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Abstract

Often, the addition of metric operators to qualitative temporal logics leads to
an increase of the complexity of satisfiability by at least one exponential. In this
paper, we exhibit a number of metric extensions of qualitative temporal logics of
the real line that do not lead to an increase in computational complexity. The
main result states that the language obtained by extending since/until logic of the
real line with the operators ‘sometime within n time units’, n coded in binary, is
PSpPACE-complete even without the finite variability assumption. Without quali-
tative temporal operators the complexity of this language turns out to depend on
whether binary or unary coding of parameters is assumed: it is still PSPACE-hard
under binary coding but in NP under unary coding.

1 Introduction

The extension of qualitative temporal logics (TLs) with metric operators has been stud-
ied for almost fifteen years [5, 4, 7]. Of particular interest are metric extensions of tem-
poral logics of the real line, since the resulting quantitative TLs are an important tool
for the specification and verification of real-time systems [2]. Unfortunately, moving
from qualitative to quantitative logics is often accompanied by an increase in computa-
tional complexity of the satisfiability problem. The most important example witnessing
this effect is the PSPACE-complete since/until logic of the real line [6], whose extension
with a metric operator ‘sometime in at least n but not more than m time units’ (n and
m coded in binary) becomes EXPSPACE-complete if the case n = m is not admitted and
even undecidable if it is [1, 3, 5].

It is well known that the complexity of the metric temporal logic obtained by this
extension can be reduced to PSPACE again by further restricting the values of n and m,
e.g., by enforcing that n = 0 [1]. However, in contrast to the EXPSPACE-completeness
and undecidability results above, this improvement has only been proven under the
finite variability assumption (FVA) which states that no propositional variable changes
its truth-value infinitely many times in any finite interval. While the FVA is a natural
condition for various computer science applications, we believe that there are at least two
reasons to consider also the non-FVA case: first, qualitative temporal logic originated in



philosophy and mathematics to study time itself, rather than the behaviour of systems
with discrete state changes as considered in computer science. If quantitative TL is used
for the former purpose, the FVA is less convincing than in computer science applications.
Second, even in computer science reasoning without the FVA can be fruitfully employed:
assume that a formula ¢ of a quantitative TL describes the specification of a real-
time system. Further assume that ¢ has been found to be unsatisfiable under FVA,
indicating that the described specification is not realizable. If an additional satisfiability
check without FVA is made revealing that dropping FVA regains satisfiability of ¢,
then the user obtains additional information on the source of the unrealizability of her
specification: namely that it enforces an infinite number of state changes in a finite
interval.

The purpose of this paper is to investigate metric temporal logics of the real line
that are at most PSPACE-complete. More precisely, we prove three results. Our first
and main result is that extending since/until logic of the real line with metric operators
‘sometime in at most n time units’, n coded in binary, is PSPACE-complete even without
FVA. To show this, we propose a new method for polynomially reducing satisfiability in
metric TLs whose numerical parameters are coded in binary to satisfiability in the same
logic with numbers coded in unary. The essence of the reduction is to introduce new
propositional variables that serve as the bits of a binary counter measuring distances.
For the metric TL mentioned above, we obtain a PSpace upper bound since Hirshfeld
and Rabinovich have shown that QTL, i.e., the same logic with numbers coded in unary,
is PSPACE-complete without FVA [5]. We also show that our proof method can also be
used for other logics such as a metric extensions of the branching time logic CTL, thus
reproving the EXPTIME-completeness of metric CTL from [4].

Our second result concerns a sharpening of PSPACE lower bounds for metric tempo-
ral logics of the real line. In the current literature, such logics usually contain qualitita-
tive since/until logic as a proper fragment, and thus trivially inherit PSPACE-hardness
[2, 5, 6]. We consider metric TLs with weaker qualitative operators and show that
PSpACE-hardness can already be observed in the following three cases: (i) a future
diamond and a future operator ‘sometime in at most n time units’, n coded in unary;
(ii) only the future operator ‘sometime in at most n time units’, n coded in binary (i.e.,
no qualitative operators at all); (iii) only a metric version of the until operator for the
interval [0, 1].

As a third result, we explore the transition from NP to PSPACE. In particular,
we show that the quantitative TL with only the metric operator ‘sometime within n
time units’, n coded in unary, is NP-complete. This result extends the result of [9]
that satisfiability of the qualitative TL with operators ‘eventually in the future’ and
‘eventually in the past’ over the real line is decidable in NP. When compared with
result (ii) above, it also shows that the complexity of metric TLs without qualitative
operators depends on the coding of numbers. To establish the NP upper bound, we
show that satisfiability of a formula ¢ can be decided by first ‘guessing’ a system of
rational linear inequalities, and checking whether this system has a solution over the
real (or, equivalently, rational) numbers.



2 Preliminaries

We introduce the metric temporal language QTL of [5]. It is closely related to the lan-
guage MITL of [1]. Fix a countably infinite supply pg, p1, ... of propositional variables.
A QTL-formula is built according to the syntax rule

e=p | TIL|~p|loeAy| oSy |ouUy | Sy | oy

with p ranging over the propositional variables and I ranging over intervals of the
forms (0,n), (0,n], [0,n), and [0,n], where n > 0 is a natural number. The Boolean
operators V, —, and <> are defined as abbreviations in the usual way. Moreover, we
introduce additional future modalities as abbreviations (}{;(p =Tuly, Df;(p = —K}{;—mp,
Orp = TU p, and Opp = =Op—ep.

Formulas of QTL are interpreted on the real line. Thus, a model M = (R, V) is
a pair consisting of the real numbers and a valuation U mapping every propositional
variable p to a set U(p) C R. The satisfaction relation ‘=’ is defined inductively as
follows, where we write w + I to denote the set {w + = | z € I} for each time point
w € R and interval I of one of the above forms; w — I is defined analogously.

Mw = p iff  w e B(p)
Mow =T for allweR
Mw =L for noweR
M, w = - iff  Mow =

MwEpeAyp iff MwEpand Mw =Y

M wl= Uy iff  there exists v > w such that M, u =1 and M, v = ¢
for all v such that w < v <u

Mwl=pSy iff there exists u < w such that M, u =1 and M, v = ¢
for all v such that v < v <w

M, w =o'y iff there exists u € w + I such that 9, u =1 and M, v = ¢
for all v such that w < v <u

M wl= STy iff there exists u € w — I such that 9, u =+ and M, v = ¢
for all v such that v < v < w.

We will also write w =g ¢ for (R, D), w = ¢. A QTL-formula ¢ is satisfiable if there
exists a model MM and w € R such that M, w = . It is satisfiable under the finite
variability assumption (FVA) if it is satisfiable in a model in which no propositional
variable changes its truth-value infinitely many times in any finite interval.

Our presentation of QTL deviates from that of [5], where only the metric operators
0;9’1) and <>§3’1) are admitted. If the numerical parameters of the metric operators
are coded in unary, there exists an easy polynomial translation from Hirshfeld and
Rabinovich’s version of QTL to ours and vice versa. However, in this paper we also
consider binary coding of numbers. If we want to emphasize this fact, we shall write
QTL? instead of QTL, and likewise QTL" will denote unary coding of numbers.



