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Abstra
t

Often, the addition of metri
 operators to qualitative temporal logi
s leads to

an in
rease of the 
omplexity of satis�ability by at least one exponential. In this

paper, we exhibit a number of metri
 extensions of qualitative temporal logi
s of

the real line that do not lead to an in
rease in 
omputational 
omplexity. The

main result states that the language obtained by extending sin
e/until logi
 of the

real line with the operators `sometime within n time units', n 
oded in binary, is

PSpa
e-
omplete even without the �nite variability assumption. Without quali-

tative temporal operators the 
omplexity of this language turns out to depend on

whether binary or unary 
oding of parameters is assumed: it is still PSpa
e-hard

under binary 
oding but in NP under unary 
oding.

1 Introdu
tion

The extension of qualitative temporal logi
s (TLs) with metri
 operators has been stud-

ied for almost �fteen years [5, 4, 7℄. Of parti
ular interest are metri
 extensions of tem-

poral logi
s of the real line, sin
e the resulting quantitative TLs are an important tool

for the spe
i�
ation and veri�
ation of real-time systems [2℄. Unfortunately, moving

from qualitative to quantitative logi
s is often a

ompanied by an in
rease in 
omputa-

tional 
omplexity of the satis�ability problem. The most important example witnessing

this e�e
t is the PSpa
e-
omplete sin
e/until logi
 of the real line [6℄, whose extension

with a metri
 operator `sometime in at least n but not more than m time units' (n and

m 
oded in binary) be
omes ExpSpa
e-
omplete if the 
ase n = m is not admitted and

even unde
idable if it is [1, 3, 5℄.

It is well known that the 
omplexity of the metri
 temporal logi
 obtained by this

extension 
an be redu
ed to PSpa
e again by further restri
ting the values of n and m,

e.g., by enfor
ing that n = 0 [1℄. However, in 
ontrast to the ExpSpa
e-
ompleteness

and unde
idability results above, this improvement has only been proven under the

�nite variability assumption (FVA) whi
h states that no propositional variable 
hanges

its truth-value in�nitely many times in any �nite interval. While the FVA is a natural


ondition for various 
omputer s
ien
e appli
ations, we believe that there are at least two

reasons to 
onsider also the non-FVA 
ase: �rst, qualitative temporal logi
 originated in
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philosophy and mathemati
s to study time itself, rather than the behaviour of systems

with dis
rete state 
hanges as 
onsidered in 
omputer s
ien
e. If quantitative TL is used

for the former purpose, the FVA is less 
onvin
ing than in 
omputer s
ien
e appli
ations.

Se
ond, even in 
omputer s
ien
e reasoning without the FVA 
an be fruitfully employed:

assume that a formula ' of a quantitative TL des
ribes the spe
i�
ation of a real-

time system. Further assume that ' has been found to be unsatis�able under FVA,

indi
ating that the des
ribed spe
i�
ation is not realizable. If an additional satis�ability


he
k without FVA is made revealing that dropping FVA regains satis�ability of ',

then the user obtains additional information on the sour
e of the unrealizability of her

spe
i�
ation: namely that it enfor
es an in�nite number of state 
hanges in a �nite

interval.

The purpose of this paper is to investigate metri
 temporal logi
s of the real line

that are at most PSpa
e-
omplete. More pre
isely, we prove three results. Our �rst

and main result is that extending sin
e/until logi
 of the real line with metri
 operators

`sometime in at most n time units', n 
oded in binary, is PSpa
e-
omplete even without

FVA. To show this, we propose a new method for polynomially redu
ing satis�ability in

metri
 TLs whose numeri
al parameters are 
oded in binary to satis�ability in the same

logi
 with numbers 
oded in unary. The essen
e of the redu
tion is to introdu
e new

propositional variables that serve as the bits of a binary 
ounter measuring distan
es.

For the metri
 TL mentioned above, we obtain a PSpa
e upper bound sin
e Hirshfeld

and Rabinovi
h have shown that QTL, i.e., the same logi
 with numbers 
oded in unary,

is PSpa
e-
omplete without FVA [5℄. We also show that our proof method 
an also be

used for other logi
s su
h as a metri
 extensions of the bran
hing time logi
 CTL, thus

reproving the ExpTime-
ompleteness of metri
 CTL from [4℄.

Our se
ond result 
on
erns a sharpening of PSpa
e lower bounds for metri
 tempo-

ral logi
s of the real line. In the 
urrent literature, su
h logi
s usually 
ontain qualitita-

tive sin
e/until logi
 as a proper fragment, and thus trivially inherit PSpa
e-hardness

[2, 5, 6℄. We 
onsider metri
 TLs with weaker qualitative operators and show that

PSpa
e-hardness 
an already be observed in the following three 
ases: (i) a future

diamond and a future operator `sometime in at most n time units', n 
oded in unary;

(ii) only the future operator `sometime in at most n time units', n 
oded in binary (i.e.,

no qualitative operators at all); (iii) only a metri
 version of the until operator for the

interval [0; 1℄.

As a third result, we explore the transition from NP to PSpa
e. In parti
ular,

we show that the quantitative TL with only the metri
 operator `sometime within n

time units', n 
oded in unary, is NP-
omplete. This result extends the result of [9℄

that satis�ability of the qualitative TL with operators `eventually in the future' and

`eventually in the past' over the real line is de
idable in NP. When 
ompared with

result (ii) above, it also shows that the 
omplexity of metri
 TLs without qualitative

operators depends on the 
oding of numbers. To establish the NP upper bound, we

show that satis�ability of a formula ' 
an be de
ided by �rst `guessing' a system of

rational linear inequalities, and 
he
king whether this system has a solution over the

real (or, equivalently, rational) numbers.
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2 Preliminaries

We introdu
e the metri
 temporal language QTL of [5℄. It is 
losely related to the lan-

guage MITL of [1℄. Fix a 
ountably in�nite supply p

0

; p

1

; : : : of propositional variables.

A QTL-formula is built a

ording to the syntax rule

' := p j > j ? j :' j ' ^  j '

S

 j '

U

 j 'S

I

 j 'U

I

 

with p ranging over the propositional variables and I ranging over intervals of the

forms (0; n), (0; n℄, [0; n), and [0; n℄, where n > 0 is a natural number. The Boolean

operators _, !, and $ are de�ned as abbreviations in the usual way. Moreover, we

introdu
e additional future modalities as abbreviations �

I

F

' = >

U

I

', �

I

F

' = :�

I

F

:',

�

F

' = >

U

', and �

F

' = :�

F

:'.

Formulas of QTL are interpreted on the real line. Thus, a model M = hR;Vi is

a pair 
onsisting of the real numbers and a valuation V mapping every propositional

variable p to a set V(p) � R. The satisfa
tion relation `j=' is de�ned indu
tively as

follows, where we write w + I to denote the set fw + x j x 2 Ig for ea
h time point

w 2 R and interval I of one of the above forms; w � I is de�ned analogously.

M; w j= p i� w 2 V(p)

M; w j= > for all w 2 R

M; w j= ? for no w 2 R

M; w j= :' i� M; w 6j= '

M; w j= ' ^  i� M; w j= ' and M; w j=  

M; w j= '

U

 i� there exists u > w su
h that M; u j=  and M; v j= '

for all v su
h that w < v < u

M; w j= '

S

 i� there exists u < w su
h that M; u j=  and M; v j= '

for all v su
h that u < v < w

M; w j= '

U

I

 i� there exists u 2 w + I su
h that M; u j=  and M; v j= '

for all v su
h that w < v < u

M; w j= '

S

I

 i� there exists u 2 w � I su
h that M; u j=  and M; v j= '

for all v su
h that u < v < w.

We will also write w j=

V

' for hR;Vi; w j= '. A QTL-formula ' is satis�able if there

exists a model M and w 2 R su
h that M; w j= '. It is satis�able under the �nite

variability assumption (FVA) if it is satis�able in a model in whi
h no propositional

variable 
hanges its truth-value in�nitely many times in any �nite interval.

Our presentation of QTL deviates from that of [5℄, where only the metri
 operators

�

(0;1)

F

and �

(0;1)

P

are admitted. If the numeri
al parameters of the metri
 operators

are 
oded in unary, there exists an easy polynomial translation from Hirshfeld and

Rabinovi
h's version of QTL to ours and vi
e versa. However, in this paper we also


onsider binary 
oding of numbers. If we want to emphasize this fa
t, we shall write

QTL

b

instead of QTL, and likewise QTL

u

will denote unary 
oding of numbers.
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3 QTL

b

is PSpa
e-
omplete without FVA

The purpose of this se
tion is to prove that QTL

b

-satis�ability without FVA is de
idable

in PSpa
e. This result is already known for QTL

u

without FVA [5℄ and QTL

u

with

FVA [1℄. We �rst show that our result indeed improves upon the existing ones by

proving that QTL

b

is exponentially more su

in
t than QTL

u

.

Theorem 1. Let  be a QTL-formula with numbers 
oded in unary that is equivalent

to �

[0;n℄

F

p. Then  has length at least n.

