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Completion-based computation of least common
subsumers with limited role-depth for EL and

prob EL

Abstract

The least common subsumer (lcs) w.r.t general EL-TBoxes does not
need to exists in general due to cyclic axioms. In this report we present an
algorithm for computing role-depth bounded EL-lcs based on the comple-
tion algorithm for EL. We extend this computation algorithm to a recently
introduced probabilistic variant of EL: Prob-EL01.

1 Motivation

The least common subsumer (lcs) inference yields a concept description, that
generalizes a collection of concept descriptions by extracting their commonalities.
This inference was first introduced in [11]. The lcs is used in many applications,
most prominently, it is used in the bottom-up construction of knowledge bases
[6], where a new concept is to be introduced that has a collection of selected
individuals as instances. This new concept is then a candidate for a new concept
definition in the TBox. This can be achieved by first generalizing each selected in-
dividual into a concept description (by computing its most specific concept (msc))
and in a second step apply the lcs to these concept descriptions. The concept
description returned by the lcs can then be (edited and) added to the TBox. Fur-
ther applications of the lcs include similarity-based Information Retrieval [18, 1]
or learning from examples [13, 12].

The lightweight Description Logic EL and many of its extensions enjoy the nice
property that concept subsumption and classification of TBoxes can be computed
in polynomial time [4]. Thus, despite of its limited expressiveness, EL is used in
many practical applications – most prominently in the medical ontology Snomed
[19] – and is the basis for EL profile of the OWL 2.0 standard1.

1http://www.w3.org/TR/owl2-profiles/
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However, some practical applications such as medical or context-aware applica-
tions have to represent information that holds only with a certain probability. For
instance, context-aware applications may need to represent sensor data in their
ontology, which is correct only with a certain probability. Whereas medical data
may based on statistical analysis. This sort of information can be represented by
the probabilistic DLs recently introduced [16]. Here probabilistic information is
assigned to concepts (and roles) directly and not, as in other probabilistic DLs,
to concept axioms [15, 14]. In particular in [16] the DL Prob-EL and its sub-
language Prob-EL01 was introduced. Latter allows to express limited probability
values for EL-concepts, and it was shown in [16] that instance checking can be
done in polynomial time.

In applications where different information sources supply varying information for
the same entity, the generalization of this information, gives evidence for what
the sources agree upon. For both, EL and Prob-EL, the computation of the lcs is
a desirable task. Unfortunately, the lcs w.r.t. general or even cyclic EL-TBoxes
does not need to exist (see [2]), due to cyclic definitions in the TBox.

In this report we present practical algorithms for computing the lcs up to a cer-
tain role-depth for general EL- and Prob-EL01-TBoxes. The concept description
obtained by the algorithm is still a generalization of the input concepts, but not
necessarily the least one w.r.t. subsumption. We argue that this “good common
subsumer” still is useful in practice. To the best of our knowledge this report
gives the first computation algorithm for the lcs in a DL that captures (a limited
form) probabilistic information. In [17] a probabilistic lcs for the DL ALN was
investigated, with the idea to relax the notion of the lcs in order to avoid over-
fitting. This relaxed notion is helpful in cases where the concept obtained from
the lcs is used as a search pattern.

Our algorithms to compute the lcs up to a certain role-depth for general EL-
and Prob-EL01-TBoxes are based upon the completion algorithms for computing
classification in EL and Prob-EL01 and thus can be easily implemented on top of
completion-based reasoners for these two logics.

2 Description Logics

In Description logics (DLs), concept descriptions are inductively defined with the
help of a set of concept constructors, starting with a set NC of concept names, a
set NR of role names. From elements of these sets complex concept descriptions
can be obtained by concept constructors. In this report we are interested to
reasoning with concept descriptions.
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2.1 The DL EL

The DL EL allows for two concept constructors: conjunction and existential re-
strictions. The DL EL also contains the top-concept, denoted >.

Definition 1 (Syntax of EL-concept descriptions) Let A denote a concept
name, r denotes a role and C1, C2 denote arbitrary EL-concepts. An EL-concept
description C can be obtained by the following rule:

C −→ > | A | C1 u C2 | ∃r.C1

.

The semantics of a concept description is defined in terms of an interpretation
I = (∆, ·I). The domain ∆ of I is a non-empty set of individuals and the
interpretation function ·I maps each concept name A ∈ NC to a set P I ⊆ ∆ and
each role name r ∈ NR to a binary relation rI ⊆ ∆×∆. Arbitrary EL-concept
descriptions are interpreted as follows:

Definition 2 (Semantics of EL-concept descriptions) The top-concept is in-
terpreted as the domain (>I = ∆). The extension of ·I to arbitrary EL-concept
descriptions is inductively defined, as follows:

• (C uD)I = CI ∩DI, and

• (∃r.C)I = {x ∈ ∆ | ∃y : (x, y) ∈ rI ∧ y ∈ CI} for r ∈ NR.