3 QTL’ is PSPACE-complete without FVA

The purpose of this section is to prove that QTL’-satisfiability without FVA is decidable
in PSPACE. This result is already known for QTL" without FVA [5] and QTL" with
FVA [1]. We first show that our result indeed improves upon the existing ones by
proving that QTL? is exponentially more succinct than QT L".

Theorem 1. Let i be a QTL-formula with numbers coded in unary that is equivalent
to DEE’"}p. Then 1 has length at least n.

Proof. Suppose by contradiction that there exists a QTL-formula ¢ with numbers
coded in unary such that ¢ is equivalent to DEE’"}p, for some n > 1, and the length of
1 is strictly smaller than n. We may assume that 1 contains no other propositional
letters than p: otherwise, just replace them with T. Then, for n > 1, set U, (p) :=
[—n,n] and M, = (R,V,,). Then M,,0 = DE?’"}p. Therefore, M,,,0 = . Now, it
is straightforward to prove the following by induction: for every subformula x of ¢ of

length < k and all x > k such that n —z > —n + k:
M, (n—k)=x iff M,,(n—2)Fx.

Since the length of v is smaller than n, it follows that, in 9, the points 0 and 1 satisfy
the same subformulas of ¢. In particular, 9,1 = 1. We have derived a contradiction

since 9M,,, 1 b OL"lp. O

We now establish the main result of this paper.

Theorem 2. Satisfiability in QTL with numbers coded in binary is PSPACE-complete
without FVA.

Since (qualitative) since/until logic on the real line is PSPACE-hard [6], it suffices to
prove the upper bound. For simplicity, we prove the upper bound for the future fragment
of QTL, i.e., we omit past operators. The proofs are easily extended to the general case.
0,1)
O

Within the future fragment, we consider only the metric operators 052’1), <>§f3’”, ,

and <>£2’"]. This can be done w.l.o.g. due to the following observations:

First, satisfiability in QTL? can be reduced to satisfiability in QTL? without the
metric operators ¢ U’ o: to decide satisfiability of a QTL? formula ¢, introduce a
new propositional variable py, for every s which occurs in a subformula of the form
1 U 19 of . For any subformula y of ¢, we use x? to denote the result of replacing all
outermost subformulas 11 24 1o of x by 11 U py, N O%pwz. Set D;Eqﬁ =1 AUpp. Then
@ is satisfiable iff

PATEL N (e o uh)
1 U Ppa€sub(p)
is satisfiable and the length of the latter formula is polynomial in the length of ¢. Second,

for any interval I of the form (0,n), (0,n], or [0,n), 0% is equivalent to QQ’I)O{?@,
where J is obtained from I by decrementing the upper interval bound from n to n — 1.



In the following, we reduce satisfiability of QTL’-formulas to the satisfiability of
QTL'-formula, i.e., QTL-formulas in which all upper interval bounds have value 1. As
the coding of numbers is not an issue in the latter logic, we obtain a PSPACE upper
bound from the result of [5] that QTL" satisfiability in models without FVA is decidable
in PSPACE.

Let ¢ be a QTL-formula meeting the restrictions laid out above. Let k be the
greatest number occurring as a parameter to a metric operator in ¢, n. = [log,(k+2)],
and x1,...,Xxe the subformulas of ¢ that occur as an argument to a metric operator of
the form <>52’”] with n > 1. We reserve, for 1 <4 </, fresh propositional variables z;, y;,
and cflcfl, ..., ch that do not occur in . The sequences cflcfl, ..., ch of propositional
variables will be used to implement binary counters, one for each y;. Intuitively, these
counters measure the distance to the “nearest” future occurrence of the formula y;,
rounded up to the next largest natural number. A counter value greater than or equal
to k4 1 is a special case indicating that the nearest occurrence is too far away to be of
any relevance. The variables z; and y; will serve as markers with the following meaning:
z; holds in a point iff there is a natural number n such that x; holds at distance n,
but not in between; similarly, y; holds iff there is a natural number n such that x; does
not hold at any distance up to (and including) n, but x; holds at future points that
converge from the right to the future point with distance n. In the following, we call
the structure imposed on the real line by the markers z; and y; the (one-dimensional)
‘grid’.

To implement the counters, we introduce auxiliary formulas. For 1 <7 </, let

e (C; = m) be a formula saying that, at the current point, the value of the i-th
counter is m, for 0 < m < 2"¢. There are exponentially many such formulas, but
we will use only polynomially many of them in the reduction.

e (C; < m) is a formula saying that, at the current point, the value of the i-th
counter does not exceed m, for 0 < m < 2",

o Op:=(z; Vyi)U((xi V yi) A @) says that, at the next grid point, ¢ is satisfied.

To deal with effects of convergence, it is convenient to introduce an additional abbrevi-
ation. The formula re(y) := (=(—41f T) A —p) describes convergence of -points from
the right against a point where 7 does not hold. We now inductively define a translation
of QTLt-formulas to QTL'-formulas:

%

p =D
(—)* = gt
(Y1 Apa)* = T A3
(b1 Up2)* = PTUP;
(OFpY)* = Opy*
Oy = (G <n—1) Vv ((Ci = n) A )

Here, I ranges over intervals (0,1], (0, 1), and [0,1). It remains to enforce the existence
of the grid and the behavior of the counters as described above. This is done with the



following auxiliary formulas, for 1 <4 < /:

9 = (Ci=0) & (x; Vre(x)))
B = mi o PV (@Y A A ) A 0w A 0r))]
9 = oy e [rc(x;‘) Vv (Dgﬂ”l)(ﬁx;‘ A =mi A =yi) A Qgg’l]yi A OFTC(X;‘F))]
9, = =(C;=0)A <>§9’” (z; Vyi) —
Vo (drO-dA A (a0 N (6o Od))
t=0.m0—1 0=0..4—1 (=t+1.no—1
VoA (@0
£=0..n.—1
N — 0.1) ¢\ o C. = 9ne _ 1
5 = _'<>F (xZ \ yZ) - ( v )

Intuitively, 9} initializes the counter, 9% and 9% ensure that z; and ; behave as described
above, 9} increments the counter when travelling to the left, and 9% ensures that, when
travelling left, the counter stays in maximal value after the last occurrence of x;. Let
?" be the conjunction of ¥4 to ¥%. The following finishes the reduction.

Lemma 3. ¢ is satisfiable iff Op(9' A --- AOY) A ©* is satisfiable.

Proof. “<”: Let U be a valuation and w € R such that w =g Op (9 A--- A9 A p*.
We show, by induction, for all v € R and all subformulas x of ¢:

vEygx ff viEy X" (1)

Clearly, w =g ¢ follows. The cases for propositional variables, -, A, I/, and O%, where
I ranges over intervals (0, 1), (0,1], and [0,1), are trivial and omitted here. Consider

the remaining case x = ¢ 12’" Xi-
For the direction from right to left, suppose
v g (O™ xi)* = (G <n— 1)V ((Ci = n) A ).
We take a time point v € R and distinguish two cases:
(i) v Eg z; Vy;. Set u =wv.
(i) v fEy z; V y;. Let u € v+ (0,1) be minimal such that u =g z; V y;.

