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ABSTRACT
There is a reent trend of extending epistemi logi (EL)

with dynami operators that allow to express the evolution

of knowledge and belief indued by knowledge-hanging a-

tions. The most basi suh extension is publi announe-

ment logi (PAL), whih is obtained from EL by adding an

operator for truthful publi announements. In this paper,

we onsider the omputational omplexity of PAL and show

that it oinides with that of EL. This holds in the single-

and multi-agent ase, and also in the presene of ommon

knowledge operators. We also prove that there are prop-

erties that an be expressed exponentially more suint in

PAL than in EL. This shows that, despite the known fat

that PAL and EL have the same expressive power, there is a

bene�t in adding the publi announement operator to EL:

it exponentially inreases the suintness of formulas with-

out having negative e�ets on omputational omplexity.

1. INTRODUCTION
One of the most prominent appliations of logi in agent-

based systems is reasoning about the knowledge and belief of

agents. Although traditionally, epistemi logi (EL) is the

basi logial tool for this purpose [14℄, it has always been

lear that EL is too simple for many relevant appliations

in this area. Most strikingly, basi EL does not inlude any

syntati or semanti means for representing dynami and

evolutionary aspets of knowledge. Sine it is ruial for al-

most all agent-based systems that the knowledge and belief

of agents are subjet to hange [1℄, suh expressive means

are often indispensible. In the literature, there are two dom-

inant approahes to adding dynamis to EL: �rst, EL an

be extended with a temporal omponent that allows to rea-

son about the evolution of knowledge over time [9℄. And

seond, EL an be extended with dynami operators that

allow to desribe the rami�ations of knowledge-hanging

ations. The latter approah is a relatively reent develop-

ment, and the resulting extensions of EL are often alled

dynami epistemi logis (DELs) [8℄.

By now, a large number of DELs has been proposed,

and the various proposals di�er onsiderably in expressive

power [2, 11, 16, 3, 4, 6, 7℄. However, there is a dynami

operator that is inluded in almost all proposed logis: the

publi announement operator that has �rst been introdued

in [16℄. This operator allows to state that, after some an-

nounement that is publily made by an outsider to all

agents simultaneously, some property holds true. Both the

announement and the property may inlude epistemi state-

ments suh as \agent a knows fat F" or \agent a believes

that agent b knows fat F". The announement is assumed

to be truthful, i.e., the person making the announement

does not lie. The e�et of the announement being publi is

that everybody knows the announed fat, everybody knows

that everybody knows it, and so forth. It is interesting to

note that the announed fat is not neessarily true any-

more after the announement. For example, this is the ase

if the announed fat is \agent a knows fat F , but agent b

doesn't know that" (beause, after the announement, agent

b knows that agent a knows F ).

The appropriateness of the publi announement operator

for inorporating dynamis into EL has been demonstrated

by elegantly modelling a number of standard problems in-

volving publi announements suh as the muddy hildren

puzzle [3, 8℄. It is also witnessed by the inlusion of this op-

erator in almost all proposed DELs|see the papers ited

above. Existing researh about the operator has mainly

onentrated on the expressiveness and axiomatis of the

obtained extensions of EL. For example, it is known that

EL with the publi announement operator has the same

expressive power as EL without it.
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However, performing

atual reasoning is of great importane when applying DELs

in agent-based systems, and thus, the omputational prop-

erties of suh logis need to be analyzed. While the om-

putational omplexity of model heking DELs is easily pin-

pointed, not muh is known about deiding satis�abilityand

validity (heneforth alled reasoning). Therefore, the pur-

pose of the urrent paper is to analyze the omputational

omplexity of reasoning in epistemi logis extended with the

publi announement operator. Sine omputational om-

plexity, expressiveness, and suintness issues turn out to

be intimately and subtly related to omputational omplex-

ity in the onsidered logis, we inlude the latter in our

analysis.

We start our investigation with publi announement logi

(PAL), the extension of basi EL with the publi announe-

ment operator. As noted above, the expressive power of PAL

is known to be idential to the expressive power of EL: there

exists an equivalene-preserving translation from the former

to the latter [16, 8℄. Computationally, this translation is

only moderately useful: it yields deidability of reasoning in

PAL, but it does not produe tight omplexity bounds due

to an exponential blowup in formula size. More preisely,

the known translation yields upper omplexity bounds for

PAL that are idential to those for EL, but raised by one

91This should not be taken as an indication that the operator is
not worth studying; see below.



exponential. In ontrast, the best known lower bounds are

the ones from EL.

In this paper, we show that the existing upper bounds an

be improved by one exponential, and thus reasoning in PAL

is of the same omplexity as reasoning in EL. To this end,

we �rst propose a novel, equivalene-preserving translation

from PAL to EL. Like the existing one, this translation in-

dues an exponential blowup in formula size. The advantage

of the new translation is that it an be modi�ed suh that it

is only satis�ability-preserving, but avoids the exponential

blowup in formula size. The modi�ed translation takes for-

mulas of single-agent PAL to formulas of single-agent EL,

and formulas of multi-agent PAL to formulas of multi-agent

EL extended with an \everybody knows" operator. Thus,

it an be used to prove that (i) single-agent PAL is NP-

omplete, and (ii) multi-agent PAL is PSpae-omplete. We

then extend our equivalene-preserving translation and its

satis�ability-preserving modi�ation to PAL extended with

(two variants of) ommon knowledge. In this ase, the tar-

get language of the translation is propositional dynami logi

(PDL), and we obtain ExpTime-ompleteness results.

Due to the fats that PAL and EL are equally expres-

sive and of the same omputational omplexity, one may be

tempted to think that the addition of the publi announe-

ment operator to EL is only syntati sugar and not of muh

interest. However, it has been onviningly argued in [3, 8℄

that PAL is a muh more intuitive and natural formalism for

talking about the dynamis of knowledge than EL. In this

paper, we add another, more onrete advantage of PAL: we

prove that there are properties that an be expressed expo-

nentially more suint in PAL than in EL. Thus, the pub-

li announement operator ontributes to the suintness

of the logi, and this exponential inrease in suintness

is not even penalised by an inrease in omputational om-

plexity. Of ourse, our suintness result also implies that

one annot hope to �nd an equivalene-preserving transla-

tion from PAL to EL that avoids an exponential blowup.

