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Abstrat

We identify a general property of onrete domains that is suÆient for

proving deidability of DLs equipped with them and GCIs. We show that

some useful onrete domains, suh as a temporal one based on the Allen

relations and a spatial one based on the RCC-8 relations, have this property.

Then, we present a tableau algorithm for reasoning in DLs equipped with

suh onrete domains.

1 Introdution

In many relevant appliations of desription logis (DLs) suh as the semanti

web and reasoning about ER and UML diagrams, there is a need for DLs that

are equipped with both onrete domains and general onept inlusions (GCIs)

[2, 6, 13℄. Unfortunately, ombining onrete domains with GCIs easily leads to

undeidabilty. For example, it has been shown in [16℄ that the basi DL ALC

extended with GCIs and a onrete domain based on the natural numbers and

providing for equality and inrementation prediates is undeidable. More infor-

mation an be found in the survey paper [14℄.

In view of this disouraging result, it is a natural question whether there are

any useful onrete domains suh that, when used with a DL providing for GCIs,

reasoning remains deidable. A positive answer to this question has been given

in [15℄ and [12℄, where two suh well-behaved onrete domains are identi�ed:

a temporal one based on the Allen relations and a numerial one based on the

rationals and equipped with various unary and binary prediates suh as \�",

\>

5

", and \ 6=". Using an automata-based approah, it is shown in [15, 12℄ that

reasoning in the DLs ALC and SHIQ extended with these onrete domains and

GCIs is deidable and ExpTime-omplete.
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The purpose of this paper it to elaborate on the existing deidability results.

Our ontribution is two-fold: �rst, instead of foussing on partiular onrete

domains as in previous work, we identify a general property of onrete domains,

alled !-admissibility, that is suÆient for proving deidability of DLs equipped

with onrete domains and GCIs. For de�ning !-admissibility, we onentrate on

a partiular kind of onrete domains: onstraint systems. Roughly, a onstraint

system is a onrete domain that only has binary prediates, and these prediates

are interpreted as jointly exhaustive and pairwise disjoint (JEPD) relations. We

exhibit two example onstraint systems that are !-admissible: a temporal one

based on the rational line and the Allen relations [1℄, and a spatial one based on

the real plane and the RCC8 relations [4, 18℄. The proof of !-admissibility turns

out to be relatively straightforward in the Allen ase, but is somewhat umbersome

for RCC8.

Seond, for the �rst time we develop a tableau algorithm for DLs admitting

both onrete domains and GCIs. This algorithm is used to establish deidability

of ALC equipped with !-admissible onrete domains and GCIs. As state-of-

the-art DL reasoners suh as FaCT and RACER are based on tableau algorithms

similar to the one desribed by us [9, 8℄, we view our algorithm as a �rst step

towards an eÆient implementation of desription logis with (!-admissible) on-

rete domains and GCIs. Our deidability result reproves the deidability of ALC

with GCIs and the Allen relations from [15℄, and, as a new result, establishes

deidability of ALC with GCIs and the RCC8 relations as a onrete domain.

2 Constraint Systems

We introdue a general notion of onstraint system that is intended to apture

standard onstraint systems based on a set of jointly-exhaustive and pairwise-

disjoint (JEPD) binary relations. Examples for suh systems inlude, for example,

the RCC8 relations used for spatial reasoning and Allen's relations of time intervals

[4, 1℄.

De�nition 1 (Constraint System). Let Var be a ountably in�nite set of vari-

ables and Rel a �nite set of binary relation symbols. A Rel-onstraint is an expres-

sion (v r v

0

) with v; v

0

2 Var and r 2 Rel. A Rel-network is a (�nite or in�nite) set

of Rel-onstraints. For N a Rel-network, we use V

N

to denote the variables used

in N . We say that N is

� omplete if, for all v; v

0

2 V

N

, there is exatly one onstraint (v r v

0

) 2 N ;

� a model of a network N

0

if N is omplete and there is a mapping � : V

N

0

!

V

N

suh that (v r v

0

) 2 N

0

implies (�(v) r �(v

0

)) 2 N .

2



r

s

r

s

s

r

s

r

r po s r eq s

r

s

s

r

r s

r s

r ntppi s

r tppi s

r tpp s r ntpp sr d s r e s

Figure 1: The eight RCC8 relations.

A onstraint system C = hRel;Mi onsists of a �nite set of binary relation symbols

Rel and a set M of omplete Rel-networks (the models of C). A Rel-network N is

satis�able in C if M ontains a model of N . 4

As examples, we de�ne two onstraint systems: one system for spatial reasoning

based on the RCC8 topologial relations in the real plane, and one for temporal

reasoning based on the Allen relations in the real line.

2.1 RCC8

The RCC8 relations, whih are illustrated in Figure 1, are intended to desribe

the relation between regions in topologial spaes [18℄. In this paper, we will use

the standard topology of the real plane, whih is one of the most appropriate

topologies for spatial reasoning. Let

RCC8 = feq; d; e; po; tpp; ntpp; tppi; ntppig

denote the RCC8 relations. Examples of these relations are given in Figure 1.

Reall that a topologial spae is a pair T = (U; I), where U is a set and I is an

interior operator on U , i.e., for all s; t � U , we have

I(U) = U I(s) � s

I(s)\ I(t) = I(s\ t) II(s) = I(s):

As the regions of a topologial spae T = (U; I), we use the set of non-empty,

regular losed subsets of U , where a subset s � U is alled regular losed if

C I(s) = s. Given a topologial spae T and a set of regions U

T

, we de�ne the
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extension of the RCC8 relations as the following subsets of U

T

� U

T

:

(s; t) 2 d

T

i� s \ t = ;

(s; t) 2 e

T

i� I(s)\ I(t) = ; ^ s \ t 6= ;

(s; t) 2 po

T

i� I(s)\ I(t) 6= ; ^ s n t 6= ; ^

t n s 6= ;

(s; t) 2 eq

T

i� s = t

(s; t) 2 tpp

T

i� s \ t = ; ^ s \ I(t) 6= ;

(s; t) 2 ntpp

T

i� s \ I(t) = ;

(s; t) 2 tppi

T

i� (t; s) 2 tpp

T

(s; t) 2 ntppi

T

i� (t; s) 2 ntpp

T

:

Let T

R

2

be the standard topology on R

2

indued by the Eulidean metri, and let

RS

R

2

be the set of all non-empty regular-losed subsets of T

R

2

. Then we de�ne

the onstraint system

RCC8

R

2

= hRCC8;M

R

2

i

by settingM

R

2

:= fN

R

2

g, where N

R

2

is de�ned by �xing a variable v

s

2 Var for ev-

ery s 2 RS

R

2

and setting N

R

2

:= f(v

s

r v

t

) j r 2 RCC8; s; t 2 RS

R

2

and (s; t) 2

r

T

R

2

g:

2.2 Allen's Relations

In arti�ial intelligene, onstraint systems based on Allen's interval relations are

a popular tool for the representation of temporal knowledge [1℄. Let

Allen = fb; a;m;mi; o; oi; d; di; s; si; f; �;=g

denote the thirteen Allen relations. Examples of these relations are given in

Figure 2. As the ow of time, we use the rational numbers with the usual ordering.

Let Int

Q

denote the set of all losed intervals [q

1

; q

2

℄ overQ with q

1

< q

2

, i.e., point-

intervals are not admitted. The extension r

Q

of eah Allen relation r is a subset

of Int

Q

� Int

Q

. It is de�ned in terms of the relationships between endpoints in the

obvious way, .f. Figure 2. We de�ne the onstraint system

Allen

Q

= hAllen;M

Q

i

by settingM

Q

:= fN

Q

g, where N

Q

is de�ned by �xing a variable v

i

2 Var for every

i 2 Int

Q

and setting N

Q

:= f(v

i

r v

j

) j r 2 Allen; i; j 2 Int

Q

and (i; j) 2 r

Q

g:

We ould also de�ne the onstraint system Allen

R

based on the reals rather

than on the rationals: this has no impat on the satis�ability of (�nite and in�nite)

Allen-networks. If we use the natural numbers or the integers, this still holds for

�nite networks, but not for in�nite ones: there are in�nite Allen-networks that

are satis�able over the reals and rationals, but not over the natural number or

integers.
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gray � blak

Figure 2: The thirteen Allen relations.

2.3 Properties of Constraint Systems

We will use onstraint systems as a onrete domain for desription logis. To

obtain sound and omplete reasoning proedures for DLs with suh onrete do-

mains, we require onstraint system to have ertain properties.

We need to ensure that satis�able networks (satisfying some additional ondi-

tions) an be \pathed" together to a joint network that is also satis�able. This

is ensured by the pathwork property.

De�nition 2 (Pathwork Property). Let C = hRel;Mi be a onstraint system,

and let N;M be �nite omplete Rel-networks suh that, for the intersetion parts

I

N;M

:= f(v r v

0

) j v; v

0

2 V

N

\ V

M

and (v r v

0

) 2 Ng

I

M;N

:= f(v r v

0

) j v; v

0

2 V

N

\ V

M

and (v r v

0

) 2Mg

we have I

N;M

= I

M;N

. Then the omposition of N and M is de�ned as N [M .

We say that C has the pathwork property if the following holds: if N and M are

satis�able then N [M is satis�able. 4

The pathwork property is similar to the property of onstraint networks formu-

lated in [3℄, where onstraint networks are ombined with linear temporal logi.

