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Abstrat

Often, the addition of metri operators to qualitative temporal logis leads to

an inrease of the omplexity of satis�ability by at least one exponential. In this

paper, we exhibit a number of metri extensions of qualitative temporal logis of

the real line that do not lead to an inrease in omputational omplexity. The

main result states that the language obtained by extending sine/until logi of the

real line with the operators `sometime within n time units', n oded in binary, is

PSpae-omplete even without the �nite variability assumption. Without quali-

tative temporal operators the omplexity of this language turns out to depend on

whether binary or unary oding of parameters is assumed: it is still PSpae-hard

under binary oding but in NP under unary oding.

1 Introdution

The extension of qualitative temporal logis (TLs) with metri operators has been stud-

ied for almost �fteen years [5, 4, 7℄. Of partiular interest are metri extensions of tem-

poral logis of the real line, sine the resulting quantitative TLs are an important tool

for the spei�ation and veri�ation of real-time systems [2℄. Unfortunately, moving

from qualitative to quantitative logis is often aompanied by an inrease in omputa-

tional omplexity of the satis�ability problem. The most important example witnessing

this e�et is the PSpae-omplete sine/until logi of the real line [6℄, whose extension

with a metri operator `sometime in at least n but not more than m time units' (n and

m oded in binary) beomes ExpSpae-omplete if the ase n = m is not admitted and

even undeidable if it is [1, 3, 5℄.

It is well known that the omplexity of the metri temporal logi obtained by this

extension an be redued to PSpae again by further restriting the values of n and m,

e.g., by enforing that n = 0 [1℄. However, in ontrast to the ExpSpae-ompleteness

and undeidability results above, this improvement has only been proven under the

�nite variability assumption (FVA) whih states that no propositional variable hanges

its truth-value in�nitely many times in any �nite interval. While the FVA is a natural

ondition for various omputer siene appliations, we believe that there are at least two

reasons to onsider also the non-FVA ase: �rst, qualitative temporal logi originated in
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philosophy and mathematis to study time itself, rather than the behaviour of systems

with disrete state hanges as onsidered in omputer siene. If quantitative TL is used

for the former purpose, the FVA is less onvining than in omputer siene appliations.

Seond, even in omputer siene reasoning without the FVA an be fruitfully employed:

assume that a formula ' of a quantitative TL desribes the spei�ation of a real-

time system. Further assume that ' has been found to be unsatis�able under FVA,

indiating that the desribed spei�ation is not realizable. If an additional satis�ability

hek without FVA is made revealing that dropping FVA regains satis�ability of ',

then the user obtains additional information on the soure of the unrealizability of her

spei�ation: namely that it enfores an in�nite number of state hanges in a �nite

interval.

The purpose of this paper is to investigate metri temporal logis of the real line

that are at most PSpae-omplete. More preisely, we prove three results. Our �rst

and main result is that extending sine/until logi of the real line with metri operators

`sometime in at most n time units', n oded in binary, is PSpae-omplete even without

FVA. To show this, we propose a new method for polynomially reduing satis�ability in

metri TLs whose numerial parameters are oded in binary to satis�ability in the same

logi with numbers oded in unary. The essene of the redution is to introdue new

propositional variables that serve as the bits of a binary ounter measuring distanes.

For the metri TL mentioned above, we obtain a PSpae upper bound sine Hirshfeld

and Rabinovih have shown that QTL, i.e., the same logi with numbers oded in unary,

is PSpae-omplete without FVA [5℄. We also show that our proof method an also be

used for other logis suh as a metri extensions of the branhing time logi CTL, thus

reproving the ExpTime-ompleteness of metri CTL from [4℄.

Our seond result onerns a sharpening of PSpae lower bounds for metri tempo-

ral logis of the real line. In the urrent literature, suh logis usually ontain qualitita-

tive sine/until logi as a proper fragment, and thus trivially inherit PSpae-hardness

[2, 5, 6℄. We onsider metri TLs with weaker qualitative operators and show that

PSpae-hardness an already be observed in the following three ases: (i) a future

diamond and a future operator `sometime in at most n time units', n oded in unary;

(ii) only the future operator `sometime in at most n time units', n oded in binary (i.e.,

no qualitative operators at all); (iii) only a metri version of the until operator for the

interval [0; 1℄.

As a third result, we explore the transition from NP to PSpae. In partiular,

we show that the quantitative TL with only the metri operator `sometime within n

time units', n oded in unary, is NP-omplete. This result extends the result of [9℄

that satis�ability of the qualitative TL with operators `eventually in the future' and

`eventually in the past' over the real line is deidable in NP. When ompared with

result (ii) above, it also shows that the omplexity of metri TLs without qualitative

operators depends on the oding of numbers. To establish the NP upper bound, we

show that satis�ability of a formula ' an be deided by �rst `guessing' a system of

rational linear inequalities, and heking whether this system has a solution over the

real (or, equivalently, rational) numbers.
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2 Preliminaries

We introdue the metri temporal language QTL of [5℄. It is losely related to the lan-

guage MITL of [1℄. Fix a ountably in�nite supply p

0

; p

1

; : : : of propositional variables.

A QTL-formula is built aording to the syntax rule

' := p j > j ? j :' j ' ^  j '

S

 j '

U

 j 'S

I

 j 'U

I

 

with p ranging over the propositional variables and I ranging over intervals of the

forms (0; n), (0; n℄, [0; n), and [0; n℄, where n > 0 is a natural number. The Boolean

operators _, !, and $ are de�ned as abbreviations in the usual way. Moreover, we

introdue additional future modalities as abbreviations �

I

F

' = >

U

I

', �

I

F

' = :�

I

F

:',

�

F

' = >

U

', and �

F

' = :�

F

:'.

Formulas of QTL are interpreted on the real line. Thus, a model M = hR;Vi is

a pair onsisting of the real numbers and a valuation V mapping every propositional

variable p to a set V(p) � R. The satisfation relation `j=' is de�ned indutively as

follows, where we write w + I to denote the set fw + x j x 2 Ig for eah time point

w 2 R and interval I of one of the above forms; w � I is de�ned analogously.

M; w j= p i� w 2 V(p)

M; w j= > for all w 2 R

M; w j= ? for no w 2 R

M; w j= :' i� M; w 6j= '

M; w j= ' ^  i� M; w j= ' and M; w j=  

M; w j= '

U

 i� there exists u > w suh that M; u j=  and M; v j= '

for all v suh that w < v < u

M; w j= '

S

 i� there exists u < w suh that M; u j=  and M; v j= '

for all v suh that u < v < w

M; w j= '

U

I

 i� there exists u 2 w + I suh that M; u j=  and M; v j= '

for all v suh that w < v < u

M; w j= '

S

I

 i� there exists u 2 w � I suh that M; u j=  and M; v j= '

for all v suh that u < v < w.

We will also write w j=

V

' for hR;Vi; w j= '. A QTL-formula ' is satis�able if there

exists a model M and w 2 R suh that M; w j= '. It is satis�able under the �nite

variability assumption (FVA) if it is satis�able in a model in whih no propositional

variable hanges its truth-value in�nitely many times in any �nite interval.

Our presentation of QTL deviates from that of [5℄, where only the metri operators

�

(0;1)

F

and �

(0;1)

P

are admitted. If the numerial parameters of the metri operators

are oded in unary, there exists an easy polynomial translation from Hirshfeld and

Rabinovih's version of QTL to ours and vie versa. However, in this paper we also

onsider binary oding of numbers. If we want to emphasize this fat, we shall write

QTL

b

instead of QTL, and likewise QTL

u

will denote unary oding of numbers.
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3 QTL

b

is PSpae-omplete without FVA

The purpose of this setion is to prove that QTL

b

-satis�ability without FVA is deidable

in PSpae. This result is already known for QTL

u

without FVA [5℄ and QTL

u

with

FVA [1℄. We �rst show that our result indeed improves upon the existing ones by

proving that QTL

b

is exponentially more suint than QTL

u

.

Theorem 1. Let  be a QTL-formula with numbers oded in unary that is equivalent

to �

[0;n℄

F

p. Then  has length at least n.