Note that, in (ii), the required u exists: by definition of n., we have n < 2™ —1 and thus
v FEy (<>E2””Xi)* implies v =g O[lg’l)(:ci V y;) by 9%. Hence, there exists u € v + (0,1)
such that u =g 2; V y;. By 9% and 9%, there exists a minimal such u. For m > 1, let
¢ denote the natural number such that v+ m =g (C; = ¢,). Our aim is to show that
one of the following holds:

(a) u+co g x; and u =g x5



(b) u+co = re(x)) and u =y yi;

For suppose that this has been shown. Then we obtain v =y 052’"] X;, which can be seen

by distinguishing the following four subcases, and thus get v =y 032’"] x; by induction
hypothesis as desired.

e Cases (i) and (a). Since v =g (Q[FU’”}Xi)* and v = u, we have ¢y < n. Thus,
(0,n]

u+co g x§ ylelds v =g OF X -

e Cases (i) and (b). Then u + ¢y =g rc(x)) implies that we can find a time point
v € u+ (cp,co + 1) such that v' =g x;. Since v =g (O[FO’"]XZ-)*, v = u, and
u = y;, we have ¢y < n. Thus, v =g o[FO’"]X;‘.

e Cases (ii) and (a). Since v g 7; V i, 9% to 9% yield that v g =(C; = 0). By
the existence of u and by 9%, this yields v =y (C; = ¢ + 1), and thus cg < n.
Thus v + ¢ = x; and the choice of u yield v =g Ogg’n]xf.

e Cases (ii) and (b). Then (b) u + ¢y =y re(x)) implies that we can find a v’ €
u + (co,co + (u — v)) such that v' =g x7. As in the third subcase, we can show

*

that ¢y < n. Thus v’ =g x7 and the choice of u and v’ yield v |=g O[FO’”]X.

'

It thus remains to show that one of (a) and (b) holds. To this end, we show by induction
on m that, for m < ¢y, we have

1. u+m ):mxiVyi;
2. ¢y =co—m;
3. v g x; Vre(x)) for all o' € [u+m,u+m+1), if m < cp;

First for the induction start: Point 1 holds by choice of u and Point 2 is trivial. For
Point 3, assume that m > ¢y. First assume that u =g X7 V rc(x}). This implies ¢g = 0
by 9% and thus we have a contradiction. It thus remains to show that v’ =g x7 Vre(x?)
for all v’ € (u,u + 1). This is an immediate consequence of ¥% and 9% together with the
facts that v = z; V y; and u [y x; V re(x)). For the induction step, let m < ¢q:

e Point 1. By induction, u +m |=g z; V y; and u 4+ m [y xF V re(x)). Thus, we
have u +m + 1 =g 21 V y; by 9% and 9%;

e Point 2. By induction, we have ¢,;, = ¢p —m implying u +m =y —(C; = 0). Since
Point 1 additionally gives us u +m + 1 =g 71 V y;, 9 yields ¢, = ¢pg1 + 1 and
from Point 2 of the induction hypothesis we obtain ¢,,11 = ¢g — (m + 1).

e Point 3. Assume m + 1 < ¢y. Point 2 gives us ¢,11 = ¢g — (m + 1). We thus
have u +m + 1 =g =(C; = 0). Thus, 9% implies u +m fg X7 V re(x)). It thus
remains to show that v’ =g x; V re(x)) for all o' € (u+m,u+m+1). This is an

immediate consequence of 9% and 9% together with the facts that u = z; V y; by
Point 1 and u + m [Eg xF V re(x))-



In particular, we have shown that u + ¢y =g (C; = 0). Thus, u+ ¢y =y x; V re(x))
by 9%. We have two sub-cases: first, u + ¢y =g xF. By 95, we have u + m |=y z; for
all m < ¢p, and thus Case (a) from above holds. The second case is u + ¢o =g re(x)).
Then 9% yields u +m [=g y; for all m < ¢y and Case (b) from above holds.

For the direction from left to right of (1), suppose v =g 032’"] Xi- By the semantics,
there is an u € w + [0,n] such that u =g x;. If there is a smallest such position u,
then (a) take u to be the smallest one, otherwise (b) take u to be the smallest position
such that u =g rc(x;). The induction hypothesis yields that (a) v =y X}, or (b)
u g re(x}). Then u =y (C; = 0) by 9%. Together with v’ g X for each v' € (v, u),
it follows from 9% and 9% that v" =g x; V y; for all v” such that v = u — j for some
natural number j < u — v. Then ¥} yields v’ g (C; = j) for all j € N with j <u —wv
and each v’ € [u—j,u—j+1). Since u was chosen such that u € v+ [0,n], in particular
we obtain that w =g (C; < n). To show that v =g (C; <n —1) V ((C; = n) A —y;), is
thus remains to prove that v =y (C; = n) implies v g y;. Suppose v =y (C; = n).
In Case (a), v ey y; by 9%. Consider Case (b) and assume to the contrary of what is
to be shown that v =g ;. By 9%, it then follows that u — v = n. But then, v’ [y xi

for all v' € v + [0, n] contradicting the assumption that v =g <>[F°’”] Xi-

“=": Suppose ¢ is satisfiable, i.e., there is a valuation ¥ and a w € R such that
w [=9 ¢. For each v € R and 1 <14 </, let v, denote

e the smallest time point such that v < v,, and v =y x; V rc(x;) if such a time
point exists;

o v+ 2" — 1 otherwise.

If vy, = xi, we say that v is x;-ezact; if vy, = re(x;), we say that v is x;-convergent.
We extend U to the additional propositional letters x;, y;, and ¢} used in ¢* as follows:

(1) v € B(x;) iff vy, — v is an integer and v is x;-exact;
(2) u € V(y;) iff vy, — v is an integer and v is x;-convergent;

(3) u € B(c}) iff the t-th bit of the number v,, — v is one or this number exceeds the
value 2"¢ — 2.

It is not hard to verify that w g Op(9' A --- A9Y). To show that w =g ¢*, the
following can be proved by structural induction:

w g @ iff w g e

Details are left to the reader. O



4 From NP to PSPACE

Qualitative since/until logic on the real line is PSPACE-complete, and thus not computa-
tionally simpler than QTL®. However, several natural fragments are only NP-complete,
an important example being the qualitative TL with temporal operators ‘eventually in
the future’ and ‘eventually in the past’ [9]. In this section, we explore the transition
from NP to PSPACE for fragments of quantitative logics of the real line, i.e., for QTL
and it’s fragments. We start with determining several weak, but still PSPACE-hard
fragments of QTL. Observe that two of the fragments are purely quantitative, i.e., they
do not admit qualitative temporal operators at all.

Theorem 4. Satisfiability (with and without FVA) is PSPACE-hard for the fragments
of QTL whose only temporal operators are:

(i) OF and O[Fo’n} with n > 0 coded in unary;

(i1) O[Fo’n} with n > 0 is coded in binary;
(iii) 1],

Proof. The proof is only sketched here, details are easily filled in. First for Point (i) of
Theorem 4, we reduce satisfiability in qualitative TL on the natural numbers with the
only temporal operators () and Qr, where O is not strict, i.e., O pp is equivalent to the
QTL formula ¢ V QO pp. This logic is known to be PSPACE-hard [8]. Let ¢ be a formula
of this logic, and a a propositional variable that does not occur in . The main idea of
the reduction is to construct a discrete model on the real line by alternating intervals
making a true and intervals making —a true, with the former representing the time
points of discrete time. This structure is enforced such that the length of the a-intervals
is from the interval [2,3), the length of the —a-intervals is from [7,8), and the length of
an a-interval together with the subsequent —a interval is from (9,10). This is done by
the formula ¢ = ¥ A ¥9 A ¥3:

’191 = D[FO’Z]O,,
92 = Opla— 0R" 00 -a),
93 = Op(a— OE?’IO]D[FO’Z]a).

