
Dresden University of Technology

Institute for Theoretical Computer Science

Chair for Automata Theory

LTCS–Report

Model-based Most Specific Concepts in

Description Logics with Value Restrictions

Felix Distel

LTCS-Report 08-04

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Abstract

Non-standard inferences are particularly useful in the bottom-up con-
struction of ontologies in description logics. One of the more common
non-standard reasoning tasks is the most specific concept (msc) for an
ABox-individual. In this paper we present similar non-standard reasoning
task: most specific concepts for models (model-mscs). We show that, al-
though they look similar to ABox-mscs their computational behaviour can
be different. We present constructions for model-mscs in FL0 and FLE
with cyclic TBoxes and for ALC∪∗ with acyclic TBoxes. Since subsump-
tion in FLE with cyclic TBoxes has not been examined previously, we
present a characterization of subsumption and give a construction for the
least common subsumer in this setting.

1 Introduction

Description Logics (DL) are a logic-based knowledge representation formalism,
which can be used to represent terminological knowledge (in so called TBoxes)
and knowledge about individuals (in so-called ABoxes) in a logically well-founded
way [6]. In recent years, various non-standard inference services for Description
Logics (DL) have been developed. Among them are the least common subsumer
(lcs) and the most specific concept (msc). The major application of non-standard
reasoning services is supporting the development of ontologies, in particular when
using the bottom-up approach [9]. The least common subsumer for example
is used to automatically generalize two given concept description into a third
description that subsumes them both. The most specific concept on the other
hand can be used to obtain a generalized description from an individual in an
ABox.

Unfortunately, in most common logics most specific concepts need not exist, at
least if one only allows for acyclic TBoxes. For the case of cyclic TBoxes research
has shown that they do exist in smaller logics such as EL [1], ALN [2] and their
computational properties have been examined. Their main application lies in the
construction of ontologies using the bottom up approach.

Here we focus on a similar, but still different non-standard reasoning service:
Instead of constructing the most specific concept describing an individual in an
ABox we look at the most specific concept describing an element of the domain
of the model (model-msc).

In [8] an approach for extracting knowledge from a model has been proposed.
Given a model one tries to find axioms in the form of GCIs that hold in the
model. The idea is to find a minimal set of GCIs such that all GCIs holding
in that model follow logically. The approach presented in [8] for the description
logic EL makes heavy use of most specific concepts for models. The reason why

1

they are useful is that if a GCI A ⊑ B holds in a model then it follows from
A ⊑ msc(A). Here msc(A) is the model-based most specific concept of A taken
in the respective model. Thus if the model-based most specific concept exists, all
GCI with a fixed left-hand side can be represented by a single GCI.

Another application of model-based most specific concepts is the construction of
ontologies. When defining new concept descriptions using most specific concepts
for ABoxes it is necessary that an ABox with a certain number of individuals
is already present. ABoxes, like DLs in general, have an open-world semantics,
which means that one does not expect them to be a complete representation of
the knowledge about the domain of the knowledge base. At the beginning of
the knowledge engineering process it may, however, be the case that no ABox is
present, but that there is data in some closed-world representation. In the DL-
world closed-world data corresponds to models. Thus extending the notion of
most specific concepts to models is a step towards the application of the bottom-
up approach in this setting.

Although most specific concepts in models and most specific concepts in ABoxes
seem to be closely related they can behave quite differently for certain logics, in
particular for logics allowing for value restrictions. This is pointed out in Sec-
tion 2.2 where we illustrate that model-mscs do not always exist in FL0 without
cyclic TBoxes while ABox-mscs do exist and are easy to compute. Further on we
point out that they do exist if we allow for cyclic TBoxes. There may, however,
be an exponential blow-up in size that cannot be avoided.

We then look at model-mscs in ALC∪∗ which is ALC with reflexive-transitive
closure and union of roles. We provide an approach to construct them, which
proves that they exist. Due to the great expressivity of ALC they are probably
overfitted, i. e. they are so specific to the model that they describe that they
probably do not provide a useful generalization for the bottom-up approach.

This is why we go back to the less expressive logic FLE , the most simple logic
that provides for both existential restrictions and value restrictions. We prove the
existence of model-mscs in the presence of cyclic FLE-TBoxes. Since FLE is not
a very common logic, there has not been much research concerning non-standard
inferences in FLE . Previous work has been done by Baader et al. [3]. They
introduce a characterization of subsumption in FLE with acyclic TBoxes that
uses so called FLE-description graphs. Using this characterization they obtain a
construction for the least common subsumer. This has been extended to FLE+

by Brandt et al. [10].

Little previous work has been done about cyclic concept descriptions in logics with
both existential and value restrictions. Quite a while ago the K-Rep-system,
which allows for cyclic concept descriptions and offers an concept constructor
that combines existential and value restrictions, has been presented by Mays et
al. [13]. K-Rep, which does not use DL-semantics, but another semantics based

2

Name of Constructor Syntax Semantics

Concept Name A Ai ⊆ ∆i

Role Name r ri ⊆ ∆i × ∆i

Top-Concept ⊤ ∆i

Bottom-Concept ⊥ ∅
Negation ¬C ∆i \ Ci

Conjunction C ⊓D Ci ∩Di

Disjunction C ⊔D Ci ∪Di

Existential Restrictions ∃r.C {x ∈ ∆i | ∃y ∈ Ci : (x, y) ∈ ri}
Value Restrictions ∀r.C {x ∈ ∆i | ∀y ∈ ∆i : ((x, y) ∈ ri ⇒ y ∈ Ci)}

Table 1: Syntax and semantics of concept descriptions

on so-called concept algebras. In a later paper they show that their semantics
are equivalent to gfp-semantics in a DL-sense [11]. Baader et al. [2] have exam-
ined non-standard inferences in ALN which, however, does not provide for full
existential restrictions.

In this paper we extend the characterization from [3] to the more general case
of FLE with cyclic TBoxes and gfp-semantics. We provide a characterization of
subsumption and a construction for the least common subsumer.

1.1 Cyclic Terminologies with greatest fixpoint semantics
in FL0, FLE and ALC

Concept Descriptions in FL0 are defined using a set NC of concept names and a
set Nr of role names and certain concept constructors. In the case of FL0 these
constructors are the top-concept (⊤), conjunction (C ⊓D) and value restrictions
(∀r.C). FLE uses these these constructors and additionally provides for exis-
tential restrictions (∃r.C). ALC provides for all the constructors in Table 1.1,
i. e. conjunction, disjunction (⊔), negation (¬), existential and value restrictions.
The semantics of these concept descriptions are defined using interpretations
i = (∆i, ·i). ∆i is a non-empty set, the domain of the interpretation, and an
interpretation function ·i mapping every role name to some binary relation over
∆i and every concept name to some subset of ∆i. The extension of ·i to concept
descriptions is defined recursively according to Table 1.1.

A TBox is a finite set of statements of the form Ak ≡ Dk where the Ak are
concept names and the Dk are concept descriptions. We also require that the
Ak be distinct. Concept names that occur on the left hand side of one of these
statements are called defined concept names all other concept names are called
primitive concept names. Note that we do not require TBoxes to be acyclic, i. e.
we allow a defined concept name to be used in the right hand side of its definition

3

explicitly or implicitly. It is not immediately clear how to define the semantics of
cyclic TBoxes. Indeed, Nebel [14] has shown that there are several possibilities to
define it. In this paper we use greatest fixpoint semantics which are today the most
common type of semantics for cyclic TBoxes in DL. A primitive interpretation
i is a mapping that assigns a binary relation over ∆i to every role name and a
subset of ∆i to every primitive concept name. An interpretation j is based on
the primitive interpretation i if it coincides with i on all role names and primitive
concept names. Note that j is uniquely defined by the set of interpretations of
the defined concept names (Aj

1, . . . , A
j
n). We denote the set of all interpretations

that are based on i by Int(i). The interpretations from Int(i) can be compared
by the following ordering

j1 4i j2 iff Aj1
k ⊆ Aj2

k for all k, 1 ≤ k ≤ n.

For every subset of Int(i) both least upper bounds and greatest lower bounds
exist and coincide with pointwise union and pointwise intersection, respectively.
Hence (Int(i),4) is a complete lattice. The Knaster-Tarski-Fixpoint Theorem
states that in every complete lattice (L,≤) every monotone function f has a
greatest fixpoint which is

⋃

{x ∈ L | x ≤ f(x)}.

