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ABSTRACT
There is a re
ent trend of extending epistemi
 logi
 (EL)

with dynami
 operators that allow to express the evolution

of knowledge and belief indu
ed by knowledge-
hanging a
-

tions. The most basi
 su
h extension is publi
 announ
e-

ment logi
 (PAL), whi
h is obtained from EL by adding an

operator for truthful publi
 announ
ements. In this paper,

we 
onsider the 
omputational 
omplexity of PAL and show

that it 
oin
ides with that of EL. This holds in the single-

and multi-agent 
ase, and also in the presen
e of 
ommon

knowledge operators. We also prove that there are prop-

erties that 
an be expressed exponentially more su

in
t in

PAL than in EL. This shows that, despite the known fa
t

that PAL and EL have the same expressive power, there is a

bene�t in adding the publi
 announ
ement operator to EL:

it exponentially in
reases the su

in
tness of formulas with-

out having negative e�e
ts on 
omputational 
omplexity.

1. INTRODUCTION
One of the most prominent appli
ations of logi
 in agent-

based systems is reasoning about the knowledge and belief of

agents. Although traditionally, epistemi
 logi
 (EL) is the

basi
 logi
al tool for this purpose [14℄, it has always been


lear that EL is too simple for many relevant appli
ations

in this area. Most strikingly, basi
 EL does not in
lude any

synta
ti
 or semanti
 means for representing dynami
 and

evolutionary aspe
ts of knowledge. Sin
e it is 
ru
ial for al-

most all agent-based systems that the knowledge and belief

of agents are subje
t to 
hange [1℄, su
h expressive means

are often indispensible. In the literature, there are two dom-

inant approa
hes to adding dynami
s to EL: �rst, EL 
an

be extended with a temporal 
omponent that allows to rea-

son about the evolution of knowledge over time [9℄. And

se
ond, EL 
an be extended with dynami
 operators that

allow to des
ribe the rami�
ations of knowledge-
hanging

a
tions. The latter approa
h is a relatively re
ent develop-

ment, and the resulting extensions of EL are often 
alled

dynami
 epistemi
 logi
s (DELs) [8℄.

By now, a large number of DELs has been proposed,

and the various proposals di�er 
onsiderably in expressive

power [2, 11, 16, 3, 4, 6, 7℄. However, there is a dynami


operator that is in
luded in almost all proposed logi
s: the

publi
 announ
ement operator that has �rst been introdu
ed

in [16℄. This operator allows to state that, after some an-

noun
ement that is publi
ly made by an outsider to all

agents simultaneously, some property holds true. Both the

announ
ement and the property may in
lude epistemi
 state-

ments su
h as \agent a knows fa
t F" or \agent a believes

that agent b knows fa
t F". The announ
ement is assumed

to be truthful, i.e., the person making the announ
ement

does not lie. The e�e
t of the announ
ement being publi
 is

that everybody knows the announ
ed fa
t, everybody knows

that everybody knows it, and so forth. It is interesting to

note that the announ
ed fa
t is not ne
essarily true any-

more after the announ
ement. For example, this is the 
ase

if the announ
ed fa
t is \agent a knows fa
t F , but agent b

doesn't know that" (be
ause, after the announ
ement, agent

b knows that agent a knows F ).

The appropriateness of the publi
 announ
ement operator

for in
orporating dynami
s into EL has been demonstrated

by elegantly modelling a number of standard problems in-

volving publi
 announ
ements su
h as the muddy 
hildren

puzzle [3, 8℄. It is also witnessed by the in
lusion of this op-

erator in almost all proposed DELs|see the papers 
ited

above. Existing resear
h about the operator has mainly


on
entrated on the expressiveness and axiomati
s of the

obtained extensions of EL. For example, it is known that

EL with the publi
 announ
ement operator has the same

expressive power as EL without it.

1

However, performing

a
tual reasoning is of great importan
e when applying DELs

in agent-based systems, and thus, the 
omputational prop-

erties of su
h logi
s need to be analyzed. While the 
om-

putational 
omplexity of model 
he
king DELs is easily pin-

pointed, not mu
h is known about de
iding satis�abilityand

validity (hen
eforth 
alled reasoning). Therefore, the pur-

pose of the 
urrent paper is to analyze the 
omputational


omplexity of reasoning in epistemi
 logi
s extended with the

publi
 announ
ement operator. Sin
e 
omputational 
om-

plexity, expressiveness, and su

in
tness issues turn out to

be intimately and subtly related to 
omputational 
omplex-

ity in the 
onsidered logi
s, we in
lude the latter in our

analysis.

We start our investigation with publi
 announ
ement logi


(PAL), the extension of basi
 EL with the publi
 announ
e-

ment operator. As noted above, the expressive power of PAL

is known to be identi
al to the expressive power of EL: there

exists an equivalen
e-preserving translation from the former

to the latter [16, 8℄. Computationally, this translation is

only moderately useful: it yields de
idability of reasoning in

PAL, but it does not produ
e tight 
omplexity bounds due

to an exponential blowup in formula size. More pre
isely,

the known translation yields upper 
omplexity bounds for

PAL that are identi
al to those for EL, but raised by one

91This should not be taken as an indication that the operator is
not worth studying; see below.



exponential. In 
ontrast, the best known lower bounds are

the ones from EL.

In this paper, we show that the existing upper bounds 
an

be improved by one exponential, and thus reasoning in PAL

is of the same 
omplexity as reasoning in EL. To this end,

we �rst propose a novel, equivalen
e-preserving translation

from PAL to EL. Like the existing one, this translation in-

du
es an exponential blowup in formula size. The advantage

of the new translation is that it 
an be modi�ed su
h that it

is only satis�ability-preserving, but avoids the exponential

blowup in formula size. The modi�ed translation takes for-

mulas of single-agent PAL to formulas of single-agent EL,

and formulas of multi-agent PAL to formulas of multi-agent

EL extended with an \everybody knows" operator. Thus,

it 
an be used to prove that (i) single-agent PAL is NP-


omplete, and (ii) multi-agent PAL is PSpa
e-
omplete. We

then extend our equivalen
e-preserving translation and its

satis�ability-preserving modi�
ation to PAL extended with

(two variants of) 
ommon knowledge. In this 
ase, the tar-

get language of the translation is propositional dynami
 logi


(PDL), and we obtain ExpTime-
ompleteness results.

