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Abstract

Formal Concept Analysis (FCA) can be used to analyze data given in the form
of a formal context. In particular, FCA provides efficient algorithms for comput-
ing a minimal basis of the implications holding in the context. In this paper, we
extend classical FCA by considering data that are represented by relational struc-
tures rather than formal contexts, and by replacing atomic attributes by complex
formulae defined in some logic. After generalizing some of the FCA theory to this
more general form of contexts, we instantiate the general framework with attributes
defined in the Description Logic (DL) EL, and with relational structures over a sig-
nature of unary and binary predicates, i.e., models for EL. In this setting, an
implication corresponds to a so-called general concept inclusion axiom (GCI) in
EL. The main technical result of this report is that, in EL, for any finite model
there is a finite set of implications (GCIs) holding in this model from which all
implications (GCIs) holding in the model follow.
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1 Introduction

Classical Formal Concept Analysis [10] assumes that data from an application are given
by a formal context, i.e., by a set of objects G, a set of attributes M , and an incidence
relation I that states whether or not an object satisfies a certain attribute. To analyze
the data given by such a context, FCA provides tools for computing a minimal basis for
the implications between sets of attributes holding in the context [9, 11]. An implication
A → B between sets of attributes A,B holds in a given context if all objects satisfying
every attribute in A also satisfy every attribute in B. A classical result by Duquenne and
Guiges [12] says that such a unique minimal basis always exists. If the set of attributes
is finite, which is usually assumed, this basis is trivially finite as well.

From a model-theoretic or (first-order predicate) logical point of view, a formal con-
text is a very simple relational structure where all predicates (the attributes) are unary.
In many applications, however, data are given by more complex relational structures
where objects can be linked by relations of arities greater than 1. In order to take these
more complex relationships between objects into account when analyzing the data, we
consider concepts defined in a certain logic rather than simply sets of atomic attributes
(i.e., conjunctions of unary predicates). Intuitively, a concept is a formula with one free
variable, and thus determines a subset of the domain (the extension of the concept) for
any model of the logic used to construct these formulae. We show that, under certain
conditions on this logic, many of the basic results from FCA can be extended to this
more general framework. Basically, this requirement is that a finite set of objects (i.e.,
elements of the domain of a given model) always has a most specific concept describing
these objects. The operator that goes from a finite set of objects to its most specific
concept corresponds to the prime operator in classical FCA, which goes from a set of
objects A to the set of attributes A′ that all objects from the set have in common. The
classical prime operator in the other direction, which goes from a set of attributes B
to the set of objects B ′ satisfying all these attributes, has as its corresponding operator
the one that goes from a concept to its extension.

We instantiate this general framework with concepts defined in the Description Logic
EL [2, 3], i.e., formal contexts are replaced by finite models of this DL and attributes are
EL-concepts. Though being quite inexpressive, EL has turned out to be very useful for
representing biomedical ontologies such as SNOMED [21] and the Gene Ontology [22].
A major advantage of using an inexpressive DL like EL is that it allows for efficient
reasoning procedures [3, 5]. Actually, it turns out that EL itself does not satisfy the
requirements on the logic needed to transfer results from FCA since objects need not
have a most specific concept. However, if we extend EL to ELgfp by allowing for cyclic
concept definitions interpreted with greatest fixpoint semantics, then the resulting logic
satisfies all the necessary requirements. Implications in this setting correspond to so-
called general concept inclusion axioms (GCIs), which are available in modern ontology
languages such as OWL [13] and are supported by most DL systems [14].

The main technical result of this paper is that, in EL and in ELgfp, the set of GCIs
holding in a finite model always has a finite basis, i.e., although there are in general
infinitely many such GCIs, we can always find a finite subset from which the rest follows.
We construct such a finite basis first for ELgfp, and then show how this basis can be
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modified to yield one for EL. Due to the space limitation, we cannot give complete
proofs of these results. They can be found in [4].

Related work. There have been previous approaches for dealing with more complex
contexts involving relations between objects. So-called power context families [23] allow
for the representation of relational structures by using a separate (classical) context for
each arity, where the objects of the context for arity n are n-tuples. As such, power
context families are just an FCA-style way of representing relational structures. In
order to make use of the more complex relational structure given by power context
families, Prediger [15, 17, 16] and Priss [18] allow the knowledge engineer to define
new attributes, and provide means for handling the dependencies between the newly
defined attributes and existing attributes by means of formal concept analysis. However,
rather than considering all complex attributes definable by the logical language, as our
approach does, they restrict the attention to finitely many attributes explicitly defined
by the knowledge engineer.

Similar to our general framework, Ferré [6] considers complex attributes definable
by some logical language. The equivalent of a formal context, called logical context
in [6], associates a formula (i.e., a complex attribute) with each object. Since it is
assumed that formulae form a join-semilattice, the formula associated with a set of
objects is obtained as the join of the formulae associated with the elements of the set.
Our general framework can be seen as an instance of the one defined in [6], where the
association of formulae to (sets of) objects is defined using the semantics of the logic
in question. However, Ferré’s work does not consider implications, which is the main
focus of the present paper (see [4] for a more detailed comparison of our approach with
the one in [6]).

The work whose objectives are closest to ours is the one by Rudolph [19, 20], who
considers attributes defined in the DL FLE , which is more expressive than EL. However,
instead of using one generalized context with infinitely many complex attributes, he
considers an infinite family of contexts, each with finitely many attributes, obtained by
restricting the so-called role depth of the concepts. He then applies attribute exploration
[7] to the classical contexts obtained this way, in each step increasing the role depths
until a certain termination condition applies. Rudolph shows that, for a finite DL
model, this termination condition will always be satisfied eventually. However, the set
of implications computed for the context considered at that point does not appear to
be a basis for all the GCIs holding in the given finite model, though it might be possible
to modify Rudolph’s approach such that it produces a basis in our sense. The main
problem with this approach is, however, that the number of attributes grows very fast
when the role depth grows (this number increases at least by one exponential in each
step).

2 The general framework

In classical FCA, a formal context (G,M, I) consists of a set of objects G, a set of
attributes M , and an incidence relation I ⊆ G × M . Such a formal context induces
two operators (both usually denoted by ·′), one mapping each set of objects A to the
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set of attributes A′ these objects have in common, and the other mapping each set of
attributes B to the set of objects satisfying these attributes. A formal concept is a pair
(A,B) such that A = B ′ and B = A′. The set A is the extensional description of the
concept whereas B is its intensional description. The two ·′ operators form a Galois
connection, and if applied twice yield closure operators ·′′ on the set of objects and the
set of attributes, respectively.

Since data sometimes cannot be described only in terms of objects and attributes
it is desirable to allow more expressive intensional descriptions than simple sets of
attributes. In our general framework, we assume that intensional descriptions of sets
of objects are given by concept descriptions. A concept description language is a pair
(L, I), where L is a set, whose elements are called concept descriptions, and I is a set
of tuples i = (∆i, ·

i), called models, consisting of a non-empty set ∆i (of objects) and a
mapping

·i : L → P(∆i) : f 7→ f i

that assigns an extension f i ⊆ ∆i to each concept description f ∈ L.

Since in FCA the closure operator ·′′ is used extensively for constructing a minimal
basis of the implications in a context, one may wish to define similar operators in
our framework. Intuitively, models correspond to formal contexts, and the operator ·i

corresponds to the ·′ operator that assigns an extension B ′ to each set of attributes B.
In order to define an analogon to the ·′ operator in the other direction, we introduce the
subsumption preorder on concept descriptions: f1 ∈ L is subsumed by f2 ∈ L (written
f1 v f2) if f i

1 ⊆ f i
2 for all models i ∈ I. If f1 v f2 and f2 v f1, then we say that f1 and

f2 are equivalent (f1 ≡ f2). Given a set of objects A in a formal context, its intensional
description A′ is the largest set of attributes B such that A ⊆ B ′. Since B′

1 ⊆ B′
2 if

B1 ⊇ B2, such a largest set should correspond to the least one w.r.t. subsumption. This
motivates the following definition.