Proof. Suppose by ontradition that there exists a QTL-formula  with numbers

oded in unary suh that  is equivalent to �

[0;n℄

F

p, for some n � 1, and the length of

 is stritly smaller than n. We may assume that  ontains no other propositional

letters than p: otherwise, just replae them with >. Then, for n � 1, set V

n

(p) :=

[�n; n℄ and M

n

:= hR;V

n

i. Then M

n

; 0 j= �

[0;n℄

F

p. Therefore, M

n

; 0 j=  . Now, it

is straightforward to prove the following by indution: for every subformula � of  of

length � k and all x � k suh that n� x � �n+ k:

M; (n� k) j= � i� M

n

; (n� x) j= �:

Sine the length of  is smaller than n, it follows that, inM

n

, the points 0 and 1 satisfy

the same subformulas of  . In partiular, M

n

; 1 j=  . We have derived a ontradition

sine M

n

; 1 6j= �

[0;n℄

F

p. ❏

We now establish the main result of this paper.

Theorem 2. Satis�ability in QTL with numbers oded in binary is PSpae-omplete

without FVA.

Sine (qualitative) sine/until logi on the real line is PSpae-hard [6℄, it suÆes to

prove the upper bound. For simpliity, we prove the upper bound for the future fragment

of QTL, i.e., we omit past operators. The proofs are easily extended to the general ase.

Within the future fragment, we onsider only the metri operators �

(0;1)

F

, �

(0;1℄

F

, �

[0;1)

F

,

and �

[0;n℄

F

. This an be done w.l.o.g. due to the following observations:

First, satis�ability in QTL

b

an be redued to satis�ability in QTL

b

without the

metri operators  

1

U

I

 

2

: to deide satis�ability of a QTL

b

formula ', introdue a

new propositional variable p

 

2

for every  

2

whih ours in a subformula of the form

 

1

U

I

 

2

of '. For any subformula � of ', we use �

p

to denote the result of replaing all

outermost subformulas  

1

U

I

 

2

of � by  

1

U

p

 

2

^ �

I

F

p

 

2

. Set �

+

F

 =  ^�

F

 . Then

' is satis�able i�

'

p

^�

+

F

h

^

 

1

U

I

 

2

2sub(')

(p

 

2

$  

p

2

)

i

is satis�able and the length of the latter formula is polynomial in the length of '. Seond,

for any interval I of the form (0; n), (0; n℄, or [0; n), �

I

F

' is equivalent to �

(0;1)

F

�

J

F

',

where J is obtained from I by derementing the upper interval bound from n to n� 1.
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In the following, we redue satis�ability of QTL

b

-formulas to the satis�ability of

QTL

1

-formula, i.e., QTL-formulas in whih all upper interval bounds have value 1. As

the oding of numbers is not an issue in the latter logi, we obtain a PSpae upper

bound from the result of [5℄ that QTL

u

satis�ability in models without FVA is deidable

in PSpae.

Let ' be a QTL-formula meeting the restritions laid out above. Let k be the

greatest number ourring as a parameter to a metri operator in ', n



= dlog

2

(k+2)e,

and �

1

; : : : ; �

`

the subformulas of ' that our as an argument to a metri operator of

the form �

[0;n℄

F

with n > 1. We reserve, for 1 � i � `, fresh propositional variables x

i

, y

i

,

and 

i

n



�1

; : : : ; 

i

0

that do not our in '. The sequenes 

i

n



�1

; : : : ; 

i

0

of propositional

variables will be used to implement binary ounters, one for eah �

i

. Intuitively, these

ounters measure the distane to the \nearest" future ourrene of the formula �

i

,

rounded up to the next largest natural number. A ounter value greater than or equal

to k+ 1 is a speial ase indiating that the nearest ourrene is too far away to be of

any relevane. The variables x

i

and y

i

will serve as markers with the following meaning:

x

i

holds in a point i� there is a natural number n suh that �

�

i

holds at distane n,

but not in between; similarly, y

i

holds i� there is a natural number n suh that �

�

i

does

not hold at any distane up to (and inluding) n, but �

�

i

holds at future points that

onverge from the right to the future point with distane n. In the following, we all

the struture imposed on the real line by the markers x

i

and y

i

the (one-dimensional)

`grid'.

To implement the ounters, we introdue auxiliary formulas. For 1 � i � `, let

� (C

i

= m) be a formula saying that, at the urrent point, the value of the i-th

ounter is m, for 0 � m < 2

n



. There are exponentially many suh formulas, but

we will use only polynomially many of them in the redution.

� (C

i

� m) is a formula saying that, at the urrent point, the value of the i-th

ounter does not exeed m, for 0 � m < 2

n



.

� ' := :(x

i

_ y

i

)

U

((x

i

_ y

i

) ^ ') says that, at the next grid point, ' is satis�ed.

To deal with e�ets of onvergene, it is onvenient to introdue an additional abbrevi-

ation. The formula r( ) :=

�

:(: 

U

>) ^ : 

�

desribes onvergene of  -points from

the right against a point where  does not hold. We now indutively de�ne a translation

of QTL

b

-formulas to QTL

1

-formulas:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

( 

1

U

 

2

)

�

:=  

�

1

U

 

�

2

(�

I

F

 )

�

:= �

I

F

 

�

(�

[0;n℄

F

�

i

)

�

:= (C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

Here, I ranges over intervals (0; 1℄, (0; 1), and [0; 1). It remains to enfore the existene

of the grid and the behavior of the ounters as desribed above. This is done with the
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following auxiliary formulas, for 1 � i � `:

#

i

1

:= (C

i

= 0)$

�

�

�

i

_ r(�

�

i

)

�

#

i

2

:= x

i

$

h

�

�

i

_

�

�

(0;1)

F

(:�

�

i

^ :x

i

^ :y

i

) ^ �

(0;1℄

F

x

i

^ �

F

�

�

i

�

i

#

i

3

:= y

i

$

h

r(�

�

i

) _

�

�

(0;1)

F

(:�

�

i

^ :x

i

^ :y

i

) ^ �

(0;1℄

F

y

i

^ �

F

r(�

�

i

)

�

i

#

i

4

:= :(C

i

= 0) ^ �

(0;1℄

F

(x

i

_ y

i

)!

�

_

t=0::n



�1

�



i

t

^:

i

t

^

^

`=0::t�1

(:

i

`

^

i

`

) ^

^

`=t+1::n



�1

(

i

`

$

i

`

)

�

_

^

`=0::n



�1

(

i

`

^

i

`

)

�

#

i

5

:= :�

[0;1)

F

(x

i

_ y

i

)! (C

i

= 2

n



� 1)

Intuitively, #

i

1

initializes the ounter, #

i

2

and #

i

3

ensure that x

i

and y

i

behave as desribed

above, #

i

4

inrements the ounter when travelling to the left, and #

i

5

ensures that, when

travelling left, the ounter stays in maximal value after the last ourrene of �

�

i

. Let

#

i

be the onjuntion of #

i

1

to #

i

5

. The following �nishes the redution.

Lemma 3. ' is satis�able i� �

F

(#

1

^ � � � ^ #

`

) ^ '

�

is satis�able.

Proof. \(": Let V be a valuation and w 2 R suh that w j=

V

�

F

(#

1

^ � � � ^ #

`

) ^'

�

.

We show, by indution, for all v 2 R and all subformulas � of ':

v j=

V

� i� v j=

V

�

�

(y)

Clearly, w j=

V

' follows. The ases for propositional variables, :, ^,

U

, and �

I

F

, where

I ranges over intervals (0; 1), (0; 1℄, and [0; 1), are trivial and omitted here. Consider

the remaining ase � = �

[0;n℄

F

�

i

.

For the diretion from right to left, suppose

v j=

V

(�

[0;n℄

F

�

i

)

�

= (C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

:

We take a time point u 2 R and distinguish two ases:

(i) v j=

V

x

i

_ y

i

. Set u = v.

(ii) v 6j=

V

x

i

_ y

i

. Let u 2 v + (0; 1) be minimal suh that u j=

V

x

i

_ y

i

.

Note that, in (ii), the required u exists: by de�nition of n



, we have n < 2

n



�1 and thus

v j=

V

(�

[0;n℄

F

�

i

)

�

implies v j=

V

�

[0;1)

F

(x

i

_ y

i

) by #

i

5

. Hene, there exists u 2 v + (0; 1)

suh that u j=

V

x

i

_ y

i

. By #

i

2

and #

i

3

, there exists a minimal suh u. For m � 1, let



m

denote the natural number suh that u+m j=

V

(C

i

= 

m

). Our aim is to show that

one of the following holds:

(a) u+ 

0

j=

V

�

�

i

and u j=

V

x

i

;
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(b) u+ 

0

j=

V

r(�

�

i

) and u j=

V

y

i

;

For suppose that this has been shown. Then we obtain v j=

V

�

[0;n℄

F

�

�

i

, whih an be seen

by distinguishing the following four subases, and thus get v j=

V

�

[0;n℄

F

�

i

by indution

hypothesis as desired.

