
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Runtime Verification Using a Temporal
Description Logic Revisited

Franz Baader Marcel Lippmann

LTCS-Report 14-01

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Runtime Verification Using a Temporal
Description Logic Revisited∗

Franz Baader and Marcel Lippmann
Institute of Theoretical Computer Science
Technische Universität Dresden, Germany

{baader,lippmann}@tcs.inf.tu-dresden.de

Abstract

Formulae of linear temporal logic (LTL) can be used to specify (wanted
or unwanted) properties of a dynamical system. In model checking, the
system’s behaviour is described by a transition system, and one needs
to check whether all possible traces of this transition system satisfy the
formula. In runtime verification, one observes the actual system behaviour,
which at any point in time yields a finite prefix of a trace. The task is then
to check whether all continuations of this prefix to a trace satisfy (violate)
the formula. More precisely, one wants to construct a monitor, i.e., a finite
automaton that receives the finite prefix as input and then gives the right
answer based on the state currently reached.

In this paper, we extend the known approaches to LTL runtime veri-
fication in two directions. First, instead of propositional LTL we use the
more expressive temporal logic ALC-LTL, which can use axioms of the
Description Logic (DL) ALC instead of propositional variables to describe
properties of single states of the system. Second, instead of assuming
that the observed system behaviour provides us with complete information
about the states of the system, we assume that states are described in an
incomplete way by ALC-knowledge bases. We show that also in this setting
monitors can effectively be constructed. The (double-exponential) size of
the constructed monitors is in fact optimal, and not higher than in the
propositional case. As an auxiliary result, we show how to construct Büchi
automata for ALC-LTL-formulae, which yields alternative proofs for the
known upper bounds of deciding satisfiability in ALC-LTL.

∗Partially supported by DFG SFB 912 (HAEC) and GRK 1763 (QuantLA).

{baader,lippmann}@tcs.inf.tu-dresden.de

Contents

1 Introduction 3

2 The Propositional Temporal Logic LTL 7

3 The Temporal DL ALC-LTL 14

3.1 The DL ALC . 14

3.2 Syntax and Semantics of ALC-LTL 16

3.3 Büchi Automata for the Case Without Rigid Names 17

3.4 The Case With Rigid Names . 22

4 Monitoring ALC-LTL-formulae 25

4.1 Basic Definitions . 26

4.2 An auxiliary deterministic automaton 28

4.3 The Monitor Construction . 32

5 The Complexity of Liveness and Monitorability in ALC-LTL 33

5.1 Deciding Liveness . 34

5.2 Deciding Monitorability . 36

6 Conclusion 38

2

1 Introduction

Formulae of linear temporal logic (LTL) [Pnu77] can be used to specify (wanted
or unwanted) properties of a dynamical system. For example, assume that the
system we want to model is a TV set, and consider the properties on, turn_off,
and turn_on, which respectively express that the set is on, receives a turn-off
signal from the remote control, and receives a turn-on signal from the remote
control. The LTL-formula

φtv := 2 (turn_on→ X(on ∧ (Xon) U turn_off))

says that, whenever the set receives the turn-on signal, it is on at the next time
point, and it stays on (i.e., is on also at the next time point) until it receives the
turn-off signal (since we use a “strong until” this signal has to come eventually).

In model checking [CGP99, BK08], one assumes that the system’s behaviour can
be described by a transition system. The verification task is then to check whether
all possible traces of this transition system satisfy the formula. In contrast, in
runtime verification [CM04], one does not model all possible behaviours of the
system by a transition system. Instead, one observes the actual behaviour of the
system, which at any time point yields a finite prefix u of a trace. The task is
then to check whether all continuations of this prefix to a trace satisfy (violate)
the given LTL-formula φ. Thus, there are three possible answers1 to a runtime
verification problem (u, φ):

• >, if all continuations of u to an infinite trace satisfy φ;

• ⊥, if all continuations of u to an infinite trace do not satisfy φ;

• ?, if none of the above holds, i.e., there is a continuation that satisfies φ,
and one that does not satisfy φ.

For example, consider the two prefixes u := {¬on,¬turn_off, turn_on} and u′ :=
{¬on,¬turn_off, turn_on} {¬on,¬turn_off,¬turn_on} and the formula φtv from
our example. For the prefix u, the answer is ?, whereas for u′ it is ⊥. For our
specific formula φtv, there is no prefix for which the answer would be >.

It should be noted, however, that runtime verification is not really about solving
a single such problem (u, φ). In practice, one observes the behaviour of the
system over time, which means that the prefix is continuously extended by
adding new letters. The runtime verification device should not simply answer
the problems (ε, φ), (σ0, φ), (σ0σ1, φ), (σ0σ1σ2, φ), . . . independently of each other.
What one is looking for is a monitoring device (called monitor in the following) that

1There are also variants of runtime verification for propositional LTL that work with only
two or even four possible answers [BLS10].

3

successively accepts as input the next letter, and then computes the answer to the
next runtime verification problem in constant time (where the size of φ is assumed
to be constant). This can, for example, be achieved as follows [BLS06, BLS11].
For a given LTL-formula φ, one constructs a deterministic Moore automaton
Mφ (i.e., a deterministic finite-state automaton with state output) such that the
state reached by processing input u gives as output the answer to the runtime
verification problem (u, φ). If u is then extended to uσ by observing the next
letter σ of the actual system behaviour, it is sufficient to perform one transition
of Mφ in order to get the answer for (uσ, φ). Since Mφ depends on φ (which
is assumed to be constant), but not on u, this kind of monitoring device can
answer the runtime verification question for (u, φ) in time linear in the length of
u. More importantly, the delay between answering the question for u and for uσ
is constant, i.e., it does not depend on the length of the already processed prefix
u. Basically, such a monitor can be constructed from Büchi automata for the
formula φ and its negation ¬φ.2

Using propositional LTL for runtime verification presupposes that (the relevant
information about) the states of the system can be represented using propositional
variables, more precisely conjunctions of propositional literals. If the states actually
have a complex internal structure, this assumption is not realistic. In order to allow
for a more appropriate description of such complex states, one can use the extension
of propositional LTL to ALC-LTL introduced in [BGL08, BGL12].3 From the
syntactic point of view, the difference between propositional LTL and ALC-LTL is
that, in the latter, ALC-axioms (i.e., concept and role assertions as well as general
concept inclusion axioms (GCIs) formulated in the Description Logic ALC [SSS91])
are used in place of propositional variables. From the semantic point of view,
ALC-LTL structures are infinite sequences of ALC-interpretations, i.e., first-order
relational structures, rather than propositional valuations. In [BGL08, BGL12],
the complexity of the satisfiability problem for ALC-LTL-formulae is investigated
in detail. In particular, it is shown that this complexity depends on whether rigid
concepts and roles (i.e., concepts/roles whose interpretation does not change over
time) are available or not. The algorithms for deciding satisfiability of ALC-LTL-
formulae developed in [BGL08, BGL12] are not based on Büchi automata. Before
we can adapt the monitor construction used for propositional LTL to the case of
ALC-LTL, we must first show how Büchi automata for ALC-LTL-formulae can
be constructed. We will see that this construction becomes more complex in the
presence of rigid concepts and roles.

In runtime verification for propositional LTL, one usually assumes that the
observed prefix provides one with complete information about the relevant system
properties. In the setting of runtime verification for ALC-LTL, this completeness

2A Büchi automaton for an LTL-formula ψ accepts the LTL structures satisfying this formula,
viewed as infinite words over an appropriate alphabet [WVS83, BK08].

3A comparison of ALC-LTL with other temporal DLs [AF00, AF01, LWZ08] is beyond the
scope of this introduction. It can be found in [BGL08, BGL12].

4

assumption would mean that, for every time point covered by it, the prefix must
provide full information about the status of every ALC-axiom occurring in the
formula, i.e., it must say whether it is true at that time point or not. If one has
only limited access to the system’s behaviour, this assumption may be too strict.
In this paper we show that runtime verification is also possible under the weaker
assumption that one has (possibly) incomplete knowledge about the system’s
behaviour at a time point. Technically, this means that we assume that the prefix
describing the system’s behaviour is a finite sequence of of so-called ABoxes (i.e.,
sets assertions that state that certain individuals belong to certain concepts, or
are related to each other via certain roles). Given such an ABox and an axiom
occurring in the formula, there are now three possible cases: the axiom may follow
from the ABox, its negation may follow from the ABox, or neither of them follows
from the ABox. The third case means that we do not know whether in this state
of the system the axiom or its negation holds. Thus, in addition to the unknown
continuation of the prefix in the future, the use of ABoxes as (possibly) incomplete
descriptions of states adds another source of uncertainty, which may cause the
monitor to answer with ?.

Adding additional background knowledge about the working of the system can
reduce the number of such indefinite answers ?. This background knowledge could,
for example, be a global TBox, i.e., a finite set of terminological axioms that
are known to hold for every state of the system. Rigidity of concepts or roles
also constitutes such background knowledge since it tells us that the system does
not change the interpretation of these concepts and roles during its run. In the
presence of background knowledge, it is convenient to extend the range of answers
to a runtime verification problem to a fourth value , which indicates that the
prefix seen so far violates the background knowledge. In practice, this value should
not be encountered since it is assumed that the observed system actually respects
rigid concepts and roles and satisfies the background knowledge. Thus, no finite
prefix obtained by observing the system can yield this case. If it does, then the
modelling of the properties of the system via background knowledge was incorrect
or the sensors that generated the observations of the system were faulty.

As a possible application of monitoring ALC-LTL-formulae with incomplete
information and background knowledge, consider an emergency ward, where the
vital parameters of a patient are measured in short intervals (sometimes not longer
than 10 minutes), and where additional information about the patient is available
from the patient record and added by doctors and nurses. Using concepts defined
in a medical ontology like SNOMED CT,4 a high-level view of the medical status
of the patient at a given point in time can be given by an ABox. The medical
ontology then constitutes the background knowledge. Critical situations, which
require the intervention of a doctor, can be described by an ALC-LTL-formula
(see [BGL08, BGL12] for a simple example). As long as the monitor for this

4See http://www.ihtsdo.org/our-standards/.

5

http://www.ihtsdo.org/our-standards/

formula yields the output ?, we continue with monitoring. If it yields >, we raise
an alarm, and if it yields ⊥ we can shut off this monitor.

A preliminary version of this work has previously been published at a conference
[BBL09].5 The results of the present paper improve on this preliminary work in
several respects:

• Even in the propositional case, the monitor constructed using Büchi au-
tomata is in the worst-case of double-exponential size. We prove the new
result that this double-exponential blowup in the construction of the mon-
itor cannot be avoided.6 This implies that it also cannot be avoided for
ALC-LTL.

• We have added the possibility to specify background knowledge to our
framework. It should be noted that this knowledge cannot just be added
to the formula to be monitored. In fact, it it supposed to hold, and thus it
does not make sense to monitor whether it is satisfied or not.

• In [BBL09] we presented different ways of constructing monitors depending
on (i) whether the observations of the system are complete or not, and
(ii) whether rigid concepts and roles are present or not. The reason was that
the worst-case size of the monitors constructed in [BBL09] was dependent
on these choices. In the most general case (incomplete observations and
rigid concepts and roles), the size of the constructed monitor could actually
be triple-exponential in the size of the formula. Here, we only consider
this most general case and show that it is always possible to construct a
monitor of at most double-exponential size. Given the double-exponential
lower bound mentioned above, this shows that our construction is actually
optimal.

• The monitor construction (both in the present paper and in [BBL09])
depends on the construction of a Büchi automaton for a given formula.
In [BBL09], we have extended one particular such construction from the
propositional case to the case of ALC-LTL. The approach used in the
present paper is more modular. Basically, instead of constructing such an
automaton directly for a given ALC-LTL-formula, we build a propositional
abstraction of the formula, and then reuses an arbitrary construction for
the propositional case. Thus, any existing efficient tool for transforming an
LTL-formula into a Büchi automaton can be used.

• Before building a monitor for an LTL-formula, it makes sense to check
whether the monitor will actually be able to give reasonable answers. In

5This explains the word “revisited” in the title.
6Such a double-exponential lower bound was already claimed in [BLS11], referring to a result

of Kupferman and Vardi [KV01]. However, a closer look at the relevant theorem in [KV01]
shows that it only yields a lower bound of 22

√
n .

6

particular, a monitor that always answers ? is clearly useless. This motivates
the definition of the notion of monitorability of a formula. A closely related,
but simpler looking notion is the one of liveness of a formula. We extend
these two notions (which were not considered in [BBL09]) from LTL to ALC-
LTL, and determine the complexity of testing liveness and monitorability of
ALC-LTL-formulae.

In the next section, we introduce the propositional temporal logic LTL, sketch the
connection between LTL-formulae and Büchi automata, and define the monitoring
problem for the propositional case. In addition, we prove the double-exponential
lower bound for the monitor construction mentioned above, and introduce he
notions “liveness” and “monitorability” for the propositional case. In Section 3
we define the the DL ALC and the temporal DL ALC-LTL, and show how to
construct Büchi automata for ALC-LTL-formulae. For didactic reasons, we first
present a construction for the case without rigid concepts and roles, and then
show how this construction can be extended to the case where rigid concepts and
roles are allowed. These Büchi automata are then used in Section 4 to construct
monitors for ALC-LTL-formulae. Finally, in Section 5 we use the constructed
monitors to determine the complexity of testing liveness and monitorability of
ALC-LTL-formulae. Some concluding remarks are made in Section 6.