Definition 1 (Most specific concept). Let i ∈ I be a model and X a set X ⊆ ∆i.
Then f ∈ L is a most specific concept for X iff

X ⊆ f i (1)

and f is a least concept description with this property, i. e. every other concept descrip-
tion g with X ⊆ gi also satisfies f v g.

Observe that most specific concepts need not exist. There may for example be an
infinite descending chain of concept descriptions whose models contain X. If (L/≡,v)
seen as a partially ordered set does not satisfy the descending chain condition then
there need not be a least description f ∈ L with X ⊆ f i. There may also be two (or
more) such descriptions f1 and f2 that are minimal with respect to v but satisfy neither
f1 v f2 nor f2 v f1. Whether most specific concepts exist largely depends on L and its
semantics. For example for the language that is presented in Section 3.1 most specific
concepts always exists, and it can be shown that there is a 1-1-correspondence to the · ′

operator from FCA. Another example for a language for which most specific concepts
always exists is ELgfp as we will see in Section 3.2.
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If the most specific concept of a set X ⊆ ∆i exists it is unique up to equivalence.
We denote it (or, more precisely, an arbitrary element of its equivalence class) by X i.
The concept description X i is called the intensional description of the set of objects X.

The following lemma shows that

·i : P(∆i) → L

and
·i : L → P(∆i)

do indeed form a Galois-connection with FCA-style properties. Because of these simi-
larities to FCA we will sometimes use the term description context for a model i ∈ I.

Lemma 2. Let (L, I) be a concept description language such that X i exists for every
i ∈ I and every X ⊆ ∆i. Let i ∈ I be a model X,X1, X2 ∈ ∆i sets of objects and
f, f1, f2 ∈ L concept descriptions. Then the following statements hold

(a) X1 ⊆ X2 ⇒ Xi
1 v Xi

2

(b) f1 v f2 ⇒ f i
1 ⊆ f i

2

(c) X ⊆ X ii

(d) f ii v f

(e) X i ≡ Xiii

(f) f i = f iii

(g) X ⊆ f i ⇔ Xi v f .

Proof. This follows directly from Lemma 3.6 in [6]. Despite this and the fact that it is
purely technical to prove, the prove will be given here for matters of completeness.

(a) By definition it is X2 ⊆ Xii
2 so we get X1 ⊆ Xii

2 . Hence the claim follows from
Definition 1, since X i

1 is the least concept description with the property X1 ⊆ (X i
1)

i

(b) Follows immediately from the definition of f1 v f2.

(c) cf Definition 1.

(d) f i ⊆ f iii holds by Definition 1. Obviously it is f i ⊆ f i. Hence f ii v f , since by
Definition 1 f ii is the least description with this property.

(e) X i w Xiii follows directly from (d). X i v Xiii follows from (c) and (a).

(f) This can be proved in an analogous way to (e).

(g) Let X ⊆ f i. Then we get X i v f ii from (a) and thus X i v f follows from (d).
Conversely let X i v f . Then X ii ⊆ f i holds and hence X ⊆ f i follows from (c).
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As in Formal Concept Analysis one may define the set of formal concepts for a
given model i ∈ I as the set of pairs

{
(Xii, Xi) | X ⊆ ∆i

}
. Ferré has shown that

these formal concepts form a complete lattice (cf Section 2.1, [6]). Since there is a
1-1-correspondence between complete lattices and formal contexts, one may argue that
Definition 1 is not really an extension to Formal Concept Analysis. Although this is
true in a way, our definition’s main advantage is that the intensional descriptions that
are needed to describe the concepts are obtained in a natural way (i. e. as most specific
concepts). In classical FCA it is totally unclear which concept descriptions are relevant
to describe the data. So in the worst case one might have to start with an infinite
context, containing all possible concept descriptions as attributes.

In the remainder of this section, we assume that (L, I) is an arbitrary, but fixed,
concept description language. All definitions given below are implicitly parameterized
with this language. Our goal is to characterize the subsumption relations that are
valid in a given description context of this language by determining a minimal basis of
implications comparable to the Duquenne-Guiges basis in classical FCA. We start by
defining the notion of an implication and by showing some general results that hold
for arbitrary concept description languages. Later on, we will look at the concept
description language ELgfp in more detail.

Definition 3 (Implication). An implication is a pair (f1, f2) of concept descriptions
(f1, f2) ∈ L × L, which we will usually denote as f1 → f2. We say that the implication
f1 → f2 holds in the description context ι = (∆ι, ι) if f ι

1 ⊆ f ι
2.

Obviously, we have f1 v f2 iff f1 → f2 holds in every description context ι ∈ I.
However, as said above, we are now interested in the implications that hold in a fixed
description context rather than in all of them.

In order to define the notion of a basis of the implications holding in a description
context, we must first define a consequence operator on implications. Let B ⊆ L × L
be a set of implications and f1 → f2 an implication. If f1 → f2 holds in all description
contexts i ∈ I in which all implications from B hold, then we say that f1 → f2 follows
from B. It is not hard to see that the relation follows is

• reflexive, i. e. every implication f1 → f2 ∈ B follows from B, and

• transitive, i. e. if f1 → f2 follows from B2, and every implication in B2 follows from
B1, then f1 → f2 follows from B1.

Definition 4 (Basis). For a given description context ι we say that B ⊆ L × L is a
basis for the implications holding in ι if B is

• sound for ι, i.e., it contains only implications holding in ι;

• complete for ι, i.e., any implication that holds in ι follows from B; and

• minimal for ι, i.e., no strict subset of B is complete for ι.
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Since the above definitions use only the ·ι operator that assigns an extension to every
concept description, but not the one in the other direction, they also make sense for
concept description languages where the most specific concept of a set of objects need
not always exist. An example of such a language is EL, i.e., the sublanguage of ELgfp

that does not allow for cyclic concept definitions (see Section 3.2 below).
The description language (L′, I ′) is a sublanguage of the description language (L, I)

if L′ ⊆ L and I ′ =
{
i|L′

∣
∣ i ∈ I

}
, where i|L′ is the restriction of i to L′, i.e., ∆i = ∆i|

L′

and ·i|L′ is the restriction of the mapping ·i to L′.

Proposition 5. Assume that (L′, I ′) is a sublanguage of (L, I), that f1 → f2 ∈ L′×L′,
and that B ⊆ L′ × L′. Then f1 → f2 follows from B in (L, I) iff f1 → f2 follows from
B in (L′, I ′).

Proof. f i = f i|
L′ holds for all f ∈ L′ and all i ∈ I. Therefore an implication g1 → g2

holds in the L-description context i if and only if it holds in the L′-description context
i|L′ . The claim follows directly from this fact.

In the remainder of this section, we will characterize complete subsets of the set of all
implications holding in a given description context ι. Whenever we use the ·ι operator
from sets of objects to concept descriptions, we implicitly assume that it is defined. By
definition XI is the most precise concept description such that X is contained in its
extension. One can even say that it captures all the information about X that can be
expressed in L. This is the reason why we can restrict ourselves to implications that
only contain implications whose right hand sides are of the form f II for some f ∈ L.

Lemma 6. If the implication f1 → f2 holds in ι, then it follows from {f1 → f ιι
1 }, and

the set {f1 → f ιι
1 } is sound for ι.