For using onstraint systems with the DL reasoning algorithms presented in

this paper, we must be sure that, even if we path together an in�nite number of

satis�able networks, the resulting (in�nite) network is still satis�able. As we shall

see, to guarantee this it suÆes to require onstraint systems to be ompat.

De�nition 3 (Compatness). Let C = hRel;Mi be a onstraint system. If N

is a Rel-network and V � V

N

, we write N j

V

to denote the network f(v r v

0

) 2 N j

v; v

0

2 V g � N . Then C has the ompatness property if the following holds: a

Rel-network N with V

N

in�nite is satis�able in C if and only if, for every �nite

V � V

N

, the network N j

V

is satis�able in C. 4
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2.4 Properties of RCC8

We show that RCC8

R

2

has the pathwork property and the ompatness property,

and thus an be used together with the algorithms developed in the urrent paper.

We onsider a di�erent variant of the onstraint system RCC8

R

2

. To introdue it,

we need a ouple of de�nitions. A fork F is a struture hW

F

; R

F

; �

F

i, where

� W

F

is a set fb

F

; r

F

; `

F

g of ardinality three,

� R

F

is the reexive losure of f(b

F

; r

F

); (b

F

; `

F

)g, and

� �

F

: Var ! 2

W

F

is a valuation suh that, for eah v 2 Var, we have

b

F

2 �

F

(v) i� `

F

2 �

F

(v) or r

F

2 �

F

(v):

A fork model is a (�nite or in�nite) disjoint union of forks. If a fork model M is

the disjoint union of forks F

0

; F

1

; : : : , we writeW

M

for

S

i�0

W

F

i

, R

M

for

S

i�0

R

F

i

,

and �

M

(v) for

S

i�0

�

F

i

(v). We may interpret the RCC8 relations on a fork model

M by assoiating a topologial spae T

M

with M : de�ne an interior operator I

M

by setting, for X � W

M

,

I

M

X = fx 2

[

i�0

W

M

j 8y (xR

M

y ! y 2 X)g

(and thus C

M

X = fx 2 W

M

j 9y (xR

M

y^y 2 X)g). We now de�ne the onstraint

system RCC8

Fork

:= hRCC8;M

Fork

i, by setting M

Fork

:= fN

M

j M a fork modelg,

where N

M

is de�ned by �xing a variable v

X

2 Var for every non-empty reg-

ular losed X � W

M

and setting N

M

:= f(v

X

r v

X

0

) j r 2 RCC8; X;X

0

2

W

M

; and (X;X

0

) 2 r

T

M

g:

It was shown by Renz and Nebel that satis�ability of �nite onstraint networks

in RCC8

R

2

and RCC8

Fork

oinides [19℄. This was extended to in�nite networks in

[17℄:

Theorem 4. An RCC8-network is satis�able in RCC8

R

2

i� it is satis�able in

RCC8

Fork

.

Due to Theorem 4, it suÆes to prove the pathwork property and ompatness

for RCC8

Fork

. This is what we do in the following. Our proof of the pathwork

property is based on a result of Gabbay et al. [7℄. To formulate it, we need to

introdue the standard translation [4, 19℄ of RCC8-networks to the modal logi S4

u

,

i.e., Lewis' (uni-modal) S4 enrihed with the universal modality. We refrain from

giving the syntax and semantis of S4

u

and refer, e.g., to [7℄ for more information.

We use I to denote the S4 box operator, 2

u

to denote the universal box, and

write 3

u

' for :2

u

:' as usual. Given an RCC8-onstraint (v r v

0

), we de�ne a

6



orresponding S4

u

-formula (v r v

0

)

./

as follows:

1

(v eq v

0

)

./

= 2

u

(v $ v

0

)

(v d v

0

)

./

= 2

u

(:v _ :v

0

)

(v e v

0

)

./

= 3

u

(v ^ v

0

) ^ 2

u

(:Iv_ :Iv

0

)

(v po v

0

)

./

= 3

u

(Iv ^ Iv

0

) ^3

u

(v ^ :v

0

) ^3

u

(:v ^ v

0

)

(v tpp v

0

)

./

= 2

u

(v ! v

0

) ^3

u

(v ^ :Iv

0

) ^3

u

(:v ^ v

0

)

(v ntpp v

0

)

./

= 2

u

(v ! Iv

0

) ^3

u

(:v ^ v

0

)

Observe that variables of the network are translated into propositional variables of

S4

u

. For every RCC8-onstraint network N , we de�ne a orresponding set of S4

u

formulas N

./

as follows: N

./

:= f(v r v

0

)

./

j (v r v

0

) 2 Ng. An important property

of the translation �

./

is the following, as established in [19℄:

Theorem 5. Let N be a �nite RCC8-network. Then N is satis�able in RCC8

Fork

i� the set of S4

u

formulas N

./

is satis�able in a fork model.

For a onstraint (v r v

0

), we use (v r v

0

)

8

to denote the formula obtained from

(v r v

0

)

./

by dropping all onjunts starting with 3

u

(with (v r v

0

)

8

being the on-

stant true if all onjunts are dropped), and likewise for (v r v

0

)

9

. For networks,

the notions N

8

and N

9

are de�ned in the obvious way.

For what follows, it will be important to identify a partiular lass of forks

indued by a onstraint network. Intuitively, this lass of forks an be viewed as

a anonial model for the induing network, if this network is satis�able. For N

an RCC8-network, we set

Fork

N

:= fF a fork j F j=

^

(v r v

0

)2N

(v r v

0

)

8

g:

We say that two forks F and F

0

are V -equivalent, for V a set of variables when, for

all v 2 V , we have that (i) r

F

2 �

F

(v) i� r

F

0

2 �

F

0

(v) and (ii) `

F

2 �

F

(v) i� `

F

0

2

�

F

0

(v). The following theorem forms the basis for our proof that RCC8

Fork

has the

pathwork property. It is is easily seen to be a onsequene of Theorem 16.17 in

[7℄.

2

Theorem 6 (Gabbay et al.). Let N be a �nite, omplete, satis�able RCC8-

network, v =2 V

N

, and

N

0

= N [ f(v r

v

v

0

); (v

0

Inv(r

v

) v) j v 2 V

N

g

for some family of relations (r

v

)

v2V

N

, suh that N

0

is satis�able. Then, for eah

F 2 Fork

N

, there exists an F

0

2 Fork

N

0

suh that F and F

0

are V

N

-equivalent.

1

We do not onsider onstraints of the form (v tppi v

0

) and (v ntppi v

0

) sine these an be

translated into (v

0

tpp v) and (v

0

ntpp v), respetively.

2

It is easily heked that this holds although our de�nition of Fork

N

di�ers from the orre-

sponding de�nition in [7℄: Gabbay et al. de�ne Fork

N

suh that, intuitively, it ontains no two

forks that are isomorphi. This is not neessary in our ase.

7



The following orollary is easily proved by indution on the ardinality of V

M

nV

N

.

Corollary 7. Let N and M be two �nite omplete satis�able RCC8-networks,

suh that N � M . Then, for eah F 2 Fork

N

, there exists an F

0

2 Fork

M

suh

that F and F

0

are V

N

-equivalent.

We may now establish the pathwork property.

Lemma 8. RCC8

R

2

has the pathwork property.

Proof. By Theorem 4, it suÆes to show that RCC8

Fork

has the pathwork prop-

erty. Let N and M be �nite and omplete RCC8-networks that are satis�able in

RCC8

Fork

and whose intersetion parts I

N;M

and I

M;N

(de�ned as in De�nition

2) are idential. We have to prove that N [ M is also satis�able in RCC8

Fork

.

By Theorem 5, it suÆes to show that the fork model F

N;M

:= Fork

N

\ Fork

M

satis�es (N [M)

./

. We distinguish between the universal and existential part of

(N [M)

./

.

(i) F

N;M

satis�es (N [M)

8

due to the de�nition of Fork

N

and Fork

M

:

F

N;M

= Fork

N

\ Fork

M

= fF a fork j F j=

^

(v r v

0

)2N

(v r v

0

)

8

g \

fF a fork j F j=

^

(v r v

0

)2M

(v r v

0

)

8

g

= fF a fork j F j=

^

(v r v

0

)2N[M

(v r v

0

)

8

g = Fork

N[M

(ii) F

N;M

satis�es (N[M)

9

= N

9

[M

9

. To show this, it is suÆient to show that

(a) for every F 2 Fork

N

, there is an F

0

2 F

M;N

whih is V

N

-equivalent to F

and (b) for every F 2 Fork

M

, there is an F

0

2 F

M;N

whih is V

M

-equivalent

to F . Then, sine Fork

N

is a model of N , all existential restritions from

N

9

will be satis�ed by F

M;N

, and likewise for M . We only show (a) as (b)

is equivalent. For brevity, let I denote I

N;M

(=I

M;N

). Take an F 2 Fork

N

.

Clearly, sine I � N , we have that F 2 Fork

I

. Moreover, I is omplete sine

N and M are. Thus, by Corollary 7 there exists an F

0

2 Fork

M

whih is

V

I

-equivalent to F . Now de�ne a fork F

00

= (W

F

0

; R

F

0

; �

F

0

) as follows:

�

F

0

(v) :=

�

�

F

(v) if v 2 V

N

�

F

0

(v) otherwise

Obviously, F

00

is V

N

-equivalent to F . Moreover, sine F

00

is I-equivalent to

F , we have that F

00

is V

M

-equivalent to F

0

. Therefore, F

0

2 Fork

M

implies

that F

00

2 Fork

M

.

❏

8



It remains to treat ompatness.

Lemma 9. RCC8

R

2

has the ompatness property.