2 The Propositional Temporal Logic LTL

In this section, we recall the pertinent definitions for propositional linear time
logic (LTL) [Pnu77]. In addition to introducing syntax and semantics of LTL, we
mention the connection to Büchi automata and define the monitoring problem.
LTL extends propositional logics with modal operators that can be used to talk
about the past and the future.7

Definition 2.1. Given a finite set P = {p1, . . . , pm} of propositional variables,
LTL-formulae over P are defined by induction:

• if p ∈ P, then p is an LTL-formula over P;

• if φ, ψ are LTL-formulae over P, then so are φ ∧ ψ (conjunction), ¬φ
(negation), Xφ (next), X−φ (previous), φUψ (until), and φ Sψ (since).

7In the literature, variants of LTL without past operators are often considered. We use LTL
with past operators since their presence often makes defining relevant properties easier [LPZ85],
but neither makes our approach more complicated nor our algorithms more complex. More
information on the connection between LTL with past operators and without can be found in
[GPSS80, LMS02]. When giving references for existing results for LTL, we will usually cite
papers that do consider LTL with past operators.

7

If the set of propositional variables is clear from the context or irrelevant, we will
talk about LTL-formulae rather than LTL-formulae over P .

The semantics of LTL is defined using the natural numbers as discrete linear flow of
time. For each point in time (i.e., natural number), the semantic structure, called
LTL-structure in the following, determines which of the propositional variables
are true at this point.

Definition 2.2. An LTL-structure over P = {p1, . . . , pm} is an infinite sequence
W = (wi)i≥0 of sets wi ⊆ P, which we call worlds.

Given an LTL-formula φ, an LTL structure W = (wi)i≥0, and a time point
i ∈ {0, 1, 2, . . .}, validity of φ in W at time i (written W, i |= φ) is defined
inductively:

W, i |= pj iff pj ∈ wi
W, i |= φ ∧ ψ iff W, i |= φ and W, i |= ψ
W, i |= ¬φ iff not W, i |= φ
W, i |= Xφ iff W, i+ 1 |= φ
W, i |= X−φ iff i > 0 and W, i− 1 |= φ
W, i |= φUψ iff there is some k ≥ i such that W, k |= ψ

and W, j |= φ for all j, i ≤ j < k
W, i |= φ Sψ iff there is some k, 0 ≤ k ≤ i, such that W, k |= ψ

and W, j |= φ for all j, k < j ≤ i

If W, 0 |= φ, then we call W a model of φ. The formula φ is called satisfiable if
it has a model.

It is well-known that the satisfiability problem for LTL is PSpace-complete
[SC85]. One possible way of showing this is to translate LTL-formulae into Büchi
automata accepting their models. In general, Büchi automata accept ω-words
over an alphabet Σ, i.e., infinite sequences of letters w = σ0σ1σ2 . . . with σi ∈ Σ.
The set of all ω-words over Σ is denoted by Σω, and a subset L of Σω is called an
ω-language.

Definition 2.3. A (non-deterministic) Büchi automaton N = (Q,Σ,∆, Q0, F)
consists of a finite set of states Q, a finite input alphabet Σ, a transition relation
∆ ⊆ Q× Σ×Q, a set of initial states Q0 ⊆ Q, and a set of final states F ⊆ Q.
Such an automaton is called deterministic if ∆ is a partial function, i.e., for every
pair (q, σ) ∈ Q× Σ there is at most one q′ ∈ Q such that (q, σ, q′) ∈ ∆.

Given an ω-word w = σ0σ1σ2 . . . ∈ Σω, a run of N on w is an ω-word q0q1q2 . . . ∈
Qω such that q0 ∈ Q0 and (qi, σi, qi+1) ∈ ∆ for all i ≥ 0. This run is accepting if,
there are infinitely many i ≥ 0 such that qi ∈ F . The language accepted by N is
defined as

Lω(N) := {w ∈ Σω | there is an accepting run of Non w}.

8

The emptiness problem for Büchi automata is the problem of deciding, given a
Büchi automaton N , whether Lω(N) = ∅ or not.

The emptiness problem for Büchi automata is known to be decidable in polynomial
time [VW94].

Given an LTL-formula φ over P = {p1, . . . , pm}, we can view any LTL-structure
W = (wi)i≥0 as an ω-word w = w0w1w2 . . . ∈ Σω

P , where the alphabet ΣP consists
of all subsets of P. The idea is now to build a Büchi automaton that accepts
exactly the models of φ.

Definition 2.4. Let φ be an LTL-formula over P and N a Büchi automaton
using the alphabet ΣP . We define

Lω(φ) := {w0w1w2 . . . ∈ Σω
P |W = (wi)i≥0 is a model of φ}.

and say that N is a Büchi automaton for φ if Lω(N) = Lω(φ).

If N is a Büchi automaton for φ, then φ is satisfiable iff Lω(N) 6= ∅. Thus, by
constructing a Büchi automaton for φ, we can reduce the satisfiability problem in
LTL to the emptiness problem for Büchi automata. It is well-known that, given
an LTL-formula φ, one can compute a Büchi automaton for φ in exponential
time [WVS83, VW94, GO03]. More precisely, this Büchi automaton has at most
exponentially many states in the size of φ, but each state can be represented
using only polynomial space. If we first compute the exponentially large Büchi
automaton for φ and then apply the emptiness test for Büchi automata, then we
obtain an ExpTime satisfiability procedure. In order to reduce the complexity to
PSpace, one must generate the relevant parts of the automaton on-the-fly while
performing the emptiness test [SC85, LPZ85]. It can be shown that, in the worst
case, an exponential blow-up in the construction of the Büchi automaton for an
LTL-formula cannot be avoided. However, there are optimised implementations
of the construction that try to keep the number of states as small as possible (see,
e.g., [GO01, GO03, GPVW96]).8 Experiments with these implementations show
that an exponential blow-up can frequently be avoided. For example, the tool
LTL2BA9 is widely used in practice to generate Büchi automata from propositional
LTL-formulae.10

Example 2.5. As an example, consider the LTL-formula ψex := Xp1 ∧ (p2 U p3).
Figure 1 depicts a Büchi automaton for this formula, which was generated by
LTL2BA. Note that edges with propositional formulae φ as labels are used as

8Some of these algorithms actually generate so-called generalised Büchi automata rather
than the normal ones we have introduced in Definition 2.3. However, it is well-known that a
generalised Büchi automaton can be transformed into an equivalent normal one in polynomial
time [GPVW96, BK08].

9See http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/.
10Unfortunately, like most other such tools, LTL2BA does not support LTL with past operators.

9

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

q0

q1

q2

q3

q4

p2

p3

p1 ∧ p2

p1 ∧ p3

p1

p2

p3

true

Figure 1: A Büchi automaton for ψex

abbreviations for sets of edges labeled with those subsets of P that represent models
of φ. For example, the edge with label p1 ∧ p2 from q1 to q3 stands for two edges
between these states, one with label {p1, p2} and one with label {p1, p2, p3}.

In propositional runtime verification [BLS10, BLS11], one observes the actual
behaviour of the given system since it started, which at any point in time can
be described by a finite word u over ΣP . Here P is a finite set of propositional
variables whose truth values at any point in time can be determined by observing
the system. Given such a word u = u0u1 . . . ut ∈ Σ∗P , we say that the LTL-
structure W = (wi)i≥0 extends u if ui = wi for i = 0, . . . , t. In this case we also
call W = (wi)i≥0 an extension of u. In principle, a monitor for an LTL-formula φ
needs to realize the following monitoring function mφ : Σ∗P → {>,⊥, ?}:

mφ(u) :=


> if W, 0 |= φ for all LTL-structures W that extend u
⊥ if W, 0 |= ¬φ for all LTL-structures W that extend u
? otherwise.

However, as mentioned in the introduction, this function should not be computed
from scratch whenever a new observation σ ∈ ΣP is added. In particular, the time
needed for computing the next function value mφ(uσ) should not depend on the
length of the already observed word u. This can be achieved by constructing a
deterministic Moore automaton as monitor.

Definition 2.6. A deterministic Moore automatonM = (S,Σ, δ, s0,Γ, λ) consists
of a finite set of states S, a finite input alphabet Σ, a transition function δ : S×Σ→
S, an initial state s0 ∈ S, a finite output alphabet Γ, and an output function
λ : S → Γ.

The transition function and the output function can be extended to functions
δ̂ : S × Σ∗ → S and λ̂ : Σ∗ → Γ as follows:

• δ̂(s, ε) := s where ε denotes the empty word;

10

• δ̂(s, uσ) := δ(δ̂(s, u), σ) where u ∈ Σ∗ and σ ∈ Σ;

and λ̂(u) := λ(δ̂(s0, u)) for every u ∈ Σ∗.

Such a deterministic Moore automaton is a monitor for φ if its extended output
function is the monitoring function for φ.

Definition 2.7. Let P be a finite set of propositional variables and φ an LTL-
formula over P. The deterministic Moore automatonM = (S,ΣP , δ, s0, {>,⊥, ?},
λ) is a monitor for φ if λ̂(u) = mφ(u) holds for all u ∈ Σ∗P .

Given an LTL-formula φ over P, a monitor for φ can effectively be computed
[BLS06, BLS11]. Basically, one computes Büchi automata for φ and ¬φ, deter-
minizes them (as finite automata rather than Büchi automata), and then builds the
product of the two deterministic automata. The output function is computed using
reachability tests in the Büchi automata (see [BLS06, BLS11] and the monitor
construction for ALC-LTL in Section 4 below for details). The monitor obtained
this way is in the worst-case of double-exponential size and can be computed in
double-exponential time.

One can actually show that this double-exponential blowup in the construction
of the monitor cannot be avoided. Such a double-exponential lower bound was
already claimed in [BLS11], referring to a result of Kupferman and Vardi [KV01].
However, a closer look at Theorem 3.3 in [KV01] shows that it only yields a lower
bound of 22

√
n . Fortunately, a more recent result by Kupferman and Rosenberg

[KR10] can be used to show a lower bound of 22n . Since a proof of this tight lower
bound for the monitor construction has, to the best of our knowledge, not yet
been published, we give it here for the sake of completeness. This lower bound
can also be used to show optimality of our monitor constructions for ALC-LTL.

Kupferman and Rosenberg show (see Theorem 3 in [KR10]) that there exists a
sequence (Ln)n≥1 of ω-languages and a sequence (φn)n≥1 of LTL-formulae such
that the following holds for all n ≥ 1:

1. the language Ln can be accepted by a deterministic Büchi automaton, but
the number of states of any deterministic Büchi automaton accepting Ln is
at least 22n ;

2. Ln = Lω(φn) and the size of φn is linear in n.

Using an argument similar to the one employed in [KR10], we can show that the
number of states of any monitor for φn is at least 22n . For this purpose, we first
recall the definition of the languages Ln from [KR10].

11

For all n ≥ 1, we consider the alphabet Σn := {a1, . . . , an} ∪ {b1, . . . , bn} ∪ {#, $},
and define

Tn := {a1, b1} · . . . · {an, bn},
Sn := {#} · (Tn · {#})∗ · {$} · Tn · {#}ω,
Rn :=

⋃
w∈Tn

Σ∗n · {#} · {w} · {#} · Σ∗n · {$} · Σ∗n · {w} · {#}ω,

Ln := Sn ∩Rn.

Thus, Tn consists of the words of length n such that the letter at position i is ai or
bi. Obviously, there are 2n such words. The language Sn consists of ω-words that
start with a finite sequence of elements of Tn, which are separated by the #-symbol.
This sequence is terminated by the $-symbol, which is followed by exactly one
element of Tn. Then comes an infinite sequence of #-symbols. Intersecting the
ω-language Sn with the ω-language Rn has the following effect: it ensures that the
element w of Tn that follows the $-symbol has already occurred in the sequence
of elements of Tn before the $-symbol.

The LTL-formulae φn representing the ω-languages Ln are built over sets of
propositional variables with 2n + 2 elements, i.e., over Pn = {p1, . . . , p2n+2}.
Recall that such a formula defines a language over the alphabet ΣPn , whose letters
are the subsets of Pn. Of these exponentially many letters, the language Ln uses
only the (linearly many) singleton sets, where

• {pi} represents the letter ai for i = 1, . . . , n;

• {pn+i} represents the letter bi for i = 1, . . . , n;

• {p2n+1} represents the letter # and {p2n+2} represents the letter $.

In order to increase readability, we continue to use the letters from Σn rather than
these singleton sets in our argument below.

Proposition 2.8. There is a sequence (φn)n≥1 of LTL-formulae of size linear in
n such that the number of states of any monitor for φn is at least 22n.

Proof. Let (φn)n≥1 be the sequence of LTL-formulae constructed in the proof of
Theorem 3 of [KR10]. It is shown in that proof that Ln = Lω(φn) and that the
size of φn is linear in n.