Proof. Suppose by 
ontradi
tion that there exists a QTL-formula  with numbers


oded in unary su
h that  is equivalent to �

[0;n℄

F

p, for some n � 1, and the length of

 is stri
tly smaller than n. We may assume that  
ontains no other propositional

letters than p: otherwise, just repla
e them with >. Then, for n � 1, set V

n

(p) :=

[�n; n℄ and M

n

:= hR;V

n

i. Then M

n

; 0 j= �

[0;n℄

F

p. Therefore, M

n

; 0 j=  . Now, it

is straightforward to prove the following by indu
tion: for every subformula � of  of

length � k and all x � k su
h that n� x � �n+ k:

M; (n� k) j= � i� M

n

; (n� x) j= �:

Sin
e the length of  is smaller than n, it follows that, inM

n

, the points 0 and 1 satisfy

the same subformulas of  . In parti
ular, M

n

; 1 j=  . We have derived a 
ontradi
tion

sin
e M

n

; 1 6j= �

[0;n℄

F

p. ❏

We now establish the main result of this paper.

Theorem 2. Satis�ability in QTL with numbers 
oded in binary is PSpa
e-
omplete

without FVA.

Sin
e (qualitative) sin
e/until logi
 on the real line is PSpa
e-hard [6℄, it suÆ
es to

prove the upper bound. For simpli
ity, we prove the upper bound for the future fragment

of QTL, i.e., we omit past operators. The proofs are easily extended to the general 
ase.

Within the future fragment, we 
onsider only the metri
 operators �

(0;1)

F

, �

(0;1℄

F

, �

[0;1)

F

,

and �

[0;n℄

F

. This 
an be done w.l.o.g. due to the following observations:

First, satis�ability in QTL

b


an be redu
ed to satis�ability in QTL

b

without the

metri
 operators  

1

U

I

 

2

: to de
ide satis�ability of a QTL

b

formula ', introdu
e a

new propositional variable p

 

2

for every  

2

whi
h o

urs in a subformula of the form

 

1

U

I

 

2

of '. For any subformula � of ', we use �

p

to denote the result of repla
ing all

outermost subformulas  

1

U

I

 

2

of � by  

1

U

p

 

2

^ �

I

F

p

 

2

. Set �

+

F

 =  ^�

F

 . Then

' is satis�able i�

'

p

^�

+

F

h

^

 

1

U

I

 

2

2sub(')

(p

 

2

$  

p

2

)

i

is satis�able and the length of the latter formula is polynomial in the length of '. Se
ond,

for any interval I of the form (0; n), (0; n℄, or [0; n), �

I

F

' is equivalent to �

(0;1)

F

�

J

F

',

where J is obtained from I by de
rementing the upper interval bound from n to n� 1.

4



In the following, we redu
e satis�ability of QTL

b

-formulas to the satis�ability of

QTL

1

-formula, i.e., QTL-formulas in whi
h all upper interval bounds have value 1. As

the 
oding of numbers is not an issue in the latter logi
, we obtain a PSpa
e upper

bound from the result of [5℄ that QTL

u

satis�ability in models without FVA is de
idable

in PSpa
e.

Let ' be a QTL-formula meeting the restri
tions laid out above. Let k be the

greatest number o

urring as a parameter to a metri
 operator in ', n




= dlog

2

(k+2)e,

and �

1

; : : : ; �

`

the subformulas of ' that o

ur as an argument to a metri
 operator of

the form �

[0;n℄

F

with n > 1. We reserve, for 1 � i � `, fresh propositional variables x

i

, y

i

,

and 


i

n




�1

; : : : ; 


i

0

that do not o

ur in '. The sequen
es 


i

n




�1

; : : : ; 


i

0

of propositional

variables will be used to implement binary 
ounters, one for ea
h �

i

. Intuitively, these


ounters measure the distan
e to the \nearest" future o

urren
e of the formula �

i

,

rounded up to the next largest natural number. A 
ounter value greater than or equal

to k+ 1 is a spe
ial 
ase indi
ating that the nearest o

urren
e is too far away to be of

any relevan
e. The variables x

i

and y

i

will serve as markers with the following meaning:

x

i

holds in a point i� there is a natural number n su
h that �

�

i

holds at distan
e n,

but not in between; similarly, y

i

holds i� there is a natural number n su
h that �

�

i

does

not hold at any distan
e up to (and in
luding) n, but �

�

i

holds at future points that


onverge from the right to the future point with distan
e n. In the following, we 
all

the stru
ture imposed on the real line by the markers x

i

and y

i

the (one-dimensional)

`grid'.

To implement the 
ounters, we introdu
e auxiliary formulas. For 1 � i � `, let

� (C

i

= m) be a formula saying that, at the 
urrent point, the value of the i-th


ounter is m, for 0 � m < 2

n




. There are exponentially many su
h formulas, but

we will use only polynomially many of them in the redu
tion.

� (C

i

� m) is a formula saying that, at the 
urrent point, the value of the i-th


ounter does not ex
eed m, for 0 � m < 2

n




.

� 
' := :(x

i

_ y

i

)

U

((x

i

_ y

i

) ^ ') says that, at the next grid point, ' is satis�ed.

To deal with e�e
ts of 
onvergen
e, it is 
onvenient to introdu
e an additional abbrevi-

ation. The formula r
( ) :=

�

:(: 

U

>) ^ : 

�

des
ribes 
onvergen
e of  -points from

the right against a point where  does not hold. We now indu
tively de�ne a translation

of QTL

b

-formulas to QTL

1

-formulas:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

( 

1

U

 

2

)

�

:=  

�

1

U

 

�

2

(�

I

F

 )

�

:= �

I

F

 

�

(�

[0;n℄

F

�

i

)

�

:= (C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

Here, I ranges over intervals (0; 1℄, (0; 1), and [0; 1). It remains to enfor
e the existen
e

of the grid and the behavior of the 
ounters as des
ribed above. This is done with the
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following auxiliary formulas, for 1 � i � `:

#

i

1

:= (C

i

= 0)$

�

�

�

i

_ r
(�

�

i

)

�

#

i

2

:= x

i

$

h

�

�

i

_

�

�

(0;1)

F

(:�

�

i

^ :x

i

^ :y

i

) ^ �

(0;1℄

F

x

i

^ �

F

�

�

i

�

i

#

i

3

:= y

i

$

h

r
(�

�

i

) _

�

�

(0;1)

F

(:�

�

i

^ :x

i

^ :y

i

) ^ �

(0;1℄

F

y

i

^ �

F

r
(�

�

i

)

�

i

#

i

4

:= :(C

i

= 0) ^ �

(0;1℄

F

(x

i

_ y

i

)!

�

_

t=0::n




�1

�




i

t

^
:


i

t

^

^

`=0::t�1

(:


i

`

^



i

`

) ^

^

`=t+1::n




�1

(


i

`

$



i

`

)

�

_

^

`=0::n




�1

(


i

`

^



i

`

)

�

#

i

5

:= :�

[0;1)

F

(x

i

_ y

i

)! (C

i

= 2

n




� 1)

Intuitively, #

i

1

initializes the 
ounter, #

i

2

and #

i

3

ensure that x

i

and y

i

behave as des
ribed

above, #

i

4

in
rements the 
ounter when travelling to the left, and #

i

5

ensures that, when

travelling left, the 
ounter stays in maximal value after the last o

urren
e of �

�

i

. Let

#

i

be the 
onjun
tion of #

i

1

to #

i

5

. The following �nishes the redu
tion.

Lemma 3. ' is satis�able i� �

F

(#

1

^ � � � ^ #

`

) ^ '

�

is satis�able.

Proof. \(": Let V be a valuation and w 2 R su
h that w j=

V

�

F

(#

1

^ � � � ^ #

`

) ^'

�

.

We show, by indu
tion, for all v 2 R and all subformulas � of ':

v j=

V

� i� v j=

V

�

�

(y)

Clearly, w j=

V

' follows. The 
ases for propositional variables, :, ^,

U

, and �

I

F

, where

I ranges over intervals (0; 1), (0; 1℄, and [0; 1), are trivial and omitted here. Consider

the remaining 
ase � = �

[0;n℄

F

�

i

.

For the dire
tion from right to left, suppose

v j=

V

(�

[0;n℄

F

�

i

)

�

= (C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

:

We take a time point u 2 R and distinguish two 
ases:

(i) v j=

V

x

i

_ y

i

. Set u = v.

(ii) v 6j=

V

x

i

_ y

i

. Let u 2 v + (0; 1) be minimal su
h that u j=

V

x

i

_ y

i

.

Note that, in (ii), the required u exists: by de�nition of n




, we have n < 2

n




�1 and thus

v j=

V

(�

[0;n℄

F

�

i

)

�

implies v j=

V

�

[0;1)

F

(x

i

_ y

i

) by #

i

5

. Hen
e, there exists u 2 v + (0; 1)

su
h that u j=

V

x

i

_ y

i

. By #

i

2

and #

i

3

, there exists a minimal su
h u. For m � 1, let




m

denote the natural number su
h that u+m j=

V

(C

i

= 


m

). Our aim is to show that

one of the following holds:

(a) u+ 


0

j=

V

�

�

i

and u j=

V

x

i

;
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(b) u+ 


0

j=

V

r
(�

�

i

) and u j=

V

y

i

;

For suppose that this has been shown. Then we obtain v j=

V

�

[0;n℄

F

�

�

i

, whi
h 
an be seen

by distinguishing the following four sub
ases, and thus get v j=

V

�

[0;n℄

F

�

i

by indu
tion

hypothesis as desired.