Proof. It is easily seen that satis�ability of an in�nite RCC8-network N implies

satis�ability of N j

V

, for every �nite V � V

N

. To show the onverse, we give

a translation of RCC8-networks N to a set �(N) of �rst-order sentenes in the

following signature: a binary prediate R representing the partial order in fork

frames, and unary prediates (P

v

)

v2Var

for variables. We then use ompatness

of �rst-order logi to dedue that RCC8

Fork

has the ompatness property. By

Theorem 4, it follows that RCC8

R

2

has the ompatness property as desired.

Let N be a (possibly in�nite) onstraint network. The set of �rst-order sen-

tenes �(N) onsists of the following:

� a formula stating that R is a disjoint union of forks:

8w9x; y; z(xRx ^ yRy ^ zRz ^ xRy ^ xRz^

8u(xRu! (u = y _ u = z))^

8u(yRu! u = y)^

8u(zRu! u = z)^

8u(uRx! u = x)^

8u(uRy ! (u = x _ u = y))^

8u(uRz ! (u = x _ u = z))^

x 6= y ^ x 6= z ^ y 6= z^

(w = x _ w = y _ w = z))

� to ensure the onstraint on valuations for fork models, for eah v 2 Var, the

following formula:

8x(root(x)! (P

v

(x)$ 9y(xRy ^ x 6= y ^ P

v

(y))))

where root(x) := 8y(yRx! x = y) expresses that x is the root of a fork.

� one sentene for eah onstraint in N . We only treat the ase (v e v

0

)

expliitly:

9x(P

v

(x) ^ P

v

0

(x)) ^ :9x(Int

v

(x) ^ Int

v

0

(x))

where Int

v

(x) := P

v

(x)^8y(xRy ! P

v

(y)) desribes the interior points of P

v

(to see this, onsider the way in whih fork frames indue topologies). The

other ases are easily obtained by referring to the semantis of the RCC8

relations.

Now let N be an in�nite network suh that N j

V

is satis�able in RCC8

Fork

for every

�nite V � V

N

. We have to show that N is satis�able. Let 	 be a �nite subset

of �(N), and let N

0

be the orresponding fragment of N . By Theorem 5, N

0

has

9



a model that is the topology of a fork model M . De�ne a �rst-order struture

M with domain W

M

by setting R

M

:= R

M

and P

M

v

:= �

M

(v) for all v 2 V . It

is readily heked that M is a model of 	. Thus, every �nite subset of �(N)

is satis�able and ompatness of �rst-oder logi implies that �(N) is satis�able.

Take a model N of �(N) with domain A. Clearly, M

0

= (A; R

N

; fv 7! P

N

v

g) is a

fork model. It is readily heked that the topology T

M

0

is a model of N . ❏

2.5 Properties of Allen

We prove that the onstraint system Allen

Q

has both the pathwork property and

the ompatness property.

Lemma 10. Allen

Q

has the pathwork property.

Proof. Let N and M be �nite omplete Allen-networks that are satis�able in

Allen

Q

and whose intersetion parts I

N;M

and I

M;N

(de�ned as in De�nition 2)

are idential. We have to prove that N [M is also satis�able. Satis�ability of N

means that there exists a mapping �

N

: V

N

! Int

Q

suh that (v r v

0

) 2 N implies

(�

N

(v); �

N

(v

0

)) 2 r

Q

, and an analogous mapping �

M

for M . De�ne

S

N

:= f(v; `; q) j v 2 V

I

N;M

and �

N

(v) = [q; q

0

℄ for some q

0

2 Qg[

f(v; r; q) j v 2 V

I

N;M

and �

N

(v) = [q

0

; q℄ for some q

0

2 Qg

Now arrange the elements of S

N

into a sequene (v

0

; d

0

; q

0

); : : : ; (v

k

; d

k

; q

k

) suh

that i < j implies q

i

� q

j

. De�ne a orresponding sequene (v

0

; d

0

; q

0

0

); : : : ; (v

k

; d

k

; q

0

k

)

for M by setting, for i � k,

q

0

i

:=

�

q if d

i

= ` and �

M

(v

i

) = (q; q

0

) for some q

0

2 Q

q if d

i

= r and �

M

(v

i

) = (q

0

; q) for some q

0

2 Q:

Sine I

N;M

= I

M;N

, we have that i < j implies q

0

i

� q

0

j

. Fix, for eah i <

k, a bijetion �

i

from the interval [q

0

i

; q

0

i+1

) to the interval [q

i

; q

i+1

) that is an

isomorphism w.r.t. \<". Moreover, �x additional isomorphisms �

�

: (�1; q

0

0

) to

(�1; q

0

) and �

y

: [q

0

k

;1) to [q

k

;1). For q 2 Q, set

�(q) :=

8

>

<

>

:

�

�

(q) if q < q

0

0

�

i

(q) if q

i

� q < q

0

i+1

�

y

(q) if q � q

k

Now de�ne a mapping �

0

M

: V

M

! Int

Q

by setting �

0

M

(v) := [�(q); �(q

0

)℄ if �

M

(v) =

[q; q

0

℄. It is readily heked that �

N

and �

0

M

agree on V

I

N;m

, and that �

N

[ �

0

M

witnesses satisfation of N [M in Allen

Q

. ❏
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Lemma 11. Allen

Q

has the ompatness property.

Proof. As in the ase of RCC8, it is easily seen that satis�ability of an in�nite

Allen-network N implies satis�ability of N j

V

, for every �nite V � V

N

. To show

the onverse, we give a translation of Allen-networks N to a set �(N) of �rst-

order sentenes in the following signature: a binary prediate < representing the

ordering on Q, and onstants (b

v

)

v2Var

and (e

v

)

v2Var

denoting the begin and end

points of intervals. Let N be a (possibly in�nite) onstraint network. The set of

�rst-order sentenes �(N) onsists of the following:

� one sentene for eah onstraint in N . The translation is easily read o� from

the de�nition of the Allen relations. E.g., (v m v

0

) translates to e

v

= b

v

0

;

� for eah v 2 V

N

, a sentene ensuring the orret ordering of endpoints:

b

v

< e

v

.

It is easily seen that eah �nite or in�nite Allen-network N is satis�able in Allen

Q

i� �(N) is satis�able in a struture (Q; <; P

M

1

; P

M

2

; : : : ). Thus, ompatness of

�rst-order logi on strutures (Q; <; 

M

1

; 

M

2

; : : : ) implies that Allen

Q

has the om-

patness property. ❏

3 Syntax and Semantis

In this setion we formaly introdue the syntax and semantis of the desription

logi ALC(C). We start by de�ning ALC(C)-onepts and TBoxes, based on a

onstraint system C = (Rel;M).

De�nition 12 (ALC(C)-onepts). Let N

C

, N

R

, and N

F

be mutually disjoint

and ountably in�nite sets of onept names, role names, and onrete features.

We assume that N

R

is partitioned into two ountably in�nite subsets N

aF

and N

rR

.

The elements of N

aF

are alled abstrat features and the elements of N

rR

regular

roles. A path is a sequene R

1

� � �R

k

g onsisting of roles R

1

; : : : ; R

k

2 N

R

and a

onrete feature g 2 N

F

. A path R

1

� � �R

k

g with fR

1

; : : : ; R

k

g � N

aF

is alled

feature path. The set of ALC(C)-onepts is the smallest set suh that

1. every onept name A 2 N

C

is a onept,

2. if C and D are onepts and R 2 N

R

, then C uD, C tD, :C, 8R:C, and

9R:C are onepts,

3. if u

1

and u

2

are feature paths and r 2 Rel, then 9u

1

; u

2

:r and 8u

1

; u

2

:r are

onepts,

4. if R 2 N

rR

, g

1

and g

2

are onrete features, and r 2 Rel, then 9Rg

1

; g

2

:r,

9g

1

; Rg

2

:r, 8Rg

1

; g

2

:r, and 8g

1

; Rg

2

:r are onepts,

11



A general onept inlusion axiom (GCI) is an expression of the form C v D,

where C and D are onepts. A �nite set of GCIs is alled TBox. 4

The TBox formalism introdued in De�nition 12 is often alled general TBox sine

it subsumes several other, muh weaker variants [5, 11℄. Throughout this paper,

we use > as abbreviation for an arbitrary propositional tautology and C ! D for

:C tD.

As most desription logis, the semantis of ALC(C) is de�ned in terms of

interpretations.

De�nition 13 (ALC(C) Semantis). An interpretation I is a tuple (�

I

; �

I

;M

I

),

where �

I

is a set alled the domain, �

I

is the interpretation funtion, andM

I

2M.

The interpretation funtion maps

� eah onept name C to a subset C

I

of �

I

,

� eah role name R to a subset R

I

of �

I

��

I

,

� eah abstrat feature f to a partial funtion f

I

from �

I

to �

I

, and

� eah onrete feature g to a partial funtion g

I

from �

I

to the set of variables

V

M

I

of M

I

.