� Cases (i) and (a). Sine v j=

V

(�

[0;n℄

F

�

i

)

�

and v = u, we have 

0

� n. Thus,

u+ 

0

j=

V

�

�

i

yields v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (i) and (b). Then u + 

0

j=

V

r(�

�

i

) implies that we an �nd a time point

v

0

2 u + (

0

; 

0

+ 1) suh that v

0

j=

V

�

�

i

. Sine v j=

V

(�

[0;n℄

F

�

i

)

�

, v = u, and

u j=

V

y

i

, we have 

0

< n. Thus, v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (ii) and (a). Sine v 6j=

V

x

i

_ y

i

, #

i

1

to #

i

3

yield that v j=

V

:(C

i

= 0). By

the existene of u and by #

i

4

, this yields v j=

V

(C

i

= 

0

+ 1), and thus 

0

< n.

Thus u+ 

0

j=

V

�

�

i

and the hoie of u yield v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (ii) and (b). Then (b) u + 

0

j=

V

r(�

�

i

) implies that we an �nd a v

0

2

u + (

0

; 

0

+ (u � v)) suh that v

0

j=

V

�

�

i

. As in the third subase, we an show

that 

0

< n. Thus v

0

j=

V

�

�

i

and the hoie of u and v

0

yield v j=

V

�

[0;n℄

F

�

�

i

.

It thus remains to show that one of (a) and (b) holds. To this end, we show by indution

on m that, for m � 

0

, we have

1. u+m j=

V

x

i

_ y

i

;

2. 

m

= 

0

�m;

3. v

0

6j=

V

�

�

i

_ r(�

�

i

) for all v

0

2 [u+m;u+m+ 1), if m < 

0

;

First for the indution start: Point 1 holds by hoie of u and Point 2 is trivial. For

Point 3, assume that m � 

0

. First assume that u j=

V

�

�

i

_ r(�

�

i

). This implies 

0

= 0

by #

i

1

and thus we have a ontradition. It thus remains to show that v

0

j=

V

�

�

i

_r(�

�

i

)

for all v

0

2 (u; u+1). This is an immediate onsequene of #

i

2

and #

i

3

together with the

fats that u j= x

i

_ y

i

and u 6j=

V

�

�

i

_ r(�

�

i

). For the indution step, let m < 

0

:

� Point 1. By indution, u +m j=

V

x

i

_ y

i

and u +m 6j=

V

�

�

i

_ r(�

�

i

). Thus, we

have u+m+ 1 j=

V

x

1

_ y

i

by #

i

2

and #

i

3

;

� Point 2. By indution, we have 

m

= 

0

�m implying u+m j=

V

:(C

i

= 0). Sine

Point 1 additionally gives us u+m+ 1 j=

V

x

1

_ y

i

, #

i

4

yields 

m

= 

m+1

+ 1 and

from Point 2 of the indution hypothesis we obtain 

m+1

= 

0

� (m+ 1).

� Point 3. Assume m + 1 < 

0

. Point 2 gives us 

m+1

= 

0

� (m + 1). We thus

have u +m + 1 j=

V

:(C

i

= 0). Thus, #

i

1

implies u +m 6j=

V

�

�

i

_ r(�

�

i

). It thus

remains to show that v

0

j=

V

�

�

i

_ r(�

�

i

) for all v

0

2 (u+m;u+m+1). This is an

immediate onsequene of #

i

2

and #

i

3

together with the fats that u j= x

i

_ y

i

by

Point 1 and u+m 6j=

V

�

�

i

_ r(�

�

i

).
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In partiular, we have shown that u + 

0

j=

V

(C

i

= 0). Thus, u + 

0

j=

V

�

�

i

_ r(�

�

i

)

by #

i

1

. We have two sub-ases: �rst, u + 

0

j=

V

�

�

i

. By #

i

2

, we have u +m j=

V

x

i

for

all m � 

0

, and thus Case (a) from above holds. The seond ase is u+ 

0

j=

V

r(�

�

i

).

Then #

i

3

yields u+m j=

V

y

i

for all m � 

0

and Case (b) from above holds.

For the diretion from left to right of (y), suppose v j=

V

�

[0;n℄

F

�

i

. By the semantis,

there is an u 2 w + [0; n℄ suh that u j=

V

�

i

. If there is a smallest suh position u,

then (a) take u to be the smallest one, otherwise (b) take u to be the smallest position

suh that u j=

V

r(�

i

). The indution hypothesis yields that (a) u j=

V

�

�

i

, or (b)

u j=

V

r(�

�

i

). Then u j=

V

(C

i

= 0) by #

i

1

. Together with v

0

6j=

V

�

�

i

for eah v

0

2 (v; u),

it follows from #

i

2

and #

i

3

that v

00

j=

V

x

i

_ y

i

for all v

00

suh that v

00

= u � j for some

natural number j � u� v. Then #

i

4

yields v

0

j=

V

(C

i

= j) for all j 2 N with j � u� v

and eah v

0

2 [u� j; u� j+1). Sine u was hosen suh that u 2 v+[0; n℄, in partiular

we obtain that w j=

V

(C

i

� n). To show that v j=

V

(C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

, is

thus remains to prove that v j=

V

(C

i

= n) implies v 6j=

V

y

i

. Suppose v j=

V

(C

i

= n).

In Case (a), v 6j=

V

y

i

by #

i

3

. Consider Case (b) and assume to the ontrary of what is

to be shown that v j=

V

y

i

. By #

i

3

, it then follows that u � v = n. But then, v

0

6j=

V

�

i

for all v

0

2 v + [0; n℄ ontraditing the assumption that v j=

V

�

[0;n℄

F

�

i

.

\)": Suppose ' is satis�able, i.e., there is a valuation V and a w 2 R suh that

w j=

V

'. For eah v 2 R and 1 � i � `, let v

�

i

denote

� the smallest time point suh that v � v

�

i

and v j=

V

�

i

_ r(�

i

) if suh a time

point exists;

� v + 2

n



� 1 otherwise.

If v

�

i

j= �

i

, we say that v is �

i

-exat ; if v

�

i

j= r(�

i

), we say that v is �

i

-onvergent.

We extend V to the additional propositional letters x

i

, y

i

, and 

i

t

used in '

�

as follows:

(1) v 2 V(x

i

) i� v

�

i

� v is an integer and v is �

i

-exat;

(2) u 2 V(y

i

) i� v

�

i

� v is an integer and v is �

i

-onvergent;

(3) u 2 V(

i

t

) i� the t-th bit of the number v

�

i

� v is one or this number exeeds the

value 2

n



� 2.

It is not hard to verify that w j=

V

�

F

(#

1

^ � � � ^ #

`

). To show that w j=

V

'

�

, the

following an be proved by strutural indution:

w j=

V

' i� w j=

V

'

�

Details are left to the reader. ❏
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4 From NP to PSpae

Qualitative sine/until logi on the real line is PSpae-omplete, and thus not omputa-

tionally simpler than QTL

b

. However, several natural fragments are only NP-omplete,

an important example being the qualitative TL with temporal operators `eventually in

the future' and `eventually in the past' [9℄. In this setion, we explore the transition

from NP to PSpae for fragments of quantitative logis of the real line, i.e., for QTL

and it's fragments. We start with determining several weak, but still PSpae-hard

fragments of QTL. Observe that two of the fragments are purely quantitative, i.e., they

do not admit qualitative temporal operators at all.

Theorem 4. Satis�ability (with and without FVA) is PSpae-hard for the fragments

of QTL whose only temporal operators are:

(i) �

F

and �

[0;n℄

F

with n > 0 oded in unary;

(ii) �

[0;n℄

F

with n > 0 is oded in binary;

(iii)

U

[0;1℄

.