In the lattice (Int(i),4) we define a function f as follows. Let j ∈ Int(i) be
an interpretations that maps the defined concept names A1, . . . , An to Aj

1, . . . ,
Aj

n, respectively. Assume that the TBox T contains statements A1 ≡ D1, . . . ,
An ≡ Dn. Then define f(j) to be the interpretation that maps the defined
concepts A1,. . . , An to Dj

1,. . . , D
j
n, respectively. For logics that do not allow

for negation f is monotone. By the Knaster-Tarski-Fixpoint Theorem f has a
greatest fixpoint. This greatest fixpoint is the interpretation that maps every
defined concept Ak to

⋃

j∈J

Aj
k, where J = {j ∈ Int(i) | Aj

k ⊆ Dj
k ∀1 ≤ k ≤ n}. (1)

We call this fixpoint the gfp-model of T corresponding to i. Note that both
for cyclic and acyclic TBoxes there is exactly one model for a given primitive
interpretation. Therefore we will use the terms model and primitive interpretation
interchangeably. For matters of simplicity we will denote both the primitive
interpretation and the corresponding gfp-model by the letter i.

Let T be some TBox and let A and B be two defined concepts from T . We say
that A is subsumed by B and write A ⊑T B iff Ai ⊆ Bi for all gfp-models i of T .
Several ways to define a conservative extension of TBox exist in the literature.
In this work we use two different definitions. A conservative extension of a TBox
T is a TBox T ′ such that T ⊆ T ′, and if A and B are concept names used in T
then A ⊑T ′ B iff A ⊑T B. So T ′ introduces new concept definitions but leaves
the subsumption relations among concepts occurring in T invariant. A strictly
conservative extension of a TBox T is a TBox T ′ such that

4

• T ⊆ T ′

• T ′ uses the same primitive concept names and role names as T , and

• if A is a defined concept in T and i a primitive interpretation of Np and
Nr, iT and iT ′ the corresponding models of T and T ′, then AiT = Ai

T ′ .

So T ′ introduces new concept definitions but leaves the extensions of concept
names occurring in T invariant.

Definition 1 Let T be a TBox containing the defined concepts A, B and let T0

be a conservative extension of T . Let T0 contain a defined concept E. E is called
the least common subsumer of A and B iff the following conditions hold.

• A ⊑T0 E and B ⊑T0 E

• If T1 is a conservative extension of T0 and F a defined concept in T1 such
that A ⊑T1 F and A ⊑T1 F then E ⊑T1 F .

An ABox A is a finite set of assertions about individuals, i. e. statements of the
form A(a) and r(a, b), where A is a concept name, r a role name and a and b are
individual names from a finite set of individual names Ni. We call i a gfp-model
of an ABox A and a TBox T if i is a gfp-model of T and satisfies ai ∈ Ai for all
statements A(a) in A, and (ai, bi) ∈ ri for all statements r(a, b) in A.

Definition 2 (most specific concept) Let T be a TBox and A an ABox. Let
a be some individual name from A. Let T0 be a conservative extension of T , and
E a defined concept in T0. Then E is called the most specific concept of a iff the
following conditions hold

• A, T0 |= E(a)

• If T1 is a conservative extension of T0 and F a defined concept in T1 such
that A, T1 |= F (a), then E ⊑T1 F .

The above definition is the standard way of defining most specific concepts for
ABox-individuals. In this paper we also look at a different type of most specific
concepts: most specific concepts for models.

Definition 3 (model-based most specific concepts) Let T be a TBox and
i a model of T . Let x ∈ ∆i be some object from the domain of i and E a defined
concept in T . Then E is called the model-based most specific concept (model-
msc) of x iff the following conditions hold

5

P

ar

Figure 1: A simple cyclic model

• x ∈ Ei

• If T ′ is a strictly conservative extension of T and F is a defined concept in
T ′ such that x ∈ F i, then E ⊑T ′ F .

Let T1 and T2 be two TBoxes in some logic that uses gfp-semantics. Assume that
T1 and T2 use the same set of role names Nr and the same set of primitive concept
names Np. To simplify notation we denote by T1∪̇T2 the TBox that is obtained
as follows. First make the sets of defined concept names in T1 and T2 disjoint, for
example by renaming. Let T1∪̇T2 be the union of these TBoxes with disjoint sets
of defined concept names. It is easy to see that T1∪̇T2 is a strictly conservative
extension to both T1 and T2.

We can say that model-based most specific concepts are unique up to equivalence
in the following sense. Let T1 and T2 be TBoxes, E be a defined concept in T1

and a most specific concept for some x ∈ ∆i, and F be a defined concept in T2

and a most specific concept for x. Then E ≡T1∪̇T2
F .

To avoid confusion we use the expression model-msc when speaking of most spe-
cific concepts for models and ABox-msc when speaking of most specific concepts
for models.

2 Most specific concepts in FL0

2.1 Most specific concepts in FL0 with acyclic TBoxes

Even though we will concentrate on cyclic terminologies for the rest of the paper,
this short section takes a look at the situation in FL0 with acyclic TBoxes.
It serves to illustrate that most specific concepts for models and most specific
concepts for ABoxes are not as closely related as it may seem from the definitions.

Look at the very simple example of a set of role names Nr = {r}, a set of primitive
concept names Np = {P} and an empty TBox T . Let i be the model defined by
the following primitive interpretation.

∆i = {a}, ri = {(a, a)}, P i = {a}.

6

B

b

T1 :
A ≡ ∀r2.∀r1.Q

B ≡ ∀r1.P

Nr = {r1, r2}

Np = {P,Q}

NI = {a, b}

A

a

r1

A1 :
r2

Figure 2: Sample FLE ABox and TBox

This model is illustrated in Figure 2.1. Consider the descriptions E1 ≡ P , E2 ≡
P ⊓ ∀r.P , E3 ≡ P ⊓ ∀r.(P ⊓ ∀r.P), This a sequence of increasing role depth
such that a ∈ Ei

k for every natural number k. Thus, there is no model-msc for a
in i, since every concept description in an unfoldable TBox can only have finite
role depth. Basically, one would have to express that all r∗ successors of a are in
P i, where r∗ is the reflexive-transitive closure of r. However, this cannot be done
using just the expressivity of FL0 without allowing for terminological cycles.

Things look completely different if we look at the graph in Figure 2.1 as repre-
senting an ABox A. Let A be the ABox that contains a single individual a and
the statements P (a) and r(a, a). Then a is not an instance of E ≡ ∀r.P , since
we have the open-world semantics of the ABox, in contrast to the closed world
assumption of the models. We simply do not know, whether all r-successors of
a are instances of P or not; we only have information about one particular r-
successor of a. Thus P is the most specific concept for a in A. It is possible to
compute ABox-mscs in FL0 for any ABox, simply by propagating ∀r-statements
along r-edges in the ABox. For example for the the individual a in the ABox A1

together with the TBox T1 shown in Figure 2.1

E ≡ ∀r2.∀r1.Q ⊓ P ⊓Q

is the most specific concept. The term ∀r2.∀r1.Q is directly stated in the ABox,
the term P is obtained by propagating ∀r1.P along the r1 edge starting from b,
and Q is obtained by propagating ∀r2.∀r1.Q along the r2 and r1-edges starting
from a. Computing the ABox-msc in the presence of acyclic TBoxes in FL0 can
even be done in polynomial time.

2.2 Most specific concepts for models in FL0

We have seen that in the case of acyclic FL0-TBoxes ABox-mscs always exist,
while there are examples where model-mscs do not exist. To guarantee existence
of model-mscs for finite models one possibility is to allow for cyclic TBoxes with
gfp-semantics.

7

To prove that model-mscs always exist for FL0 with cyclic TBoxes, we make use
of characterizations of gfp-semantics that have been found by Baader [4]. These
characterizations are based on semi-automata with word transitions. A semi-
automaton with word transitions is a triple A = (Σ, Q, E), where Σ is a finite
alphabet, Q is a set of states and E ⊆ Q× Σ∗ ×Q is a set of labeled edges. We
associate every FL0-TBox T to a semi-automaton AT . We first normalize the
TBox T such that every concept description in T is of the form A = ∀W1.A1 ⊓
· · · ⊓ ∀Wk.Ak. Then AT is defined to be a semi-automaton over the alphabet
Nr whose states are the concepts in T and where every concept description A =
∀W1.A1 ⊓ · · · ⊓ ∀Wk.Ak gives rise to the k labeled edges (A,Wj, Aj). By L(A,B)
we denote the set of all words labelling paths from A to B in AT .