Proof. By Lemma 2(f), all implications of the form f → f ιι hold in ι, which yields
soundness of {f1 → f ιι

1 }.
Let f1 → f2 be any implication that holds in ι. Then by definition f ι

1 ⊆ f ι
2 holds.

By Lemma 2 (g) this is equivalent to

f ιι
1 v f2. (2)

Let j be some model in which f1 → f ιι
1 holds. By definition this implies that f j

1 ⊆ (f ιι
1 )j

is true. Using Lemma 2 (g) again we get

f jj
1 v f ιι

1 . (3)

From (2) we get
f jj
1 v f2. (4)

and hence f j
1 ⊆ f j

2 . So f1 → f2 holds in j.

Corollary 7. The set of implications

{f → f ιι | f ∈ L}

is sound and complete in ι.
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Having reduced the number of right hand sides that are needed to construct a
complete set of implications, one may wonder whether something similar can be done
for the left hand sides as well. This is possible if we can find a so-called dominating set
of concept descriptions.

Definition 8 (dominating sets of concept descriptions). Let D ⊆ L be a set of
concept descriptions. We say that D dominates the description context ι iff for every
f ∈ L there is some f̄ ∈ D such that

f v f̄

and
f ι = f̄ ι.

It is sufficient to consider implications whose left-hand sides belong to a dominating
set.

Lemma 9. Let D ⊆ L be a set that dominates ι. Then

B = {f → f ιι | f ∈ D}

is sound and complete for ι.

Proof. Soundness has already been shown. To show completeness, let f1 → f2 be an
implication that holds in ι. Lemma 6 states that f1 → f2 follows from f1 → f ιι

1 . Hence
it is sufficient to show that f1 → f ιι

1 follows from B. Since D dominates ι there exists
g ∈ D, such that gι = f ι

1 and f1 v g.
Let j be a model in which all implications of B hold. From f1 v g and Lemma 2 it

follows that
f j
1 ⊆ gj . (5)

As g → gιι ∈ B holds in j, we have gj ⊆ (gιι)j. Thus

f j
1 ⊆ (gιι)j . (6)

On the other hand gι = f ι
1 implies that gιι = f ιι

1 , and so

f j
1 ⊆ (f ιι

1 )j . (7)

Hence f1 → f ιι
1 holds in j.

2.1 Related Work

A similar definition to Definition 1 can be found in Ferré [6] and shall briefly be explained
here. Like us, Ferré starts with some logic L and a preorder v. Then v induces a partial
order on the set of equivalence classes of ≡, i. e. (L/ ≡,v) is a partially ordered set. If
the least upper bound of two such equivalence classes [f1] and [f2] exists in (L/ ≡,v),
we call this bound the least common subsumer of [f1] and [f2]. For matters of simplicity
we may sometimes write f1 when we actually mean the equivalence class [f1]. Similarly
we will denote the least common subsumer of [f1] and [f2] simply by lcs(f1, f2). We
define least common subsumers for arbitray sets of concept descriptions analogously and
denote these by lcsk∈K fk.
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Definition 10 (from [6]). A logical context is a triple K = (O,L, d) where

• O is a finite set of objects,

• L is a logic, such that (L/ ≡,v) forms a join-semilattice,

• d is a mapping
d : O → L

that associates to every object o ∈ O a concept description d(o) ∈ L.

In a logical context Ferré defines the mappings

σK : P(O) → L, σK(A) = lcso∈A d(o)

τK : L → P(O), τK(f) = {o ∈ O | d(o) v f}.

The most striking difference between Ferré’s definition and ours is that in Ferré’s
work the concept descriptions that are associated to singleton sets {x} can be chosen
arbitrarily. We can show that Definition 1 is a special case of Definition 10, if we choose
an appropriate function d. Let L and i be such that {x}i exists for all x ∈ ∆i. If we
define O = ∆i, and d(x) = {x}i for all x ∈ ∆i then the two definitions 10 and 1 match
for all singletons {x}, i. e. σK({x}) = {x}i for all x ∈ ∆i. The following results show
that they also match for arbitrary sets instead of singletons and that there is a similar
correspondence for τK . The correspondence for τK is not hard to see:

Corollary 11. Let L and i be such that {x}i exists for all x ∈ ∆i. Let d(x) be defined
as above. Then

f i = τK(f).

Proof.

x ∈ f i ⇔ {x} ⊆ f i Lemma 2 (g)
⇔ {x}i v f ⇔ d(x) v f

Def. 10
⇔ x ∈ τK(f)

The following proposition shows that the two definitions match for sets of arbitrary
cardinality.

Proposition 12. Let L be a language and i a model. Let {Xm}m∈M be a family of sets
Am ⊆ ∆i for which Ai

m exists for all m ∈ M . Then lcsm∈M Ai
m exists iff (

⋃

m∈M Am)i

exists. In this case

lcsm∈M Ai
m =

( ⋃

m∈M

Am

)i

.

Proof. First assume that f = lcsm∈M Ai
m exists. Then f by definition subsumes all

concept descriptions Ai
m. Therefore

f w Ai
m ∀m ∈ M.

So by Lemma 2 (g)
f i ⊇ Am ∀m ∈ M
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and thus
f i ⊇

⋃

m∈M

Am.

Now let g ∈ L be another concept description such that

gi ⊇
⋃

m∈M

Am.

Using the same arguments as above, but in the other direction, we get that

g w Ai
m ∀m ∈ M,

i. e. g is an upper bound for the Ai
m. Since f by definition is the least upper bound for

the Ai
m, we get f @ g. So we have shown that f i ⊇

⋃

m∈M Am and that for every other
concept description g with gi ⊇

⋃

m∈M Am we have f @ g. By Defintion 1 it follows
that f = (

⋃

m∈M Am)i. The other direction can be shown analogously.

Corollary 11 and Proposition 12 show that if we define d(x) = {x}i, Definitions 1
and 10 match, in the sense that σK(A) = Ai for all A ⊆ ∆i and τK(f) = f i for all
f ∈ L. So Definition 1 is in fact a specialisation of Definition 10. The main reason
why we restrict ourselves to Definition 1 is that it uses the semantics of L in a natural
way, whereas Definition 10 does not use it at all. In fact since semantics are not used
in Ferré’s definition it would even suffices to use any join-semilattice (P,≤) instead of
(L/ ≡,v). This has been done by Ganter and Kuznetsov in [8].

Proposition 12 also provides a criterion for the existence of the ·i operator:

Corollary 13. Let L be a language and i ∈ I a model. Then Ai exists for all sets
A ⊆ ∆i iff

• {x}i exists for every x ∈ ∆i, and

• lcsa∈A{a}
i exists for all A ⊆ ∆i.

3 Instances of the general framework

3.1 Classical FCA

In this section we show how classical FCA can be obtained as a special case of the
above definitions. We define a language LFCA and an appropriate semantics such that
the operators ·I behave like the operators ·′. In classical FCA concepts are described
intentionally by listing all properties that are common to a group of objects. Therefore
we define the language LFCA to be

LFCA = P(M)

for a fixed set of attributes M . We define a primitive interpretation to be a mapping

i : M → P(∆i).
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For every such primitive interpretation we can define an extension (denoted by ·i) as
follows

·i : LFCA → P(∆i)

B 7→
⋂

m∈B

i(m).

As the set of models IFCA we use the set of all mappings that can be obtained as
such an extension of some primitive interpretation. However, observe that larger sets
of attributes yield narrower extensions. Hence the direction of the inclusion is reversed,
when we view the attribute sets as concept descriptions.

Proposition 14. Let A,B ∈ LFCA. Then A ⊆ B as sets iff A w B as concept
descriptions.