Proof. The proof is only skethed here, details are easily �lled in. First for Point (i) of

Theorem 4, we redue satis�ability in qualitative TL on the natural numbers with the

only temporal operators and �

F

, where �

F

is not strit, i.e., �

F

' is equivalent to the

QTL formula '_�

F

'. This logi is known to be PSpae-hard [8℄. Let ' be a formula

of this logi, and a a propositional variable that does not our in '. The main idea of

the redution is to onstrut a disrete model on the real line by alternating intervals

making a true and intervals making :a true, with the former representing the time

points of disrete time. This struture is enfored suh that the length of the a-intervals

is from the interval [2; 3), the length of the :a-intervals is from [7; 8), and the length of

an a-interval together with the subsequent :a interval is from (9; 10). This is done by

the formula # = #

1

^ #

2

^ #

3

:

#

1

= �

[0;2℄

F

a;

#

2

= �

F

(a! �

[0;3℄

F

�

[0;7℄

F

:a);

#

3

= �

F

(a! �

[0;10℄

F

�

[0;2℄

F

a):

Indutively de�ne a translation (�) as follows:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

( )

�

:= �

[0;3℄

F

�

�

[0;7℄

F

:a ^ �

[0;8℄

F

( 

�

^ a)

�

(�

F

 )

�

:= �

F

( 

�

^ a)

Additionally, a formula #

0

is needed to take are of uniformity, i.e., to make sure that

the same propositional variables hold in all points of an interval that makes a true:

#

0

= �

F

^

p used in '

��

p ^ a! �

[0;3℄

F

(a! p)

�

^

�

:p ^ a! �

[0;3℄

F

(a! :p)

��

:

9



Then ' is satis�able i� '

�

^ # ^ #

0

^ a is.

For Point (ii) of Theorem 4, we redue the word problem of a deterministi Turing

mahineM that solves a PSpae-hard problem and for whih there exists a polynomial

p suh that M 's spae onsumption on input w 2 �

�

is bounded by p(w) and M 's time

onsumption on w is bounded by 2

p(w)

. The general idea is to use a sequene of a

intervals and :a intervals as in the previous relation, with eah a interval representing

one on�guration of the Turing mahine omputation. Let w = a

0

� � � a

n�1

be an input

to M . In the redution, we use the following propositional variables:

� all states q of M are used as propositional variables;

� to desribe the state insription, we �x a variable s

i

for eah alphabet symbol s

and eah tape position i 2 f0; : : : ; p(w)g;

� the head position is denoted using propositional variables h

0

; : : : ; h

p(n)

.

We �rst state that the head position, tape insription, and state are uniquely desribed:

�

1

:=

_

1�i�p(n)

�

h

i

^

^

1�j�p(n)

j 6=i

:h

j

�

^

^

1�i�p(n)

_

s2�

�

s

i

^

^

t2�

s 6=t

:t

i

�

^

_

q2Q

�

q ^

^

q

0

2Q

q

0

6=q

:q

0

�

:

We also need to formalize the transition relation � of M , whih we assume to be given

as a set of quintuples (s; q; s

0

; d; q

0

) with d 2 fL;Rg:

�

2

:=

^

(s;q;t;d;q

0

)2�

^

i�p(n)

�

(q ^ h

i

)!

�

(t

i

^ q

0

^

�

(d = L)!h

i�1

�

^

�

(d = R)!h

i+1

� �

�

^

i�p(n)

�

:h

i

!

^

s2�

(s

i

!s

i

)

�

where ' abbreviates the formula (')

�

as introdued in the proof of (i). It remains

to desribe the initial on�guration. Reall that the input is w = a

0

� � � a

n�1

, let q

0

the

initial state and 6 b denote the blank symbol.

�

3

:= h

0

^ q

0

^ a

0

0

^ � � � ^ a

n�1

n�1

^

^

n�i�p(n)

6 b

i

Take # and #

0

from (i) with ' in #

0

denoting �

1

^�

2

^�

3

, replae �

F

by �

[0;2

p(n)

℄

F

, and

denote the result by � and �

0

, respetively. It is readily heked that M aepts w i�

the following formula is satis�able, where F denotes the set of �nal states of M :

�

3

^�

[0;2

p(n)

℄

F

(�

1

^ �

2

) ^ �

[0;2

p(n)

℄

F

_

q2F

q:

For Point (iii) of Theorem 4, we redue satis�ability in QTL

U

, the QTL-fragment

with only temporal operator

U

, whih is known to be PSpae-hard without FVA [6℄.
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The idea of the redution is to embed the whole real line into the interval (0; 1): given

a formula ' of QTL

U

, �x a fresh propositional variable a that does not our in '.

De�ne a translation (�)

�

that reursively replaes every subformula of the form '

U

 

with '

U

[0;1℄

(a ^  ). Then ' is satis�able i� '

�

^ a ^

�

a

U

[0;1℄

(�

[0;1℄

F

:a)

�

is. For the

FVA ase, we note that that the PSpae-hardness proof for QTL

U

does not depend on

variables hanging their value an in�nite number of times in (i) any �nite interval, and

(ii) in any in�nite interval. By (i), QTL

U

is PSpae-hard also with FVA, and by (ii)

we an use the same redution as in the non-FVA ase. ❏

We now exhibit a purely quantitative temporal logi of the real line for whih satis�-

ability is NP-omplete: the fragment of QTL with only the quantitative diamond and

numbers oded in unary, with and without FVA. This logi may appear rather weak

sine it does not allow to make statements about all time points. Still, it is useful for

reasoning about the behaviour of systems up to a previously �xed time point. Note that

our NP-ompleteness result shows that Points (i) and (ii) of Theorem 4 are optimal in

the following sense: in Point (i) we annot drop �

F

, and in Point (ii) we annot swith

to unary oding.

Theorem 5. In the fragment of QTL with temporal operators �

I

F

and �

I

P

, I of the

form (0; n), [0; n), [0; n℄, or (0; n℄, and n > 0 oded in unary, satis�ability is deidable

in NP, both, with and without FVA.

The lower bound is immediate from propositional logi and thus we only have to prove

the upper bound. Sine numbers are oded in unary, we may restrit our attention to

temporal operators whose upper interval bound is 1. In the proof, we only onsider

the temporal operator �

[0;1℄

F

. An extension to past operators and open intervals is

straightforward.

Let ' be a formula whose satis�ability is to be deided. We introdue some on-

venient abbreviations: m

'

denotes the nesting depth of operators �

I

F

in ' (heneforth

diamond depth), n

'

= 2j'j

3

+ j'j

2

, and r

'

= j'j � n

'

. Denote by l(') the losure of

the set of subformulas of ' under single negation. A type t for ' is a subset of l(')

suh that (i) : 2 t i�  62 t for eah : 2 l('), and (ii)  

1

^  

2

2 t i�  

1

;  

2

2 t for

eah  

1

^  

2

2 l('). For a model hR;Vi and w 2 R, set

t(w) = f 2 l(') j w j=

V

 g;

t

<

(w) = f�

I

F

 2 l(') j w j=

V

�

I

F

 g:

Notie that t(w) is a type for '. First, we devise an algorithm for satis�ability without

FVA. To begin with, we show that satis�ability of ' implies satis�ability of ' in a

`homogeneous' model. In partiular, in suh models the number of realized types is

polynomial in the length of '.

Lemma 6. Let ' be satis�able without FVA. Then there is a sequene x

0

; : : : ; x

n

'

in

R suh that 0 = x

0

< x

1

< � � � < x

n

'

= m

'

; and a valuation V suh that hR;Vi; 0 j= '

and

� jft(w) j 0 � w � m

'

gj � r

'

;
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� for every n with 0 � n < n

'

and eah type t for ', the set fw 2 R j x

n

< w <

x

n+1

and w j=

V

tg is either empty or dense in the interval (x

n

; x

n+1

).

Proof. Consider a model M = hR;V

0

i with M; 0 j= '. By the semantis, we learly

have the following:

(�) for any �

I

F

 2 sub('), the set fw 2 R j 0 � w � m

'

and w j=

V

0

�

I

F

 g is a union

of intervals of length at least 1 and at most two intervals of length smaller than 1.

The two possibly shorter intervals are the one starting at 0 and the one ending at m

'

.

Using (�), we an show that there is a sequene y

0

; : : : ; y

k

in R for some k � 2j'j

2

+ j'j

suh that

� 0 = y

0

< � � � < y

k

= m

'

and

� t

<

(w) = t

<

(w

0

) whenever y

i

< w < w

0

< y

i+1

for any i < k.

To see this, take a formula �

I

F

 2 sub('). The toggle points for �

I

F

 in the interval

[0;m

'

℄ are those points x suh that either (i) there is a y > x suh that the truth value

of �

I

F

 at x is di�erent from the truth value of �

I

F

 at all points z with x < z < y or

(ii) there is a y < x suh that the truth value of �

I

F

 at x is di�erent from the truth value

of �

I

F

 at all points z with y < z < x. By (�), there are at most 2 �m

'

+1 < 2 � j'j+1

toggle points for eah formula �

I

F

 , and thus at most 2j'j

2

+j'j toggle points altogether.

