in U and I =)

U

I

0

, we have C

I

= (C

U

)

I

0

(�). The limitation that

C

U

satis�es (�) only if I satis�es no assertion in U an be overome by replaing

C

U

with C

U

0

, where U

0

is the set of those assertions in U that are violated

in I. Obviously, the translation C

U

will be used to update onept assertions in

ABoxes (role assertions are very easy to deal with). However, we are onfronted

with the problem that ABoxes have many di�erent models, and these models

an violate di�erent subsets of the update U . Hene, there is no unique way

of moving from C

U

to C

U

0

as desribed above. The solution is to produe an

updated ABox for eah subset U

0

� U separately, and then simply take the

disjuntion.

We �rst introdue a bit of notation. For an ABox A, we use Obj(A) to denote

the set of individual names in A, and sub(A) to denote the set of subonepts of

the onepts ourring in A. For an update U , we use I

U

to denote the (unique)

interpretation satisfying I =)

U

I

U

. We use U

:

to denote f:' j ' 2 Ug. The

indutive translation that takes a onept C and an update U to a onept C

U

as explained above is given in Figure 6.

Lemma 19. Let U be an update and C a ALCQIO

�

-onept. For every inter-

pretation I with I j= U

:

and every individual name a, we have I j= C(a) i�

I

U

j= C

U

(a)

Proof. The following is an immediate onsequene of the de�nition of I

U

:

Claim. If I j= U

:

, then, for all x; y 2 �

I

and role names r, we have (x; y) 2 r

I

i� one of the following holds:
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Figure 6: Construting C

U

� x 6= a

I

for all a 2 Obj(U) and (x; y) 2 r

I

U

;

� x = a

I

for an a 2 Obj(U) and

{ y 6= b

I

for all b 2 Obj(U) and (x; y) 2 r

I

U

,

{ or y = b

I

for a b 2 Obj(U) suh that r(a; b) 62 U and (x; y) 2 r

I

U

,

{ or y = b

I

for a b 2 Obj(U) suh that :r(a; b) 2 U .

Let I be an interpretation suh that I j= U

:

and let E 2 sub(A). By strutural

indution on E, we show that (E

U

)

I

U

= E

I

. As I and I

U

interpret individuals

in the same way, this implies Lemma 19.
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� E = fag: this ase is trivial sine I and I

U

interpret individuals in the

same way.

� E = A, for A a onept name: then

(A

U

)

I

U

= A

I

U

[

[

:A(a)2U

fa

I

U

g n

[

A(a)2U

fa

I

U

g

=

�

A

I

[

[

A(a)2U

fa

I

U

g n

[

:A(a)2U

fa

I

U

g

�

[

[

:A(a)2U

fa

I

g n

[

A(a)2U

fa

I

g

= A

I

:

sine A

I

\

S

A(a)2U

fa

I

g = ; and

S

:A(a)2U

fa

I

g � A

I

due to I j= U

:

.

� E = �

a

C: ((�

a

C)

U

)

I

U

= (�

a

C

U

)

I

U

= (�

a

C)

I

sine (C

U

)

I

U

= C

I

and I

and I

U

interpret individuals in the same way.

� The ases E = :C, E = C tD and E = C u D are straightforward and

left to the reader.

� E = (� m r C): we have x 2 ((� m r C)

U

)

I

U

i� one of the following holds:

x 2

�

: t

a2Obj(U)

fag

�

I

U

and #fy j (x; y) 2 r

I

U

^ y 2 (C

U

)

I

U

g � m

or

x = a

I

U

, for an a 2 Obj(U) and there are m

1

; m

2

; m

3

� 0 suh that

m

1

+m

2

+m

3

= m and

{ #fy j (x; y) 2 r

I

U

^ y 2

�

: t

b2Obj(U)

fbg

�

I

U

\ (C

U

)

I

U

g � m

1

,

{ #fy j (x; y) 2 r

I

U

^ y 2

S

b2Obj(U);r(a;b)62U

fbg

I

U

\ (C

U

)

I

U

g � m

2

and

{ #fb j :r(a; b) 2 U ^ b

I

U

2 (C

U

)

I

U

g � m

3

.

By indution, we have that (C

U

)

I

U

= C

I

. Thus, using the laim above,

we obtain that x 2 ((� m r C)

U

)

I

U

i�

x 2

�

: t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m

or

x = a

I

, for an a 2 Obj(U) and there are m

1

; m

2

; m

3

� 0 suh that m

1

+

m

2

+m

3

= m and
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{ #fy j (x; y) 2 r

I

^ y 2

�

: t

b2Obj(U)

fbg

�

I

\ C

I

g � m

1

,

{ #fy j (x; y) 2 r

I

^ y 2

S

b2Obj(U);r(a;b)62U

fbg

I

\ C

I

g � m

2

and

{ #fy j (x; y) 2 r

I

^ y 2

S

:r(a;b)2U

fbg

I

\ C

I

g � m

3

.

Further, by the laim above, this is equivalent to

x 2

�

: t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m

or

x 2

�

t

a2Obj(U)

fag

�

I

and #fy j (x; y) 2 r

I

^ y 2 C

I

g � m:

But this is equivalent to x 2 (� m r C)

I

.

� The ase E = (� m r C) is proved similarly to the previous ase.

❏

We now extend the update of onepts to the update of ABoxes, while still

remaining on the level of interpretations. Let A be an ABox and U an update.

Then de�ne the ABox A

U

by setting

A

U

:= fC

U

(a) j C(a) 2 Ag [

fr(a; b) j r(a; b) 2 A ^ :r(a; b) =2 Ug [

f:r(a; b) j :r(a; b) 2 A ^ r(a; b) =2 Ug:

Lemma 20. Let A be an ABox and U an update. For every interpretation I

with I j= U

:

, we have I j= A i� I

U

j= A

U

.