Due to the fa
ts that PAL and EL are equally expres-

sive and of the same 
omputational 
omplexity, one may be

tempted to think that the addition of the publi
 announ
e-

ment operator to EL is only synta
ti
 sugar and not of mu
h

interest. However, it has been 
onvin
ingly argued in [3, 8℄

that PAL is a mu
h more intuitive and natural formalism for

talking about the dynami
s of knowledge than EL. In this

paper, we add another, more 
on
rete advantage of PAL: we

prove that there are properties that 
an be expressed expo-

nentially more su

in
t in PAL than in EL. Thus, the pub-

li
 announ
ement operator 
ontributes to the su

in
tness

of the logi
, and this exponential in
rease in su

in
tness

is not even penalised by an in
rease in 
omputational 
om-

plexity. Of 
ourse, our su

in
tness result also implies that

one 
annot hope to �nd an equivalen
e-preserving transla-

tion from PAL to EL that avoids an exponential blowup.

A limitation of our (
urrent) su

in
tness result is that it

applies only to the 
lass of all Kripke stru
tures, and not to

the 
lass of epistemi
 stru
tures.

2. PUBLIC ANNOUNCEMENT LOGIC
Let PL and N be 
ountable sets of propositional letters

and agents. The formulas of publi
 announ
ement logi
 with


ommon knowledge (PALC) are built a

ording to the fol-

lowing syntax rule:

' ::= p j :' j ' ^  j K

a

' j ['℄ j C

A

'

where p ranges over PL, a ranges over N , and A ranges over

2

N

. The operator ['℄ is the publi
 announ
ement operator :

['℄ states that, after ' is publi
ally announ
ed,  holds

true. A detailed introdu
tion to PALC and how it 
an be

used to model the dynami
s of knowledge 
an be found in

[3, 8℄. Here, we 
on�ne ourselves to a simple example: the

formula

K

a

(K

b

se
ret ^ [K

b

se
ret℄K




leaked

a;b

);

with se
ret and leaked

a;b

propositional letters, states the fol-

lowing: agent a knows that agent b knows the se
ret, and

if this is publi
ally announ
ed, then agent 
 will know that

agent a has leaked the se
ret to b.

By dropping the 
ommon knowledge operator C

A

' from

['℄p  '! p

['℄( ^ �)  ['℄ ^ ['℄�

['℄:  '! :['℄ 

['℄K

a

  '! K

a

['℄ 

Figure 1: The standard translation from PAL to EL.

PALC, we get formulas of publi
 announ
ement logi
 (PAL).

By dropping the publi
 announ
ement operator from PAL,

we get formulas of epistemi
 logi
 (EL). As usual, we use

'_ as an abbreviation for :(:'^: ), '!  for :'_ ,

b

K

a

' for :K

a

:', h'i for :['℄: , and > for p_:p, with p

an arbitrary (but �xed) propositional letter. When talking

of single-agent PAL or EL, we assume that N is a singleton.

In this 
ase, we drop the index �

a

from K

a

' and

b

K

a

'.

The semanti
s of PALC is de�ned by means of Kripke

stru
tures. An epistemi
 model (or model for short) is a

triple M = (S;�; V ) with S a non-empty set of states, � =

(�

a

)

a2N

a family of equivalen
e relations on S, and V a

fun
tion assigning a set of states V (p) � S with ea
h p 2 PL.

Given a model M = (S;�; V ) and an s 2 S, we de�ne:

M; s j= p i� s 2 V (p)

M; s j= :' i� M; s 6j= '

M; s j= ' ^  i� M; s j= ' and M; s j=  

M; s j= K

a

' i� s �

a

t implies M; t j= '; for all t 2 S

M; s j= ['℄ i� M; s j= ' implies Mj'; s j=  

M; s j= C

A

' i� s (

S

a2A

�

a

)

�

t implies M; t j= ';

for all t 2 S

where �

�

denotes the re
exive-transitive 
losure operator on

binary relations, and the modelMj := (T;�

i

; U) is de�ned

as follows:

T := ft 2 S j M; t j=  g

�

a

:= �

a

\ (T � T )

U(p) := V (p) \ T:

It is easily 
he
ked that the semanti
s of the derived modal-

ities is as follows:

M; s j=

b

K

a

' i� s �

a

t and M; t j= '; for some t 2 S

M; s j= h'i i� M; s j= ' and Mj'; s j=  :

Given a model M, we use S(M) to denote the set of states

ofM. It is not too diÆ
ult to see that, via the se
ond argu-

ment, the publi
 announ
ement operator 
an be 
on
eived

as a normal modal operator (in the sense of, e.g., [5℄) that

behaves in many ways like a modal operator for a fun
tional

modality. For example, h'i implies ['℄ .

3. EXPRESSIVITY AND SUCCINCTNESS
As �rst observed by Plaza [16℄, the basi
 epistemi
 logi


with publi
 announ
ements PAL has exa
tly the same ex-

pressive power as EL. Indeed, by exhaustively applying the

rewrite rules in Figure 1, one 
an 
onvert every PAL formula

into an equivalent EL formula [8℄. For the purposes of this

paper, however, it is 
onvenient to work with a translation

that is di�erent from this standard one. To introdu
e the

new translation, we need a bit of notation: for ' a PAL for-

mula and � = '

1

� � �'

k

a �nite sequen
e of PAL formulas,



we use

� j'j to denote the length of ', i.e. the number of sym-

bols needed to write down ', in
luding symbols su
h

as \[" and \℄"; likewise, j�j denotes j'

1

j+ � � �+ j'

k

j;

� Mj� as an abbreviation for (((Mj'

1

)j'

2

) � � � j'

k

) with

Mj" =M;

� pre(�) to denote the set of all true pre�xes of � in
lud-

ing the empty sequen
e ";

� for ea
h � 2 pre(�), �=� to denote the leftmost symbol

of � that is not in �.

We now de�ne, for every PAL formula ' and every �nite

sequen
e of PAL formulas �, an EL formula '

�

. The de�-

nition of the formulas '

�

pro
eeds by indu
tion on j'j+ j�j

as shown in Figure 2. In the K

a

' 
ase, the 
onjun
tion 
ol-

lapses to true if � = ". To see that we really do indu
tion

on j'j+ j�j, note that the symbols \[" and \℄" 
ontribute to

the size of the left-hand side of the last line.

The most important property of the formulas '

�

is given

by the following lemma. It 
an be proved by indu
tion on

j'j + j�j, for details 
onsult the Appendix A.

Lemma 1. For all modelsM = (S;�; V ), PAL formulas ',

�nite sequen
es of PAL formulas �, and states s 2 S(Mj�),

we have M; s j= '

�

i� Mj�; s j= '.

