
Dresden University of Technology
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Module Extraction and Incremental Classification:

A Pragmatic Approach for EL+ Ontologies

Boontawee Suntisrivaraporn

LTCS-Report 07-03

Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
http://lat.inf.tu-dresden.de

Nöthnitzer Str. 46
01187 Dresden

Germany

Module Extraction and Incremental Classification:

A Pragmatic Approach for EL+ Ontologies

Boontawee Suntisrivaraporn

Theoretical Computer Science, TU Dresden, Germany
meng@tcs.inf.tu-dresden.de

14 December 2007

Abstract

The description logic EL+ has recently proved practically useful in the
life science domain with presence of several large-scale biomedical ontolo-
gies such as Snomed ct. To deal with ontologies of this scale, standard
reasoning of classification is essential but not sufficient. The ability to ex-
tract relevant fragments from a large ontology and to incrementally classify
it has become more crucial to support ontology design, maintenance and re-
use. In this paper, we propose a pragmatic approach to module extraction
and incremental classification for EL+ ontologies and report on empirical
evaluations of our algorithms which have been implemented as an extension
of the CEL reasoner.

Contents

1 Introduction 2

2 Preliminaries 3

3 Modules Based on Connected Reachability 4

4 Goal-Directed Subsumption Algorithm 10

5 Duo-Ontology Classification 13

1

6 Experiments and Empirical Results 15

7 Related Work 18

8 Conclusion 19

1 Introduction

In the past few years, the EL family of description logics (DLs) has received
an increasing interest and been intensively studied (see, e.g., [2, 3, 4, 9]). The
attractiveness of the EL family is twofold: on the one hand, it is computationally
tractable, i.e. subsumption is decidable in polytime; on the other hand, it is
expressive enough to formulate many life science ontologies. Examples include
the Gene Ontology, the thesaurus of the US National Cancer Institute (Nci),
the Systematized Nomenclature of Medicine, Clinical Terms (Snomed ct), and
large part (more than 95%) of the Galen Medical Knowledge Base (Galen).
We lay emphasis on Snomed ct which comprises ∼0.5 million axioms and is
now a standardized clinical terminology adopted by health care sectors in several
countries [1].

Being a standard ontology, Snomed has been designed to comprehensively
cover a whole range of concepts in the medical and clinical domains. For this
reason, it is often the case that only a small part is actually needed in a spe-
cific application. The ability to automate extraction of meaningful sub-ontologies
that cover all relevant information is becoming important to support re-use of
typically comprehensive standardized ontologies. Several techniques for syntactic
module extraction have been proposed [10, 12, 7], since semantic extraction is
highly complex [7]. Though (deductive) conservative extension could be used as
a sufficient condition for extracting a module, it is unfortunately too expensive
(ExpTime-complete already in EL with GCIs [9]). In Section 3 of the present
paper, we define a new kind of module, called reachability-based modules, which is
motivated by a once-employed optimization technique in the CEL system. Also,
we propose an algorithm for extracting modules of this kind and show some in-
teresting properties.

Despite being classifiable by modern DL reasoners, design and maintenance
of large-scale ontologies like Snomed ct requires additional reasoning support.
This is due to the fact that an ontology under development evolves continuously,
and the developer often has to undergo the long process of full classification after
addition of a few new axioms. Though classification of Snomed requires less than
half an hour (see [3] or Table 1 in the present paper), the ontology developer is
not likely willing to wait that long for a single change. In the worst case, she
may end up not using automated reasoning support which could have helped
identify potential modeling errors at an early stage. In Section 4, we propose a

2

goal-directed variant of the EL+ classification algorithm developed in [4] which
can be used for testing subsumption queries prior to full classification. Section 5
presents an extension of the algorithm in [4] to cater for two ontologies: the
permanent ontology Op which has been carefully modeled, and axioms of which
are not supposed to be modified; and, the temporary ontology Ot that contains
new axioms currently being authored. The extended algorithm reuses information
from the previous classification of Op and thus dispense with the need of the full
classification of Op ∪ Ot. We call reasoning in this setting restricted incremental
classification.

All algorithms proposed in this paper have been implemented in the CEL rea-
soner [3] and various experiments on realistic ontologies have been performed.
The experiments and some promising results are discussed in Section 6.

2 Preliminaries

The present paper focuses on the sub-Boolean DL EL+ [4], which is the underlying
logical formalism of the CEL reasoner [3]. Similar to other DLs, an EL+ signature
is the disjoint union S = CN∪RN of the sets of concept names and role names. EL+

concept descriptions (or complex concepts) can be defined inductively as follows:
each concept name A ∈ CN and the top concept > are EL+ concept descriptions;
and, if C,D are EL+ concept descriptions and r ∈ RN is a role name, then concept
conjunction C uD and existential restriction ∃r.C are EL+ concept descriptions.
An EL+ ontology O is a finite set of general concept inclusion (GCI) axioms
C v D and role inclusion (RI) axioms r1 ◦ · · · ◦ rn v s with C,D EL+ concept
descriptions and ri, s role names. Concept equivalences and (primitive) concept
definitions are expressible using GCIs, whereas RIs can be used to express various
role axioms, such as reflexivity (ε v r), transitivity (r ◦ r v r), right-identity
(r ◦ s v r), and role hierarchy (r v s) axioms. Figure 1 illustrates an example in
the medical domain. For convenience, we write Sig(O) (resp., Sig(α), Sig(C)) to
denote the signature of the ontology O (resp., the axiom α, the concept C), i.e.
concept and role names occurring in it.

The main inference problem for concepts is subsumption query : given an on-
tology O and two concept descriptions C,D, check if C is subsumed by (i.e. more
specific than) D w.r.t. O, written C vO D. From our example ontology, it is not
difficult to draw that Pericarditis vOex

∃has-state.NeedsTreatment. The identifica-
tion of subsumption relationships between all pairs of concept names occurring
in O is known as ontology classification.

The semantics of EL+ ontologies, as well as of subsumption, is defined by
means of interpretations in the standard way, and we refer the reader to [4, 2].

3

α1 Pericardium v Tissue u ∃contained-in.Heart

α2 Endocardium v Tissue u ∃part-of.HeartValve

α3 Pericarditis v Inflammation u ∃has-location.Pericardium

α4 Endocarditis v Inflammation u ∃has-location.Endocardium

α5 Inflammation v Disease u ∃acts-on.Tissue

α6 Disease u ∃has-location.Heart v HeartDisease

α7 HeartDisease v ∃has-state.NeedsTreatment

α8 part-of ◦ part-of v part-of

α9 has-location ◦ contained-in v has-location

Figure 1: An example EL+ ontology Oex.