A limitation of our (urrent) suintness result is that it

applies only to the lass of all Kripke strutures, and not to

the lass of epistemi strutures.

2. PUBLIC ANNOUNCEMENT LOGIC
Let PL and N be ountable sets of propositional letters

and agents. The formulas of publi announement logi with

ommon knowledge (PALC) are built aording to the fol-

lowing syntax rule:

' ::= p j :' j ' ^  j K

a

' j ['℄ j C

A

'

where p ranges over PL, a ranges over N , and A ranges over

2

N

. The operator ['℄ is the publi announement operator :

['℄ states that, after ' is publially announed,  holds

true. A detailed introdution to PALC and how it an be

used to model the dynamis of knowledge an be found in

[3, 8℄. Here, we on�ne ourselves to a simple example: the

formula

K

a

(K

b

seret ^ [K

b

seret℄K



leaked

a;b

);

with seret and leaked

a;b

propositional letters, states the fol-

lowing: agent a knows that agent b knows the seret, and

if this is publially announed, then agent  will know that

agent a has leaked the seret to b.

By dropping the ommon knowledge operator C

A

' from

['℄p  '! p

['℄( ^ �)  ['℄ ^ ['℄�

['℄:  '! :['℄ 

['℄K

a

  '! K

a

['℄ 

Figure 1: The standard translation from PAL to EL.

PALC, we get formulas of publi announement logi (PAL).

By dropping the publi announement operator from PAL,

we get formulas of epistemi logi (EL). As usual, we use

'_ as an abbreviation for :(:'^: ), '!  for :'_ ,

b

K

a

' for :K

a

:', h'i for :['℄: , and > for p_:p, with p

an arbitrary (but �xed) propositional letter. When talking

of single-agent PAL or EL, we assume that N is a singleton.

In this ase, we drop the index �

a

from K

a

' and

b

K

a

'.

The semantis of PALC is de�ned by means of Kripke

strutures. An epistemi model (or model for short) is a

triple M = (S;�; V ) with S a non-empty set of states, � =

(�

a

)

a2N

a family of equivalene relations on S, and V a

funtion assigning a set of states V (p) � S with eah p 2 PL.

Given a model M = (S;�; V ) and an s 2 S, we de�ne:

M; s j= p i� s 2 V (p)

M; s j= :' i� M; s 6j= '

M; s j= ' ^  i� M; s j= ' and M; s j=  

M; s j= K

a

' i� s �

a

t implies M; t j= '; for all t 2 S

M; s j= ['℄ i� M; s j= ' implies Mj'; s j=  

M; s j= C

A

' i� s (

S

a2A

�

a

)

�

t implies M; t j= ';

for all t 2 S

where �

�

denotes the reexive-transitive losure operator on

binary relations, and the modelMj := (T;�

i

; U) is de�ned

as follows:

T := ft 2 S j M; t j=  g

�

a

:= �

a

\ (T � T )

U(p) := V (p) \ T:

It is easily heked that the semantis of the derived modal-

ities is as follows:

M; s j=

b

K

a

' i� s �

a

t and M; t j= '; for some t 2 S

M; s j= h'i i� M; s j= ' and Mj'; s j=  :

Given a model M, we use S(M) to denote the set of states

ofM. It is not too diÆult to see that, via the seond argu-

ment, the publi announement operator an be oneived

as a normal modal operator (in the sense of, e.g., [5℄) that

behaves in many ways like a modal operator for a funtional

modality. For example, h'i implies ['℄ .

3. EXPRESSIVITY AND SUCCINCTNESS
As �rst observed by Plaza [16℄, the basi epistemi logi

with publi announements PAL has exatly the same ex-

pressive power as EL. Indeed, by exhaustively applying the

rewrite rules in Figure 1, one an onvert every PAL formula

into an equivalent EL formula [8℄. For the purposes of this

paper, however, it is onvenient to work with a translation

that is di�erent from this standard one. To introdue the

new translation, we need a bit of notation: for ' a PAL for-

mula and � = '

1

� � �'

k

a �nite sequene of PAL formulas,



we use

� j'j to denote the length of ', i.e. the number of sym-

bols needed to write down ', inluding symbols suh

as \[" and \℄"; likewise, j�j denotes j'

1

j+ � � �+ j'

k

j;

� Mj� as an abbreviation for (((Mj'

1

)j'

2

) � � � j'

k

) with

Mj" =M;

� pre(�) to denote the set of all true pre�xes of � inlud-

ing the empty sequene ";

� for eah � 2 pre(�), �=� to denote the leftmost symbol

of � that is not in �.

We now de�ne, for every PAL formula ' and every �nite

sequene of PAL formulas �, an EL formula '

�

. The de�-

nition of the formulas '

�

proeeds by indution on j'j+ j�j

as shown in Figure 2. In the K

a

' ase, the onjuntion ol-

lapses to true if � = ". To see that we really do indution

on j'j+ j�j, note that the symbols \[" and \℄" ontribute to

the size of the left-hand side of the last line.

The most important property of the formulas '

�

is given

by the following lemma. It an be proved by indution on

j'j + j�j, for details onsult the Appendix A.

Lemma 1. For all modelsM = (S;�; V ), PAL formulas ',

�nite sequenes of PAL formulas �, and states s 2 S(Mj�),

we have M; s j= '

�

i� Mj�; s j= '.

Lemma 1 learly implies that eah PAL formula ' is equiv-

alent to the EL formula '

"

, whih gives us the new trans-

lation. It an easily be seen that this translation usually

produes di�erent formulas than the standard translation

given in Figure 1. For example, the result of translating

[p

1

℄[p

2

℄ � � � [p

k

℄q with our translation results in the formula

p

1

! (p

2

! (� � � ! (p

k

! q)));

whih is of length O(k). In ontrast, the standard transla-

tion produes a highly redundant formula of length 2

O(k)

.