Proof. Suppose A ⊆ B. Then for every i ∈ IFCA

Bi =
⋂

m∈B

{m}i

=
⋂

m∈A

{m}i ∩
⋂

m∈B\A

{m}i

⊆
⋂

m∈A

{m}i

=Ai.

Hence B v A.

Now suppose B v A. Let i? ∈ IFCA be the extension of the primitive interpretation
i? with the domain ∆i? = M and i?(m) = M \ {m} for every m ∈ M . B v A implies
Bi? ⊆ Ai? . Thus

Bi? ⊆Ai?

⋂

m∈B

i?(m) ⊆
⋂

m∈A

i?(m)

⋂

m∈B

M \ {m} ⊆
⋂

m∈A

M \ {m}

M \ B ⊆M \ A

B ⊇A.

Using the language and semantics defined above we obtain classical FCA from Defi-
nition 1. Before we can prove this, we need to show that the operators ·i are well-defined.
With the above semantics Ai exists for every i ∈ I and every A ⊆ ∆i. More precisely
we get

Ai = {m ∈ M | A ⊆ {m}i},
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because then
A ⊆

⋂

m∈M :A⊆{m}i

{m}i = Aii

and for every set B ⊆ M

A ⊆ Bi ⇔A ⊆
⋂

m∈B

{m}i

⇔∀m ∈ B : A ⊆ {m}i

⇔∀m ∈ B : m ∈ {µ ∈ M | A ⊆ {µ}i}

⇔B ⊆ Ai

⇔B w Ai.

Now every model i ∈ IFCA corresponds to some classical FCA-context (Gi,M, Ii)
where Gi = ∆i and Ii = {(x,m) | x ∈ {m}i}. For then for all A ⊆ ∆i we get

Ai = {m ∈ M | A ⊆ {m}i} = {m ∈ M | ∀x ∈ A : x ∈ {m}i}

= {m ∈ M | ∀x ∈ A : xIim} = A′

and for all C ⊆ M , we get

Ci =
⋂

m∈C

{m}i =
⋂

m∈C

{x ∈ G | xIim} = {x ∈ G | ∀m ∈ C : xIim} = C ′.

Conversely every FCA-context (G,M, I) corresponds to a model iI ∈ IFCA where
we define ∆iI = G and {m}iI = {g ∈ G | gIm}. For all A ⊆ ∆i we get

A′ = {m ∈ M | ∀x ∈ A : xIm} = {m ∈ M | ∀x ∈ A : x ∈ {m}iI }

= {m ∈ M | A ⊆ {m}iI} = AiI

and for all C ⊆ M , we get

C ′ = {x ∈ G | ∀m ∈ C : xIm} =
⋂

m∈C

{x ∈ G | xIm} =
⋂

m∈C

{m}iI = CiI .

This shows that classical FCA can be expressed in terms of description contexts.
It is well-known that for implications in classical FCA, we can always find a set of

implications which is not just complete and irredundant, but also minimal with respect
to the number of implications in the basis. This set is called the Duquenne-Guiges-basis
[12]. It is constructed using so-called pseudo-intents.

Definition 15. P ⊆ M is called a pseudo-intent of i ∈ IFCA iff P 6= P ii and P v Qii

holds for every pseudo-intent Q w P , Q 6= P .

Theorem 16. The set of implications

L = {P → P ii | P pseudo-intent}

is irredundant and complete.

12
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Figure 1: Example of a simple EL-description graph

This is proved in [12] and [10]. There are two major problems, why the concept
of a Duquenne-Guiges-basis cannot be extended to most languages other than classical
FCA. First, for most languages the lattice (L/ ≡,v) does not satisfy the ascending chain
condition. Therefore pseudo-intents cannot be defined recursively as in Definition 15.
Another major issue arises from the fact that ‘follows’ in FCA can be characterised like
this:

Proposition 17. A → B follows from a set of LFCA-implications B iff for every E ∈
LFCA with

∀C → D ∈ B : E v C ⇒ E v D

we also have

E v A ⇒ E v B.

This proposition does not necessarily hold for other description languages than LFCA.
However, since it is crucial in proving the non-redundance of the Duquenne-Guigues-
basis, we need to find other ways to determine non-redundant implication bases.

3.2 EL with terminological cycles and greatest fixpoint semantics

We start by defining EL, and then show how it can be extended to ELgfp. Concept
descriptions of EL are built from a set Nc of concept names and a set Nr of role names,
using the constructors top concept, conjunction, and existential restriction:

• concept names and the top concept > are EL-concept descriptions;

• if C,D are EL-concept descriptions and r is a role name, then C u D and ∃r.C
are EL-concept descriptions.

In the following, we assume that the sets Nc and Nr of concept and role names are
finite. This assumption is reasonable since in practice data are usually represented over
a finite signature.

Models of this language are pairs (∆I , ·
I) where ∆I is a finite,1 non-empty set, and

·I maps role names r to binary relations rI ⊆ ∆I × ∆I and EL-concept descriptions to

1Usually, the semantics given for description logics allows for models of arbitrary cardinality. How-
ever, in the case of EL the restriction to finite models is without loss of generality since it has the
finite model property, i.e., a subsumption relationship holds w.r.t. all models iff it holds w.r.t. all finite
models.

13



subsets of ∆I such that

>I = ∆I , (C u D)I = CI ∩ DI , and

(∃r.C)I = {d ∈ ∆i | ∃e ∈ CI such that (d, e) ∈ rI}.

Subsumption and equivalence between EL-concept descriptions is defined as in our gen-
eral framework, i.e., C v D iff CI v DI for all models I, and C ≡ D iff C v D and
D v C.

Unfortunately, EL itself cannot be used to instantiate our framework since in general
a set of objects need not have a most specific concept in EL. This is illustrated by the
following simple example. Assume that Nc = {P}, Nr = {r}, and consider the model
I with ∆I = {a, b}, rI = {(a, b), (b, a)}, and P I = {b} (cf Fig. 1 for a graphical
representation of this model). To see that the set {a} does not have a most specific
concept, consider the EL-concept descriptions

Ck := ∃r.∃r . . . ∃r.
︸ ︷︷ ︸

k times

>.

We have {a} ⊆ CI
k = {a, b} for all k, and thus a most specific concept C for {a} would

need to satisfy C v Ck for all k ≥ 0. However, it is easy to see that C v Ck can only
be true if the role depth of C, i.e., the maximal nesting of existential restrictions, is at
least k. Since any EL-concept description has a finite role depth, this shows that such
a most specific concept C cannot exist.

However, most specific concepts always exist in ELgfp, the extension of EL by cyclic
concept definitions interpreted with greatest fixpoint (gfp) semantics.2 In ELgfp, we
assume that the set of concept names is partitioned into the set Nprim of primitive
concepts and the set Ndef of defined concept. A concept definition is of the form

B0 ≡ P1 u . . . u Pm u ∃r1.B1 u . . . u ∃rn.Bn

where B0, B1, . . . , Bn ∈ Ndef , P1, . . . , Pm ∈ Nprim, and r1, . . . , rn ∈ Nr. The empty
conjunction (i.e., m = 0 = n) stands for >. A TBox is a finite set of concept definitions
such that every defined concept occurs at most once as a left-hand side of a concept
definition.

Definition 18 (ELgfp-concept description). An ELgfp-concept description is a tuple
(A, T ) where T is a TBox and A is a defined concept occurring on the left-hand side of
a definition in T .

For example, (A, T ) with T := {A ≡ ∃r.B,B ≡ P u ∃r.A} is an ELgfp-concept
description. Any ELgfp-concept description (A, T ) can be represented by a directed,
rooted, edge- and node-labeled graph: the nodes of this graph are the defined concepts
in T , with A being the root; the edge label of node B0 is the set of primitive concepts
occurring in the definition of B0; and every conjunct ∃ri.Bi in the definition of B0

gives rise to an edge from B0 to Bi with label ri. In the following, we call such graphs

2Because of the space restriction, we can only give a very compact introduction of this DL. See [1, 4]
for more details.
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description graphs. The description graph associated with the ELgfp-concept description
from our example is shown in Fig. 1, where A is the root.