The interpretation funtion is extended to arbitrary onepts as follows:

(C uD)

I

:= C

I

\D

I

;

(C tD)

I

:= C

I

[D

I

;

:C

I

:= �

I

n C

I

;

(9R:C)

I

:= fd 2 �

I

j there is some e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g;

(8R:C)

I

:= fd 2 �

I

j for all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g;

(9U

1

; U

2

:r)

I

:= fd 2 �

I

j there are x

1

2 U

I

1

(d) and x

2

2 U

I

2

(d) with (x

1

rx

2

) 2M

I

g

(8U

1

; U

2

:r)

I

:= fd 2 �

I

j for all x

1

2 U

I

1

(d) and x

2

2 U

I

2

(d), we have (x

1

rx

2

) 2 M

I

g

where U

1

and U

2

denote paths, and, for every path U = R

1

� � �R

k

g and d 2 �

I

,

U

I

(d) is de�ned as

fx 2 V

M

I

j 9e

1

; : : : ; e

k+1

: d = e

1

;

(e

i

; e

i+1

) 2 R

I

i

for 1 � i � k; and g

I

(e

k+1

) = xg:

An interpretation I is a model of a onept C i� C

I

6= ;. I is a model of a TBox

T i� it satis�es C

I

� D

I

for all GCIs C v D in T .

C is alled satis�able with respet to a TBox T i� there exists a model of C

and T . A onept D subsumes a onept C with respet to T (written C v

T

D)

i� C

I

� D

I

holds for eah model I of T . 4

12



4 Tableau Algorithm

In this setion we present a tableau algorithm forALC(C) with general TBoxes. In

order to ensure the orretness of the algorithm, we have to require the underlying

onstraint system C to be !-admissible:

De�nition 14 (!-admissible). Let C = (Rel;M) be a onstraint system. We

say that C is !-admissible i� the following holds:

1. satis�ability in C is deidable;

2. C has the pathwork property (.f. De�nition 2);

3. C has the ompatness property (.f. De�nition 3).

4

In Setion 2, we have introdued two onstraint systems: (i) Allen

Q

and (ii)

RCC8

R

2

and shown that they have pathwork and ompatness property. More-

over, satis�ability is deidable in both of them, and, more preisely, it is NP-

omplete. The proofs of NP-ompleteness an be found in [20℄ for Allen

Q

and

in [19℄ for RCC8

R

2

. Thus, we obtain that that these onstraint systems are !-

admissible.

Before presenting the tableau algorithm, we need some more prerequisites.

More spei�ally, we assume onepts and TBoxes to be in negation normal form

(NNF) and, more importantly, restrit the length of paths, whih will turn out to

be rather onvenient for onstruting tableau algorithm. We start with desribing

NNF onversion. A onept is said to be in negation normal form if negation

ours only in front of onept names. The following lemma shows that assuming

NNF is not a restrition. A notable di�erene to usual NNF transformations is

that we preserve only (un)satis�ability, but not equivalene. Sine relations from

Rel are JEPD, we assume w.l.o.g. that Rel ontains an equality prediate.

Lemma 15 (NNF Conversion). Exhaustive appliation of the following rewrite

rules translates ALC(C)-onepts to eqi-satis�able ones in NNF.

::C ; C

:(C uD) ; :C t :D :(C tD); :C u :D

:(9R:C) ; (8R::C) :(8R:C); (9R::C)

:(8U

1

; U

2

:r) ; t

r

0

2Rel;r

0

6=r

9U

1

; U

2

:r

0

:(9u

1

; u

2

:r) ; t

r

0

2Rel;r

0

6=r

8u

1

; u

2

:r

0

where u

i

are feature paths

:(9Rg

1

; g

2

:r) ; (8Rg

�

; g

2

: =) u t

r

0

2Rel;r

0

6=r

8R:(8g

1

; g

�

:r

0

)

where R 2 N

rR

and g

�

is a fresh onrete feature

13



By nnf(C), we denote the result of onverting C into NNF using the above

rules.

We now introdue path normal form for ALC(C)-onepts and TBoxes. Path

normal form was �rst onsidered in [15℄ in the ontext of the desription logi

T DL and in [12℄ in the ontext of Q-SHIQ.

De�nition 16 (Path Normal Form). An ALC(C)-onept C is in path normal

form (PNF) i� it is in NNF and, for all subonepts 9U

1

; U

2

:r and 8U

1

; U

2

:r of

C, we have one of the following:

1. U

1

= g

1

and U

2

= g

2

for some g

1

; g

2

2 N

F

2. U

1

= Rg

1

and U

2

= g

2

for some R 2 N

aF

[ N

rR

and g

1

; g

2

2 N

F

3. U

1

= g

1

and U

2

= Rg

2

for some R 2 N

aF

[ N

rR

and g

1

; g

2

2 N

F

.

An ALC(C)-TBox T is in path normal form i� all onepts in T are in PNF.

4

The following lemma shows that we an w.l.o.g. assume ALC(C)-onepts and

TBoxes to be in PNF.

Lemma 17. Satis�ability of ALC(C)-onepts w.r.t. TBoxes an be redued in

polynomial time to satis�ability of ALC(C)-onepts in PNF w.r.t. TBoxes in

PNF.

Proof. We �rst de�ne an auxiliary mapping and then use this mapping to

translate ALC(C)-onepts into equivalent ones in PNF. Let C be an ALC(C)-

onept. For every feature path u = f

1

� � � f

n

g used in C, we assume that

[g℄; [f

n

g℄; : : : ; [f

1

� � � f

n

g℄ are onrete features not used in C. We indutively de�ne

a mapping � from feature paths u in C to onepts as follows:

�(g) = >

�(fu) = (9f [u℄; [fu℄: =) u 9f:�(u)

For every ALC(C)-onept C, a orresponding onept �(C) is obtained by

� �rst replaing all subonepts 8u

1

; u

2

:r where u

i

= f

(i)

1

� � �af

(i)

k

i

g

i

for i 2

f1; 2g with

8f

(1)

1

: � � � 8f

(1)

k

1

:8g

1

; g

1

:r

6=

t 8f

(2)

1

: � � � 8f

(2)

k

2

:8g

2

; g

2

:r

6=

t 9u

1

; u

2

:r

where r

6=

2 Rel n f=g

� and then replaing all subonepts 9u

1

; u

2

:r with 9[u

1

℄; [u

2

℄:ru�(u

1

)u�(u

2

).
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We extend the mapping � to TBoxes in the obvious way, i.e., if

T = fC

1

v D

1

; : : : ; C

k

v D

k

g;

then

�(T ) = f�(C

1

) v �(D

1

); : : : ; �(C

k

) v �(D

k

)g:

Now let C be a ALC(C)-onept and T a ALC(C)-TBox. Using the rewrite rules

from Lemma 15, we an onvert C into an equivalent onept C

0

in NNF and T

into an equivalent TBox T

0

in NNF. It is then easy to hek that C

0

is satis�able

w.r.t. a TBox T

0

i� �(C

0

) is satis�able w.r.t. �(T

0

). Moreover, �(C

0

) and �(T

0

)

are learly in PNF and the translation an be done in polynomial time. ❏

Intuitively, Lemma 17 states that Variant (i) of the binary onrete domain

onstrutors disussed in the previous setion an be redued to the forms 9fg

1

; g

2

:r

and 9g

1

; g

2

:P . Variant (ii) of the binary onrete domain onstrutors does not

need to be manipulated in order to �t into the PNF sheme. In what follows,

we generally assume that all onepts and TBoxes are in path normal form, as

well as that onstraint systems are !-admissible. Moreover, we will often refer to

TBoxes T in their onept form C

T

whih is de�ned as follows:

C

T

= u

CvD2T

nnf(C ! D):

Finally, we will de�ne the set of subonepts of C

0

and T as:

sub(C

0

; T ) = sub(C

0

) [ sub(C

T

)

Now we introdue the underlying data struture of the tableau algorithm:

De�nition 18 (Completion system). Let O

a

and O



be disjoint and ountably

in�nite sets of abstrat and onrete nodes. A ompletion tree for an ALC(C)-

onept C and a Tbox T is a �nite, labelled tree T = (V

a

;V



; E;L) with nodes

V

a

[ V



, suh that V

a

� O

a

, V



� O



, and all nodes from V



are leaves. The tree

is labelled as follows:

1. eah node a 2 V

a

is labelled with a subset L(a) of sub(C; T ),

2. eah edge (a; b) 2 E with a; b 2 V

a

is labelled with a role name L(a; b)

ourring in C or T ;

3. eah edge (a; x) 2 E with a 2 V

a

and x 2 V



is labelled with a onrete

feature L(a; x) ourring in C or T .

A node b 2 V

a

is an R-suessor of a node a 2 V

a

if (a; b) 2 E and L(a; b) = R,

while an x 2 V



is an g-suessor of a if (a; x) 2 E and L(a; x) = g. The notion

u-suessor for a path u is de�ned in the obvious way.

A ompletion system for an ALC(C)-onept C and a Tbox T is a tuple S =

(T;N ) where

15



� T = (V

a

;V



; E;L) is a ompletion tree for C and T ,

� N is a Rel-network with V

N

= V



.

4

To deide the satis�ability of anALC(C)-onept C

0

w.r.t. a TBox box T (both

in PNF), the tableau algorithm is started with the initial ompletion system

S

C

0

= (T

C

0

; ;)

with the initial ompletion tree

T

C

0

= (fa

0

g; ;; ;; fa

0

7! fC

0

gg)

The algorithm applies ompletion rules to the ompletion system until an

obvious inonsisteny (lash) is deteted or no ompletion rule is appliable any

more. We will de�ne ompletion rules for ALC(C) after some prerequisites. Let

us �rst introdue an operation that is used by ompletion rules to add new nodes

to ompletion trees. The operation respets the funtionality of abstrat and

onrete features.