Concept descriptions can be assigned a name or sub-concept super-concept rela-
tionships between arbitrary concept descriptions established in the TBox.

Definition 3 (GCI, TBox) Let C1, C2, D1 and D2 be concept descriptions,
then

C1 v C2

is a general concept inclusion axiom (GCI). The semantics of GCIs is given by the
interpretation function. A GCI C1 v C2 is satisfied for a TBox T , iff CI1 ⊆ CI2
for all models I of T .

A TBox T is finite set of contains GCIs. An interpretation is a model of a TBox,
if for all C1 v C2 ∈ T and D1 ≡ D2 ∈ T , it holds that CI1 ⊆ CI2 and DI1 = DI2 .

If the concept axioms in the TBox contain only EL-concept descriptions, we call
it an EL-TBox.
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It is easy to see that concept equivalence between two concept descriptions (writ-
ten C1 ≡ C2) can be stated by two GCIs: C1 ≡ C2 and C1 v C1. A special form
of GCI are primitive concept definitions. Primitive concept definitions allow only
for concept names on the left-hand side of the concept axiom.

Based on the semantics of concept descriptions and TBoxes a number of inference
problems for DLs have been defined. The most relevant ones can be described as
follows:

• Concept satisfiability. A concept C is satisfiable w.r.t. a TBox T if there
exists a model I of T such that CI 6= ∅.

• Concept subsumption. A concept C subsumes a concept D w.r.t. a TBox
T (written C vT D) if CI ⊆ DI in every model I of T .

Since the DL EL cannot express contradictions, every EL-concept is trivially sat-
isfiable. In the remainder of this report, we will thus concentrate on subsumption
as the basic reasoning task.

2.2 Prob-EL

We first introduce Prob-EL, a probabilistic variant of EL that allows reasoning
with probabilistic concepts. We later present the variant Prob-EL01 in which
probabilistic expressions can only express that a concept is necessarily true, i. e.
occurs with probability equal to 1, or that it is not impossible, i. e. occurs with
probability greater than 0. These probabilistic logics were first introduced in [16].

The probabilistic DL Prob-EL extends EL with the constructor P∗. That is,
Prob-EL concepts are constructed as

C ::= A | C uD | ∃r.C | P∗C,

where A is a concept name, r a role name and n a rational number from the inter-
val [0, 1]. Intuitively, P∗C expresses that the concept C is true with probability
at least n.

The semantics of Prob-EL generalize the interpretation-based semantics of EL.
A probabilistic interpretation is of the form

I = (∆I ,W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a set of worlds, µ is a discrete prob-
ability distribution on W , and for each world w ∈ W, Iw is a classical EL inter-
pretation with domain ∆I .

The probability that a given element of the domain d ∈ ∆I belongs to the concept
name A is given by

pId(A) := µ({w ∈ W | d ∈ AIw}).
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The interpretation function Iw and pId are extended to complex concepts in the
usual way for the classical constructors, while the extension to the new constructor
P∗ is defined as

(P∗C)Iw := {d ∈ ∆I | pId(C) ≥ n}.

A probabilistic interpretation I satisfies a concept inclusion C v D, denoted as
I |= C v D if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a TBox
T if it satisfies all concept inclusions in T .

The variant probabilistic DL Prob-EL01 extends EL with the probability con-
structors P>0 and P=1, with the straightforward semantics. Intuitively, this logic
allows us to express the possibility or necessity of a concept, but does not allow
a fine-grained description of the probability with which the concept is satisfied.
This simple probabilistic variant retains the good complexity properties held by
EL. Moreover, as it will be shown in the following section, reasonig in Prob-EL01

can be performed through a variant of the completion algorithm for EL.

3 Completion-based subsumption algorithms

In this section we recapitulate the completion algorithms for testing subsumption
in EL from [8, 4] and for testing subsumption in prob-EL from [16].2 Completion-
based methods compute the subsumption relations between all concept names
from the TBox simultaneously, i.e., they classify the Tbox.

3.1 Completion-based subsumption algorithm for EL

Given a TBox T , we use BCT to denote the set of basic concept descriptions for
T , i.e., the smallest set of concept descriptions which contains

• the top concept >;

• all concept names used in T ;

Based on this, a normal form for TBoxes can be defined as follows.

