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Abstract

We introduce an extension of the lightweight Description Logic EL that

allows us to de�ne concepts in an approximate way. For this purpose, we use

a graded membership function, which for each individual and concept yields

a number in the interval [0, 1] expressing the degree to which the individual

belongs to the concept. Threshold concepts C∼t for ∼ ∈ {<,≤, >,≥} then
collect all the individuals that belong to C with degree ∼ t. We generalize

a well-known characterization of membership in EL concepts to construct a

speci�c graded membership function deg , and investigate the complexity of

reasoning in the Description Logic τEL(deg), which extends EL by thresh-

old concepts de�ned using deg . We also compare the instance problem for

threshold concepts of the form C>t in τEL(deg) with the relaxed instance

queries of Ecke et al.
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1 Introduction

Description logics (DLs) [2] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an ap-
plication domain in a structured and formally well-understood way. They allow
their users to de�ne the important notions of the domain as concepts by stating
necessary and su�cient conditions for an individual to belong to the concept.
These conditions can be atomic properties required for the individual (expressed
by concept names) or properties that refer to relationships with other individuals
and their properties (expressed as role restrictions). The expressivity of a partic-
ular DL is determined by what sort of properties can be required and how they
can be combined.

The DL EL, in which concepts can be built using concept names as well as the
concept constructors conjunction (u), existential restriction (∃r.C), and the top
concept (>), has drawn considerable attention in the last decade since, on the
one hand, important inference problems such as the subsumption problem are
polynomial in EL, even with respect to expressive terminological axioms [7]. On
the other hand, though quite inexpressive, EL can be used to de�ne biomedical
ontologies, such as the large medical ontology SNOMEDCT.1 In EL we can, for
example, de�ne the concept of a happy man as a male human that is healthy and
handsome, has a rich and intelligent wife, a son and a daughter, and a friend:

Human uMale u Healthy u Handsome u

∃spouse.(Rich u Intelligent u Female) u (1)

∃child.Male u ∃child.Female u ∃friend.>

For an individual to belong to this concept, all the stated properties need to
be satis�ed. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be su�cient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a di�erent gender. But still, not too many of the
properties should be violated.

In this paper, we introduce a DL extending EL that allows us to de�ne concepts in
such an approximate way. The main idea is to use a graded membership function,
which instead of a Boolean membership value 0 or 1 yields a membership degree
from the interval [0, 1]. We can then require a happy man to belong to the EL
concept (1) with degree at least .8. More generally, if C is an EL concept, then
the threshold concept C≥t for t ∈ [0, 1] collects all the individuals that belong to
C with degree at least t. In addition to such upper threshold concepts, we will
also consider lower threshold concepts C≤t and allow the use of strict inequalities
in both. For example, an unhappy man could be required to belong to the EL

1see http://www.ihtsdo.org/snomed-ct/
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concept (1) with a degree less than .2.

The use of membership degree functions with values in the interval [0, 1] may
remind the reader of fuzzy logics. However, there is no strong relationship be-
tween this work and the work on fuzzy DLs [6] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors (e.g., conjunction is interpreted
using an appropriate triangular norm). In our setting, we consider crisp inter-
pretations of concept and role names, and directly de�ne membership degrees for
complex concepts based on them. Second, we use membership degrees to obtain
new concept constructors, but the threshold concepts obtained by applying these
constructors are again crisp rather than fuzzy.

In the next section, we will formally introduce the DL EL, and then recall the
well-known characterization of element-hood in EL concepts via existence of ho-
momorphisms between EL description graphs (which can express both EL con-
cepts and interpretations in a graphical way). In Section 3, we then extend EL by
new threshold concept constructors, which are based on an arbitrary, but �xed
graded membership function. We will impose some minimal requirements on such
membership functions, and show the consequences that these conditions have for
our threshold logic. In Section 4, we then introduce a speci�c graded member-
ship function, which satis�es the requirements from the previous sections. Its
de�nition is a natural extension of the homomorphism characterization of crisp
membership in EL. Basically, an individual is punished (in the sense that its
membership degree is lowered) for each missing property in a uniform way. More
sophisticated versions of this function, which weigh the absence of di�erent prop-
erties in a di�erent way, may be useful in practice. However, they are easy to
de�ne and considering them would only add clutter, but no new insights, to our
investigation (in Section 5) of the computational properties of the threshold logic
obtained by using this function.