Proof. \)" Let I j= A. We show that I

U

j= A

U

. Let ' 2 A

U

. If ' = r(a; b)

or ' = :r(a; b), then, by the de�nition of I

U

and A

U

, I

U

j= '. If ' = E

U

(a)

for E(a) 2 A, it follows from Lemma 19 that I

U

j= E

U

(a).

\(" Let I

U

j= A

U

. We show that I j= A. Let ' 2 A. If ' = r(a; b), there are

two ases to onsider:

1. :r(a; b) 2 U . Then r(a; b) 2 U

:

, and sine I j= U

:

, we obtain that

I j= r(a; b).

2. :r(a; b) 62 U . Then r(a; b) 2 A

U

, and thus I

U

j= r(a; b). By de�nition of

I

U

we obtain I j= r(a; b).

The ase ' = :r(a; b) is analogous to the previous one, and the ase ' = E(a)

follows from Lemma 19. ❏
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We are in the position now to lift updates from the level of interpretations to the

level of ABoxes. Let A be an ABox and U an update. The set of literals over

U is de�ned as L

U

:= f ;: j  2 Ug. A simple ABox D is alled a diagram

for U if it is a maximal onsistent subset of L

U

. Intuitively, a diagram gives

a omplete desription of the part of a model of A that is \relevant" for the

update U . Let D be the set of all diagrams for U and let D 2 D. Then de�ne

the update D

U

as

D

U

:= f j : 2 D and  2 Ug:

Considering D

U

means taking a subset of U as desribed at the beginning of

this setion: we retain only those parts of U that are violated by interpretations

whose relevant part is desribed by D. We now de�ne the updated ABox A

0

as

A

0

:=

_

D2D

^

A

D

U

[ D

U

[ D

D

U

: (1)

Intuitively, the omponent A

D

U

is the update of the original ABox, D

U

asserts

that the hanges e�eted by the update hold, and D

D

U

denotes the result of

hanging the diagram D under onsideration as desribed by U . The Boolean

ABox operators are used only as an abbreviation for the \�" onstrutor. This

an be safely done sine the translation from Boolean ABoxes to non-Boolean

ones desribed in the proof of Lemma 16 is linear. To ahieve a less redundant

ABox, it is possible to drop from A

0

those disjunts for whih the diagram D is

not onsistent w.r.t. A. This is, however, not stritly neessary sine the ABox

D

D

U

ensures that these disjunts are inonsistent.

Lemma 21. A � U � A

0

.

Proof. We have to prove that A

0

satis�es Points (U1) and (U2) from De�ni-

tion 2.

(U1) Let I and I

0

be two interpretations suh that I j= A and I =)

U

I

0

. We

have to show that I j= A

0

. We de�ne D 2 D as D = fl 2 L

U

j I j= lg: Then,

�

D

=

^

D

D

U

[ A

D

U

[ D

U

is a disjunt in A

0

and it suÆes to show that I

0

j= �

D

. Sine I j= D, by the

de�nition of D

U

and =)

U

it easily follows that I

0

= I

D

U

. Thus, I

0

j= D

U

. Sine

I j= A [ D, by Lemma 20 we obtain that

I

0

j= D

D

U

[ A

D

U

[ D

U

:

(U2) Let I

0

j= A

0

. We need to show that there exists an interpretation I suh

that I j= A and I =)

U

I

0

. Sine I

0

j= A

0

and A

0

=

W

D2D

V

D

D

U

[A

D

U

[D

U

,

there exists a D 2 D suh that I

0

j= D

D

U

[ A

D

U

[ D

U

.
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Figure 7: Construting C

B

for existential and universal restritions

Let I = (I

0

)

D

:

U

. Then we have that I

0

= I

D

U

. Thus, by Lemma 20 and sine

I

0

j= A

D

U

, we obtain that I j= A. Similarly, we obtain that I j= D.

It remains to show that I =)

U

I

0

. Let A be a onept name. Sine I

0

= I

D

U

,

we have that

A

I

0

= A

I

[ fa

I

j A(a) 2 D

U

g n fa

I

j :A(a) 2 D

U

g:

Moreover, by the de�nition of D

U

and sine I j= D, we obtain that

fa

I

j A(a) 2 D

U

g = fa

I

j A(a) 2 Ug n A

I

and

fa

I

j :A(a) 2 D

U

g = fa

I

j :A(a) 2 Ug \ A

I

:

Having A

I

U

= A

I

[fa

I

j A(a) 2 Ugnfa

I

j :A(a) 2 Ug, and U being onsistent,

we obtain that A

I

0

= A

I

U

. Similarly, we obtain r

I

0

= r

I

U

for eah role name r.

Thus, I

0

= I

U

and I =)

U

I

0

.

❏

It is easy to adapt the onstrution of updated ABoxes to the DLs ALCO

�

,

ALCIO

�

, ALCQO

�

. For the former two, we have to treat existential and

universal restritions in the C

U

translation rather than number restritions.

The orresponding lauses are shown in Figure 7. The lemmas proved above for

ALCQIO

�

are then easily easily adapted.

Theorem 22. All of the following DLs have ABox updates: ALCO

�

, ALCIO

�

,

ALCQO

�

, and ALCQIO

�

.
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A lose inspetion of the updated ABox A

0

omputed above reveals that, �rst,

the size the onepts C

U

is exponential in the size of A and the update U ; and

seond, the number of disjunts in A

0

is exponential in U , but polynomial in

A. This is independent of whether the numbers inside number restritions are

oded in unary or in binary. Therefore, we obtain the following.

Theorem 23. Let L 2 fALCO

�

;ALCIO

�

;ALCQO

�

;ALCQIO

�

g. Then

there exist polynomials p

1

, p

2

, and q suh that, for every L-ABox A and ev-

ery update U , there exists an L-ABox A

0

suh that the following hold:

� A � U � A

0

;

� jA

0

j � 2

p

1

(jAj)

� 2

p

2

(jUj)

;

� A

0

an be omputed in time q(jA

0

j).