Definition 4 (Normal Form for EL-TBoxes) An EL-TBox T is in normal
form if all concept inclusions have one of the following forms, where C1, C2 ∈ BCT

2Actually, we prune the completion algorithm given for instance checking in prob-EL down
to a method for testing subsumption in this DL.
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NF1 C u D̂ v E −→ { D̂ v A,C u A v E }

NF2 ∃r.Ĉ v D −→ { Ĉ v A, ∃r.A v D }

NF3 Ĉ v D̂ −→ { Ĉ v A,A v D̂ }

NF4 B v ∃r.Ĉ −→ { B v ∃r.A,A v Ĉ }
NF5 B v C uD −→ { B v C,B v D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Figure 1: EL-normalization rules.

and D ∈ BCT ∪ {⊥}:

C1 v D,

C1 u C2 v D,

C1 v ∃r.C2 or

∃r.C1 v D.

Any TBox T can be turned into a normalized TBox T ′ by introducing new
concept and role names. EL-TBoxes can be transformed into normal form by
applying the normalization rules displayed in Figure 1 exhaustively. These rules
replace the GCI on the left-hand side of the rules with the set of GCIs on the
right-hand side of the rule.

The signature of a concept description C (denoted sig(C)) is the set of concept
names and role names that appear in C. The signature of a TBox T (denoted
sig(T )) is the set of concept names and role names that appear in T . Clearly, the
signature of T may be extended during normalization. However, this extension
does not affect subsumption tests for EL-concept descriptions formulated w.r.t.
the signature of T . To capture the relation between T and its normalized variant,
we introduce the notion of a conservative extension.

Definition 5 (sig(T )-inseparable, conservative extension) Let T1, T2 be EL-
TBoxes.

• T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL , iff for
all EL-concept descriptions C,D with sig(C) ∪ sig(D) ⊆ sig(T1), we have
T1 |= C v D iff T2 |= C v D.

• T2 is a conservative extension of T1 w.r.t. concept inclusion in EL , if

– T1 ⊆ T2, and
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CR1 If C ′ ∈ S(C), C ′ v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C ′ ∈ S(C), C ′ v ∃r.D ∈ T , and D /∈ S(C, r)
then S(C, r) := S(C, r) ∪ {D}

CR4 If D ∈ S(C, r), D′ ∈ S(D), ∃r.D′ v E ∈ T , and E /∈ S(C)
then S(C) := S(C) ∪ {E}

Figure 2: EL completion Rules

– T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL.

The normalized TBox T ’ is a conservative extension of T as already stated in [5],
i.e., every model of T ′ is also a model of T , and every model of T can be extended
to a model of T ′ by appropriately adding the interpretations of the additional
concept names introduced by normalization.

Let T be the TBox to be classified and let RT denote the set of all role names
appearing in T . The completion algorithm works on two kinds on completion
sets : S(C) and S(C, r), which contain concept names from BCT . The intuition
is that the completion rules make implicit subsumption relationships explicit in
the following sense:

• D ∈ S(C) implies that C vT D,

• D ∈ S(C, r) implies that C vT ∃r.D.

By ST we denote the set of completion sets of T . In the algorithm, the completion
sets are initialized as follows:

• S(C) := {C,>} for each C ∈ BCT ,

• S(C, r) := ∅ for each r ∈ RT .

Then the sets S(C) and S(C, r) are extended by applying the completion rules
shown in Table 2 until no more rule applies. After the completion has terminated,
the subsumption relation between two named concepts A and B from T can be
tested by checking whether B ∈ S(A). Soundness and completeness of the EL-
completion algorithm has been shown in [9] as well as that it runs in polynomial
time. This algorithm has recently been extended in [16] to a probabilistic variant
of EL, both of which we introduce in the next section.
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3.2 Completion-based Subsumption Algorithm for Prob-
EL

In Prob-EL01, basic concepts also include the probabilistic constructors; that is,
the set BCT of Prob-EL01 basic concepts for T is the smallest set that contains
(1) >, (2) all concept names used in T , and (3) all concepts of the form P∗A,
where A is a concept name in T .

Definition 6 (Normal Form for Prob-EL01-TBoxes) A Prob-EL01-TBox T
is in normal form if all its axioms are of one of the following forms

C v D, C1 u C2 v D, C v ∃r.A, ∃r.A v D,

where C,C1, C2, D ∈ BCT and A is a new concept name.

The normalization rules in Figure 1 can also be used to transform a Prob-EL01-
TBox into this extended notion of normal form. In the following, we denote as
PT0 and PT1 the set of all concepts of the form P>0A and P=1A, respectively,
occuring in a normalized TBox T .