Inductively define a translation (-) as follows:

p =D
() =
(b1 Apa)* = ] A3
(O9) = 0 (ORT-an 0PI+ A a))
(Ory)* = Or(¥* Na)

Additionally, a formula ¥’ is needed to take care of uniformity, i.e., to make sure that
the same propositional variables hold in all points of an interval that makes a true:

9 =0p /\ ((p/\a — D[F0’3](a —>p)) A (—|p/\ a — D[Zg’g}(a — —|p))).
p used in ¢



Then ¢ is satisfiable iff o* AJ A D Aa is.

For Point (ii) of Theorem 4, we reduce the word problem of a deterministic Turing
machine M that solves a PSPACE-hard problem and for which there exists a polynomial
p such that M’s space consumption on input w € ¥* is bounded by p(w) and M’s time
consumption on w is bounded by 2P(®). The general idea is to use a sequence of a
intervals and —a intervals as in the previous relation, with each a interval representing
one configuration of the Turing machine computation. Let w = ag - - - a,_1 be an input
to M. In the reduction, we use the following propositional variables:

e all states ¢ of M are used as propositional variables;

e to describe the state inscription, we fix a variable s’ for each alphabet symbol s
and each tape position 7 € {0,...,p(w)};

e the head position is denoted using propositional variables ho, ..., hy(,)-
We first state that the head position, tape inscription, and state are uniquely described:
X1 = \/ (hi A /\ —uhj) /\ \/ s /\/\—|t \/ (q A /\—uq')
1<i<p(n) 1<j<p(n) 1<i<p(n) s€X t62 a€Q 7€Q
J#i a'#q

We also need to formalize the transition relation A of M, which we assume to be given
as a set of quintuples (s, q,s',d, q¢’) with d € {L, R}:

e= N A ((q Ahi) = (O AdA((d=T) = Ohi—1)A
(5,0,t:d,0")EA i<p(n) ((d=R) = Ohit1) ))

/\ (ﬁhi — /\ (Si — OSZ))

i<p(n) seX

where (O abbreviates the formula (O¢)* as introduced in the proof of (i). It remains
to describe the initial configuration. Recall that the input is w = ag---a,_1, let go the
initial state and b denote the blank symbol.

Xs:=hoAqoAayA---Aal"i A N\ H
n<i<p(n)
(n)
Take 9 and ¥’ from (i) with <,0 in ¥’ denoting x1 A x2 A X3, replace (g by D[O 2] , and

denote the result by o and o/, respectively. It is readily checked that M accepts w iff
the following formula is satisfiable, where F' denotes the set of final states of M:

0,27(n) 0,27(n)
X3/\DE~“ ](XIAXQ)/\OEE‘ ]\/q
qeEF

For Point (iii) of Theorem 4, we reduce satisfiability in QTL;,, the QTL-fragment
with only temporal operator ¢/, which is known to be PSPACE-hard without FVA [6].
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The idea of the reduction is to embed the whole real line into the interval (0, 1): given
a formula ¢ of QTI;, fix a fresh propositional variable a that does not occur in ¢.
Define a translation (-)* that recursively replaces every subformula of the form ¢/ )
with @2/%!(a A ). Then ¢ is satisfiable iff ¢* A a A (au[o’l](Dgg’H—ua)) is. For the
FVA case, we note that that the PSPACE-hardness proof for QTL;, does not depend on
variables changing their value an infinite number of times in (i) any finite interval, and
(ii) in any infinite interval. By (i), QTL;, is PSPACE-hard also with FVA, and by (ii)

we can use the same reduction as in the non-FVA case. O

We now exhibit a purely quantitative temporal logic of the real line for which satisfi-
ability is NP-complete: the fragment of QTL with only the quantitative diamond and
numbers coded in unary, with and without FVA. This logic may appear rather weak
since it does not allow to make statements about all time points. Still, it is useful for
reasoning about the behaviour of systems up to a previously fixed time point. Note that
our NP-completeness result shows that Points (i) and (ii) of Theorem 4 are optimal in
the following sense: in Point (i) we cannot drop {r, and in Point (ii) we cannot switch
to unary coding.

Theorem 5. In the fragment of QTL with temporal operators 0{; and (}{;, I of the
form (0,n), [0,n), [0,n], or (0,n], and n > 0 coded in unary, satisfiability is decidable
in NP, both, with and without FVA.

The lower bound is immediate from propositional logic and thus we only have to prove
the upper bound. Since numbers are coded in unary, we may restrict our attention to
temporal operators whose upper interval bound is 1. In the proof, we only consider
the temporal operator 052’1]. An extension to past operators and open intervals is
straightforward.

Let ¢ be a formula whose satisfiability is to be decided. We introduce some con-
venient abbreviations: m,, denotes the nesting depth of operators O in ¢ (henceforth
diamond depth), n, = 2|¢|* + |¢|?, and r, = |p| X n,. Denote by cl(p) the closure of
the set of subformulas of ¢ under single negation. A type t for ¢ is a subset of cl(y)
such that (i) = € t iff 4 & ¢ for each =) € cl(p), and (ii) ¥4 Ay € t iff 1Py, 9p9 € ¢ for
each Y A s € cl(p). For a model (R,%) and w € R, set

tw) = {¢€cdlp) |w g},
t<(w) = {OF¢ € clp) | w g OF9}-
Notice that t(w) is a type for . First, we devise an algorithm for satisfiability without
FVA. To begin with, we show that satisfiability of ¢ implies satisfiability of ¢ in a

‘homogeneous’ model. In particular, in such models the number of realized types is
polynomial in the length of .

Lemma 6. Let ¢ be satisfiable without FVA. Then there is a sequence xo,...,Tn, in
R such that 0 = 29 < 21 < --- < mp, = my, and a valuation B such that (R,V),0 = ¢
and

o {t(w) [0 <w <my}| <ry;
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o for every n with 0 < n < ny, and each type t for ¢, the set {w € R | z, < w <
Tpy1 and w =g t} is either empty or dense in the interval (xy, Tpi1).

Proof. Consider a model MM = (R, V') with 9M,0 = ¢. By the semantics, we clearly
have the following;:

(*) for any OLap € sub(ip), the set {w € R |0 < w < my, and w g 0Ly} is a union
of intervals of length at least 1 and at most two intervals of length smaller than 1.

The two possibly shorter intervals are the one starting at 0 and the one ending at m.,.
Using (*), we can show that there is a sequence ¥, ...,y in R for some k < 2|¢|? + |¢|
such that

e 0=yy<---<yp=my, and
o t<(w) =1t<(w'") whenever y; < w < w' < y;41 for any i < k.