These points form the required sequene y

0

; : : : ; y

k

.

We onvert this sequene into the desired sequene x

0

; : : : ; x

n

'

by arranging the

elements of the set

fy

0

; : : : ; y

k

g [

[

i<k

1�j<m

'

fy

i

+ j j y

i

+ j < m

'

g

in asending order aording to `<', possibly introduing (arbitrary) intermediate points

to obtain a sequene of length n

'

+ 1.

To obtain a valuation V as required by the lemma, �x a set T

i

of types for eah

i < n

'

as follows: for eah �

I

F

 2 sub('), hoose a w 2 (x

i

; x

i+1

) with  2 t(w) if suh

a w exists. Then, T

i

is the set of types t(w) of all points w hosen in this way. Clearly

jT

i

j � j'j. For eah i < n

'

, take a olletion (X

i

t

)

t2T

i

, of subsets of (x

i

; x

i+1

) whih

form a partitioning of (x

i

; x

i+1

) suh that eah X

i

t

is dense in (x

i

; x

i+1

). Now de�ne a

valuation V by setting, for every propositional variable p,

V(p) := (V

0

(p) \ fx

0

; : : : ; x

n

'

g) [

[

i<n

'

;t2T

i

fX

i

t

j p 2 tg:

Let t

i

, i � n

'

, be the type f 2 sub(') j x

i

j=

V

0

 g for ' realized in point x

i

of the

original model M. To show that V is as required, it is suÆient to show that, for eah

k � m

'

, eah  2 sub(') with diamond depth bounded by k, and eah w 2 [0;m

'

� k℄,

we have

w j=

V

 i� there is an i � n

'

suh that

(a) w = x

i

and  2 t

i

; or

(b) w 2 X

i

t

and  2 t for some t 2 T

i

:
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Proof. Let k,  , and w be as above. The proof is by indution on the struture of  .

The ases for propositional variables, :, and ^ are left to the reader. Consider the ase

for �

[0;1℄

F

.

\)": Suppose w j=

V

�

[0;1℄

F

 . Then there is a w

0

2 w + [0; 1℄ suh that w

0

j=

V

 by the

semantis. Distinguish four ases:

� w = x

i

for some i < n

'

and w

0

= x

j

for some j � i. The indution hypothesis in

(a) yields  2 t

j

. Then x

j

j=

V

0

 . Sine x

j

� x

i

� 1, it follows by the semantis

that x

i

j=

V

0

�

[0;1℄

F

 . Hene �

[0;1℄

F

 2 t

i

.

� w = x

i

for some i < n

'

and w

0

2 X

j

t

for some j � i and t 2 T

j

. The indution

hypothesis in (b) yields  2 t. Then, by de�nition of T

j

, there is a w

00

2 (x

j

; x

j+1

)

suh that w

00

j=

V

0

 . Note that there is an i

0

with i < i

0

� n

'

suh that x

i

0

= x

i

+1.

But then x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� x

i

> 1 ontraditing

w

0

2 w+ [0; 1℄. This implies that w

00

�w < 1 and w j=

V

0

�

[0;1℄

F

 by the semantis.

Hene �

[0;1℄

F

 2 t

i

.

� w 2 X

i

t

for some i < n

'

and t 2 T

i

, and w

0

= x

j

for some j > i. By (a), the indu-

tion hypothesis yields  2 t

j

. Then x

j

j=

V

0

 . Sine x

j

�w � 1, it follows by the

semantis that w j=

V

0

�

[0;1℄

F

 . But then by de�nition of the sequene x

0

; : : : ; x

n

'

,

it holds that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any

t

0

2 T

i

. Hene �

[0;1℄

F

 2 t.

� w 2 X

i

t

for some i < n

'

and t 2 T

i

, and w

0

2 X

j

t

for some j � i and t

0

2 T

j

.

The indution hypothesis in (b) yields  2 t

0

. Then by de�nition of T

j

, there is a

w

00

2 (x

j

; x

j+1

) suh that w

00

j=

V

0

 . Note that there is an i

0

with i < i

0

� n

'

suh

that x

i

0

= x

i+1

+ 1. But then x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� w > 1

ontraditing w

0

2 w+ [0; 1℄. Thus, there is a v 2 (x

i

; x

i+1

) suh that w

00

� v � 1.

It follows by the semantis that v j=

V

0

�

[0;1℄

F

 . But then by de�nition of the

sequene x

0

; : : : ; x

n

'

, it holds that v

0

j=

V

0

�

[0;1℄

F

 for all v

0

2 (x

i

; x

i+1

). Therefore,

�

[0;1℄

F

 2 t

00

for any t

00

2 T

i

. Hene �

[0;1℄

F

 2 t.

\(": Let i � n

'

suh that

(a) w = x

i

and �

[0;1℄

F

 2 t

i

. Then x

i

j=

V

0

�

[0;1℄

F

 . By the semantis, there is a

w

0

2 x

i

+ [0; 1℄ suh that w

0

j=

V

0

 . Distinguish two ases:

{ w

0

= x

j

for some j � i. Then  2 t

j

. The indution hypothesis in (a) yields

w

0

j=

V

 . Sine w

0

� x

i

� 1, it follows by the semantis that x

i

j=

V

�

[0;1℄

F

 .

{ w

0

2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is a t 2 T

j

suh that

 2 t. The indution hypothesis in (b) yields w

00

j=

V

 for any w

00

2 X

j

t

.

Sine X

j

t

is dense in (x

j

; x

j+1

), there is suh a w

00

suh that w

00

� w

0

. Then

w

00

� x

i

� 1. Hene, x

i

j=

V

�

[0;1℄

F

 by the semantis.

13



(b) w 2 X

i

t

and �

[0;1℄

F

 2 t for some t 2 T

i

. By de�nition of T

i

, there is a w

0

2

(x

i

; x

i+1

) suh that w

0

j=

V

0

�

[0;1℄

F

 . Then it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for any w

00

2 (x

i

; x

i+1

). In partiular, w j=

V

0

�

[0;1℄

F

 . Then

v j=

V

0

 for some v 2 w + [0; 1℄ by the semantis. Distinguish two ases:

{ v = x

j

for some j > i. Then  2 t

j

. The indution hypothesis in (a) yields

x

j

j=

V

 . Sine x

j

� w � 1, it follows by the semantis that w j=

V

�

[0;1℄

F

 .

{ v 2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is a t 2 T

j

suh that

 2 t. The indution hypothesis in (b) yields v

0

j=

V

 for any v

0

2 X

j

t

. Take

a v

0

2 X

j

t

suh that v

0

� v if j > i, and v

0

� v otherwise. Suh a v

0

exists

sine X

j

t

is dense in (x

j

; x

j+1

). Then, v

0

� w � 1. Hene w j=

V

�

[0;1℄

F

 .

❏

Lemma 6 suggests the following idea for deiding in non-deterministi polynomial time

whether a formula ' is satis�able: guess a (polynomially bounded) set of types for ' to

be realized in a homogeneous model, a sequene v

0

; : : : ; v

n

'

of variables, and onstrut

a system of linear inequalities whose solution in R determines a sequene of points

x

0

; : : : ; x

n

'

from whih we an build a homogeneous model realizing the guessed types.

More preisely, to deide the satis�ability of ', we non-deterministially hoose

� a set T of types for ' suh that jT j � r

'

;

� a type t

i

2 T suh that ' 2 t

0

, for every i � n

'

;

� a non-empty set of types T

i

� T , for every i < n

'

.

Intuitively, the type t

i

is to be realized at point x

i

, and the types in T

i

are those types

realized in the interval (x

i

; x

i+1

). Then, we take variables v

0

; : : : ; v

n

'

and hek whether

the system of inequalities given in Figure 1 has a solution in R. The Inequalities 2 to 9

are only added if i < n

'

. To understand the inequalities (in partiular 4 and 5), note

that the point x

i

desribed by variable v

i

is not intended to realize the whole type t

i

, but

only those elements of t

i

whose diamond depth is at most bm

'

� x

i

. Similarly, points

from (x

i

; x

i+1

) desribed by a type t 2 T

i

realize only elements of t whose diamond

depth is at most bm

'

� x

i

; f. the strutural indution in the proof of Lemma 6.

The algorithm returns `' is satis�able' if there is a solution to this system of in-

equalities, and `' is not satis�able' otherwise. By onsidering the ontrapositive, it is

easily seen that ' is unsatis�able if the algorithm answers `no': if ' has a model, then

by Lemma 6 it also has a homogeneous model, and this model suggests a hoie of

types suh that the orresponding system of inequalities is satis�able. Conversely, if the

algorithm returns `yes', we an onstrut a homogeneous model:

Lemma 7. If the algorithm returns `' is satis�able', then ' is satis�able.