In Section 6 we compare our graded membership function with similarity measures
on EL concepts. In fact, from a technical point of view, the graded membership
function introduced in Section 4 is akin to the similarity measures for EL concepts
introduced in [16, 17], though only [17] directly draws its inspirations from the
homomorphism characterization of subsumption in EL. We show that a variant
of the relaxed instance query approach of [9] can be used to turn a similarity
measure into a graded membership function. It turns out that, applied to a
simple instance ./1 of the framework for constructing similarity measures in [16],
this approach actually yields our membership function deg . In addition, we can
show that the relaxed instance queries of [16] can be expressed as instance queries
w.r.t. threshold concepts of the form C>t. However, the new DL introduced in
this paper is considerably more expressive than just such threshold concepts since
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we also allow the use of comparison operators other than > in threshold concepts,
and the threshold concepts can be embedded in complex EL concepts.
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2 The Description Logic EL

We start by introducing the Description Logic EL. Starting with �nite sets of
concept names NC and role names NR, the set CEL of EL concept descriptions
is obtained by using the concept constructors conjunction (C u D), existential
restriction (∃r.C) and top (>), in the following way:

C ::= > | A | C u C | ∃r.C

where A ∈ NC, r ∈ NR and C ∈ CEL.

We denote the set of all sub-descriptions of the concept description C as sub(C).
In addition, the role-depth rd(C) of C is inductively de�ned as follows:

rd(>) = rd(A) := 0,

rd(C1 u C2) := max(rd(C1), rd(C2)),

rd(∃r.C) := rd(C) + 1.

An interpretation I = (∆I , .I) consists of a non-empty domain ∆I and an inter-
pretation function .I that assigns subsets of ∆I to each concept name and binary
relations over ∆I to each role name. The interpretation function .I is inductively
extended to concept descriptions in the usual way:

>I := ∆I

(C uD)I := CI ∩DI

(∃r.C)I := {x ∈ ∆I | ∃y.(x, y) ∈ rI ∧ y ∈ CI}

Given C,D ∈ CEL, we say that C is subsumed by D (denoted as C v D) i�
CI ⊆ DI for every interpretation I. These two concept descriptions are equivalent
(denoted as C ≡ D) i� C v D and D v C. Finally, C is satis�able i� CI 6= ∅
for some interpretation I.

Given two interpretations I and J , we say that I is contained in J (denoted
I ⊆ J ) i� ∆I ⊆ ∆J and XI ⊆ XJ for all X ∈ (NC ∪ NR).

Information about speci�c individuals can be expressed in an ABox. An ABox A
is a �nite set of assertions of the form C(a) or r(a, b), where C is an EL concept
description, r ∈ NR, and a, b are individual names. In addition to concept and
role names, an interpretation I now assigns domain elements aI to individual
names a. The assertion C(a) is satis�ed by I i� aI ∈ CI , and r(a, b) is satis�ed
by I i� (aI , bI) ∈ rI . The interpretation I is a model of A i� I satis�es all
assertion in A. The ABox A is consistent i� it has a model, and the individual
a is an instance of the concept C in A i� aI ∈ CI holds in all models of A. We
denote the set of individual names occurring in A as Ind(A).

Our de�nition of graded membership will be based on graphical representations of
concepts and interpretations, and on homomorphisms between such representa-
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tions. For this reason, we recall these notions together with the pertinent results.
They are all taken from [4, 14, 1].

De�nition 1 (EL description graphs). An EL description graph is a graph of
the form G = (VG, EG, `G) where:

• VG is a set of nodes.

• EG ⊆ VG × NR × VG is a set of edges labelled by role names,

• `G : VG → 2NC is a function that labels nodes with sets of concept names.