� Cases (i) and (a). Sin
e v j=

V

(�

[0;n℄

F

�

i

)

�

and v = u, we have 


0

� n. Thus,

u+ 


0

j=

V

�

�

i

yields v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (i) and (b). Then u + 


0

j=

V

r
(�

�

i

) implies that we 
an �nd a time point

v

0

2 u + (


0

; 


0

+ 1) su
h that v

0

j=

V

�

�

i

. Sin
e v j=

V

(�

[0;n℄

F

�

i

)

�

, v = u, and

u j=

V

y

i

, we have 


0

< n. Thus, v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (ii) and (a). Sin
e v 6j=

V

x

i

_ y

i

, #

i

1

to #

i

3

yield that v j=

V

:(C

i

= 0). By

the existen
e of u and by #

i

4

, this yields v j=

V

(C

i

= 


0

+ 1), and thus 


0

< n.

Thus u+ 


0

j=

V

�

�

i

and the 
hoi
e of u yield v j=

V

�

[0;n℄

F

�

�

i

.

� Cases (ii) and (b). Then (b) u + 


0

j=

V

r
(�

�

i

) implies that we 
an �nd a v

0

2

u + (


0

; 


0

+ (u � v)) su
h that v

0

j=

V

�

�

i

. As in the third sub
ase, we 
an show

that 


0

< n. Thus v

0

j=

V

�

�

i

and the 
hoi
e of u and v

0

yield v j=

V

�

[0;n℄

F

�

�

i

.

It thus remains to show that one of (a) and (b) holds. To this end, we show by indu
tion

on m that, for m � 


0

, we have

1. u+m j=

V

x

i

_ y

i

;

2. 


m

= 


0

�m;

3. v

0

6j=

V

�

�

i

_ r
(�

�

i

) for all v

0

2 [u+m;u+m+ 1), if m < 


0

;

First for the indu
tion start: Point 1 holds by 
hoi
e of u and Point 2 is trivial. For

Point 3, assume that m � 


0

. First assume that u j=

V

�

�

i

_ r
(�

�

i

). This implies 


0

= 0

by #

i

1

and thus we have a 
ontradi
tion. It thus remains to show that v

0

j=

V

�

�

i

_r
(�

�

i

)

for all v

0

2 (u; u+1). This is an immediate 
onsequen
e of #

i

2

and #

i

3

together with the

fa
ts that u j= x

i

_ y

i

and u 6j=

V

�

�

i

_ r
(�

�

i

). For the indu
tion step, let m < 


0

:

� Point 1. By indu
tion, u +m j=

V

x

i

_ y

i

and u +m 6j=

V

�

�

i

_ r
(�

�

i

). Thus, we

have u+m+ 1 j=

V

x

1

_ y

i

by #

i

2

and #

i

3

;

� Point 2. By indu
tion, we have 


m

= 


0

�m implying u+m j=

V

:(C

i

= 0). Sin
e

Point 1 additionally gives us u+m+ 1 j=

V

x

1

_ y

i

, #

i

4

yields 


m

= 


m+1

+ 1 and

from Point 2 of the indu
tion hypothesis we obtain 


m+1

= 


0

� (m+ 1).

� Point 3. Assume m + 1 < 


0

. Point 2 gives us 


m+1

= 


0

� (m + 1). We thus

have u +m + 1 j=

V

:(C

i

= 0). Thus, #

i

1

implies u +m 6j=

V

�

�

i

_ r
(�

�

i

). It thus

remains to show that v

0

j=

V

�

�

i

_ r
(�

�

i

) for all v

0

2 (u+m;u+m+1). This is an

immediate 
onsequen
e of #

i

2

and #

i

3

together with the fa
ts that u j= x

i

_ y

i

by

Point 1 and u+m 6j=

V

�

�

i

_ r
(�

�

i

).
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In parti
ular, we have shown that u + 


0

j=

V

(C

i

= 0). Thus, u + 


0

j=

V

�

�

i

_ r
(�

�

i

)

by #

i

1

. We have two sub-
ases: �rst, u + 


0

j=

V

�

�

i

. By #

i

2

, we have u +m j=

V

x

i

for

all m � 


0

, and thus Case (a) from above holds. The se
ond 
ase is u+ 


0

j=

V

r
(�

�

i

).

Then #

i

3

yields u+m j=

V

y

i

for all m � 


0

and Case (b) from above holds.

For the dire
tion from left to right of (y), suppose v j=

V

�

[0;n℄

F

�

i

. By the semanti
s,

there is an u 2 w + [0; n℄ su
h that u j=

V

�

i

. If there is a smallest su
h position u,

then (a) take u to be the smallest one, otherwise (b) take u to be the smallest position

su
h that u j=

V

r
(�

i

). The indu
tion hypothesis yields that (a) u j=

V

�

�

i

, or (b)

u j=

V

r
(�

�

i

). Then u j=

V

(C

i

= 0) by #

i

1

. Together with v

0

6j=

V

�

�

i

for ea
h v

0

2 (v; u),

it follows from #

i

2

and #

i

3

that v

00

j=

V

x

i

_ y

i

for all v

00

su
h that v

00

= u � j for some

natural number j � u� v. Then #

i

4

yields v

0

j=

V

(C

i

= j) for all j 2 N with j � u� v

and ea
h v

0

2 [u� j; u� j+1). Sin
e u was 
hosen su
h that u 2 v+[0; n℄, in parti
ular

we obtain that w j=

V

(C

i

� n). To show that v j=

V

(C

i

� n� 1) _

�

(C

i

= n) ^ :y

i

�

, is

thus remains to prove that v j=

V

(C

i

= n) implies v 6j=

V

y

i

. Suppose v j=

V

(C

i

= n).

In Case (a), v 6j=

V

y

i

by #

i

3

. Consider Case (b) and assume to the 
ontrary of what is

to be shown that v j=

V

y

i

. By #

i

3

, it then follows that u � v = n. But then, v

0

6j=

V

�

i

for all v

0

2 v + [0; n℄ 
ontradi
ting the assumption that v j=

V

�

[0;n℄

F

�

i

.

\)": Suppose ' is satis�able, i.e., there is a valuation V and a w 2 R su
h that

w j=

V

'. For ea
h v 2 R and 1 � i � `, let v

�

i

denote

� the smallest time point su
h that v � v

�

i

and v j=

V

�

i

_ r
(�

i

) if su
h a time

point exists;

� v + 2

n




� 1 otherwise.

If v

�

i

j= �

i

, we say that v is �

i

-exa
t ; if v

�

i

j= r
(�

i

), we say that v is �

i

-
onvergent.

We extend V to the additional propositional letters x

i

, y

i

, and 


i

t

used in '

�

as follows:

(1) v 2 V(x

i

) i� v

�

i

� v is an integer and v is �

i

-exa
t;

(2) u 2 V(y

i

) i� v

�

i

� v is an integer and v is �

i

-
onvergent;

(3) u 2 V(


i

t

) i� the t-th bit of the number v

�

i

� v is one or this number ex
eeds the

value 2

n




� 2.

It is not hard to verify that w j=

V

�

F

(#

1

^ � � � ^ #

`

). To show that w j=

V

'

�

, the

following 
an be proved by stru
tural indu
tion:

w j=

V

' i� w j=

V

'

�

Details are left to the reader. ❏
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4 From NP to PSpa
e

Qualitative sin
e/until logi
 on the real line is PSpa
e-
omplete, and thus not 
omputa-

tionally simpler than QTL

b

. However, several natural fragments are only NP-
omplete,

an important example being the qualitative TL with temporal operators `eventually in

the future' and `eventually in the past' [9℄. In this se
tion, we explore the transition

from NP to PSpa
e for fragments of quantitative logi
s of the real line, i.e., for QTL

and it's fragments. We start with determining several weak, but still PSpa
e-hard

fragments of QTL. Observe that two of the fragments are purely quantitative, i.e., they

do not admit qualitative temporal operators at all.

Theorem 4. Satis�ability (with and without FVA) is PSpa
e-hard for the fragments

of QTL whose only temporal operators are:

(i) �

F

and �

[0;n℄

F

with n > 0 
oded in unary;

(ii) �

[0;n℄

F

with n > 0 is 
oded in binary;

(iii)

U

[0;1℄

.

Proof. The proof is only sket
hed here, details are easily �lled in. First for Point (i) of

Theorem 4, we redu
e satis�ability in qualitative TL on the natural numbers with the

only temporal operators
 and �

F

, where �

F

is not stri
t, i.e., �

F

' is equivalent to the

QTL formula '_�

F

'. This logi
 is known to be PSpa
e-hard [8℄. Let ' be a formula

of this logi
, and a a propositional variable that does not o

ur in '. The main idea of

the redu
tion is to 
onstru
t a dis
rete model on the real line by alternating intervals

making a true and intervals making :a true, with the former representing the time

points of dis
rete time. This stru
ture is enfor
ed su
h that the length of the a-intervals

is from the interval [2; 3), the length of the :a-intervals is from [7; 8), and the length of

an a-interval together with the subsequent :a interval is from (9; 10). This is done by

the formula # = #

1

^ #

2

^ #

3

:

#

1

= �

[0;2℄

F

a;

#

2

= �

F

(a! �

[0;3℄

F

�

[0;7℄

F

:a);

#

3

= �

F

(a! �

[0;10℄

F

�

[0;2℄

F

a):

Indu
tively de�ne a translation (�) as follows:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

(
 )

�

:= �

[0;3℄

F

�

�

[0;7℄

F

:a ^ �

[0;8℄

F

( 

�

^ a)

�

(�

F

 )

�

:= �

F

( 

�

^ a)

Additionally, a formula #

0

is needed to take 
are of uniformity, i.e., to make sure that

the same propositional variables hold in all points of an interval that makes a true:

#

0

= �

F

^

p used in '

��

p ^ a! �

[0;3℄

F

(a! p)

�

^

�

:p ^ a! �

[0;3℄

F

(a! :p)

��

:
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Then ' is satis�able i� '

�

^ # ^ #

0

^ a is.