Proof. Suppose there are types t

i

, i � n

'

, and sets of types T

i

, i < n

'

, suh that there

is a solution x

0

; : : : ; x

n

'

for the orresponding system of inequalities. For i < n

'

, take

a partitioning (X

i

t

)

t2T

i

of (x

i

; x

i+1

) suh that eah X

i

t

is dense in (x

i

; x

i+1

). Now de�ne

a valuation V by putting, for every propositional variable p,

V(p) :=

[

i�n

'

�

fx

i

j p 2 t

i

g [

[

i<n

'

;t2T

i

fX

i

t

j p 2 tg

�

:
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(1) 0 = v

0

< v

1

< � � � < v

n

'

= m

'

(2) v

j

� v

i

> 1 if :�

[0;1℄

F

 2 t

i

, j � i, and  2 t

j

(3) v

j

� v

i

� 1 if :�

[0;1℄

F

 2 t

i

, j � i, and  2 t for some t 2 T

j

(4) m

'

� v

i

< 1 if �

[0;1℄

F

 2 t

i

, but there is no j � i suh that  2 t

j

or  2 t for a t 2 T

j

(5) m

'

� v

i

� 1 if �

[0;1℄

F

 2 t for some t 2 T

i

, there is no j > i suh that  2 t

j

,

and there is no j � i suh that  2 t

0

for some t

0

2 T

j

(6) v

j

� v

i

� 1 if �

[0;1℄

F

 2 t

i

and j � i is minimal suh that  2 t

j

and,

for every j

0

with i � j

0

< j,  62 t for any t 2 T

j

0

(7) v

j

� v

i

< 1 if �

[0;1℄

F

 2 t

i

and j � i is minimal suh that  2 t for some t 2 T

j

and

there is no j

0

with i � j

0

� j suh that  2 t

j

0

(8) v

j

� v

i

� 1 if �

[0;1℄

F

 2 t for some t 2 T

i

,  62 t

0

for any t

0

2 T

i

, and j > i is minimal

suh that  2 t

j

or  2 t

0

for some t

0

2 T

j

(9) v

j

� v

i+1

� 1 if :�

[0;1℄

F

 2 t for some t 2 T

i

, and (j � i and  2 t

0

for some t

0

2 T

j

) or

(j > i and  2 t

j

)

Figure 1: The system of inequalities.

It is now straightforward to prove that, for all k � m

'

, all  2 sub(') with diamond

depth bounded by k, and all w 2 [0;m

'

� k℄, we have

w j=

V

 i� there is an i � n

'

suh that

(a) w = x

i

and  2 t

i

; or

(b) w 2 X

i

t

and  2 t for some t 2 T

i

:

It is an immediate onsequene that 0 j=

V

'. ❏

We disuss the proof for satis�ability under FVA. Again, the �rst step is to show that

if ' is satis�able under FVA, then it is satis�able in a homogeneous model (this time

with FVA) in whih only polynomially many types are realized:

Lemma 8. Suppose ' is satis�able with FVA. Then there exists a sequene z

0

; : : : ; z

r

'

in R suh that 0 = z

0

< z

1

< � � � < z

r

'

= m

'

; and a valuation V suh that hR;Vi; 0 j= '

and

� jft(w) j 0 � w � m

'

gj � r

'

;

� for all n with 0 � n < r

'

, all  2 sub('), and all z

n

< w < w

0

< z

n+1

, w j=

V

 

i� w

0

j=

V

 .
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Proof. Consider a model M = hR;V

0

i with fva satisfying ' in 0. First, onstrut a

sequene 0 = y

0

< y

1

< � � � < y

k

= m

'

, k � 2j'j

2

+ j'j, as in Lemma 6. Then the

sequene x

0

; : : : ; x

n

'

is obtained by arranging the elements of the set

fy

0

; : : : ; y

k

g [

[

i<k

1�j<m

'

fy

i

+ j j y

i

+ j < m

'

g [

[

i�k

1�j<m

'

fy

i

� j j y

i

� j > 0g

in asending order aording to < (where we possibly have to add new x

i

to obtain a

sequene of length n

'

+ 1). Let

� = minfx

i+1

� x

i

j 0 � i < n

'

g;

and set, for i < n

'

, �

i

=

1

j'j

i+1

� �. The sequene

0 = z

0

< z

1

< � � � < z

r

'

= m

'

is obtained by adding to the sequene x

0

; : : : ; x

n

'

the points

y

j

i

= x

i

+

j

j'j

� �

i

;

for all i < n

'

and j � j'j. For i < n

'

, denote by t

�i

the type t whih is realized

in some interval of the form (x

i

; y). Note that suh an interval exists sine we are in

a model with FVA. Also, denote by t

+i

the type whih is realized in some interval of

the form (y; x

i+1

). Now, for i < n

'

, take for any �

I

F

 2 sub(') suh that there exists

w 2 (x

i

; x

i+1

) with  2 t(w) suh a type t(w) and denote the olletion of seleted

types plus the types t

�i

and t

+i

by T

i

. Notie that jT

i

j � j'j. Let t

i

0

; : : : ; t

i

j'j�1

be an

ordering of the types in T

i

suh that t

i

0

= t

�i

(if T

i

has ardinality < j'j, then take

some t from T

i

more than one in this ordering.) De�ne a valuation V by setting, for

every propositional variable p,

V(p) = fx

i

j i � n

'

; x

i

j=

V

0

pg [

[

i<n

'

;j<j'j

f(y

j

i

; y

j+1

i

℄ j p 2 t

i

j

g [

[

i<n

'

f(y

j'j

i

; x

i+1

) j p 2 t

+i

g:

We show that V is as required. To this end, it is suÆient to show by indution that,

for eah k � m

'

, every  2 sub(') in whih the number of nestings of �

[0;1℄

F

does not

exeed k, and all w 2 [0;m

'

� k℄:

w j=

V

 , there is an i � n

'

suh that

(a) w = x

i

and x

i

j=

V

0

 ; or

(b) w 2 (y

`

i

; y

`+1

i

℄ and  2 t

i

`

for some ` < j'j; or

() w 2 (y

j'j

i

; x

i+1

) and  2 t

+i

:

Proof. Let k,  , and w be as above. The proof is by indution on the struture of  .

The ases for propositional variables, :, and ^ are left to the reader. Consider the ase

for �

[0;1℄

F

.

\)": Suppose w j=

V

�

[0;1℄

F

 . Then there is a w

0

2 w + [0; 1℄ suh that w

0

j=

V

 .

Distinguish four ases:
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� w = x

i

for some i < n

'

and w

0

= x

j

for some j � i. The indution hypothesis

in (a) yields x

j

j=

V

0

 . Sine x

j

� x

i

� 1, it follows by the semantis that

x

i

j=

V

0

�

[0;1℄

F

 .

� w = x

i

for some i < n

'

and w

0

2 (x

j

; x

j+1

) for some j � i. If w

0

2 (y

`

j

; y

`+1

j

℄ for

some ` < j'j, then the indution hypothesis in (b) yields  2 t

j

`

. Otherwise, i.e.,

if w

0

2 (y

j'j

j

; x

j+1

),  2 t

+j

by the indution hypothesis in (). Sine t

j

`

, t

+j

2 T

j

,

it follows by de�nition of T

j

that there is a w

00

2 (x

j

; x

j+1

) suh that w

00

j=

V

0

 .

Note that there is an i

0

with i < i

0

� n

'

suh that x

i

0

= x

i

+ 1. But then

x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� w > 1 ontraditing w

0

2 w + [0; 1℄.

Hene w

00

�w < 1. Then it follows by the semantis that w j=

V

0

�

[0;1℄

F

 .

� w 2 (x

i

; x

i+1

) for some i < n

'

, and w

0

= x

j

for some j > i. The indution

hypothesis in (a) yields x

j

j=

V

0

 . Sine x

j

� w � 1, w j=

V

0

�

[0;1℄

F

 by the

semantis. Then it follows by de�nition of the sequene x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any t

0

2 T

i

. Hene,

�

[0;1℄

F

 2 t

i

`

if w 2 (y

`

i

; y

`+1

i

℄ for some ` < j'j, and �

[0;1℄

F

 2 t

+i

if w 2 (y

j'j

i

; x

i+1

).