Now let i be a finite gfp-model, i. e. a i is based on an primitive interpretation
such that ∆i is finite. We define an automaton Ai over the alphabet Nr which has
the elements of ∆i as states and the edges (a, r, b) for all r ∈ Nr and (a, b) ∈ ri.
We denote by L(a, b) the set of all words labelling paths from a to b in Ai.

The following two propositions from [4] help proving the existence of model-based
most specific concepts.

Proposition 1 Let T be a TBox and let AT be the corresponding semi-automaton.
Let i be a gfp-model of T and let A be a concept name occurring in T . For any
d ∈ ∆i we have

d ∈ Ai

iff for all primitive concepts P , all words W ∈ L(A,P) and all individuals e ∈ ∆i

W ∈ L(d, e) implies e ∈ P i.

Proposition 2 Let T be a terminology and let AT be the corresponding semi-
automaton. Let A,B be concept names occuring in T . Subsumption in T can be
reduced to inclusion of regular languages defined by AT . More precisely

A ⊑T B iff L(B,P) ⊆ L(A,P) for all primitive concepts P.

Let i be a fixed model. For every x ∈ ∆i and P ∈ Nprim define L(x, P) =
{W ∈ N ∗

r | ∀c ∈ ∆i : W ∈ L(x, c) implies c ∈ P i}. Together with the previous
propositions this definition allows us to characterize model-mscs as follows.

Lemma 1 Let x ∈ ∆i. If for some FL0-TBox T and some defined concept E
in T we have L(E, P) = L(x, P) for all primitive concepts P , then E is the
model-msc for x.

8

Proof: From Proposition 1 it follows that x ∈ Ei if and only if L(E, P) ⊆
L(x, P) for all primitive concepts P . This must be the case since we even have
L(E, P) = L(x, P). Thus x ∈ Ei. We need to show that E is the most specific
concept description with this property. Assume that F is another concept descrip-
tion with x ∈ F i. Then by Proposition 1 we get L(F, P) ⊆ L(x, P) = L(E, P)
for all primitive concepts P . By Proposition 2 this implies E ⊑ F . So E is the
least concept description with x ∈ Ei. �

From Lemma 1 we know that if for every P ∈ Np we can find an automaton that
accepts L(x, P) then a most specific concept for x can be constructed. However,
it is not immediately clear if such automata exist, which is why we need the
following lemma.

Proposition 3 For every gfp-model i, x ∈ ∆i and P ∈ Np

L(x, P) =
⋃

y/∈P i

L(x, y)

holds. Since the L(x, c) are regular this implies that L(x, P) is also regular.

Proof:

L(x, P) ={W ∈ N ∗
role | ∀y ∈ ∆i : (x, y) ∈ W i implies y ∈ P i}

={W ∈ N ∗
role | ∀c /∈ P i : (x, y) /∈ W i}

={W ∈ N ∗
role | ¬∃c /∈ P i : (x, y) ∈W i}

={W ∈ N ∗
role | ∃y /∈ P i : (x, y) ∈W i}

=
⋃

y/∈P i

L(x, y)

�

Since the L(x, P) are regular, it is possible to construct an automaton for them.
This is exactly what we need in order to prove existence of model-mscs for FL0.

Theorem 1 In FL0 model-mscs exist for every gfp-model i and every x ∈ ∆i.
Moreover if F is a model-msc for x then L(F, P) = L(x, P) for all primitive
concepts P .

Proof: Since by Proposition 3 L(x, P) is regular for all primitive concepts P
we can construct a semi-automaton A with the following properties

9

r(k,1)

yk

r(k,0)

xk

vk

wk

r(k,0)

P

P

P

r(k,1)

r 6= r(k,1)

r /∈ {rk,1, rk,0}

r 6= r(k,0)

Figure 3: Partial illustration of a model in which FLE-model-mscs must be
exponentially large

• Among the states of A there is a state labelled x and there are states labelled
Pi for every primitive concept Pi.

• If x is chosen as initial state and Pi is chosen as terminal state then A
accepts L(x, Pi).

If we translate this automaton back into a TBox T we get a cyclic concept
description EA that satisfies the conditions of Lemma 1. From the lemma it
follows that EA is the most specific concept of x.

Let T ′ be some other TBox such that T ′ contains a defined concept F that is a
most specific concept of x. Then F ≡T ∪̇T ′ E. From Proposition 2 we get that
L(F, P) = L(EA, P) = L(x, P) for all primitive concept names P . �

Theorem 1 provides an automata-theoretic approach for constructing the model
most specific concept for a given model. In one step of this approach the comple-
ment of a non-deterministic automaton is being constructed. The standard way
to do this is to first construct the corresponding deterministic automaton and
then turning accepting states into non-accepting states and vice-versa. However,
there may be an exponential blow-up in size when constructing the deterministic
automaton.

The question arises whether this blow-up can be avoided by using a different
construction. The following example proves that this is not the case. Given a
natural number n, consider a set of role names Nr = {r(k,b) | 1 ≤ k ≤ n, b ∈
{0, 1}} and a single primitive concept name P . Define a model i as follows

∆i = {x, v1, . . . , vn, w1, . . . , wn, y1, . . . , yn},

P i = {x, v1, . . . , vn, w1, . . . , wn},

ri
(k,0) = {(x, wk), (vk, yk), (x, x)} ∪ {(vl, vl) | l 6= k} ∪ {(wl, wl) | 1 ≤ l ≤ n},

ri
(k,1) = {(x, vk), (wk, yk), (x, x)} ∪ {(vl, vl) | 1 ≤ l ≤ n} ∪ {(wl, wl) | l 6= k}.

10

Informally, the model i can be thought of as being obtained from n models ik
like the one depicted in Figure 2.2 by merging the xk. In the automaton Aik the
language L(xk, yk) (and thus also L(x, yk) in Ai) contains all words in which both
r(k,0) and r(k,1) occur. By Proposition 3

L(x, P) =
⋃

c/∈P i

L(x, c) =
⋃

1≤k≤n

L(x, yk),

which is the language of all words in N ∗
r that do not contain both r(k,0) and r(k,1)

for any k.

One can show that any non-deterministic automaton accepting L(x, P) must have
at least 2n states. Let a1, a2, . . . , an be an arbitrary sequence of 0 and 1. There
are 2n words of the form w = r(1,a1)r(2,a2) . . . r(n,an). Let w and w′ be two mutually
distinct words of this form. both ww and w′w′ are in L(x, P), but wwk′ and wkwk′

are not. Thus in any automaton A accepting L(x, P) there must be accepting
runs for both ww and w′w′. Let qw and qw′ be the states reached after n steps
in these accepting runs. Then qw and qw′ must be distinct, for otherwise ww′

and ww′ would also be accepted by A. There are 2n different words of the form
w = r(1,a1)r(2,a2) . . . r(n,an). Hence A must contain at least 2n mutually distinct
states qw. Together with Lemma 1 this proves that any concept description which
is a model-msc for x in i must be of size exponential in n, while the size of i is
linear in n.

So we have shown that model-mscs for FL0 exist if we allow for cyclic termi-
nologies. However in comparison to ABox-mscs for FL0 with unfoldable TBoxes
there may be an exponential blow-up in size, which cannot completely be avoided.

3 Model-mscs in ALC

When it comes to ALC it is, again, quite easy to see that if we do not allow
for cycles in TBoxes then neither ABox-mscs nor model-mscs exist. Basically
any cyclic ABox or cyclic model provides a valid counter-example. Contrary to
most less expressive logics it is not necessary to allow for cyclic TBoxes. Simpler
extensions such as union and reflexive-transitive closure of roles (ALC∪∗) also do
the job. In the following we do the proof for ALC∪∗ with acyclic TBoxes.