The completion algorithm for Prob-EL01 follows the same idea as the algorithm
for EL, but uses several completion sets to deal with the information of what
needs to be satisfied in the different worlds of a model. We define the set of worlds
V := {0, ε, 1} ∪ PT0 , where the probability distribution µ assigns a probability
of 0 to the world 0, and the uniform probability 1/(|V | − 1) to all other worlds.
For each concept name A, role name r and world v, we store the completion sets
S0(A, v), Sε(A, v), S0(A, r, v), and Sε(A, r, v).

The algorithm initializes the sets as follows for every A ∈ NC , r ∈ RT :

• S0(A, 0) = {>, A} and S0(A, v) = {>} for all v ∈ V \ {0},

• Sε(A, ε) = {>, A} and Sε(A, v) = {>} for all v ∈ V \ {ε},

• S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V .

These sets are then extended by exhaustively applying the rules shown in Figure 3,
where ∗ ∈ {0, ε} and γ : V → {0, ε} is defined by γ(0) = 0, and γ(v) = ε for all
v ∈ V \ {0}. The first four rules are simple adaptations of the completion rules
for EL, while the last four rules deal with probabilistic concepts. This algorithm
terminates in polynomial time. After termination it holds that, for every pair of
concept names A,B, B ∈ S0(A, 0) if and only if A vT B [16].
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PCR1 If C ′ ∈ S∗(C, v), C ′ v D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR2 If C1, C2 ∈ S∗(C, v), C1 u C2 v D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR3 If C ′ ∈ S∗(C, v), C ′ v ∃r.D ∈ T , and D /∈ S∗(C, r, v)
then S∗(C, r, v) := S∗(C, r, v) ∪ {D}

PCR4 If D ∈ S∗(C, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ v E ∈ T ,
and E /∈ S∗(C, v) then S∗(C, v) := S∗(C, v) ∪ {E}

PCR5 If P>0A ∈ S∗(C, v), and A /∈ S∗(C,P>0A)
then S∗(C,P>0A) := S∗(C,P>0A) ∪ {A}

PCR6 If P=1A ∈ S∗(C, v), v 6= 0, and A /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {A}

PCR7 If A ∈ S∗(C, v), v 6= 0, P>0A ∈ PT0 , and P>0A /∈ S∗(C, v′)
then S∗(C, v

′) := S∗(C, v
′) ∪ {P>0A}

PCR8 If A ∈ S∗(C, 1), P=1A ∈ PT1 , and P=1A /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {P=1A}

Figure 3: Prob-EL01 completion rules
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4 Computing Least Common Subsumers using

Completion

The least common subsumer was first mentioned in [11] and has since been inves-
tigated for several DLs. However, most lcs computation algorithms were devised
for concept descriptions only or for unfoldable TBoxes (see e.g. [6]) and are not
capable for handling general TBoxes. In case of EL the lcs has been investigated
for more expressive TBoxes. It turned out in [3] that the lcs w.r.t. cyclic TBoxes
the lcs does not need to exist w.r.t. descriptive semantics – the usual semantics
for DLs. One approach to compute the lcs even in the presence of GCIs is to use
different semantics for the underlying DL. This approach was pursued in [2, 10],
where greatest fixed-point semantics have been employed. A different approach
was followed in [7], where the lcs was investigated for unfoldable TBoxes written
in a “small” DL using concept names defined in a more expressive and general
background TBox.

All approaches for proving the (non-)existence of the lcs or devising computa-
tion algorithms for the lcs are built on a characterization of subsumption for
the respective DL and for the underlying TBox formalism. For instance, the
lcs algorithm for EL-concept descriptions (and unfoldable TBoxes) [6] uses ho-
momorphisms between so-called EL-description trees, which are basically syntax
trees of EL-concept descriptions. The work on the lcs w.r.t. cyclic EL-TBoxes
[2, 3] uses (synchronized) simulations between EL-description graphs to charac-
terize subsumption. In this paper we use the completion algorithm from [4] as
the underlying characterization of subsumption to obtain a role-depth bounded
lcs in EL.

Formally the least common subsumer inference is defined as follows.

Definition 7 (Least common subsumer) Let T be a TBox and C,D concept
descriptions in the DL L, then L is the least common subsumer (lcs) of C,D
w.r.t. T (written lcsT (C,D)) iff

1. C vT L and D vT L, and

2. for all L-concept descriptions E it holds that,
C vT E and C vT E implies L vT E.

Note, that the lcs is defined w.r.t. to a certain L. In cases the lcs is computed
for concept descriptions alone, we can using an empty TBox.