Thus, there are formulas on whih our translation is expo-

nentially more suint. In general, however, the new trans-

lation does not avoid an exponential blowup in formula size.

See Theorem 2 below for example formulas.

Given the exponential blowup indued by both transla-

tions, it is a natural question whether the exponential blowup

in translating PAL to EL an be avoided at all. We answer

this question to the negative: PAL is exponentially more

suint than epistemi logi, at least on unrestrited mod-

els, i.e., on models whose relations are not required to be

equivalene relations. Our aim is to prove the following:

Theorem 2. For i � 0, de�ne

� '

0

:= >;

� '

i+1

:= hh'

i

i

b

K

a

>i

b

K

b

>.

On unrestrited models, every EL formula  equivalent to

'

i

is of length at least 2

i

, for all i � 0.

De�ne a sequene of EL formulas  

0

;  

0

0

;  

1

;  

0

1

;  

2

; : : : as

follows:

�  

0

:= >;

�  

0

i

:=  

i

^

b

K

a

 

i

;

p

�

:= p

(:')

�

:= :'

�

(' ^  )

�

:= '

�

^  

�

(K

a

')

�

:= K

a

(

^

�2pre(�)

(�=�)

�

! '

�

)

(['℄ )

�

:= '

�

!  

��'

Figure 2: The new translation.

�  

i+1

:=  

0

i�1

^

b

K

b

 

0

i�1

.

Using the translation from PAL to EL given in Setion 3,

whih also applies to the ase of unrestrited models, it is

straightforward to prove by indution on i that, for i � 0, '

i

is equivalent to  

i

. Thus, for proving Theorem 2 it suÆes

to prove that every EL formula � that is equivalent to  

i

on

unrestrited models is of length at least 2

i

, for all i � 0.

Let N = fa; bg be the set of relevant agents. In what

follows, a path set is a subset of N

�

. For ' an EL formula

' over the set of agents N , we de�ne the path-set P

'

of '

by strutural indution as follows:

� P

p

:= f"g;

� P

:'

:= P

'

;

� P

'^ 

:= P

'

[ P

 

;

� P

K

a

'

:= f"g [ faw j w 2 P

'

g.

Now, let � be an EL formula that is equivalent to  

i

, for

some i > 0. We show the following:

P

 

i

� P

�

: (�)

To prove (�), assume to the ontrary that there is a bw 2

P

 

i

n P

�

. De�ne a model M = (S;�; V ) as follows:

� S = P

 

i

;

� the relation �

�

, � 2 N , is de�ned by setting w �

�

v

if v = w�, for w; v 2 S;

� V (p) = ; for all p 2 PL.

A seond model M

0

= (S

0

;�

0

; V

0

) is de�ned as the restri-

tion of M to the set of states

S

0

:= S n fw 2 N

�

j w = bww

0

for some w

0

2 N

�

g:

It is not too hard to show that M is a model of  

i

, butM

0

is not. Details are left to the reader.

Lemma 3. M; " j=  

i

and M

0

; " 6j=  

i

.

We now show that � annot distinguish " inM from " inM

0

,

i.e., M; " j= � i� M

0

; " j= �. This learly is a ontradition

to Lemma 3 and the fat that � is equivalent to '

i

. Thus,

we have established (�). The fat that � annot distinguish

" in M from " in M

0

is an immediate onsequene of the

following lemma, whih is proved in Appendix A.

Lemma 4. For all s 2 S

0

and ' 2 sub(�) suh that

fsw j w 2 P

'

g � P

�

;

we have M; s j= ' i� M

0

; s j= '.



R(a) := f("; a)g

R(:') := R(') [ f(";:')g

R(' ^  ) := R(') [ R( ) [ f("; ' ^  )g

R(K

i

') := R(') [ f(";K

i

')g

R(['℄ ) := R(') [ f(' � �; #) j (�; #) 2 R( )g

[ f("; ['℄ )g

Figure 3: The relevant pairs.

Finally, j�j � 2

i

is a onsequene of (�) together with the

following lemma and the fat that, as is easily proved by

strutural indution, we have j'j � jP

'

j for all formulas '.

Lemma 5. For all i � 0, jP

 

i

j � 2

i

.

Proof. It is straightforward to prove by indution on i

that, for all i � 0, we have fa; bg

i

� P

 

i

.

This �nishes the proof of Theorem 2. We believe that PAL

is also exponentially more suint than EL on epistemi

strutures, but leave the proof as an open problem.

4. UPPER BOUNDS FOR PAL WITHOUT
COMMON KNOWLEDGE

Given the suintness of PAL established in the previous

setion, the question arises whether a penalty has to be paid

for this suintness in terms of omputational omplexity:

is reasoning in PAL more expensive than reasoning in epis-

temi logi? Interestingly, this is not the ase. We show

that satis�ability in PAL is NP-omplete in the single-agent

ase and PSpae-omplete in the multi-agent ase, just as in

epistemi logi [13℄. Lower bounds are immediate sine PAL

ontains EL as a fragment. The idea for obtaining the upper

bounds is to onvert the equivalene-preserving, but expo-

nential translation given in Setion 3 into a satis�ability-

preserving and polynomial translation. We start with the

single-agent ase.

4.1 Reducing Single-Agent PAL
We start with introduing some relevant notions. As these

notions will also be useful for dealing with multi-agent PAL,

we do not restrit ourselves to single-agent formulas here.

Let ' be a PAL formula. With sub('), we denote the set

of all subformulas of ', inluding '. With �('), we denote

the set of all pairs (�;  ), where  2 sub(') and � is a �-

nite (and possibly empty) sequene of formulas from sub(').

The subset R(') � �(') of relevant pairs for ' is de�ned

indutively as in Figure 3.

Intuitively, R(') gives us a representation of the subor-

dinate translations that our when indutively translating

the PAL formula ' to the EL formula '

"

. The entral ob-

servation is that, while there are exponentially many alls

to subordinate translations  

�

while translating ' into '

"

,

there are only polynomially many sub-translations with dif-

ferent arguments  ; �. Using strutural indution on ', it is

easy to show that the number of relevant pairs is polynomial

in j'j and that eah pair in R(') is of size polynomial in j'j.