3 Modules Based on Connected Reachability

In this section, we introduce a new kind of module based on connected reachabil-
ity, and propose an algorithm for extracting the modules of this kind. We also
show that, in the DL EL+, our modules indeed correspond to modules based on
syntactic locality first introduced in [7]. We start by giving the general definition
of module:

Definition 1 (Modules for an axiom and a signature). Let O be an EL+

ontology, and O′ a (possibly empty) set of axioms from O. We say that O′ is a
module for an axiom α in O (for short, α-module in O) if: O′ |= α iff O |= α.

We say that O′ is a module for a signature S if for every axiom α with Sig(α) ⊆
S, we have that O′ is an α-module in O. ♦

Intuitively, a module of an ontology O is a subset O′ ⊆ O that preserves
an axiom of interest or the axioms over a signature of interest. Observe that
this is a very generic definition, in the sense that the whole ontology is itself a
module. In the following, we are interested in certain sufficient conditions that
not only extract a module according to Definition 1 but also guarantee relevancy
of extracted axioms. Note that if O |= α, a justification (minimal axiom set that
has the consequence) is a minimal α-module in O. A justification covers one
axiom, not the axioms over a signature, thus it is normally expensive to obtain
and involve standard inference reasoning, such as subsumption. For this reason,
various syntactic approaches to extracting ontology fragments have been proposed
in the literature [10, 12, 7]. In [7], Cuenca Grau et al. introduced a kind of module
based on so-called syntactic locality. Here, we recap the notion of syntactic locality
modulo the DL EL+.

4

Definition 2 (Locality-based modules). Let O be an EL+ ontology and S a
signature. The following grammar recursively defines the set of concepts Con⊥(S):

Con⊥(S) ::= A⊥ | (C⊥ u C) | (C u C⊥) | (∃r.C⊥) | (∃r⊥.C)

with r is a role name, C a concept description, A⊥, r⊥ 6∈ S, and C⊥ ∈ Con⊥(S).
An EL+ axiom α is syntactically local w.r.t. S if it is one of the following

forms: (1) R⊥ v s where s is a role name and R⊥ is a role name r⊥ 6∈ S or a
role composition r1 ◦ · · · ◦ rn with ri 6∈ S for some i ≤ n, or (2) C⊥ v C where
C⊥ ∈ Con⊥(S) and C is a concept description. We write local(S) to denote the
collection of all EL+ axioms that are syntactically local w.r.t. S.

If O can be partitioned into O′ and O′′ s.t. every axiom in O′′ is syntactically
local w.r.t. S ∪ Sig(O′), then O′ is a locality-based module for S in O.

♦

Now we consider the optimization techniques of “reachability” that are used to
heuristically determine obvious subsumption and non-subsumption relationships.
The reachability heuristic for non-subsumptions can easily be exploited in module
extraction for EL+ ontologies. To obtain a more satisfactory module size, however,
we introduce a more appropriate (stronger) reachability notion and develop an
algorithm for extracting modules based on this notion.

Definition 3 (Strong/weak reachability). Let O be an EL+ ontology, A,B
concept names in O. The strong (weak) reachability graph Gs(O) (Gw(O)) for O
is a tuple (Vs, Es) ((Vw, Ew)) with Vs = CN(O) (Vw = CN(O)) and Es (Ew) the
smallest set containing an edge (A,B) if A v D ∈ O s.t. B is a conjunct in D (if
C v D ∈ O s.t. A occurs in C and B occurs in D).

We say that B is strongly reachable (weakly reachable) from A in O if there is
a path from A to B in Gs(O) (Gw(O)). ♦

Observe that B is strongly reachable from A in O implies A vO B, while
A vO B implies that B is weakly reachable from A in O.

The weak reachability graph Gw(O) for O can be extended in a straightforward
way to cover all the symbols in O, i.e. also role names. Precisely, we define the
extension as G ′w(O) := (Sig(O), E ′

w) with (x, y) ∈ E ′
w iff there is an axiom αL v

αR ∈ O s.t. x ∈ Sig(αL) and y ∈ Sig(αR). A module for S = {A} in an ontology O
based on extended weak reachability can be extracted as follows: construct G ′

w(O),
extract all the paths from A in Gw(O), and finally, accumulate axioms responsible
for the edges in those paths. However, this kind of module is relatively large, and
many axioms are often irrelevant. For example, any GCIs with Disease appearing
on the left-hand side, such as Disease u ∃has-location.Brain v BrainDisease, would
be extracted as part of the module for S = {Pericarditis}. This axiom is irrelevant
since Pericarditis does not refer to Brain and thus BrainDisease. Such a module

5

would end up comprising definitions of all disease concepts. To rule out this
kind of axioms, we make the notion of reachability graph stronger as follows: All
symbols appearing on the left-hand side (e.g., Disease, has-location and Brain) are
viewed as a connected node in the graph, which has an edge to each symbol (e.g.,
BrainDisease) on the right-hand side of the axiom. The connected node is reachable
from x iff all symbols participating in it are reachable from x. In our example,
since both has-location and Brain are not reachable from Pericarditis, neither is
BrainDisease. Therefore, the axiom is not extracted as part of the refined module.

Definition 4 (Connected reachability and modules). Let O be an EL+

ontology, S ⊆ Sig(O) a signature, and x, y ∈ Sig(O) concept or role names. We
say that x is connectedly reachable from S w.r.t. O (for short, reachable from S
or S-reachable) iff x ∈ S or there is an axiom (either GCI or RI) αL v αR ∈ O
s.t. x ∈ Sig(αR) and, for all y ∈ Sig(αL), y is reachable from S.

We say that an axiom βL v βR is connected reachable from S w.r.t. O (for
short, S-reachable) if, for all x ∈ Sig(βL), x is S-reachable. The reachability-based
module for S in O, denoted by Oreach

S
, is the smallest set of all S-reachable axioms,

i.e. Oreach

S
= {α ∈ O|α is S-reachable w.r.t. O}. ♦

Intuitively, x is reachable from y w.r.t. O means that y syntactically refers to
x, either directly or indirectly via axioms in O. If x, y are concept names, then
the reachability suggests a potential subsumption relationship y vO x. Note,
in particular, that axioms of the forms > v D and ε v r in O are reachable
from any symbol in Sig(O) because Sig(>) = Sig(ε) = ∅, and therefore occur in
every module. In our example, Oreach

{Pericarditis} contains axioms α1, α3, α5–α7 and α9.
We now show some properties of connected reachability and reachability-based
modules that are essential for establishing the subsequent lemmas:

Proposition 5 (Properties of reachability and Oreach

S
). Let O be an EL+ on-

tology, S,S1,S2 ⊆ Sig(O) signatures, x, y, z symbols in Sig(O), and A,B concept
names in CN(O). Then, the following properties hold:

1. If S1 ⊆ S2, then Oreach

S1
⊆ Oreach

S2
.