By the arguments given in Setion 2.3, an exponential blowup annot be entirely

avoided unless PTime = NC. However, we should pay attention to whether

the blowup ours in the size of the original ABox A or in the size of the

update U . As the update will usually be rather small ompared to the original

ABox, an exponential blowup in the size of U is muh more aeptable than

an exponential blowup in the size of A. The algorithm given in this setion

produes an exponential in both A and U . In the ase of propositional logi,

Winslett [26℄ gives an algorithm that blows up exponentially only in the size of

U , but not in the size of (the equivalent of) A. We believe that, for the languages

mentioned in Theorem 23, the exponential blowup in jAj an not be avoided.

For example, onsider the family of ABoxes (A

i

)

i2N

de�ned as follows:

A

i

:= fa : 9r:(A

1

u 9r:(A

2

u � � � 9r:(A

i

u 9r:A

i+1

) � � � ))g:

Clearly, for U = f:r(b; b

0

)g the size of the ABox A

0

i

� A

i

� U when omputing

it using the algorithm above is exponential in the size of A

i

. We suspet that

there exists no polynomial p suh that, for all i � 0, there is an ABox A

0

i

suh

that A

i

�f:r(b; b

0

)g = A

0

i

and jA

0

i

j � p(jA

i

j). While we leave a proof as an open

problem, in Setion 5 we exhibit several ways around an exponential blowup in

the size A. Before that, however, we take a look at several variations of our

result.

Iterated Updates

There are appliations in whih the domain of interest evolves ontinuously. In

suh an environment, it is neessary to update an ABox over and over again.

Then, it is learly important that the exponential blowups of the individual

updates do not add up. The following theorem shows that this is indeed not the

ase.
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Theorem 24. There exist polynomials p

1

; p

2

suh that the following holds: for

all ABoxes A

0

; : : : ;A

n

and updates U

1

; : : : ;U

n

, if A

i

is the ABox omputed by

our algorithm when A

i�1

is updated with U

i

, for 0 < i � n, then

jA

n

j � 2

p

1

(jA

0

j)

� 2

p

2

(jU

1

j+���+jU

n

j)

:

Proof. For a onept C, denote by n

C

the maximal number ourring in a

quali�ed number restrition in C. Furthermore, denote by d(C) the maximal

nesting depth of quali�ed number restritions in C. We �nd polynomials q

1

and

q

2

suh that, for every onept C and every update U ,

jC

U

j � jCj � (q

1

(n

C

)� 2

q

2

(jUj)

)

d(C)

:

The ruial observation now is that, for every onept C and update U , n

C

= n

C

U

and d(C) = d(C

U

): neither the maximal number nor the maximal nesting depth

of quali�ed numbers restritions inreases when forming C

U

. It follows that

there exist polynomials q

1

and q

2

suh that for every onept C and sequene of

updates U

1

; : : : ;U

i

,

j(C

U

1

)

U

2

���U

i

j � 2

q

1

(jCj)�q

2

(jU

1

j+���+jU

i

j)

:

A lose inspetion of the onstrution of A

i

from A

i�1

using the onepts

(C

U

1

)

U

2

���U

i�1

shows that there exists an additional polynomial q

0

2

suh that, for

all i,

jA

i

j � 2

q

0

2

(jU

1

j+���+jU

i

j)

�

X

a:C2A

0

2

q

1

(jCj)�q

2

(jU

1

j+���+jU

i

j)

The upper bound laimed in the theorem follows immediately. ❏

Conditional Updates

For the sake of simpliity, we have de�ned ABox updates to be unonditional:

the assertions in the update U are true after the update, no matter to whih

interpretation U is applied. In some appliations suh as reasoning about ations

with DLs [3℄, it is more useful to have onditional updates, where the initial

interpretation determines the hanges that are triggered.

A onditional update U

�

is a �nite set of expressions '= , where ' is an

ABox assertion (possibly involving non-atomi onepts) and  is an assertion

of the form

A(a);:A(a); r(a; b);:r(a; b)

with A a onept name. Intuitively, an expression '= means that if ' holds

in the initial interpretation, then  holds after the update. As in the ase of

unondition updates, we require a onsisteny ondition: if '= and '

0

=: are

both in U

�

, then the ABox f'; '

0

g has to be inonsistent.
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The de�nition of interpretation updates an straightforwardly be adapted to

the ase of onditional updates: an interpretation I

0

is the result of updating an

interpretation I with a onditional update U

�

if the following hold:

� for all onept names A,

A

I

0

= A

I

[ fa

I

j '=A(a) 2 U

�

^ I j= 'g n fa

I

j '=:A(a) 2 U

�

^ I j= 'g

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j '=r(a; b) 2 U

�

^ I j= 'g)

nf(a

I

; b

I

) j '=:r(a; b) 2 U

�

^ I j= 'g:

Conditions (U1) and (U2) are as in the ase of unonditional updates. Clearly,

onditional updates generalize unonditional one sine assertions  of unon-

ditional updates an be expressed as >(a)= , with a an arbitrary individual

name.

We now show how to adapt our onstrution of updated ABoxes to ondi-

tional updates. For U

�

a onditional update, we use rhs(U

�

) to denote f j

'= 2 U

�

g, and lhs(U

�

) for f' j '= 2 U

�

g. In the original algorithm, the

updated ABox A

0

is assembled by taking one disjunt for every diagram for U .

The intuition is that suh a diagram D gives omplete information about the

assertions in U

�

that atually ause a hange when U is applied to models whose

relevant part is desribed by D (assertions in U do not ause a hange if they

were already satis�ed before the update). We generalize this idea to onditional

updates by taking one disjunt for eah pair (D;U

0

), where D is a diagram for

rhs(U

�

), and U

0

is a subset of U

�

. Intuitively, U

0

determines the set of assertions

from U whose preonditions are satis�ed in the initial model, and D determines

the post-onditions that an atually ause a hange.