Lemma 6. For all PAL formulas ', we have the following:

1. jR(')j � j'j;

B

�

q

:= p

�

q

$ q

B

�

:'

:= p

�

:'

$ :p

�

'

B

�

'^ 

:= p

�

'^ 

$ (p

�

'

^ p

�

 

)

B

�

K

i

'

:= p

�

K

i

'

$ K

i

(

^

�2pref(�)

p

�

�=�

! p

�

'

)

B

�

['℄ 

:= p

�

['℄ 

$ (p

�

'

! p

��'

 

)

Figure 4: The biimpliations B

�

'

.

2. for all (�;  ) 2 R('), the length of the sequene � is

bounded by j'j.

We now onvert the equivalene-preserving and exponential

translation from PAL to EL into a satis�ability-preserving

polynomial one. Intuitively, we introdue a propositional

letter p

 

�

for eah subordinate translation  

�

and enfore

that p

 

�

is true preisely where  

�

is true. This an be

done in an inremental fashion without atually using the

(exponentially long) formulas of  

�

.

Let '

0

be a single-agent PAL formula whose satis�ability

is to be deided. We introdue a set of propositional let-

ters L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g: W.l.o.g., assume that no

letter from L

'

0

ours in '

0

. For every (�; ') 2 R('

0

), we

de�ne a biimpliation B

�

'

as in Figure 4. Note that the right-

hand side of the biimpliations is derived in a straightfor-

ward way from the equivalene-preserving translation given

in Figure 2. Now de�ne

'

�

0

:= p

"

'

0

^

^

(�;')2R('

0

)

KB

�

'

:

Observe that j'

�

0

j is polynomial in '

0

: by Point 2 of Lemma 6,

jB

�

'

j is linear in j'

0

j for eah (�; ') 2 R('

0

). By Point 1

of Lemma 6, j'

�

0

j is thus quadrati in j'j. Clearly, '

�

0

is an

EL formula. As the next lemma shows, we have obtained

a satis�ability-preserving redution as desired. A proof an

be found in Appendix A.

Lemma 7. '

0

is satis�able i� '

�

0

is satis�able.

Taking together Lemma 7, the fat that j'

�

0

j is quadrati

in j'

0

j, and the known NP upper bound of single-agent EL

(i.e., modal S5 [9℄), we obtain an NP upper bound for single-

agent PAL.

Theorem 8. Satis�ability in single-agent PAL is NP-om-

plete.

4.2 Reducing Multi-Agent PAL
The general idea for obtaining a PSpae-upper bound for

multi-agent PAL is to proeed analogously to the single-

agent ase. However, there is a ompliation: in the seond

onjunt of the formula '

�

0

of Lemma 7, we use K as a mas-

ter modality that allows us to aess all states that are (di-

retly or indiretly) reahable from some given state. Alas,

a master modality is not available in multi-agent PAL. For

this reason, we redue multi-agent PAL to the extension of

EL with the everybody knows operator. The addition of this

operator provides us with a restrited version of the master

modality that is suÆient for our purposes.

2

Sine adding

92Adding everybody knows does not actually increase the ex-



the everybody knows operator to EL does not inrease the

omputational omplexity, we obtain the desired PSpae

upper bound.

Epistemi logi is extended to epistemi logi with every-

body knows (ELE) by adding the everybody knows operator

E

A

', where A is a �nite set of agents. The semantis of the

new operator is as follows:

M; s j= E

A

' i� s �

a

t implies M; t j= '; for all t 2 S

and all a 2 A:

PSpae-ompleteness of satis�ability in multi-agent ELE is

folklore. For the sake of ompleteness, we prove it expliitly

in Appendix B.

We now redue satis�ability in multi-agent PAL to satis-

�ability in ELE. Let '

0

be the PAL formula whose satis�a-

bility is to be deided, and let A be the set of agents used

in '

0

. As in the single agent ase, we introdue a set of

propositional letters L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g that are

assumed to be disjoint from the propositional letters used in

'

0

. The modal depth md(') of a PAL formula ' is de�ned

indutively in the usual way:

md(p) := 0

md(:') := md(')

md(' ^  ) := md(['℄ ) := max(md(');md( ))

md(K

a

') := md(') + 1:

De�ne an ELE formula

'

�

0

:= p

'

0

^

^

j�md('

0

)

^

(�;')2R('

0

)

E

j

A

B

�

'

;

where B

�

'

is the biimpliation as de�ned in Figure 4, E

j

A

' is

an abbreviation for the j-fold nesting E

A

� � �E

A

' if j > 0,

and E

0

A

' is simply '. The proof of the following lemma is

analogous to the proof of Lemma 7. The only di�erene on-

erns the \if" diretion, where we annot assume anymore

that the aessibility relations are universal relations. To

ompensate for this, it is not hard to argue that the seond

onjunt of '

�

0

ensures that B

�

'

is satis�ed at all relevant

states in models of '

�

0

, for all (�; ') 2 R('

0

). Details are

left to the reader.

Lemma 9. '

0

is satis�able i� '

�

0

is satis�able.

By Lemma 6 and the fat that md('

0

) is bounded by j'

0

j,

j'

�

0

j is polynomial in j'

0

j. From Lemma 9 and PSpae-

ompleteness of satis�ability in ELE, we thus obtain the

following result.

Theorem 10. Satis�ability in multi-agent PAL is PSpae-

omplete.

5. UPPER BOUNDS FOR PAL WITH COM-
MON KNOWLEDGE

It is known that (multi-agent) PALC is more expressive

than the standard epistemi language extended with a om-

mon knowledge operator (ELC). For example, it is shown

in [2℄ that there is no formula of ELC that is equivalent to

pressive power. However, it allows us to formulate the restricted
master modality exponentially more succinct than in standard EL,
which is crucial for obtaining a polynomial translation.

p

�

:= p

(:')

�

:= :'

�

(' ^  )

�

:= '

�

^  

�

(K

i

')

�

:= K

i

(

^

�2pre(�)

(�=�)

�

! '

�

)

(C

A

')

�

:= [[

�

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

�

?