Lemma 1 
learly implies that ea
h PAL formula ' is equiv-

alent to the EL formula '

"

, whi
h gives us the new trans-

lation. It 
an easily be seen that this translation usually

produ
es di�erent formulas than the standard translation

given in Figure 1. For example, the result of translating

[p

1

℄[p

2

℄ � � � [p

k

℄q with our translation results in the formula

p

1

! (p

2

! (� � � ! (p

k

! q)));

whi
h is of length O(k). In 
ontrast, the standard transla-

tion produ
es a highly redundant formula of length 2

O(k)

.

Thus, there are formulas on whi
h our translation is expo-

nentially more su

in
t. In general, however, the new trans-

lation does not avoid an exponential blowup in formula size.

See Theorem 2 below for example formulas.

Given the exponential blowup indu
ed by both transla-

tions, it is a natural question whether the exponential blowup

in translating PAL to EL 
an be avoided at all. We answer

this question to the negative: PAL is exponentially more

su

in
t than epistemi
 logi
, at least on unrestri
ted mod-

els, i.e., on models whose relations are not required to be

equivalen
e relations. Our aim is to prove the following:

Theorem 2. For i � 0, de�ne

� '

0

:= >;

� '

i+1

:= hh'

i

i

b

K

a

>i

b

K

b

>.

On unrestri
ted models, every EL formula  equivalent to

'

i

is of length at least 2

i

, for all i � 0.

De�ne a sequen
e of EL formulas  

0

;  

0

0

;  

1

;  

0

1

;  

2

; : : : as

follows:

�  

0

:= >;

�  

0

i

:=  

i

^

b

K

a

 

i

;

p

�

:= p

(:')

�

:= :'

�

(' ^  )

�

:= '

�

^  

�

(K

a

')

�

:= K

a

(

^

�2pre(�)

(�=�)

�

! '

�

)

(['℄ )

�

:= '

�

!  

��'

Figure 2: The new translation.

�  

i+1

:=  

0

i�1

^

b

K

b

 

0

i�1

.

Using the translation from PAL to EL given in Se
tion 3,

whi
h also applies to the 
ase of unrestri
ted models, it is

straightforward to prove by indu
tion on i that, for i � 0, '

i

is equivalent to  

i

. Thus, for proving Theorem 2 it suÆ
es

to prove that every EL formula � that is equivalent to  

i

on

unrestri
ted models is of length at least 2

i

, for all i � 0.

Let N = fa; bg be the set of relevant agents. In what

follows, a path set is a subset of N

�

. For ' an EL formula

' over the set of agents N , we de�ne the path-set P

'

of '

by stru
tural indu
tion as follows:

� P

p

:= f"g;

� P

:'

:= P

'

;

� P

'^ 

:= P

'

[ P

 

;

� P

K

a

'

:= f"g [ faw j w 2 P

'

g.

Now, let � be an EL formula that is equivalent to  

i

, for

some i > 0. We show the following:

P

 

i

� P

�

: (�)

To prove (�), assume to the 
ontrary that there is a bw 2

P

 

i

n P

�

. De�ne a model M = (S;�; V ) as follows:

� S = P

 

i

;

� the relation �

�

, � 2 N , is de�ned by setting w �

�

v

if v = w�, for w; v 2 S;

� V (p) = ; for all p 2 PL.

A se
ond model M

0

= (S

0

;�

0

; V

0

) is de�ned as the restri
-

tion of M to the set of states

S

0

:= S n fw 2 N

�

j w = bww

0

for some w

0

2 N

�

g:

It is not too hard to show that M is a model of  

i

, butM

0

is not. Details are left to the reader.

Lemma 3. M; " j=  

i

and M

0

; " 6j=  

i

.

We now show that � 
annot distinguish " inM from " inM

0

,

i.e., M; " j= � i� M

0

; " j= �. This 
learly is a 
ontradi
tion

to Lemma 3 and the fa
t that � is equivalent to '

i

. Thus,

we have established (�). The fa
t that � 
annot distinguish

" in M from " in M

0

is an immediate 
onsequen
e of the

following lemma, whi
h is proved in Appendix A.

Lemma 4. For all s 2 S

0

and ' 2 sub(�) su
h that

fsw j w 2 P

'

g � P

�

;

we have M; s j= ' i� M

0

; s j= '.



R(a) := f("; a)g

R(:') := R(') [ f(";:')g

R(' ^  ) := R(') [ R( ) [ f("; ' ^  )g

R(K

i

') := R(') [ f(";K

i

')g

R(['℄ ) := R(') [ f(' � �; #) j (�; #) 2 R( )g

[ f("; ['℄ )g

Figure 3: The relevant pairs.

Finally, j�j � 2

i

is a 
onsequen
e of (�) together with the

following lemma and the fa
t that, as is easily proved by

stru
tural indu
tion, we have j'j � jP

'

j for all formulas '.

Lemma 5. For all i � 0, jP

 

i

j � 2

i

.

Proof. It is straightforward to prove by indu
tion on i

that, for all i � 0, we have fa; bg

i

� P

 

i

.

This �nishes the proof of Theorem 2. We believe that PAL

is also exponentially more su

in
t than EL on epistemi


stru
tures, but leave the proof as an open problem.

4. UPPER BOUNDS FOR PAL WITHOUT
COMMON KNOWLEDGE

Given the su

in
tness of PAL established in the previous

se
tion, the question arises whether a penalty has to be paid

for this su

in
tness in terms of 
omputational 
omplexity:

is reasoning in PAL more expensive than reasoning in epis-

temi
 logi
? Interestingly, this is not the 
ase. We show

that satis�ability in PAL is NP-
omplete in the single-agent


ase and PSpa
e-
omplete in the multi-agent 
ase, just as in

epistemi
 logi
 [13℄. Lower bounds are immediate sin
e PAL


ontains EL as a fragment. The idea for obtaining the upper

bounds is to 
onvert the equivalen
e-preserving, but expo-

nential translation given in Se
tion 3 into a satis�ability-

preserving and polynomial translation. We start with the

single-agent 
ase.

4.1 Reducing Single-Agent PAL
We start with introdu
ing some relevant notions. As these

notions will also be useful for dealing with multi-agent PAL,

we do not restri
t ourselves to single-agent formulas here.

Let ' be a PAL formula. With sub('), we denote the set

of all subformulas of ', in
luding '. With �('), we denote

the set of all pairs (�;  ), where  2 sub(') and � is a �-

nite (and possibly empty) sequen
e of formulas from sub(').