De�nition 19 (� Operation)). An abstrat or onrete node is alled fresh

w.r.t. a ompletion tree T if it does not appear in T . Let S = (T;N ) be a

ompletion system with T = (V

a

;V



; E;L). We use the following operations:

� S � aRb (a 2 V

a

, b 2 O

a

fresh in T , R 2 N

R

) yields a ompletion system

obtained from S in the following way:

{ if R 62 N

aF

or R 2 N

aF

and a has no R-suessors, then add b to V

a

,

(a; b) to E and set L(a; b) = R, L(b) = ;.

{ if R 2 N

aF

and there is a  2 V

a

suh that (a; ) 2 E and L(a; ) = R

then rename  in T with b.

� S � agx (a 2 V

a

, x 2 O



fresh in T , g 2 N

F

) yields a ompletion system

obtained from S in the following way:

{ if a has no g-suessors, then add x to V



, (a; x) to E and set L(a; x) =

g;

{ if a has a g-suessor y, then rename y in T , and N with x.

Let u = R

1

� � �R

n

g be a path. With S�aux, where a 2 V

a

and x 2 O



is fresh

in T , we denote the ompletion system obtained from S by taking distint nodes

b

1

; :::; b

n

2 O

a

whih are fresh in T and setting

S

0

:= S � aR

1

b

1

� � � � � b

n�1

R

n

b

n

� b

n

gx

4
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To ensure termination of the tableau algorithm, we need a mehanism for deteting

yli expansions, ommonly alled bloking. Informally, we detet nodes in the

ompletion tree \similar" to previously reated ones and \blok" them, i.e., apply

no more ompletion rules to suh nodes. To de�ne the bloking ondition, we

need a ouple of notions.

� For a 2 V

a

, we de�ne:

s(a) := fg 2 N

F

j a has a g-suessorg

N (a) := f(g r g

0

) j there are x; y 2 V



suh that x is a g-suessor of a,

y is a g

0

-suessor if a, and (x r y) 2 Ng

N

0

(a) := f(x r y) j there exist g; g

0

2 s(a) s.t. x is a g-suessor of a,

y is a g

0

-suessor if a, and (x r y) 2 Ng

� a ompletion of a Rel-network N is a satis�able and omplete Rel-network

N

0

suh that V

N

= V

N

0

and N � N

0

.

De�nition 20 (Bloking). Let S = (T;N ) be a ompletion system for a onept

C

0

and a Tbox T with T = (V

a

;V



; E;L). Let a; b 2 V

a

. We say that a 2 V

a

is

potentially bloked by b if the following holds:

� b is an anestor of a in T,

� L(a) � L(b),

� s(a) = s(b).

We say that a is diretly bloked by b if the following holds:

� a is potentially bloked by b,

� N (a) and N (b) are omplete, and

� N (a) = N (b).

Finally, a is bloked if it or one of its anestors is diretly bloked. 4

We are now ready to de�ne the ompletion rules, whih are given in Figure 3.

If no ompletion rule is appliable to a ompletion system S, S is alled omplete.

All rules exept Rnet and Rnet

0

are rather standard. The purpose of these

additional rules is to resolve potential bloking situations into atual bloking

situations or non-bloking situations by ompleting the parts of the network N

that orrespond to the \bloked" and \bloking" node. To ensure an appropriate

interplay between Rnet/Rnet

0

, and the bloking ondition and thus to guarantee

termination, we apply these rules with highest preedene.

Note that the bloking mehanism obtained in this way is dynami in the sense

that bloking situations an be broken again after they have been established.
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Ru if C

1

uC

2

2 L(a), a is not bloked, and fC

1

; C

2

g 6� L(a), then set L(a) :=

L(a) [ fC

1

; C

2

g

Rt if C

1

t C

2

2 L(a), a is not bloked, and fC

1

; C

2

g \ L(a) = ;, then set

L(a) := L(a) [ fCg for some C 2 fC

1

; C

2

g

R9 if 9R:C 2 L(a), a is not bloked, and there is no R-suessor of a suh that

C 2 L(b), then set S := S � aRb for a fresh b 2 O

a

and L(b) := L(b) [ fCg

R8 if 8R:C 2 L(a), a is not bloked, and b is an R-suessor of a suh that

C 62 L(b), then set L(b) := L(b) [ fCg

R9



if 9U

1

; U

2

:r 2 L(a), a is not bloked, and there exist no x

1

; x

2

2 V



suh

that x

i

is a U

i

-suessor of a for i = 1; 2 and (x

1

r x

2

) 2 N then set

S := (S � aU

1

x

1

� aU

2

x

2

) with x

1

; x

2

2 O



fresh and N := N [ f(x

1

r x

2

)g

R8



if 8U

1

; U

2

:r 2 L(a), a is not bloked, and there are x

1

; x

2

2 V



suh

that x

i

is a U

i

-suessor of a for i = 1; 2 and (x

1

r x

2

) 62 N , then set

N := N [ f(x

1

r x

2

)g

Rnet if a is potentially bloked by b and N (a) is not omplete, then non-

deterministially guess a ompletion N

0

of N

0

(a) and set N := N [N

0

Rnet

0

if a is potentially bloked by b and N (b) is not omplete, then non-

deterministially guess a ompletion N

0

of N

0

(b) and set N := N [N

0

Rgi if C

T

62 L(a), then set L(a) := L(a) [ fC

T

g

Figure 3: The Completion Rules.

Also note that the onditions L(a) � L(b) and s(a) = s(b) an be viewed as

a re�nement of pairwise bloking as known from [10℄: due to path normal form,

pairwise bloking is a stritly sharper ondition than these two.

The algorithm applies ompletion rules until no more rules are appliable or a

lash is enountered.

De�nition 21 (Clash). Let S = (T;N ) be a ompletion system for a onept

C and a Tbox T with T = (V

a

;V

a

; E;L). S is said to ontain a lash i�

1. there is an a 2 V

a

and an A 2 N

C

suh that fA;:Ag � L(a), or

2. N is not satis�able in C.

If S does not ontain a lash, S is alled lash-free. 4
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We present now the tableau algorithm in pseudo-ode notation. It is started with

sat(S

C

0

).

Algorithm:

proedure sat(S)

if S ontains a lash then return unsatis�able

if is omplete then return satis�able

if R 2 fRnet; Rnet

0

g is appliable

then S

0

:= appliation of R to S

else S

0

:= appliation of any appliable ompletion rule to S

return sat(S

0

)

Note that heking for lashes before any rule appliation ensures that Rnet and

Rnet

0

are well-de�ned: if Rnet is applied, then there indeed exists a ompletion

N

0

of N (a) to be guessed: due to lash heking, the network N is satis�able, and

it is readily heked that this implies the existene of the required ompletion.

4.1 Corretness

Here we prove the termination, soundness and ompleteness of the presented

tableau algorithm. Let us �rst introdue a few notions. With jM j we denote

the ardinality of a set M . With N

C

0

;T

C

, N

C

0

;T

R

, and N

C

0

;T

F

we denote the sets of

onept names, roles, and onrete features, respetively, that our in a onept

C

0

and a TBox T .

Lemma 22 (Termination). The tableau algorithm terminates for every input

ALC(C)-onept C

0

and input TBox T , both in PNF.

Proof. Let S

0

; S

1

; : : : be the sequene of ompletion systems generated during

the run of the tableau algorithm started on input C

0

, T , and let S

i

= (T

i

;N

i

).

Moreover, let n = jsub(C

0

; T )j. We �rst show the following:

(a) For all i � 0, the out-degree of T

i

is bounded by n:

New nodes are reated exlusively due to appliations of the rules R9 and

R9



. The rule R9 generates at most one suessor per node for eah 9R:C 2

sub(C

0

; T ), and, sine the onepts in the node labels are in PNF, the rule

R9



generates at most one abstrat suessor per node for every 9U

1

; U

2

:r 2

sub(C

0

; T ). Moreover, R9



generates at most one onrete suessor for

every onrete feature appearing in some 9U

1

; U

2

:r 2 sub(C

0

; T ). Hene,

the number of suessors of a node is bounded by n = jsub(C

0

; T )j.

(b) For i � 0, the depth of T

i

is bounded by ` = 2

2n

� jRelj

n

2

+ 2:

Assume, to the ontrary of what is to be shown, that there is an i 2 N

suh that the depth of T

i

exeeds `. Moreover, let i be smallest with this
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property. This means that T

i

has been obtained from T

i�1

by applying one

of the rules R9 and R9



to a node on level `, or by applying R9



to a node

on level `� 1.

Let T

i�1

= (V

a

;V



; E;L). Sine T

i

is obtained from T

i�1

by appliation of

R9 or R9



, and sine Rnet and Rnet

0

are applied with highest preedene,

the latter two rules are not appliable to T

i�1

. This means that, for every

a; b 2 V

a

suh that b is potentially bloked by a, we have that N

i�1

(a) and

N

i�1

(b) are omplete. Let us de�ne a binary relation � on V

a

as follows:

a � b i� L(a) = L(b) and s(a) = s(b) and N

i�1

(a) = N

i�1

(b)

Obviously, � is an equivalene relation on V

a

. The de�nition of bloking

implies that: if a is an anestor of b and a � b, then b is bloked by a in S

i�1

.

Let V

a

=

�

denote the set of �-equivalene lasses and let m = jN

C

0

;T

F

j. Sine

L(a) � sub(C

0

; T ), and N

i�1

(a) is a omplete Rel-network with V

N

i�1

(a)

=

s(a), it is not diÆult to verify that

jV

a

=

�

j = 2

jsub(C

0

;T )j

m

X

i=0

�

m

i

�

jRelj

i

2

Sine m � n, we obtain that jV

a

=

�

j � 2

n

� 2

n

� jRelj

n

2

= 2

2n

� jRelj

n

2

.