Let i be some primitive interpretation over a set of role names Nr and a set of
primitive concept names Np. Two states v ∈ ∆i and w ∈ ∆i are called modally
equivalent or indistinguishable with respect to ALC if there is no ALC concept
description C such that v ∈ Ci and w /∈ Ci. First of all we assume that i is a
model that does not contain any indistinguishable states. Then for every x ∈ ∆i

11

we can find ALC-concept descriptions Cx such that y ∈ Ci
x implies y = x. Define

Dx ≡
l

P∈Np

x∈P i

P ⊓
l

P∈Np

x/∈P i

¬P ⊓
l

r∈Nr

(

(l

y∈∆i

(x,y)∈ri

∃r.Cy

)

⊓

(

∀r.
⊔

y∈∆i

(x,y)∈ri

Cy

)

)

where we define the empty disjunction to be ⊥ and the empty conjunction to be
⊤. It is then not hard to check that x ∈ Di

x for every x ∈ ∆i.

Theorem 2 Let i be a model and x ∈ ∆i a state. Define

Mx ≡ Cx ⊓
l

y∈∆i

∀
(

⋃

r∈Nr

r
)∗

.(¬Cy ⊔Dy).

Then x ∈M i
x. Furthermore Mx has the property that for every model j and every

x′ ∈M j
x the states x and x′ are bisimilar.

It is well known from modal logic that bisimilar states cannot be distinguished by
neither ALC nor ALC∪∗ concept descriptions. This implies that Mx is a model-
msc for x.

Proof: We start by proving x ∈ M i
x. Obviously x ∈ Cx is true. From the

assumption that for every y ∈ ∆i the only element of Ci
y is y itself it follows that

z ∈ (¬Cy ⊔Dy)
i for every z ∈ ∆i, z 6= y. On the other hand the definition of Dy

has been constructed in such a way that y ∈ Di
y and therefore y ∈ (¬Cy ⊔Dy)

i.
So z ∈ (¬Cx ⊔Dx)

i for every state z ∈ ∆i and therefore this also holds true for
all
(
⋃

r∈Nr
r
)∗

-successors of w. Hence x ∈M i
x.

Let j be a model and x′ ∈M j
x a state. We define a relation

Z = {(y, y′) | y ∈ ∆i, y
′ ∈ Cj

y, (x′, y′) ∈

(

(

⋃

r∈Nr

r
)∗
)j

}

and show that it is a bisimulation. So the definition of Z requires that for every
pair (y, y′) ∈ Z the state y′ is a (

⋃

r∈Nr
r)∗-successor of x′ such that y′ /∈ (¬Cy)

j .
Since x′ ∈ M j

x this implies y′ ∈ Dj
y. To prove that Z is a bisimulation we need to

check three properties.

1.) Since y′ ∈ Dj
y it follows from the definition of Dy that y′ ∈ P j iff y ∈ P i.

This shows the first property of bisimulations, namely that y and y′ satisfy the
same primitive concept descriptions.

2.) Suppose that (y, z) ∈ ri, (y, y′) ∈ Z, for some y, z ∈ ∆i and some r ∈

Nr. It follows from y′ ∈ Dj
y that y′ ∈

(

∃r.Cz

)j
, i. e. there is some z′ ∈ Cj

z

such that (y′, z′) ∈ rj. Since (x′, y′) ∈
(

(
⋃

r∈Nr
r
)∗
)j

this proves that (x′, z′) ∈

12

(

(
⋃

r∈Nr
r
)∗
)j

. Thus (z, z′) ∈ Z by definition of Z. So we have shown that Z

satisfies the so-called forth condition for bisimulations.

3.) Assume that (y′, z′) ∈ rj, (y, y′) ∈ Z, for some y, z′ ∈ ∆j and some r ∈ Nr.
We know that y′ ∈ ∀r.

⊔

z∈∆i

(y,z)∈ri

Cz since y′ ∈ Dj
y. Therefore there must be some

z ∈ ∆i such that (y, z) ∈ ri and z′ ∈ Cj
z . As above it follows from (y′, z′) ∈ rj

and (x′, y′) ∈
(

(
⋃

r∈Nr
r
)∗
)j

that (x′, z′) ∈
(

(
⋃

r∈Nr
r
)∗
)j

. So (z, z′) ∈ Z by

definition of Z. This proves the so-called back condition for bisimulations.

We have thus shown that Z is a bisimulation. In a last step we check whether
the pair (y, y′) is in Z. Actually, this is easy to see, because y′ ∈ Cj

y follows

immediately from y′ ∈M j
x and the definition of Mx and (y′, y′) ∈

(

(
⋃

r∈Nr
r
)∗
)j

is trivial. We have hence shown that y and y′ are bisimilar and thus cannot be
distinguished by some ALC∪∗-concept description. �

Now assume that i is a finite model in which some states cannot be distinguished
by ALC concept descriptions. Then we can define an equivalence relation ↔ on
∆i by defining x ↔ y if there is no ALC-concept description C such that x ∈ C
and y /∈ C. We denote the equivalence class of some x ∈ ∆i by [x]. Now we
consider the model (∆i/↔, ·i/↔) where we define ∆i/↔ to be the set of all ↔-
equivalence classes. For r ∈ Nr define ri/↔ = {([x], [y]) | x, y ∈ ∆i, (x, y) ∈ ri}
and for every P ∈ Np define P i/↔ = {[x] | x ∈ ∆i, x ∈ P i}.

Furthermore define the relation Z = {(x, [x]) | x ∈ ∆i}. It is purely technical to
check that Z is well-defined and a bisimulation. But x and [x] being bisimilar
implies that every PDL-concept description that is satisfied by x must also be
satisfied by [x] and vice versa. Hence a most specific concept for [x] is also a
most specific concept for x. Such a most specific concept for [x] can be con-
structed using Theorem 2, since (∆i/↔, ·i/↔) by its definition does not contain
any indistinguishable states.

Thus model-mscs exist in any finite ALC∪∗-model i. But Theorem 2 goes even
further. For x ∈ ∆i the model-msc Mx describes precisely those states that are
bisimilar to x, i. e. cannot be distinguished by ALC nor by ALC∪∗, not even if
we add fixpoint operators. Since ALC is quite expressive this indicates that Mx

is probably overfitted for practical purposes. In particular, when constructing an
ontology using the bottom-up approach, one would probably like to have some
sort of generalization, when creating concepts out of closed-world data. Therefore
less expressive logics might be worth a closer look.

When it comes to ABox-mscs we do not yet know whether they exist in ALC
with universal role. However, we strongly conjecture that they do not exist, even
for simple cases like the ABox from Figure 2.1. In this case one would somehow

13

need to express that there is an infinite chain of r-successors. Therefore one
would probably need some term of the form ∀r∗.F , however any such term would
already be too specific in an open-world context. Yet, this is a mere conjecture,
the actual proof still needs to be done.

4 Model-msc and least common subsumers in

FLE with greatest fixpoint semantics

It has been shown that model-mscs exist in EL, the most simple DL providing
for existential restrictions, if one allows cyclic TBoxes [8]. In this paper, so far
we have shown that they exist in FL0, the most simple DL providing for value
restrictions, if we allow cyclic TBoxes, and in ALC∪∗. Yet, presumably in the
case of ALC∪∗ they are overfitted and thus not useful. Thus it is only natural
to look at logics whose expressivity lies between the two very basic DLs and full
ALC. The simplest logic allowing for both full existential and value restrictions
is FLE .

FLE is admittedly not the most common DL-language, and has never really
been in the focus of research. Previous work mainly focuses on the case of acyclic
TBoxes [3]. However, it is clear that in order to create model-mscs for cyclic
models one has to somehow extend FLE. The most natural extension one can
think of is, again, cyclic TBoxes. Since the gfp-semantics of cyclic TBoxes is
somewhat unintuitive we would like to have a characterization similar to the EL-
description graphs from [3], or the automata theoretic approach for FL0, that we
have presented above.

4.1 Characterizing the semantics

We characterize gfp-semantics via a generalization of the FLE-description-graphs
that were introduced by Baader et al. [3]. Let T be an FLE-TBox. Without
loss of generality assume that T is in normal form, i. e. every statement in T is
of the form

A ≡ P1 ⊓ . . . ⊓ Pl ⊓ ∃r1.E1 ⊓ . . . ⊓ ∃rm.Em ⊓ ∀r1.F1 ⊓ . . . ⊓ ∀rn.Fn. (2)

By introducing new defined concept names one can easily transform any TBox
into normal form in polynomial time.

With every TBox T we can associate an FLE-description graph GT = (VT , ET , LT)
which is a directed graph with labelled nodes and edges where

• the set of vertices VT is the set of defined concepts in T and

14

• for every concept A defined as in (2) the set ET contains an edge (A, ∃rk, Dk)
for all 1 ≤ r ≤ m and an edge (A, ∀rk, Ek) for all 1 ≤ r ≤ n and

• the labelling function LT maps A to the set {P1, . . . , Pl}.