�

�

℄℄'

�

(['℄ )

�

:= '

�

!  

��'

Figure 5: The formulas '

�

for PALC.

the PALC formula [p℄:C

�

:q. Thus, to obtain omplexity

results for PALC we annot proeed analogous to the PAL

ase, i.e., �rst exhibit an equivalene-preserving translation

to the logi obtained by dropping publi announements,

and then use this translation to devise a deision proe-

dure. The solution is to establish an equivalene-preserving

translation from PALC to a more expressive language than

ELC: propositional dynami logi (PDL). Sine satis�abil-

ity in both ELC (whih is a fragment of PALC) and PDL is

ExpTime-omplete, we an then ontinue as in the previous

setion.

Reall that PDL formulas and programs are built aord-

ing to the following syntax rules:

3

' ::= p j ' _ ' j :' j [[�℄℄'

� ::= a j � [ � j �;� j �

�

j '?

where p ranges over propositional letters and a over agents

(usually alled atomi programs in PDL). We de�ne the se-

mantis of PDL based on epistemi models by simultane-

ously de�nining the onsequene relation together with a-

essibility relations �

�

for omplex programs �. Let M =

(S;�; V ) be an epistemi model. Then, for all s; t 2 S, we

have:

s �

�[�

t i� s �

�

t or s �

�

t

s �

�;�

t i� s �

�

u and u �

�

t for some u 2 S

s �

�

�

t i� 9u

0

; : : : ; u

n

2 S, n � 0, suh that

s = u

0

, t = u

n

, and u

i

�

�

u

i+1

for i < n

s �

'?

t i� s = t and M; s j= '

M; s j= [[�℄℄' i� s �

�

t implies M; t j= '; for all t 2 S

where the lauses for the Booleans are as in Setion 2. To

distinguish PDL on unrestrited models from PDL on epis-

temi models, we will from now on all the latter ePDL.

Figure 5 de�nes, for eah PALC formula ' and �nite se-

quene of PALC formulas �, an ePDL formula '

�

. Observe

that the only di�erene to Figure 2 is the additional line

dealing with the ommon knowledge operator. As in the

ase of PAL, we use '

"

as the ePDL-translation of the PALC

formula '. The following lemma shows that '

"

is indeed

equivalent to '. The proof is a straightforward extension of

the proof of Lemma 1. Details are given in Appendix A.

Lemma 11. For all models M = (S;�; V ), PALC for-

mulas ', �nite sequenes of PALC formulas �, and states

s 2 S(Mj�), we have M; s j= '

�

i� Mj�; s j= '.

93We use the notation[[�℄℄' instead of the more familiar[�℄'
to distinguish this operator from the public announcement operator.



Our aim is to show ExpTime-ompleteness of PALC. As al-

ready the fragment ELC of PALC is ExpTime-hard [10℄, it

remains to establish an upper bound. In the following, we

prove this bound by a satis�ability-preserving and polyno-

mial redution to ePDL. Let us �rst �x the omplexity of

this logi.

Lemma 12. Satis�ability in ePDL is ExpTime-omplete.

Proof. The lower bound stems from ELC [10℄. The up-

per bound is easily obtained by a redution to onverse-PDL,

whih is ExpTime-omplete [10, 17, 12℄: to deide whether

a PDL formula ' is satis�able in an epistemi model, sim-

ply replae all atomi programs a in ' with (a [ a

�

)

�

, and

hek whether the resulting IPDL formula is satis�able in

an unrestrited model.

We may now redue satis�ability in PALC to satis�ability in

ePDL using the same approah as in the previous setion.

Let '

0

be the PALC formula whose satis�ability is to be

deided. The de�nition of the set of relevant pairs R('

0

)

an be extended to PALC formulas by adding the lause

R(C

A

') := R(') [ f("; C

A

')g:

As usual, we then introdue a set of propositional letters

L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g that are disjoint from the

propositional letters used in '

0

. Let a

1

; : : : ; a

k

be the agents

referred to in '

0

. We de�ne an ePDL-formula

'

�

0

:= p

'

0

^

^

(�;')2R('

0

)

[[(a

1

[ � � � [ a

k

)

�

℄℄B

�

'

;

where the biimpliations B

�

'

are de�ned as in Figure 4, with

the following additional lause for ommon knowledge:

B

�

C

A

'

:= p

�

C

A

'

$ [[(

[

a2A

a;

�

^

�2pre(�)

p

�

�=�

)?

�

�

℄℄p

�

 

:

The proof of the following lemma is analogous to the proof

of Lemmas 7 and 9.

Lemma 13. '

0

is satis�able i� '

�

0

is satis�able.

Sine Lemma 6 an easily be extended to the PALC ase,

j'

�

0

j is polynomial in j'

0

j. From Lemmas 12 and 13, we thus

obtain the following result.

Theorem 14. Satis�ability in PALC is ExpTime-omplete.

In [4℄, van Benthem et al. introdue a generalization of the

ommon knowledge operator C

A

(';  ) that is alled the rel-

ativized ommon knowledge operator and has the following

semantis:

M; w j= C

A

(';  ) i� M; w j= '! [[(

[

a2B

a;'?)

�

℄℄ ;

where the formula on the right-hand side is to be read as a

PDL formula. Clearly, C

A

' is equivalent to C

A

(>; '). In-

tuitively, relativized ommon knowledge resembles the until

operator from temporal logi.

Let PAL-RC denote the variant of PALC in whih om-

mon knowledge is replaed with relativized ommon knowl-

edge, and let EL-RC be the extension of EL with the rel-

ativized ommon knowledge operator. The introdution of

the new operator is a reation to the fat that there exists

no equivalene-preserving translation from PALC to ELC,

i.e, to the logi obtained by dropping the ommon knowl-

edge operator. By moving from ommon knowledge to the

stronger relativized ommon knowledge, suh a translation

is reovered: as shown in [4℄, there exists an equivalene-

preserving translation from PAL-RC to EL-RC.