2. If x is y-reachable and y is z-reachable, then x is z-reachable.

3. If x is reachable from y w.r.t. O, then Oreach

{x} ⊆ O
reach

{y}

4. x ∈ S ∪ Sig(Oreach

S
) if, and only if, x is reachable from S w.r.t. O.

5. If B is not connected reachable from A, then A 6vO B.

6

Proof.

To show Point 1, it is enough to show, for each axiom α = (αL v αR) ∈ O,
that α ∈ Oreach

S1
implies α ∈ Oreach

S2
. By definition, it follows from α ∈ Oreach

S1
that x

is S1-reachable for all x ∈ Sig(αL). Since S1 ⊆ S2, x is also S2-reachable. Again,
by definition, we have α ∈ Oreach

S2
.

We can prove Point 2 by induction on the connected reachability of y to x.
Induction Start: y = x. Then, x is z-reachable. Induction Step: there exists an
axiom αL v αR ∈ O such that x ∈ Sig(αR) and, for all x′ ∈ Sig(αL), x′ is y-
reachable. By I.H., x′ is z-reachable, implying by definition that x is z-reachable.

Point 2 can now be used to prove Point 3. It suffices to show that α ∈ Oreach

{x}

implies α ∈ Oreach

{y} , for each α = (αL v αR) ∈ O. By definition, α ∈ Oreach

{x} implies

that, for all z ∈ Sig(αL), z is x-reachable. Since x is y-reachable, Point 3 implies
that z is y-reachable. This means that α is y-reachable, thus α ∈ Oreach

{y} .

“Only if” direction of Point 4: Trivial if x ∈ S. If x ∈ Sig(Oreach

S
), then there

is an α = (αL v αR) ∈ Oreach

S
s.t. x ∈ Sig(α). Since such an α is S-reachable,

all x′ ∈ Sig(αL) must be S-reachable. By definition, every x′ ∈ Sig(αR) is also
reachable. “If” direction: Assume that x is S-reachable. By definition, if x is
S-reachable, then x ∈ S, or there is an α = (αL v αR) ∈ O s.t. x ∈ Sig(αR) and,
for all y ∈ Sig(αL), y is reachable from S. It is trivial that x ∈ S ∪ Sig(Oreach

S
)

in the first case. In the latter case, we have that α is S-reachable, implying by
definition that α ∈ Oreach

S
. Thus, x ∈ Sig(α) ⊆ S ∪ Sig(Oreach

S
).

To prove Point 5, we assume that B is not connectedly reachable from A.
Define an interpretation I = (∆I , ·I) by setting ∆I := {a}, A′I := {a} for all
A-reachable concept names A′, rI := {(a, a)} for all A-reachable role names r,
and xI := ∅ for all concept and role names x unreachable from A. It is easy to
see that AI 6⊆ BI with a the witness. It remains to show that I is a model of O.
With A-reachability, the ontology O can be partitioned into O′ ∪ O′′ with O′ :=
{α ∈ O | α is A-reachable}, and O′′ := O\O′. For each α = (αL v αR) ∈ O′,
we have that all symbols in Sig(α) are reachable from A and thus are interpreted
as {a} and {(a, a)}, respectively. It follows that αL

I = αR
I = {a} if α is a GCI,

and αL
I = αR

I = {(a, a)} otherwise. In both cases, we have that I |= α. For
each β = (βL v βR) ∈ O′′, there is a symbol x ∈ Sig(βL) unreachable from A. By
construction of I, we have xI = ∅, implying βL

I = ∅. Thus, I |= β as required.

o

The converse of Point 5 is not true in general, for instance, Pericarditis involves
Tissue, but the corresponding subsumption does not follow from the ontology.
This suggests that we could use connected reachability as a heuristic for answering
negative subsumption, in a similar but finer way as in weak reachability.

We outline our algorithm for extracting the reachability-based module given a
signature S and an ontology O in Algorithm 1. Similar to the technique developed
in [4], we view the input ontology O as a mapping active-axioms : Sig(O) → O

7

Algorithm 1 extract-module

Input: O: EL+ ontology; S: signature
Output: OS: reachability-based module for S in O

1: OS ← ∅
2: queue← active-axioms(S)
3: while not empty(queue) do
4: (αL v αR)← fetch(queue)
5: if Sig(αL) ⊆ S ∪ Sig(OS) then
6: OS ← OS ∪ {αL v αR}
7: queue← queue ∪ (active-axioms(Sig(αR)) \ OS)
8: return OS

with active-axioms(x) comprising all and only axioms αL v αR ∈ O such that

x occurs in αL. The main differences, compared to Ô mapping in Section 4
are that active-axioms does not assume the input ontology to be in normal form,
and that it is defined for both concept and role names. The intuition is that
every axiom α ∈ active-axioms(x) is “active” for x, in the sense that y could be
connectedly reachable via α from x for some y ∈ Sig(O). For convenience, we
define active-axioms(S) :=

⋃
x∈S

active-axioms(x) for a signature S ⊆ Sig(O).
It is easy to see that each axiom Algorithm 1 extracts toOS is S-reachable. The

fact that all S-reachable axioms are extracted to OS can be proved by induction
on connected reachability.

Proposition 6 (Algorithm 1 produces Oreach

S
). Let O be an EL+ ontology and

S ⊆ Sig(O) a signature. Then, Algorithm 1 returns the reachability-based module
for S in O.

In fact, connected reachability can be reduced to propositional Horn clause
implication. The idea is to translate each EL+ axiom αL v αR into the Horn
clause l1 ∧ · · · ∧ lm → r1 ∧ · · · ∧ rn where li ∈ Sig(αL) and ri ∈ Sig(αR). Given a
signature S and a symbol x, x is S-reachable iff x is implied by

∧
y∈S

y w.r.t. the
Horn clauses. The Dowling-Gallier algorithm [5] can check this in linear time.

Lemma 7 (Oreach

A preserves A vO B). Let O be an EL+ ontology, A ∈ CN(O),
and Oreach

A the reachability-based module for S = {A} in O. Then, for any
α = A v B with B ∈ CN(O), O |= α iff Oreach

A |= α.

Proof. “If” direction immediately follows from monotonicity of EL+. For “only
if”, we show that if Oreach

A 6|= α, then O 6|= α. Assume that Oreach

A 6|= α = (A v
B) and that B is connectedly reachable from A in O, for otherwise, Point 5 of
Proposition 5 implies that O 6|= α, and we are done. Since Oreach

A 6|= α, there is a
model IA of Oreach

A such that AIA 6⊆ BIA . Extend IA to I by setting xI := ∅ for
all x ∈ Sig(O)\Sig(Oreach

A). Since I is an extension of IA and A,B ∈ Sig(Oreach

A), I

8

is a model of Oreach

A and AI 6⊆ BI . For each axiom β = (βL v βR) ∈ O\Oreach

A , we
have that Sig(βL) 6⊆ Sig(Oreach

A), since β is not A-reachable. It follows that there
is an x ∈ Sig(βL) s.t. xI = ∅, implying by the semantics of EL+ that βL

I = ∅.
Thus, I |= β. o

This property suggests that, to query subsumption, it is enough to extract and
maintain only linearly many modules, i.e. one for each concept name. Precisely,
the module OA can be used to correctly answer subsumption A v?