In the case of EL-description graphs gfp-semantics can be characterized via graph-
simulations. To a certain extent, this is also possible for FLE , but obviously one
has to take special care of value-restrictions. This is why we define two types
of simulations. The first type of simulation maps one FLE-description graph to
another.

Definition 4 (Graph-Simulation) Let GT1 and GT2 be description graphs of
some FLE-TBoxes T1 and T2. A binary relation ϕ ⊆ VT1 × VT2 is called
(graph-)simulation iff for all pairs (A,B) ∈ ϕ the following statements are true.

(S1) LT1(A) ⊆ LT2(B)

(S2) For all edges (A, ∃r, E) ∈ ET1 there is some F ∈ VT2 such that (B, ∃r, F) ∈
ET2 and (E,F) ∈ ϕ.

(S3) For all edges (A, ∀r, E) ∈ ET1 there is some F ∈ VT2 such that (B, ∀r, F) ∈
ET2 and (E,F) ∈ ϕ.

Instead of graph-simulation we simply write simulation if it is clear from the
context, that we are dealing with two FLE-description graphs. The second type
of simulation that we define maps FLE-description graphs to models.

Definition 5 (Model-Simulation) Let i = (∆i, ·i) be a model and GT the de-
scription graph of some FLE-TBox T . A binary relation ϕ ⊆ VT × ∆i is called
model-simulation iff for all pairs (A, x) ∈ ϕ the following statements are true.

(MS1) P ∈ LT (A) ⇒ x ∈ P i

(MS2) For all edges (A, ∃r, B) ∈ ET there is some y ∈ ∆i such that (x, y) ∈ ri

and (B, y) ∈ ϕ.

(MS3) For all edges (A, ∀r, B) ∈ ET and all y ∈ ∆i with (x, y) ∈ ri it holds that
(B, y) ∈ ϕ.

This notion of model-simulation does indeed yield a characterization of gfp-
semantics, just like in the case for EL.

Lemma 2 For x ∈ ∆i and some defined concept A it holds that x ∈ Ai iff there
is a model simulation ϕ from GT = (VT , ET , LT) to i such that (A, x) ∈ ϕ.

15

Proof: Only-if: Define ϕ = {(B, x) | B defined concept, x ∈ Bi}. We prove
that ϕ is a model-simulation by checking properties (MS1) to (MS3). Let (B, x) ∈
ϕ. (MS1) follows directly from the semantics of FLE. (MS2): Let (B, ∃r, F) ∈
ET be some edge. Then Bi ⊆ (∃r.F)i = {y ∈ ∆i | ∃z ∈ ∆i : (y, z) ∈ ri, z ∈ F i}.
By definition of ϕ it holds that x ∈ Bi. Hence, there is some z ∈ ∆i such
that (x, z) ∈ ri and z ∈ F i, i. e. (F, z) ∈ ϕ. (MS3) can be shown analogously.
(A, x) ∈ ϕ follows immediately from the definition.

If: We prove this using (1) from the Knaster-Tarski-Theorem. As usual, we
denote both the gfp-model i as well as the primitive interpretation that it is
based upon by i. Define an interpretation j as follows. Let j coincide with i on
all role names and primitive concept names. For all defined concept names B
define Bj = {y ∈ ∆i | (B, y) ∈ ϕ}. Notice that j is not necessarily a gfp-model,
just some interpretation based on i. We prove that for every statement A ≡ D in
T where A is a defined concept name and D a concept description it holds that
Aj ⊆ Dj. Since T is normalized D is of the form

D = P1 ⊓ . . . ⊓ Pl ⊓ ∃r1.E1 ⊓ . . . ⊓ ∃rm.Em ⊓ ∀s1.F1 ⊓ . . . ⊓ ∀sn.Fn. (3)

Let y ∈ Aj . From the way we have defined j it follows that (A, y) ∈ ϕ. Since ϕ
is a simulation this implies that y ∈ P i

k = P j
k for all 1 ≤ k ≤ l. Now consider rk,

Ek for some k, 1 ≤ k ≤ m. Because of (A, y) ∈ ϕ and (MS2) there must be some
z ∈ ∆i such that (y, z) ∈ ri

k, (Ek, z) ∈ ϕ. Thus z ∈ Ej
k. Therefore, y ∈ (∃rk.Ek)

j .
Finally, consider sk, Fk, 1 ≤ k ≤ n. From (MS3) and (A, y) ∈ ϕ we get that
(y, z) ∈ sk implies (Fk, z) ∈ ϕ for all z ∈ ∆i. Thus y ∈ (∀sk.Fk)

j. We have thus
shown that

y ∈ P j
1 ⊓ . . .⊓P

j
l ⊓ (∃r1.E1)

j ⊓ . . .⊓ (∃rm.Em)j ⊓ (∀s1.F1)
j ⊓ . . .⊓ (∀sn.Fn)j = Dj.

These results prove that Aj ⊆ Dj for all statements A ≡ D in T . By (1) this
implies Aj ⊆ Ai, where i is the gfp-model based on the primitive interpretation
i. Furthermore, (A, x) ∈ ϕ implies x ∈ Aj which in turn implies x ∈ Ai, which is
what we wanted. �

Lemma 2 provides a useful characterization for the gfp-semantics in FLE . Given
a model i an object x ∈ ∆i, and a TBox T containing a defined concept A it is
possible to check whether x ∈ Ai in polynomial time. This is because checking
whether there is a model-simulation from GT to i containing (A, x) can be done
in polynomial time. The proof is only outlined here. First one has to show that
the union of two model-simulations is also a model-simulation. This implies that
there is a greatest model-simulation from GT to i. This greatest model-simulation
can be obtained by taking the whole set VT ×∆i and subsequently removing pairs
that do not satisfy one of the conditions (MS1) to (MS3).

16

a

b

r

P

r

(a) The model

∃r

∀r∃r

{a, b}

∅ ∃r ∀r

∀r

{a}

{b}

P

P

∃r

∀r

(b) The canonical terminology

Figure 4: A model and its canonical terminology

4.2 Canonical terminologies and model-msc

Another way to characterize gfp-semantics is via graph-simulations and what we
shall call canonical terminologies.

Definition 6 (canonical terminology) For a given primitive interpretation i
define a TBox Ti as follows:

• The defined concept names in Ti are the subsets U ⊆ ∆i.

• Denote by Sr,U = {y ∈ ∆i | ∃x ∈ U : (x, y) ∈ ri} the set of r-successors of
U .

• Denote by Sr,U = {V ⊆ Sr,U | ∀x ∈ U : Sr,{x} ∩ V 6= ∅}.

• Let Ti contain all statements of the form

U ≡
l

U⊆P i

P ⊓
l

r∈Nr

∀r.Sr,U ⊓
l

r∈Nr
V ∈Sr,U

∃r.V

for all U ⊆ ∆i.

We call Ti the canonical terminology of i.

Figure 4.1 shows an FLE-model and the FLE-description graph of its canonical
terminology. They are based on a set of role names Nr = {r} a set of primitive
concept names Np = {P} and a model i:

∆i = {a, b}

ri = {(a, a), (a, b)}

P i = {b}

17

Lemma 3 Let T be some FLE-TBox and A a defined concept in T . Let i be a
gfp-model of T , Ti its canonical terminology and x ∈ ∆i. Then x ∈ Ai iff there
is a graph-simulation ϕ from GT to GTi

with (A, {x}) ∈ ϕ.

Proof: If: Let ϕ be a graph-simulation from GT to GTi
. Define a binary relation

ψ as follows. For every defined concept E in T and every x ∈ ∆i, let

(E, x) ∈ ψ iff there is some U ⊆ ∆i such that (E,U) ∈ ϕ, x ∈ U.