Let D

�

be the set of all diagrams for rhs(U

�

). Let D 2 D

�

and U

0

� U

�

. As

before, we de�ne the simple ABox D

U

0

as

D

U

0

:= f j : 2 D and '= 2 U

0

g:

Then we an assemble the updated ABox A

�

as follows:

A

�

=

_

D2D

�

_

U

0

�U

�

^

f' j '= 2 U

0

g

D

U

0

[ f:' j '= 2 U n U

0

g

D

U

0

[ A

D

U

0

[ D

U

0

[ D

D

U

0

By slightly modifying the proof of Lemma 21, it is not diÆult to show that A

�

is indeed the result of updating A with the onditional update U

�

. The notion of

a desription logi L having onditional ABox updates is de�ned in the obvious

way.

Theorem 25. All of the following DLs have onditional ABox updates: ALCO

�

,

ALCIO

�

, ALCQO

�

, and ALCQIO

�

.
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Conerning the size and omputability of updated ABoxes, we obtain a result

analogous to Theorem 23.

Boolean ABox Updates

In Setion 3.3, Boolean ABoxes were introdued as a generalization of standard

ABoxes, and a lose onnetion between Boolean ABoxes and the � onstrutor

was established. In fat, using the arguments of Lemma 16, it is easy to see

that the expressive power of Boolean L-ABoxes is idential to the expressive

power of non-Boolean L

�

-ABoxes, for L any of ALCO, ALCIO, ALCQO, and

ALCQIO. Hene, Theorems 22 and 23 an also be understood in terms of

Boolean ABoxes.

We say that a desription logi L has Boolean ABox updates if, for every

Boolean L-ABox A and update U , there exists a Boolean L-ABox A

0

satisfying

Conditions (U1) and (U2) of De�nition 2. Due to the generalization of Lemma 16

to the relevant languages, the onstrution presented in this setion an also be

used to ompute Boolean ABox updates: �rst onvert the Boolean L-ABox into

a non-Boolean L

�

-ABox, apply the desribed onstrution, and then onvert

the resulting non-Boolean L

�

-ABox bak into a Boolean L-ABox.

Theorem 26. All of the following DLs have Boolean ABox updates: ALCO,

ALCIO, ALCQO, ALCQIO, and their extensions with the � onstrutor.

What is the size of updated Boolean ABoxes omputed by the above approah?

The main observation is that, while the translation of Boolean L-ABoxes into

non-Boolean L

�

-ABoxes is polynomial, the reverse translation indues an expo-

nential blowup. More preisely, this blowup is exponential in the nesting depth

of the � onstrutor. Sine our translation introdues nestings of the � on-

strutor whose depth is linear in the size of the original ABox, our algorithm

now produes a double exponential blowup in the size of the original ABox.

Theorem 27. Let L 2 fALCO;ALCIO;ALCQO;ALCQIOg. Then there

exist polynomials p

1

, p

2

, and q suh that, for every L-ABox A and every update

U , there exists an L-ABox A

0

suh that the following hold:

� A � U = A

0

;

� jA

0

j � 2

2

p

1

(jAj)

� 2

p

2

(jUj)

;

� A

0

an be omputed in time q(jA

0

j).
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Note that, for the languages L

�

, with L as in Theorem 27, we have Boolean

updates whose size is as desribed in Theorem 23, i.e., only single exponential

in the original ABox: the �nal onversion step of non-Boolean L

�

-ABoxes into

Boolean L-ABoxes an simply be omitted. We urrently don't know whether

the upper bounds given in Theorem 27 an be improved.

5 Small(er) Updated ABoxes

The size of the updated ABoxes omputed in the previous setions is exponential

in the size of the original ABox. When replaing the �-operator with Boolean

ABoxes, it is even 2-exponential in the size of the original ABox. In this setion,

we explore two di�erent ways to extend ALCQIO

�

and its fragments suh that

it beomes possible to ompute updated ABoxes that are only polynomial in the

size of the original ABox.

A �rst, rather restritive solution is to admit only onept assertions in

updates. Then, in all DLs aptured by Theorem 22, omputing the onepts C

U

beomes a lot simpler: just replae every onept name A in C with

A t t

:A(a)2B

fag u :( t

A(a)2B

fag):

If modi�ed in this way, our original onstrution learly yields updated ABoxes

that are only polynomial in the size of the original ABox (but still exponential

in U). The bound is independent of the oding of numbers and also applies to

iterated updates.

5.1 ALCQIO

�

Updates with TBoxes

We show how to produe \small"a updated ABoxes by allowing the introdution

of additional onept names via an ayli TBox. In the propositional ase, this

orresponds to admitting additional variables for de�ning abbreviations. In the

terminology of Cadoli et al. [7℄, we thus move from logial equivalene to query

equivalene. It will turn out that, in this way, we obtain updates that are only

polynomial in the size of the original ABox. It is interesting to note that, in the

propositional ase, the admission of additional variables does not lead to more

suint updated formulas: in the worst ase, they are still exponential in the

size of the update [7℄.

A onept de�nition is of the form A � C; where A is a onept name and

C is a onept. A TBox T is a �nite set of onept de�nitions with unique

left-hand sides. A TBox T is alled ayli if no onept is de�ned (diretly or

indiretly) in terms of itself. We all a onept name A de�ned in a TBox T and

write A 2 def(T ) if A ours on the left-hand side of a onept de�nition in T .
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Otherwise, we all A primitive and write A 2 prim(T ). A knowledge base (KB)

is a pair (T ;A) onsisting of a TBox T and an ABox A. An interpretation I

satis�es a onept de�nition A � C if A

I

= C

I

. I is a model of a TBox T ,

written I j= T , if I satis�es all onept de�nitions in T ; I is a model of a KB

K = (T ;A), written I j= K, if I is a model of T and A.

Let T be a TBox. An update U for T is a simple and onsistent ABox

that does not use onept names from def(T ). We do not allow de�ned onept

names in updates beause this is obviously equivalent to admitting updates with

omplex onepts and thus violates our poliy of onsidering only updates on

an atomi level.