� w 2 (x

i

; x

i+1

) for some i < n

'

, and w

0

2 (x

j

; x

j+1

) for some j � i. If w

0

2 (y

`

j

; y

`+1

j

℄

for some ` < j'j, then the indution hypothesis in (b) yields  2 t

j

`

. Otherwise, i.e.,

if w

0

2 (y

j'j

j

; x

j+1

),  2 t

+j

by the indution hypothesis in (). Sine t

j

`

, t

+j

2 T

j

,

it follows by de�nition of T

j

that there is a w

00

2 (x

j

; x

j+1

) suh that w

00

j=

V

0

 .

Note that there is an i

0

> i + 1 suh that x

i

0

= x

i+1

+ 1. But then x

j+1

� x

i

0

;

otherwise x

j

� x

i

0

and thus w

0

� w > 1 ontraditing w

0

2 w + [0; 1℄. Thus

there is a v 2 (x

i

; x

i+1

) suh that w

00

� v � 1. By the semantis, v j=

V

0

�

[0;1℄

F

 .

Then it follows by de�nition of the sequene x

0

; : : : ; x

n

'

that v

0

j=

V

0

�

[0;1℄

F

 for

all v

0

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any t

0

2 T

i

. Hene �

[0;1℄

F

 2 t

i

`

if

w 2 (y

`

i

; y

`+1

i

℄ for some ` < j'j, and �

[0;1℄

F

 2 t

+i

if w 2 (y

j'j

i

; x

i+1

).

\(": Let i � n

'

suh that

(a) w = x

i

and x

i

j=

V

0

�

[0;1℄

F

 . By the semantis, there is a w

0

2 x

i

+ [0; 1℄ suh that

w

0

j=

V

0

 . Distinguish two ases:

{ w

0

= x

j

for some j � i. The indution hypothesis in (a) yields x

j

j=

V

 .

Sine x

j

� x

i

� 1, it follows by the semantis that x

i

j=

V

�

[0;1℄

F

 .

{ w

0

2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is an ` < j'j

suh that t

j

`

2 T

j

and  2 t

j

`

. Then the indution hypothesis in (b) yields

w

00

j=

V

 for all w

00

2 (y

`

j

; y

`+1

j

℄. Fix suh a w

00

. Note that there is an j

0

> j

suh that x

j

0

= x

j

+ 1. But then x

j+1

� x

j

0

; otherwise x

j

� x

j

0

and thus

w

0

� x

i

> 1 ontraditing w

0

2 x

i

+ [0; 1℄. Therefore, w

00

� x

i

< 1. Hene,

x

i

j=

V

�

[0;1℄

F

 .
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(b) w 2 (y

`

i

; y

`+1

i

℄ and �

[0;1℄

F

 2 t

i

`

for some ` < j'j. By de�nition of T

i

, there is a w

0

2

(x

i

; x

i+1

) suh that w

0

j=

V

0

�

[0;1℄

F

 . Then it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for any w

00

2 (x

i

; x

i+1

). In partiular, w j=

V

0

�

[0;1℄

F

 . Then

v j=

V

0

 for some v 2 w + [0; 1℄ by the semantis. Distinguish three ases:

{ v = x

j

for some j > i. The indution hypothesis in (a) yields v j=

V

 . Sine

v � w � 1, it follows by the semantis that w j=

V

�

[0;1℄

F

 .

{ v 2 (x

i

; x

i+1

). By de�nition of T

i

, there is a t 2 T

i

suh that  2 t.

Distinguish two subases: First, suppose that  2 t

i

`

0

for some `

0

� `, or

 2 t

+i

. The indution hypothesis in (b) or () yields v

0

j=

V

 for all

v

0

2 (y

`

0

j

; y

`

0

+1

j

℄, or all v

0

2 (y

j'j

i

; x

i+1

), respetively. Then there is suh a v

0

suh that v

0

� w < 1. Hene w j=

V

�

[0;1℄

F

 .

Seond, suppose there is no `

0

� ` suh that  2 t

i

`

0

, and  =2 t

+i

. Note

that this implies ` > 0. Sine  =2 t

+i

, there is an interval of the form

(y; x

i+1

) suh that y

0

6j=

V

0

 for all y

0

2 (y; x

i+1

). Take suh a y

0

. Sine

w j=

V

0

�

[0;1℄

F

 , it follows by de�nition of x

0

; : : : ; x

n

'

that y

0

j=

V

0

�

[0;1℄

F

 .

Then there is a v

0

2 y

0

+ [0; 1℄ suh that v

0

j=

V

0

 and v

0

� x

i+1

. By def-

inition of x

0

; : : : ; x

n

'

, there is an i

0

suh that x

i

0

= x

i

+ 1. Consider only

the ase where v

0

2 (x

j

; x

j+1

) where j = i

0

; the other ases are straightfor-

ward. Note that there is no suh j > i

0

. For suppose otherwise, it holds

that x

i

+ 1 < x

j

< x

i+1

+ 1. By de�nition of x

0

; : : : ; x

n

'

, there is a j

0

suh

that x

j

0

= x

j

� 1. Thus x

i

< x

j

0

< x

i+1

; a ontradition. Therefore j = i

0

,

i.e., x

j

= x

i

+ 1. By de�nition of T

j

, there is an `

0

< j'j suh that t

j

`

0

2 T

j

and  2 t

j

`

0

. Then the indution hypothesis in (b) yields v

00

j=

V

 for all

v

00

2 (y

`

0

j

; y

`

0

+1

j

℄. Take suh a v

00

. Sine ` > 0 and �

j

�

�

i

j'j

by de�nition of

�

j

, it holds that y

`

i

+ 1 � x

j

+ �

j

. Then y

`

0

+1

j

� y

`

i

< 1 and thus v

00

�w < 1.

Hene w j=

V

�

[0;1℄

F

 .

{ v 2 (x

j

; x

j+1

) for some j > i. By de�nition of x

0

; : : : ; x

n

'

, there is an i

0

suh

that x

i

0

= x

i

+ 1. Consider only the ase where j = i

0

; the other ases are

straightforward. Note that there is no suh j > i

0

. For suppose otherwise, it

holds that x

i

+ 1 < x

j

< x

i+1

+ 1. By de�nition of x

0

; : : : ; x

n

'

, there is a j

0

suh that x

j

0

= x

j

� 1. Thus x

i

< x

j

0

< x

i+1

; a ontradition.

Distinguish three subases:

� ` = 0 and w

0

j=

V

0

 for some w

0

with x

i

< w

0

� x

j

. Then it is easy to

see that there is a v

00

� w suh that v

00

j=

V

 and v

00

� w � 1. Hene

w j=

V

�

[0;1℄

F

 .

� ` = 0 and w

0

6j=

V

0

 for all w

0

with x

i

< w

0

� x

j

. Sine w j=

V

0

�

[0;1℄

F

 ,

it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

with

x

i

< w

00

< w. Take suh a w

00

. Then there is a v

00

2 w

00

+ [0; 1℄ suh

that v

00

j=

V

0

 and v

00

> x

j

. This implies that  2 t

�j

= t

j

0

. Then the

indution hypothesis in (b) yields v

0

j=

V

 for all v

0

2 (y

0

j

; y

1

j

℄. Clearly,

there is suh a v

0

suh that w � v

0

� 1. Hene w j=

V

�

[0;1℄

F

 .
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� 1 � ` < j'j. By de�nition of T

j

, there is an `

0

< j'j suh that t

j

`

0

2 T

j

and  2 t

j

`

0

. The indution hypothesis in (b) yields v

0

j=

V

 for all

v

0

2 (y

`

0

j

; y

`

0

+1

j

℄. Take suh a v

0

. Sine �

j

�

�

i

j'j

by de�nition of �

j

, it

holds that y

`

i

+ 1 � x

j

+ �

j

and thus v

0

�w < 1. Hene w j=

V

�

[0;1℄

F

 .

() w 2 (y

j'j

i

; x

i+1

) and  2 t

+i

. This ase is similar to (b) and left to the reader.

❏

Using Lemma 8, one an now modify the deision proedure for satis�ability without

FVA to obtain a deision proedure running in nondeterministi polynomial time for

satis�ability with FVA. The ruial step is to determine a set of rational linear inequal-

ities whih represent the truth onditions in models of the form desribed in Lemma 8.