Now assume thatMn = (Sn,Σn, δn, s0,n, {>,⊥, ?}, λn) is a monitor for φn with less
than 22n states. Given a set T ⊆ Tn, we enumerate its elements in lexicographic
order (where ai comes before bi). Assume that w1, . . . , wm is the enumeration of
the elements of T in this order. Then we define

w(T) := #w1# . . .#wm#$.

12

Let s(T) be the state reached inMn with input w(T) when starting at the initial
state s0,n. Since there are 22n different subsets of Tn, but less than 22n states,
there must be two different such subsets T , T ′ such that s(T) = s(T ′). Without
loss of generality we assume that there is a word w ∈ T \ T ′.11 Now consider the
state s reached from s0,n on input w(T)w#. Since s(T) = s(T ′), this is the same
state as the one reached from s0,n on input w(T ′)w#. SinceMn is a monitor for
φn, this implies that

mφn(w(T)w#) = λn(s) = mφn(w(T ′)w#).

This yields a contradiction since actually we have

mφn(w(T)w#) = ? 6= ⊥ = mφn(w(T ′)w#).

In fact, we can extend w(T)w# to an ω-word belonging to Ln (and thus satisfying
φn) by adding an infinite sequence of #-symbols. Any other extension of w(T)w#
does not belong to Ln. This shows that mφn(w(T)w#) = ?. The word w(T ′)w#
cannot be extended to an element of Ln since w does not occur in the sequence
before the $-symbol. This shows that mφn(w(T ′)w#) = ⊥.

Summing up, we have seen that our assumption that there is a monitor for φn
with less than 22n states leads to a contradiction, which shows that any monitor
for φn must have at least 22n states.

Before building a monitor for an LTL-formula φ, it makes sense to check whether
the monitor will actually be able to give reasonable answers. For example, a
monitor that always (i.e., for every finite word) returns the answer ? is clearly
useless. Similarly, when running the monitor, it makes sense to check whether,
according to what has been seen of the system’s behaviour until now (i.e., the
finite word read by the monitor until now), it makes sense to continue running the
monitor. This leads to the following definition of monitorability [PZ06, FFM09,
Bau10].

Definition 2.9. Let φ be an LTL-formula over P and u a finite word over ΣP . We
say that φ is u-monitorable if there is a finite word v ∈ Σ∗P such that mφ(uv) 6= ?.
Moreover, φ is called monitorable if it is u-monitorable for all finite words u ∈ Σ∗P .

Given a monitorM for φ, one can easily decide monitorability through reachability
tests inM. Call a state inM good if from it one can reach a state whose output
is different from ?. Then

• φ is u-monitorable iff the state reached from the initial state with input u is
good;

• φ is monitorable iff every state reachable from the initial state is good.
11The case where T ′ \ T is non-empty can be treated symmetrically.

13

This shows that monitorability can be decided in double-exponential time (in the
size of the formula). More precisely, one can obtain an ExpSpace upper bound
by constructing the relevant parts of the monitor on the fly while performing the
reachability test (this is the same idea underlying the automata-based PSpace
satisfiability test for LTL mentioned above). To the best of our knowledge, it
is open whether this ExpSpace upper bound is tight. The only known lower
bound is PSpace, which can be obtained using a reduction from satisfiability.12

Interestingly, the same is true for the related, but simpler-looking problem of
liveness [AS85].

Definition 2.10. Let φ be an LTL-formula over P. We say that φ expresses a
liveness property if every finite word u ∈ Σ∗P has an extension to an ω-word that
satisfies φ.

Using the monitoring function, liveness of φ can thus be expressed as follows: φ
expresses a liveness property iff mφ(u) 6= ⊥ for all u ∈ Σ∗P . Consequently, given a
monitor for φ, liveness of φ can again be tested by checking reachability in the
monitor, which yields an ExpSpace upper bound. Again, it is open whether this
upper bound is tight. The only known lower bound is again PSpace, which can
again be obtained using a reduction from satisfiability.13

3 The Temporal DL ALC-LTL

The temporal Description Logic ALC-LTL introduced in [BGL12] combines LTL
with the basic DL ALC. More precisely, ALC-LTL-formulae differ from LTL-
formulae in that ALC-axioms replace propositional variables. Before defining
ALC-LTL more formally, we recall the relevant definitions for the Description
Logic ALC.

3.1 The DL ALC

Definition 3.1. Let NC, NR, and NI respectively be disjoint sets of concept names,
role names, and individual names. The set of ALC-concept descriptions is the
smallest set such that

• all concept names are ALC-concept descriptions;

• if C,D are ALC-concept descriptions and r ∈ NR, then ¬C, C tD, C uD,
∃r.C, and ∀r.C are ALC-concept descriptions.

12Note that the proof for a PSpace upper bound given in [Bau10] actually does not go
through.

13Note that the proof for a PSpace upper bound sketched in [UNW01] actually does not go
through.

14

A general concept inclusion axiom (GCI) is of the form C v D, where C,D
are ALC-concept descriptions, and an assertion is of the form C(a) or r(a, b)
where C is an ALC-concept description, r is a role name, and a, b are individual
names. We call both GCIs and assertions ALC-axioms. A Boolean combination
of ALC-axioms is called a Boolean ALC-knowledge base, i.e.,

• every ALC-axiom is a Boolean ALC-knowledge base;

• if B1,B2 are Boolean ALC-knowledge bases, then so are B1 ∧ B2, B1 ∨ B2,
and ¬B1.

An ALC-TBox is a conjunction of GCIs, and an ALC-ABox is a conjunction of
assertions.

According to this definition, TBoxes and ABoxes are special kinds of Boolean
knowledge bases. However, note that they are often written as sets of axioms
rather than as conjunctions of these axioms. The semantics of ALC is defined
through the notion of an interpretation.
Definition 3.2. An ALC-interpretation is a pair I = (∆I , ·I) where the domain
∆I is a non-empty set, and ·I is a function that assigns to every concept name
A a set AI ⊆ ∆I, to every role name r a binary relation rI ⊆ ∆I × ∆I, and
to every individual name a an element aI ∈ ∆I such that the unique name
assumption (UNA) holds, i.e., aI = bI implies a = b. This function is extended
to ALC-concept descriptions as follows:

• (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I \ CI;

• (∃r.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ rI and y ∈ CI};

• (∀r.C)I = {x ∈ ∆I | for all y ∈ ∆I, (x, y) ∈ rI implies y ∈ CI}.

The interpretation I is a model of the ALC-axioms C v D, C(a), and r(a, b) if it
respectively satisfies CI ⊆ DI, aI ∈ CI, and (aI , bI) ∈ rI. The notion of a model
is extended to Boolean ALC-knowledge bases as follows:

• I is a model of B1 ∧ B2 if it is a model of B1 and B2;

• I is a model of B1 ∨ B2 if it is a model of B1 or B2;

• I is a model of ¬B1 if it is not a model of B1.

We write I |= B to indicate that I is a model of B. We say that the Boolean
ALC-knowledge base B is consistent if it has a model. We say that B implies the
ALC-axiom α (written B |= α) if every model of B is a model of α.

The consistency problem for Boolean ALC-knowledge bases is known to be Exp-
Time-complete (see, e.g., Theorem 2.27 in [GKWZ03] or Lemma 6.4 in [BGL12]).

15

3.2 Syntax and Semantics of ALC-LTL

As mentioned above, the difference between ALC-LTL and propositional LTL is
that ALC-axioms replace propositional variables.

Definition 3.3. ALC-LTL-formulae (with past-operators) are defined inductively:

• if α is an ALC-axiom, then α is an ALC-LTL-formula;

• if φ and ψ are ALC-LTL-formulae, then so are φ∧ψ, ¬φ, φUψ, φ Sψ, Xφ,
and X−φ.

As usual, we use φ∨ψ as an abbreviation for ¬(¬φ∧¬ψ), φ→ ψ as an abbreviation
for ¬φ ∨ ψ, true as an abbreviation for A(a) ∨ ¬A(a), false as an abbreviation for
¬true, 3φ as an abbreviation for true Uφ (diamond, which should be read as “some
time in the future”), and 2φ as an abbreviation for ¬3¬φ (box, which should be
read as “always in the future”). We also use the corresponding abbreviations for
the past operators, i.e., 3−φ as abbreviation for true Sφ and 2−φ as abbreviation
for ¬3−¬φ.

The semantics of ALC-LTL is based on ALC-LTL-structures, which are sequences
of ALC-interpretations over the same non-empty domain ∆ (constant domain
assumption). We assume that every individual name stands for a unique element
of ∆ (rigid individual names).

Definition 3.4. An ALC-LTL-structure is a sequence I = (Ii)i≥0 of ALC-
interpretations Ii = (∆, ·Ii) (called worlds) such that aIi = aIj for all a ∈ NI and
all i, j ≥ 0. Given an ALC-LTL-formula φ, an ALC-LTL-structure I = (Ii)i≥0,
and a time point i ≥ 0, validity of φ in I at time i (written I, i |= φ) is defined
inductively:

I, i |= α iff Ii |= α for ALC-axioms α
I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= ¬φ iff not I, i |= φ
I, i |= Xφ iff I, i+ 1 |= φ
I, i |= X−φ iff i > 0 and I, i− 1 |= φ
I, i |= φUψ iff there is some k ≥ i such that I, k |= ψ

and I, j |= φ for all j, i ≤ j < k
I, i |= φ Sψ iff there is some k, 0 ≤ k ≤ i, such that I, k |= ψ

and I, j |= φ for all j, k < j ≤ i

The ALC-LTL-structure I is called a model of the ALC-LTL-formula φ if I, 0 |= φ.
The ALC-LTL-formula φ is satisfiable if it has a model.

As mentioned in the introduction, for some concepts and roles it is not desirable
that their interpretation changes over time. For example, in a medical application,

16

we may want to assume that the gender and the father of a patient do not change
over time, whereas the health status of a patient may of course change. Thus, we
will assume that a subset of the set of concept and role names can be designated
as being rigid. Let NRC denote the rigid concept names and NRR the rigid role
names with NRC ⊆ NC and NRR ⊆ NR. The concept and role names in NC \ NRC
and NR \ NRR are called flexible.

Definition 3.5. We say that the ALC-LTL-structure I = (Ii)i≥0 respects rigid
names if AIi = AIj and rIi = rIj holds for all i, j ≥ 0, all A ∈ NRC, and all
r ∈ NRR. The ALC-LTL-structure I is a model w.r.t. rigid names of the ALC-
LTL-formula φ if I, 0 |= φ and I respects rigid names. The ALC-LTL-formula φ
is satisfiable w.r.t. rigid names if it has a model w.r.t. rigid names.

For clarity, if rigidity of names is not required, then we sometimes talk about
satisfiability without rigid names.

In [BGL12], it is shown that satisfiability w.r.t. rigid names in ALC-LTL is
2-ExpTime-complete, whereas satisfiability without rigid names is “only” Exp-
Time-complete. Additional intermediate cases (such as the case where only
concepts, but not roles, are required to be rigid; or where all GCIs occurring
in the formula are global, i.e., required to hold at every point in time) are also
investigated in [BGL12], but they are not considered in the present paper.

The decision procedures developed in [BGL12] to show the complexity upper
bounds for reasoning in ALC-LTL are not based on Büchi automata. In the
next two subsections, we show, however, that the ideas underlying these decision
procedures can also be used to obtain automata-based decision procedures. The
automata constructed below will be the building blocks for our monitors.

3.3 Büchi Automata for the Case Without Rigid Names

In principle, given an ALC-LTL-formula φ, we want to construct a Büchi automa-
ton Nφ that accepts exactly the models of φ. However, since there are infinitely
many ALC-interpretations, we would end up with an infinite alphabet for this
automaton. For this reason, we abstract from the specific interpretations, and
only consider the ALC-axioms occurring in φ that they satisfy.

For an ALC-LTL-formula φ, we denote with Ax(φ) the set of all ALC-axioms
occurring in φ. Clearly, the cardinality of Ax(φ) is bounded by the size of φ. For
example, the formula

φex := X(A(a)) ∧ ((A v B) U ((¬B)(a))) (1)

contains the ALC-axioms A(a), A v B, and (¬B)(a), and thus Ax(φex) =
{A(a), A v B, (¬B)(a)}. For a given ALC-interpretation I, we denote with

17

τφ(I) the set of all ALC-axioms in Ax(φ) that I is a model of, i.e.,

τφ(I) := {α ∈ Ax(φ) | I |= α}.

Note that I is a model of the Boolean knowledge base∧
α∈τφ(I)

α ∧
∧

α∈Ax(φ)\τφ(I)
¬α.

This motivates the following definition.

Definition 3.6. Let φ be an ALC-LTL-formula. The set of ALC-axioms T is an
ALC-type for φ if the following two properties are satisfied:

1. T ⊆ Ax(φ),

2. the Boolean ALC-knowledge base BT := ∧
α∈T

α ∧ ∧
α∈Ax(φ)\T

¬α is consistent.

We denote the set of all ALC-types for φ with Tφ.

The following lemma is an easy consequence of this definition.