De�nition 28 (Interpretation update). Let T be an ayli TBox, U an

update for T , and I, I

0

models of T suh that �

I

= �

I

0

and I and I

0

agree on

the interpretation of individual names. Then I

0

is the result of updating I with

U relative to T , written I =)

T

U

I

0

, if the following hold:

� for all onept names A 2 prim(T ):

A

I

0

= (A

I

[ fa

I

j A(a) 2 Ug) n fa

I

j :A(a) 2 Ug;

� for all role names r,

r

I

0

= (r

I

[ f(a

I

; b

I

) j r(a; b) 2 Ug) n f(a

I

; b

I

) j :r(a; b) 2 Ug:

4

The di�erene between De�nitions 1 and 28 is that the latter talks only about

onept names that are primitive w.r.t. T . Observe that the relation =)

T

U

is

still deterministi: in models of ayli TBoxes, the interpretation of primitive

onept names and role names determines the interpretation of de�ned onept

names in a unique way.

De�nition 29 (Knowledge Base Update). Let K

1

and K

2

be knowledge

bases, K

i

= (T

i

;A

i

), suh that prim(T

1

) = prim(T

2

) and T

1

� T

2

, and let U be

an update for T

1

. Then K

2

is a result of updating K

1

with U if the following

onditions hold:

(U1

0

) 8I; I

0

:

�

( I j= K

1

^ I =)

T

1

U

I

0

^ I

0

j= T

2

)! I

0

j= A

2

)

�

;

(U2

0

) 8I

0

:

�

I

0

j= K

2

! 9I (I j= K

1

^ I =)

T

1

U

I

0

)

�

.

In this ase, we write K

1

� U �

P

K

2

. 4

In ontrast to ABox updates, the result K

2

of updating a knowledge base is not

unique up to logial equivalene. This is due to the fat that we have more than

one hoie for introduing new onept de�nitions in T

2

. However, we have the

29



following, weaker form of equivalene. A primitive interpretation for a TBox T

is an interpretation that interprets only the primitive onept names in T and

the role names, but not the de�ned onept names. A primitive interpretation

is a primitive model of a knowledge base K if it an be extended to a model of

K by additionally interpreting the de�ned onept names. Then, it is an easy

onsequene of De�nition 29 that K

1

� U �

P

K

2

and K

1

� U �

P

K

0

2

implies that

K

2

and K

0

2

have the same primitive models.

We now use the notion of unfolding to establish a relationship between up-

dates of ABoxes and updates of knowledge bases. Let T be an ayli TBox,

and C a onept. The onept C

T

obtained from C by exhaustively replaing

de�ned onept names in C with their de�nitions from T is alled the unfolding

of C w.r.t. T . Clearly, all onept names ourring in C

T

are primitive w.r.t.

T . If A is an ABox, then the unfolding of A w.r.t. T is the ABox

A

T

:= (A n fC(a) j C(a) 2 Ag) [ fC

T

(a) j C(a) 2 Ag:

I.e., we keep role assertions and replae onept assertions by their unfolded

variants.

The following lemma shows that updated ABoxes for ayli TBoxes enode

updated ABoxes without ayli TBoxes. In the following, we use prim

T

(I) to

denote the (unique) primitive interpretation w.r.t. T that an be extended to

the full interpretation I.

Lemma 30. Let K

1

and K

2

be knowledge bases, K

i

= (T

i

;A

i

), suh that T

1

� T

2

and prim(T

1

) = prim(T

2

), and let U be an update for T

1

. Then

K

1

� U �

P

K

2

i� A

T

1

1

� U � A

T

2

2

:

Proof. \(" Let A

T

1

1

� U � A

T

2

2

. In order to prove that K

1

� U �

P

K

2

, we need

to show that (U1

0

) and (U2

0

) from De�nition 29 are satisifed:

(U1

0

) Let I and I

0

be interpretations suh that I j= K

1

, I =)

T

1

U

I

0

, and I

0

j=

T

2

. We need to show that then I

0

j= A

2

. Sine I j= A

1

; T

1

, we have

that prim

T

1

(I) j= A

T

1

1

. Moreover, sine prim

T

1

(I) =)

U

prim

T

1

(I

0

) and

A

T

1

1

� U � A

T

2

2

, by (U1) of De�nition 2 we obtain that prim

T

1

(I

0

) j= A

T

2

2

.

Thus, having prim(T

1

) = prim(T

2

) and I

0

j= T

2

, we obtain that I

0

j= A

2

.

(U2

0

) Let I

0

be an interpretation suh that I

0

j= K

2

. We need to show that

there is an I suh that I =)

T

1

U

I

0

and I j= K

1

. Sine I

0

j= A

2

; T

2

and prim(T

1

) = prim(T

2

), we have that prim

T

1

(I

0

) j= A

T

2

2

, and by (U2) of

De�nition 2, there exists an

^

I suh that

^

I =)

U

prim

T

1

(I

0

) and

^

I j= A

T

1

1

.

Take an I suh that prim

T

1

(I) =

^

I and I j= T

1

. Then, by de�nition of

unfolding we have that I j= A

1

. Thus I j= K

1

. Finally, sine T

2

� T

1

, it

also holds that I =)

T

1

U

I

0

.
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\)" Let K

1

� U �

P

K

2

. In order to prove that A

T

1

1

� U � A

T

2

2

, we need to

show that (U1) and (U2) from De�nition 2 are satis�ed:

(U1) Let I and I

0

be interpretations suh that I j= A

T

1

1

and I =)

U

I

0

. Take

an

^

I suh that prim

T

1

(

^

I) = I and

^

I j= T

1

. By de�nition of unfolding,

we have that

^

I j= A

1

. Now take an

^

I

0

suh that prim

T

2

(

^

I

0

) = I

0

. and

^

I

0

j= T

2

. Sine prim(T

1

) = prim(T

2

) and T

2

� T

1

, we easily obtain that

^

I =)

T

1

U

^

I

0

, and by (U1

0

) of De�nition 29 that

^

I

0

j= A

2

. But then we have

that I

0

j= A

T

2

2

.