Models of ELgfp are of the form I = (∆I , ·
I) where ∆I is a finite, non-empty set,

and ·I maps role names r to binary relations rI ⊆ ∆I × ∆I and primitive concepts
to subsets of ∆I . The mapping ·I is extended to ELgfp-concept descriptions (A, T ) by
interpreting the TBox T with gfp-semantics: consider all extensions of I to the defined
concepts that satisfy the concept definitions in T , i.e., assign the same extension to the
left-hand side and the right-hand side of each definition. Among these extensions of
I, the gfp-model of T based on I is the one that assigns the largest sets to the defined
concepts (see [1] for a more detailed definition of gfp-semantics). The extension (A, T )I

of (A, T ) in I is the set assigned to A by the gfp-model of T based on I.
Again, subsumption and equivalence of ELgfp-concept descriptions is defined as in

the general framework.
Let U = (RU , TU ) ∈ ELgfp and V = (RV , TV) ∈ ELgfp be two concept descriptions.

Then we write ∃r.U as an abbreviation for the pair (R∃r.U , T∃r.U ), where without loss of
generality R∃r.U is a concept name that does not occur in TU and

T∃r.U = TU ∪ {R∃r.U ≡ ∃r.RU}.

The concept description U u V = (RUuV , TUuV) is defined similarly. First assume
without loss of generality that the sets of defined concept names in U and V are disjoint.
We define a new TBox TUuV as follows

TUuV = TU ∪ TV ∪ {RUuV ≡
kl

i=1

Ai u
ll

i=1

Ci u
ml

i=1

Bi u
nl

i=1

Di} ,

where

RU =

kl

i=1

Ai u
ll

i=1

Ci

and

RV =
ml

i=1

Bi u
nl

i=1

Di

with primitive concept names Ai, Bi and defined concept names Ci, Di. Then the
semantics behave like we know it from EL, i. e. for all I ∈ I

(∃r.U)I = {x ∈ ∆I | ∃y ∈ U I : (x, y) ∈ rI} (8)

and
(U u V)I = UI ∩ VI . (9)

Using ELgfp the most specific concept {a}I exists for the simple example in the
beginning of the chapter. However it is still unclear whether most specific concepts
exist for all sets X ⊆ ∆I and all models I ∈ I. To show this, we need some definitions
and results from Baader [2]. Baader shows how instance and subsumption relations
in ELgfp can be characterised using so called EL-description graphs and simulations of
such graphs.
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Definition 19 (EL-description graphs). An EL-description graph is a graph G =
(V,E,L) where

• V is a set of nodes

• E ⊆ V ×Nrole × V is a set of directed edges labeled by role names

• L : V → P(Nprim) is a labeling function

For a normalized EL-TBox T the corresponding EL-description graph GT is the
graph G = (VT , ET , LT ) where

• the vertices of GT are the defined concepts of T

• if A is a defined concept and

A ≡ P1 u . . . u Pm u ∃r1.B1 u ∃rl.Bl

its definition in T , then

– LT (A) = {P1, . . . , Pm}, and

– A is the source of the edges (A, r1, B1), . . . , (A, r2, Bl) ∈ ET .

Conversely, every EL-description graph can be transformed into an EL-TBox.
A model I can also be transformed into an EL-description graph.

• The vertices of GI are the elements of ∆I .

• EI = {(x, r, y) | (x, y) ∈ rI}

• LI(x) = {P ∈ Nprim | x ∈ P I} for all x ∈ ∆I .

Definition 20 (Simulation). Let G1 and G2 be two EL-description graphs. The binary
relation Z ⊆ V1 × V2 is a simulation from G1 to G2 iff

(a) (v1, v2) ∈ Z implies L1(v1) ⊆ L2(v2), and

(b) if (v1, v2) ∈ Z and (v1, r, v
′
1) ∈ E1, then there exists a node v′2 ∈ V2 such that

(v′1, v
′
2) ∈ Z and (v2, r, v

′
2) ∈ E2.

We write Z : G1
−→∼G2 to express that Z is a simulation from G1 to G2.

Then instance relations in a given model can be characterised as follows.

Proposition 21. Let I ∈ I be a gfp-model. Then the following are equivalent for any
U = (A, T ) ∈ ELgfp and x ∈ ∆I .

• x ∈ U I

• There is a simulation Z : GT
−→∼GI such that (A, x) ∈ Z.

This result eventually leads to the following theorem which characterises subsump-
tion.
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Theorem 22. Let U1 = (A1, T1),U2 = (A2, T2) ∈ ELgfp. Then the following two
statements are equivalent.

• U1 v U2

• There is a simulation Z : GT2

−→∼GT1
such that (A2, A1) ∈ Z.

Both results have been proved by Baader in [2]. We are now able to prove the
existence of most specific concepts in ELgfp.

Corollary 23. Let I ∈ I be a model and x ∈ ∆I . Then (x, Tx) ∈ ELgfp where Tx is the
TBox defined by GI is the most specific concept of x.

Proof. As GI = GTx
it is obvious that the identity relation idGI

satisfies the conditions
of Proposition 21. Hence x ∈ T I

x . Now assume that there is another ELgfp-concept
description (A, T̄ ) such that x ∈ (A, T̄ )I . Then by Proposition 21 there is a simulation
Z : GT̄

−→∼GI such that (A, x) ∈ Z. Then Z is also a bisimulation Z : GT̄
−→∼GTx

with
(A, x) ∈ Z. By Theorem 22 this proves Tx v T̄ . Therefore Tx is the least concept
description with the desired properties.

Theorem 24. In ELgfp the most specific concept XI exists for every X ⊆ ∆I .

Proof. First assume that X 6= ∅. In [1] it is shown that least common subsumers exist
and are unique up to equivalence for any finite set of ELgfp-concept descriptions. From
Corollary 23 and Corollary 13 it follows that X I exists. To be precise XI is the lcs of
all Tx, x ∈ X.

In the case that X = ∅ we define Tall to be the TBox that contains only one defined
concept, namely the root concept RTall

defined as

Rall ≡
l

B∈Nprim

B u
l

r∈Nrole

∃r.RTall
.

Then every concept description T ∈ ELgfp has (Rall, Tall) v T . Obviously also ∅ ⊆
(Rall, Tall)

I . Therefore ∅I = (Rall, Tall).

Because of this result ELgfp is a lot easier to handle with our methods than EL
since we do not have to worry about the existence of X I when using ELgfp. However
Proposition 5 can be used to show that any set of implications that is complete for
ELgfp must also be complete for EL—as long as both the left-hand-sides and the right-
hand-sides of the implications do not contain terminological cycles. So from now on we
shall work with ELgfp which is more convenient and then try to transfer the result to
EL.

4 A finite basis for ELgfp-implications

We show that the set of implications holding in a given model always has a finite basis in
ELgfp. A first step in this direction is to show that it is enough to restrict the attention
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to implications with acyclic ELgfp-concept descriptions as left-hand sides. The ELgfp-
concept description (A, T ) is acyclic if the graph associated with it is acyclic. It is
easy to see that there is a 1–1-relationship between EL-concept descriptions and acyclic
ELgfp-concept descriptions. For example, (A, {A ≡ B u ∃r.B,B ≡ P}) corresponds to
P u ∃r.P , and ∃r.P corresponds to (A, {A ≡ ∃r.B,B ≡ P}). This shows that EL can
indeed be seen as a sublanguage of ELgfp. In the following, we will not distinguish an
acyclic ELgfp-concept description from its equivalent EL-concept description.