The subset R(') � �(') of relevant pairs for ' is de�ned

indu
tively as in Figure 3.

Intuitively, R(') gives us a representation of the subor-

dinate translations that o

ur when indu
tively translating

the PAL formula ' to the EL formula '

"

. The 
entral ob-

servation is that, while there are exponentially many 
alls

to subordinate translations  

�

while translating ' into '

"

,

there are only polynomially many sub-translations with dif-

ferent arguments  ; �. Using stru
tural indu
tion on ', it is

easy to show that the number of relevant pairs is polynomial

in j'j and that ea
h pair in R(') is of size polynomial in j'j.

Lemma 6. For all PAL formulas ', we have the following:

1. jR(')j � j'j;

B

�

q

:= p

�

q

$ q

B

�

:'

:= p

�

:'

$ :p

�

'

B

�

'^ 

:= p

�

'^ 

$ (p

�

'

^ p

�

 

)

B

�

K

i

'

:= p

�

K

i

'

$ K

i

(

^

�2pref(�)

p

�

�=�

! p

�

'

)

B

�

['℄ 

:= p

�

['℄ 

$ (p

�

'

! p

��'

 

)

Figure 4: The biimpli
ations B

�

'

.

2. for all (�;  ) 2 R('), the length of the sequen
e � is

bounded by j'j.

We now 
onvert the equivalen
e-preserving and exponential

translation from PAL to EL into a satis�ability-preserving

polynomial one. Intuitively, we introdu
e a propositional

letter p

 

�

for ea
h subordinate translation  

�

and enfor
e

that p

 

�

is true pre
isely where  

�

is true. This 
an be

done in an in
remental fashion without a
tually using the

(exponentially long) formulas of  

�

.

Let '

0

be a single-agent PAL formula whose satis�ability

is to be de
ided. We introdu
e a set of propositional let-

ters L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g: W.l.o.g., assume that no

letter from L

'

0

o

urs in '

0

. For every (�; ') 2 R('

0

), we

de�ne a biimpli
ation B

�

'

as in Figure 4. Note that the right-

hand side of the biimpli
ations is derived in a straightfor-

ward way from the equivalen
e-preserving translation given

in Figure 2. Now de�ne

'

�

0

:= p

"

'

0

^

^

(�;')2R('

0

)

KB

�

'

:

Observe that j'

�

0

j is polynomial in '

0

: by Point 2 of Lemma 6,

jB

�

'

j is linear in j'

0

j for ea
h (�; ') 2 R('

0

). By Point 1

of Lemma 6, j'

�

0

j is thus quadrati
 in j'j. Clearly, '

�

0

is an

EL formula. As the next lemma shows, we have obtained

a satis�ability-preserving redu
tion as desired. A proof 
an

be found in Appendix A.

Lemma 7. '

0

is satis�able i� '

�

0

is satis�able.

Taking together Lemma 7, the fa
t that j'

�

0

j is quadrati


in j'

0

j, and the known NP upper bound of single-agent EL

(i.e., modal S5 [9℄), we obtain an NP upper bound for single-

agent PAL.

Theorem 8. Satis�ability in single-agent PAL is NP-
om-

plete.

4.2 Reducing Multi-Agent PAL
The general idea for obtaining a PSpa
e-upper bound for

multi-agent PAL is to pro
eed analogously to the single-

agent 
ase. However, there is a 
ompli
ation: in the se
ond


onjun
t of the formula '

�

0

of Lemma 7, we use K as a mas-

ter modality that allows us to a

ess all states that are (di-

re
tly or indire
tly) rea
hable from some given state. Alas,

a master modality is not available in multi-agent PAL. For

this reason, we redu
e multi-agent PAL to the extension of

EL with the everybody knows operator. The addition of this

operator provides us with a restri
ted version of the master

modality that is suÆ
ient for our purposes.

2

Sin
e adding

92Adding everybody knows does not actually increase the ex-



the everybody knows operator to EL does not in
rease the


omputational 
omplexity, we obtain the desired PSpa
e

upper bound.

Epistemi
 logi
 is extended to epistemi
 logi
 with every-

body knows (ELE) by adding the everybody knows operator

E

A

', where A is a �nite set of agents. The semanti
s of the

new operator is as follows:

M; s j= E

A

' i� s �

a

t implies M; t j= '; for all t 2 S

and all a 2 A:

PSpa
e-
ompleteness of satis�ability in multi-agent ELE is

folklore. For the sake of 
ompleteness, we prove it expli
itly

in Appendix B.

We now redu
e satis�ability in multi-agent PAL to satis-

�ability in ELE. Let '

0

be the PAL formula whose satis�a-

bility is to be de
ided, and let A be the set of agents used

in '

0

. As in the single agent 
ase, we introdu
e a set of

propositional letters L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g that are

assumed to be disjoint from the propositional letters used in

'

0

. The modal depth md(') of a PAL formula ' is de�ned

indu
tively in the usual way:

md(p) := 0

md(:') := md(')

md(' ^  ) := md(['℄ ) := max(md(');md( ))

md(K

a

') := md(') + 1:

De�ne an ELE formula

'

�

0

:= p

'

0

^

^

j�md('

0

)

^

(�;')2R('

0

)

E

j

A

B

�

'

;

where B

�

'

is the biimpli
ation as de�ned in Figure 4, E

j

A

' is

an abbreviation for the j-fold nesting E

A

� � �E

A

' if j > 0,

and E

0

A

' is simply '. The proof of the following lemma is

analogous to the proof of Lemma 7. The only di�eren
e 
on-


erns the \if" dire
tion, where we 
annot assume anymore

that the a

essibility relations are universal relations. To


ompensate for this, it is not hard to argue that the se
ond


onjun
t of '

�

0

ensures that B

�

'

is satis�ed at all relevant

states in models of '

�

0

, for all (�; ') 2 R('

0

). Details are

left to the reader.

Lemma 9. '

0

is satis�able i� '

�

0

is satis�able.

By Lemma 6 and the fa
t that md('

0

) is bounded by j'

0

j,

j'

�

0

j is polynomial in j'

0

j. From Lemma 9 and PSpa
e-


ompleteness of satis�ability in ELE, we thus obtain the

following result.

Theorem 10. Satis�ability in multi-agent PAL is PSpa
e-


omplete.