Let a 2 V

a

be the node to whih a rule is applied in T

i�1

to obtain T

i

. As

already noted, the level k of a in T

i�1

is at least ` � 1 � jV

a

=

�

j + 1. Let

a

0

; : : : ; a

k

be the path in T

i�1

leading from the root to a. Sine k > jV

a

=

�

j,

we have that a

i

� a

j

for some i; j with 0 � i < j � k. This means that a is

bloked and ontradits the assumption that a ompletion rule was applied

to a.

The tableau algorithm terminates due to the following reasons:

� It onstruts a �nitely labelled ompletion tree T of a bounded out-degree

and depth (by (a) and (b)) in a monotoni way, i.e., no nodes are removed

from T , no onepts are removed from node labels, and no onstraints are

removed from N ;

� every rule appliation adds new nodes or node labels to T , or new onstraints

to N ;

� the maximum size of node labels is bounded by jsub(C

0

; T )j and the max-

imum size if N is bounded by jRelj � k

2

, with k the number of onrete

nodes.

❏
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Lemma 23 (Soundness). If the tableau algorithm returns satis�able, then the

input onept C

0

is satis�able w.r.t. the input TBox T .

Proof. If the tableau algorithm returns satis�able, then there exists a omplete

and lash-free ompletion system S = (T;N ) for C

0

and T . Let T = (V

a

;V



; E;L),

and let root 2 V

a

denote the root of T . Our aim is to de�ne a model I for C

0

and

T . We proeed in several steps.

Let bloks be a funtion that for every diretly bloked b 2 V

a

, returns an

unbloked a 2 V

a

suh that b is bloked by a in S. It an easliy seen that, by

de�nition of bloking, suh node a always exists. A path in S is a (possibly empty)

sequene of pairs of nodes

a

1

b

1

; : : : ;

a

n

b

n

, with a

1

; : : : ; a

n

and b

1

; : : : ; b

n

nodes from V

a

,

suh that, for 1 � i < n, b

i+1

is a suessor of a

i

in T and

a

i+1

:=

�

b

i+1

if b

i+1

is not bloked;

bloks(b

i+1

) otherwise.

We use Paths to denote the set of all paths in S, head(p) to denote the �rst pair

of a path p and tail(p) to denote the last pair of p (if p is nonempty). We now

de�ne the \abstrat part" of the the model I we are onstruting:

�

I

:= fp 2 Paths j p non-empty and head(p) =

root

root

g

A

I

:= fp 2 �

I

j tail(p) =

a

b

and A 2 L(a)g; A 2 N

C

0

;T

C

R

I

:= f(p; p �

a

b

) 2 �

I

��

I

j tail(p) =

a

0

b

0

and b is R-suessor of a

0

in T g; R 2 N

C

0

;T

R

Observe that

(i) �

I

is non-empty, sine

root

root

2 �

I

.

(ii) f

I

is funtional for every f 2 N

aF

, whih is ensured by \�" operation whih

generates at most one f -suessor per abstrat node, and by de�nition of

Paths, where, in the ase of several nodes bloking the same node, only one

of them is hosen and put into a path.

Intuitively, the abstrat part of I as de�ned above is \pathed together" from

(opies of) parts of the ompletion tree T . For de�ning the onrete part of I, we

make this pathing expliit: For p; q 2 Paths,

� p is alled a hook if p =

root

root

or tail(p) =

a

b

with a 6= b (and thus b bloked

by a). We use Hooks to denote the set of all hooks.

� we all p a q-ompanion if q is a hook and there exists q

0

2 Paths suh that

p = qq

0

and all nodes

a

b

in q

0

satisfy a = b, with the possible exeption of

tail(q

0

).
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Intuitively, the hooks, whih are indued by bloking situations in T , are the

points where we path together parts of T . The part of T pathed at a hook p

with tail(p) =

a

b

is omprised of (opies of) all the nodes  in T that are reahable

from a, exept indiretly bloked ones. Formally, the part of I pathed at p is

de�ned as

P (p) := fq 2 �

I

j q is a p-ompaniong:

For p; q 2 Hooks, q is alled a suessor of p if q is a p-ompanion and p 6= q.

Observe that, for eah hook p, P (p) inludes all suessor hooks of p. Intuitively,

this means that the parts pathed together to obtain the abstrat part of I are

overlapping at the hooks.

To de�ne the onrete part of I, we need to establish some tehnial results.

Sine S is lash-free, N is satis�able. Therefore, there exists a ompletion of N .

We �x suh a ompletion N



with the nodes renamed as follows: eah onrete

node x that is a g-suessor of an abstrat node a is renamed to the pair (a; g).

Note that this naming sheme is well-de�ned sine the \�" operation ensures

that every abstrat node a has at most one g-suessor, for every g 2 N

F

. We

now de�ne a network N whih, intuitively, desribes the onstraints put on the

onrete part of the model. If q 2 Hooks, p 2 P (q), and tail(p) =

a

b

, we set

rep

q

(p) :=

�

b if p 6= q and a 6= b

a otherwise

Intuitively, this notion is needed for the following reason: let p; q 2 Hooks with q

a suessor of p. Then tail(q) =

a

b

with b bloked by a, q 2 P (p), and q 2 P (q).

As part of P (p), q represents the bloked node b. As part of P (q), q represents

the bloking node a. This overlapping of pathed parts at hooks is made expliit

via the notion rep

q

(p). Now de�ne N as follows:

N := f((p; g) r (p

0

; g

0

)) j there is a q 2 Hooks suh that p; p

0

2 P (q) and

((rep

q

(p); g) r (rep

q

(p

0

); g

0

)) 2 N



g

It is not hard to verify that V

N

= f(p; g) j p 2 Paths; tail(p) =

a

b

; g 2 s(a)g: this

is an easy onsequene of the de�nition of N, the naming sheme used in N



, and

the fat that the bloking ondition ensures s(a) = s(b) if a is bloked by b.

We have to show that N is satis�able. To this end, we �rst show that N is

pathed together from (opies of) parts of N : every hook p gives rise to a part of

N as follows:

N(p) := Nj

f(q;g)2V

N

jq2P (p)g

:

The following laim shows that N is pathed together from the networks N(p),

p 2 Hooks.

Claim 1: The following holds:
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(a) N =

S

p2Hooks

N(p).

(b) if p; q 2 Hooks, p 6= q, q is not a suessor of p, and p is not a suessor of

q, then V

N(p)

\ V

N(q)

= ;;

() if p; q 2 Hooks and q is a suessor of p, thenN(p)j

V

N(p)

\V

N(q)

= N(q)j

V

N(p)

\V

N(q)

;

(d) for every p 2 Hooks, N(p) is �nite, omplete, and satis�able.

Proof:

(a) As N �

S

p2Hooks

N(p) is immediate by de�nition of N(p), it remains to

show N �

S

p2Hooks

N(p). Thus, let ((p; g) r (p

0

; g

0

)) 2 N. Then there is

a q 2 Hooks suh that p; p

0

2 P (q). By de�nition of N(q), this implies

((p; g) r (p

0

; g

0

)) 2 N(q).

(b) We show the ontrapositive. Let (q

�

; g) 2 V

N(p)

\ V

N(q)

. It follows that

q

�

2 P (q) \ P (q

0

), i.e., there are q

0

; q

00

2 Paths suh that (i) q

�

= pq

0

,

q

�

= qq

00

, and (ii) all nodes

a

b

in q

0

; q

00

satisfy a = b, with the possible

exeption of the last one. Due to (i), p = q, p is a pre�x of q, or vie versa.

In the �rst ase, we are done. In the seond ase, sine q 2 Hooks we have

that tail(q) =

a

b

for some a, b with a 6= b. Together with q

�

= pq

0

and (ii),

this implies that q = q

�

. Thus q = pq

0

. Again by (ii), we have that q is a

suessor of p. The third ase is analogous to the seond.

() By de�nition of N(p) and N(q), we have N(p)j

V

N(p)

\V

N(q)

= Nj

V

N(p)

\V

N(q)

=

N(q)j

V

N(p)

\V

N(q)

for all p; q 2 Hooks.

(d) Let p 2 Hooks. First for �niteness of N(p). Sine the ompletion tree T

is �nite, for every hook p we have that P (p) is �nite. Moreover, for every

q 2 P (p), the set f(q; g) j g 2 N

C

0

;T

F

g � V

N(p)

is learly �nite.

We now show that N(p) is omplete. This involves two subtasks: showing

that (i) for all (q; g); (q

0

; g

0

) 2 V

N(p)

, there is at least one relation r with

((q; g) r (q

0

; g

0

)) 2 N(p); and (ii) there is at most one suh relation.

For (i), let (q; g); (q

0

; g

0

) 2 V

N(p)

. Then q; q

0

2 P (p) and rep

p

(q), rep

p

(q

0

)

are de�ned. Sine N(p) � N, the variables (q; g); (q

0

; g

0

) our in N and,

by de�nition of N, (rep

p

(q); g) and (rep

p

(q

0

); g

0

) our in N



. Sine N



is omplete, there is an r suh that ((rep

p

(q); g) r (rep

p

(q

0

); g

0

) 2 N



. By

de�nition of N, it follows that ((q; g) r (q

0

; g

0

)) 2 N. By de�nition of N(p),

((q; g) r (q

0

; g

0

)) 2 N(p).