Lemma 3.7. Let φ be an ALC-LTL-formula.

1. If I is an ALC-interpretation, then τφ(I) is an ALC-type for φ.

2. If T is an ALC-type for φ, then there is an ALC-interpretation I such that
T = τφ(I) and the domain ∆I of I is countably infinite.

We call τφ(I) the ALC-type of I. This notion can also be extended to ALC-LTL-
structures. For a given ALC-LTL-structure I = (Ii)i≥0, we define

τφ(I) := τφ(I0)τφ(I1)τφ(I2) · · · ,

and call τφ(I) the ALC-type of I. Note that the ALC-type of I is an ω-word over
the alphabet Tφ.

Whether a given ALC-LTL-structure is a model of φ or not depends only on its
ALC-type. This is formally stated in the follwing lemma, which can easily be
proved by induction on the structure of φ.

Lemma 3.8. Let φ be an ALC-LTL-formula and I, J ALC-LTL-structures such
that τφ(I) = τφ(J). Then I is a model of φ iff J is a model of φ.

This lemma justifies considering Büchi automata that receive ALC-types of ALC-
LTL-structures as inputs rather than the ALC-LTL-structures themselves.

18

Definition 3.9. Let φ be an ALC-LTL-formula and N a Büchi automaton using
the alphabet Tφ. We define

Lω(φ) := {τφ(I) | I is a model of φ},

and say that N is a Büchi automaton for φ if Lω(N) = Lω(φ).

Instead of constructing such automata directly for ALC-LTL-formulae, we build
their propositional abstractions and then reuse the known construction for the
propositional case.14 The propositional abstraction of a given ALC-LTL-formula
is constructed by replacing each ALC-axiom occurring in φ with a propositional
variable such that there is a 1–1 relationship between the ALC-axioms α1, . . . , αm
occurring in φ and the propositional variables p1, . . . , pm occurring in its abstrac-
tion.

Definition 3.10. Let φ be an ALC-LTL-formula and Pφ a finite set of proposi-
tional variables such that there is a bijection π : Ax(φ)→ Pφ.

1. The LTL-formula φπ is obtained from φ by replacing every occurrence of
an ALC-axiom α in φ by its π-image π(α). We call φπ the propositional
abstraction of φ w.r.t. π.

2. Given an ALC-LTL-structure I = (Ii)i≥0, its propositional abstraction w.r.t.
π is the LTL-structure Iπ = (wi)i≥0 with wi = {π(α) | α ∈ τφ(Ii)} for all
i ≥ 0.

As an example, consider the formula φex = X(A(a))∧ ((A v B) U ((¬B)(a))), and
let π : Ax(ψex)→ {p1, p2, p3} be the bijection that maps A(a) to p1, A v B to p2,
and (¬B)(a) to p3. Then the formula ψex = Xp1 ∧ (p2 U p3) of Example 2.5 is the
propositional abstraction of φex w.r.t. π.

In the following, we assume that φ is an ALC-LTL-formula and π : Ax(φ)→ Pφ
a bijection. The next lemma states that an ALC-LTL-structure is a model of φ
iff its abstraction is a model of the abstraction of φ. It can easily be proved by
induction on the structure of ALC-LTL-formulae.

Lemma 3.11. Let I be an ALC-LTL-structure. Then, I is a model of φ iff Iπ is
a model of φπ.

The only-if direction of this lemma yields that satisfiability of φ implies satisfiability
of φπ. However, the if direction does not yield the converse of this implication.

14One could also define the Büchi automaton directly as done in [BBL09], but the approach
developed below is more modular and also easier to implement. In fact, the approach does not
depend on a specific algorithm for generating Büchi automata from propositional LTL-formulae.
Thus, any existing efficient tool for transforming an LTL-formula into a Büchi automaton can
be used.

19

In fact, φπ may turn out to be satisfiable even though the original ALC-LTL-
formula φ is not. The reason is that there may exist LTL-structures that are
not propositional abstractions of ALC-LTL-structures. In our example, the LTL-
structure W = (wi)i≥0 with wi = {p1, p2, p3} for all i ≥ 0 is a model of ψex = φπex,
but there is no ALC-LTL-structures I such that Iπ = W. In fact, every world of
this structure would need to satisfy the three axioms in Ax(ψex) simultaneously,
which is clearly not possible.

Thus, if we assume thatNφπ is a Büchi automaton for the propositional abstraction
of φ, this automaton may accept ω-words that do not correspond to abstractions
of ALC-LTL-structures. This problem can be addressed by requiring that the
letters occurring in such a word correspond to abstractions of ALC-types for φ.

Lemma 3.12. For every ω-word w = w0w1w2 . . . ∈ Σω
Pφ, the following two

statements are equivalent:

1. There is a model I of φ with Iπ = (wi)i≥0.

2. w ∈ Lω(Nφπ) and for all letters wi occurring in w, we have that

Twi := {π−1(p) | p ∈ wi}

is an ALC-type for φ, i.e., Twi ∈ Tφ.

Proof. (1 =⇒ 2) Assume that there exists an ALC-LTL structure I = (Ii)i≥0
with Iπ = (wi)i≥0 and I, 0 |= φ. By Lemma 3.11, we have Iπ, 0 |= φπ, and thus
w ∈ Lω(Nφπ). By the definition of the propositional abstraction of I, we have
Twi = τφ(Ii) for i ≥ 1, and by Lemma 3.7 the sets τφ(Ii) are ALC-types.

(2 =⇒ 1) Assume that w = w0w1w2 . . . ∈ Lω(Nφπ) and, for all i ≥ 0, we have
that Twi is an ALC-type for φ. The first fact implies that (wi)i≥0 is a model of
φπ. By Lemma 3.7, the second fact yields that there are ALC-interpretations Ii
with countably infinite domains such that Twi = τφ(Ii). Since the domains of
the interpretations Ii have the same cardinality, we can assume without loss of
generality that they have the same domain. In addition, since these interpretations
obey the UNA, we can also assume that they interpret the individual names in
the same way. Consequently, if we define I := (Ii)i≥0, then I is an ALC-LTL-
structure and Iπ = (wi)i≥0. Since the propositional abstraction of I is a model of
φπ, Lemma 3.11 yields that I is a model of φ.

This lemma shows how a Büchi automaton for the ALC-LTL-formula φ can
be constructed from a Büchi automaton for the propositional abstraction of φ.
Basically, all transitions labeled with letters not corresponding to ALC-types must
be removed.

20

Theorem 3.13. Let φ be an ALC-LTL-formula and π : Ax(φ)→ Pφ a bijection.
If Nφπ = (Q,ΣPφ ,∆, Q0, F) is a Büchi automaton for the propositional abstraction
φπ of φ, then the following is a Büchi automaton for φ: Nφ := (Q,Tφ,∆′, Q0, F)
where

∆′ := {(q, Tσ, q′) | (q, σ, q′) ∈ ∆ and Tσ ∈ Tφ}.

Proof. We must show that Lω(Nφ) = Lω(φ).

First, assume that T = T0T1T2 . . . ∈ Lω(Nφ). Since the alphabet of Nφ is Tφ, we
know that Ti ∈ Tφ. In addition, the definition of Nφ implies that there is a word
w = w0w1w2 . . . ∈ Lω(Nφπ) such that Ti = Twi . Thus, Lemma 3.12 yields the
existence of a model I of φ with Iπ = (wi)i≥0. Consequently, τφ(I) = T0T1T2 . . . ∈
Lω(φ).

Conversely, assume that T = T0T1T2 . . . ∈ Lω(φ). Then there is a model I of φ
with τφ(I) = T0T1T2 By Lemma 3.7, the letters Ti are ALC-types for φ, i.e.,
Ti ∈ Tφ. Let Iπ = (wi)i≥0 be the propositional abstraction of I. By Lemma 3.11,
Iπ is a model of φπ, and thus the ω-word w = w0w1w2 . . . is accepted by Nφπ .
Since Ti = Twi and the letters Ti belong to Tφ, this implies that T = T0T1T2 . . . is
accepted by Nφ.

As an immediate consequence of this theorem, the satisfiability problem in ALC-
LTL (without rigid names) can be reduced to the emptiness problem for Büchi
automata.
Corollary 3.14. The ALC-LTL-formula φ is satisfiable iff Lω(Nφ) 6= ∅.

It remains to analyse the complexity of the decision procedure for satisfiability
obtained by this reduction.

The size of the automaton Nφ is obviously exponential in the size of φ as Nφπ is
exponential in the size of φπ and the size of φπ is linearly bounded by the size
of φ. In addition, the automaton Nφ can be computed in exponential time. As
mentioned above, a Büchi automaton for a propositional LTL-formula can be
computed in time exponential in the size of the formula. Thus, we can compute
Nφπ in exponential time. To obtain Nφ from Nφπ , we basically have to remove
all transitions labeled with a letter σ such that Tσ 6∈ Tφ. For the remaining
transitions, we then simply replace σ with Tσ. In order to test whether Tσ belongs
to Tφ, we need to test the Boolean ALC-knowledge base BTσ for consistency.
As mentioned before, this can be done in exponential time in the size of this
knowledge base. Since there are exponentially many letters σ, but the size of
each knowledge base BTσ is linearly bounded by the size of φ, we need to perform
exponentially many exponential-time consistency tests, which yields an overall
exponential-time complexity for the computation of Nφ.

Since the emptiness problem for Büchi automata can be solved in polynomial
time [VW94], this yields an alternative proof for the fact (originally shown

21

in [BGL12] for the case without past operators) that satisfiability of ALC-LTL-
formulae (without rigid names) can be decided in exponential time.

3.4 The Case With Rigid Names

In this case, we are only interested in the ALC-types of models that respect rigid
names. Thus, we need to modify the notion of a Büchi automaton for a formula
accordingly.

Definition 3.15. Let φ be an ALC-LTL-formula and N a Büchi automaton using
the alphabet Tφ. We define

Lrω(φ) := {τφ(I) | I is a model of φ respecting rigid names},

and say that N is a Büchi automaton for φ respecting rigid names if Lω(N) =
Lrω(φ).

For the case without rigid names, Lemma 3.12 characterises under which conditions
an ω-word over the alphabet ΣPφ is the propositional abstraction of a model
of the ALC-LTL-formula φ. If rigid concepts and roles occur in φ, then this
characterization is clearly not sufficient since rigidity of their interpretation is not
enforced.

As an example, consider the formula φex = X(A(a))∧ ((A v B) U ((¬B)(a))) from
our previous example and its propositional abstraction φπ = ψex = Xp1 ∧ (p2 U p3).
The LTL-structure W = (wi)i≥0 with w0 = {p2} and wi = {p1, p3} for all i ≥ 1
satisfies 2. of Lemma 3.12, where Nφπ is the automaton depicted in Figure 1.
However, an ALC-LTL-structure that has W as its propositional abstraction does
not interpret A as a rigid concept: a does not belong to A at time point 0, but
belongs to it at all later points in time.

In order to obtain a characterization analogous to the one in Lemma 3.12 also for
the case of rigid names, we must add an additional condition.

Definition 3.16. The set T = {T1, . . . , Tk} of ALC-types for φ is called r-
consistent if there are ALC-interpretations I1, . . . , Ik that share the same domain,
coincide on the individual names and the rigid concept and role names, and satisfy
τφ(Ii) = Ti for all i, 1 ≤ i ≤ k. The set of all r-consistent sets of ALC-types for
φ is denoted by Cφr .

Note that any subset of an r-consistent set of ALC-types for φ is again r-consistent.
In particular, the empty set is always r-consistent. The r-consistency of a set
of ALC-types can be decided using the renaming technique for flexible symbols
introduced in [BGL12]. Given a set T = {T1, . . . , Tk} of ALC-types for φ, we
introduce renamed variants A(i) and r(i) (1 ≤ i ≤ k) for every flexible concept

22

name A and every flexible role name r. For an ALC-axiom α of φ, its renamed
variant α(i) is obtained by replacing the flexible concept and role names occurring
in α by the corresponding renamed variants. The following lemma is an easy
consequence of the proof of Lemma 4.3 in [BGL12].

Lemma 3.17. Let T = {T1, . . . , Tk} be a set of ALC-types for φ. Then T is
r-consistent iff the Boolean ALC-knowledge base BT is consistent, where

BT :=
k∧
i=1

∧
α∈Ti

α(i).

The next lemma characterises the additional condition the automaton that respects
rigid names has to take care of.

Lemma 3.18. For every ω-word w = w0w1w2 . . . ∈ Σω
Pφ, the following two

statements are equivalent:

1. There is a model I of φ respecting rigid names with Iπ = (wi)i≥0.

2. w ∈ Lω(Nφπ) and the set

Tw := {Twi | i ≥ 0}

is an r-consistent set of ALC-types for φ.