The empty label corresponds to the top-concept. In particular, an EL descrip-
tion tree T is a description graph that is a tree with a distinguished element
v0 representing its root. In [4], it was shown the correspondence that exists be-
tween EL concept descriptions and EL description trees, i.e., every EL concept
description C can be translated into a corresponding description tree TC and vice
versa. Furthermore, every interpretation I = (∆I , .I) can be translated into an
EL description graph GI = (VI , EI , `I) in the following way [1]:

• VI = ∆I ,

• EI = {(vrw) | (v, w) ∈ rI},

• `I(v) = {A | v ∈ AI} for all v ∈ VI .

The following example illustrates the relation between concept descriptions and
description trees, and interpretations and description graphs.

Example 2. The EL concept description

C := A u ∃r.(A uB u ∃r.>) u ∃r.A

yields the EL description tree TC depicted on the left-hand side in Figure 1. The
description graph on the right-hand side corresponds to the following interpreta-
tion:

• ∆I := {a1, a2, a3},

• AI := {a1, a2} and BI := {a2, a3},

• rI := {(a1, a2), (a2, a3), (a3, a1)}.

7



TC : v0 : {A}

v1 : {A,B}

v2 : {}

r

r

v3 : {A}

r

GI : a1 : {A}

a2 : {A,B}

a3 : {B}

r

r

r

Figure 1: EL-description graphs.

Next, we generalize homomorphisms between EL description trees [4] to arbitrary
graphs.

De�nition 3 (Homomorphisms on EL description graphs). Let G = (VG, EG, `G)
and H = (VH , EH , `H) be two EL description graphs. A mapping ϕ : VG → VH
is a homomorphism from G to H i� the following conditions are satis�ed:

1. `G(v) ⊆ `H(ϕ(v)) for all v ∈ VG, and

2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

This homomorphism is an isomorphism i� it is bijective, equality instead of just
inclusion holds in 1., and biimplication instead of just implication holds in 2.

In Example 2, the mapping ϕ with ϕ(vi) = ai+1 for i = 0, 1, 2 and ϕ(v3) = a2 is
a homomorphism. Homomorphisms between EL description trees can be used to
characterize subsumption in EL.

Theorem 4 ([4]). Let C,D be EL concept descriptions and TC , TD the corre-

sponding EL description trees. Then C v D i� there exists a homomorphism

from TD to TC that maps the root of TD to the root of TC.

The proof of this result can be easily adapted to obtain a similar characterization
of element-hood in EL, i.e., whether d ∈ CI for some d ∈ ∆I .

Theorem 5. Let I be an interpretation, d ∈ ∆I, and C an EL concept descrip-

tion. Then, d ∈ CI i� there exists a homomorphism ϕ from TC to GI such that

ϕ(v0) = d.

In Example 2, the existence of the homomorphism ϕ de�ned above thus shows
that a1 ∈ CI . Equivalence of EL concept descriptions can be characterized via
the existence of isomorphisms, but for this the concept descriptions �rst need to
be normalized by removing redundant existential restrictions. To be more pre-
cise, the reduced form of an EL concept description is obtained by applying the
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rewrite rule ∃r.C u ∃r.D −→ ∃r.C if C v D as long as possible. This rule is ap-
plied modulo associativity and commutativity of u, and not only on the top-level
conjunction of the description, but also under the scope of existential restric-
tions. Since every application of the rule decreases the size of the description, it
is easy to see that the reduced form can be computed in polynomial time. We say
that an EL concept description is reduced i� this rule does not apply to it. In our
Example 2, the reduced form of C is the reduced description Au∃r.(AuBu∃r.>).

Theorem 6 ([14]). Let C,D be EL concept descriptions, Cr, Dr their reduced

forms, and TCr , TDr the corresponding EL description trees. Then C ≡ D i�

there exists an isomorphism between TCr and TDr .
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3 The Logic τEL(m)

Our new logic will allow us to take an arbitrary EL concept C and turn it into
a threshold concept. To this end we introduce a family of constructors that are
based on the membership degree of individuals in C. For instance, the threshold
concept C>.8 represents the individuals that belong to C with degree > .8. The
semantics of the new threshold concepts depends on a (graded) membership func-
tion m. Given an interpretation I, this function takes a domain element d ∈ ∆I

and an EL concept C as input, and returns a value between 0 and 1, representing
the extent to which d belongs to C in I.