For (ii), assume that ((q; g) r (q

0

; g

0

)) 2 N(p), for eah r 2 fr

1

; r

2

g. Sine

N(p) � N, it follows that ((q; g) r (q

0

; g

0

)) 2 N, for eah r 2 fr

1

; r

2

g. Thus,

there are q

1

; q

2

2 Hooks suh that q; q

0

2 P (q

i

) and ((rep

q

i

(q); g) r

i

(rep

q

i

(q

0

); g

0

) 2

N



, for eah i 2 f1; 2g. We distinguish two ases:
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� q

1

= q

2

. Then ompleteness of N



implies that r

1

= r

2

.

� q

1

6= q

2

. By de�nition of q-ompanions and sine q; q

0

2 P (q

1

) \ P (q

2

),

this is only possible if q = q

0

= q

i

and q

i

is a suessor-hook of q

i

, for

some i 2 f1; 2g, where i denotes 2 if i = 1 and 1 if i = 2. W.l.o.g.,

assume that i = 1. Let tail(q) =

a

b

. Sine q = q

1

and q

1

is a hook, we

have a 6= b, and thus b is bloked by a in T . By de�nition of rep, we

have rep

q

2

(q) = b and rep

q

1

(q) = a. Thus, ((a; g) r

1

(a; g

0

)) 2 N



and

((b; g) r

2

(b; g

0

)) 2 N



. Sine b is bloked by a, the bloking ondition

implies r

1

= r

2

.

Finally, we show satis�ability of N(p). To this end, it suÆes to prove that

((q; g) r (q

0

; g

0

)) 2 N(p) implies ((rep

p

(q); g) r (rep

p

(q

0

); g

0

) 2 N



: together

with the satis�ability of N



, this yields satis�ability of N(p). Thus, let

((q; g) r (q

0

; g

0

)) 2 N(p). Sine N(p) � N, the de�nition of N yields q; q

0

2

P (p) and, as required, ((rep

p

(q); g) r (rep

p

(q

0

); g

0

) 2 N



.

Claim 2: N is satis�able.

Proof: We distinguish two ases:

(1) There are no bloked nodes in S. In that ase, Hooks = f

root

root

g. Then, by Claim

1(a), we have thatN = N(

root

root

), and by Claim 1(d) we obtain thatN is satis�able.

(2) There are bloked nodes in S. In that ase, sine V

a

is �nite (.f. Lemma 22),

Hooks is a ountably in�nite set. Moreover, the \suessor" relation on Hooks is

easily seen to arrange Hooks in an in�nite tree whose out-degree is bounded by

the out-degree of the ompletion tree T , and thus �nite by what was shown in the

proof of Lemma 22. Therefore, we an �x an enumeration fp

0

; p

1

; :::g of Hooks

suh that:

� p

0

=

root

root

,

� if p

i

is a suessor of p

j

, then i > j.

Then, by Claim 1(a) we have that N =

S

i�0

N(p

i

). We �rst show by indution

that every N

k

=

S

0�i�k

N(p

i

), k � 0, is satis�able.

� k = 0: N

0

= N(p

0

) is satis�able by Claim 1(d).

� k = n + 1; n � 0: We have that N

n+1

= N

n

[N(p

n+1

). By indution, N

n

is satis�able. Let N



n

be a ompletion of N

n

and let N

0

n+1

= N



n

[N(p

n+1

).

There exists a unique p

l

2 Hooks, l � n, suh that p

n+1

is a suessor of

p

l

. By the de�nition of N

n

and Claim 1(b), and sine V

N



n

= V

N

n

, we have

that V

N



n

\ V

N(p

n+1

)

= V

N(p

l

)

\ V

N(p

n+1

)

. Moreover, by Claim 1(d), N(p

l

)
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is omplete, and thus, N



n

j

V

N(p

l

)

\V

N(p

n+1

)

= N(p

l

)j

V

N(p

l

)

\V

N(p

n+1

)

. Thus, we

obtain:

N



n

j

V

N



n

\V

N(p

n+1

)

= N



n

j

V

N(p

l

)

\V

N(p

n+1

)

= N(p

l

)j

V

N(p

l

)

\V

N(p

n+1

)

= N(p

n+1

)j

V

N(p

l

)

\V

N(p

n+1

)

Here, the last equality follows from Claim 1(). Moreover, by Claim 1(d),

we have that N(p

n+1

) is �nite, omplete and satis�able, and N



n

is �nite.

Thus, N



n

and and N(p

n+1

) are �nite omplete satis�able networks, whose

intersetion parts are idential. Sine the ompletion system C has the

pathwork property, we obtain that N

0

n+1

is satis�able, and, sine N

n+1

�

N

0

n+1

, we have that N

n+1

is satis�able.

Thus, we have shown that N

k

is satis�able for all k � 0.

To the ontrary to what is to be shown, let us now assume thatN is not satis�able.

We onsider two ases:

(i) N is �nite. Then, there exists an m 2 N , suh that N = N

m

. Hene, we

have that N

m

is unsatis�able, whih is a ontradition.

(ii) N is in�nite. Sine C has the ompatness property, we have that N has

a �nite sub-network M suh that M is unsatis�able. But then there exists

an m 2 N suh that N

m

� M , and thus N

m

is unsatis�able, whih is a

ontradition.

This �nishes the proof of Claim 2. We are now ready to de�ne the onrete part

of the model I. Sine N is a satis�able, there is an M

I

2 M and a mapping

� : V

N

! V

M

I

suh that (v r v

0

) 2 N implies (�(v) r �(v

0

)) 2 V

M

I

. De�ne

I = (�

I

; �

I

;M

I

) with �

I

and �

I

de�ned as above, and, additionally:

g

I

:= f(p; �(p; g)) 2 �

I

� V

M

I

j tail(p) =

a

b

and g 2 s(a)g; g 2 N

C

0

;T

F

Note that, by de�nition, g

I

is funtional for every g 2 N

F

. In order to show that

I is a model of C

0

and T , we require one more laim:

Claim 3: For all s 2 �

I

and C 2 sub(C

0

; T ), if tail(s) =

a

b

and C 2 L(tail(a)),

then s 2 C

I

.

Proof: We prove the laim by strutural indution on C. Let s 2 �

I

, tail(s) =

a

b

,

and C 2 L(tail(a)). In the following, we will impliitly use the fat that, by

onstrution of Paths, a is not bloked in S. We make a ase distintion aording

to the topmost operator in C:
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� C is a onept name. By onstrution of I.

� C = :D. Sine C is in NNF, D is a onept name. Clash-freeness of

S implies D 62 L(a). The onstrution of I implies s 62 D

I

whih yields

s 2 (:D)

I

.

� C = D u E. The ompleteness of S implies fD;Eg � L(a). The indution

hypothesis yields s 2 D

I

and s 2 E

I

, therefore s 2 (D u E)

I

.

� C = DtE. The ompleteness of S implies fD;Eg\L(a) 6= ;. By indution

hypothesis it holds that s 2 D

I

or s 2 E

I

, and therefore s 2 (D t E)

I

.

� C = 9R:D. Sine the R9 rule is not appliable, a has an R-suessor  suh

that D 2 L(). By de�nition of I, there is a t = s �

d



2 �

I

suh that either

 = d or  is bloked by d in S. Sine L() � L(d) (both if  = d and if  is

bloked by d), we have that D 2 L(d). By indution, it holds that t 2 D

I

.

By de�nition of I, we have (s; t) 2 R

I

and this implies s 2 C

I

.

� C = 8R:D. Let (s; t) 2 R

I

. By onstrution of I, t = s �

d



suh that  is an

R-suessor of a. Sine R8 is not appliable, we have that D 2 L(). Sine

L() � L(d) (as in the previuos ase), we have C 2 L(d), and by indution

t 2 C

I

. Sine this holds independently of the hoie of t, we obtain s 2 C

I

.

� C = 9U

1

; U

2

:r. As C is in PNF, it suÆes to onsider the ase U

1

= Rg

1

,

U

2

= g

2

(the symmetri ase and the one when U

i

are onrete features are

analogus or easier). Sine the R9



rule is not appliable, there exists an

R-suessor  of a, a g

1

-suessor y

1

of , and a g

2

-suessor y

2

of a suh

that (y

1

r y

2

) 2 N . Then ((; g

1

) r (a; g

2

)) 2 N



. Moreover, there is a

t = s �

d



2 �

I

suh that  = d or  is bloked by d. By de�nition of R

I

,

we have that (s; t) 2 R

I

. Moreover, there is a p 2 Hooks suh that s and

t are p-ompanions and rep

p

(s) = a, rep

p

(t) = . Thus, by de�nition of N

we obtain ((t; g

1

) r (s; g

2

)) 2 N, implying (�(t; g

1

) r �(s; g

2

)) 2 M

I

. Sine

g

I

1

(t) = �(t; g

1

) and g

I

2

(s) = �(s; g

2

), we obtain that s 2 C

I

.

� C = 8U

1

; U

2

:r. As in the previous ase, we will assume that U

1

and U

2

are of the form U

1

= Rg

1

, U

2

= g

2

. Let t; x

1

; x

2

be suh that (s; t) 2 R

I

,

g

I

1

(s) = x

1

= �(s; g

1

), and g

I

2

(s) = x

2

= �(t; g

2

). By de�nition of I, we have

that t = s �

d



2 �

I

suh that  is an R-suessor of a. Moreover, there is

a g

1

-suessor y

1

of  and a g

2

-suessor y

2

of a. Sine R8



is inappliable,

8U

1

; U

2

:r 2 L(a) implies that (y

1

r y

2

) 2 N . Thus, ((; g

1

) r (a; g

2

)) 2 N



.