Proof. (1 =⇒ 2) Assume that there exists an ALC-LTL structure I = (Ii)i≥0
respecting rigid names such that Iπ = (wi)i≥0 and I, 0 |= φ. By Lemma 3.12,
w ∈ Lω(Nφπ) and for all letters wi occurring in w, we have that Twi is an ALC-type
for φ. Consequently, Tw = {Twi | i ≥ 0} is a set of ALC-types. Since there are only
finitely many ALC-types for φi, Tw is a finite set. Let Tw = {T1, . . . , Tk} and let
ij for 1 ≤ j ≤ k be such that Ti = Twij . Then Ii1 , . . . , Iik are ALC-interpretations
such that τφ(Iij) = Tj for all j, 1 ≤ j ≤ k. Since I = (Ii)i≥0 is an ALC-LTL
structure respecting rigid names, the interpretations Iij (j = 1, . . . , k) have the
same domain and coincide on the individual names and the rigid concept and role
names.

(2 =⇒ 1) Assume that w = w0w1w2 . . . ∈ Lω(Nφπ) and that Tw = {Twi | i ≥ 0}
is an r-consistent set of ALC-types for φ. The first fact implies that (wi)i≥0 is
a model of φπ. Let Tw = {T1, . . . , Tk}, where T1, . . . , Tk are the finitely many,
pairwise distinct ALC-types for φ occurring in Tw. The r-consistency of this set
yields ALC-interpretations I1, . . . , Ik that share the same domain, coincide on the
individual names and the rigid concept and role names, and satisfy τφ(Ij) = Tj
for all j, 1 ≤ j ≤ k. Since {Twi | i ≥ 0} = Tw = {T1, . . . , Tk}, there is a mapping
µ : {0, 1, 2, . . .} → {1, . . . , k} such that Twi = Tµ(i) for all i ≥ 0. We define
the sequence of ALC-interpretations J = (Ji)i≥0 by setting Ji := Iµ(i). Since

23

the ALC-interpretations I1, . . . , Ik share the same domain and coincide on the
individual names, this sequence is indeed an ALC-LTL structure. This structure
respects rigid names since the ALC-interpretations I1, . . . , Ik coincide on the rigid
concept and role names. Since Jπ = (wi)i≥0, the propositional abstraction of J is
a model of φπ, and thus Lemma 3.11 yields that J is a model of φ.

A Büchi automaton that respects rigid names thus needs to check the r-consistency
of the set of ALC-types it has seen within a run. This is realized by using
tuples (q1, q2) as states, where q1 is a state of the automaton Nφ introduced in
Theorem 3.13, and q2 is an r-consistent set of ALC-types for φ.

Theorem 3.19. Let φ be an ALC-LTL-formula and π : Ax(φ)→ Pφ a bijection.
If Nφπ = (Q,ΣPφ ,∆, Q0, F) is a Büchi automaton for the propositional abstraction
φπ of φ, then the following is a Büchi automaton for φ with respect to rigid names:
N r
φ := (Q× Cφr ,Tφ,∆′, Q0 × {∅}, F × Cφr) where

∆′ := {((q1, q2), Tσ, (q′1, q′2) | (q1, σ, q
′
1) ∈ ∆, Tσ ∈ Tφ, and q′2 = q2 ∪ {Tσ} ∈ Cφr }.

Proof. We must show that Lω(N r
φ) = Lrω(φ).

First, assume that T = T0T1T2 . . . ∈ Lrω(Nφ), and let (q(0)
1 , q

(0)
2)(q(1)

1 , q
(1)
2) (q(2)

1 , q
(2)
2) . . .

be an accepting run of N r
φ on T . It is easy to see that the projection q(0)

1 q
(1)
1 q

(2)
1 . . .

of this run to the first component is an accepting run of Nφ on T . We have
seen in the proof of Theorem 3.13 that this implies the existence of a word
w = w0w1w2 . . . ∈ Lω(Nφπ) such that Ti = Twi . In addition, the letters Ti are
ALC-types. It remains to show that the set Tw = {Twi | i ≥ 0} is an r-consistent
set of ALC-types. In fact, once this is shown, Lemma 3.18 yields a model I of φ re-
specting rigid names with Iπ = (wi)i≥0. Consequently, τφ(I) = T0T1T2 . . . ∈ Lrω(φ).
To see that Tw is r-consistent, we note that the second components q(j)

2 of the states
in the run are r-consistent sets of ALC-types satisfying q(j)

2 = {Tw0 , . . . , Twj−1}.
Since there are only finitely many ALC-types, there is an index k ≥ 1 such that
q

(k)
2 = {Twi | i ≥ 0}, and thus this set is r-consistent.

Conversely, assume that T = T0T1T2 . . . ∈ Lrω(φ). Then there is a model I of φ
respecting rigid names with τφ(I) = T0T1T2 The letters Ti are ALC-types by
Lemma 3.7, and since I respects rigid names, the set {Ti | i ≥ 0} is r-consistent (see
the argument used in the proof of (1 =⇒ 2) of Lemma 3.18). Since Lrω(φ) ⊆ Lω(φ),
we have T = T0T1T2 . . . ∈ Lω(φ), and thus Theorem 3.13 implies the existence of
an accepting run q(0)

1 q
(1)
1 q

(2)
1 . . . of Nφ on T . If we define q(j)

2 := {T0, . . . , Tj−1} for
all j ≥ 0, then these sets are r-consistent since they are subsets of the r-consistent
set {Ti | i ≥ 0}. Consequently, (q(0)

1 , q
(0)
2)(q(1)

1 , q
(1)
2) (q(2)

1 , q
(2)
2) . . . is an accepting

run of N r
φ on T .

As an immediate consequence of this theorem, the satisfiability problem in ALC-
LTL with rigid names can also be reduced to the emptiness problem for Büchi

24

automata.

Corollary 3.20. The ALC-LTL-formula φ is satisfiable w.r.t. rigid names iff
Lω(N r

φ) 6= ∅.

The complexity of the decision procedure for satisfiability obtained by this reduc-
tion is, however, higher than the complexity of the decision procedure for the case
without rigid names.

The size of the automaton N r
φ is double exponential in the size of φ. This is

due to the fact that the set Cφr of all r-consistent sets of ALC-types for φ may
contain double exponentially many elements since these sets are subsets of the
exponentially large set of all ALC-types for φ. Each element of Cφr may be of
exponential size.

Next, we show that the automaton N r
φ can be computed in double exponential

time. In addition to computing Nφ, i.e., the automaton constituting the first
component of N r

φ , we must also compute the set Cφr . For this, we consider all
sets of ALC-types for φ. There are double exponentially many such sets, each
of size at most exponential in the size of φ. By Lemma 3.17, testing such a set
T for r-consistency amounts to testing the Boolean ALC-knowledge base BT for
consistency. Since the size of BT is exponential in the size of φ and the consistency
problem for Boolean ALC-knowledge bases is ExpTime-complete, this test can
be performed in double exponential time. Overall, the computation of Cφr requires
double exponentially many tests, each requiring doubly exponential time. This
shows that Cφr , and thus also the automaton N r

φ , can be computed in double
exponential time.

Since the emptiness problem for Büchi automata can be solved in polynomial
time [VW94], this yields an alternative proof for the fact (originally shown
in [BGL12] for the case without past operators) that satisfiability w.r.t. rigid
names in ALC-LTL can be decided in double exponential time.

4 Monitoring ALC-LTL-formulae

In this section, we extend existing definitions and results for runtime verification
from propositional LTL to ALC-LTL. We restrict the attention to the case with
rigid names since the complexity of the monitor construction for this more general
case is actually the same (double exponential) as for the case without rigid names.
Thus, it does not make sense to treat the restricted case separately. In addition
to considering a more expressive logic, our notion of monitoring extends the one
for propositional logic in two directions.

On the one hand, we do not assume that the monitor has complete knowledge
about the states of the system. In the propositional case, as introduced in Section 2,

25

at each point in time the monitor knows which of the propositional variables are
true at this point and which are not. In our setting, ALC-axioms take the place of
propositional variables, but we do not assume that we have complete knowledge
about their truth value. For some of the relevant axioms, we may know that they
are true, for others that they are false, but it also may be the case that we have
no information regarding the truth status of a certain axiom.

On the other hand, we take background knowledge about the working of the
system into account. This background knowledge could, for example, be a global
TBox, i.e., a finite set of GCIs that are known to hold for every state of the system.
In this case, the formula describing the background knowledge is of the form
ψ = 2T , where T is a TBox. The presence of background knowledge enables the
monitor to give more often definite answers (i.e., > or ⊥) rather than the answer
?.

4.1 Basic Definitions

In the following, we extend the notion of a monitoring function and a monitor,
as introduced in Section 2 for propositional LTL-formulae, to the case of ALC-
LTL-formulae φ. We assume that the background knowledge is described by an
additional ALC-LTL-formula ψ and that the monitor receives the information
about the current state of the system in the form of a Boolean knowledge base
K that provides (partial) information about the truth values of certain axioms
from a fixed finite set of axioms. Without loss of generality, we can also assume
that the axioms occurring in ψ and K also occur in φ. This assumption is made
throughout this section without explicitly mentioning it.

To simplify the subsequent definitions, we introduce the following notation. A
literal of φ is either an axiom α ∈ Ax(φ) (positive literal) or the negation ¬α of
an axiom α ∈ Ax(φ) (negative literal).

Definition 4.1. A finite conjunction K = L1∧ . . .∧Lm of literals of φ is a partial
ALC-type for φ if this Boolean ALC-knowledge base is consistent. We denote the
set of all partial ALC-types for φ with Pφ.

Note that, up to equivalence, there are at most exponentially many partial ALC-
types for φ in the size of φ. Given an ALC-type T for φ, the corresponding
Boolean knowledge base

BT =
∧
α∈T

α ∧
∧

α∈Ax(φ)\T
¬α

is a partial ALC-type for φ. In such a knowledge base BT , every axiom of φ occurs
either positively or negatively. For an arbitrary partial ALC-type for φ, this need
not be the case. Some axioms of φ may not occur at all in K.

26

Definition 4.2. Let φ, ψ be ALC-LTL-formulae and K = K0K1 . . .Kt a finite
sequence of partial ALC-types for φ.

1. We say that the ALC-LTL-structure J = (Ji)i≥0 extends K w.r.t. ψ if
J, 0 |= ψ and Ji |= Ki for all i, 0 ≤ i ≤ t.

2. We write K, ψ |≈∃ φ if there is an ALC-LTL-structure J respecting rigid
names that extends K w.r.t. ψ and satisfies J, 0 |= φ. If this is not the case,
we write K, ψ |6≈∃ φ.

3. We write K, ψ |≈∀ φ if all ALC-LTL-structures J extending K w.r.t. ψ and
respecting rigid names are such that J, 0 |= φ. If this is not the case, we
write K, ψ |6≈∀ φ.

The notions introduced in 2. and 3. of this definition are dual to each other in the
following sense:

K, ψ |≈∃ φ iff K, ψ |6≈∀ ¬φ and K, ψ |≈∀ φ iff K, ψ |6≈∃ ¬φ.

We assume that our system actually respects rigid names and satisfies the back-
ground knowledge ψ in the sense that any run of the system corresponds to an
ALC-LTL-structure respecting rigid names that is a model of ψ. Thus, if the
monitor receives information about the partial types of a finite prefix of such a
run, this finite sequence of partial types can actually be extended to an ALC-
LTL-structure satisfying ψ and respecting rigid names. In this case, the following
lemma holds.

Lemma 4.3. Let φ, ψ be ALC-LTL-formulae and K a finite sequence of partial
ALC-types for φ such that there is an ALC-LTL-structure extending K w.r.t. ψ
and respecting rigid names. Then K, ψ |≈∀ φ and K, ψ |≈∀ ¬φ cannot both be true.

Proof. Let J be an ALC-LTL-structure respecting rigid names and extending K
w.r.t. ψ. Then we have J, 0 |= φ or J, 0 |= ¬φ. In the first case, K, ψ |6≈∀ ¬φ and
in the second, K, ψ |6≈∀ φ.

The monitoring function receives as input a finite sequence of partial ALC-types
for φ, i.e., a finite word over the alphabet Pφ.

Definition 4.4. Let φ, ψ be ALC-LTL-formulae. The monitoring function for φ
w.r.t. ψ is the function mφ,ψ : (Pφ)∗ → {>,⊥, ?, } with

mφ,ψ(K) :=



> if K, ψ |≈∀ φ and K, ψ |6≈∀ ¬φ
⊥ if K, ψ |6≈∀ φ and K, ψ |≈∀ ¬φ
? if K, ψ |6≈∀ φ and K, ψ |6≈∀ ¬φ
 if K, ψ |≈∀ φ and K, ψ |≈∀ ¬φ.

27

Compared to the definition in the propositional setting, we have added a fourth
possible output for the monitoring function in order to have a well-defined value
also for sequences K ∈ (Pφ)∗ that have no extension respecting rigid names w.r.t. ψ.
In fact, if there is no ALC-LTL-structure respecting rigid names and extending K
w.r.t. ψ, then we have both K, ψ |≈∀ φ and K, ψ |≈∀ ¬φ. In this case, the monitoring
function yields the value . In practice, this value should not be encountered since
we assume that the observed system actually respects rigid names and satisfies
the background knowledge ψ. Thus, no finite sequence of partial types obtained
by observing the system can yield this case.15 The monitoring function returns
the value > if there is at least one extension of K w.r.t. ψ that respects rigid
names (expressed by K, ψ |6≈∀ ¬φ), and all such extensions satisfy φ (expressed by
K, ψ |≈∀ φ). Similarly, it returns the value ⊥ if there is at least one extension of K
w.r.t. ψ that respects rigid names, and all such extension satisfy ¬φ. Finally, it
returns he value ? if there is an extension of K w.r.t. ψ that respects rigid names
and satisfies φ, and there is another extension of K w.r.t. ψ that respects rigid
names and satisfies ¬φ.