(U2) Let I

0

be an interpretation suh that I

0

j= A

T

2

2

. We need to show that

there is an I suh that I =)

U

I

0

and I j= A

T

1

1

. Take an

^

I

0

suh that

prim

T

2

(

^

I

0

) = I

0

and

^

I

0

j= T

2

. By de�nition of unfolding we have that

^

I

0

j=

A

2

. Thus

^

I

0

j= K

2

and, by (U2

0

) of De�nition 29, there is an interpretation

^

I, suh that

^

I =)

T

1

U

^

I

0

and

^

I j= K

1

. Take I = prim

T

1

(

^

I). Then I j= A

T

1

1

.

Finally, by de�nition of =)

T

1

U

and sine prim(T

2

) = prim(T

1

), we have that

I =)

U

I

0

.

❏

We now show how to onstrut updated knowledge bases in ALCQIO

�

and

its fragments. Let K = (T ;A) be a knowledge base, and let U be an update for

T . As in Setion 4, we use D to denote the set of all diagrams for U and set,

for every D 2 D,

D

U

:= f j  2 U and : 2 Dg:

Additionally, we use sub(K) to denote the set of all subonepts of onepts

ourring in K. To onstrut the result of updating K with U , we introdue a

new onept name A

D

C

for every diagram D 2 D and every C 2 sub(K). For a

onept E, let trans(E;D) denote the onept on the right-hand side of the lause

for E

D

U

in Figure 6 without indutively expanding the ourring subonepts

C

D

U

, but with eah suh onept C

D

U

replaed with the onept name A

D

C

. For

example, trans(C u D;D) = A

D

C

u A

D

D

also if C and D are omplex. For eah

diagram D 2 D, de�ne a TBox

T

D

sub

:= fA

D

C

� trans(C;D) j C 2 sub(K) n def(T )g:

Then, we de�ne the TBox updated TBox as the union of the original TBox T

and, for eah diagram D, the TBox T

D

sub

and a version of T adapted to D:

T

0

:= T [

[

D2D

(T

D

sub

[ fA

D

A

� A

D

C

j A � C 2 T g):

For every D 2 D, we de�ne

A

D

U

:= fA

D

C

(a) j C(a) 2 Ag [

fr(a; b) j r(a; b) 2 A ^ :r(a; b) =2 D

U

g [

f:r(a; b) j :r(a; b) 2 A ^ r(a; b) =2 D

U

g
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Now we an de�ne the updated ABox A

0

by setting

A

0

=

_

D2D

^

A

D

U

[ D

U

[ (D n D

:

U

)

and �nally assemble the updated knowledge base by setting K

0

:= (T

0

;A

0

).

Note that the onept de�nitions from T appear in T

0

without being referred

to by A

0

. Intuitively, this is hardly surprising: the de�nitions in T were used

to desribe the previous state of the world. Sine this state has hanged, the

de�nitions in T are not appropriate any longer. We nevertheless keep T in the

updated knowledge base sine onept de�nitions are usually not only (tehni-

al) abbreviations, but rather reet the terminology of the appliation domain.

Therefore, they should not simply be disarded. One may even onsider produ-

ing an updated knowledge base that reuses as many onept de�nitions from T

as possible. This is outside the sope of the urrent paper.

Lemma 31. K � U �

P

K

0

Proof. By the onstrution of T

0

, it is obviously the ase that T

0

� T and

prim(T ) = prim(T

0

). Then, by Lemma 30 it suÆes to show that (A

0

)

T

0

is the

result of updating A

T

with U . Let us use (A

T

)

0

to refer to the update of A

T

with U , as onstruted in (1) in Setion 4. Sine the ABox update without

TBoxes is unique up to equivalene, we just need to show that (A

0

)

T

0

� (A

T

)

0

.

Sine the updates, and thus also their diagrams ontain no onept names from

def(T ), we have that

(A

0

)

T

0

=

_

D2D

^

(A

D

U

)

T

0

[ D

U

[ (D n D

:

U

)

and

(A

T

)

0

=

_

D2D

^

(A

T

)

D

U

[ D

U

[ D

D

U

:

Thus, sine it is easy to see that D

D

U

� D n D

:

U

for all D 2 D, it remains to

show that (A

D

U

)

T

0

� (A

T

)

D

U

for all D 2 D. But this is true due to

(A

D

C

)

T

0

� (C

T

)

D

U

for all C 2 sub(K);

whih is a onsequene of the de�nition of T

0

and an easily be shown by stru-

tural indution on C. ❏

We formulate the main result on updates with ayli TBoxes. In onstrast to

updates without TBoxes, updated knowledge bases are now polynomial in the

size of the original KB. Thus, Lemma 30 implies that we an use ayli TBoxes

to obtain a more suint presentation of updated ABoxes. In the following,

the size jT j of a TBox T is

P

A�C2T

jCj, and the size jKj of a knowledge base

K = (A; T ) is the sum of jT j and jAj.
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Theorem 32. Let L 2 fALCO

�

;ALCIO

�

;ALCQO

�

;ALCQIO

�

g. Then

there exist polynomials p

1

, p

2

, and q suh that, for every L-knowledge base

K = (T ;A) and every update U for T , there exists an L-knowledge base K

0

suh that

� K � U �

P

K

0

;

� jK

0

j � p

1

(jKj) � 2

p

2

(jUj)

;

� K

0

an be omputed in time q(jK

0

j).

Iterated Updates

As in Setion 4, we show that iterated updates do not produe a blowup of

the size of updated ABoxes that is worse than the blowup produed by a single

update.