To see this, take a formula (}{,ﬂw € sub(p). The toggle points for Ofﬂ/) in the interval
[0, m,] are those points z such that either (i) there is a y > x such that the truth value
of Of,w at z is different from the truth value of Ofﬂ/) at all points z with x < z < y or
(ii) there is a y < z such that the truth value of ¢%.) at z is different from the truth value
of OLep at all points z with y < z < z. By (¥), there are at most 2-m, +1 < 2-|p| + 1
toggle points for each formula ¢Le, and thus at most 2|p|?+|¢| toggle points altogether.
These points form the required sequence yo, ..., Y.

We convert this sequence into the desired sequence o, ...,z,, by arranging the
elements of the set

{y07"'7yk}u U{yl+j | yl+] < m@}
1§3<<]371w

in ascending order according to ‘<’, possibly introducing (arbitrary) intermediate points
to obtain a sequence of length n, + 1.

To obtain a valuation U as required by the lemma, fix a set T; of types for each
i < ny as follows: for each OLy) € sub(p), choose a w € (z;,z;41) with 9 € t(w) if such
a w exists. Then, T; is the set of types ¢(w) of all points w chosen in this way. Clearly
IT;| < |¢|. For each i < n,, take a collection (X})er,, of subsets of (z;,2;11) which
form a partitioning of (z;,z;,1) such that each X} is dense in (z;,2;,1). Now define a
valuation U by setting, for every propositional variable p,

B(p) := (V' (p) N {zo, ..., 70, U [ J{X] | p et}
1<n,,teT;

Let ;, i < ny, be the type {1 € sub(y) | z; [=a ¢} for ¢ realized in point z; of the
original model 9. To show that U is as required, it is sufficient to show that, for each
k < my, each 9 € sub(y) with diamond depth bounded by k, and each w € [0, m, — k],

we have
w =g ¢ iff there is an i < ny, such that

(a) w =z; and ¢ € ¢;, or
(b) w € X} and ¢ € t for some t € T;.

12



Proof. Let k, 1, and w be as above. The proof is by induction on the structure of ).
The cases for propositional variables, -, and A are left to the reader. Consider the case

for
“i” .

[0,1]
o

Suppose w =g 0[12’1}1/1. Then there is a w’' € w + [0, 1] such that w' =g 1 by the

semantics. Distinguish four cases:

Wm,
<"

w = x; for some i < n, and w’ = z; for some j > i. The induction hypothesis in
(a) yields ¢ € tj. Then z; =gy 9. Since z; — x; < 1, it follows by the semantics

that z; =q 0[1,9’%. Hence Ogg’l]lﬁ € t;.

w = x; for some i < n, and w' € Xg for some j > ¢ and ¢ € Tj. The induction
hypothesis in (b) yields ¢/ € t. Then, by definition of T}, there is a w” € (z;,zj41)
such that w” =gy 9. Note that there is an ¢’ withi < i’ < n,, such that z;; = z;+1.
But then zj;1 < zy; otherwise z; > zy and thus w' — x; > 1 contradicting

w' € w+[0,1]. This implies that w"” —w < 1 and w =g Q[FU’Hqﬁ by the semantics.
Hence <>E2’”¢ € t;.

w € X} for some i < n, and t € T}, and w' = z; for some j > i. By (a), the induc-
tion hypothesis yields ¢ € t;. Then z; |=o 4. Since z; —w < 1, it follows by the
semantics that w Fqy O[Fo’l}qﬁ. But then by definition of the sequence x, ..., %y,
it holds that w” =g 0[12’1}1/1 for all w" € (x;,z;11). Therefore, <>[F°’”¢ € t' for any
t' € T;. Hence O[FO’I]z/J €t

w € X for some i < n, and t € T;, and w' € X] for some j > i and #' € Tj.
The induction hypothesis in (b) yields ¢ € ¢'. Then by definition of T}, there is a
w" € (2, 2;41) such that w” =g 1. Note that there is an ¢’ with ¢ < ' < n,, such
that z; = z;;1 + 1. But then z;; < z;; otherwise z; > z; and thus w —w>1
contradicting w’ € w + [0, 1]. Thus, there is a v € (7, 7;41) such that w" —v < 1.
It follows by the semantics that v g <>E2’”1/;. But then by definition of the
sequence g, ..., Zn,, it holds that v' =g <>[F°’1]¢ for all v' € (z;,z;11). Therefore,
0[12’1]1/1 € t" for any t" € T;. Hence 0[12’1]1/1 €t

Let 7 < ny, such that

w = x; and O[FU’Hw € t;. Then z; =g Q[Fo’l}qﬁ. By the semantics, there is a
w' € z; + [0,1] such that w' g 1. Distinguish two cases:

— w' = z; for some j > i. Then ¢ € t;. The induction hypothesis in (a) yields
w' g 1. Since w' — z; < 1, it follows by the semantics that z; Fy 0[12’1]1/1.
— w' € (zj,x41) for some j > i. By definition of T}, there is a t € T} such that

¢ € t. The induction hypothesis in (b) yields w" =g 1 for any w"” € Xg.
Since X7 is dense in (zj,z;11), there is such a w” such that w” < w'. Then

w" —z; < 1. Hence, z; =g 052’”1/; by the semantics.
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(b) w € X} and O[FU’Hqﬁ € t for some t € T;. By definition of T;, there is a w' €

(x;,2;41) such that w' =g 0[12’1}1/1. Then it follows by definition of xo,...,zp,
that w” FEo 052’”1/; for any w" € (z;,x;41). In particular, w =g 052’”1&. Then
v =g 1 for some v € w + [0, 1] by the semantics. Distinguish two cases:

— v = z; for some j > i. Then ¢ € t;. The induction hypothesis in (a) yields
zj g 1. Since z; — w < 1, it follows by the semantics that w =g 0[12’1}1/1.
— v € (zj,2j41) for some j > i. By definition of T}, there is a t € T)j such that
¢ € t. The induction hypothesis in (b) yields v’ |=g 1 for any o' € X]. Take
a v’ € X} such that v’ < v if j > i, and v’ > v otherwise. Such a v’ exists
since Xg is dense in (zj,z;41). Then, v’ —w < 1. Hence w =g 032’1}1/1.
U

Lemma 6 suggests the following idea for deciding in non-deterministic polynomial time
whether a formula ¢ is satisfiable: guess a (polynomially bounded) set of types for ¢ to
be realized in a homogeneous model, a sequence vy, . .., vy, of variables, and construct
a system of linear inequalities whose solution in IR determines a sequence of points
To,- -, Tp, from which we can build a homogeneous model realizing the guessed types.
More precisely, to decide the satisfiability of ¢, we non-deterministically choose

e a set T of types for ¢ such that |T'| < ry;
e a type t; € T such that ¢ € tg, for every i < ny;

e a non-empty set of types T; C T, for every i < n,.

Intuitively, the type ¢; is to be realized at point z;, and the types in T; are those types
realized in the interval (x;, z;11). Then, we take variables vp, . . . , Un,, and check whether
the system of inequalities given in Figure 1 has a solution in R. The Inequalities 2 to 9
are only added if ¢ < n,. To understand the inequalities (in particular 4 and 5), note
that the point z; described by variable v; is not intended to realize the whole type t;, but
only those elements of ¢; whose diamond depth is at most |m, — x;]. Similarly, points
from (z;,x;11) described by a type t € T; realize only elements of ¢ whose diamond
depth is at most |m, — x;]; cf. the structural induction in the proof of Lemma 6.