We are interested in constructing a monitor that realizes the monitoring function
defined above. As in the propositional case, this monitor is a deterministic Moore
automaton whose output function is equal to the monitoring function.

Definition 4.5. Let φ, ψ be ALC-LTL-formulae. The deterministic Moore au-
tomatonM = (S,Pφ, δ, s0, {>,⊥, ?, }, λ) is a monitor for φ w.r.t. ψ if λ̂(K) =
mφ,ψ(K) holds for all K ∈ (Pφ)∗.

4.2 An auxiliary deterministic automaton

Before we construct the monitor, we define a deterministic finite automaton that
accepts exactly those sequences of partial types K ∈ (Pφ)∗ such that K, ψ |≈∀ φ.
We know that requiring K, ψ |≈∀ φ is the same as requiring K, ψ |6≈∃ ¬φ. Thus, the
automaton needs to accept all words K ∈ (Pφ)∗ that have no extension w.r.t. ψ
and respecting rigid names that satisfies ¬φ. To construct this automaton, we
take the Büchi automaton N r

¬φ∧ψ for ¬φ∧ψ and make it deterministic by applying
an appropriate modification of the powerset construction to the first components
of the states of N r

¬φ∧ψ. The second component of a state of N r
¬φ∧ψ collects the

ALC-types encountered on the path leading to this state, which enables the
automaton to check whether this collection of ALC-types is r-consistent. Instead,
our deterministic automaton collects the partial ALC-types encountered on a path,
and checks whether this set is related in an appropriate way to an r-consistent set
of ALC-types.

Before we can define this relation, we need to introduce some notation. Given a
15If it does, then the modelling of the properties of the system using ψ and the rigididy of

symbols was incorrect, or the sensors that generated the sequence K were faulty.

28

partial type K = L1∧ . . .∧Lm, we define Pos(K) = {Li | 1 ≤ i ≤ m,Li is positive}
and Neg(K) = {αi | 1 ≤ i ≤ m,Li = ¬αi is negative}. Given an ALC-type T for
φ and a partial ALC-type K for φ, we define

K <φ T iff Pos(K) ⊆ T and Neg(K) ∩ T = ∅.

If T = τφ(I) for an ALC-interpretation I, then we obviously have I |= K iff
K <φ T . We now lift the relation <φ from (partial) types to sets of (partial) types.
Definition 4.6. Let T be a set of ALC-types for φ and P a set of partial ALC-
types for φ. We say that T realizes P and write P ≺φ T if the following property
is satisfied: for every K ∈ P, there is a T ∈ T such that K <φ T .

This relation can be used to characterize r-consistency of a set of partial ALC-types
for φ.
Definition 4.7. The set P = {K1, . . . ,Kk} of partial ALC-types for φ is called r-
consistent if there are ALC-interpretations I1, . . . , Ik that share the same domain,
coincide on the individual names and the rigid concept and role names, and satisfy
Ii |= Ki for all i, 1 ≤ i ≤ k. The set of all r-consistent sets of partial ALC-types
for φ is denoted by Ĉφr
Lemma 4.8. The set P of partial ALC-types for φ is r-consistent iff there is an
r-consistent set T of ALC-types for φ such that P ≺φ T.

Proof. First, assume that P = {K1, . . . ,Kk} is r-consistent. Then there are ALC-
interpretations I1, . . . , Ik that share the same domain, coincide on the individual
names and the rigid concept and role names, and satisfy Ii |= Ki for all i, 1 ≤ i ≤ k.
If we define T := {τφ(I1), . . . , τφ(Ik)}, then this set of ALC-types is obviously
r-consistent and we have Ki <φ τφ(Ii) for all i, 1 ≤ i ≤ k. This shows P ≺φ T.

Conversely, let P = {K1, . . . ,Kk} and assume that T = {T1, . . . , Tm} is an
r-consistent set of ALC-types for φ such that P ≺φ T. Then there are ALC-
interpretations I1, . . . , Im that share the same domain, coincide on the individual
names and the rigid concept and role names, and satisfy Ti = τφ(Ii) for all i,
1 ≤ i ≤ m. In addition, for every j, 1 ≤ j ≤ k, there is an index ij, 1 ≤ ij ≤ m,
such that Kj <φ Tij . The ALC-interpretations Ii1 , . . . , Iik share the same domain,
coincide on the individual names and the rigid concept and role names, and satisfy
Iij |= Kj for all j, 1 ≤ j ≤ k. This shows that P is r-consistent.

We are now ready to define a deterministic automaton that accepts exactly those
sequences of partial types K ∈ (Pφ)∗ such that K, ψ |≈∀ φ. But first, for the sake
of completeness, let us recall the definition of a deterministic finite automaton.
Definition 4.9. A deterministic finite automaton D = (S,Σ, δ, s0, E) consists of a
finite set of states S, a finite input alphabet Σ, a transition function δ : S×Σ→ S,
an initial state s0 ∈ S, and a set of final states E ⊆ S.

The transition function can be extended to a function δ̂ : S × Σ∗ → S as follows:

29

• δ̂(s, ε) := s where ε denotes the empty word; and

• δ̂(s, uσ) := δ(δ̂(s, u), σ) where u ∈ Σ∗ and σ ∈ Σ.

The language accepted by D is defined as by

L(D) := {u ∈ Σ∗ | δ̂(s0, u) ∈ E}.

As mentioned above, the deterministic automaton to be defined is based on the
Büchi automaton N r

¬φ∧ψ for the ALC-LTL-formula ¬φ∧ψ. Recall that, according
to our assumption, all the ALC-axioms occurring in ψ already occur in φ. Thus,
the alphabet of this automaton is actually Tφ and the second components of the
states are r-consistent sets of ALC-types for φ. Given a state (q,T) of N r

¬φ∧ψ, we
denote the Büchi automaton obtained from this automaton by replacing the set
of initial states with {(q,T)} by N r

¬φ∧ψ(q,T).

Definition 4.10. Let φ, ψ be ALC-LTL-formulae and let N r
¬φ∧ψ = (Q×Cφr ,Tφ,∆, Q0×

{∅}, F × Cφr) be the Büchi-automaton for ¬φ ∧ ψ, as introduced in Theorem 3.19.
The deterministic finite automaton Drφ,ψ := (S,Pφ, δ, s0, E) is defined as follows:

• S := 2Q × Ĉφr ;

• s0 := (Q0, ∅);

• δ : S ×Pφ → S is defined as follows:

– if P ∪ {K} 6∈ Ĉφr , then δ((P,P),K) := (∅,P);
– if P ∪ {K} ∈ Ĉφr , then δ((P,P),K) := (P ′,P ∪ {K}) where

P ′ :=
⋃
q∈P

{
q′ ∈ Q | there is ((q,T), T, (q′,T ∪ {T})) ∈ ∆

such that K <φ T , P ≺φ T, and
Lω(N r

¬φ∧ψ(q′,T ∪ {T})) 6= ∅
}

;

• the set of final states is defined as E := {∅} × Ĉφr .

Final states are those where the first component is the empty set. Note that
these states reproduce themselves: states for which the first component is empty
have only successor states for which this is again the case. There are two possible
reasons for reaching such a state with letter K from a state (P,P) whose first
component P is non-empty. Either the set P ∪ {K} is not r-consistent, or there
are no states q′ ∈ Q satisfying the conditions in the definition of P ′.

Lemma 4.11. For all sequences of partial types K ∈ (Pφ)∗ the following are
equivalent:

30

1. K, ψ |≈∀ φ,

2. K ∈ L(Drφ,ψ).

Proof. First, assume to the contrary that K = K0K1 . . .Kt ∈ L(Drφ,ψ), but
K, ψ |6≈∀ φ. Then we have K, ψ |≈∃ ¬φ, i.e., there is an ALC-LTL-structure I =
(Ii)i≥0 that extends K w.r.t. ψ, respects rigid names, and is a model of ¬φ. This
means that I is a model of ¬φ∧ψ respecting rigid names, and Ii |= Ki for every i,
0 ≤ i ≤ t. Thus, τφ(I) ∈ Lrω(¬φ ∧ ψ), and since N r

¬φ∧ψ is a Büchi automaton
for ¬φ ∧ ψ respecting rigid names, we have τφ(I) ∈ Lω(N r

¬φ∧ψ). This means that
there is an accepting run (q0,T0)(q1,T1) . . . of N r

¬φ∧ψ on τφ(I). In particular, this
yields Lω(N r

¬φ∧ψ(qi,Ti)) 6= ∅ for all i ≥ 0.

Moreover, we have by the construction of N r
¬φ∧ψ that Ti = {τφ(Ij) | 0 ≤ j < i}

for every i ≥ 0. We define Pi := {Kj | 0 ≤ j < i} for every i, 0 ≤ i ≤ t + 1.
Note that we have Ki <φ τφ(Ii) for every i, 0 ≤ i ≤ t + 1. Hence, Pi ≺φ Ti
holds for every i, 0 ≤ i ≤ t + 1. By the definition of N r

¬φ∧ψ, the sets Ti
are r-consistent, and thus Lemma 4.8 yields that Pi is r-consistent for every i,
0 ≤ i ≤ t + 1. Thus, we have δ̂(s0,K0 . . .Ki) = (Pi+1,Pi+1) with qi+1 ∈ Pi+1
for every i, 0 ≤ i ≤ t. In particular, δ̂(s0,K) = (Pt+1,Pt+1) with qt+1 ∈ Pt+1,
which shows that Pt+1 6= ∅. Consequently, we have (Pt+1,Pt+1) /∈ E, which is a
contradiction to our assumption that K ∈ L(Drφ,ψ).

Conversely, assume to the contrary that K = K0K1 . . .Kt /∈ L(Drφ,ψ) and K, ψ |≈∀ φ,
i.e., every ALC-LTL-structure I = (Ii)i≥0 that extends K w.r.t. ψ and respects
rigid names is a model of φ. The first assumption implies that δ̂(s0,K) /∈ E, i.e.,
δ̂(s0,K) = (Pt+1,Pt+1) ∈ 2Q × Ĉφr with Pt+1 6= ∅. This yields intermediate states
(Pi,Pi) ∈ 2Q × Ĉφr (0 ≤ i ≤ t) such that P0 = Q0,P0 = ∅ and δ̂(s0,K0 . . .Ki) =
(Pi+1,Pi+1) ∈ 2Q × Ĉφr with Pi+1 = Pi ∪ {Ki} and Pi+1 6= ∅ for every i, 0 ≤ i ≤ t.
Moreover, we have that there are, for every i, 0 ≤ i ≤ t, a state qi ∈ Pi, a type Ti ∈
Tφ, and an r-consistent set of types Ti ∈ Cφr such that ((qi,Ti), Ti, (qi+1,Ti+1)) ∈ ∆,
Ti+1 = Ti ∪ {Ti}, Ki <φ Ti, Pi ≺φ Ti, and Lω(N r

¬φ∧ψ(qi+1,Ti+1)) 6= ∅. Note that
q0 ∈ Q0 since q0 ∈ P0 and P0 = Q0.

We define T′i := {Tj | 0 ≤ j < i} for every i, 0 ≤ i ≤ t + 1. Obviously, we then
have T′i ⊆ Ti for every i, 0 ≤ i ≤ t+ 1. Since every subset of an r-consistent set of
types is again r-consistent, this shows T′i ∈ Cφr for every i, 0 ≤ i ≤ t+ 1. Moreover,
since Pi = {Kj | 0 ≤ j < i} for every i, 0 ≤ i ≤ t+ 1, the fact that Ki <φ Ti for
every i, 0 ≤ i ≤ t+ 1, implies Pi ≺φ T′i for every i, 0 ≤ i ≤ t+ 1. In addition, we
have ((qi,T′i), Ti, (qi+1,T

′
i+1)) ∈ ∆ for every i, 0 ≤ i ≤ t.

Since Lω(N r
¬φ∧ψ(qt+1,Tt+1)) 6= ∅, there is an ω-word T ∈ (Tφ)ω such that there is

an accepting run of N r
¬φ∧ψ(qt+1,Tt+1) on T . Using similar arguments as above,

we can transform this run into an accepting run of N r
¬φ∧ψ(q,T′t+1) on T . Hence,

T ∈ Lω(N r
¬φ∧ψ(q,T′t+1)). Overall, we obtain that the ω-word T0T1 . . . Tt · T is

in Lω(N r
¬φ∧ψ). Since N r

¬φ∧ψ is a Büchi automaton for ¬φ ∧ ψ respecting rigid

31

names, this shows that there exists an ALC-LTL-structure I = (Ii)i≥0 respecting
rigid names such that τφ(I) = T0T1 . . . Tt · T and I is a model of ¬φ ∧ ψ. For
every i, 0 ≤ i ≤ t, we have Ki <φ τφ(Ii) since τφ(Ii) = Ti. This yields Ii |= Ki
for every i, 0 ≤ i ≤ t. Since I is a model of ψ, we obtain that I extends K w.r.t.
ψ. Hence, there is an ALC-LTL-structure, namely I, that extends K w.r.t. ψ,
respects rigid names, and is a model of ¬φ, which contradicts our assumption
that K, ψ |≈∀ φ.