Given an ELgfp-concept description, its node size is the number of nodes in the
description graph corresponding to it.

Theorem 25. In ELgfp the set

{U ∈ ELgfp | U is acyclic}

dominates every description context I with finite ∆I .

The proof requires some technical work that will be provided after this short corol-
lary.

Corollary 26. The set of implications {U → U II | U ∈ ELgfp, U is acyclic} is sound
and complete for I.

Proof. Follows immediately from Lemma 9 and Theorem 25.

In order to prove Theorem 25 we define a family ((A, T )d)d∈N of acyclic approxima-
tions of a concept description (A, T ) ∈ ELgfp. To obtain (A, T )d, the description graph
associated with (A, T ) is unraveled into a (possibly infinite) tree, and then all branches
are cut at depth d. More formally, we first define T0 to be the TBox defined by the
graph G0, where

• V0 =
{
(A)

}

• E0 = ∅

• L0

(
(A)

)
= LT (A).

The ELgfp-concept graphs Gd corresponding to the TBoxes Td, d > 0, are defined recur-
sively:

• Vd = Vd−1 ∪
{

(C1, r1, C2, . . . , Cd−1, rd−1, Cd)
∣
∣
∣ (C1, r1, C2, . . . , Cd−1) ∈ Vd−1,

(Cd−1, rd−1, Cd) ∈ ET

}

• Ed = Ed−1 ∪
{(

(C1, . . . , Cd−1), rd−1, (C1 . . . , Cd−1, rd−1, Cd)
)
∣
∣
∣

(C1 . . . , Cd−1, rd−1, Cd) ∈ Vd}

• Ld

(
(C1, r1, C2, . . . , Ck)

)
= L(Ck) for all (C1, r1, C2, . . . , Ck) ∈ Vd.
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Then define (A, T )d = ((A), Td).
VGd

can be seen as the set of all directed paths in GT of length at most d. Two
such paths are connected by an r-edge in Gd if one path can be obtained from the other
by adding an r-edge in GT . The graph Gd is a directed tree, i. e. there is exactly one
directed path from C0 to each vertex.

For all d ∈ N we furthermore define the mappings

ζd,T : Vd → VT

(C1, r1C2, . . . , Ck) 7→ Ck.

It is purely technical to check that ζd,T induces the simulation

ζ̄d,T = {(p, ζd,T (p)) |p ∈ Vd} : Gd
−→∼GT .

Also note that ζd,T leaves labels unchanged.

Lemma 27. Let U = (A, T ) be an ELgfp-concept description of node size m, I a model
of cardinality n, and d = m ·n + 1. Then x ∈ (Ud)

I implies x ∈ U I .

Proof. Let Gd be the description graph corresponding to Td whose vertices are denoted
as in the above construction. Since x ∈ (Ud)

I we know from Proposition 21 that there
is a simulation

Zd : Gd
−→∼GI

such that ((A), x) ∈ Zd. Using this simulation we construct a mapping

z : Gd → GI

such that z((A)) = x and for all (C1, r1, C2 . . . , Ck) ∈ Vd we have

(

(C1, r1, C2 . . . , Ck), z
(
(C1, r1, C2 . . . , Ck)

))

∈ Zd (10)

and

(

(C1, r1, C2 . . . , Ck−1), r, (C1, r1, C2 . . . , Ck)
)

∈ Ed

⇒
(

z
(
(C1, r1, C2 . . . , Ck−1)

)
, r, z

(
(C1, r1, C2 . . . , Ck)

))

∈ EI . (11)

This can be done recursively by first defining z((A)) = x. Now assume that we have al-
ready assigned a value to z((C1, r1, C2 . . . , Ck)). Then for every (C1, r1, C2 . . . , Ck, rk, Ck+1) ∈
Vd we know from the construction of Vd that

(Ck, rk, Ck+1) ∈ ET (12)

and
(
(C1, r1, C2 . . . , Ck), rk, (C1, r1, C2 . . . , Ck, rk, Ck+1)

)
∈ Ed (13)

from the construction of Ed. Since
(
(C1, r1, C2 . . . , Ck), z((C1, r1, C2 . . . , Ck))

)
∈ Zd

there must be some y ∈ ∆I such that
(
(C1, r1, C2 . . . , Ck, rk, Ck+1), y

)
∈ Zd and (x, rk, y) ∈

EGI
. Defining z

(
(C1, r1, C2 . . . , Ck, rk, Ck+1)

)
= y suffices (10) and (11).
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Since Gd is a directed tree, there is exactly one path from (A) to every other vertex
in Vd. We define V̄ to be the set of vertices p ∈ Vd such that on the path from (A) to
p there are no two distinct vertices q and r with

(
ζd,T (q), z(q)

)
=

(
ζd,T (r), z(r)

)
.

Since there are only m · n = d − 1 possible values for (ζd,T (q), z(q)), such a path can
have at most length d− 1. In other words, V̄ contains only vertices with depth(p) < d.

Define
Z =

{(
ζd,T (p), z(p)

) ∣
∣ p ∈ V̄

}
.

We show that Z is a simulation Z : GT → GI with (A, x) ∈ Z. For every pair
(
ζd,T (p), z(p)

)
∈ Z we know that

LT

(
ζd,T (p)

)
= Ld(p)

because ζd,T preserves labels. Since (p, z(p)) ∈ Zd and Zd is a simulation we have

Ld(p) ⊆ LI

(
z(p)

)
.

Hence
LT

(
ζd,T (p)

)
⊆ LI

(
z(p)

)
.

Now let
(
ζd,T (p), r, v

)
∈ ET be an edge in GT . Since p ∈ V̄ and thus depth(p) < d

we know from the construction of Gd that there is some vertex p′ ∈ Vd such that
(p, r,p′) ∈ Ed. By (11) this implies that

(
z(p), r, z(p′)

)
∈ EI .

To prove that (ζd,T (p′), z(p′)) ∈ Z we look at two cases. Either p′ ∈ V̄ . Then
(ζd,T (p′), z(p′)) ∈ Z by definition. In the other case that p′ /∈ V̄ there must be two
distinct vertices q and r on the path that connects (RT ) and p′ with

(
ζd,T (q), z(q)

)
=

(
ζd,T (r), z(r)

)
.

However, since p ∈ V̄ , r (the later node among q and r) must be equal to p′. Thus

(
ζd,T (p′), z(p′)

)
=

(
ζd,T (r), z(r)

)
=

(
ζd,T (q), z(q)

)
∈ Z.

This proves that Z is a simulation from GT to GI such that (A, x) ∈ Z. Hence
x ∈ UI follows from Proposition 21.

Proof of Theorem 25. Let U be an ELgfp-concept description and I a description con-
text. We must find an acyclic ELgfp-concept description V such that U v V and U I = VI .

Let m be the node size of U , n the cardinality of I, and d = m ·n + 1. We know
that U v Ud, and thus also U I ⊆ (Ud)

I . Lemma 27 shows that the inclusion in the other
direction holds as well. Thus, V := Ud does the job.

The complete set of implications given in the corollary is, of course, infinite. Also
note that, though the left-hand sides U of implications in this set are acyclic, the right-
hand sides U II need not be acyclic. We show next that there is also a finite sound and
complete set of implications. As mentioned before, a finite basis can then be obtained
by removing redundant elements.
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Theorem 28. In ELgfp, for any description context I, there exists a finite set B of
implications that is sound and complete for I.