Due to the associativity of the lcs operator, the lcs can be defined as a n-ary
operation. We stick to its binary version for simplicity of the presentation.
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4.1 Role-depth bounded lcs in EL

As mentioned, the lcs does not need to exists due to cycles in the TBox. Consider
the TBox T = {A v ∃r.A u C, B v ∃r.B u C}. The lcs of A and B is then
∃r.(Cu∃r.(Cu∃r.(Cu· · · and cannot be expressed by a finite concept description.
To avoid such infinite nestings, we limit the role-depth of the concept description
to be computed. Intuitively, the role-depth is the maximal number of nested
quantifiers of a concept description.

Definition 8 (role-depth) Let C, D be EL-concept descriptions. The role-
depth of a concept description C (denoted rd(C)) is:

• 0 for concept names and >

• max(rd(C), rd(D)) for a conjunction C uD, and

• 1 + rd(C) for existential restrictions of the form ∃r.C.

Now we can define the lcs with limited role-depth for EL.

Definition 9 (role-depth bounded EL-lcs) Let T be an EL-TBox and C,D
EL-concept descriptions and k ∈ IN. Then the EL-concept description L is the
role-depth bounded EL-least common subsumer of C,D w.r.t. T and role-depth
k (written k-lcsT (C,D)) iff

1. rd(L) ≤ k,

2. C vT L and D vT L, and

3. for all EL-concept descriptions E with rd(E) ≤ k it holds that,
C vT E and C vT E implies L vT E.

Please note that in case the exact lcs has a role-depth less than k the role-depth
bounded lcs is the exact lcs.

4.1.1 Computing the role-depth bounded EL- lcs

The computation algorithm for the role-depth bounded lcs w.r.t. general EL-
TBoxes, constructs the concept description from the set of completion sets. More
precisely, it combines and intersects the completion sets in the same fashion as in
the cross-product computation in the lcs algorithm for EL-concept descriptions
from [6].

The idea is that the normalization of the TBox introduces a new named concepts
for each top-level conjunct and for each qualification of a top-level existential
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restriction that appears in the TBox. We call these new names normalization
names in the following. During completion the normalization names and the
concept names from the initial TBox are then collected in the completion sets
of those concepts they subsume. Thus each normalization name in a completion
set of, say C, provides a “pointer” to a complex concept description that is a
subsumer of C. We compute the lcs by introducing new names for the input
concepts of the lcs, do the normalization and completion and then collect the lcs
concept from the completion sets of the input concepts. However, the returned
lcs-concept description should only contain concept names that appear in the
initial TBox, thus we need to “de-normalize” the concept descriptions obtained
from the completion sets.

4.1.2 De-normalizing EL-concept descriptions

The signature of a concept description C (denoted sig(C)) is the set of concept
names and role names that appear in C. The signature of a TBox T (denoted
sig(T )) is the set of concept names and role names that appear in T . However,
the extension of the signature does not affect subsumption tests for EL-concept
descriptions formulated w.r.t. the signature of T .

Lemma 10 Let T be an EL-TBox and T ′ the TBox obtained from T by apply-
ing the EL normalization rules, C, D be EL-concept descriptions with sig(C) ∪
sig(D) ⊆ sig(T ′) and C ′ (D′) be the concept description obtained by removing all
names A ∈ sig(T ′) \ sig(T ) from C (D). Then C vT ′ D iff C ′ vT D′.

Proof. Since T ’ is a conservative extension of T w.r.t. concept inclusion in EL,
it is implied that T and T ′ are sig(T )-inseparable w.r.t. concept inclusion in EL.
Thus the claim follows directly. o

Lemma 10 guarantees that subsumption relations w.r.t. the normalized TBox T ′
between arbitrary EL-concept descriptions C and D, that contain only names
from sig(T ′), also hold w.r.t. the original TBox T for C and D with the names
from sig(T ′) \ sig(T ) removed.

4.1.3 A computation algorithm for k-lcs

We assume that the role-depth of each input concept of the lcs has a role-depth
less or equal to k. This assumption is motivated by the applications of the lcs and
due to the simplicity of presentation than a technical necessity. The algorithm
for computing the role-depth bounded lcs of two EL-concept descriptions is de-
picted in Algorithm 1. It consists of the procedure k-lcs, which calls the recursive
procedure k-lcs-r.
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Algorithm 1 Computation of a role-depth bounded EL-lcs.

Procedure k-lcs (C,D, T , k)
Input: C,D: EL-concept descriptions; T : EL-TBox; k: natural number
Output: k-lcs(C,D): role-depth bounded EL-lcs of C and D w.r.t T and k.