We an easily modify the translation given in Figure 5

suh that it maps formulas of PAL-RC to formulas of ePDL:

C

A

(';  )

�

:= '

�

! [[(

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

)?;'

�

?

�

�

℄℄ 

�

Then, we an ontinue along the lines of the redution from

PALC to ePDL to obtain a redution from PAL-RC to ePDL.

As in the PALC ase, we obtain the following theorem.

Theorem 15. Satis�ability in PAL-RC is ExpTime-om-

plete.

6. CONCLUSION
We have analyzed the suintness and omputational

omplexity of (several variations of) epistemi logi extended

with a publi announement operator. The main results are

that, �rst, there are ertain properties that an be expressed

exponentially more suint in PAL than in EL, and, se-

ond, despite this suintness the omputational omplexity

of PAL and EL oinides. As future work, it would be nie to

prove the exponential suintness of PAL as ompared with

EL also on epistemi strutures. It is not lear whether a

relatively simple argument suh as the one given in Setion 3

an be used in this ase. Moreover, it would be interesting

to analyze the omputational omplexity of other announe-

ment operators, in partiular of private announements as

onsidered, e.g., in [2, 11℄.
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APPENDIX

A. PROOF DETAILS

Lemma 1. For all modelsM = (S;�; V ), PAL formulas ',

�nite sequenes of PAL formulas �, and states s 2 S(Mj�),

we have M; s j= '

�

i� Mj�; s j= '.

Proof. The proof is by indution on j'j+ j�j. The base

ase is j'j + j�j = 1. Then ' = p 2 PL and � = ". We have

Mj� = M and '

�

= ' and are done. For the indution

step, let Mj� = (T;�; U) and make a ase distintion on

the form of ':

� ' = p. Trivial by de�nition of p

�

.

� ' = : or ' = ( ^ #). Easy using the de�nition of

(: )

�

, the semantis, and the indution hypothesis.

� ' = K

a

 . Let M; s j= (K

a

 )

�

. We have to show

that Mj�; s j= K

a

 , i.e. that Mj�; t j=  for all t 2 T

with s �

a

t. Hene, let t 2 T with s �

a

t. Then

we have M; t j= (�=�)

�

for all � 2 pre(�): assume to

the ontrary that M; t 6j= (�=�)

�

for some � 2 pre(�).

By indution hypothesis, we get Mj�; t 6j= (�=�). Thus

the state t is not present inMj� ��=� and onsequently

t =2 T , whih is a ontradition. Thus M; t j= (�=�)

�

for all � 2 pre(�), implying M; t j=

V

�2pre(�)

(�=�)

�

.

Sine s �

a

t, we additionally have s �

a

t. Together

withM; s j= (K

a

 )

�

, we getM; t j=  

�

. By indution

hypothesis, we obtain Mj�; t j=  as required.

Now let Mj�; s j= K

a

 . We have to show thatM; s j=

(K

a

 )

�

, i.e. thatM; t j=  

�

for all t 2 S with (i) s �

a

t

and (ii) M; t j=

V

�2pre(�)

(�=�)

�

. Hene, let t 2 S suh

that (i) and (ii) are satis�ed. We show by indution

on the length of � that t is a state in Mj� for all � 2

pre(�) [ f�g.

{ � = ". Trivial sine Mj" =M.

{ � = �

0

� #. By indution hypothesis, t is a state

in Mj�

0

. By (ii), we have M; t j= (�

0

=�)

�

0

. By

(outer) indution hypothesis, this yields Mj�

0

; t j=

(�

0

=�). Thus, t is a state in (Mj�

0

)j(�

0

=�) =Mj�.

Thus, s; t 2 T . Hene, (i) yields s �

a

t. Together

with Mj�; s j= K

a

 , we get Mj�; t j=  . By indution

hypothesis, we get M; t j=  

�

as required.

� ' = [ ℄#. Then M; s j= ([ ℄#)

�

i� M; s 6j=  

�

or

M; s j= #

�� 

i� Mj�; s 6j=  or Mj� �  ; s j= # i�

Mj�; s 6j=  or (Mj�)j ; s j= # i� Mj�; s j= [ ℄#.

The �rst \i�" holds by de�nition of ([ ℄#)

�

, the seond

by indution hypothesis, the third sine Mj� �  =

(Mj�)j , and the fourth by the semantis.

Lemma 3. For all s 2 S

0

and ' 2 sub(�) suh that

fsw j w 2 P

'

g � P

�

;

we have M; s j= ' i� M

0

; s j= '.

Proof. The proof is by indution on the struture of '.

As the indution start and the Boolean ases are trivial, we

only treat the ase ' = K

�

 .

\(". Let M

0

; s j= '. We have to show that, for all t 2 S,

s �

�

t implies M; t j= '. Hene, let t 2 S with s �

�

t.

Then t = s�. We �rst show that t does no have pre�x bw.

Assume that the ontrary holds. Sine s 2 S

0

and thus

s does not have pre�x bw, we have t = bw. Sine � 2 P

'

and fsw j w 2 P

'

g � P

�

, the latter yields bw 2 P

�

, in

ontradition to bw =2 P

�

. Thus, t does not have pre�x bw,

i.e., t 2 S

0

. We have P

 

= fw j �w 2 P

'

g. Thus, t = s�

and fsw j w 2 P

'

g � P

�

yield ftw j w 2 P

 

g � P

�

. Finally,

IH, M

0

; s j= ', and s �

0

�

t yield M; t j=  as required.

\)". Let M; s j= '. We have to show that, for all t 2 S

0

,

s �

0

�

t implies M

0

; t j= '. Hene, let t 2 S

0

with s �

0

�

t.

Then t = s�. We have P

 

= fw j �w 2 P

'

g. Thus, t = s�

and fsw j w 2 P

'

g � P

�

yield ftw j w 2 P

 

g � P

�

. Finally,

IH, M; s j= ', and s �

�

t yield M

0

; t j=  as required.

Lemma 7. The single-agent PAL formula '

0

is satis�able

i� the single-agent EL-formula '

�

0

is satis�able.