The choice of an appropriate membership function m is obviously crucial. In
Section 4 we will propose one speci�c such function deg , but we do not claim this
is the only reasonable way to de�ne such a function. Rather, the membership
function is a parameter in de�ning the logic. To highlight this dependency, we
call the logic τEL(m).

Nevertheless, membership functions are not arbitrary. There are two properties
we require such functions to satisfy:

De�nition 7. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ∆I × CEL → [0, 1] satisfying
the following conditions (for C,D ∈ CEL):

M1 : d ∈ CI ⇔ mI(d, C) = 1 for all d ∈ ∆I ,

M2 : C ≡ D ⇔ for all d ∈ ∆I : mI(d, C) = mI(d,D).

Property M1 requires that the value 1 is a distinguished value reserved for proper
containment in a concept. Property M2 requires equivalence invariance. It ex-
presses the intuition that the membership value should not depend on the syn-
tactic form of a concept, but only on its semantics. Note that the right to left
implication in M2 is already a consequence of M1 : if C 6≡ D, this would imply
that for some interpretation I and d ∈ ∆I , d ∈ CI and d 6∈ DI (or the opposite).
Then, byM1 we would have mI(d, C) = 1 and consequently mI(d,D) = 1, which
is a contradiction with d 6∈ DI and M1.

We now turn to the syntax of τEL(m). Given �nite sets of concept names NC

and role names NR, τEL(m) concept descriptions are de�ned as follows:

Ĉ ::= > | A | Ĉ u Ĉ | ∃r.Ĉ | E∼q

where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, q ∈ [0, 1] ∩ Q, E is an EL concept

description and Ĉ is a τEL(m) concept descriptions. Concepts of the form E∼q
are called threshold concepts and we denote as N̂E the set of all threshold concepts.

A τEL(m) ABox is an EL ABox that, in addition, allows assertions of the form

Ĉ(a). The de�nition of role-depth, given in Section 2 for EL concept descrip-
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tions, extends to τEL(m) concept descriptions by de�ning rd(E∼q) := 0 for each

threshold concept E∼q ∈ N̂E.

The semantics of the new threshold concepts is de�ned in the following way:

[E∼q]
I := {d ∈ ∆I | mI(d,E) ∼ q}.

The extension of .I to more complex concepts is de�ned as in EL by additionally
considering the underlying semantics of the newly introduced threshold concepts.

Requiring propertyM1 has the following consequences for the semantics of thresh-
old concepts.

Proposition 8. For every EL concept description E we have

E≥1 ≡ E and E<1 ≡ ¬E,

where the semantics of negation is de�ned as usual, i.e., [¬E]I := ∆I \ EI.

The second equivalence basically says that τEL(m) can express negation of EL
concept descriptions. This does not imply that τEL(m) is closed under negation
since the threshold constructors can only be applied to EL concept descriptions.
Thus, negation cannot be nested using these constructors. A formal proof that
τEL(deg) for the membership function deg introduced in the next section cannot
express full negation can be found in Section 4.1. However, atomic negation (i.e.,
negation applied to concept names) can obviously be expressed. Consequently,
unlike EL concept descriptions, not all τEL(m) concept descriptions are satis-
�able (i.e., can be interpreted by a non-empty set). A simple example is the
concept description A≥1 u A<1, which is equivalent to A u ¬A.

3.1 Description graphs and homomorphisms in τEL(m)

In this section we show that the characterization of membership in EL presented
in Section 2 can be extended to τEL(m). In addition, we will show that given an
ABox A and an interpretation I, the question �is I a model of A?� can also be
characterized by the existence of homomorphisms. For this, we �rst extend EL
description graphs to τEL(m) description graphs. This is done by allowing the
node labelling function to assign, in addition, threshold concepts as labels.