1: T ′ := normalize(T ∪ {A ≡ C,B ≡ D})
2: ST ′ := apply-completion-rules(T ′)
3: L := k-lcs-r (A,B, ST ′ , k)
4: if L = A then return C
5: else if L = B then return D
6: else return remove-normalization-names(L)
7: end if

Procedure k-lcs-r (A, B, S, k)
Input: A,B: concept names; S: set of completion sets; k: natural number
Output: k-lcs(A,B): role-depth bounded EL-lcs of A and B w.r.t T and k.

1: if B ∈ S(A) then return B
2: else if A ∈ S(B) then return A
3: end if
4: common-names := S(A) ∩ S(B)

5: if k = 0 then return
d

P∈common−names

P

6: else return
d

P∈common−names

P u
d

r∈RT

( d

(E,F ) ∈ S(A,r)×S(B,r)

∃r. k-lcs-r (E,F, S, k− 1)
)

7: end if

The procedure k-lcs first adds concept definitions for the input concept descrip-
tions to (a copy of) the TBox and transforms this TBox into a TBox in normal-
ization form T ’. Next, it calls the procedure apply-completion-rules, which applies
the EL-completion rules exhaustively to the TBox T ’, and stores the obtained
set of completion sets in in S. Then it calls the function k-lcs-r with the con-
cept names A and B for the input concepts, the set of completions sets S, and
the role-depth k. The result is then de-normalized and returned (lines 4 to 6).
More precisely, in case a complex concept description is returned from k-lcs-r, the
procedure remove-normalization-names removes concept names that were added
during the normalization of the TBox.

The function k-lcs-r gets a pair of concept names, a set of completion sets and
a natural number as inputs. First, it tests whether one of the input concepts
subsumes the other w.r.t. T ′. In that case the name of the subsuming concept is
returned. Otherwise the set of concept names that appear in the completion sets
of both input concepts is intersected (line 4) and stored in common-names.3 In

3Note, that the intersection S(A) ∩ S(B) is never empty, since both sets contain >.
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case k = 0, i.e. the role-depth bound is reached, the conjunction of the elements
in common-names is returned. Otherwise, the elements in common-names are
conjoined with a conjunction over all roles r ∈ RT , where for each r and each
element of the cross-product over the r-successors of the current A and B a
recursive call to k-lcs-r is made with the role-depth bound reduced by 1 (line 6).
This conjunction is then returned to k-lcs.

For L = k-lcs(C,D, T , k) it holds by construction that rd(L) ≤ k.4 We now show
that the result of the function k-lcs is a common subsumer of the input concept
descriptions.

Lemma 11 Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN and
L = k-lcs(C,D, T , k). Then C vT L and D vT L.

Proof. We show the claim by induction on k. By T ′ we denote the TBox
obtained from T by applying the normalization rules.

Case: k = 0.
Thus rd(L) = 0 and L = A1 u A2 . . . u Am, with Ai ∈ BCT . Now, either

• one of the input concept descriptions C,D subsumes the other one and thus
appears in the subsumer set of the (name of) the other concept. Then its
name is returned from k-lcs-r (lines 1 and 2) and then the initial concept
description is returned by k-lcs (lines 4 and 5) and thus the claim holds.

• or, L is obtained from: L =remove-normalization-names(S(A) ∩ S(B)) and
thus uC′∈S(A)C

′ vT ′ L. Since C ≡T ′ A, it holds that C vT ′ uC′∈S(A)C
′.

Thus C vT ′ uC′∈S(A)C
′ vT ′ L and by application of Lemma 10 we obtain

C vT L. Argument for D vT L is analogous.

Case: k = n, with n ≥ 0.
Assume that the result holds for some k ≥ 0, and we show it for k+1. Since k ≥ 0,
L = remove-normalization-names(

d
Ai∈S(A)∩S(B)Ai u

d
r∈RT

(d
(E,F ) ∈ S(A,r)×S(B,r) ∃r.

k-lcs-r (E,F, S, k − 1)). It follows for the conjunction of concept names in Ld
Ai∈S(A)∩S(B)Ai that F vT remove-normalization-names(S(A) ∩ S(B)) holds for

all F ∈ {C,D} by the same argument as in the base case. It remains to show
that the conjunction of existential restrictions is a subsumer of C and D. Due to
the assumption that result holds for k−1, we know that for all r ∈ RT and for all
E ∈ S(A, r) it holds that A vT ′ ∃r.E, and hence A vT ′

d
(E,F )∈S(A,r)×S(B,r) ∃r.k-

lcs(E,F, T ′, k). The argument for D vT L is analogous. o

4Recall our assumption that the role-depth of each input concept is less or equal to k.
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Next, we show that the result of the function k-lcs obtained for EL-concept de-
scriptions C and D is the least (w.r.t. subsumption) concept description of role-
depth up to k that subsumes the input concepts.