Proof. By Corollary 26 it suffices to find a finite and sound set of implications from which
all implications of the form U → U II , where U is an acyclic ELgfp-concept description,
follow. To this purpose, consider the set E := {U I | U is an ELgfp-concept description},
and let C be a set of ELgfp-concept descriptions that contains, for each set X ∈ E ,
exactly one element V with VI = X. Because of Theorem 25, we can assume without
loss of generality that C contains only acyclic descriptions. Since ∆I is finite, the sets
E and C are also finite.

Consider the following finite set of implications, which is obviously sound:

B := {P → P II |P ∈ Nprim ∪ {>}}

∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}

∪ {C1 u C2 → (C1 u C2)
II |C1, C2 ∈ C}.

We show that, for any acyclic ELgfp-concept description U , the implication U → U II

follows from B. Since U is acyclic, we can view it as an EL-concept description. The
proof is by induction on the structure of this description.

Base case: U = P ∈ Nprim ∪ {>}. Then P → P II is in B by definition. Thus, it
also follows from B.

Step case 1 : U = ∃r.V for some r ∈ Nr and some EL-concept description V. Let
J be a description context in which all implications from B hold. The semantics of
existential restrictions yields

UJ = (∃r.V)J = {x ∈ ∆J | ∃y ∈ VJ : (x, y) ∈ rJ}.

By the induction hypothesis, V → V II follows from B, and thus holds in J . Therefore
VJ ⊆ (VII)J , which yields

UJ ⊆ {x ∈ ∆J | ∃y ∈ (VII)J : (x, y) ∈ rJ}.

Now, choose C ∈ C such that CI = VI . Lemma 2(g) yields VII v C, and thus

UJ ⊆ {x ∈ ∆J | ∃y ∈ CJ : (x, y) ∈ rJ}

= (∃r.C)J .

Since ∃r.C → (∃r.C)II ∈ B holds in J by assumption, we get

UJ ⊆ ((∃r.C)II)J

= ({x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}I)J

= ({x ∈ ∆I | ∃y ∈ VI : (x, y) ∈ rI}I)J

= ((∃r.V)II )J = (UII)J .

Thus, we have shown that U → U II holds in every description context J in which all
implications from B hold.
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Step case 2 : U = U1 uU2 for EL-concept descriptions U1,U2. Let J be a description
context in which all implications from B hold. By the induction hypothesis, U J

1 ⊆ (UII
1 )J

and UJ
2 ⊆ (UII

2 )J . Therefore

UJ = (U1 u U2)
J = UJ

1 ∩ UJ
2 ⊆ (UII

1 )J ∩ (UII
2 )J .

We choose C1, C2 ∈ C such that CI
1 = UI

1 and CI
2 = UI

2 . Then

UJ ⊆ (CII
1 )J ∩ (CII

2 )J ⊆ CJ
1 ∩ CJ

2 = (C1 u C2)
J ,

where the second inclusion holds due to Lemma 2(d). Since the implication C1 uC2 →
(C1 u C2)

II ∈ B holds in J , we get

UJ ⊆ ((C1 u C2)
II)J

= ((CI
1 ∩ CI

2 )I)J

= ((U I
1 ∩ UI

2 )I)J

= ((U1 u U2)
II)J = (UII)J .

This shows that U → U II follows from B.

Corollary 29. In ELgfp, for any description context I there exists a finite basis for the
implications holding in I.

Proof. Starting with B∗ := B, where in the beginning all implications are unmarked,
take an unmarked implication U → V ∈ B∗. If this implication follows from B∗, then
remove it, i.e., B∗ := B∗ \ {U → V}; otherwise, mark U → V. Continue with this until
all implications in B∗ are marked. The final set B∗ is the desired basis.

5 A finite basis for the implications in standard EL

Although the sublanguage EL of ELgfp is not an instance of our general framework, we
can nevertheless show the above corollary also for this language. Because of Proposi-
tion 5, it is sufficient to show that in ELgfp any description context I has a finite basis
consisting of implications where both the left-hand and the right-hand sides are acyclic.

The following proposition will allow us to construct a finite set of implications with
acyclic right-hand sides from which a given implication U → U II (with potentially cyclic
right-hand side) follows. Recall that, for any ELgfp-concept description U , we obtain the
acyclic description Ud by unraveling the description graph and then cutting all branches
at depth d.

Lemma 30. Let k0 be any natural number. Then for every concept description U ∈
ELgfp the implication U → U II follows from

B ={(XI)k0
→ (XI)k0+1 |X ⊆ ∆I}

∪ {U → (U II)k0
}

where (XI)k denotes the unraveling of XI up to depth k and (U II)k denotes the unrav-
eling of U II up to depth k.
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Once again, the proof requires some technical work and will be provided after the
following results.

Lemma 31. Let U = (A, T ) ∈ ELgfp. Then we can find a set P ⊆ Nprim and a set
X ⊆ Nrole × ELgfp such that

U ≡
l

P∈P

P u
l

(r,S)∈X

∃r.S

Proof.

U ≡
l

B∈LT (A)

B u
l

(A,r,C)∈ET

∃r.(C, T ).

Lemma 32. Let X ⊆ ∆I . Then we can find a set P ⊆ Nprim and a set Y ⊆ Nrole ×
P(∆I) such that

XI ≡
l

P∈P

P u
l

(r,Y )∈Y

∃r.Y I

Proof. By Lemma 31 we know that we can write X I as

XI ≡
l

P∈P

P u
l

(r,S)∈X

∃r.S

for some P ⊆ Nprim and some X ⊆ Nrole×ELgfp. From Lemma 2 we know that SII v S
for any S ∈ ELgfp and hence

∃r.SII v ∃r.S.

This implies that

XI ≡
l

P∈P

P u
l

(r,S)∈X

∃r.S

w
l

P∈P

P u
l

(r,S)∈X

∃r.SII .
(14)

Looking at the extension of
d

P∈P P u
d

(r,S)∈X ∃r.SII we get

( l

P∈P

P u
l

(r,S)∈X

∃r.SII

)I

=
⋂

P∈P

P I ∩
⋂

(r,S)∈X

(
∃r.SII

)I

=
⋂

P∈P

P I ∩
⋂

(r,S)∈X

{x ∈ ∆I | ∃y ∈ SIII : (x, y) ∈ rI}
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and by Lemma 2 (f)

( l

P∈P

P u
l

(r,S)∈X

∃r.SII

)I

=
⋂

P∈P

P I ∩
⋂

(r,S)∈X

{x ∈ ∆I | ∃y ∈ SIII : (x, y) ∈ rI}

=
⋂

P∈P

P I ∩
⋂

(r,S)∈X

{x ∈ ∆I | ∃y ∈ SI : (x, y) ∈ rI}

=

( l

P∈P

P u
l

(r,S)∈X

∃r.S

)I

=XII .

So XI and
d

P∈P P u
d

(r,S)∈X ∃r.SII have the same extension in I. By definition we

know that XI is the least concept description with the extension X II and therefore

XI v
l

P∈P

P u
l

(r,S)∈X

∃r.SII . (15)

From (14) and (15) we get

XI ≡
l

P∈P

P u
l

(r,S)∈X

∃r.SII . (16)

With Y := {(r,SI ) | (r,S) ∈ X} we get the desired result.

Proposition 33. Let S, T ∈ ELgfp be concept descriptions. Let r ∈ Nrole be a role
name. Then

(∃r.S)k ≡ ∃r.(Sk−1)

(S u T )k ≡ Sk u Tk,

where (∃r.S)k denotes the unraveling of ∃r.S up to depth k, etc.