O B for any
concept name B ∈ Sig(O). In the following, we show a tight relationship between
our reachability-based modules and locality-based modules. Since locality-based
modules also enjoy the property stated by Lemma 7, it is indeed an immediate
corollary of the following result:

Lemma 8 (Oreach

S
is the minimal locality-based module). Let O be an EL+

ontology, S ⊆ Sig(O) a signature. Then, Oreach

S
is the minimal locality-based

module for S in O.

Proof. First, we show that Oreach

S
is a locality-based module. To prove this, it

suffices to show that, for each axiom α = (αL v αR) ∈ O\Oreach

S
, α is syntactically

local w.r.t. S ∪ Sig(Oreach

S
). Since Oreach

S
contains only S-reachable axioms, αL is

not S-reachable, i.e. there exists an x ∈ Sig(αL) such that x is not S-reachable. By
Point 4 of Proposition 5, x 6∈ S∪Sig(Oreach

S
). Since x occurs in αL, by Definition 2,

α is syntactically local w.r.t. S ∪ Sig(Oreach

S
), as required.

It remains to show that Oreach

S
is minimal. Assume to the contrary that a

smaller set Oreach

S
\{α} is a locality-based module, for some axiom α = (αL v

αR) ∈ Oreach

S
. By definition, each axiom β ∈ O\(Oreach

S
\{α}) is syntactically local

w.r.t. S′ = S ∪ Sig(Oreach

S
\{α}). In particular, α is syntactically local w.r.t. S′.

Our claim is that α is not reachable from S w.r.t. O. This contradicts the fact
that α ∈ Oreach

S
. Ã

Claim: Let S′ = S ∪ Sig(Oreach

S
\{α}) with α syntactically local w.r.t. S′. Then,

α is not reachable from S w.r.t. O.
Since α = (αL v αR) is syntactically local w.r.t. S′, there exists an x ∈ Sig(αL)

s.t. x 6∈ S′. There are two mutually disjoint cases: x 6∈ S ∪ Sig(Oreach

S
) or x ∈

Sig(α)\(S ∪ Sig(Oreach

S
\{α})). In the former case, x (thus, α) is not S-reachable

by Point 4 of Proposition 5. In the latter case, x does not occur in any other
axioms from Oreach

S
apart from α. In order for x to be S-reachable, x must occur

on the right-hand side of some axiom. Since x occurs only in α, it means that
x ∈ Sig(αR). But, since x occurs on the left-hand side of α as well, x cannot be
S-reachable.

o

So, Algorithm 1 can be used to extract a locality-based module in an EL+

ontology. The main difference, in contrast to the algorithm used in [7, 6], is that
our algorithm considers only “active” axioms for αR when a new axiom αL v αR

9

is extracted. Also, testing whether an EL+ axiom α = (αL v αR) is non-local
w.r.t. a signature S ∪ Sig(OS) boils down to testing S-reachability of α, which
is a simpler operation of testing set inclusion Sig(αL) ⊆? S ∪ Sig(OS). This
is due to the fact that any concept description and role composition αL, with
x ∈ Sig(αL) interpreted as the empty set, is itself interpreted as the empty set.
This observation could be used to optimize module extraction for ontologies in
expressive description logics.

4 Goal-Directed Subsumption Algorithm

In general, the techniques developed for module extraction have a number of
potential applications, including optimization of standard reasoning, incremental
classification and ontology re-use. An obvious way to exploit module extraction
to speed up standard reasoning, such as subsumption φ v?

O ψ, is to first extract
the module Oreach

φ for {φ} in O, and then query the subsumption φ v?
Oreach

φ

ψ, i.e.

against the module instead of the original ontology. Based on the assumption that
modules are relatively much smaller than the ontology, this optimization should
be highly effective. In this section, however, we argue that module extraction
actually does not help speed up standard reasoning in EL+. This stems from the
deterministic nature of the reasoning algorithm for deciding subsumption in EL+,
which is in contrast to non-deterministic tableau-based algorithms for expressive
logics, such as SHOIQ.

In fact, with small modifications to the EL+ classification algorithm (first
introduced in [2] for EL++ and later refined for implementation in [4]), we obtain
a subsumption testing algorithm. The modified algorithm does not actually have
to perform steps irrelevant to the subsumption in question – the goal. We call this
variant the goal-directed subsumption algorithm.

Algorithm 2 outlines the modified core procedure goal-directed-process to re-
place process of Figure 4 in [4]. The procedure process-new-edge, as well as essential

data structures, i.e. Ô, queue, R, S, remains intact. In particular, we view the
(normalized) input ontology O as a mapping Ô from concepts (appearing on the
left-hand side of some GCI) to sets of queue entries. Here, B denotes the set of
all concept names appearing in the conjunction B1 u · · · uBn.

The main difference is the initialization of S, thus of queue. Since we are
interested in the particular subsumption φ v ψ, we “activate” only φ by initial-
izing S(φ) with {φ,>} and queue(φ) with Ô(φ) ∪ Ô(>). We activate a concept
name B only when it becomes the second component of a tuple added to some
R(r) and has not been activated previously (see lines 8-9 in goal-directed-process

of Algorithm 2). Thereby, S(B) and queue(B) are initialized accordingly. Queues
are processed in the same fashion as before except that φ and ψ are now being
monitored (Line 6), so that immediately after ψ is added to S(φ), the algorithm

10

terminates with the positive answer (Line 7). Otherwise, goal-directed-process ter-
minates normally, and the next queue entry will be fetched (Line 3 in subsumes?

of Algorithm 2) and processed (Line 4). Unless ‘positive’ is returned, queues pro-
cessing is continued until they are all empty. In this case, the algorithm returns
‘negative’.

It is important to note that the goal-directed algorithm activates only concept
names relevant to the target subsumption φ v ψ, i.e. reachable via R(·) from
φ. The subsumer sets of concept names that do not become activated are not
populated. Moreover, axioms that are involved in rule applications during the
computation of subsumes?(φ v ψ) are those from the reachability-based module
Oreach

φ in O. The following proposition states this correlation:

Proposition 9 (subsumes?(φ v ψ) only requires axioms in Oreach
φ). Let O

be an ontology in EL+ normal form, and Oreach

φ the reachability-based module for

{φ} in O. Then, subsumes?(φ v ψ) only requires axioms in Oreach

φ ⊆ O.