5. UPPER BOUNDS FOR PAL WITH COM-
MON KNOWLEDGE

It is known that (multi-agent) PALC is more expressive

than the standard epistemi
 language extended with a 
om-

mon knowledge operator (ELC). For example, it is shown

in [2℄ that there is no formula of ELC that is equivalent to

pressive power. However, it allows us to formulate the restricted
master modality exponentially more succinct than in standard EL,
which is crucial for obtaining a polynomial translation.

p

�

:= p

(:')

�

:= :'

�

(' ^  )

�

:= '

�

^  

�

(K

i

')

�

:= K

i

(

^

�2pre(�)

(�=�)

�

! '

�

)

(C

A

')

�

:= [[

�

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

�

?

�

�

℄℄'

�

(['℄ )

�

:= '

�

!  

��'

Figure 5: The formulas '

�

for PALC.

the PALC formula [p℄:C

�

:q. Thus, to obtain 
omplexity

results for PALC we 
annot pro
eed analogous to the PAL


ase, i.e., �rst exhibit an equivalen
e-preserving translation

to the logi
 obtained by dropping publi
 announ
ements,

and then use this translation to devise a de
ision pro
e-

dure. The solution is to establish an equivalen
e-preserving

translation from PALC to a more expressive language than

ELC: propositional dynami
 logi
 (PDL). Sin
e satis�abil-

ity in both ELC (whi
h is a fragment of PALC) and PDL is

ExpTime-
omplete, we 
an then 
ontinue as in the previous

se
tion.

Re
all that PDL formulas and programs are built a

ord-

ing to the following syntax rules:

3

' ::= p j ' _ ' j :' j [[�℄℄'

� ::= a j � [ � j �;� j �

�

j '?

where p ranges over propositional letters and a over agents

(usually 
alled atomi
 programs in PDL). We de�ne the se-

manti
s of PDL based on epistemi
 models by simultane-

ously de�nining the 
onsequen
e relation together with a
-


essibility relations �

�

for 
omplex programs �. Let M =

(S;�; V ) be an epistemi
 model. Then, for all s; t 2 S, we

have:

s �

�[�

t i� s �

�

t or s �

�

t

s �

�;�

t i� s �

�

u and u �

�

t for some u 2 S

s �

�

�

t i� 9u

0

; : : : ; u

n

2 S, n � 0, su
h that

s = u

0

, t = u

n

, and u

i

�

�

u

i+1

for i < n

s �

'?

t i� s = t and M; s j= '

M; s j= [[�℄℄' i� s �

�

t implies M; t j= '; for all t 2 S

where the 
lauses for the Booleans are as in Se
tion 2. To

distinguish PDL on unrestri
ted models from PDL on epis-

temi
 models, we will from now on 
all the latter ePDL.

Figure 5 de�nes, for ea
h PALC formula ' and �nite se-

quen
e of PALC formulas �, an ePDL formula '

�

. Observe

that the only di�eren
e to Figure 2 is the additional line

dealing with the 
ommon knowledge operator. As in the


ase of PAL, we use '

"

as the ePDL-translation of the PALC

formula '. The following lemma shows that '

"

is indeed

equivalent to '. The proof is a straightforward extension of

the proof of Lemma 1. Details are given in Appendix A.

Lemma 11. For all models M = (S;�; V ), PALC for-

mulas ', �nite sequen
es of PALC formulas �, and states

s 2 S(Mj�), we have M; s j= '

�

i� Mj�; s j= '.

93We use the notation[[�℄℄' instead of the more familiar[�℄'
to distinguish this operator from the public announcement operator.



Our aim is to show ExpTime-
ompleteness of PALC. As al-

ready the fragment ELC of PALC is ExpTime-hard [10℄, it

remains to establish an upper bound. In the following, we

prove this bound by a satis�ability-preserving and polyno-

mial redu
tion to ePDL. Let us �rst �x the 
omplexity of

this logi
.

Lemma 12. Satis�ability in ePDL is ExpTime-
omplete.

Proof. The lower bound stems from ELC [10℄. The up-

per bound is easily obtained by a redu
tion to 
onverse-PDL,

whi
h is ExpTime-
omplete [10, 17, 12℄: to de
ide whether

a PDL formula ' is satis�able in an epistemi
 model, sim-

ply repla
e all atomi
 programs a in ' with (a [ a

�

)

�

, and


he
k whether the resulting IPDL formula is satis�able in

an unrestri
ted model.

We may now redu
e satis�ability in PALC to satis�ability in

ePDL using the same approa
h as in the previous se
tion.

Let '

0

be the PALC formula whose satis�ability is to be

de
ided. The de�nition of the set of relevant pairs R('

0

)


an be extended to PALC formulas by adding the 
lause

R(C

A

') := R(') [ f("; C

A

')g:

As usual, we then introdu
e a set of propositional letters

L

'

0

:= fp

�

'

j (�; ') 2 R('

0

)g that are disjoint from the

propositional letters used in '

0

. Let a

1

; : : : ; a

k

be the agents

referred to in '

0

. We de�ne an ePDL-formula

'

�

0

:= p

'

0

^

^

(�;')2R('

0

)

[[(a

1

[ � � � [ a

k

)

�

℄℄B

�

'

;

where the biimpli
ations B

�

'

are de�ned as in Figure 4, with

the following additional 
lause for 
ommon knowledge:

B

�

C

A

'

:= p

�

C

A

'

$ [[(

[

a2A

a;

�

^

�2pre(�)

p

�

�=�

)?

�

�

℄℄p

�

 

:

The proof of the following lemma is analogous to the proof

of Lemmas 7 and 9.

Lemma 13. '

0

is satis�able i� '

�

0

is satis�able.

Sin
e Lemma 6 
an easily be extended to the PALC 
ase,

j'

�

0

j is polynomial in j'

0

j. From Lemmas 12 and 13, we thus

obtain the following result.

Theorem 14. Satis�ability in PALC is ExpTime-
omplete.

In [4℄, van Benthem et al. introdu
e a generalization of the


ommon knowledge operator C

A

(';  ) that is 
alled the rel-

ativized 
ommon knowledge operator and has the following

semanti
s:

M; w j= C

A

(';  ) i� M; w j= '! [[(

[

a2B

a;'?)

�

℄℄ ;

where the formula on the right-hand side is to be read as a

PDL formula. Clearly, C

A

' is equivalent to C

A

(>; '). In-

tuitively, relativized 
ommon knowledge resembles the until

operator from temporal logi
.

Let PAL-RC denote the variant of PALC in whi
h 
om-

mon knowledge is repla
ed with relativized 
ommon knowl-

edge, and let EL-RC be the extension of EL with the rel-

ativized 
ommon knowledge operator. The introdu
tion of

the new operator is a rea
tion to the fa
t that there exists

no equivalen
e-preserving translation from PALC to ELC,

i.e, to the logi
 obtained by dropping the 
ommon knowl-

edge operator. By moving from 
ommon knowledge to the

stronger relativized 
ommon knowledge, su
h a translation

is re
overed: as shown in [4℄, there exists an equivalen
e-

preserving translation from PAL-RC to EL-RC.