For Point (ii) of Theorem 4, we redu
e the word problem of a deterministi
 Turing

ma
hineM that solves a PSpa
e-hard problem and for whi
h there exists a polynomial

p su
h that M 's spa
e 
onsumption on input w 2 �

�

is bounded by p(w) and M 's time


onsumption on w is bounded by 2

p(w)

. The general idea is to use a sequen
e of a

intervals and :a intervals as in the previous relation, with ea
h a interval representing

one 
on�guration of the Turing ma
hine 
omputation. Let w = a

0

� � � a

n�1

be an input

to M . In the redu
tion, we use the following propositional variables:

� all states q of M are used as propositional variables;

� to des
ribe the state ins
ription, we �x a variable s

i

for ea
h alphabet symbol s

and ea
h tape position i 2 f0; : : : ; p(w)g;

� the head position is denoted using propositional variables h

0

; : : : ; h

p(n)

.

We �rst state that the head position, tape ins
ription, and state are uniquely des
ribed:

�

1

:=

_

1�i�p(n)

�

h

i

^

^

1�j�p(n)

j 6=i

:h

j

�

^

^

1�i�p(n)

_

s2�

�

s

i

^

^

t2�

s 6=t

:t

i

�

^

_

q2Q

�

q ^

^

q

0

2Q

q

0

6=q

:q

0

�

:

We also need to formalize the transition relation � of M , whi
h we assume to be given

as a set of quintuples (s; q; s

0

; d; q

0

) with d 2 fL;Rg:

�

2

:=

^

(s;q;t;d;q

0

)2�

^

i�p(n)

�

(q ^ h

i

)!

�


(t

i

^ q

0

^

�

(d = L)!
h

i�1

�

^

�

(d = R)!
h

i+1

� �

�

^

i�p(n)

�

:h

i

!

^

s2�

(s

i

!
s

i

)

�

where 
' abbreviates the formula (
')

�

as introdu
ed in the proof of (i). It remains

to des
ribe the initial 
on�guration. Re
all that the input is w = a

0

� � � a

n�1

, let q

0

the

initial state and 6 b denote the blank symbol.

�

3

:= h

0

^ q

0

^ a

0

0

^ � � � ^ a

n�1

n�1

^

^

n�i�p(n)

6 b

i

Take # and #

0

from (i) with ' in #

0

denoting �

1

^�

2

^�

3

, repla
e �

F

by �

[0;2

p(n)

℄

F

, and

denote the result by � and �

0

, respe
tively. It is readily 
he
ked that M a

epts w i�

the following formula is satis�able, where F denotes the set of �nal states of M :

�

3

^�

[0;2

p(n)

℄

F

(�

1

^ �

2

) ^ �

[0;2

p(n)

℄

F

_

q2F

q:

For Point (iii) of Theorem 4, we redu
e satis�ability in QTL

U

, the QTL-fragment

with only temporal operator

U

, whi
h is known to be PSpa
e-hard without FVA [6℄.
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The idea of the redu
tion is to embed the whole real line into the interval (0; 1): given

a formula ' of QTL

U

, �x a fresh propositional variable a that does not o

ur in '.

De�ne a translation (�)

�

that re
ursively repla
es every subformula of the form '

U

 

with '

U

[0;1℄

(a ^  ). Then ' is satis�able i� '

�

^ a ^

�

a

U

[0;1℄

(�

[0;1℄

F

:a)

�

is. For the

FVA 
ase, we note that that the PSpa
e-hardness proof for QTL

U

does not depend on

variables 
hanging their value an in�nite number of times in (i) any �nite interval, and

(ii) in any in�nite interval. By (i), QTL

U

is PSpa
e-hard also with FVA, and by (ii)

we 
an use the same redu
tion as in the non-FVA 
ase. ❏

We now exhibit a purely quantitative temporal logi
 of the real line for whi
h satis�-

ability is NP-
omplete: the fragment of QTL with only the quantitative diamond and

numbers 
oded in unary, with and without FVA. This logi
 may appear rather weak

sin
e it does not allow to make statements about all time points. Still, it is useful for

reasoning about the behaviour of systems up to a previously �xed time point. Note that

our NP-
ompleteness result shows that Points (i) and (ii) of Theorem 4 are optimal in

the following sense: in Point (i) we 
annot drop �

F

, and in Point (ii) we 
annot swit
h

to unary 
oding.

Theorem 5. In the fragment of QTL with temporal operators �

I

F

and �

I

P

, I of the

form (0; n), [0; n), [0; n℄, or (0; n℄, and n > 0 
oded in unary, satis�ability is de
idable

in NP, both, with and without FVA.

The lower bound is immediate from propositional logi
 and thus we only have to prove

the upper bound. Sin
e numbers are 
oded in unary, we may restri
t our attention to

temporal operators whose upper interval bound is 1. In the proof, we only 
onsider

the temporal operator �

[0;1℄

F

. An extension to past operators and open intervals is

straightforward.

Let ' be a formula whose satis�ability is to be de
ided. We introdu
e some 
on-

venient abbreviations: m

'

denotes the nesting depth of operators �

I

F

in ' (hen
eforth

diamond depth), n

'

= 2j'j

3

+ j'j

2

, and r

'

= j'j � n

'

. Denote by 
l(') the 
losure of

the set of subformulas of ' under single negation. A type t for ' is a subset of 
l(')

su
h that (i) : 2 t i�  62 t for ea
h : 2 
l('), and (ii)  

1

^  

2

2 t i�  

1

;  

2

2 t for

ea
h  

1

^  

2

2 
l('). For a model hR;Vi and w 2 R, set

t(w) = f 2 
l(') j w j=

V

 g;

t

<

(w) = f�

I

F

 2 
l(') j w j=

V

�

I

F

 g:

Noti
e that t(w) is a type for '. First, we devise an algorithm for satis�ability without

FVA. To begin with, we show that satis�ability of ' implies satis�ability of ' in a

`homogeneous' model. In parti
ular, in su
h models the number of realized types is

polynomial in the length of '.

Lemma 6. Let ' be satis�able without FVA. Then there is a sequen
e x

0

; : : : ; x

n

'

in

R su
h that 0 = x

0

< x

1

< � � � < x

n

'

= m

'

; and a valuation V su
h that hR;Vi; 0 j= '

and

� jft(w) j 0 � w � m

'

gj � r

'

;
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� for every n with 0 � n < n

'

and ea
h type t for ', the set fw 2 R j x

n

< w <

x

n+1

and w j=

V

tg is either empty or dense in the interval (x

n

; x

n+1

).

Proof. Consider a model M = hR;V

0

i with M; 0 j= '. By the semanti
s, we 
learly

have the following:

(�) for any �

I

F

 2 sub('), the set fw 2 R j 0 � w � m

'

and w j=

V

0

�

I

F

 g is a union

of intervals of length at least 1 and at most two intervals of length smaller than 1.

The two possibly shorter intervals are the one starting at 0 and the one ending at m

'

.

Using (�), we 
an show that there is a sequen
e y

0

; : : : ; y

k

in R for some k � 2j'j

2

+ j'j

su
h that

� 0 = y

0

< � � � < y

k

= m

'

and

� t

<

(w) = t

<

(w

0

) whenever y

i

< w < w

0

< y

i+1

for any i < k.

To see this, take a formula �

I

F

 2 sub('). The toggle points for �

I

F

 in the interval

[0;m

'

℄ are those points x su
h that either (i) there is a y > x su
h that the truth value

of �

I

F

 at x is di�erent from the truth value of �

I

F

 at all points z with x < z < y or

(ii) there is a y < x su
h that the truth value of �

I

F

 at x is di�erent from the truth value

of �

I

F

 at all points z with y < z < x. By (�), there are at most 2 �m

'

+1 < 2 � j'j+1

toggle points for ea
h formula �

I

F

 , and thus at most 2j'j

2

+j'j toggle points altogether.

These points form the required sequen
e y

0

; : : : ; y

k

.

We 
onvert this sequen
e into the desired sequen
e x

0

; : : : ; x

n

'

by arranging the

elements of the set

fy

0

; : : : ; y

k

g [

[

i<k

1�j<m

'

fy

i

+ j j y

i

+ j < m

'

g

in as
ending order a

ording to `<', possibly introdu
ing (arbitrary) intermediate points

to obtain a sequen
e of length n

'

+ 1.