De�nition 9 (τEL(m) description graph). A τEL(m) description graph is a

graph of the form Ĝ = (VG, EG, ̂̀G) where:

• VG is a set of nodes,

• EG ⊆ VG × NR × VG is a set of edges labelled by role names, and

11



• ̂̀
G : VG → 2NC∪N̂E is a function that labels nodes with subsets of NC ∪ N̂E.

Like in EL (see De�nition 1), a τEL(m) description tree T̂ is a τEL(m) description
graph that is a tree with a distinguished element v0 representing its root. Then we
can establish a similar relationship between concept descriptions and description
trees in τEL(m), i.e., every τEL(m) concept description Ĉ can be translated into
a τEL(m) description tree TĈ and vice versa. The translation is the same as
in EL by considering, in addition, the concepts of the form E∼q. The following
example illustrates such a relationship.

Example 10. Let E be an EL concept description. The τEL(m) concept de-
scription

Ĉ := A u E>0.8 u ∃r.(A uB u E≤0.5 u ∃r.E<1) u ∃r.A

yields the τEL(m) description tree depicted on the left-hand side of Figure 2.
The EL description tree TC depicted in the right-hand side of Figure 2 represents
the EL description tree that results by ignoring the threshold concepts in the
labels of TĈ .

TĈ : v0 : {A,E>0.8}

v1 : {A,B,E≤0.5}

v2 : {E<1}

r

r

v3 : {A}

r

TC : v0 : {A}

v1 : {A,B}

v2 : {}

r

r

v3 : {A}

r

Figure 2: τEL(m) description trees.

If we consider an ABox the use of individual names and role assertions excludes
the possibility of representing it as a concept description in EL. Individuals in the
ABox may have no relation at all or it could also be the case that role assertions
enforce the existence of a cycle involving some of them. In fact, the translation of
concept descriptions into description trees in EL is adapted in [15] for an ABox
A into a description graph G(A).

We now lift the very same translation (see Section 3 in [15]) to ABoxes and
description graphs in τEL(m). Some of the notation used in [15] is slightly
changed for the sake of readability within this document.

De�nition 11 (ABoxes and τEL(m) description graphs). Let A be a τEL(m)

ABox. A is translated into a τEL(m) description graph Ĝ(A) in the following
way:

12



• For each a ∈ Ind(A) the τEL(m) description concept Ĉa is de�ned as:

Ĉa :=
l

D̂(a)∈A

D̂

If there exists no assertion of the form D̂(a) in A, then Ĉa := >.

• For each a ∈ Ind(A), let T̂ (a) = (Va, Ea, a, ̂̀a) be the τEL(m) description

tree corresponding to the concept Ĉa where a itself represents its root.
Without loss of generality let the sets Va with a ∈ Ind(A) be pairwise

disjoint. Then, Ĝ(A) = (VA, EA, ̂̀A) is de�ned as:

� VA :=
⋃
a∈Ind(A) Va,

� EA :=
⋃
a∈Ind(A)Ea ∪ {arb | r(a, b) ∈ A}, and

� ̂̀A(v) := ̂̀
a(v) for v ∈ Va.

The following example illustrates the previous de�nition.

Example 12. Let E be an EL concept description and A be the following ABox:

A := {A(a), B(a), E<1(b), (∃r.A)(d), r(a, b), r(b, c), s(c, a)}

the corresponding τEL(m) description graph Ĝ(A) is depicted in Figure 3.

Ĉa := A uB

Ĉb := E<1

Ĉc := >

Ĉd := ∃r.A

Ĝ(A): a : {A,B}

b : {E<1} c : {}

d : {}

v : {A}
r r

r

s

Figure 3: τEL(m) description graph associated to an ABox.

Using the notion of τEL(m) description graphs, we de�ne homomorphisms from
τEL(m) description graphs to the associated EL description graph of an inter-
pretation I. To di�erentiate these kinds of homomorphisms from the classical
ones, we name them τ -homomorphisms and use the greek letter φ (possibly with
subscripts) to denote them.