We 
an easily modify the translation given in Figure 5

su
h that it maps formulas of PAL-RC to formulas of ePDL:

C

A

(';  )

�

:= '

�

! [[(

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

)?;'

�

?

�

�

℄℄ 

�

Then, we 
an 
ontinue along the lines of the redu
tion from

PALC to ePDL to obtain a redu
tion from PAL-RC to ePDL.

As in the PALC 
ase, we obtain the following theorem.

Theorem 15. Satis�ability in PAL-RC is ExpTime-
om-

plete.

6. CONCLUSION
We have analyzed the su

in
tness and 
omputational


omplexity of (several variations of) epistemi
 logi
 extended

with a publi
 announ
ement operator. The main results are

that, �rst, there are 
ertain properties that 
an be expressed

exponentially more su

in
t in PAL than in EL, and, se
-

ond, despite this su

in
tness the 
omputational 
omplexity

of PAL and EL 
oin
ides. As future work, it would be ni
e to

prove the exponential su

in
tness of PAL as 
ompared with

EL also on epistemi
 stru
tures. It is not 
lear whether a

relatively simple argument su
h as the one given in Se
tion 3


an be used in this 
ase. Moreover, it would be interesting

to analyze the 
omputational 
omplexity of other announ
e-

ment operators, in parti
ular of private announ
ements as


onsidered, e.g., in [2, 11℄.
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APPENDIX

A. PROOF DETAILS

Lemma 1. For all modelsM = (S;�; V ), PAL formulas ',

�nite sequen
es of PAL formulas �, and states s 2 S(Mj�),

we have M; s j= '

�

i� Mj�; s j= '.

Proof. The proof is by indu
tion on j'j+ j�j. The base


ase is j'j + j�j = 1. Then ' = p 2 PL and � = ". We have

Mj� = M and '

�

= ' and are done. For the indu
tion

step, let Mj� = (T;�; U) and make a 
ase distin
tion on

the form of ':

� ' = p. Trivial by de�nition of p

�

.

� ' = : or ' = ( ^ #). Easy using the de�nition of

(: )

�

, the semanti
s, and the indu
tion hypothesis.

� ' = K

a

 . Let M; s j= (K

a

 )

�

. We have to show

that Mj�; s j= K

a

 , i.e. that Mj�; t j=  for all t 2 T

with s �

a

t. Hen
e, let t 2 T with s �

a

t. Then

we have M; t j= (�=�)

�

for all � 2 pre(�): assume to

the 
ontrary that M; t 6j= (�=�)

�

for some � 2 pre(�).

By indu
tion hypothesis, we get Mj�; t 6j= (�=�). Thus

the state t is not present inMj� ��=� and 
onsequently

t =2 T , whi
h is a 
ontradi
tion. Thus M; t j= (�=�)

�

for all � 2 pre(�), implying M; t j=

V

�2pre(�)

(�=�)

�

.

Sin
e s �

a

t, we additionally have s �

a

t. Together

withM; s j= (K

a

 )

�

, we getM; t j=  

�

. By indu
tion

hypothesis, we obtain Mj�; t j=  as required.

Now let Mj�; s j= K

a

 . We have to show thatM; s j=

(K

a

 )

�

, i.e. thatM; t j=  

�

for all t 2 S with (i) s �

a

t

and (ii) M; t j=

V

�2pre(�)

(�=�)

�

. Hen
e, let t 2 S su
h

that (i) and (ii) are satis�ed. We show by indu
tion

on the length of � that t is a state in Mj� for all � 2

pre(�) [ f�g.

{ � = ". Trivial sin
e Mj" =M.

{ � = �

0

� #. By indu
tion hypothesis, t is a state

in Mj�

0

. By (ii), we have M; t j= (�

0

=�)

�

0

. By

(outer) indu
tion hypothesis, this yields Mj�

0

; t j=

(�

0

=�). Thus, t is a state in (Mj�

0

)j(�

0

=�) =Mj�.

Thus, s; t 2 T . Hen
e, (i) yields s �

a

t. Together

with Mj�; s j= K

a

 , we get Mj�; t j=  . By indu
tion

hypothesis, we get M; t j=  

�

as required.

� ' = [ ℄#. Then M; s j= ([ ℄#)

�

i� M; s 6j=  

�

or

M; s j= #

�� 

i� Mj�; s 6j=  or Mj� �  ; s j= # i�

Mj�; s 6j=  or (Mj�)j ; s j= # i� Mj�; s j= [ ℄#.

The �rst \i�" holds by de�nition of ([ ℄#)

�

, the se
ond

by indu
tion hypothesis, the third sin
e Mj� �  =

(Mj�)j , and the fourth by the semanti
s.

Lemma 3. For all s 2 S

0

and ' 2 sub(�) su
h that

fsw j w 2 P

'

g � P

�

;

we have M; s j= ' i� M

0

; s j= '.

Proof. The proof is by indu
tion on the stru
ture of '.

As the indu
tion start and the Boolean 
ases are trivial, we

only treat the 
ase ' = K

�

 .

\(". Let M

0

; s j= '. We have to show that, for all t 2 S,

s �

�

t implies M; t j= '. Hen
e, let t 2 S with s �

�

t.

Then t = s�. We �rst show that t does no have pre�x bw.

Assume that the 
ontrary holds. Sin
e s 2 S

0

and thus

s does not have pre�x bw, we have t = bw. Sin
e � 2 P

'

and fsw j w 2 P

'

g � P

�

, the latter yields bw 2 P

�

, in


ontradi
tion to bw =2 P

�

. Thus, t does not have pre�x bw,

i.e., t 2 S

0

. We have P

 

= fw j �w 2 P

'

g. Thus, t = s�

and fsw j w 2 P

'

g � P

�

yield ftw j w 2 P

 

g � P

�

. Finally,

IH, M

0

; s j= ', and s �

0

�

t yield M; t j=  as required.

\)". Let M; s j= '. We have to show that, for all t 2 S

0

,

s �

0

�

t implies M

0

; t j= '. Hen
e, let t 2 S

0

with s �

0

�

t.