Proof. \if". Let M = (S;�; V ) be a model of '

�

0

, and

let s

0

2 S withM; s

0

j= '

�

0

. By standard results on the uni-

modal logi S5, we may w.l.o.g. assume that � = S � S [5℄.

Thus, the seond onjunt of '

�

0

implies that K; s j= B

�

'

for

all s 2 S and all ('; �) 2 R('

0

).



We show that, for all s 2 S and all (�; ') 2 R('

0

), we

have

M; s j= '

�

i� M; s j= p

�

'

:

By Lemma 1, from this we get Mj�; s j= ' i� M; s j= p

�

'

.

Sine M; s

0

j= p

"

'

0

, this yields M; s

0

j= '

0

as required.

The proof is by indution on j'j + j�j. For the indution

start, we have ' = q and � = ". Then '

�

= q. Sine

M; s j= B

�

'

= p

�

q

$ q, we are done. For the indution step,

we make a ase distintion aording to the struture of ':

� ' = q. Idential to the indution start.

� ' = : . Then M; s j= (: )

�

i� M; s j= : 

�

i�

M; s 6j=  

�

i� M; s 6j= p

�

 

i� M; s j= :p

�

 

i� M; s j=

p

�

: 

.

The �rst \i�" holds by de�nition of (: )

�

, the seond

by the semantis, the third by indution hypothesis,

the fourth by the semantis, and the last sine M; s j=

B

�

: 

= p

�

: 

$ :p

�

 

.

� ' =  ^ #. Similar to the previous ase.

� ' = K . We have M; s j= (K )

�

i�

M; s j= K(

^

�2pre(�)

(�=�)

�

! '

�

);

whih is the ase i�, for all t 2 S,

s � t implies M; t j= (

^

�2pre(�)

(�=�)

�

! '

�

): (y)

By indution hypothesis, we get that, for all t 2 S,

(i) M; t j= �=�

�

i� M; t j= p

�

�=�

for all � 2 pre(�) and

(ii)M; t j= '

�

i�M; t j= p

�

'

. Thus, (y) holds i�, for all

t 2 S,

s � t implies M; t j= (

^

�2pre(�)

p

�

�=�

! p

�

'

): (z)

Sine M; s j= p

�

K'

$ K(

V

�2pref(�)

p

�

�=�

! p

�

'

); (z)

holds i� M; s j= p

�

K'

and we are done.

� ' = [ ℄#. We have M; s j= (['℄ )

�

i� M; s j= '

�

!

 

��'

i� M; s j= p

�

'

! p

��'

 

i� M; s j= p

�

['℄ 

.

The �rst \i�" holds by de�nition of (['℄ )

�

, the seond

by indution hypothesis, and the third sine M; s j=

p

�

['℄ 

$ (p

�

'

! p

��'

 

).

\only if". Let M = (S;�; V ) be a model of '

0

, and let

s

0

2 S with M; s

0

j= '

0

. De�ne a model M

0

as M by

additionally setting, for (�; ') 2 R('

0

),

V (p

�

'

) := fs 2 S j M; s j= '

�

g:

Using the de�nition of the translation '

�

and the impli-

ations B

�

'

, it is straightforward to show by indution on

j'j + j�j that

M

0

; s j= B

�

'

for all (�; ') 2 R('

0

) and s 2 S:

Sine M; s

0

j= '

0

, we have M

0

; s

0

j= p

"

'

0

. Thus, M

0

; s

0

j=

'

�

0

.

Lemma 11. For all models M = (S;�; V ), PALC for-

mulas ', �nite sequenes of PALC formulas �, and states

s 2 S(Mj�), we have M; s j= '

�

i� Mj�; s j= '.

Proof. The proof is analogous to that of Lemma 1. We

only treat the additional ase for ommon knowledge:

� ' = C

A

 . Let M; s j= (C

A

 )

�

. We have to show that

Mj�; s j= C

A

 , i.e. that Mj�; t j=  for all t 2 T with

s (

S

a2A

�

a

)

�

t. Hene, let t 2 T with s (

S

a2A

�

a

)

�

t.

Then there are s

1

; : : : ; s

k

2 T with s

1

= s, s

k

= t, and

(s

i

; s

i+1

) 2

S

a2A

�

a

for 1 � i < k. We have M; s

i

j=

(�=�)

�

for all � 2 pre(�) and 1 < i � k: assume to the

ontrary of what is to be shown that M; s

i

6j= (�=�)

�

for some � 2 pre(�) and some i with 1 < i � k. By

indution hypothesis, we get Mj�; s

i

6j= (�=�). Thus

the state s

i

is not present inMj� ��=� and onsequently

s

i

=2 T , whih is a ontradition. Thus M; s

i

j= (�=�)

�

for all � 2 pre(�) and 1 < i � k. Moreover, we learly

have (s

i

; s

i+1

) 2

S

a2A

�

a

for 1 � i < k. It follows that

(s; t) 2 �

�

�

, where

� :=

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

�

?:

Together with M; s j= (C

A

 )

�

, we get M; t j=  

�

.

By indution hypothesis, we obtain Mj�; t j=  as re-

quired.

Now letMj�; s j= C

A

 . We have to show thatM; s j=

(C

A

 )

�

, i.e. that M; t j=  

�

for all t 2 S with (s; t) 2

�

�

�

. Hene, let t 2 S with (s; t) 2 �

�

�

. Then there are

s

1

; : : : ; s

k

2 T with s

1

= s, s

k

= t, and (s

i

; s

i+1

) 2 �

�

for 1 � i < k. We show by indution on the length of

� that s

i

is a state in Mj� for all � 2 pre(�)[ f�g and

all i with 1 < i � k.

{ � = ". Trivial sine Mj" =M.

{ � = �

0

� #. By indution hypothesis, s

i

is a state in

Mj�

0

. Sine (s

i�1

; s

i

) 2 �

�

, we have M; s

i

j=

(�

0

=�)

�

0

. By (outer) indution hypothesis, this

yields Mj�

0

; s

i

j= (�

0

=�). Thus, s

i

is a state in

(Mj�

0

)j(�

0

=�) =Mj�.