We check the properties of a model-simulation. (MS1) Let (E, x) ∈ ψ. There
is U ⊆ ∆i such that (E,U) ∈ ϕ and x ∈ U . P ∈ LT (E) implies P ∈ LTi

(U)
by (S1). By definition of Ti this implies U ⊆ P i and thus x ∈ P i. (MS2) Let
(E, ∃r, F) ∈ ET be some ∃-edge and (E, x) ∈ ψ. Choose some set U ⊆ ∆i,
such that (E,U) ∈ ϕ, x ∈ U . By (S2) there must be some set V ⊆ ∆i such that
(F, V) ∈ ϕ, (U, ∃r, V) ∈ ETi

. From the definition of Ti we know that V ∩Sr,{x} 6= ∅.
Hence, there is some y ∈ V such that (x, y) ∈ ri. Since (F, V) ∈ ϕ it follows
that (F, y) ∈ ψ. (MS3) Let (E, ∀r, F) ∈ ET be some ∀-edge and (E, x) ∈ ψ.
We can find U ⊆ ∆i, such that (E,U) ∈ ϕ, x ∈ U . By (S3) there must be
some set V ⊆ ∆i such that (F, V) ∈ ϕ, (U, ∀r, V) ∈ ETi

. By definition of Ti this
implies that V = Sr,U . For every y ∈ ∆i, (x, y) ∈ ri it follows that y ∈ V and
since (F, V) ∈ ϕ we get (F, y) ∈ ψ. This proves that ψ is a model simulation.
Furthermore (A, x) ∈ ψ since (A, {x}) ∈ ϕ. From Lemma 2 we obtain that
x ∈ Ai.

Only if: Lemma 2 shows that there is some model-simulation ψ from GT to GTi
.

Define a binary relation ϕ as follows. For every defined concept A in T and every
set U ⊆ ∆i

(A,U) ∈ ϕ iff (A, x) ∈ ψ for all x ∈ U.

We prove that ϕ is a graph-simulation. (S1) Let (A,U) ∈ ϕ. From (MS1) get
that x ∈ P i for all P ∈ LT (A) and all x ∈ U . Thus U ⊆ P i for all P ∈ LT (A). By
definition of T1 it follows that LT (A) ⊆ LT1(U) (S2) Let (A,U) ∈ ϕ, (A, ∃r, B) ∈
ET . Let U = {x1, . . . , xk}. For every xl (MS2) implies that there is some yl ∈ ∆i

such that (xl, yl) ∈ ri and (B, y) ∈ ψ. Define V = {y1, . . . , yk}. Then V ∈ Sr,U

and (B, V) ∈ ϕ. (S3) Let (A,U) ∈ ϕ, (A, ∀r, B) ∈ ET . Then (U, ∀r, Sr,U) ∈ ETi
.

(MS3) implies (B, y) ∈ ψ for all y ∈ Sr,U and thus (B, Sr,U) ∈ ϕ. �

Lemma 3 yields yet another characterization for gfp-semantics. However, this is
not useful for model-checking, since the size of the canonical terminology of a
model can be exponential in the size of the original model, while we have seen
that model checking can be done in polynomial time. The real purpose of the
canonical terminology is, that it provides us with a most specific concept. This
can be proved using the following sufficient condition for subsumption.

18

Lemma 4 Let T be an FLE-TBox and T ′ a strictly conservative extension of
T . Let A and B be defined concepts in T and T ′, respectively. If there is a
simulation ϕ from GT ′ to GT such that (B,A) ∈ ϕ, then A ⊑T ′ B.

Proof: Let i be some primitive interpretation of Nr and Np. We also denote
the corresponding gfp-models by i. Let Ti be the canonical terminology for i.
Let x ∈ Ai. From Lemma 3 it follows that there is a simulation ψ from GT to
GTi

such that (A, {x}) ∈ ψ. Since the composition of graph-simulations is also a
graph-simulation ψ ◦ϕ is a simulation from GT to GTi

such that (B, {x}) ∈ ψ ◦ϕ.
Then x ∈ Bi follows from Lemma 3. �

Corollary 1 Let i be a primitive interpretation for a given set of primitive con-
cept names Np and a set of role names Nr. Let Ti be the canonical terminology
for i. Then {x} in Ti is a model-msc for i.

Proof: Follows directly from Lemma 3 and Lemma 4. �

Since we are using a subset construction to produce the canonical terminology
the size of the most specific concept may become exponentially large in the size
of the model. As in the case of FL0 this cannot always be avoided. The same
example as in the case of FL0 can be used to illustrate this (cf. Figure 2.2).

4.3 Subsumption and least common subsumers for FLE
with cyclic TBoxes

As in the case of model-checking, it is desirable to find some characterization of
subsumption, that is a bit more intuitive than the fixpoints themselves. Lemma 4
already provides a sufficient condition for subsumption. Unfortunately the con-
verse of Lemma 4 is not true, not even in the case of acyclic TBoxes.

For the case of acyclic TBoxes, Küsters and Molitor have presented a characteri-
zation for subsumption [3]. They introduce a normalization step which consists of
propagating ∀r statements along ∃r-edges in the description graph and of merging
∀r edges that share a common origin. What we do in the case of cyclic TBoxes
is very similar. The normalization is obtained by a subset construction.

Definition 7 Let T be some FLE-TBox, Nd the set of defined concept names in
T . We define a TBox T N as follows.

• The defined concept names in T are the subsets U ⊆ Nd.

19

• Define Sr,U = {A ∈ Nd | (B, ∀r, A) ∈ ET for some B ∈ U}.

• Let T N contain the statements of the form

U ≡
l

A∈U
P∈LT (A)

P ⊓
l

r∈Nr

∀r.Sr,U ⊓
l

A∈U
(A,∃r,B)∈ET

∃r.({B} ∪ Sr,U).

We call T N the normalization of T .

One can prove that every defined concept A in T is equivalent to {A} in T N in
the sense that {A}i = Ai for all primitive interpretations i. However, for now,
we only need {A}i ⊆ Ai. We later obtain Ai ⊆ {A}i as a corollary of one of the
following results.

Lemma 5 Let T be an FLE-TBox and T N its normalization. Let A ∈ T be
a defined concept. Then {A} ⊑T N ∪̇T A and thus {A}i ⊆ Ai for all primitive
interpretations i.

Proof: Show that

ϕ = {(A,U) | A ∈ Nd, U ⊆ Nd, A ∈ U}

is a simulation from GT N ∪̇T to GT N . Then {A} ⊑T N ∪̇T A follows from Lemma 4.
�

A path in an FLE-description graph GT is a tuple of the form (A1, l1, A2, l2, . . . , ln−1, An)
where Ak ∈ VT and the lk are labels of the form ∃r or ∀r for some r ∈ Nr, and
(Ak, lk, Ak+1) ∈ ET for all 1 ≤ k ≤ n. Starting from a node A a cyclic description
graph GT can be unraveled into a possibly infinite tree. This can be formalized
by defining a new graph whose vertices are the paths in GT starting from A where
two paths p1 and p2 are connected by an edge labelled l if the last component
of the tuples p1 and p2 are connected by an edge labelled l. The labels of each
path p should be the labels of its last component. The unraveling of T of depth
d starting from A is obtained by considering only the paths of length less than or
equal to d for some constant d. We denote it by T d,A. Then one can easily show
that Ai ⊆ (A)i for all models i.

Lemma 6 Let GT1 and GT2 be two FLE-description graphs. Let n1 and n2 be the
node size of GT1 and GT2, respectively. Define d = n1 · n2 + 1. There is a graph
simulation from GT1 to GT2 containing (A,B) iff there is a graph simulation from
GT d,A

1
to GT2 mapping (A) to B.

20

Proof: The “only if”-direction follows directly from the fact that A ⊑T ∪̇T d,A

(A). For the “if”-direction assume that there is a graph simulation ϕ from GT d,A
1

to GT2 . Since GT d,A
1

is a tree, we can assume without loss of generality that there

is only one tuple (p, C) ∈ ϕ for every p ∈ VT d,A
1

. Hence we can define functions

f1 :p 7→ C, where (p, C) ∈ ϕ

f2 :p 7→ A, A is the last component of p.

There are only d − 1 possible values for the tuple (f1(p), f2(p)), so in GT d,A
1

every path of length d contains some p1 and p2 such that (f1(p1), f2(p1)) =
(f1(p2), f2(p2)) Define Ṽ to be the set of all p ∈ VT d,A

1
such that no two ver-

tices on this path have the same value for (f1(p), f2(p)). One can prove that

Z = {(z1(p), z2(p) | P ∈ Ṽ }

is a simulation from GT1 to GT2 . The proof can be found in [7]. �

Now, in order to prove that there is a simulation between two description graphs
it is sufficient to restrict the attention to a sufficiently deep unraveling of the
first one of these graphs. The main advantage is that the unraveling, unlike the
original graph, has to be acyclic. Therefore one can apply techniques such as
structural induction.