To obtain a valuation V as required by the lemma, �x a set T

i

of types for ea
h

i < n

'

as follows: for ea
h �

I

F

 2 sub('), 
hoose a w 2 (x

i

; x

i+1

) with  2 t(w) if su
h

a w exists. Then, T

i

is the set of types t(w) of all points w 
hosen in this way. Clearly

jT

i

j � j'j. For ea
h i < n

'

, take a 
olle
tion (X

i

t

)

t2T

i

, of subsets of (x

i

; x

i+1

) whi
h

form a partitioning of (x

i

; x

i+1

) su
h that ea
h X

i

t

is dense in (x

i

; x

i+1

). Now de�ne a

valuation V by setting, for every propositional variable p,

V(p) := (V

0

(p) \ fx

0

; : : : ; x

n

'

g) [

[

i<n

'

;t2T

i

fX

i

t

j p 2 tg:

Let t

i

, i � n

'

, be the type f 2 sub(') j x

i

j=

V

0

 g for ' realized in point x

i

of the

original model M. To show that V is as required, it is suÆ
ient to show that, for ea
h

k � m

'

, ea
h  2 sub(') with diamond depth bounded by k, and ea
h w 2 [0;m

'

� k℄,

we have

w j=

V

 i� there is an i � n

'

su
h that

(a) w = x

i

and  2 t

i

; or

(b) w 2 X

i

t

and  2 t for some t 2 T

i

:
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Proof. Let k,  , and w be as above. The proof is by indu
tion on the stru
ture of  .

The 
ases for propositional variables, :, and ^ are left to the reader. Consider the 
ase

for �

[0;1℄

F

.

\)": Suppose w j=

V

�

[0;1℄

F

 . Then there is a w

0

2 w + [0; 1℄ su
h that w

0

j=

V

 by the

semanti
s. Distinguish four 
ases:

� w = x

i

for some i < n

'

and w

0

= x

j

for some j � i. The indu
tion hypothesis in

(a) yields  2 t

j

. Then x

j

j=

V

0

 . Sin
e x

j

� x

i

� 1, it follows by the semanti
s

that x

i

j=

V

0

�

[0;1℄

F

 . Hen
e �

[0;1℄

F

 2 t

i

.

� w = x

i

for some i < n

'

and w

0

2 X

j

t

for some j � i and t 2 T

j

. The indu
tion

hypothesis in (b) yields  2 t. Then, by de�nition of T

j

, there is a w

00

2 (x

j

; x

j+1

)

su
h that w

00

j=

V

0

 . Note that there is an i

0

with i < i

0

� n

'

su
h that x

i

0

= x

i

+1.

But then x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� x

i

> 1 
ontradi
ting

w

0

2 w+ [0; 1℄. This implies that w

00

�w < 1 and w j=

V

0

�

[0;1℄

F

 by the semanti
s.

Hen
e �

[0;1℄

F

 2 t

i

.

� w 2 X

i

t

for some i < n

'

and t 2 T

i

, and w

0

= x

j

for some j > i. By (a), the indu
-

tion hypothesis yields  2 t

j

. Then x

j

j=

V

0

 . Sin
e x

j

�w � 1, it follows by the

semanti
s that w j=

V

0

�

[0;1℄

F

 . But then by de�nition of the sequen
e x

0

; : : : ; x

n

'

,

it holds that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any

t

0

2 T

i

. Hen
e �

[0;1℄

F

 2 t.

� w 2 X

i

t

for some i < n

'

and t 2 T

i

, and w

0

2 X

j

t

for some j � i and t

0

2 T

j

.

The indu
tion hypothesis in (b) yields  2 t

0

. Then by de�nition of T

j

, there is a

w

00

2 (x

j

; x

j+1

) su
h that w

00

j=

V

0

 . Note that there is an i

0

with i < i

0

� n

'

su
h

that x

i

0

= x

i+1

+ 1. But then x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� w > 1


ontradi
ting w

0

2 w+ [0; 1℄. Thus, there is a v 2 (x

i

; x

i+1

) su
h that w

00

� v � 1.

It follows by the semanti
s that v j=

V

0

�

[0;1℄

F

 . But then by de�nition of the

sequen
e x

0

; : : : ; x

n

'

, it holds that v

0

j=

V

0

�

[0;1℄

F

 for all v

0

2 (x

i

; x

i+1

). Therefore,

�

[0;1℄

F

 2 t

00

for any t

00

2 T

i

. Hen
e �

[0;1℄

F

 2 t.

\(": Let i � n

'

su
h that

(a) w = x

i

and �

[0;1℄

F

 2 t

i

. Then x

i

j=

V

0

�

[0;1℄

F

 . By the semanti
s, there is a

w

0

2 x

i

+ [0; 1℄ su
h that w

0

j=

V

0

 . Distinguish two 
ases:

{ w

0

= x

j

for some j � i. Then  2 t

j

. The indu
tion hypothesis in (a) yields

w

0

j=

V

 . Sin
e w

0

� x

i

� 1, it follows by the semanti
s that x

i

j=

V

�

[0;1℄

F

 .

{ w

0

2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is a t 2 T

j

su
h that

 2 t. The indu
tion hypothesis in (b) yields w

00

j=

V

 for any w

00

2 X

j

t

.

Sin
e X

j

t

is dense in (x

j

; x

j+1

), there is su
h a w

00

su
h that w

00

� w

0

. Then

w

00

� x

i

� 1. Hen
e, x

i

j=

V

�

[0;1℄

F

 by the semanti
s.
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(b) w 2 X

i

t

and �

[0;1℄

F

 2 t for some t 2 T

i

. By de�nition of T

i

, there is a w

0

2

(x

i

; x

i+1

) su
h that w

0

j=

V

0

�

[0;1℄

F

 . Then it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for any w

00

2 (x

i

; x

i+1

). In parti
ular, w j=

V

0

�

[0;1℄

F

 . Then

v j=

V

0

 for some v 2 w + [0; 1℄ by the semanti
s. Distinguish two 
ases:

{ v = x

j

for some j > i. Then  2 t

j

. The indu
tion hypothesis in (a) yields

x

j

j=

V

 . Sin
e x

j

� w � 1, it follows by the semanti
s that w j=

V

�

[0;1℄

F

 .

{ v 2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is a t 2 T

j

su
h that

 2 t. The indu
tion hypothesis in (b) yields v

0

j=

V

 for any v

0

2 X

j

t

. Take

a v

0

2 X

j

t

su
h that v

0

� v if j > i, and v

0

� v otherwise. Su
h a v

0

exists

sin
e X

j

t

is dense in (x

j

; x

j+1

). Then, v

0

� w � 1. Hen
e w j=

V

�

[0;1℄

F

 .

❏

Lemma 6 suggests the following idea for de
iding in non-deterministi
 polynomial time

whether a formula ' is satis�able: guess a (polynomially bounded) set of types for ' to

be realized in a homogeneous model, a sequen
e v

0

; : : : ; v

n

'

of variables, and 
onstru
t

a system of linear inequalities whose solution in R determines a sequen
e of points

x

0

; : : : ; x

n

'

from whi
h we 
an build a homogeneous model realizing the guessed types.

More pre
isely, to de
ide the satis�ability of ', we non-deterministi
ally 
hoose

� a set T of types for ' su
h that jT j � r

'

;

� a type t

i

2 T su
h that ' 2 t

0

, for every i � n

'

;

� a non-empty set of types T

i

� T , for every i < n

'

.

Intuitively, the type t

i

is to be realized at point x

i

, and the types in T

i

are those types

realized in the interval (x

i

; x

i+1

). Then, we take variables v

0

; : : : ; v

n

'

and 
he
k whether

the system of inequalities given in Figure 1 has a solution in R. The Inequalities 2 to 9

are only added if i < n

'

. To understand the inequalities (in parti
ular 4 and 5), note

that the point x

i

des
ribed by variable v

i

is not intended to realize the whole type t

i

, but

only those elements of t

i

whose diamond depth is at most bm

'

� x

i


. Similarly, points

from (x

i

; x

i+1

) des
ribed by a type t 2 T

i

realize only elements of t whose diamond

depth is at most bm

'

� x

i


; 
f. the stru
tural indu
tion in the proof of Lemma 6.

The algorithm returns `' is satis�able' if there is a solution to this system of in-

equalities, and `' is not satis�able' otherwise. By 
onsidering the 
ontrapositive, it is

easily seen that ' is unsatis�able if the algorithm answers `no': if ' has a model, then

by Lemma 6 it also has a homogeneous model, and this model suggests a 
hoi
e of

types su
h that the 
orresponding system of inequalities is satis�able. Conversely, if the

algorithm returns `yes', we 
an 
onstru
t a homogeneous model:

Lemma 7. If the algorithm returns `' is satis�able', then ' is satis�able.