Then t = s�. We have P

 

= fw j �w 2 P

'

g. Thus, t = s�

and fsw j w 2 P

'

g � P

�

yield ftw j w 2 P

 

g � P

�

. Finally,

IH, M; s j= ', and s �

�

t yield M

0

; t j=  as required.

Lemma 7. The single-agent PAL formula '

0

is satis�able

i� the single-agent EL-formula '

�

0

is satis�able.

Proof. \if". Let M = (S;�; V ) be a model of '

�

0

, and

let s

0

2 S withM; s

0

j= '

�

0

. By standard results on the uni-

modal logi
 S5, we may w.l.o.g. assume that � = S � S [5℄.

Thus, the se
ond 
onjun
t of '

�

0

implies that K; s j= B

�

'

for

all s 2 S and all ('; �) 2 R('

0

).



We show that, for all s 2 S and all (�; ') 2 R('

0

), we

have

M; s j= '

�

i� M; s j= p

�

'

:

By Lemma 1, from this we get Mj�; s j= ' i� M; s j= p

�

'

.

Sin
e M; s

0

j= p

"

'

0

, this yields M; s

0

j= '

0

as required.

The proof is by indu
tion on j'j + j�j. For the indu
tion

start, we have ' = q and � = ". Then '

�

= q. Sin
e

M; s j= B

�

'

= p

�

q

$ q, we are done. For the indu
tion step,

we make a 
ase distin
tion a

ording to the stru
ture of ':

� ' = q. Identi
al to the indu
tion start.

� ' = : . Then M; s j= (: )

�

i� M; s j= : 

�

i�

M; s 6j=  

�

i� M; s 6j= p

�

 

i� M; s j= :p

�

 

i� M; s j=

p

�

: 

.

The �rst \i�" holds by de�nition of (: )

�

, the se
ond

by the semanti
s, the third by indu
tion hypothesis,

the fourth by the semanti
s, and the last sin
e M; s j=

B

�

: 

= p

�

: 

$ :p

�

 

.

� ' =  ^ #. Similar to the previous 
ase.

� ' = K . We have M; s j= (K )

�

i�

M; s j= K(

^

�2pre(�)

(�=�)

�

! '

�

);

whi
h is the 
ase i�, for all t 2 S,

s � t implies M; t j= (

^

�2pre(�)

(�=�)

�

! '

�

): (y)

By indu
tion hypothesis, we get that, for all t 2 S,

(i) M; t j= �=�

�

i� M; t j= p

�

�=�

for all � 2 pre(�) and

(ii)M; t j= '

�

i�M; t j= p

�

'

. Thus, (y) holds i�, for all

t 2 S,

s � t implies M; t j= (

^

�2pre(�)

p

�

�=�

! p

�

'

): (z)

Sin
e M; s j= p

�

K'

$ K(

V

�2pref(�)

p

�

�=�

! p

�

'

); (z)

holds i� M; s j= p

�

K'

and we are done.

� ' = [ ℄#. We have M; s j= (['℄ )

�

i� M; s j= '

�

!

 

��'

i� M; s j= p

�

'

! p

��'

 

i� M; s j= p

�

['℄ 

.

The �rst \i�" holds by de�nition of (['℄ )

�

, the se
ond

by indu
tion hypothesis, and the third sin
e M; s j=

p

�

['℄ 

$ (p

�

'

! p

��'

 

).

\only if". Let M = (S;�; V ) be a model of '

0

, and let

s

0

2 S with M; s

0

j= '

0

. De�ne a model M

0

as M by

additionally setting, for (�; ') 2 R('

0

),

V (p

�

'

) := fs 2 S j M; s j= '

�

g:

Using the de�nition of the translation '

�

and the impli-


ations B

�

'

, it is straightforward to show by indu
tion on

j'j + j�j that

M

0

; s j= B

�

'

for all (�; ') 2 R('

0

) and s 2 S:

Sin
e M; s

0

j= '

0

, we have M

0

; s

0

j= p

"

'

0

. Thus, M

0

; s

0

j=

'

�

0

.

Lemma 11. For all models M = (S;�; V ), PALC for-

mulas ', �nite sequen
es of PALC formulas �, and states

s 2 S(Mj�), we have M; s j= '

�

i� Mj�; s j= '.

Proof. The proof is analogous to that of Lemma 1. We

only treat the additional 
ase for 
ommon knowledge:

� ' = C

A

 . Let M; s j= (C

A

 )

�

. We have to show that

Mj�; s j= C

A

 , i.e. that Mj�; t j=  for all t 2 T with

s (

S

a2A

�

a

)

�

t. Hen
e, let t 2 T with s (

S

a2A

�

a

)

�

t.

Then there are s

1

; : : : ; s

k

2 T with s

1

= s, s

k

= t, and

(s

i

; s

i+1

) 2

S

a2A

�

a

for 1 � i < k. We have M; s

i

j=

(�=�)

�

for all � 2 pre(�) and 1 < i � k: assume to the


ontrary of what is to be shown that M; s

i

6j= (�=�)

�

for some � 2 pre(�) and some i with 1 < i � k. By

indu
tion hypothesis, we get Mj�; s

i

6j= (�=�). Thus

the state s

i

is not present inMj� ��=� and 
onsequently

s

i

=2 T , whi
h is a 
ontradi
tion. Thus M; s

i

j= (�=�)

�

for all � 2 pre(�) and 1 < i � k. Moreover, we 
learly

have (s

i

; s

i+1

) 2

S

a2A

�

a

for 1 � i < k. It follows that

(s; t) 2 �

�

�

, where

� :=

[

a2A

a;

�

^

�2pre(�)

(�=�)

�

�

?:

Together with M; s j= (C

A

 )

�

, we get M; t j=  

�

.

By indu
tion hypothesis, we obtain Mj�; t j=  as re-

quired.

Now letMj�; s j= C

A

 . We have to show thatM; s j=

(C

A

 )

�

, i.e. that M; t j=  

�

for all t 2 S with (s; t) 2

�

�

�

. Hen
e, let t 2 S with (s; t) 2 �

�

�

. Then there are

s

1

; : : : ; s

k

2 T with s

1

= s, s

k

= t, and (s

i

; s

i+1

) 2 �

�

for 1 � i < k. We show by indu
tion on the length of

� that s

i

is a state in Mj� for all � 2 pre(�)[ f�g and

all i with 1 < i � k.

{ � = ". Trivial sin
e Mj" =M.

{ � = �

0

� #. By indu
tion hypothesis, s

i

is a state in

Mj�

0

. Sin
e (s

i�1

; s

i

) 2 �

�

, we have M; s

i

j=

(�

0

=�)

�

0

. By (outer) indu
tion hypothesis, this

yields Mj�

0

; s

i

j= (�

0

=�). Thus, s

i

is a state in

(Mj�

0

)j(�

0

=�) =Mj�.