Before we actually proof the converse of Lemma 4 we need two more technical
lemmas. These help us to construct models that serve as counterexamples during
the proof.

Lemma 7 Let T be some FLE-TBox, Nd the set of defined concepts in T and
T N its normalization. Let U, V ⊆ Nd be some sets of concept descriptions such
that U ⊆ V . Then V ⊑T N U .

Proof: Define ϕ = {(W,R) | W ⊆ R}. It is not hard to check that this is
a graph-simulation. (S1) follows immediately from the definition of T N . (S2)
Let (W, ∃r,X) ∈ ET N , (W,R) ∈ ϕ. From the definition of T N it follows that
X = {B} ∪ Sr,W , where (A, ∃r, B) ∈ ET for some A ∈ W . Then also A ∈ R and
thus for Y = {B} ∪ Sr,R it holds that (R, ∃r, Y) ∈ ET N . X ⊆ Y follows from
W ⊆ R and thus (X, Y) ∈ ϕ. (S3) Let (W, ∀r,X) ∈ ET N , (W,R) ∈ ϕ. The
way that T N is defined implies that X = Sr,W . Since W ⊆ R it also holds that
Sr,W ⊆ Sr,R. Then (X,Sr,R) ∈ ϕ and (R, ∀r, Sr,R) ∈ ET N from the definition of
T N . Obviously (U, V) ∈ ϕ and thus the result follows from Lemma 4 �

Lemma 8 Let T be some FLE-TBox, Nd the set of defined concepts in T and
T N its normalization. Define a gfp-model iN as follows

21

• ∆iN = P(Nd)

• P iN = {V ∈ ∆iN | P ∈ LT N (V)}

• riN = {(V,W) ∈ ∆iN | (V, ∃r,W) ∈ ET N}

Then U ∈ U iN for all U ⊆ Nd

Proof: Define ϕ = {(V,W) | V ⊆ W}. Once again it is only technical to
check that ϕ is a model-simulation from GT N to iN . (MS1) follows directly from
the definitions of T N and iN . (MS2) Let (V,W) ∈ ϕ, (V, ∃r,X) ∈ ET N . Then
X = {B} ∪ Sr,V for some B ∈ Nd and some A ∈ V with (A, ∃r, B) ∈ ET .
Consider Y = {B} ∪ Sr,W . From V ⊆W we obtain X ⊆ Y and thus (X, Y) ∈ ϕ.
The definition of T N implies that (W, ∃r, Y) ∈ ET N . (MS3) Let (V,W) ∈ ϕ,
(V, ∀r,X) ∈ ET N . Then X = Sr,V . Let Y ⊆ Nd such that (W,Y) ∈ riN , i. e.
(W, ∃r, Y) ∈ ET N . Then Y = {B} ∪ Sr,W for some B ∈ Nd and som A ∈ W .
X ⊆ Y follows from V ⊆ W and thus (X, Y) ∈ ϕ. Since obviously (U,U) ∈ ϕ
Lemma 2 proves U ∈ U iN . �

One can think of iN as being obtained from GT N by removing all ∀-edges and
then transforming the description graph into a model.

Theorem 3 Let T be an FLE-TBox and T ′ a strictly conservative extension of
T . Let T N be the normalisation of T . Let A and B be defined concepts in T and
T ′, respectively. If A ⊑T ′ B then there is a simulation ϕ from GT ′ to GT N such
that (B, {A}) ∈ ϕ.

Proof: First assume that T ′ is acyclic. Let U ⊆ Nd be a subset of the defined
concepts in T such that U i ⊆ Bi holds for all primitive interpretations i. We
prove that there is a simulation ϕ from GT ′ to GT N with (B,U) ∈ ϕ. Since T ′ is
acyclic, B can be expanded into a finite tree, which means we can use induction
over the structure of B to prove our claim.

For the base case consider B ≡ P for some primitive concept name P . Define a
canonical model iN as in Lemma 8. Since U ∈ U iN and U iN ⊆ BiN also U ∈ BiN

and thus U ∈ P iN holds. Therefore the simulation ϕ = {(B,U)} is a simulation
with the desired properties. Obviously this simulation also works for the case
that B ≡ ⊤ and we are done with the base case.

We divide the step case into three subcases. Step case 1: First letB ≡ E1⊓. . .⊓En

where we already know from the induction hypothesis that there are simulations
ϕ1, . . . , ϕn from GT ′ to GT N such that (E1, U) ∈ ϕ1,. . . , (En, U) ∈ ϕn. Then
ϕ1 ∪ . . . ∪ ϕn ∪ {(B,U)} is a simulation with the desired properties.

22

Step case 2: Consider B ≡ ∀r̂.E for some r̂ ∈ Nr and some defined concept
E for which the induction hypothesis holds. By definition there is exactly one
∀r̂-edge in GT N starting from U , say (U, ∀r̂, V) ∈ ET N . Suppose that there is no
simulation ϕ from GT ′ to GT N with (B,U) ∈ ϕ. Then there is also no simulation
ψ from GT ′ to GT N with (E, V) ∈ ψ because ψ could be extended by (B,U) and
would still be simulation. The induction hypothesis implies that V 6⊑ E. Thus
there must be some model i0 and some x ∈ ∆i0 such that x ∈ V i0 but x /∈ Ei0 .
We can extend the model iN by i0 to a new model i in the following way. W.l.o.g.
∆i0 and ∆iN are disjoint.

∆i = ∆i0 ∪ ∆iN

P i = P i0 ∪ P iN

r̂i = r̂i0 ∪ r̂iN ∪ {(U, x)}

ri = ri0 ∪ riN for all r 6= r̂

for all primitive concept names P . One can easily build a model simulation from
GT N to i as the union of the two model simulations from GT N to i0 and to iN ,
respectively. On the other hand there cannot be a model-simulation containing
(B,U) from GT ′ to i, since such a simulation would yield a model-simulation
containing (E, x). Therefore U ∈ U i but U /∈ Bi. This contradicts U i ⊆ Bi.
Hence our assumption that there is no simulation from GT ′ to GT N containing
(B,U) must be false.

Step case 3: The last case where B ≡ ∃r̂.E for some r̂ ∈ Nr is treated in a
similar way. Assume that the induction hypothesis holds for E but not for B,
i. e. there is no simulation from GT ′ to GT N containing (B,U). Let V1, . . . , Vk be
the ∃r̂-successors of U in GT N . Then for none of the Vl there can be a simulation
from GT ′ to GT N containing (E, Vl). Therefore Vl 6⊑ E for all 1 ≤ l ≤ k. We
choose models il and xl ∈ ∆il such that x ∈ V il

l but x /∈ Eil for all 1 ≤ l ≤ k.
As in the previous case this can be used to construct a model. Without loss of
generality, we can assume that ∆iN and ∆il, 1 ≤ l ≤ k, are mutually disjoint.

∆i = {X} ∪ ∆iN ∪
⋃

1≤l≤k

∆il

P i = {X} ∪ P iN ∪
⋃

1≤l≤k

P il for all P with U ∈ P iN

P i = P iN ∪
⋃

1≤l≤k

P il for all P with U /∈ P iN

ri = riN ∪
⋃

1≤l≤k

ril ∪ {(X, V) | (U, V) ∈ ril} for all r 6= r̂

r̂i = r̂iN ∪
⋃

1≤l≤k

r̂il ∪ {(X, xl) | 1 ≤ l ≤ k}

Again it can be shown that in this model i it holds that X ∈ U i but X /∈ Bi,

23

which contradicts U i ⊆ Bi. Therefore there must be some simulation from from
GT ′ to GT N containing (B,U).

Therefore we have proved via structural induction that in the case where T ′ is an
acyclic TBox, B some defined concept in T ′, and U some defined concept from T N

there is a simulation ϕ from GT ′ to GT N with (B,U) ∈ ϕ if U i ⊆ Bi for all primitive
interpretations i. Since we know that A ⊑T ′ B holds and thus Ai ⊆ Bi for all
primitive interpretations i it follows from Lemma 5 that {A}i ⊆ Bi. Thus we
have shown that there must be a simulation ϕ from GT ′ to GT N with (B, {A}) ∈ ϕ
in the acyclic case.