De�nition 13. Let Ĥ = (VH , EH , ̂̀H) be a τEL(deg) description graph and I
an interpretation. The mapping φ : VH → VI is a τ -homomorphism from Ĥ to
GI i�

13



1. φ is a homomorphism from Ĥ to GI according to De�nition 3, where thresh-
old concepts in labels are ignored, and

2. for all v ∈ VH : if E∼q ∈ ̂̀
H(v), then φ(v) ∈ [E∼q]

I .

We denote by dom(φ) the domain of φ, i.e., dom(φ) := VH . Furthermore, we
denote by img(φ) the image of the mapping φ, i.e., img(φ) := {φ(v) | v ∈ VH}.
Note that τ -homomorphisms are a generalization of the classical notion of homo-
morphism in EL from De�nition 3.

We now provide a characterization of element-hood for τEL(m) concept descrip-
tions. This characterization is based on the existence of a τ -homomorphism and
generalizes Lemma 5 from EL to τEL(m).

Theorem 14. Let Ĉ be a τEL(m) concept description and I = (∆I , .I) an

interpretation. The following statements are equivalent for all d ∈ ∆I:

1. d ∈ ĈI.

2. there exists a τ -homomorphism φ from TĈ to GI with φ(v0) = d.

Proof. The 1)→ 2) direction is shown by induction on the role-depth of Ĉ, while
the other direction is proved by induction on the number of nodes in TĈ . The
details of the proof are deferred to the Appendix.

Using this lemma we give a similar characterization for ABoxes and interpreta-
tions in τEL(m).

Theorem 15. Let A be a τEL(m) ABox and I = (∆I , .I) be an interpretation.

The following statements are equivalent:

1. I is a model of A.

2. there exists a τ -homomorphism φ from Ĝ(A) to GI such that φ(a) = aI for
all a ∈ Ind(A).

Proof. 1) → 2). Assume that I is a model of A. Then, it holds that aI ∈ D̂I for
each assertion of the form D̂(a) ∈ A. Therefore, by de�nition of Ĉa we obtain

that aI ∈ [Ĉa]
I . Now, by Theorem 14 and since a is the root of T̂ (a) we know that

there exists a τ -homomorphism φa from T̂ (a) to GI with φa(a) = aI . Further,
we have aIrbI ∈ EI for all r(a, b) ∈ A. Hence, since all the sets Va used to

build Ĝ(A) are pairwise disjoint, it is easy to verify that φ :=
⋃
a∈Ind(A) φa is a

τ -homomorphism from Ĝ(A) to GI such that φ(a) = aI for all a ∈ Ind(A).

2) → 1) Assume that statement 2) holds. We show that I is a model of A:

14



• r(a, b) ∈ A. By construction of Ĝ(A) we know that arb ∈ EA and since φ

is a homomorphism from Ĝ(A) to GI , we also have φ(a)rφ(b) ∈ EI . Then,
from φ(a) = aI we obtain aIrbI ∈ EI and therefore: (aI , bI) ∈ rI .

• D̂(a) ∈ A. By construction of Ĝ(A), one can see that the description graph

T̂ (a) is a sub-graph of the description graph Ĝ(A). Then, it is not di�cult

to see that φ is also a τ -homomorphism from T̂ (a) to GI with φ(a) = aI .

Then, the application of Theorem 14 yields aI ∈ [Ĉa]
I . Since D̂ is one of

the conjuncts in the de�nition of Ĉa, it follows that a
I ∈ D̂I .

3.2 Deciding the existence of a τ -homomorphism

If the interpretation I is �nite and the degree membership function m is com-
putable, then the existence of a τ -homomorphism can be decided. We provide
two algorithms which decide, under the previous conditions, the existence of a
τ -homomorphism according with the characterizations given in Theorems 14 and
15.

Our starting point is the polynomial time algorithm (Algorithm 1 below) in-
troduced in [4] to decide the existence of a homomorphism between two EL
description trees.

Algorithm 1 Homomorphisms between EL description trees.

Input: Two EL description trees T1 and T2.
Output: �yes�, if there exists a homomorphism from T1 to T2, �no�, otherwise.