Theorem 33. There exist polynomials p

1

; p

2

suh that the following holds: for

all knowledge bases K

0

; : : : ;K

n

and updates U

1

; : : : ;U

n

, if K

i

is the ABox om-

puted by our algorithm when K

i�1

is updated with U

i

, for 0 < i � n, then

jK

n

j � p

1

(jK

0

j) � 2

p

2

(jU

1

j+���+jU

n

j)

:

Proof. Let K

n

= (T

n

;A

n

) and jK

0

j = m. We analyze the sizes of T

n

and A

n

separately:

(a) It is easily seen that jA

i

j � (2�jU

i

j+ jA

i�1

j)�2

jU

i

j

� jA

i�1

j�2

3jU

i

j

: Sine

jA

0

j is bounded by m, it follows that jA

i

j � m � 2

3(jU

1

j+���+jU

i

j)

.

(b) For a TBox T , let jjT jj denote the number of onept de�nitions in T .

Moreover, let D

i

be the set of diagrams for U

i

. It is not diÆult to hek

that we have

jjT

1

jj = jjT

0

jj+ (jjT

0

jj+m)� jD

1

j:

and, for i > 1,

jjT

i

jj = jjT

i�1

jj+ (jjT

i�1

jj+ jT

i�1

j)� jD

i

j:

This equation uses jT

i�1

j instead if jK

i�1

j sine A

i�1

ontains only de�ned

onept names and no omplex onepts. Therefore, the ardinality of the

T

D

sub

omponent of T

i

is bounded by jT

i�1

j.

Sine jjT

i�1

jj is bounded by jT

i�1

j and the size of eah onept equation in

T

i

, i > 0, is bounded by a onstant, there is a onstant  suh that

jT

1

j � 3m� 2

jU

1

j

� m� 2

3jU

1

j

jT

i

j � 3� jT

i�1

j � 2

jU

i

j

� jT

i�1

j � 2

3jU

i

j

for i > 1:

It follows that jT

i

j � m� 2

3(jU

1

j+���+jU

i

j)

.

The polynomials p

1

and p

2

are now easily derived. ❏
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5.2 Updates in ALCQIO

[;n;O

As argued at the beginning of Setion 5, updated ALCQIO

�

ABoxes are only

polynomial in the size of the original ABox if the update ontains no role as-

sertions. Intuitively, updates with only onept assertions do not lead to an

exponential blowup beause we have available the Boolean operators on on-

epts, nominals, and the �-operator. In standard DLs, none of these operators

is available for roles: we an neither onstrut the union of roles, nor their om-

plement, nor a \nominal role" f(a; b)g with a and b nominals. In this setion, we

explore the possibility of onstruting updated ABoxes in a language in whih

suh onstrutors are available. The language we onsider is losely related to

those introdued and investigated in [6, 12, 13℄, and is of almost the same ex-

pressive power as C

2

, the two-variable fragment of �rst-order logi with ounting

quanti�ers [9℄.

Denote by ALCQIO

+

the desription logi extending ALCQIO

�

by means

of the role onstrutors \ (role intersetion), � (set-theoreti di�erene of roles),

and f(a; b)g (nominal roles). In this language, omplex roles are onstruted

starting from role names and nominal roles, and then applying \, �, and the

inverse role operator �

�

. The interpretation of omplex roles is as expeted:

� f(a; b)g

I

= f(a

I

; b

I

)g, for all a; b 2 N

I

;

� (r

1

\ r

2

)

I

= r

I

1

\ r

I

2

;

� (r

1

� r

2

)

I

= r

I

1

� r

I

2

.

We note that reasoning in ALCQIO

+

is deidable: this DL an easily be em-

bedded into C

2

and, therefore, ABox onsisteny is deidable in NExpTime

even if the numbers inside number restritions are oded in binary [9, 15, 17℄.

This bound is tight as, already in ALCQIO, reasoning is NExpTime-hard [24℄.

We now formulate the main result of this setion:

Theorem 34.

There exist polynomials p

1

, p

2

, and q suh that, for every ALCQIO

+

-ABox A

and every update U , there is an ALCQIO

+

-ABox A

0

suh that

� A � U � A

0

;

� jA

0

j � p

1

(jAj) � 2

p

2

(jUj)

;

� A

0

an be omputed in time q(jA

0

j).
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Proof. We modify the proof of Theorem 23. For ALCQIO

+

, the onstrution

of the onepts C

U

is muh simpler: it suÆes to replae every onept name A

in C with

A t t

:A(a)2U

fag u :( t

A(a)2U

fag)

and every role name r in C with

r [

[

:r(a;b)2U

f(a; b)g n (

[

r(a;b)2U

f(a; b)g):

The onepts C

U

are therefore of size polynomial in the size of C and U . The

ABox A

0

an then be onstruted in the same way as in the proof of Theorem 23

and is polynomial in the size of A, but exponential in the size of the update U .

❏

Clearly, Theorem 34 is independent of the oding of numbers, and, also with

iterated updates, updated ABoxes remain polynomial in the size of the original

ABox. An alternative to working with a desription logi suh as ALCQIO

+

, is

to work diretly in the two-variable fragment with ounting C

2

. Then, a result

analogous to Theorem 34 is easily obtained.

6 Conlusion

We have analyzed ABox updates in several ommon desription logis. The

main outome of our analysis is as follows: �rst, in the ase of the DLs under

onsideration, a desription logi has updates if and only if it is able to express

nominals and the � onstrutor (or, equivalently, admits Boolean ABoxes). Se-

ond, an exponential blowup annot by avoided unless NC = PTime. And third,

an exponential blowup in the size of the original ABox an be avoided if (i) we

allow the introdution of new onept de�nitions in ayli TBoxes or (ii) move

to DLs that inlude Boolean operators on roles and a ertain nominal onstru-

tor for roles, thus eliminating the syntati disbalane between onepts and

roles observed in most DLs. We have also shown that, in the ase of repeated

updates, there are no repeated exponential blowups.