The algorithm returns ‘yp is satisfiable’ if there is a solution to this system of in-
equalities, and ‘¢ is not satisfiable’ otherwise. By considering the contrapositive, it is
easily seen that ¢ is unsatisfiable if the algorithm answers ‘no’: if ¢ has a model, then
by Lemma 6 it also has a homogeneous model, and this model suggests a choice of
types such that the corresponding system of inequalities is satisfiable. Conversely, if the
algorithm returns ‘yes’, we can construct a homogeneous model:

Lemma 7. If the algorithm returns ‘v is satisfiable’, then ¢ is satisfiable.

Proof. Suppose there are types t;, ¢ < n,, and sets of types T, ¢ < n,, such that there
is a solution =y,...,z,, for the corresponding system of inequalities. For i < n,, take
a partitioning (X} )ier; of (x;,z;41) such that each X} is dense in (z;, zj+1). Now define
a valuation U by putting, for every propositional variable p,

W)= |J (=i lpettu UiXilpet).

i<ng 1<ny,teT;
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(1) 0=wvo < w1 < -+ < vy, =my

@) v;—v;>1 -0y et j>i andeet;

B)vj—v; >1 if —|<>[12’1]¢ € ti, j >1i,and ¢ € ¢ for some t € T}

(4)my, —v; <1 if <>[P9’”¢ € t;, but there is no j > such that ¢» € t; or ¢p € t for a t € T}

(5)my —v; <1 if 0[12’1]111 € t for some ¢ € T}, there is no j > i such that ¢ € t;,
and there is no j > i such that ¢ € ' for some t' € T}

(6) v; —v; <1 if <>[P9’”¢ € t; and j > ¢ is minimal such that ¢ € ¢; and,
for every j' with ¢ < j' < j, ¢ ¢t for any ¢t € T}

(Mvj—v; <1 if 052’”1/1 € t; and j > ¢ is minimal such that ¢ € ¢ for some ¢t € T; and
there is no j' with ¢ < j" < j such that ¢ € ¢;:

8)vj —v; <1 if 0[12’1]¢ €t for some t € T;, ¢ ¢ t' for any t' € T}, and j > 7 is minimal
such that ¢ € t; or ¢ € t' for some t' € T}

(9) vj —vig1 > 1if —|<>[12’1]¢ € t for some ¢t € T;, and (j > i and ¢ € ¢’ for some ¢’ € T}) or
(j >iand ¢ € t;)

Figure 1: The system of inequalities.

It is now straightforward to prove that, for all & < my, all ¢ € sub(y) with diamond
depth bounded by k, and all w € [0, m, — k], we have
w =y ¢ iff there is an i < ny, such that
(a) w=x; and ¢ € t;, or
(b) w € X} and 4 € t for some t € Tj.

It is an immediate consequence that 0 =g ¢. O

We discuss the proof for satisfiability under FVA. Again, the first step is to show that
if ¢ is satisfiable under FVA, then it is satisfiable in a homogeneous model (this time
with FVA) in which only polynomially many types are realized:

Lemma 8. Suppose ¢ is satisfiable with FVA. Then there exists a sequence 2o, ..., 2,
in R such that 0 = zp < z1 < -+ < 2, = My, and a valuation V such that (R,V),0 = ¢
and

o {t(w) [0 <w <my}f <ry;

o for alln with 0 <n <1y, all p € sub(yp), and all z, < w < w' < zpq1, w =y P

iff w' g .
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Proof. Consider a model 9 = (R, Y’) with fva satisfying ¢ in 0. First, construct a
sequence 0 = yg < y; < -+ < yp = My, k < 2|p|*> + |p|, as in Lemma 6. Then the
sequence o, ..., Ty, is obtained by arranging the elements of the set

(o, b U (J{wi+ilyi+d <mybu | J{wi— 3 lyi—j >0}
i<k i<k
1<j<my 1<g<my,

in ascending order according to < (where we possibly have to add new z; to obtain a
sequence of length ny, 4+ 1). Let
o=min{z;1; —z; | 0 <i < ny},
and set, for i < ny, o; = \(P\++1 X o. The sequence
O0=20<2z1 <+ <2z, =My

is obtained by adding to the sequence xy,...,z;,, the points

yl =z + Lo,
]

for all i < n, and j < |p|. For i < n,, denote by ¢ the type ¢ which is realized
in some interval of the form (z;,y). Note that such an interval exists since we are in
a model with FVA. Also, denote by ¢*% the type which is realized in some interval of
the form (y,z;11). Now, for i < n,, take for any OLip € sub(y) such that there exists
w € (w;,ri41) with ¢ € t(w) such a type #(w) and denote the collection of selected
types plus the types ¢ * and % by T;. Notice that |T}| < |¢|. Let t},... ,t‘iw‘_1 be an
ordering of the types in T} such that ¢} = ¢=* (if T} has cardinality < ||, then take
some t from T; more than once in this ordering.) Define a valuation U by setting, for
every propositional variable p,

. —— , ,
V(p) = {as | < npyas b p}U AW o Ip et u @ 2i) [p et
i<ny,j<l|el i<ng
We show that U is as required. To this end, it is sufficient to show by induction that,
for each k < my, every ¢ € sub(y) in which the number of nestings of 0[1,9’” does not
exceed k, and all w € [0, m, — kJ:
w [=95 ¢ & there is an ¢ < n,, such that
(a) w = z; and z; =g 9, or
(b) w € (yf,y:™] and ¢ € t, for some £ < |¢|, or

(0) we (!, zir1) and ¢ € t+.

Proof. Let k, 1, and w be as above. The proof is by induction on the structure of .
The cases for propositional variables, -, and A are left to the reader. Consider the case
for 0[12’1].

“=": Suppose w g O[Fo’l]qﬁ. Then there is a w' € w + [0,1] such that w' |y .
Distinguish four cases:
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o w = z; for some i < ny, and w’ = z; for some j > i. The induction hypothesis

in (a) yields z; F=q . Since z; — z; < 1, it follows by the semantics that
[0,1]
T; Ey OF 9.

w = z; for some i < ny, and w' € (z;,zj41) for some j > i. If w' € (yf,yf“] for

some £ < |¢|, then the induction hypothesis in (b) yields ¢ € ti. Otherwise, i.e.,

ifw' € (y;-@‘,xjﬂ), ¢ € t17 by the induction hypothesis in (c). Since tz, tt7 e Ty,

it follows by definition of 7} that there is a w"” € (z;,2j41) such that w" =g 1.

Note that there is an 4’ with i < ¢/ < n, such that zy = z; + 1. But then

zj41 < zy; otherwise z; > xy and thus w' —w > 1 contradicting v’ € w + [0, 1].
[0,1]

Hence w"” —w < 1. Then it follows by the semantics that w =gy 0% 1.

w € (wj,ziq1) for some i < ny,, and w' = z; for some j > i. The induction
hypothesis in (a) yields z; =g t. Since z; —w < 1, w =gy <>£8’”¢ by the
semantics. Then it follows by definition of the sequence o, ..., z,, that w" =
0[12’1]1/1 for all w” € (x;,x;41). Therefore, <>[F°’”¢ € t' for any t' € T;. Hence,
0[12’1}1# etyifwe (yf,y“l] for some ¢ < |¢|, and <>[F°’”¢ cttifwe (yiw,xiﬂ).