Proof. From the definition of ∃r.S we know that except for the root vertex
(
R∃r.S

)
every

vertex in G(∃r.S)
k

is of the form

(
R∃r.S , r, RS , r1, C1, . . . , Cl

)
,

where
(
RS , r1, C1, . . . , Cl

)
is a path of length l in S and l ≤ k − 1. Then it is purely

technical and not very hard to check that Z defined as

Z =
{(

(R∃r.S), R∃r.Sk−1

)}
∪

{(
(R∃r.S , r, RS , r1, C1, . . . , Cl), (RS , r1, C1, . . . , Cl)

)
| (RS , r1, C1, . . . , Cl) ∈ Sk−1

}

is a simulation from G(∃r.S)
k

to G∃r.Sk−1
and that Z−1 is a simulation from G∃r.Sk−1

to
G(∃r.S)

k
. This shows that (∃r.S)k ≡ ∃r.(Sk−1).
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Proof of Lemma 30. To prove the proposition, we first show, by induction on `, that
the implications (XI)` → (XI)`+1 follow from B for all ` ≥ k0. For ` = k0 this is trivial
because (XI)k0

→ (XI)k0+1 ∈ B.
Now, assume that (Y I)k → (Y I)k+1 follows from B for every Y ⊆ ∆I and every

k, k0 ≤ k < `. Let J be a model in which all implications from B hold. Then, by the
induction hypothesis, we get

((Y I)k)
J ⊆ ((Y I)k+1)

J (17)

for all k0 ≤ k < ` and all Y ⊆ ∆I . By (∗), for any set X ⊆ ∆I , there exist sets
P ⊆ Nprim and Y ⊆ Nr × P(∆I) such that

XI ≡
l

P∈P

P u
l

(r,Y )∈Y

∃r.Y I .

It is easy to see that this implies

(XI)` ≡
l

P∈P

P u
l

(r,Y )∈Y

∃r.(Y I)`−1 (18)

and
(XI)`+1 ≡

l

P∈P

P u
l

(r,Y )∈Y

∃r.(Y I)`. (19)

Thus, we have

(

(XI)`

)J (18)
=

( l

P∈P

P u
l

(r,Y )∈Y

∃r.(Y I)`−1

)J

=
l

P∈P

P J u
l

(r,Y )∈Y

{x ∈ ∆J | ∃y ∈ ((Y I)`−1)
J : (x, y) ∈ rJ}.

From (17) we obtain ((Y I)`−1)
J ⊆ ((Y I)`)

J , and thus

(

(XI)`

)J

⊆
l

P∈P

P J u
l

(r,Y )∈Y

{x ∈ ∆J | ∃y ∈ ((Y I)`)
J : (x, y) ∈ rJ}

=
( l

P∈P

P u
l

(r,Y )∈Y

∃r.(Y I)`

)J

(19)
=

(

(XI)`+1

)J

.

Hence we have shown that (XI)` → (XI)`+1 follows from B, which concludes the
induction proof.

Now, let J again be a model in which all implications from B hold, and let x ∈ U J .
We must show that this implies x ∈ (U II)J . We have x ∈ ((U II)k0

)J because U →
(UII)k0

∈ B. Hence x ∈ ((U II)k)
J for all k ≤ k0 since (U II)k0

v (U II)k for all k ≤ k0.
From what we have shown above, we know that

(U II)k → (UII)k+1
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follows from B for all k ≥ k0. Thus ((U II)k)
J ⊆ ((U II)k+1)

J holds in J for all k ≥ k0,
which yields x ∈ ((U II)k)

J also in this case.

Therefore x ∈ ((U II)k)
J for k = |GU |·|∆J |+1, independently of whether this number

is smaller or larger than k0. It follows directly from Lemma 27 that x ∈ (U II)J . Thus,
we have shown that

UJ ⊆ (UII)J

if all implications from B hold in J . This means that U → U II follows from B.

Having proved Proposition 30, we are almost finished with constructing a finite,
sound and complete set of acyclic implications for the implications holding in a de-
scription context I. The idea is to replace any implication U → U II in the finite,
sound and complete set of implications constructed in the proof of Theorem 28 by the
corresponding implications from Proposition 30.

The remaining problems is, however, that the set of implications obtained this way
need not be sound for I. Indeed, if k0 is too small, then the implications in {(X I)k0

→
(XI)k0+1 |X ⊆ ∆I} need not hold in I. Therefore, we define for every X ⊆ ∆I

dX := mX ·n + 1,

where mX is the node size of XI and n is the cardinality of the model I. The number
k0 is the maximum of these numbers, i.e.,

k0 := max
X⊆∆I

dX . (20)

Then, because dX ≤ k0 for every X ⊆ ∆I , we have

XI v (XI)k0+1 v (XI)k0
v (XI)dX

.

By Lemma 2(b), this implies

XII ⊆ ((XI )k0+1)
I ⊆ ((XI)k0

)I ⊆ ((XI )dX
)I .

From Lemma 27 we obtain XII ⊇ ((XI)dX
)I , and thus

XII = ((XI )k0+1)
I = ((XI)k0

)I = ((XI )dX
)I .

In particular, this shows

((XI)k0
)I ⊆ ((XI)k0+1)

I .

Hence, all implications in {(X I)k0
→ (XI)k0+1 |X ⊆ ∆I} hold in I.

Theorem 34. In ELgfp for any description context I there exists a finite set B of
implications that is complete, such that for any implication

(A → B) ∈ B

both A and B are acyclic.
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Proof. Let C be the set of acyclic ELgfp-concept descriptions defined in the proof of
Theorem 28. We have shown in that proof that the set

B? := {P → P II |P ∈ Nprim ∪ {>}}

∪ {∃r.C → (∃r.C)II | r ∈ Nr, C ∈ C}

∪ {C1 u C2 → (C1 u C2)
II |C1, C2 ∈ C}

is complete for I.
Let k0 be defined as in (20). Then, by Proposition 30, the fact that B? is complete

also implies that the following set of implications is complete for I:

B := {(XI )k0
→ (XI)k0+1 |X ⊆ ∆I}

∪ {P → (P II)k0
|P ∈ Nprim ∪ {>}}

∪ {∃r.C → ((∃r.C)II)k0
| r ∈ Nr, C ∈ C}

∪ {C1 u C2 → ((C1 u C2)
II)k0

|C1, C2 ∈ C}.

Regarding soundness, we have shown above that, due to the fact that k0 was chosen
large enough, all implications of the form (X I)k0

→ (XI)k0+1 hold I. The implications
P → (P II)k0

hold because P → P II holds in I, and P II v (P II)k0
. The same arguments

can be used to show that the implications of the forms ∃r.C → ((∃r.C)II)k0
and C1 u

C2 → ((C1 u C2)
II)k0

hold in I.
The left-hand sides of implications in B are acyclic since the elements of C are

acyclic, primitive concepts and > are acyclic, and any concept description of the form
Uk is acyclic. This last argument also shows that the right-hand sides of implications
in B are acyclic.

Corollary 35. In EL, for any description context I, there exists a finite basis for the
implications holding in I.

6 Conclusion

We have shown that any description context I (i.e., any finite relational structure over
a finite signature of unary and binary predicate symbols) has a finite basis for the EL-
and ELgfp-implications holding in I. Such a basis provides the knowledge engineer
with interesting information on the application domain described by the context. The
knowledge engineer can, for example, use these implications as starting point for building
an ontology describing this domain.

In this paper, we have concentrated on showing the existence of a finite basis. Of
course, if this approach is to be used in practice, we also need to find efficient algorithms
for computing the basis. After that, the next step will be to generalize attribute explo-
ration [7] to our more general setting. This would allow us to consider also relational
structures that are not explicitly given, but rather “known” by a domain expert.

Finally, we will also try to show similar results for other DLs. For the DL FL0,
which differs from EL in that existential restrictions are replaced by value restrictions,
we are quite confident that this is possible. For more expressive DLs, like ALC, this is
less clear.
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