Moreover, there is a p 2 Hooks suh that s and t are p-ompanions and

rep

p

(s) = a, rep

p

(t) = . Thus, by de�nition of N, ((t; g

1

) r (s; g

2

)) 2 N,

whih implies (�(t; g

1

) r �(s; g

2

)) 2 M

I

.
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This �nishes the proof of Claim 3. Sine C

0

2 L(root) and

root

root

2 �

I

, Claim 3

implies that I is a model of C

0

.

Finally, let us show that I is a model of the input TBox T . Let C v D 2 T

and s 2 �

I

. Let tail(s) =

a

b

. Sine S is omplete, Rgi is not appliable, and

thus C

T

2 L(a). By Claim 3 we have that s 2 C

I

T

, and, onsequently, s 2

T

CvD2T

(C ! D)

I

. Thus, we obtain C

I

(s) � D

I

(s). ❏

Lemma 24 (Completeness). If the input onept C

0

is satis�able w.r.t. the

input TBox T , then the algorithm returns satis�able.

Proof. Let C

0

be satis�able w.r.t. T , I = (�

I

; �

I

;M

I

) a ommon model of

C

0

and T , and a

0

2 �

I

suh that a

0

2 C

I

0

. We use I to \guide" (the non-

deterministi parts of) the algorithm suh that it onstruts a omplete and lash-

free ompletion system. A ompletion system S = (T;N ) with T = (V

a

;V



; E;L)

is alled I-ompatible if there exist mappings � : V

a

! �

I

and � : V



! V

M

I

(i.e.,

to the variables used in M

I

) suh that

(Ca) C 2 L(a)) �(a) 2 C

I

(Cb) b is an R-suessor of a) (�(a); �(b)) 2 R

I

(C) x is a g-suessor of a ) g

I

(�(a)) = �(x)

(Cd) (x r y) 2 N ) (�(x) r �(y)) 2M

I

Claim 1: If a ompletion system S is I-ompatible and a rule R is appliable

to S, then R an be applied suh that an I-ompatible ompletion system S

0

is

obtained.

Proof: Let S = (T;N ) be an I-ompatible ompletion system with T = (V

a

;V



; E;L),

let � and � be funtions satisfying (Ca) to (Cd), and let R be a ompletion rule

appliable to S. We make a ase distintion aording to the type of R.

Ru The rule is applied to a onept C

1

u C

2

2 L(a). By (Ca), C

1

u C

2

2 L(a)

implies �(a) 2 (C

1

uC

2

)

I

and hene �(a) 2 C

I

1

and �(a) 2 C

I

2

. Sine the rule

adds C

1

and C

2

to L(a), it yields a ompletion system that is I-ompatible

via � and � .

Rt The rule is applied to C

1

t C

2

2 L(a). C

1

t C

2

2 L(a) implies �(a) 2 C

I

1

or �(a) 2 C

I

2

. Sine the rule adds either C

1

or C

2

to L(a), it an be applied

suh that it yields a ompletion system that is I-ompatible via � and � .

R9 The rule is applied to 9R:C 2 L(a). By (Ca), �(a) 2 (9R:C)

I

and hene

there exists a d 2 �

I

suh that (�(a); d) 2 R

I

and b 2 C

I

. By de�nition of

R9 and the \�" operation, rule appliation either (i) adds a new R-suessor

b of a and sets L(b) = fCg; or (ii) re-uses an existing R-suessor, renames
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it to b in T and sets L(b) = L(b) [ fCg. Extend � by setting �(b) = d.

The resulting ompletion system is I-ompatible via the extended � and

the original � .

R8 The rule is applied to 8R:C 2 L(a) and it adds C to the label L(b) of

an existing R-suessor of a. By (Ca), �(a) 2 (8R:C)

I

and by (Cb),

(�(a); �(b)) 2 R

I

. Therefore, �(b) 2 C

I

and the resulting ompletion sys-

tem is I-ompatible via � and � .

R9



The rule is applied to a onept 9U

1

; U

2

:r 2 L(a). We assume that U

1

= Rg

1

and U

2

= g

2

. The symmetri ase is analogous and the ase where one or

both of U

1

; U

2

are only onrete features is similar, but easier. The rule

appliation generates a new abstrat node b and onrete nodes x and y (or

re-uses existing ones and renames them) suh that:

{ b is an R-suessor of a,

{ x is a g

1

-suessor of b, and

{ y is a g

2

-suessor of a

and adds (x r y) to N . By (Ca), we have �(a) 2 (9U

1

; U

2

:r)

I

. Thus, there

exist d 2 �

I

and z; w 2 V

M

I

suh that:

{ (�(a); d) 2 R

I

,

{ g

I

1

(d) = z,

{ g

I

2

(�(a)) = w, and

{ (z r w) 2M

I

Extend � by setting �(b) := d, and extend � by setting �(x) := z and

�(y) := w. It is easily seen that the resulting ompletion system is I-

ompatible via the extended � and � .

R8



The rule appliation is applied to an abstrat node a with 8U

1

; U

2

:r 2 L(a)

suh that there are x

1

; x

2

2 V



suh that x

i

if a U

i

-suessor of a for i = 1; 2.

It adds (x

1

r x

2

) to N . By (Ca), �(a) 2 (8U

1

; U

2

:r)

I

. By (Cb) and (C),

we have (�(a); �(x

1

)) 2 U

I

1

and (�(a); �(x

2

)) 2 U

I

2

. By the semantis, it

follows that (�(x

1

) r �(x

2

)) 2M

I

. Thus, the resulting ompletion system is

I-ompatible via � and � .

Rnet The rule appliation guesses a ompletion N

0

of N

0

(a), for some a 2 V

a

,

and sets N := N [N

0

. De�ne

N

0

:= f(x r y) j x is a g-suessor of a;

y is a g

0

-suessor of a, and (�(x) r �(y)) 2M

I

g:
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By de�nition of N

0

(a), we have V

N

0

(a)

= V

N

0

. By (Cd), we have N

0

(a) � N

0

.

Sine M

I

is omplete, N

0

is omplete. Finally, � witnesses that M

I

is a

model of N

0

, and thus N

0

is satis�able. It follows that N

0

is a ompletion of

N

0

(a). Apply Rnet suh that N

0

is guessed. Then, the resulting ompletion

system is I-ompatible via � and � .

Rnet

0

Analogously to the previous ase.

Rgi The rule appliation adds C

T

to L(a), for some a 2 V

a

. Sine I is a model

of T , we have �(a) 2 C

I

T

. Thus, the resulting ompletion system is I-

ompatible via � and � .

We now show that I-ompatibility implies lash-freeness.

Claim 2: Every I-ompatible ompletion system is lash-free.

Proof: Let S = (T;N ) be an I-ompatible ompletion system with T = (V

a

;V



; E;L).

Consider the two kinds of a lash:

� Due to (Ca), a lash of the form fA;:Ag 2 L(a) ontradits the semantis.

� Property (Cd) implies that M

I

is a model of N . Thus, N is satis�able.

We an now desribe the \guidane" of the tableau algorithm by the model I:

we ensure that, at all times, the onsidered ompletion systems are I-ompatible.

This obviously holds for the initial ompletion system. By Claim 1, we an guide

the rule appliations suh that only I-ompatible ompletion systems are ob-

tained. By Lemma 22, the algorithm always terminates, hene also when guided

in this way. Sine, by Claim 2, we will not �nd a lash, the algorithm returns

satis�able. ❏

As an immediate onsequene of Lemmas 22, 23 and 24, we get the following

theorem:

Theorem 25. If C is an !-admissible onstraint system, the tableau algorithm

deides satis�ability of ALC(C) onepts w.r.t. general TBoxes.

5 Conlusion

We have proved deidability of ALC with !-admissible onstraint systems and

GCIs. We onjeture that, by mixing the tehniques from the urrent paper with

those from [15, 12℄, it is possible to prove ExpTime-ompleteness of satis�ability

in ALC(C) provided that satis�ability in C an be deided in ExpTime. Various

language extensions, both on the logial and onrete side, should also be possible

in a straightforward way.
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We also exhibited the �rst tableau algorithm for DLs with onrete domains

and GCIs in whih the onrete domain onstrutors are not limited to onrete

features. We view this algorithm as a �rst step towards an implementation, al-

though there is learly room for improvements: the rules Rnet and Rnet

0

add on-

siderable non-determinism, lash heking involves the whole network N rather

than only a loal part of it, and bloking an be further re�ned.

We believe that, in general, getting rid of the additional non-determinism

introdued by Rnet and Rnet

0

is diÆult. One possible way out may be to permit

only a single onrete feature: then Rnet and Rnet

0

beome deterministi (in

fat they an be omitted), and \potentially bloking" oinides with \diretly

bloking". We believe that having only one onrete feature is atually rather

natural: for the Allen/RCC8 onrete domains, the onrete feature ould be

hasTime and hasLoation, respetively.

However, a ompliation is posed by the fat that path normal form introdues

additional onrete features. Simply requiring, as an additional restrition, that

only onepts and TBoxes in PNF are allowed is rather severe: it an be seen that,

then, satis�ability in ALC(C) instantiated with the RCC8 and Allen onstraint

systems an be deided by adding some simple lash onditions. In partiular,

there is no need to use an external reasoner for the onstraint system at all. It is

more interesting to �nd a tableau algorithm for ALC(C) with only one onrete

feature that does not rely on PNF. As future work, we will try to identify suh

an algorithm. We believe that, in this, it is neither neessary to add any non-

determinism apart from the Rt rule, nor to perform a global satis�ability hek

of N .
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