Lemma 12 Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN
and L = k-lcs(C,D, T , k) and E an EL-concept description with rd(E) ≤ k. If
C vT E and D vT E, then L vT E.

Proof. We prove the claim by induction on rd(E).

Case: rd(E) = 0.
The concept E is the concept name A or B or a conjunction of concept names. In
the first case we obtain the result L = C from k-lcs and thus E ≡T A ≡T C ≡T L.
In the second case we obtain L = D from k-lcs-r and thus E ≡T B ≡T D ≡T L.
In the third case E is a conjunction of concept names: E = A1 u . . . u Am for
Ai ∈ NC . Since C vT E and D vT E holds, we have C vT Ai and D vT Ai
for all Ai with 1 ≤ i ≤ m. From this follows Ai ∈ S(A) ∩ S(B) for all i, which
implies that L vT

d
C′∈S(A)∩S(B)C

′ vT E.

Case: rd(E) = n, with n ≥ 0.
E can contain two kinds of conjuncts: (possibly zero) concept names and at least
one existential restriction. The concept names in E must appear in L as well by
an argument analogous to the base case.

Let ∃r.E ′ be a (top-level) conjunct of E. Since C vT ′ E and D vT ′ E, there
must exist A′ ∈ S(A, r) and B′ ∈ S(B, r) such that A′ vT E ′ and B′ vT E ′.
By induction hypothesis, we then have that ∃r.k-lcs(A′, B′, T , k − 1) vT E ′. By
L vT ∃r.k-lcs(A′, B′, T , k − 1), it is implied that L vT E. o

We obtain together with Lemma 11 and Lemma 12 that all conditions of Defini-
tion 9 are fulfilled for k-lcs(C,D, T , k).

Theorem 13 Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN,
then k-lcs(C,D, T , k) ≡T k-lcsT (C,D).

Thus, if the lcs exists and has a role-depth of less than k, the algorithm k-lcs
yields the exact lcs.

The complexity of the overall method is polynomial for the binary lcs and ex-
ponential for the n-ary lcs due to the cross-product computation–just as in the
case for the lcs for EL-concept descriptions, see [6]. However, in contrast to the
lcs algorithm for EL-concept descriptions, the algorithm k-lcs does not need to
perform unfolding, i.e. copying of concepts, but proceeds by structure sharing if
a concept from the TBox needs to be examined. Thus it is even advantageous
for unfoldable EL-TBoxes such as Snomed [19].

15



4.2 Computing the Role-depth Bounded Prob-EL01-lcs

The computation of the role-depth bounded Prob-EL01-lcs follows the same steps
as in Section 4.1.1. First, it adds concept definitions for the input concepts to
the TBox and normalizes it. It then applies the completion rules exhaustively to
produce the set of completion sets S. It then calls a variation of the function k-lcs-
r that can deal with probabilistic concepts. The new function k-lcs-r is identical
to the one presented in Algorithm 1, except that in line 6 it now returns:

l

P∈common−names

P u
l

r∈RT

( l

(E,F )∈S0(A,r,0)×S0(B,r,0)

∃r.k-lcs-r(E,F, S, k − 1)u

l

(E,F )∈S>0
0 (A,r)×S>0

0 (B,r)

P>0(∃r.k-lcs-r(E,F, S, k − 1))u

l

(E,F )∈S0(A,r,1)×S0(B,r,1)

P=1(∃r.k-lcs-r(E,F, S, k − 1))
)
,

where common-names := S0(A, 0)∩S0(B, 0) and S>0
0 (A, r) :=

⋃
v∈V \{0} S0(A, r, v).

This new computation generalizes the idea for obtaining the lcs for EL, taking also
into consideration the probabilistic concepts. Basically, if there is a concept name
E ∈ S0(A, r, v) for some world v ∈ V \ {0}, then it holds that A v P>0(∃r.E).
Thus, the last two conjunctions express the existential restrictions that subsume
both concepts A and B with probability greater than 0 and 1, respectively.

The result is then de-normalized by removing all concept names that were intro-
duced during the normalization phase. The correctness of this procedure can be
shown in a similar way as it was done for EL before.

Lemma 14 Let C and D be Prob-EL01-concept descriptions, T a Prob-EL01-
TBox, k ∈ IN and L = k-lcs(C,D, T , k). Then C vT L and D vT L.