Proof. Assume that Algorithm 2 requires α, for some axiom α ∈ O, i.e. α is used
in a rule application and thus causes addition to either S(·) or R(·). Before we
can prove the proposition, we need the following invariants:

Inv1: If a concept name A is activated, then A is φ-reachable w.r.t. O.

Inv2: If B ∈ S(A) for some concept name A, then B is φ-reachable w.r.t. O.

Inv3: If (A,B) ∈ R(r) for some role name r, then r is φ-reachable w.r.t. O.

Inv4: If (B → B) ∈ queue(A) and, for all B ′ ∈ B, B′ is φ-reachable, then B is
φ-reachable (a special case, if (∅ → B) ∈ queue(A), then B is φ-reachable);
and, if ∃r.B ∈ queue(A), then r and B are φ-reachable.

Inv5: If r is processed by process-new-edge, then r is φ-reachable w.r.t. O.

Preservation of these invariants can be proved by induction on on execution of the
algorithm. Induction start: φ is activated (Line 1 of subsumes?). By definition, φ
is φ-reachable w.r.t. O. Recall that only activated concepts A can be processed
by goal-directed-process. Induction step: we show the following four cases. Other
cases can be easily shown in a similar fashion.

• At Line 2 of goal-directed-process, B is added to S(A) if B ⊆ S(A). By Inv2,
every B′ ∈ B is reachable from A. Since A is activated, Inv1 together with
Point 2 of Proposition 5 implies that B′ is φ-reachable. By the first part of
Inv4, B is reachable from φ, thus preserving Inv2.

• At Line 3, elements from Ô(B) are added to queue(A). There are three
potential kinds of axioms involved, i.e. B v B ′, B v ∃r.B′, and B v B′ s.t.

11

B ∈ B. In the first two cases, B is φ-reachable due to Inv2 and B ∈ S(A).
By definition, B′ (r, B′, resp.) is φ-reachable, thus preserving Inv4. In the
last case, the first part of Inv4 follows immediately from the definition of
connected reachability with Sig(αL) = B and Sig(αR) = {B′}.

• At Line 9, B is activated. Since ∃r.B occurred in queue(A), r, B are φ-
reachable by the second part of Inv4. Thus, Inv1 is preserved.

• At Line 10, r is φ-reachable by the same argument above, preserving Inv5.
Procedure process-new-edge calls itself recursively potentially with a different
role name v. Given that r is φ-reachable, it is trivial to see that s in Line 1
is also φ-reachable. Invocation at Line 5 and 7 can be shown in a parallel
manner, and we only treat the former. By Inv3, (A′, A) ∈ R(u) implies that
u is φ-reachable. Since u ◦ s v v ∈ O and both u, s are reachable from φ, v
is also φ-reachable, preserving Inv5.

Now we show that α is indeed φ-reachable w.r.t. O, thus in Oreach

φ . We do case
distinction w.r.t. the normal form of α.

• X v Y is required when Ô(X) augments some queue (Line 3). X is φ-
reachable by Inv2 and the fact that it has been added to some S(A). Obvi-
ously, α is φ-reachable by definition.

• X v Y is required when Ô(X) augments some queue (Line 3), for an X ∈ X,
and X ⊆ S(A) for some concept name A. By Inv2, all X ′ ∈ X are φ-
reachable. Obviously, α is φ-reachable by definition.

• X v ∃r.Y (analogy to the first case).

• ∃r.X v Y is required Ô(∃r.X) augments some queue (Line 5 in goal-directed-

process and Line 3 in process-new-edge). Since R(r) is not empty, Inv3 implies
that r is φ-reachable. Also, X is φ-reachable since X occurs in some S(A).
By definition, α is φ-reachable.

• r v s is required when it participates in the outer for-loop. Since r is
φ-reachable by Inv5, s is also φ-reachable.

• u◦s v v is required when the conditions at Line 4 (resp, Line 6) are satisfied.
Obviously, α is φ-reachable since both u and s are.

o

12

Intuitively, the proposition suggests that our goal-directed subsumption algo-
rithm inherently takes into account the notion of reachability-based module, i.e.
it applies rules only to relevant axioms in the module. In fact, the preprocessing
overhead of extracting relevant modules makes the overall computation time for
a single subsumption query longer. This has been empirically confirmed in our
experiments (see the last paragraph of Section 6).

Despite what has been said, module extraction is still useful for, e.g., ontology
re-use, explanation, and full-fledged incremental reasoning [6].

5 Duo-Ontology Classification

Unlike tableaux-based algorithms, the polynomial subsumption algorithm [2, 4]
inherently classifies the input ontology by making all subsumptions between con-
cept names explicit. This algorithm can be used to query subsumption between
concept names occurring in the ontology, but complex subsumptions, such as

Inflammation u ∃has-location.Heart v?
Oex

HeartDisease u ∃has-state.NeedsTreatment

cannot be answered directly. First, the ontology Oex from Figure 1 has to be aug-
mented to O′

ex
:= Oex ∪ {A v Inflammation u ∃has-location.Heart,HeartDisease u

∃has-state.NeedsTreatment v B} with A,B new concept names, and then the
subsumption test A v?

O′

ex
B can be carried out to decide the original complex

subsumption. Since A,B are new names not occurring in Oex, our complex sub-
sumption holds iff A vO′

ex
B. This approach is effective but inefficient unless only

one such complex subsumption is queried for each ontology. Constructing and
normalizing the augmented ontology every time each subsumption is tested is not
likely to be acceptable in practice, especially when the background ontology is
large. For instance, normalization of Snomed ct takes more than one minute.

In this section, we propose an extension to the refined algorithm (henceforth
referred to as the original algorithm) developed in [4] to cater for a duo-ontology
O = (Op ∪ Ot) with Op a permanent EL+ ontology and Ot a set of temporary
GCIs. Intuitively, Op is the input ontology of which axioms have been read in
and processed before, while Ot contains temporary GCIs that are asserted later.
The main purpose is to reuse the information made available by preprocessing and
classifying Op. Once Op has been classified, the classification of Op∪Ot should not
start from scratch, but rather use the existing classification information together
with the new GCIs from Ot to do incremental classification.

In our extension, we use two sets of the core data structures Ô(·), R(·), S(·), but

retain a single set of queues queue(·). The mappings Ôp, Rp, Sp are initialized and

populated exactly as in the original algorithm, i.e. Ôp encodes axioms in Op, and
Rp, Sp store subsumption relationships inferred from Op. Similarly, the mapping

Ôt encodes axioms in Ot, but Rt, St represent additional inferred subsumptions

13

drawn from Op ∪ Ot that are not already present in Rp, Sp, respectively. The
extended algorithm is based on the tenet that description logics are monotonic,
i.e. Op |= α implies Op∪Ot |= α. There may be an additional consequence β such
that Op 6|= β but Op∪Ot |= β. The extended algorithm stores such a consequence
β in a separate set of data structures, viz. Rp, Sp. Analogously to the original
algorithm, queue entries are repeatedly fetched and processed until all queues
are empty. Instead of the procedures process and process-new-edge, we use the
extended versions for duo-ontology classification as outlined in Algorithm 3.