We leave this exerise to the reader.
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A ExpTime-ompleteness of RTCTL Reproved

We demonstrate the generality of the redution tehnique proposed in Setion 3 by

reproving the result of Emerson et al. that RTCTL, i.e., branhing-time logi CTL

extended with metri operators, is in ExpTime [4℄. A similar (but simpler) redution

an be used to show that the orresponding extension of linear-time logi LTL is in

PSpae. For the sake of ompleteness, we �rst introdue the syntax and semantis of

RTCTL.

De�nition 9 (RTCTL Syntax). Let p

0

; p

1

; : : : be a ountably in�nite set of propo-

sitional variables. RTCTL formulas are built aording to the syntax rule

' := p

i

j > j ? j :' j ' ^  j E' j E( 

U

') j A( 

U

') j E( 

U

�k

') j A( 

U

�k

')

where k denotes a natural number that is oded in binary. A CTL formula is an RTCTL

formulas that does not use the metri version of the until operator. �

The abbreviations !, and $ are de�ned as usual. Moreover, we abbreviate A' =

:E:' and A�' = :E(>

U

:').

A model M = hS;R;Vi is a triple onsisting of the set of states S, a binary relation

R � S � S, and a valuation V mapping every propositional variable p to a subset V(p)

of S. W.l.o.g., we assume that the graph ofM is a tree sine any model an be unwound

into a tree. Moreover, we assume that for every state, there is an R-suessor. Given

a state w 2 S, a w-fullpath is an in�nite sequene u

0

u

1

� � � 2 S

!

of states suh that

u

0

= w and (u

i

; u

i+1

) 2 R for all positions i � 0.

De�nition 10 (RTCTL Semantis). Let M = hS;R;Vi be a model. De�ne the

truth-relation \j=" of RTCTL indutively as follows: for all states w 2 S,

� M; w j= > and M; w 6j= ?;

� M; w j= p i� w 2 V(p) for all propositional variables p;

� M; w j= :' i� M; w 6j= ';

� M; w j=  ^ ' i� M; w j=  and M; w j= ';

� M; w j= E' i� there exists an R-suessor v of w suh that M; v j= ';

� M; w j= E( 

U

') i� there exists a w-fullpath u

0

u

1

� � � and a position i � 0 suh

that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i;

� M; w j= A( 

U

') i� for all w-fullpaths u

0

u

1

� � � , there is a position i � 0 suh

that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i.

� M; w j= E( 

U

�k

') i� there exists a w-fullpath u

0

u

1

� � � and a position i with

0 � i � k suh that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i;

� M; w j= A( 

U

�k

') i� for all w-fullpaths u

0

u

1

� � � , there is a position i with 0 �

i � k suh that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i.

�
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Our aim is to prove the following result:

Theorem 11. Satis�ability in RTCTL is ExpTime-omplete.

The lower bound is an immediate onsequene of the fat that CTL is a fragment of

RTCTL, and the former is ExpTime-hard. We prove a mathing upper bound by a

polynomial redution to satis�ability CTL, whih is known to be in ExpTime.

The redution is similar to the redution presented in Setion 3. In partiular, the

main idea is to replae subformulas E( 

U

�k

') and A( 

U

�k

') with a binary ounter

that is implemented using propositional variables to represent the bits. However, there

are also two signi�ant di�erenes: �rst, RTCTL is interpreted in disrete models, and

thus it is not neessary to onstrut a `grid' using variables x

i

and y

i

to measure the

distane `exatly one' as in the QTL redution. Seond, RTCTL models are not linear,

and therefore we annot simply inrement the value of a distane-measuring ounter

when going to a predeessor state. Instead, we have to inrement the least value or

greatest ounter value of suessor nodes, depending on whether we are simulating

a formula E( 

U

�k

') or A( 

U

�k

'). For identifying the least and greatest ounter

value among the suessors, we use a marking sheme based on additional propositional

variables. Before we desribe this marking in detail, let us �x some formalities.

Let ' be a RTCTL formula whose satis�ability is to be deided. As an upper bound

for the number of ounter bits needed, let n



= dlog

2

ke where k is one plus the largest

natural number ourring as a parameter to an until operator in '. For simpliity, we

assume w.l.o.g. that ' ontains at least one subformula of the form E( 

U

�k

') and at

least one subformula of the form A( 

U

�k

'). Now, let �

0

; : : : ; �

`

0

be an enumeration of

all subformulas of ' of the form E( 

U

�k

'

0

), and let �

`

0

+1

; : : : ; �

`

be an enumeration

of all subformulas of ' of the form A( 

U

�k

'

0

). If �

i

= Q( 

U

�k

'

0

) for some i � `,

we use  

i

to denote  and '

i

to denote '

0

. For the redution, we use the following

propositional variables:

� the bits of the i-th ounter, i � ` are represented using propositional variables 

j

,

with j < n



;

� to mark the bits of the i-th ounter, i � `, we use propositional variables m

j

, with

j < n



.

Intuitively, the marking sheme for �nding the greates ounter value among the sues-

sors an be understood as follows: start marking bits of the ounters in suessor nodes

by proeeding from the highest (n



� 1-st) to the lowest (0-th), using the following two

rules to mark a bit number i of a suessor s

0

of s:

1. if, in s

0

, all bits higher than i are marked and all suessors of s whose i+1-st bit

are marked agree on the value of the i-th bit, then mark the i-th bit of s

0

;

2. if, in s

0

, all bits higher than i are marked and the suessors of s whose i + 1-st

bit are marked do not agree on the value of the i-th bit, then mark the i-th bit of

s

0

i� it is one.
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The result of this marking is that only those suessors of s have all marking bits set

whose ounter value is highest among all the suessors of s. A orresponding marking

sheme for �nding the lowest value is obtained by hanging the last part of the seond

rule to \i� it is zero". The marking of the i-th ounter, i � `, an be implemented using

the following formula, where (i � `

0

) abbreviates > if i � `

0

and ? otherwise:

1

#

i

1

:=

^

t<n



(A

i

t

_A:

i

t

)! A(m

i

t

$

^

i<j<n



m

i

j

) ^

(E

i

t

^E:

i

t

^ (i � `

0

))! A(m

i

t

$ (:

i

t

^

^

i<j<n



m

i

j

))

(E

i

t

^E:

i

t

^ (i > `

0

))! A(m

i

t

$ (

i

t

^

^

i<j<n



m

i

j

))

We now indutively de�ne a translation (�)

�

of subformulas of ' to CTL formulas, where

the formula (C

i

� n) is de�ned as in Setion 3:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

(E )

�

:= E 

�

E( 

1

U

 

2

)

�

:= E( 

�

1

U

 

�

2

)

A( 

1

U

 

2

)

�

:= A( 

�

1

U

 

�

2

)

E( 

1

U

�k

 

2

)

�

:= (C

i

� k) if �

i

= E( 

1

U

�k

 

2

)

A( 

1

U

�k

 

2

)

�

:= (C

i

� k) if �

i

= A( 

1

U

�k

 

2

)

It remains to properly update the ounters, whih is done by the following formulas,

for i � `, where the formulas (C

i

� n) and (C

i

= n) are de�ned as in Setion 3:

#

i

2

:= (C

i

= 0)$ '

�

i

� := : 

�

i

_

((i � `

0

) ^A(C

i

= 2

n



� 1))_

((i > `

0

) ^E(C

i

= 2

n



� 1))

#

i

3

:= (:'

�

i

^ �)! (C

i

= 2

n



� 1))^

(:'

�

i

^ :�)!

�

_

t=0::n



�1

�



i

t

^E(m

i

t

^ :

i

t

) ^

^

`=0::t�1

(:

i

`

^E(m

i

`

^ 

i

`

))^

^

`=t+1::n



�1

(

i

`

$ E(m

i

`

^ 

i

`

))

�

�

Intuitively, #

i

2

initializes the ounter and #

i

3

, and #

i

3

ensures that the ounter when

is inremented orretly when travelling to a predeessor state. Similar to the QTL

redution, the ounter value C

i

= 2

n



� 1 is used to express that, on all (for �

i

being

1

Reall that �

0

; : : : ; �

`

0

are existentially path-quanti�ed while �

`

0

+1

; : : : ; �

`

are universally quanti�ed.
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existentially path-quanti�ed) resp. some (universal path quanti�ation) path, the for-

mula '

i

is too far to be of any relevane, or that  

i

does not hold on some point on the

way to the next '

i

ourrene.

Let #

i

be the onjuntion of #

i

1

to #

i

3

. It is left to the reader to prove the following

lemma, whih �nishes the redution:

Lemma 12. ' is satis�able i� '

�

^

^

i�`

A�(#

i

1

^ #

i

2

^ #

i

3

) is satis�able.
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