)

w € (z;,it1) for some i < ny,, and w' € (z,z;41) for some j > i. Iifw' € (yf,yfﬂ]

for some £ < ], then the induction hypothesis in (b) yields ¢ € ti. Otherwise, i.e.,
if w' € (y;-‘p‘,xjﬂ), 1 € 7 by the induction hypothesis in (c). Since t}, t*7 € T},
it follows by definition of 7} that there is a w"” € (z;,2;41) such that w" =g 1.
Note that there is an i’ > i + 1 such that =y = z;11 + 1. But then z;,1 < zy;
otherwise z; > zy and thus w' —w > 1 contradicting w’ € w + [0,1]. Thus

there is a v € (z,7;+1) such that w” — v < 1. By the semantics, v |y O[FU’IW-
Then it follows by definition of the sequence g, ...,z,, that v' =g QE&“W for
all v' € (z;,z;41). Therefore, O[FU’I]w € t' for any ' € T;. Hence O[FO’I]dJ c té £
w € (yf,yct for some £ < |g|, and 022’”1/; cttiifwe (yl‘%’|’$i+1)_

i i

: Let ¢+ < ny, such that

w = z; and z; Eg 0[12’1]1/1. By the semantics, there is a w' € z; + [0, 1] such that
w' g 1. Distinguish two cases:

— w' = x; for some j > i. The induction hypothesis in (a) yields z; =g 1.
Since z; — z; < 1, it follows by the semantics that z; =y <>[F°’”¢,

— w' € (zj,zj11) for some j > i. By definition of T}, there is an £ < |y|
such that tZ € Tj and ¢ € tz. Then the induction hypothesis in (b) yields
w" =g 1 for all w” € (yf,yf“]. Fix such a w"”. Note that there is an 5" > j
such that z;; = z; + 1. But then z;,1 < z;; otherwise z; > z; and thus

w' — x; > 1 contradicting w' € z; + [0,1]. Therefore, w"” — z; < 1. Hence,

T; Fy 053’1]1#
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(b) w € (yf,y: ™) and O[FO’I]z/J € t} for some ¢ < |p|. By definition of T}, there is a w' €

(%, 2;41) such that w' =g 0[12’1}1/1. Then it follows by definition of zg, ..., oy,
that w” FEo 052’”1/; for any w" € (z;,x;41). In particular, w =g 052’”1&. Then
v =g 1 for some v € w + [0, 1] by the semantics. Distinguish three cases:

— v = z; for some j > 4. The induction hypothesis in (a) yields v =g 9. Since
v —w < 1, it follows by the semantics that w =g <>[F°’”¢.

— v € (x;,rir1). By definition of T;, there is a ¢ € T; such that ¢ € t.
Distinguish two subcases: First, suppose that ¢ € ¢}, for some ¢ > £, or
¢ € t*'. The induction hypothesis in (b) or (c) yields v’ f=g % for all

v € (yflvylilﬂ], or all v/ € (yz‘.‘p‘,xiﬂ), respectively. Then there is such a v’

such that v —w < 1. Hence w =g O[Fo’l}qﬁ.

Second, suppose there is no ¢/ > £ such that ¢ € t@,, and ¢ ¢ t*ti. Note
that this implies £ > 0. Since ¢ ¢ t**, there is an interval of the form
(y,zi11) such that ¢’ g 9 for all ¥ € (y,z;41). Take such a y'. Since
w b= ORMp, it follows by definition of m,...,z,, that y' =g 05,
Then there is a v' € 3’ + [0,1] such that v' =g 9 and v' > ;1. By def-
inition of zo,...,zy,, there is an i’ such that z; = z; + 1. Consider only
the case where v’ € (z;,z;11) where j = 4'; the other cases are straightfor-
ward. Note that there is no such j > 4’. For suppose otherwise, it holds
that z; + 1 < z; < z;41 + 1. By definition of xo,...,z,,, there is a j' such
that z = z; — 1. Thus z; < zj; < xi;1; a contradiction. Therefore j = i,
ie., zj = z; + 1. By definition of T}, there is an ¢’ < |¢| such that ti, € Tj
and 1) € ti,. Then the induction hypothesis in (b) yields v g 1) for all
v e (yﬁl,yf,"“l]. Take such a v”. Since ¢ > 0 and o; < % by definition of
o}, it holds that yf + 1 > z; + oj. Then yﬁlﬂ —yf <1 and thus v" —w < 1.
Hence w =g O[Fo’l}qﬁ.

— v € (zj,2j41) for some j > i. By definition of zo, ..., z,,,, there is an i’ such
that z;; = z; + 1. Consider only the case where j = ¢’; the other cases are
straightforward. Note that there is no such j > i’. For suppose otherwise, it
holds that 2; + 1 < z; < x;41 + 1. By definition of zg, ..., z,,, there is a j’
such that z; = z; — 1. Thus z; < 5 < z;11; a contradiction.

Distinguish three subcases:
* £ =0 and w' =g 1 for some w' with z; < w' < z;. Then it is easy to
see that there is a v"” > w such that v" |=g ¥ and v" —w < 1. Hence
(0,1]
* £ =0 and w' [Eg ¢ for all w' with z; < w' < x;. Since w =g 053’1]1/1,
it follows by definition of z, ..., 2, that w” g Oy for all w” with
z; < w" < w. Take such a w". Then there is a v" € w" + [0,1] such
that v" g 9 and v” > z;. This implies that ¢ € =/ = #]. Then the
induction hypothesis in (b) yields v’ |=g 9 for all o' € (y?,yjl.]. Clearly,

there is such a v’ such that w — v < 1. Hence w [y 0[12’1}1/1.
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* 1 < ¢ < |g|. By definition of T}, there is an ¢ < |p| such that tz, €T

and 1 € tJ,. The induction hypothesis in (b) yields v' |y 1 for all
Ve (yf',yli""l]' Take such a v'. Since g; < % by definition of o}, it
holds that y¢ + 1 > z; + o; and thus v —w < 1. Hence w =g Qgg’l]lp_

(c) we (yiw‘,$i+1) and ¢ € t*7. This case is similar to (b) and left to the reader.

0

Using Lemma 8, one can now modify the decision procedure for satisfiability without

FVA to obtain a decision procedure running in nondeterministic polynomial time for
satisfiability with FVA. The crucial step is to determine a set of rational linear inequal-
ities which represent the truth conditions in models of the form decsribed in Lemma 8.
We leave this exercise to the reader.
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A ExpTiME-completeness of RTCTL Reproved

We demonstrate the generality of the reduction technique proposed in Section 3 by
reproving the result of Emerson et al. that RTCTL, i.e., branching-time logic CTL
extended with metric operators, is in EXpPTIME [4]. A similar (but simpler) reduction
can be used to show that the corresponding extension of linear-time logic LTL is in
PSPACE. For the sake of completeness, we first introduce the syntax and semantics of
RTCTL.