Proof. Suppose there are types t

i

, i � n

'

, and sets of types T

i

, i < n

'

, su
h that there

is a solution x

0

; : : : ; x

n

'

for the 
orresponding system of inequalities. For i < n

'

, take

a partitioning (X

i

t

)

t2T

i

of (x

i

; x

i+1

) su
h that ea
h X

i

t

is dense in (x

i

; x

i+1

). Now de�ne

a valuation V by putting, for every propositional variable p,

V(p) :=

[

i�n

'

�

fx

i

j p 2 t

i

g [

[

i<n

'

;t2T

i

fX

i

t

j p 2 tg

�

:
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(1) 0 = v

0

< v

1

< � � � < v

n

'

= m

'

(2) v

j

� v

i

> 1 if :�

[0;1℄

F

 2 t

i

, j � i, and  2 t

j

(3) v

j

� v

i

� 1 if :�

[0;1℄

F

 2 t

i

, j � i, and  2 t for some t 2 T

j

(4) m

'

� v

i

< 1 if �

[0;1℄

F

 2 t

i

, but there is no j � i su
h that  2 t

j

or  2 t for a t 2 T

j

(5) m

'

� v

i

� 1 if �

[0;1℄

F

 2 t for some t 2 T

i

, there is no j > i su
h that  2 t

j

,

and there is no j � i su
h that  2 t

0

for some t

0

2 T

j

(6) v

j

� v

i

� 1 if �

[0;1℄

F

 2 t

i

and j � i is minimal su
h that  2 t

j

and,

for every j

0

with i � j

0

< j,  62 t for any t 2 T

j

0

(7) v

j

� v

i

< 1 if �

[0;1℄

F

 2 t

i

and j � i is minimal su
h that  2 t for some t 2 T

j

and

there is no j

0

with i � j

0

� j su
h that  2 t

j

0

(8) v

j

� v

i

� 1 if �

[0;1℄

F

 2 t for some t 2 T

i

,  62 t

0

for any t

0

2 T

i

, and j > i is minimal

su
h that  2 t

j

or  2 t

0

for some t

0

2 T

j

(9) v

j

� v

i+1

� 1 if :�

[0;1℄

F

 2 t for some t 2 T

i

, and (j � i and  2 t

0

for some t

0

2 T

j

) or

(j > i and  2 t

j

)

Figure 1: The system of inequalities.

It is now straightforward to prove that, for all k � m

'

, all  2 sub(') with diamond

depth bounded by k, and all w 2 [0;m

'

� k℄, we have

w j=

V

 i� there is an i � n

'

su
h that

(a) w = x

i

and  2 t

i

; or

(b) w 2 X

i

t

and  2 t for some t 2 T

i

:

It is an immediate 
onsequen
e that 0 j=

V

'. ❏

We dis
uss the proof for satis�ability under FVA. Again, the �rst step is to show that

if ' is satis�able under FVA, then it is satis�able in a homogeneous model (this time

with FVA) in whi
h only polynomially many types are realized:

Lemma 8. Suppose ' is satis�able with FVA. Then there exists a sequen
e z

0

; : : : ; z

r

'

in R su
h that 0 = z

0

< z

1

< � � � < z

r

'

= m

'

; and a valuation V su
h that hR;Vi; 0 j= '

and

� jft(w) j 0 � w � m

'

gj � r

'

;

� for all n with 0 � n < r

'

, all  2 sub('), and all z

n

< w < w

0

< z

n+1

, w j=

V

 

i� w

0

j=

V

 .
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Proof. Consider a model M = hR;V

0

i with fva satisfying ' in 0. First, 
onstru
t a

sequen
e 0 = y

0

< y

1

< � � � < y

k

= m

'

, k � 2j'j

2

+ j'j, as in Lemma 6. Then the

sequen
e x

0

; : : : ; x

n

'

is obtained by arranging the elements of the set

fy

0

; : : : ; y

k

g [

[

i<k

1�j<m

'

fy

i

+ j j y

i

+ j < m

'

g [

[

i�k

1�j<m

'

fy

i

� j j y

i

� j > 0g

in as
ending order a

ording to < (where we possibly have to add new x

i

to obtain a

sequen
e of length n

'

+ 1). Let

� = minfx

i+1

� x

i

j 0 � i < n

'

g;

and set, for i < n

'

, �

i

=

1

j'j

i+1

� �. The sequen
e

0 = z

0

< z

1

< � � � < z

r

'

= m

'

is obtained by adding to the sequen
e x

0

; : : : ; x

n

'

the points

y

j

i

= x

i

+

j

j'j

� �

i

;

for all i < n

'

and j � j'j. For i < n

'

, denote by t

�i

the type t whi
h is realized

in some interval of the form (x

i

; y). Note that su
h an interval exists sin
e we are in

a model with FVA. Also, denote by t

+i

the type whi
h is realized in some interval of

the form (y; x

i+1

). Now, for i < n

'

, take for any �

I

F

 2 sub(') su
h that there exists

w 2 (x

i

; x

i+1

) with  2 t(w) su
h a type t(w) and denote the 
olle
tion of sele
ted

types plus the types t

�i

and t

+i

by T

i

. Noti
e that jT

i

j � j'j. Let t

i

0

; : : : ; t

i

j'j�1

be an

ordering of the types in T

i

su
h that t

i

0

= t

�i

(if T

i

has 
ardinality < j'j, then take

some t from T

i

more than on
e in this ordering.) De�ne a valuation V by setting, for

every propositional variable p,

V(p) = fx

i

j i � n

'

; x

i

j=

V

0

pg [

[

i<n

'

;j<j'j

f(y

j

i

; y

j+1

i

℄ j p 2 t

i

j

g [

[

i<n

'

f(y

j'j

i

; x

i+1

) j p 2 t

+i

g:

We show that V is as required. To this end, it is suÆ
ient to show by indu
tion that,

for ea
h k � m

'

, every  2 sub(') in whi
h the number of nestings of �

[0;1℄

F

does not

ex
eed k, and all w 2 [0;m

'

� k℄:

w j=

V

 , there is an i � n

'

su
h that

(a) w = x

i

and x

i

j=

V

0

 ; or

(b) w 2 (y

`

i

; y

`+1

i

℄ and  2 t

i

`

for some ` < j'j; or

(
) w 2 (y

j'j

i

; x

i+1

) and  2 t

+i

:

Proof. Let k,  , and w be as above. The proof is by indu
tion on the stru
ture of  .

The 
ases for propositional variables, :, and ^ are left to the reader. Consider the 
ase

for �

[0;1℄

F

.

\)": Suppose w j=

V

�

[0;1℄

F

 . Then there is a w

0

2 w + [0; 1℄ su
h that w

0

j=

V

 .

Distinguish four 
ases:
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� w = x

i

for some i < n

'

and w

0

= x

j

for some j � i. The indu
tion hypothesis

in (a) yields x

j

j=

V

0

 . Sin
e x

j

� x

i

� 1, it follows by the semanti
s that

x

i

j=

V

0

�

[0;1℄

F

 .

� w = x

i

for some i < n

'

and w

0

2 (x

j

; x

j+1

) for some j � i. If w

0

2 (y

`

j

; y

`+1

j

℄ for

some ` < j'j, then the indu
tion hypothesis in (b) yields  2 t

j

`

. Otherwise, i.e.,

if w

0

2 (y

j'j

j

; x

j+1

),  2 t

+j

by the indu
tion hypothesis in (
). Sin
e t

j

`

, t

+j

2 T

j

,

it follows by de�nition of T

j

that there is a w

00

2 (x

j

; x

j+1

) su
h that w

00

j=

V

0

 .

Note that there is an i

0

with i < i

0

� n

'

su
h that x

i

0

= x

i

+ 1. But then

x

j+1

� x

i

0

; otherwise x

j

� x

i

0

and thus w

0

� w > 1 
ontradi
ting w

0

2 w + [0; 1℄.

Hen
e w

00

�w < 1. Then it follows by the semanti
s that w j=

V

0

�

[0;1℄

F

 .

� w 2 (x

i

; x

i+1

) for some i < n

'

, and w

0

= x

j

for some j > i. The indu
tion

hypothesis in (a) yields x

j

j=

V

0

 . Sin
e x

j

� w � 1, w j=

V

0

�

[0;1℄

F

 by the

semanti
s. Then it follows by de�nition of the sequen
e x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any t

0

2 T

i

. Hen
e,

�

[0;1℄

F

 2 t

i

`

if w 2 (y

`

i

; y

`+1

i

℄ for some ` < j'j, and �

[0;1℄

F

 2 t

+i

if w 2 (y

j'j

i

; x

i+1

).

� w 2 (x

i

; x

i+1

) for some i < n

'

, and w

0

2 (x

j

; x

j+1

) for some j � i. If w

0

2 (y

`

j

; y

`+1

j

℄

for some ` < j'j, then the indu
tion hypothesis in (b) yields  2 t

j

`

. Otherwise, i.e.,

if w

0

2 (y

j'j

j

; x

j+1

),  2 t

+j

by the indu
tion hypothesis in (
). Sin
e t

j

`

, t

+j

2 T

j

,

it follows by de�nition of T

j

that there is a w

00

2 (x

j

; x

j+1

) su
h that w

00

j=

V

0

 .

Note that there is an i

0

> i + 1 su
h that x

i

0

= x

i+1

+ 1. But then x

j+1

� x

i

0

;

otherwise x

j

� x

i

0

and thus w

0

� w > 1 
ontradi
ting w

0

2 w + [0; 1℄. Thus

there is a v 2 (x

i

; x

i+1

) su
h that w

00

� v � 1. By the semanti
s, v j=

V

0

�

[0;1℄

F

 .

Then it follows by de�nition of the sequen
e x

0

; : : : ; x

n

'

that v

0

j=

V

0

�

[0;1℄

F

 for

all v

0

2 (x

i

; x

i+1

). Therefore, �

[0;1℄

F

 2 t

0

for any t

0

2 T

i

. Hen
e �

[0;1℄

F

 2 t

i

`

if

w 2 (y

`

i

; y

`+1

i

℄ for some ` < j'j, and �

[0;1℄

F

 2 t

+i

if w 2 (y

j'j

i

; x

i+1

).