The extended algorithm’s behavior is identical to that of the original one [4]

if Op has not been classified. In particular, Ôp(·) ∪ Ôt(·) here is equivalent to

Ô(·) in [4] given that O = (Op ∪ Ot). Since no classification has taken place,
Sp(A) = Rp(r) = ∅ for all concept name A and role name r. Initialization and
processing of queues are done in the same manner with the only difference that
inferred consequences are now put in Rt and St.

If Op has been classified (thus, Sp, Rp have been populated), then proper ini-
tialization has to be done w.r.t. previously inferred consequences (i.e. Sp, Rp) and

new GCIs (i.e. Ôt). To this end, we initialize the data structures by setting:

• for each role name r ∈ RN(O), Rt(r) := ∅;

• for each old concept name A ∈ CN(Op), St(A) := ∅ and

queue(A) :=
⋃

X∈Sp(A) Ôt(X) ∪
⋃

{(A,B)∈Rp(r),X∈Sp(B)} Ôt(∃r.X);

• for each new concept name A ∈ CN(Ot)\CN(Op), St(A) := {A,>}

queue(A) := Ôt(A) ∪ Ôt(>).

After initialization, queue processing is carried out by Algorithm 3 until all queues
are empty. Observe the structural analogy between these procedures and the orig-
inal ones in [4]. Observe also the key difference: information is always retrieved
from both sets of data structures, e.g., Sp(A)∪St(A) in Line 1, while modifications
are only made to the temporary set of data structures, e.g., St(A) := St(A)∪{B}
in Line 2. The correctness of this algorithm can be shown following the proof’s
structures in the appendix of [4] w.r.t. additional subsumption consequences ob-
tained during incremental classification.

Lemma 10 (Correctness of Algorithm 3). Let O = (Op ∪ Ot) be a duo-
ontology, and Sp, Rp be the results after the original algorithm terminates on Op.
Then, the extended algorithm (Algorithm 3), applied to Ot, incrementally classifies
Ot against Op (i.e. classifies O) in time polynomial in the size of O. That is,
B ∈ Sp(A) ∪ St(A) iff A vO B for all A,B ∈ CN(O).

14

In our example, we set Op to Oex and Ot to the set of the two new GCIs. We
can run the extended algorithm on Op ∪ Ot and reuse existing information in Sp

and Rp, if any. After termination, our complex subsumption boils down to the
set membership test B ∈? Sp(A) ∪ St(A) = St(A). To decide next subsumptions,
only Ot, Rt, St and queue need to be initialized, leaving the background ontology
Op and possibly its classification information Rt, St intact.

Interestingly, this algorithm can be used effectively in certain scenarios of
incremental classification. Consider Op as a well-developed, permanent ontology,
and Ot as a small set of temporary axioms currently being authored. Obviously, if
the permanent ontology is large, it would be impractical to reclassify from scratch
every time some new axioms are to be added. Algorithm 3 incrementally classifies
Ot against Op and its classification information. If the inferred consequences are
satisfactory, the temporary axioms can be committed to the permanent ontology
by merging the two sets of data structures. Otherwise, axioms in Ot and their
inferred consequences could be easily retracted, since these are segregated from
Op and its consequences. To be precise, we simply dump the values of Ot(·), Rt(·)
and St(·), when the temporary axioms are retracted.

6 Experiments and Empirical Results

This section describes the experiments and results of the three algorithms we pro-
posed in the present paper: module extraction, goal-directed subsumption query,
and duo-ontology classification. We have implemented the three algorithms and
integrated them as new features in the CEL reasoner [3] version 1.0b.1 All the
experiments have been carried out on a standard PC: 2.40 GHz Pentium-4 pro-
cessor and 1 GB of physical memory. In order to show interesting properties of
reachability-based modules and scalability of subsumption and incremental clas-
sification in EL+, we have selected a few large ontologies from the medical do-
main. Our test suite comprises Snomed ct, NCI, and the EL+ fragments2 of
Galen and NotGalen, denoted respectively by OSnomed, ONCI, OGalen, and
ONotGalen.3 The Galen ontology shall not be confused with the original version
of Galen, the latter of which is almost 10 times smaller and commonly used in DL
benchmarking. The sizes of our test suite ontologies are shown in the second and
third columns of Table 1. The last but one column shows the time CEL needs to
classify each ontology, while the last presents in percentage the ratio of positive
subsumption relationships between concept names. Observe that all ontologies

1Available at http://lat.inf.tu-dresden.de/systems/cel/
2The full Galen medical ontology is precisely based on SHIF dispensed with disjunction

and value restriction. The description logic EL+ can indeed express most of the axioms, namely
95.75%, and we obtained this fragment for experimental purposes by dropping role inverse and
functionality axioms.

3Obtainable at http://lat.inf.tu-dresden.de/∼meng/toyont.html

15

Ontologies]Concepts/roles]Concept/role axioms C. time (sec) Pos. subs. (%)

ONotGalen 2 748 / 413 3 937 / 442 7.36 0.6013
OGalen 23 136 / 950 35 531 / 1 016 512.72 0.1648
ONCI 27 652 / 70 46 800 / 140 7.01 0.0441
OSnomed 379 691 / 62 379 691 / 13 1 671.23 0.0074

Table 1: EL+ ontology test suite

have a very low ratio of positive subsumption (less than 1%); in particular, less
than a ten-thousandth of potential subsumptions actually hold in OSnomed.

Modularization: For each ontology O in the test suite and each concept
name A ∈ CN(O), we extracted the reachability-based module Oreach

A . Statistical
data concerning the sizes of modules and times required to extract them are pre-
sented in Table 2. Observe that it took a tiny amount of time to extract a single
module based on connected reachability, with the maximum time less than four
seconds. However, extracting large number of modules (i.e. one for each concept
name) required considerably more time and even longer than classification. This
was nevertheless the first implementation that was not highly optimized. Sev-
eral optimization techniques could be employed in module extraction, especially
recursive extraction as suggested by Point 3 of Proposition 5 and the counting
techniques from [5]. To empirically support Lemma 8, we have compared our
modularization algorithm to that from [6, 7]. As expected, the results of both
algorithms coincide w.r.t. ONotGalen and ONCI, while we were unable to obtain
locality-based modularization results w.r.t. the other two ontologies.4

Interestingly, module extraction reveals important structural dependencies
that reflect complexity of the ontology. Though very large, concepts in ONCI

and OSnomed are loosely connected w.r.t. reachability which makes it relatively
easy to classify. In contrast, OGalen contains more complex dependencies5, thus
is hard to classify.