Definition 9 (RTCTL Syntax). Let pg,p1,... be a countably infinite set of propo-
sitional variables. RTCTL formulas are built according to the syntax rule

e=p; | T|L]=p|lond|EQp|E@U) | AU ) | EQUSFp) | A(bu=F)

where k denotes a natural number that is coded in binary. A CTL formula is an RTCTL
formulas that does not use the metric version of the until operator. O

The abbreviations —, and < are defined as usual. Moreover, we abbreviate Ay =
—=FEQ—yp and AQp = =E(TUY —p).

A model M = (S, R,V) is a triple consisting of the set of states S, a binary relation
R C S x S, and a valuation U mapping every propositional variable p to a subset U (p)
of S. W.l.o.g., we assume that the graph of 911 is a tree since any model can be unwound
into a tree. Moreover, we assume that for every state, there is an R-successor. Given
a state w € S, a w-fullpath is an infinite sequence uguq --- € S of states such that
up = w and (u;,u;41) € R for all positions 7 > 0.

Definition 10 (RTCTL Semantics). Let 9t = (S, R,U) be a model. Define the
truth-relation “=" of RTCTL inductively as follows: for all states w € S,

e MwpET and M, w E L;

e M, w = p iff w € Y(p) for all propositional variables p;

o M, w =~ iff M,w £ p;

e MwpEYApiff Mw =1 and M, w = ¢;

e M, w = EQ iff there exists an R-successor v of w such that M, v = ¢;

e M w = E(YU ) iff there exists a w-fullpath ugu; --- and a position 7 > 0 such
that 9, u; = ¢ and M, u; = ¢ for all positions j with 0 < j < 3;

e M w = AU ) iff for all w-fullpaths ugug ---, there is a position 7 > 0 such
that 9, u; = ¢ and M, u; = ¢ for all positions j with 0 < j <.

e Mw = E(uUsFy) iff there exists a w-fullpath uguy --- and a position i with
0 <14 < k such that 9, u; = ¢ and M, u; |= 9 for all positions j with 0 < j < i;

o M, w = A(YU=Fyp) iff for all w-fullpaths ugu, - - -, there is a position 7 with 0 <
i < k such that 9, u; = ¢ and M, u; = ¢ for all positions j with 0 < j <.
O
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Our aim is to prove the following result:
Theorem 11. Satisfiability in RTCTL is EXPTIME-complete.

The lower bound is an immediate consequence of the fact that CTL is a fragment of
RTCTL, and the former is EXpPTiME-hard. We prove a matching upper bound by a
polynomial reduction to satisfiability CTL, which is known to be in EXPTIME.

The reduction is similar to the reduction presented in Section 3. In particular, the
main idea is to replace subformulas E(y/<F¢) and A(y1/<*p) with a binary counter
that is implemented using propositional variables to represent the bits. However, there
are also two significant differences: first, RTCTL is interpreted in discrete models, and
thus it is not necessary to construct a ‘grid’ using variables z; and y; to measure the
distance ‘exactly one’ as in the QTL reduction. Second, RTCTL models are not linear,
and therefore we cannot simply increment the value of a distance-measuring counter
when going to a predecessor state. Instead, we have to increment the least value or
greatest counter value of successor nodes, depending on whether we are simulating
a formula E(y1/<F¢p) or A(y1UU=Fp). For identifying the least and greatest counter
value among the successors, we use a marking scheme based on additional propositional
variables. Before we describe this marking in detail, let us fix some formalities.

Let ¢ be a RTCTL formula whose satisfiability is to be decided. As an upper bound
for the number of counter bits needed, let n. = [log, k| where k is one plus the largest
natural number occurring as a parameter to an until operator in . For simplicity, we
assume w.l.o.g. that ¢ contains at least one subformula of the form E(y1/=F¢) and at
least one subformula of the form A(y/<*p). Now, let xo,...,xs be an enumeration of
all subformulas of ¢ of the form E(y1/<F¢’), and let xp,1,...,xs be an enumeration
of all subformulas of ¢ of the form A(yYuU=F¢'). If x; = Q(ypuU=F¢') for some i < ¢,
we use v; to denote 1) and ¢; to denote ¢'. For the reduction, we use the following
propositional variables:

e the bits of the i-th counter, ¢ < £ are represented using propositional variables ¢js
with 7 < ng;

e to mark the bits of the i-th counter, 7 < £, we use propositional variables mj, with
J < ne.

Intuitively, the marking scheme for finding the greates counter value among the succes-
sors can be understood as follows: start marking bits of the counters in successor nodes
by proceeding from the highest (n. — 1-st) to the lowest (0-th), using the following two
rules to mark a bit number 7 of a successor s’ of s:

1. if, in §’, all bits higher than 7 are marked and all successors of s whose 7 + 1-st bit
are marked agree on the value of the i-th bit, then mark the i-th bit of s';

2. if, in s', all bits higher than 7 are marked and the successors of s whose i + 1-st
bit are marked do not agree on the value of the i-th bit, then mark the ¢-th bit of
s’ iff it is one.
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The result of this marking is that only those successors of s have all marking bits set
whose counter value is highest among all the successors of s. A corresponding marking
scheme for finding the lowest value is obtained by changing the last part of the second
rule to “iff it is zero”. The marking of the i-th counter, ¢ < £, can be implemented using
the following formula, where (i < #') abbreviates T if i < ¢ and L otherwise:'

90 = N\ (AOd VAO~d) = AQ(mf « [\ mi) A
t<ne 1<j<ne .
(EQc AEQ=c¢j A (i <)) = AO(m} <> (~cj A\ m5)
1<j<ne
(EQd AEQ=¢ A (i > ) = AO(m} < (g A N\ mi))
1<j<ne

We now inductively define a translation (-)* of subformulas of ¢ to CTL formulas, where
the formula (C; < n) is defined as in Section 3:

p = p
(=) =
(Y1 Ap2)* 1= b A3
(EOQ¥)* = EQy”

E(pi ) = E@TUP3)

AU )" = A[TUYP3)
E(rUSFipo)* = (C; < k) if x; = E(p1d=F1ho)
A(pU=Fep)* == (Ci < k) if x; = A(p1td=F4py)

It remains to properly update the counters, which is done by the following formulas,
for i < £, where the formulas (C; < n) and (C; = n) are defined as in Section 3:

= (Ci=0) 6 ¢t
A= iV
(i <€) A AO(C; = 2" — 1))V
(i > ¢) ABO(C; = 2" — 1)
9% = (mpf AX) = (C; = 2% —1))A
i AN = () (dABOmiA=)A N (~ch ABEOm} Ach)A
t=0..n.—1 £=0..t—1

Intuitively, 9% initializes the counter and 19@, and 19@ ensures that the counter when
is incremented correctly when travelling to a predecessor state. Similar to the QTL
reduction, the counter value C; = 2™ — 1 is used to express that, on all (for x; being

'Recall that xo, . . ., x are existentially path-quantified while x;/ 11, .. ., x¢ are universally quantified.
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existentially path-quantified) resp. some (universal path quantification) path, the for-
mula ¢; is too far to be of any relevance, or that 1; does not hold on some point on the
way to the next ¢; occurrence.

Let 9 be the conjunction of ¢} to ¥%. It is left to the reader to prove the following
lemma, which finishes the reduction:

Lemma 12. ¢ is satisfiable iff ¢* A /\ ACI(O% A 9% A 9S) is satisfiable.
i<t
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