Proof. We show the result by induction on k. First, if k = 0, then rd(L) = 0.
If one of the concepts C,D subsumes the other, then the algorithm returns it.
Otherwise, we have that L =

d
E∈S0(A,0)∩S0(B,0)E and thus, since C ≡T A, C vTd

E∈S0(A,0)E vT L. An analogous argument shows that D vT L.

Assume now that the result holds for some k ≥ 0, and we show it for k + 1.
First, using the same argument for the base case, it is easy to see that C vTd
E∈S0(A,0)∩S0(B,0)E. Let now r ∈ RT . Then, for all E ∈ S0(A, r, 0) it holds that

A vT ∃r.E, and hence A vT
d

(E,F )∈S0(A,r,0)×S0(B,r,0) ∃r.k-lcs(E,F, T , k). Addi-

tionally, for all E ∈ S0(A, r, v) with v ∈ V \ {0} it holds that A vT P>0(∃r.E),
and for all E ∈ S0(A, r, 1) it holds A vT P=1(∃r.E). Hence,

A vT
l

(E,F )∈S0(A,r,0)×S0(B,r,0)

P>0(∃r.k-lcs(E,F, T , k))
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and
A vT

l

(E,F )∈S0(A,r,0)×S0(B,r,0)

P=1(∃r.k-lcs(E,F, T , k)).

And thus, C vT L. An analogous argument yields the result for D vT L. o

Lemma 15 Let C and D be Prob-EL01-concept descriptions, T an Prob-EL01-
TBox, k ∈ IN and L = k-lcs(C,D, T , k) and E an Prob-EL01-concept description
with rd(E) ≤ k. If C vT E and D vT E, then L vT E.

Proof. By induction on rd(E). First, if rd(E) = 0, then E = A1 u . . . u Am
for Ai ∈ NC . Since C vT E and D vT E, then C v Ai and D v Ai for all
i, 1 ≤ i ≤ m. But then Ai ∈ S0(A, 0) ∩ S0(B, 0) for all i. This implies that
L vT

d
C′∈S0(A,0)∩S0(B,0)C

′ vT E.

Let now rd(E) > 0 and let ∃r.E ′ be a (top level) conjunct of E, where E ′

is not of the form P∗F . Then, as C vT E and D vT E, there must exist
A′ ∈ S0(A, r, 0) and B′ ∈ S0(B, r, 0) such that A′ vT E ′ and B′ vT E ′. By
induction hypothesis, we then have that ∃r.k-lcs(A′, B′, T , k − 1) vT E ′. Let
now P>0(∃r.E ′) be a conjunct in E. Then there must exist A′ ∈ S>0

0 (A, r) and
B′ ∈ S>0

0 (B, r) such that A′ vT E ′ and B′ vT E ′. But then, we have that
P>0(∃r.k-lcs(A′, B′, T , k− 1)) vT P>0(∃r.E ′). Analogously, we can prove that for
every conjunct P=1(∃r.E ′) in E, there exist A′ ∈ S0(A, r, 1) and B′ ∈ S0(B, r, 1)
such that A′ vT E ′ and B′ vT E ′, and hence P=1(∃r.k-lcs(A′, B′, T , k − 1)) vT
P=1(∃r.E ′). All this together implies that L vT E. o

The following theorem is then a trivial consequence of Lemmas 14 and 15.

Theorem 16 Let C and D be Prob-EL01-concept descriptions, T a Prob-EL01-
TBox, and k ∈ IN; then k-lcs(C,D, T , k) ≡T k-lcs(C,D).

Similar to the completion algorithm, the extension of the algorithm to compute
the role-bounded lcs in EL to the “light-weight” probabilistic DL Prob-EL01 is
fairly straight-forward.

5 Summary and Outlook

In this report we presented a practical approach for computing least common
subsumers of limited role-depth in the DL EL and the moderately probabilistic
DL Prob-EL01. It turns out that the complexity of computing the role-depth
limited lcs is the same for concept descriptions.
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Althought simply limiting the role-depth of the result concept description is not
elegant from the theoretical perspective, we argue that it will turn out to be
sufficient for many practical applications.

The computation algorithm k-lcs can be easily be implemented on top of the
completion algorithm. In case a k-lcs turns out to be too general and a bigger
role depth of the k-lcs is desired, the completion of the TBox does not have to be
redone for a second computation. The completion sets can simply be “traversed”
further. It remains an interesting question whether the completion sets obtained
from the classification of the initial TBox can simply be extended, when C ≡ A
and D ≡ B are added.

In our future work we will try to extend the computation algorithm for the role-
depth limited lcs to full Prob-EL.
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