It remains to analyze the complexity of the construction of the deterministic finite
automaton Drφ,ψ. The size of Drφ,ψ is double-exponential in the size of φ and ψ.
This is due to the fact that the size of Q may be exponential and the fact that
the set Ĉφr of all r-consistent partial types for φ may contain double-exponentially
many elements since these sets are subsets of the exponentially large set Pφ of all
partial types for φ. Each element of Ĉφr may be of exponential size.

Next, we show that Drφ,ψ can be constructed in double-exponential time. In
addition to constructing the Büchi automaton N r

¬φ∧ψ, we must also compute the
set Ĉφr . As shown in Section 3.4, the Büchi automaton N r

¬φ∧ψ, and thus also the
set Cφr , can be constructed in time double-exponential in the size of φ and ψ. To
compute Ĉφr , we use Lemma 4.8, which yields

Ĉφr =
{
P ⊆ Pφ | P ≺φ T for some T ∈ Cφr

}
.

We consider all sets of partial types for φ. There are double-exponentially many
such sets, each of size at most exponential in the size of φ. For each such set
P = {K1, . . . ,Kk}, we need to check whether there is a set T = {T1, . . . , Tm} ∈ Cφr
such that P ≺φ T. Since Cφr is of double-exponential size, there are at most
double-exponentially many such tests for each P. The test P ≺φ T itself amounts
to checking, for each Ki, 1 ≤ i ≤ k, whether there is a Tj, 1 ≤ j ≤ m, such
that Pos(Ki) ⊆ Tj and Neg(Ki) ∩ Tj = ∅, which can be done in exponential time
since both k and m are at most exponential in the size of φ. Overall, we can
thus compute Ĉφr is double-exponential time. Using these arguments, the fact
that N r

¬φ∧ψ can be constructed in double-exponential time, and the fact that the
emptiness problem for Büchi automata can be solved in time polynomial in the
size of the Büchi automaton [VW94], it is easy to see that the transition function δ
and the set of final states E can be computed in double-exponential time. Overall,
we have shown that Drφ,ψ can be constructed in time double-exponential in the
size of φ and ψ.

4.3 The Monitor Construction

Given the construction of the deterministic automaton of the previous subsection,
it no a simple exercise to construct the monitor for φ w.r.t. ψ. Such a monitor
is obtained by first constructing the auxiliary deterministic finite automata Drφ,ψ

32

and Dr¬φ,ψ, and then building the product of these two automata. The output of
the monitor is determined by the final states of the auxiliary automata.

Theorem 4.12. Let φ and ψ be ALC-LTL-formulae. If Drφ,ψ = (S,Pφ, δ, s0, E)
and Dr¬φ,ψ = (S ′,Pφ, δ′, s′0, E

′) are the deterministic finite automata introduced in
Section 4.2, thenMφ,ψ := (S×S ′,Pφ, δ′′, (s0, s

′
0), {>,⊥, ?, }, λ) with δ′′((s, s′),K) :=

(δ(s,K), δ′(s′,K)) and

λ((s, s′)) :=


> if s ∈ E and s′ /∈ E ′

⊥ if s /∈ E and s′ ∈ E ′

? if s /∈ E and s′ /∈ E ′

 if s ∈ E and s′ ∈ E ′

is a monitor for φ w.r.t. ψ.

Proof. The theorem is an immediate consequence of the following facts:

• δ̂′′((s0, s
′
0),K) = (δ̂(s0,K), δ̂′(s′0,K));

• δ̂(s0,K) ∈ E iff K, ψ |≈∀ φ (by Lemma 4.11);

• δ̂′(s′0,K) ∈ E ′ iff K, ψ |≈∀ ¬φ (by Lemma 4.11);

and the definition of the monitoring function (Definition 4.4).

It remains to analyze the complexity of the construction. As shown in Section 4.2,
the size of the auxiliary deterministic finite automata Drφ,ψ and Dr¬φ,ψ is double-
exponential in the size of φ and ψ. Furthermore, they can be constructed in
double-exponential time. Hence, the size ofMφ,ψ is also double-exponential in
the size of φ and ψ, and it can be constructed in double-exponential time.

This double-exponential blow-up in the construction of the monitor cannot be
avoided, since Proposition 2.8 yields that such a blow-up is unavoidable even for
propositional LTL.

5 The Complexity of Liveness and Monitorabil-
ity in ALC-LTL

In this section, we extend the definitions and results about liveness and monitora-
bility from propositional LTL to ALC-LTL.

33

5.1 Deciding Liveness

First, we extend the notion of liveness from propositional LTL (see Definition 2.10)
to ALC-LTL and the presence of background knowledge.

Definition 5.1. Let φ and ψ be ALC-LTL-formulae. We say that φ expresses a
liveness property w.r.t. ψ if, for every finite sequence of partial types K ∈ (Pφ)∗
that has an extension w.r.t. ψ respecting rigid names, we have K, ψ |≈∃ φ.

Note that, in this definition, we restrict ourselves to finite sequences of partial
types that have an extension w.r.t. ψ respecting rigid names. In fact, these are
the sequences that we expect to see in practice since we assume that the system
satisfies ψ and respects rigid names.

As in the propositional case, liveness of φ w.r.t. ψ can be expressed using the
monitoring function.

Lemma 5.2. Let φ and ψ be ALC-LTL-formulae. Then φ expresses a liveness
property w.r.t. ψ iff mφ,ψ(K) 6= ⊥, for every K ∈ (Pφ)∗.

Proof. First, assume that φ expresses a liveness property w.r.t. ψ, and consider
K ∈ (Pφ)∗. If K does not have an extension w.r.t. ψ respecting rigid names,
then mφ,ψ(K) = 6= ⊥. Otherwise, the fact that φ expresses a liveness property
w.r.t. ψ implies that K, ψ |≈∃ φ. Consequently, we have K, ψ |6≈∀ ¬φ, which yields
mφ,ψ(K) 6= ⊥.

Second, assume that mφ,ψ(K) 6= ⊥, for every K ∈ (Pφ)∗. Consider a finite
sequence of partial types K ∈ (Pφ)∗ that has an extension w.r.t. ψ respecting rigid
names. The existence of this extension implies that mφ,ψ(K) 6= . Thus, we know
that mφ,ψ(K) ∈ {>, ?}. In both cases, K, ψ |6≈∀ ¬φ holds, which is equivalent, to
K, ψ |≈∃ φ.

Consequently, given a monitor for φ w.r.t. ψ, liveness of φ w.r.t. ψ can be tested by
checking reachability in the monitor, which yields an upper bound of 2-ExpTime.
The lower bound can be obtained by a reduction of unsatisfiability in ALC-LTL.

Theorem 5.3. The problem of deciding whether an ALC-LTL-formula φ expresses
a liveness property w.r.t. an ALC-LTL-formula ψ is 2-ExpTime-complete.

Proof. Regarding the upper bound, Lemma 5.2 implies that φ expresses a liveness
property w.r.t. ψ iff in the monitorMφ,ψ no state with output ⊥ is reachable from
the initial state. Since this monitor is of double-exponential size and reachability
can be decided in linear time in the size of the automaton, this yields the required
2-ExpTime upper bound.

To show the 2-ExpTime lower bound, we reduce the 2-ExpTime-complete
problem of unsatisfiability in ALC-LTL w.r.t. rigid names [BGL12] to the liveness

34

problem. To this purpose, consider an ALC-LTL-formula ψ. We prove that ψ is
unsatisfiable w.r.t. rigid names iff the ALC-LTL-formula φ := false expresses a
liveness property w.r.t. ψ.

In fact, if ψ is unsatisfiable w.r.t. rigid names, then there is no sequence K ∈ (Pφ)∗
such that K has extension w.r.t. ψ respecting rigid names. Consequently, the
condition in the definition of liveness quantifies over the empty set of sequences,
and is thus trivially true.

Conversely, if ψ is satisfiable, then there is some K ∈ (Pφ)∗ (e.g. the empty
sequence) that has an extension w.r.t. ψ respecting rigid names. But then
K, ψ |6≈∃ φ since φ is unsatisfiable. Hence, φ does not express a liveness property
w.r.t. ψ.

Note that our 2-ExpTime-hardness proof strongly depends on the presence of
background knowledge. Without background knowledge (i.e., in the case where
ψ = true), we can only show an ExpTime-hardness result by a reduction of
satisfiability in ALC-LTL without rigid names.

Proposition 5.4. The problem of deciding whether an ALC-LTL-formula φ
expresses a liveness property w.r.t. the ALC-LTL-formula true is ExpTime-hard.

Proof. Consider an ALC-LTL-formula φ that does not contain rigid names. We
prove that φ is satisfiable iff 3φ expresses a liveness property w.r.t. true. Since
satisfiability in ALC-LTL without rigid names is ExpTime-complete [BGL12],
this shows ExpTime-hardness of liveness w.r.t. true.

If φ is unsatisfiable, then obviously 3φ is unsatisfiable as well, and thus no
sequence of partial types can be extended to a model of 3φ. In addition, there is
a sequence of partial types (e.g., the empty sequence) that can be extended to a
model of true. Consequently, 3φ does not express a liveness property w.r.t. true.

Conversely, assume that φ is satisfiable, and let K = K0K1 . . .Kt−1 ∈ (Pφ)∗ be
a sequence of partial types. Satisfiability of φ yields a model I = (Ii)i≥0 of
φ. In addition, since partial types are by definition consistent, there are ALC-
interpretations I ′i (i = 0, 1, . . . , t− 1) such that I ′i |= Ki. It is easy to see that the
ALC-LTL-structure

J = (Ji)i≥0 with Ji = I ′i (i = 0, 1, . . . , t− 1) and Ji+t = Ii (i ≥ 0)

is a model of 3φ that extends K w.r.t. true, i.e., K, true |≈∃ φ. This shows that 3φ
expresses a liveness property w.r.t. true.

Unfortunately, the proof of this proposition does not go through in the presence of
rigid names. In fact, the ALC-LTL-structure J constructed there need not satisfy
rigid names.

35

5.2 Deciding Monitorability

We first extend the notion of monitorability from propositional LTL (see Defini-
tion 2.9) to ALC-LTL and the presence of background knowledge.

Definition 5.5. Let φ and ψ be ALC-LTL-formulae, and let K ∈ (Pφ)∗. We
say that φ is K-monitorable w.r.t. ψ if there is a finite word K′ ∈ (Pφ)∗ such
that mφ,ψ(K · K′) ∈ {>,⊥}. Moreover, we call φ monitorable w.r.t. ψ if it is
K-monitorable for every finite sequence of partial types K ∈ (Pφ)∗ that has an
extension w.r.t. ψ respecting rigid names.

Monitorability can thus be expressed using the monitoring function as follows: φ
is monitorable w.r.t. ψ iff for every finite sequence of partial types K ∈ (Pφ)∗ with
mφ,ψ(K) 6= there exists a finite sequence of partial types K′ ∈ (Pφ)∗ satisfying
mφ,ψ(K · K′) ∈ {>,⊥}. This can again be checked using reachability tests in the
monitor.

Lemma 5.6. The problem of deciding monitorability of an ALC-LTL-formula φ
w.r.t. an ALC-LTL-formula ψ is decidable in double-exponential time

Proof. To decide monitorability of φ w.r.t. ψ, we construct the monitorMφ,ψ. In
this monitor, we compute all the state with output different from that reachable
from the initial state. For each of these states we then check whether a state with
output > or ⊥ is reachable. If this is the case, then φ is monitorable w.r.t. ψ.
Otherwise, i.e., if there is a state reachable from the initial state such that every
state reachable from it has output ? or , then φ is not monitorable w.r.t. ψ.

Since the monitor can be constructed in double-exponential time and each of the
double-exponentially many reachability test requires at most double-exponential
time, this yields a 2-ExpTime procedure for deciding monitorability.

To show the matching lower bound, we again reduce the 2-ExpTime-complete
unsatisfiability problem in ALC-LTL w.r.t. rigid names. For monitoring, such a
reduction is possible even for the case without background knowledge.

Lemma 5.7. The problem of deciding monitorability of an ALC-LTL-formula φ
w.r.t. true is 2-ExpTime-hard.

Proof. Note that 2-ExpTime-hardness for the satisfiability problem in ALC-LTL
holds already for ALC-LTL-formulae without past operators [BGL12]. Thus, let
ψ be an ALC-LTL-formula without past operators. We define the ALC-LTL-
formula φ as φ := 3ψ ∧ 23A(a) where the (flexible) concept name A and the
individual name a do not occur in ψ. We prove that ψ is unsatisfiable iff φ is
monitorable w.r.t. true.