Thus, we have s

1

; : : : ; s

k

2 T . As (s

i

; s

i+1

) 2 �

�

im-

plies (s

0

; s

i+1

) 2

S

a2A

�

a

, this yields

(s; t) 2 (

[

a2A

�

a

)

�

:

Together with Mj�; s j= C

A

 , we get Mj�; t j=  . By

indution hypothesis, we get M; t j=  

�

as required.

B. EPISTEMIC LOGIC WITH “EVERYBODY
KNOWS” IS IN PSPACE

To obtain a PSpae algorithm for satis�ability in ELE,

whih is EL extended with the \everybody knows" operator,

we devise a variation of the K-worlds style algorithm as �rst

desribed in [15℄.

De�nition 16 (Type). Let � be a set of ELE-formulas.

We use l(�) to denote the smallest set of ELE-formulas that

satis�es the following properties:

� � � l(�);

� l(�) is losed under taking subformulas and single nega-

tions;

� if E

a

1

;:::;a

k

 2 l(�), then K

a

1

 ; : : : ;K

a

k

 2 l(�).

A type for � is a subset t � l(�) satisfying the following

properties:

1. : 2 t i�  =2 t, for all : 2 l(�);



de�ne proedure ELE-World(�;�;ba)

if � is not a type for � then

return false

for all :K

a

' 2 � with a 6= ba do

set 	 := f:'g [ f ;K

a

 j K

a

 2 �g

[ f:K

a

 j :K

a

 2 �g

non-deterministially hoose a subset �

0

� l(	)

if 	 6� �

0

or ELE-World(�

0

;	; a) = false then

return false

return true

Figure 6: The Proedure ELE-World.

2.  ^ # 2 t i�  ; # 2 t, for all  ^ # 2 l(�);

3. E

a

1

;:::;a

k

 2 t i� K

a

1

 ; : : : ;K

a

k

 2 t, for all

E

a

1

;:::;a

k

 2 l(�);

4. K

a

 2 t implies  2 t, for all K

a

 2 l(�).

A type t is alled realizable if there exists a modelM and a

state s of M suh that M; s j= ' for all ' 2 t. 3

The algorithm for deiding satis�ability in ELE is based in

the proedure ELE-World given in Figure 6. This proedure

gets as arguments two sets of formulas � and �, and an agent

ba. It heks whether � is a realizable type for � by trying to

onstrut a tree-shaped model. Intuitively, every reursive

all of the algorithm orresponds to one state of this model,

and the relational struture is the reexive-transitive losure

of the reursion tree. The agent ba is passed as an argument

to ensure termination: if � ontains a formula :K

a

', then

we will generate a diret a-suessor y of the urrent state

x suh that y satis�es '. Sine a is an equivalene rela-

tion, the type of y will ontain exatly the same formulas

of the form :K

a

 that we �nd in the type of x. However,

there is no need to introdue suessors of y as witnesses for

these formulas sine relations are equivalene relations and

we have already generated witnesses for x. Suh situations

are heked by expliitly passing the agent a as an argument

if the urrent state is an a-suessor of its predeessor.

To deide the satis�ability of the input formula '

0

, we

guess a subset 	 � l('

0

) suh that '

0

2 	 and all ELE-

World(	; f'

0

g;?), where \?" is simply a dummy value. We

laim that ELE-World always terminates, and that its re-

ursion depth is bounded linearly in the length of the input

formula. To prove this, we need a few notions. The modal

depth md(') of an ELE-formula ' is de�ned indutively in

the usual way:

md(p) := 0

md(' ^  ) := max(md(');md( ))

md(K

a

') := md(E

a

1

;:::;a

k

') := md(') + 1

Let � be a set of formulas. Then we use md(�) to denote

maxfmd(') j ' 2 �g if � is non-empty and 0 otherwise.

For b 2 N , we use �

b

to denote the set f' 2 � j ' of the

form K

b

 or :K

b

 g.

Lemma 17. The reursion depth of ELE-World(	; f'

0

g;?)

is bounded by md('

0

).

Proof. Consider a path of length k in the reursion tree

generated by the all ELE-World(	; f'

0

g;?), and let

(�

1

;�

1

; a

1

); : : : ; (�

k

;�

k

; a

k

)

be the arguments to ELE-World on this path, with

(�

1

;�

1

; a

1

) = (	; f'

0

g;?):

It is easily seen that md(�

1

) � md(�

2

). We additionally

show that md(�

i+1

) < md(�

i

) for 2 � i < k. Together

with md(�

1

) � md('

0

), it follows that k � md('

0

) + 1.

Thus, the length of the path is bounded by md('

0

).

We �rst establish the following property: by onstrution

of the set �

0

that is used as an argument in reursive alls,

it is readily heked that we have, for 2 � i � k,

md(�

b

i

) < md(�

a

i

i

) for all b 6= a

i

: (�)

We an now show that, for 2 < i � k,

md(�

i

) = md(�

a

i

i

) > md(�

a

i+1

i

) = md(�

a

i+1

i+1

) = md(�

i+1

):

The �rst equality is implied by (�). The inequality follows

from (�) and the fat that, by de�nition of ELE-World, we

have a

i

6= a

i+1

for 1 � i < k. The last but one equality holds

sine, also by de�nition of ELE-World, we have �

a

i+1

i

=

�

a

i+1

i+1

for 1 � i < k. Finally, the last equality is again due

to (�).

Conerning orretness of the algorithm, it is a matter of

routine to establish the following lemma.

Lemma 18. An ELE-formula '

0

is satis�able in an epis-

temi model i� there exists a set 	 � l('

0

) suh that '

0

2 	

and ELE-World(	; f'

0

g;?) returns true.

Sine md('

0

) is linearly bounded by the length of '

0

and the

spae onsumption of ELE-World is bounded linearly by its

reursion depth, Lemmas 17 and 18 together with Savith's

Theorem yield the following result.

Theorem 19. Satis�ability of (multi-agent) ELE-formulas

is in PSpae.