To realize the pattern of module sizes in these ontologies, we also present
them in a distribution chart in Figure 2. We used the whole module size data
w.r.t. ONotGalen, ONCI, and OSnomed. For comparison purposes, however, we only
used the module sizes of the smaller group in OGalen. For each ontology, the X-
axis ranges over the sizes of modules in ten of axioms, whereas the Y-axis shows
in percentage the number of modules that have the respective size. As obviously

4By setting the Java heap space to 0.8 GB on our benchmarking machine, it took 2.89 and
53.07 seconds to extract all modules in ONotGalen and ONCI, respectively, whereas it failed due
to memory exhaustion on OGalen and OSnomed.

5Based on the statistical data analysis, there are two clearly distinct groups of concepts in
OGalen: the first with module sizes between 0 and 523 (med. 39; avg. 59.29) and the second
between 14 791 and 15 545 (med. 14 792; avg. 14 829). Surprisingly, there is no module of size
between those of these two groups.

16

Figure 2: Distribution chart for sizes of the reachability-based modules.

depicted by the chart, the reachability-based modules are very small, in particular,
in the case of ONCI and OSnomed. In fact, more than 90% of modules in these two
ontologies have less than 90 axioms.

Duo-ontology classification: As mentioned before, there are at least two
applications of Algorithm 3, viz. complex subsumption query and (restricted) in-
cremental classification. For complex subsumption query, we have adopted the
“activation” idea from Algorithm 2 to quickly answer the query. To perform
meaningful experiments, it is inevitable to involve a domain expert to obtain sen-
sible test data. Though we have done so w.r.t. OSnomed, the numbers of complex
subsumption queries and additional axioms are very small compared to the on-
tology size.6 For this reason, we have developed our test strategy as follows: for
each ontology O and various numbers n, we have (i) partitioned O into Op and
Ot such that Ot contains n% of GCIs from O; (ii) classified Op normally; finally,
(iii) incrementally classified Ot against Op. The average computation times for
several runs of (ii) and (iii) are shown in the left and right columns of each ontol-
ogy in Table 3, respectively. It requires only 4% (resp., 15%, 35%, and 38%) of
the total classification time for OSnomed (resp., for OGalen, ONCI, and ONotGalen)
to incrementally classify up to 1% of all axioms, i.e. about four-thousand axioms
in the case of OSnomed.

Subsumption: To evaluate our goal-directed algorithm, we have run sub-

6On average, a typical complex subsumption query against OSnomed took 0.00153
milliseconds, while incremental classification of one axiom needed 48.74 seconds.

17

sumption tests between random pairs of concept names without any heuristics.7

Average/maximum querying times (in second) are 0.09/1.51 for ONotGalen,
124.01/254.31 for OGalen, 0.0034/0.44 for ONCI, and 0.0183/3.32 for OSnomed.
Notice that subsumption requires a negligible amount of time and not much more
than extracting a module in the case of ONCI and OSnomed. Interestingly, sub-
sumption querying times are roughly proportional to module sizes, which reflects
the nature of the goal-directed algorithm as stated in Proposition 9.

7 Related Work

Recently, various techniques for extracting fragments of ontologies have been pro-
posed in the literature. An example is the algorithm proposed in [12] which was
developed specifically for Galen. The algorithm traverses in definitional order and
into existential restrictions but does not take into account other dependencies, e.g.,
role hierarchy and GCIs. If applied to our example ontology Oex, the algorithm
extracts only α1, α3 and α5 as its segmentation output for Pericarditis. This is obvi-
ously not a module because we lose the subsumption Pericarditis vOex

HeartDisease.
Another example is the Prompt-Factor tool [10] which implements an algorithm
that, given an ontology O and a signature S, retrieves a subset O1 ⊆ O by retriev-
ing to O1 axioms that contain symbols in S and extending S with Sig(O1) until
a fixpoint is reached. This is similar to our modules based on weak reachability,
but it does not distinguish symbols occurring on lhs and rhs of axioms. In our
example, the tool will return the whole ontology as output for S = {Pericarditis},
even though several axioms are irrelevant. As we have shown, modules based on
syntactic locality [7] are equivalent to our reachability-based modules relative to
EL+ ontologies. Since reachability is much simpler to check, our algorithm has
proved more efficient.

Incremental classification and reasoning have received much attention in the
recent years. In [8, 11], the so-called model-caching techniques have been inves-
tigated for application scenarios that only ABox is modified. A technique for
incremental schema reasoning has recently been proposed in [6]: it utilizes mod-
ules to localize ramifications of changes and performs additional reasoning only on
affected modules. Since module extraction is somewhat expensive and has to be
redone once the ontology is modified, it remains to be shown empirically whether
this approach scales. All above-mentioned works focus on expressive languages.
Here, however, we developed a very specific approach to (restricted) incremental
classification in EL+. Since the technique exploits the facts that the original EL+

7Since there are about 144 billion pairs of concept names in the case of OSnomed and some
subsumption queries against OGalen took a few minutes, performing subsumption queries be-
tween all pairs would not be feasible. Therefore, one thousand random pairs of subsumption
were tested against OGalen, and one million random pairs against each of the other ontologies.

18

algorithm maintains completed subsumer sets, it is not immediately obvious how
this may benefit tableau-based algorithms for expressive DLs.

8 Conclusion

In this paper, we have introduced a new kind of module (based on connected
reachability) and proposed an algorithm to extract them from EL+ ontologies.
We have shown that these are equivalent to locality-based modules w.r.t. EL+

ontologies and empirically demonstrated that modules can be extracted in rea-
sonable time and are reasonably small. Also, we have proposed a goal-directed
variant of the algorithm in [4] for testing subsumption prior to classification and
have extended this algorithm to cater for a duo-ontology which can be utilized to
answer complex subsumption queries and to do (restricted) incremental classifica-
tion. Our empirical results have evidently confirmed that the proposed algorithms
are practically feasible in large-scale ontology applications.

Despite not being directly useful to speed up standard reasoning in EL+, mod-
ularization obviously benefits ontology re-use and explanation. As future work,
we shall study the effectiveness of using modules to optimize axiom pinpointing,
which is the cornerstone of explanation support.

Acknowledgement: The author would like to acknowledge Franz Baader and
Carsten Lutz for their valuable suggestions and Christian H.-Wiener for his will-
ingness in comparing the two modularization approaches. This work has been sup-
ported by the EU project Thinking ONtologiES (aka, TONES) and the DFG project
under grant BA 1122/11-1.

References

[1] The systematized nomenclature of medicine, clinical terms (Snomed ct).
The International Health Terminology Standards Development Organisation,
2007. http://www.ihtsdo.org/our-standards/.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of the
19th Int. Joint Conf. on Artificial Intelligence (IJCAI-05), Edinburgh, UK,
2005. Morgan-Kaufmann Publishers.