36

If ψ is unsatisfiable w.r.t. rigid names, then φ ≡ 3false ∧ 23A(a) ≡ false ∧
23A(a) ≡ false, i.e., φ is also unsatisfiable. Take now any K ∈ (Pφ)∗ that
has an extension w.r.t. true respecting rigid names. Since φ is unsatisfiable,
we have K, true |≈∀ ¬φ. Thus, Lemma 4.3 yields K, true |6≈∀ φ, which shows that
mφ,true(K) = ⊥. Consequently, φ is K-monitorable w.r.t. true (take K′ to be the
empty word). Since K was an arbitrary element of (Pφ)∗ that has an extension
w.r.t. true respecting rigid names, this shows that φ is monitorable w.r.t. true.

Conversely, if ψ is satisfiable w.r.t. rigid names, then there is a model I = (Ii)i≥0
of ψ that respects rigid names. We define

Ki :=
∧

α∈τψ(Ii)
α ∧

∧
α∈Ax(ψ)\τψ(Ii)

¬α

for every i ≥ 0. Obviously, Ii is a model of Ki, and thus Ki is a partial type, i.e.,
Ki ∈ Pφ for every i ≥ 0. Since there are only finitely many partial types, there
are finitely many partial types K′1, . . . ,K′k such that {K′1, . . . ,K′k} = {Ki | i ≥ 0}.
Then there is a surjective function ν : {i | i ≥ 0} → {1, . . . , k} such that
Ki = K′ν(i).

To show that φ is not monitorable w.r.t. true, we consider the finite sequence
of partial types K := K′1 . . .K′k. Since the function ν is surjective, any partial
type K′i in this sequence has at least one of the interpretation Ij as model, and
since I = (Ii)i≥0 respects rigid names, these models of K′1, . . . ,K′k share the same
domain and coincide on the individual names and the rigid concept and role names.
Consequently, the set {K′1, . . . ,K′k} is r-consistent. Obviously, this implies that K
has an extension w.r.t. true that respects rigid names.

To disprove monitorability of φ w.r.t. true, it is thus sufficient to show that φ
is not K-monitorable w.r.t. true. For this purpose, we take any finite sequence
K′ = K′′1 . . .K′′m ∈ (Pφ)∗ and show that mφ,true(K · K′) 6∈ {>,⊥}.

If K · K′ does not have an extension w.r.t. true (which can happen due to the
presence of rigid names), then K · K′, true |≈∀ φ and K · K′, true |≈∀ ¬φ, and thus
mφ,true(K · K′) = 6∈ {>,⊥} as required.

Otherwise, let J = (Ji)i≥0 be an extension of K · K′ w.r.t. true respecting rigid
names. We define a new ALC-LTL-structure J′ := (J ′i)i≥0 with

J ′i :=

Ji if 0 ≤ i ≤ k +m− 1; and
Jν(i−k−m) otherwise.

By definition, J′ coincides with with J on the first k +m structures, which shows
that it extends K · K′ w.r.t. true. In addition, it respects rigid names since it
consists of interpretations occurring in J, and J respects rigid names. Moreover,
since every K′i, 1 ≤ i ≤ k, contains complete information about the axioms in ψ,
we have that

τψ(I) = τψ(J ′k+m)τψ(J ′k+m+1)

37

By Lemma 3.8, his shows that (J ′k+m+i)ß≥0 is a model of ψ. Since ψ does not
contain past operators, This implies that J′ is a model of 3ψ. Since ψ does
not contain the concept name A and the individual name a, this is independent
on how A and a are interpreted. In addition, since A is flexible, changing its
interpretation does not change the fact that rigid names are respected.

Let now JA and J¬A be ALC-LTL-structures such that

1. JA and J¬A coincide for all points in time with J′ on the interpretation
domain as well as on the interpretation of all individual names, role names,
and concept names different from A,

2. JA and J¬A coincide with J′ for all points in time up to k +m− 1 also on
the interpretation of A,

3. In JA, the interpretation of A consists of the individual interpreting a at all
points in time strictly after k +m− 1,

4. In J¬A, the interpretation of A is empty at all points in time strictly after
k +m− 1.

Obviously, both JA and J¬A are models of 3ψ respecting rigid names and they
extend K · K′. However, only JA is also a model of 23A(a). Thus, JA is an
extension of K · K′ w.r.t. true respecting rigid names that satisfies φ, and J¬A
is an extension of K · K′ w.r.t. true respecting rigid names that satisfies ¬φ.
This shows that we have K · K′, true |6≈∀ φ and K · K′, true |6≈∀ ¬φ. Consequently,
mφ,true(K · K′) = ? 6∈ {>,⊥}, which finishes the proof that φ is not monitorable
w.r.t. true.

Putting the two previous lemmas together, we obtain the following theorem.

Theorem 5.8. The problem of deciding monitorability of an ALC-LTL-formula φ
w.r.t. an ALC-LTL-formula ψ is 2-ExpTime-complete. The lower bound of
2-ExpTime already holds for the special case where φ = true.

6 Conclusion

We have shown that known approaches to runtime verification in propositional
LTL [BLS06] can be extended to ALC-LTL and the case where states of the
observed system may be described in an incomplete way by ALC-ABoxes, and
some known properties of the system can be specified as background knowledge.
The complexity of the monitor construction is quite high (double exponential),
but this blowup already occurs in the propositional case and we have shown that
(in the worst case) it cannot be avoided. It should also be notes that the size

38

of the formula is usually quite small, whereas the system is monitored over a
long period of time. If we assume the size of the formula to be constant (an
assumption often made in model checking and runtime verification), then our
monitor works in time linear in the length of the observed prefix. The double
exponential complexity of the monitor construction is a worst-case complexity.
Minimization of the intermediate Büchi automata and the monitor may lead to
much smaller automata than the ones defined above. We have observed this
behaviour on several example formulae for which we constructed monitors.

One important topic for future research are extensions towards probabilistic
reasoning. Probabilities may come into our monitoring framework for a variety
of reasons. For example, sensors used to observe the system and generate the
ABoxes may be erroneous with some probability. Another interesting topic is the
integration of numerical sensor values. These values could, e.g., be represented
using Description Logics with so-called concrete domains [Lut03], which may,
however, cause computational problems even without a temporal component.

References

[AF00] Alessandro Artale and Enrico Franconi. A survey of temporal ex-
tensions of description logics. Annals of Mathematics and Artificial
Intelligence, 30(1–4):171–210, 2000.

[AF01] Alessandro Artale and Enrico Franconi. Temporal description logics.
In Michael Fisher, Dov Gabbay, and Lluís Vila, editors, Handbook of
Temporal Reasoning in Artificial Intelligence. 2001.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, 1985.

[Bau10] Andreas Bauer. Monitorability of ω-regular languages. Computing Re-
search Repository (CoRR) abs/1006.3638, Association for Computing
Machinery (ACM), 2010. http://arxiv.org/abs/1006.3638.

[BBL09] Franz Baader, Andreas Bauer, and Marcel Lippmann. Runtime
verification using a temporal description logic. In Silvio Ghilardi
and Roberto Sebastiani, editors, Proceedings of the 7th International
Symposium on Frontiers of Combining Systems (FroCoS 2009), volume
5749 of Lecture Notes in Computer Science, pages 149–164, Trento,
Italy, September 2009. Springer-Verlag.

[BGL08] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description
logic axioms. In Gerhard Brewka and Jérôme Lang, editors, Proceed-
ings of the 11th International Conference on Principles of Knowledge

39

Representation and Reasoning (KR 2008), pages 684–694, Los Altos,
2008. Morgan Kaufmann.

[BGL12] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description
logic axioms. ACM Transactions on Computational Logic, 13(3), 2012.
Extended version of [BGL08].

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, Cambridge, Massachusetts, USA, 2008.

[BLS06] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring
of real-time properties. In S. Arun-Kumar and Naveen Garg, editors,
Proceedings of the 26th International Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS
2006), volume 4337 of Lecture Notes in Computer Science, pages
260–272. Springer-Verlag, 2006.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Compar-
ing LTL semantics for runtime verification. Journal of Logic and
Computation, 20(3):651–674, 2010.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime
verification for LTL and TLTL. ACM Transactions on Software
Engineering and Methodology, 20(4):14, 2011.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[CM04] Séverine Colin and Leonardo Mariani. Run-time verification. In Man-
fred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors, Model-Based Testing of Reactive Sys-
tems, Advanced Lectures, volume 3472 of Lecture Notes in Computer
Science. Springer-Verlag, 2004.

[FFM09] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. Run-
time verification of safety-progress properties. In Saddek Bensalem
and Doron Peled, editors, Selected Papers of the 9th International
Workshop on Runtime Verification (RV 2009), volume 5779 of Lecture
Notes in Computer Science, pages 40–59. Springer-Verlag, 2009.

[GKWZ03] Dov Gabbay, Agnes Kurusz, Frank Wolter, and M. Zakharyaschev.
Many-dimensional Modal Logics: Theory and Applications. Elsevier,
2003.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata trans-
lation. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the 13th International Conference on Computer Aided

40

Verification (CAV 2001), volume 2102 of Lecture Notes in Computer
Science, pages 53–65, Paris, France, 2001. Springer-Verlag.

[GO03] Paul Gastin and Denis Oddoux. LTL with past and two-way very-
weak alternating automata. In Branislav Rovan and Peter Vojtás,
editors, Proceedings of the 28th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2003), volume 2747
of Lecture Notes in Computer Science, pages 439–448, Bratislava,
Slovakia, 2003. Springer-Verlag.

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.
On the temporal analysis of fairness. In Proceedings of the 7th ACM
Symposium on Principles of Programming Languages, pages 163–173,
1980.

[GPVW96] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper.
Simple on-the-fly automatic verification of linear temporal logic. In
Piotr Dembinski and Marek Sredniawa, editors, Proceedings of the
15th IFIP WG6.1 International Symposium on Protocol Specification,
Testing and Verification XV, pages 3–18, London, UK, 1996. Chapman
& Hall, Ltd.

[KR10] Orna Kupferman and Adin Rosenberg. The blowup in translating
LTL to deterministic automata. In Ron van der Meyden and Jan-
Georg Smaus, editors, Revised Selected and Invited Papers of the 6th
International Workshop on Model Checking and Artificial Intelligence
MoChArt 2010, volume 6572 of Lecture Notes in Computer Science,
pages 85–94. Springer-Verlag, 2010.

[KV01] Orna Kupferman and Moshe Y. Vardi. Model checking of safety
properties. Formal Methods in System Design, 19(3):291–314, 2001.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. Tem-
poral logic with forgettable past. In Proc. of the 17th Annual IEEE
Symp. on Logic in Computer Science (LICS’02), pages 383–392. IEEE
Computer Society Press, 2002.

[LPZ85] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of
the past. In Rohit Parikh, editor, Proceedings of the Conference on
Logic of Programs, volume 193 of Lecture Notes in Computer Science,
pages 196–218. Springer, 1985.

[Lut03] Carsten Lutz. Description logics with concrete domains—a survey.
In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael
Zakharyaschev, editors, Advances in Modal Logics Volume 4, pages
265–296. King’s College Publications, 2003.

41

[LWZ08] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. Temporal
description logics: A survey. In Stéphane Demri and Christian S.
Jensen, editors, Proceedings of the 15th International Symposium on
Temporal Representation and Reasoning (TIME 2008), pages 3–14.
IEEE Computer Society Press, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Science
(FOCS 1977), pages 46–57, Providence, Rhode Island, USA, 1977.
IEEE Computer Society Press.

[PZ06] Amir Pnueli and Aleksandr Zaks. PSL model checking and run-time
verification via testers. In Jayadev Misra, Tobias Nipkow, and Emil
Sekerinski, editors, Proceedings of the 14th International Symposium
on Formal Methods (FM 2006), volume 4085 of Lecture Notes in
Computer Science, pages 573–586, Hamilton, Canada, 2006. Springer-
Verlag.

[SC85] A. Prasad Sistla and Edmund M. Clarke. The complexity of propo-
sional linear temporal logics. Journal of the ACM, 32(3):733–749,
1985.

[SSS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept
descriptions with complements. Artificial Intelligence, 48(1):1–26,
1991.

[UNW01] Ulrich Ultes-Nitsche and Pierre Wolper. Checking properties within
fairness and behavior abstractions. Computing Research Reposi-
tory (CoRR) cs.LO/0101017, Association for Computing Machinery
(ACM), 2001. http://arxiv.org/abs/cs.LO/0101017.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite compu-
tations. Information and Computation, 155(1):1–37, 1994.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning
about infinite computation paths. In Proceedings of the 24th Annual
Symposium on Foundations of Computer Science (FOCS 1983), pages
185–194. IEEE Computer Society Press, 1983.

42

	Introduction
	The Propositional Temporal Logic LTL
	The Temporal DL ALC-LTL
	The DL ALC
	Syntax and Semantics of ALC-LTL
	Büchi Automata for the Case Without Rigid Names
	The Case With Rigid Names

	Monitoring ALC-LTL-formulae
	Basic Definitions
	An auxiliary deterministic automaton
	The Monitor Construction

	The Complexity of Liveness and Monitorability in ALC-LTL
	Deciding Liveness
	Deciding Monitorability

	Conclusion