There are two obvious diretions for future work. The �rst diretion is to

alleviate the syntati restrition posed on onepts appearing in updates. This

an be done either fully or in a ontrolled way. In the �rst ase, it is very

likely that updated ABoxes annot be omputed even if they exist. However,

this has not been proved for some basi DLs suh as ALCO

�

, and not for all

available types of semantis. In the seond ase, one may for example admit

Boolean ombinations of onept names in updates. It seems likely that this

generalization does not destroy omputability of updates.
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The seond diretion for future work is to inorporate yli TBoxes or GCIs

into our framework. As disussed in [3℄, it is not at all straightforward to �nd a

semantis for this ase that addresses the frame problem (posed by the priniple

of inertia) in a onvining way. One possible way around this problem is to

provide the user with expressive means that allow her to state, in the formulation

of the update, the fats that hange and the fats that don't. Note that this

annot be done with the updates used in the urrent paper sine they an only

talk about domain elements that are assigned a name by some individual name.

Aknowledgements

We are grateful to Franz Baader and Mihael Thielsher for stimulating disus-

sions.

Referenes

[1℄ C. Arees, P. Blakburn, and M. Marx. A road-map on omplexity for

hybrid logis. In J. Flum and M. Rodr��guez-Artalejo, editors, Computer

Siene Logi, number 1683 in Leture Notes in Computer Siene, pages

307{321. Springer-Verlag, 1999.

[2℄ C. Arees and M. de Rijke. From desription logis to hybrid logis, and

bak. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev,

editors, Advanes in Modal Logis Volume 3. CSLI Publiations, Stanford,

CA, USA, 2001.

[3℄ F. Baader, C. Lutz, M. Milii, U. Sattler, and F. Wolter. Integrating

desription logis and ation formalisms: First results. In Proeedings of

the Twentieth National Conferene on Arti�ial Intelligene (AAAI-05),

Pittsburgh, PA, USA, 2005.

[4℄ F. Baader, D. L. MGuiness, D. Nardi, and P. Patel-Shneider. The De-

sription Logi Handbook: Theory, implementation and appliations. Cam-

bridge University Press, 2003.

[5℄ A. Borgida. Language features for exible handling of exeptions in infor-

mation systems. ACM Transations on Database Systems, 10(4):565{603,

1985.

[6℄ A. Borgida. On the relative expressiveness of desription logis and predi-

ate logis. Arti�ial Intelligene, 82(1 - 2):353{367, 1996.

[7℄ M. Cadoli, F. M. Donini, P. Liberatore, and M. Shaerf. The size of a

revised knowledge base. Arti�ial Intelligene, 115(1):25{64, 1999.

36



[8℄ K. D. Forbus. Introduing ations into qualitative simulations. In In-

ternational Joint Conferene on Arti�ial Intelligene (IJCAI-89), pages

1273{1279. Morgan Kaufman, 1989.

[9℄ E. Gr�adel, M. Otto, and E. Rosen. Two-Variable Logi with Counting is De-

idable. In Proeedings of Twelfth IEEE Symposium on Logi in Computer

Siene (LICS'97), 1997.

[10℄ N. Kurtonina and M. de Rijke. Expressiveness of onept expressions in

�rst-order desription logis. Arti�ial Intelligene, 107(2):303{333, 1999.

[11℄ F. Lin. Embraing ausality in speifying the indeterminate e�ets of a-

tions. In B. Claney and D. Weld, editors, Proeedings of the 14th National

Conferene on Arti�ial Intelligene (AAAI-96), pages 670{676, Portland,

OR, Aug. 1996. MIT Press.

[12℄ C. Lutz and U. Sattler. The omplexity of reasoning with boolean modal

logis. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyashev,

editors, Advanes in Modal Logis Volume 3. CSLI Publiations, Stanford,

CA, USA, 2001.

[13℄ C. Lutz, U. Sattler, and F. Wolter. Modal logis and the two-variable

fragment. In Annual Conferene of the European Assoiation for Computer

Siene Logi CSL'01, LNCS, Paris, Frane, 2001. Springer Verlag.

[14℄ M.P.Shanahan. Solving the Frame Problem. MIT Press, 1997.

[15℄ L. Paholski, W. Szwast, and L. Tendera. Complexity results for �rst-order

two-variable logi with ounting. SIAM Journal on Computing, 29(4):1083{

1117, Aug. 2000.

[16℄ C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[17℄ I. Pratt-Hartmann. Complexity of the two-variable fragment with ounting

quanti�ers. Journal of Logi, Language, and Information, 14(3):369{395,

2005.

[18℄ R. Reiter. Knowledge in Ation. MIT Press, 2001.

[19℄ K. Satoh. Nonmonotoni reasoning by minimal belief revision. In Proeed-

ings of the International Conferene on Fifth Generation Computer Sys-

tems. Volume 2, pages 455{462. Springer Verlag, 1988.

[20℄ R. Sherl and H. Levesque. Knowledge, ation, and the frame problem.

AIJ, 144(1):1{39, 2003.

37



[21℄ M. Shmidt-Shau� and G. Smolka. Attributive onept desriptions with

omplements. Arti�ial Intelligene, 48(1):1{26, 1991.

[22℄ M. Thielsher. Nondeterministi ations in the uent alulus: Disjuntive

state update axioms. In S. H�olldobler, editor, Intelletis and Computa-

tional Logi, pages 327{345. Kluwer Aademi, 2000.

[23℄ M. Thielsher. Representing the knowledge of a robot. In A. Cohn,

F. Giunhiglia, and B. Selman, editors, KR, pages 109{120, Brekenridge,

CO, Apr. 2000. Morgan Kaufmann.

[24℄ S. Tobies. The omplexity of reasoning with ardinality restritions and

nominals in expressive desription logis. Journal of Arti�ial Intelligene

Researh, 12:199{217, 2000.

[25℄ M. Winslett. Reasoning about ation using a possible models approah. In

Proeedings of the 7th National Conferene on Arti�ial Intelligene (AAAI-

88), pages 89{93, 1988.

[26℄ M. Winslett. Updating Logial Databases. Cambridge University Press,

Cambridge, England, 1990.

38