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time rea-
soner for life science ontologies. In U. Furbach and N. Shankar, editors,
Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR-06), vol-
ume 4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-
Verlag, 2006.

19

[4] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in ex-
tensions of the description logic EL useful in practice? Journal of Logic,
Language and Information, Special Issue on Method for Modality (M4M),
2007. To appear.

[5] W. F. Dowling and J. Gallier. Linear-time algorithms for testing the sat-
isfiability of propositional horn formulae. Journal of Logic Programming,
1(3):267–284, 1984.

[6] B. Cuenca Grau, C. Halaschek-Wiener, and Y. Kazakov. History matters: In-
cremental ontology reasoning using modules. In Proceedings of ISWC, Busan,
South Korea, 2007. Springer.

[7] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right
amount: Extracting modules from ontologies. In Proceedings of WWW, pages
717–726, Banff, Canada, 2007. ACM.

[8] V. Haarslev and R. Möller. Incremental query answering for implementing
document retrieval services. In Proc. of the Int. Workshop on Description
Logics (DL-03), pages 85–94, 2003.

[9] C. Lutz and F. Wolter. Conservative extensions in the lightweight description
logic EL. In Proc. of the 21st Conf. on Automated Deduction. Springer, 2007.

[10] N. Noy and M. Musen. The PROMPT suite: Interactive tools for ontology
mapping and merging. Int. J. of Human-Computer Studies, 2003.

[11] B. Parsia, C. Halaschek-Wiener, and E. Sirin. Towards incremental reasoning
through updates in OWL-DL. In Proc. of Reasoning on the Web Workshop,
2006.

[12] J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classifi-
cation and use. In Proc. of WWW. ACM, 2006.

20

Algorithm 2 Goal-directed subsumption algorithm

Procedure subsumes(φ v ψ)
Input: (φ v ψ): target subsumption
Output: ‘positive’ or ‘negative’ answer to the subsumption

1: activate(φ)
2: while not empty(queue(A)) for some A ∈ CN(O) do
3: X ← fetch(queue(A))
4: if goal-directed-process(A,X, φ v ψ) then
5: return ‘positive’
6: return ‘negative’

Procedure goal-directed-process(A,X, φ v ψ)
Input: A: concept name; X: queue entry; (φ v ψ): target subsumption
Output: ‘positive’ or ‘unknown’ answer to the subsumption

1: if X = B→ B, B ⊆ S(A) and B 6∈ S(A) then
2: S(A) := S(A) ∪ {B}

3: queue(A) := queue(A) ∪ Ô(B)
4: for all concept names A′ and role names r with (A′, A) ∈ R(r) do

5: queue(A′) := queue(A′) ∪ Ô(∃r.B)
6: if A = φ and B = ψ then
7: return ‘positive’
8: if X = ∃r.B and (A,B) 6∈ R(r) then
9: activate(B)

10: process-new-edge(A, r,B)
11: return ‘unknown’

Procedure process-new-edge(A, r,B)
Input: A,B: concept names; r: role name;

1: for all role names s with r v∗
O s do

2: R(s) := R(s) ∪ {(A,B)}

3: queue(A) := queue(A) ∪
⋃

{B′|B′∈S(B)} Ô(∃s.B′)
4: for all concept name A′ and role names u, v with u ◦ s v v ∈ O and

(A′, A) ∈ R(u) and (A′, B) 6∈ R(v) do
5: process-new-edge(A′, v, B)
6: for all concept name B ′ and role names u, v with s ◦ u v v ∈ O and

(B,B′) ∈ R(u) and (A,B ′) 6∈ R(v) do
7: process-new-edge(A, v,B ′)

21

Algorithm 3 Processing queue entries in duo-ontology classification

Procedure process-duo(A,X)
Input: A: concept name; X: queue entry;

1: if X = B→ B, B ⊆ Sp(A) ∪ St(A) and B 6∈ Sp(A) ∪ St(A) then
2: St(A) := St(A) ∪ {B}

3: queue(A) := queue(A) ∪ Ôp(B) ∪ Ôt(B)
4: for all A′ and r with (A′, A) ∈ Rp(r) ∪Rt(r) do

5: queue(A′) := queue(A′) ∪ Ôp(∃r.B) ∪ Ôt(∃r.B)
6: if X = ∃r.B and (A,B) 6∈ Rp(r) ∪Rt(r) then
7: process-new-edge(A, r,B)

Procedure process-new-edge-duo(A, r,B)
Input: A,B: concept names; r: role name;

1: for all role names s with r v∗
Op
s do

2: Rt(s) := Rt(s) ∪ {(A,B)}

3: queue(A) := queue(A) ∪
⋃

{B′|B′∈Sp(B)∪St(B)}(Ôp(∃s.B
′) ∪ Ôt(∃s.B

′))
4: for all concept name A′ and role names u, v with u ◦ s v v ∈ Op and

(A′, A) ∈ Rp(u) ∪Rt(u) and (A′, B) 6∈ Rp(v) ∪Rt(v) do
5: process-new-edge-duo(A′, v, B)
6: for all concept name B ′ and role names u, v with s ◦ u v v ∈ Op and

(B,B′) ∈ Rp(u) ∪Rt(u) and (A,B ′) 6∈ Rp(v) ∪Rt(v) do
7: process-new-edge-duo(A, v,B ′)

22

Ontologies Extraction time Module size (%)
median average maximum total median average maximum

ONotGalen < 0.01 ∼ 0.00 0.01 2.38 35 (1.27) 68.64 (2.50) 495 (18.00)
OGalen 0.01 0.04 0.85 960 178 (0.77) 7092 (30.65) 15 545 (67.18)
ONCI < 0.01 ∼ 0.00 0.17 3.43 12 (0.026) 28.97 (0.062) 436 (0.929)
OSnomed < 0.01 ∼ 0.01 3.83 3 744 18 (0.005) 30.31 (0.008) 262 (0.069)

Table 2: Module extraction (time in second; size in number of axioms)

23

]Temp. axioms ONotGalen OGalen ONCI OSnomed

(|Ot|) C. time IC. time C. time IC. time C. time IC. time C. time IC. time

0.2% 6.53 1.75 486.19 56.94 5.10 2.00 1 666.43 55.86
0.4% 6.50 1.88 484.89 59.37 4.81 2.15 1 663.51 57.97
0.6% 6.48 2.45 482.13 62.34 4.78 2.37 1 661.49 68.58
0.8% 6.43 2.88 466.97 80.52 4.70 2.54 1 652.84 83.27
1.0% 6.38 4.46 450.61 109.81 4.59 3.19 1 640.11 93.89

Table 3: Incremental classification (in second)

24

	Introduction
	Preliminaries
	Modules Based on Connected Reachability
	Goal-Directed Subsumption Algorithm
	Duo-Ontology Classification
	Experiments and Empirical Results
	Related Work
	Conclusion