\(": Let i � n

'

su
h that

(a) w = x

i

and x

i

j=

V

0

�

[0;1℄

F

 . By the semanti
s, there is a w

0

2 x

i

+ [0; 1℄ su
h that

w

0

j=

V

0

 . Distinguish two 
ases:

{ w

0

= x

j

for some j � i. The indu
tion hypothesis in (a) yields x

j

j=

V

 .

Sin
e x

j

� x

i

� 1, it follows by the semanti
s that x

i

j=

V

�

[0;1℄

F

 .

{ w

0

2 (x

j

; x

j+1

) for some j � i. By de�nition of T

j

, there is an ` < j'j

su
h that t

j

`

2 T

j

and  2 t

j

`

. Then the indu
tion hypothesis in (b) yields

w

00

j=

V

 for all w

00

2 (y

`

j

; y

`+1

j

℄. Fix su
h a w

00

. Note that there is an j

0

> j

su
h that x

j

0

= x

j

+ 1. But then x

j+1

� x

j

0

; otherwise x

j

� x

j

0

and thus

w

0

� x

i

> 1 
ontradi
ting w

0

2 x

i

+ [0; 1℄. Therefore, w

00

� x

i

< 1. Hen
e,

x

i

j=

V

�

[0;1℄

F

 .
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(b) w 2 (y

`

i

; y

`+1

i

℄ and �

[0;1℄

F

 2 t

i

`

for some ` < j'j. By de�nition of T

i

, there is a w

0

2

(x

i

; x

i+1

) su
h that w

0

j=

V

0

�

[0;1℄

F

 . Then it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for any w

00

2 (x

i

; x

i+1

). In parti
ular, w j=

V

0

�

[0;1℄

F

 . Then

v j=

V

0

 for some v 2 w + [0; 1℄ by the semanti
s. Distinguish three 
ases:

{ v = x

j

for some j > i. The indu
tion hypothesis in (a) yields v j=

V

 . Sin
e

v � w � 1, it follows by the semanti
s that w j=

V

�

[0;1℄

F

 .

{ v 2 (x

i

; x

i+1

). By de�nition of T

i

, there is a t 2 T

i

su
h that  2 t.

Distinguish two sub
ases: First, suppose that  2 t

i

`

0

for some `

0

� `, or

 2 t

+i

. The indu
tion hypothesis in (b) or (
) yields v

0

j=

V

 for all

v

0

2 (y

`

0

j

; y

`

0

+1

j

℄, or all v

0

2 (y

j'j

i

; x

i+1

), respe
tively. Then there is su
h a v

0

su
h that v

0

� w < 1. Hen
e w j=

V

�

[0;1℄

F

 .

Se
ond, suppose there is no `

0

� ` su
h that  2 t

i

`

0

, and  =2 t

+i

. Note

that this implies ` > 0. Sin
e  =2 t

+i

, there is an interval of the form

(y; x

i+1

) su
h that y

0

6j=

V

0

 for all y

0

2 (y; x

i+1

). Take su
h a y

0

. Sin
e

w j=

V

0

�

[0;1℄

F

 , it follows by de�nition of x

0

; : : : ; x

n

'

that y

0

j=

V

0

�

[0;1℄

F

 .

Then there is a v

0

2 y

0

+ [0; 1℄ su
h that v

0

j=

V

0

 and v

0

� x

i+1

. By def-

inition of x

0

; : : : ; x

n

'

, there is an i

0

su
h that x

i

0

= x

i

+ 1. Consider only

the 
ase where v

0

2 (x

j

; x

j+1

) where j = i

0

; the other 
ases are straightfor-

ward. Note that there is no su
h j > i

0

. For suppose otherwise, it holds

that x

i

+ 1 < x

j

< x

i+1

+ 1. By de�nition of x

0

; : : : ; x

n

'

, there is a j

0

su
h

that x

j

0

= x

j

� 1. Thus x

i

< x

j

0

< x

i+1

; a 
ontradi
tion. Therefore j = i

0

,

i.e., x

j

= x

i

+ 1. By de�nition of T

j

, there is an `

0

< j'j su
h that t

j

`

0

2 T

j

and  2 t

j

`

0

. Then the indu
tion hypothesis in (b) yields v

00

j=

V

 for all

v

00

2 (y

`

0

j

; y

`

0

+1

j

℄. Take su
h a v

00

. Sin
e ` > 0 and �

j

�

�

i

j'j

by de�nition of

�

j

, it holds that y

`

i

+ 1 � x

j

+ �

j

. Then y

`

0

+1

j

� y

`

i

< 1 and thus v

00

�w < 1.

Hen
e w j=

V

�

[0;1℄

F

 .

{ v 2 (x

j

; x

j+1

) for some j > i. By de�nition of x

0

; : : : ; x

n

'

, there is an i

0

su
h

that x

i

0

= x

i

+ 1. Consider only the 
ase where j = i

0

; the other 
ases are

straightforward. Note that there is no su
h j > i

0

. For suppose otherwise, it

holds that x

i

+ 1 < x

j

< x

i+1

+ 1. By de�nition of x

0

; : : : ; x

n

'

, there is a j

0

su
h that x

j

0

= x

j

� 1. Thus x

i

< x

j

0

< x

i+1

; a 
ontradi
tion.

Distinguish three sub
ases:

� ` = 0 and w

0

j=

V

0

 for some w

0

with x

i

< w

0

� x

j

. Then it is easy to

see that there is a v

00

� w su
h that v

00

j=

V

 and v

00

� w � 1. Hen
e

w j=

V

�

[0;1℄

F

 .

� ` = 0 and w

0

6j=

V

0

 for all w

0

with x

i

< w

0

� x

j

. Sin
e w j=

V

0

�

[0;1℄

F

 ,

it follows by de�nition of x

0

; : : : ; x

n

'

that w

00

j=

V

0

�

[0;1℄

F

 for all w

00

with

x

i

< w

00

< w. Take su
h a w

00

. Then there is a v

00

2 w

00

+ [0; 1℄ su
h

that v

00

j=

V

0

 and v

00

> x

j

. This implies that  2 t

�j

= t

j

0

. Then the

indu
tion hypothesis in (b) yields v

0

j=

V

 for all v

0

2 (y

0

j

; y

1

j

℄. Clearly,

there is su
h a v

0

su
h that w � v

0

� 1. Hen
e w j=

V

�

[0;1℄

F

 .
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� 1 � ` < j'j. By de�nition of T

j

, there is an `

0

< j'j su
h that t

j

`

0

2 T

j

and  2 t

j

`

0

. The indu
tion hypothesis in (b) yields v

0

j=

V

 for all

v

0

2 (y

`

0

j

; y

`

0

+1

j

℄. Take su
h a v

0

. Sin
e �

j

�

�

i

j'j

by de�nition of �

j

, it

holds that y

`

i

+ 1 � x

j

+ �

j

and thus v

0

�w < 1. Hen
e w j=

V

�

[0;1℄

F

 .

(
) w 2 (y

j'j

i

; x

i+1

) and  2 t

+i

. This 
ase is similar to (b) and left to the reader.

❏

Using Lemma 8, one 
an now modify the de
ision pro
edure for satis�ability without

FVA to obtain a de
ision pro
edure running in nondeterministi
 polynomial time for

satis�ability with FVA. The 
ru
ial step is to determine a set of rational linear inequal-

ities whi
h represent the truth 
onditions in models of the form de
sribed in Lemma 8.

We leave this exer
ise to the reader.

A
knowledgements. Work on this paper was supported by the U.K. EPSRC resear
h

grants GR/S63182/01, GR/S61966/01, and GR/S62727/01. The work reported here

was partly 
arried out while the �rst author was visiting the University of Liverpool on

a DAAD grant.

Referen
es

[1℄ R. Alur, T. Feder, and T. Henzinger. The bene�ts of relaxing pun
tuality. Journal

of the ACM, 43:116{146, 1996.

[2℄ R. Alur and T. Henzinger. Logi
s and models of real time: a survey. In Real Time:

Theory and Pra
ti
e, Le
ture Notes in Computer S
ien
e, pages 74{106, Berlin,

1992. Springer.

[3℄ R. Alur and T. Henzinger. A really temporal logi
. Journal of the ACM, 41:181{

204, 1994.

[4℄ E. Emerson, A. Mok, A. Sistla, and J. Srinivasan. Quantitative temporal reasoning.

Real-Time Systems, 4:331 { 352, 1992.

[5℄ Y. Hirshfeld and A. Rabinovi
h. Logi
s for real time: De
idability and 
omplexity.

Fundamenta Informati
ae, 62:1{28, 2004.

[6℄ M. Reynolds. The 
omplexity of the temporal logi
 over the reals. manus
ript.

[7℄ P. S
hobbens, J. Raskin, and T. Henzinger. Axioms for real-time logi
s. Theoreti
al

Computer S
ien
e, 274:151{182, 2002.

[8℄ A. Sistla and E. Clarke. The 
omplexity of propositional linear temporal logi
s.

Journal of the Asso
iation for Computing Ma
hinery, 32:733{749, 1985.

[9℄ F. Wolter. Tense logi
 without tense operators. Mathemati
al Logi
 Quarterly,

pages 145{171, 1996.