Now let T ′ be a cyclic TBox. Consider T ′d,B, the unraveling of T starting from
B for some natural number d. Let (B) be the defined concept in T d,B that
corresponds to B. Then Ai ⊆ Bi ⊆ (B)i for all models i. Since T d,B is acyclic
it follows from the previous case that there is a simulation from GT ′d,B to GT N

containing ((B), {A}). From Lemma 6 we obtain that there is a simulation from
GT ′ to GT N containing (B, {A}). �

Thus we have found a necessary condition for subsumption in FLE with cyclic
TBoxes. We have not yet proved that a concept description and its normaliza-
tion are equivalent. This follows quickly from the theorem. Obviously for every
TBox T and for every defined concept A from T the identity relation idT N is
a simulation from GT N to GT N containing ({A}, {A}). Therefore by Theorem 3
A ⊑T ∪̇T N {A}.

Corollary 2 Let T be some FLE-TBox and A a defined concept in T . Then
Ai = {A}i for all models i.

Theorem 3 can be viewed as some sort of converse to Lemma 4. But notice that
there is a normalization step involved that cannot be avoided.

Computing the normalized TBox T N corresponding to T can be done in time
exponential in the size of T . Checking whether there is a simulation from GT2

to GT N can be done in time polynomial in the size of T N and T2. Therefore
using the above characterization, subsumption can be checked in ExpTime. It
is unclear, whether one can develope a PSpace-algorithm that computes T N on
the fly, using only polynomial space. To the best knowledge of the author, it
is not known whether subsumption in FLE with cyclic TBoxes can be checked
in PSpace. So far only PSpace-hardness [4] and containment in ExpTime are
known [12].

Except for the normalization-step, our characterization of subsumption in FLE
with terminological cycles uses essentially the same techniques as the characteri-
zation provided by Baader et al. [5]. This gives us a strong indication that least
common subsumers in FLE can be computed in a similar way as in EL, namely
by forming the product of the corresponding description graphs.

24

Definition 8 Let G1 = (V1, E1, L1) and G2 = (V2, E2, L2) be two FLE-description
graphs. Their product is the description graph G1 × G2 = (V,E, L) where

• V = V1 × V2

• E = {((v1, v2), e, (v
′
1, v

′
2)) | (v1, e, v

′
1) ∈ E1 ∧ (v2, e, v

′
2) ∈ E2, e ∈ {∀r | r ∈

Nr} ∪ {∃r | r ∈ Nr}}

Given some FLE-TBox T and T N its normalization, let A and B be two defined
concepts from T . The description graph GT N × GT N yields a TBox T0 such that
GT0 = GT N ×GT N . T1 = T ∪T0 is a strictly conservative extension of T , since the
defined concepts in T0 and T are disjoint.

Lemma 9 ({A}, {B}) in T1 is the least common subsumer of A and B in T .

Proof: (1) We first prove A ⊑T1 ({A}, {B}). By Corollary 2 and Remark ?? it
suffices to show that {A} ⊑T N ∪̇T0

({A}, {B}). We construct a simulation from GT0

to GT N containing
(

({A}, {B}), {A}
)

. Given such a simulation the rest follows
from Lemma 4 Define this ϕ to be the projection of all elements of GT0 to the
first component.

ϕ = {((U, V), U) | (U, V) ∈ VT N × VT N}.

The proof that ϕ really is a simulation that contains
(

({A}, {B}), A
)

is done
in analogy to the case for EL and can be found in [1] on page 15. This proves
A ⊑T1 ({A}, {B}), B ⊑T1 ({A}, {B}) can be shown analogously.

(2) Now assume that there is some FLE-TBox T2 and some defined concept F in
T2 such that A ⊑T1∪̇T2

F and B ⊑T1∪̇T2
F . Then by Remark ?? A ⊑T ∪̇T2

F and
B ⊑T ∪̇T2

F must also hold. By Theorem 3 there must be simulations ϕA and ϕB

from GT2 to GT N such that (F, {A}) ∈ ϕA and (F, {B}) ∈ ϕB. In order to prove
({A}, {B}) ⊑T1∪̇T2

F it is sufficient to construct a simulation ψ from GT2 to GT1

containing
(

F, ({A}, {B})
)

. Define

ψ = {(H, (U, V)) | (H,U) ∈ ϕA ∧ (H, V) ∈ ϕB ∧ U ⊆ Nd ∧ V ⊆ Nd}.

Again it can be checked in analogy to the case for EL that ψ is a simulation and
contains (F, ({A}, {B}). The proof can also be found in [1] on page 15. �

5 Conclusion

Computing the model-msc is a useful tool to extract knowledge from a model.
We have seen that in many standard logics model-mscs need not exist. In [] it

25

was shown that in the case of EL one can overcome this problem by allowing
for cyclic TBoxes with gfp-semantics. In the present report we have presented
extensions of FL0, FLE, and ALC in which model-mscs do exist. We have shown
that in the case of ALC it suffices to add union of roles and reflexive-transitive
closure of roles. Furthermore we have proved that model-mscs exist in FL0 and
FLE with cyclic TBoxes and gfp-semantics.

There has not been any previous work characterizing subsumption. We have
generalized Küsters’ and Molitor’s approach [3], to form a characterization of
subsumption in FLE in the presence of cyclic TBoxes. This characterization
requires a normalization step which may lead to the terminologies becoming ex-
ponentially large. The characterization also leads to a construction of the least
common subsumer in the presence of cyclic FLE-TBoxes.

References

[1] F. Baader. Least common subsumers, most specific concepts, and role-value-
maps in a description logic with existential restrictions and terminological
cycles. LTCS-Report LTCS-02-07, Chair for Automata Theory, Institute for
Theoretical Computer Science, Dresden University of Technology, Germany,
2002. See http://lat.inf.tu-dresden.de/research/reports.html.

[2] F. Baader and R. Küsters. Computing the least common subsumer and the
most specific concept in the presence of cyclic ALN -concept descriptions.
In O. Herzog and A. Günter, editors, Proceedings of KI-98, volume 1504 of
LNCS, pages 129–140, Bremen, Germany, 1998. Springer–Verlag.

[3] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers
in description logics with existential restrictions. In T. Dean, editor, Pro-
ceedings of IJCAI’99, pages 96–101. Morgan Kaufmann, 1999.

[4] Franz Baader. Using automata theory for characterizing the semantics of ter-
minological cycles. Ann. of Mathematics and Artificial Intelligence, 18:175–
219, 1996.

[5] Franz Baader. Least common subsumers and most specific concepts in a
description logic with existential restrictions and terminological cycles. In
Georg Gottlob and Toby Walsh, editors, Proceedings of IJCAI ’03, pages
319–324. Morgan Kaufmann, 2003.

[6] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

26

[7] Franz Baader and Felix Distel. A finite basis for the set of EL-implications
holding in a finite model. LTCS-Report 07-02, Inst. für Theoretische Infor-
matik, TU Dresden, Dresden, Germany, 2007.

[8] Franz Baader and Felix Distel. A finite basis for the set of EL-implications
holding in a finite model. In Raoul Medina and Sergei Obiedkov, editors,
Proceedings of the 6th International Conference on Formal Concept Analysis
(ICFCA ’08), volume 4933 of Lecture Notes in Artificial Intelligence, pages
46–61. Springer, 2008.

[9] S. Brandt and A.-Y. Turhan. Using non-standard inferences in description
logics — what does it buy me? In Proceedings of KIDLWS’01, number 44
in CEUR-WS, Vienna, Austria, September 2001. RWTH Aachen.

[10] Sebastian Brandt and Anni-Yasmin Turhan. Computing least common sub-
sumers for FLE+. In Proceedings of DL 2003, CEUR-WS, 2003.

[11] Robert Dionne, Eric Mays, and Frank J. Oles. The equivalence of model-
theoretic and structural subsumption in description logics. In IJCAI, pages
710–717, 1993.

[12] Francesco M. Donini and Fabio Massacci. EXPTIME tableaux for ALC.
Artificial Intelligence, 124(1):87–138, 2000.

[13] Eric Mays, Robert Dionne, and Robert A. Weida. K-Rep system overview.
SIGART Bulletin, 2(3):93–97, 1991.

[14] B. Nebel. Terminological cycles: Semantics and computational properties.
In J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the
Representation of Knowledge, pages 331–361. Morgan Kaufmann Publishers,
San Mateo (CA), USA, 1991.

27