Thus, we have s

1

; : : : ; s

k

2 T . As (s

i

; s

i+1

) 2 �

�

im-

plies (s

0

; s

i+1

) 2

S

a2A

�

a

, this yields

(s; t) 2 (

[

a2A

�

a

)

�

:

Together with Mj�; s j= C

A

 , we get Mj�; t j=  . By

indu
tion hypothesis, we get M; t j=  

�

as required.

B. EPISTEMIC LOGIC WITH “EVERYBODY
KNOWS” IS IN PSPACE

To obtain a PSpa
e algorithm for satis�ability in ELE,

whi
h is EL extended with the \everybody knows" operator,

we devise a variation of the K-worlds style algorithm as �rst

des
ribed in [15℄.

De�nition 16 (Type). Let � be a set of ELE-formulas.

We use 
l(�) to denote the smallest set of ELE-formulas that

satis�es the following properties:

� � � 
l(�);

� 
l(�) is 
losed under taking subformulas and single nega-

tions;

� if E

a

1

;:::;a

k

 2 
l(�), then K

a

1

 ; : : : ;K

a

k

 2 
l(�).

A type for � is a subset t � 
l(�) satisfying the following

properties:

1. : 2 t i�  =2 t, for all : 2 
l(�);



de�ne pro
edure ELE-World(�;�;ba)

if � is not a type for � then

return false

for all :K

a

' 2 � with a 6= ba do

set 	 := f:'g [ f ;K

a

 j K

a

 2 �g

[ f:K

a

 j :K

a

 2 �g

non-deterministi
ally 
hoose a subset �

0

� 
l(	)

if 	 6� �

0

or ELE-World(�

0

;	; a) = false then

return false

return true

Figure 6: The Pro
edure ELE-World.

2.  ^ # 2 t i�  ; # 2 t, for all  ^ # 2 
l(�);

3. E

a

1

;:::;a

k

 2 t i� K

a

1

 ; : : : ;K

a

k

 2 t, for all

E

a

1

;:::;a

k

 2 
l(�);

4. K

a

 2 t implies  2 t, for all K

a

 2 
l(�).

A type t is 
alled realizable if there exists a modelM and a

state s of M su
h that M; s j= ' for all ' 2 t. 3

The algorithm for de
iding satis�ability in ELE is based in

the pro
edure ELE-World given in Figure 6. This pro
edure

gets as arguments two sets of formulas � and �, and an agent

ba. It 
he
ks whether � is a realizable type for � by trying to


onstru
t a tree-shaped model. Intuitively, every re
ursive


all of the algorithm 
orresponds to one state of this model,

and the relational stru
ture is the re
exive-transitive 
losure

of the re
ursion tree. The agent ba is passed as an argument

to ensure termination: if � 
ontains a formula :K

a

', then

we will generate a dire
t a-su

essor y of the 
urrent state

x su
h that y satis�es '. Sin
e a is an equivalen
e rela-

tion, the type of y will 
ontain exa
tly the same formulas

of the form :K

a

 that we �nd in the type of x. However,

there is no need to introdu
e su

essors of y as witnesses for

these formulas sin
e relations are equivalen
e relations and

we have already generated witnesses for x. Su
h situations

are 
he
ked by expli
itly passing the agent a as an argument

if the 
urrent state is an a-su

essor of its prede
essor.

To de
ide the satis�ability of the input formula '

0

, we

guess a subset 	 � 
l('

0

) su
h that '

0

2 	 and 
all ELE-

World(	; f'

0

g;?), where \?" is simply a dummy value. We


laim that ELE-World always terminates, and that its re-


ursion depth is bounded linearly in the length of the input

formula. To prove this, we need a few notions. The modal

depth md(') of an ELE-formula ' is de�ned indu
tively in

the usual way:

md(p) := 0

md(' ^  ) := max(md(');md( ))

md(K

a

') := md(E

a

1

;:::;a

k

') := md(') + 1

Let � be a set of formulas. Then we use md(�) to denote

maxfmd(') j ' 2 �g if � is non-empty and 0 otherwise.

For b 2 N , we use �

b

to denote the set f' 2 � j ' of the

form K

b

 or :K

b

 g.

Lemma 17. The re
ursion depth of ELE-World(	; f'

0

g;?)

is bounded by md('

0

).

Proof. Consider a path of length k in the re
ursion tree

generated by the 
all ELE-World(	; f'

0

g;?), and let

(�

1

;�

1

; a

1

); : : : ; (�

k

;�

k

; a

k

)

be the arguments to ELE-World on this path, with

(�

1

;�

1

; a

1

) = (	; f'

0

g;?):

It is easily seen that md(�

1

) � md(�

2

). We additionally

show that md(�

i+1

) < md(�

i

) for 2 � i < k. Together

with md(�

1

) � md('

0

), it follows that k � md('

0

) + 1.

Thus, the length of the path is bounded by md('

0

).

We �rst establish the following property: by 
onstru
tion

of the set �

0

that is used as an argument in re
ursive 
alls,

it is readily 
he
ked that we have, for 2 � i � k,

md(�

b

i

) < md(�

a

i

i

) for all b 6= a

i

: (�)

We 
an now show that, for 2 < i � k,

md(�

i

) = md(�

a

i

i

) > md(�

a

i+1

i

) = md(�

a

i+1

i+1

) = md(�

i+1

):

The �rst equality is implied by (�). The inequality follows

from (�) and the fa
t that, by de�nition of ELE-World, we

have a

i

6= a

i+1

for 1 � i < k. The last but one equality holds

sin
e, also by de�nition of ELE-World, we have �

a

i+1

i

=

�

a

i+1

i+1

for 1 � i < k. Finally, the last equality is again due

to (�).

Con
erning 
orre
tness of the algorithm, it is a matter of

routine to establish the following lemma.

Lemma 18. An ELE-formula '

0

is satis�able in an epis-

temi
 model i� there exists a set 	 � 
l('

0

) su
h that '

0

2 	

and ELE-World(	; f'

0

g;?) returns true.

Sin
e md('

0

) is linearly bounded by the length of '

0

and the

spa
e 
onsumption of ELE-World is bounded linearly by its

re
ursion depth, Lemmas 17 and 18 together with Savit
h's

Theorem yield the following result.

Theorem 19. Satis�ability of (multi-agent) ELE-formulas

is in PSpa
e.