19



A ExpTime-
ompleteness of RTCTL Reproved

We demonstrate the generality of the redu
tion te
hnique proposed in Se
tion 3 by

reproving the result of Emerson et al. that RTCTL, i.e., bran
hing-time logi
 CTL

extended with metri
 operators, is in ExpTime [4℄. A similar (but simpler) redu
tion


an be used to show that the 
orresponding extension of linear-time logi
 LTL is in

PSpa
e. For the sake of 
ompleteness, we �rst introdu
e the syntax and semanti
s of

RTCTL.

De�nition 9 (RTCTL Syntax). Let p

0

; p

1

; : : : be a 
ountably in�nite set of propo-

sitional variables. RTCTL formulas are built a

ording to the syntax rule

' := p

i

j > j ? j :' j ' ^  j E
' j E( 

U

') j A( 

U

') j E( 

U

�k

') j A( 

U

�k

')

where k denotes a natural number that is 
oded in binary. A CTL formula is an RTCTL

formulas that does not use the metri
 version of the until operator. �

The abbreviations !, and $ are de�ned as usual. Moreover, we abbreviate A
' =

:E
:' and A�' = :E(>

U

:').

A model M = hS;R;Vi is a triple 
onsisting of the set of states S, a binary relation

R � S � S, and a valuation V mapping every propositional variable p to a subset V(p)

of S. W.l.o.g., we assume that the graph ofM is a tree sin
e any model 
an be unwound

into a tree. Moreover, we assume that for every state, there is an R-su

essor. Given

a state w 2 S, a w-fullpath is an in�nite sequen
e u

0

u

1

� � � 2 S

!

of states su
h that

u

0

= w and (u

i

; u

i+1

) 2 R for all positions i � 0.

De�nition 10 (RTCTL Semanti
s). Let M = hS;R;Vi be a model. De�ne the

truth-relation \j=" of RTCTL indu
tively as follows: for all states w 2 S,

� M; w j= > and M; w 6j= ?;

� M; w j= p i� w 2 V(p) for all propositional variables p;

� M; w j= :' i� M; w 6j= ';

� M; w j=  ^ ' i� M; w j=  and M; w j= ';

� M; w j= E
' i� there exists an R-su

essor v of w su
h that M; v j= ';

� M; w j= E( 

U

') i� there exists a w-fullpath u

0

u

1

� � � and a position i � 0 su
h

that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i;

� M; w j= A( 

U

') i� for all w-fullpaths u

0

u

1

� � � , there is a position i � 0 su
h

that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i.

� M; w j= E( 

U

�k

') i� there exists a w-fullpath u

0

u

1

� � � and a position i with

0 � i � k su
h that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i;

� M; w j= A( 

U

�k

') i� for all w-fullpaths u

0

u

1

� � � , there is a position i with 0 �

i � k su
h that M; u

i

j= ' and M; u

j

j=  for all positions j with 0 � j < i.

�

20



Our aim is to prove the following result:

Theorem 11. Satis�ability in RTCTL is ExpTime-
omplete.

The lower bound is an immediate 
onsequen
e of the fa
t that CTL is a fragment of

RTCTL, and the former is ExpTime-hard. We prove a mat
hing upper bound by a

polynomial redu
tion to satis�ability CTL, whi
h is known to be in ExpTime.

The redu
tion is similar to the redu
tion presented in Se
tion 3. In parti
ular, the

main idea is to repla
e subformulas E( 

U

�k

') and A( 

U

�k

') with a binary 
ounter

that is implemented using propositional variables to represent the bits. However, there

are also two signi�
ant di�eren
es: �rst, RTCTL is interpreted in dis
rete models, and

thus it is not ne
essary to 
onstru
t a `grid' using variables x

i

and y

i

to measure the

distan
e `exa
tly one' as in the QTL redu
tion. Se
ond, RTCTL models are not linear,

and therefore we 
annot simply in
rement the value of a distan
e-measuring 
ounter

when going to a prede
essor state. Instead, we have to in
rement the least value or

greatest 
ounter value of su

essor nodes, depending on whether we are simulating

a formula E( 

U

�k

') or A( 

U

�k

'). For identifying the least and greatest 
ounter

value among the su

essors, we use a marking s
heme based on additional propositional

variables. Before we des
ribe this marking in detail, let us �x some formalities.

Let ' be a RTCTL formula whose satis�ability is to be de
ided. As an upper bound

for the number of 
ounter bits needed, let n




= dlog

2

ke where k is one plus the largest

natural number o

urring as a parameter to an until operator in '. For simpli
ity, we

assume w.l.o.g. that ' 
ontains at least one subformula of the form E( 

U

�k

') and at

least one subformula of the form A( 

U

�k

'). Now, let �

0

; : : : ; �

`

0

be an enumeration of

all subformulas of ' of the form E( 

U

�k

'

0

), and let �

`

0

+1

; : : : ; �

`

be an enumeration

of all subformulas of ' of the form A( 

U

�k

'

0

). If �

i

= Q( 

U

�k

'

0

) for some i � `,

we use  

i

to denote  and '

i

to denote '

0

. For the redu
tion, we use the following

propositional variables:

� the bits of the i-th 
ounter, i � ` are represented using propositional variables 


j

,

with j < n




;

� to mark the bits of the i-th 
ounter, i � `, we use propositional variables m

j

, with

j < n




.

Intuitively, the marking s
heme for �nding the greates 
ounter value among the su

es-

sors 
an be understood as follows: start marking bits of the 
ounters in su

essor nodes

by pro
eeding from the highest (n




� 1-st) to the lowest (0-th), using the following two

rules to mark a bit number i of a su

essor s

0

of s:

1. if, in s

0

, all bits higher than i are marked and all su

essors of s whose i+1-st bit

are marked agree on the value of the i-th bit, then mark the i-th bit of s

0

;

2. if, in s

0

, all bits higher than i are marked and the su

essors of s whose i + 1-st

bit are marked do not agree on the value of the i-th bit, then mark the i-th bit of

s

0

i� it is one.
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The result of this marking is that only those su

essors of s have all marking bits set

whose 
ounter value is highest among all the su

essors of s. A 
orresponding marking

s
heme for �nding the lowest value is obtained by 
hanging the last part of the se
ond

rule to \i� it is zero". The marking of the i-th 
ounter, i � `, 
an be implemented using

the following formula, where (i � `

0

) abbreviates > if i � `

0

and ? otherwise:

1

#

i

1

:=

^

t<n




(A



i

t

_A
:


i

t

)! A
(m

i

t

$

^

i<j<n




m

i

j

) ^

(E



i

t

^E
:


i

t

^ (i � `

0

))! A
(m

i

t

$ (:


i

t

^

^

i<j<n




m

i

j

))

(E



i

t

^E
:


i

t

^ (i > `

0

))! A
(m

i

t

$ (


i

t

^

^

i<j<n




m

i

j

))

We now indu
tively de�ne a translation (�)

�

of subformulas of ' to CTL formulas, where

the formula (C

i

� n) is de�ned as in Se
tion 3:

p

�

:= p

(: )

�

:= : 

�

( 

1

^  

2

)

�

:=  

�

1

^  

�

2

(E
 )

�

:= E
 

�

E( 

1

U

 

2

)

�

:= E( 

�

1

U

 

�

2

)

A( 

1

U

 

2

)

�

:= A( 

�

1

U

 

�

2

)

E( 

1

U

�k

 

2

)

�

:= (C

i

� k) if �

i

= E( 

1

U

�k

 

2

)

A( 

1

U

�k

 

2

)

�

:= (C

i

� k) if �

i

= A( 

1

U

�k

 

2

)

It remains to properly update the 
ounters, whi
h is done by the following formulas,

for i � `, where the formulas (C

i

� n) and (C

i

= n) are de�ned as in Se
tion 3:

#

i

2

:= (C

i

= 0)$ '

�

i

� := : 

�

i

_

((i � `

0

) ^A
(C

i

= 2

n




� 1))_

((i > `

0

) ^E
(C

i

= 2

n




� 1))

#

i

3

:= (:'

�

i

^ �)! (C

i

= 2

n




� 1))^

(:'

�

i

^ :�)!

�

_

t=0::n




�1

�




i

t

^E
(m

i

t

^ :


i

t

) ^

^

`=0::t�1

(:


i

`

^E
(m

i

`

^ 


i

`

))^

^

`=t+1::n




�1

(


i

`

$ E
(m

i

`

^ 


i

`

))

�

�

Intuitively, #

i

2

initializes the 
ounter and #

i

3

, and #

i

3

ensures that the 
ounter when

is in
remented 
orre
tly when travelling to a prede
essor state. Similar to the QTL

redu
tion, the 
ounter value C

i

= 2

n




� 1 is used to express that, on all (for �

i

being

1

Re
all that �

0

; : : : ; �

`

0

are existentially path-quanti�ed while �

`

0

+1

; : : : ; �

`

are universally quanti�ed.
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existentially path-quanti�ed) resp. some (universal path quanti�
ation) path, the for-

mula '

i

is too far to be of any relevan
e, or that  

i

does not hold on some point on the

way to the next '

i

o

urren
e.

Let #

i

be the 
onjun
tion of #

i

1

to #

i

3

. It is left to the reader to prove the following

lemma, whi
h �nishes the redu
tion:

Lemma 12. ' is satis�able i� '

�

^

^

i�`

A�(#

i

1

^ #

i

2

^ #

i

3

) is satis�able.
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