1: Let T1 = (V1, E1, v0, `1) and T2 = (V2, E2, w0, `2). Further, let {v1, . . . , vn} be
a post-order sequence of V1, i.e., v1 is a leaf and vn = v0.

2: De�ne a labelling δ : V2 → P(V1) as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ V2.
4: for all 1 ≤ i ≤ n do

5: for all w ∈ V2 do
6: If `1(vi) ⊆ `2(w) and
7: for all virv ∈ E1 there is w

′ ∈ V2 such that
8: v ∈ δ(w′) and wrw′ ∈ E2

9: then δ(w) := δ(w) ∪ {vi}
10: end for

11: end for

12: If v0 ∈ δ(w0), then return �yes�, else return �no�.

In Theorem 14, membership in τEL(m) concept descriptions is characterized by
the existence of a τ -homomorphism from a τEL(m) description tree TĈ to GI . If
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I is �nite, then Algorithm 1 can be used to decide whether there exists a mapping
satisfying Condition 1 in De�nition 13. We only need to replace the last line by
v0 ∈ δ(w) for some w ∈ VI , since now T2 becomes GI which has no root. In order
to verify Condition 2 in De�nition 13, we then extend the test in line 6 to check
whether mI(w,E) ∼ q for each E∼q ∈ ̂̀

T
Ĉ

(vi). Algorithm 2 below, implements
this addition to Algorithm 1. Note that a simple modi�cation in line 12, namely
v0 ∈ δ(d), adapts the algorithm to answer the question of whether d ∈ ĈI for an
speci�c d ∈ ∆I .

Algorithm 2 τ -homomorphism from a τEL(m) description tree to GI .

Input: A τEL(m) description tree T̂ and a �nite interpretation I.
Output: �yes�, if there exists a τ -homomorphism from T̂ to GI , �no�, otherwise.

1: Let T̂ = (VT , ET , v0, ̂̀T ) and GI = (VI , EI , `I). Further, let {v1, . . . , vn} be a
post-order sequence of VT , i.e., v1 is a leaf and vn = v0.

2: De�ne a labelling δ : VI → P(VT ) as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ VI .
4: for all 1 ≤ i ≤ n do

5: for all w ∈ VI do
6: If `T (vi) ⊆ `I(w) and [ E∼q ∈ ̂̀

T (vi)⇒ mI(w,E) ∼ q] and
7: for all virv ∈ ET there is w′ ∈ VI such that
8: v ∈ δ(w′) and wrw′ ∈ EI
9: then δ(w) := δ(w) ∪ {vi}
10: end for

11: end for

12: If there exists w ∈ VI such that v0 ∈ δ(w), then return �yes�, else return �no�.

Regarding the complexity of Algorithm 2, the main di�erence with Algorithm 1 is
the computation of mI . Therefore, its complexity depends on how di�cult is to
compute the chosen mI . For instance, if mI can be computed in polynomial time
as for the membership function deg introduced in the next section, Algorithm 2
will run in polynomial time.

Algorithm 3 decides, given a �nite interpretation I and an ABox A, whether I
is a model of A. It is based on the characterization in Theorem 15 and uses
Algorithm 2. Note that the description graph Ĝ(A) associated to an ABox A
is not necessarily a tree. Therefore, �nding a τ -homomorphism from Ĝ(A) to
GI includes �nding a homomorphism between two graphs, which in general is
an NP-complete problem [12]. However, by De�nition 11, it can be seen that

Ĝ(A) has a particular form where cycles only involve nodes and edges in the
graph corresponding to the individual elements and role assertions, respectively,
occurring in A. Since Theorem 15 requires φ(a) = aI for all a ∈ Ind(A), the
wanted τ -homomorphism is partially �xed with respect to those elements. Then,
it su�ces to check whether the interpretation of the individual names satis�es
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the role assertions in A and a ∈ [Ĉa]
I (see De�nition 11), for all a ∈ Ind(A).

Algorithm 3 τ -homomorphisms for ABoxes and interpretations.

Input: An ABox A and a �nite interpretation I.
Output: �yes�, if there exists a τ -homomorphism φ from Ĝ(A) to GI with φ(a) =

aI , �no�, otherwise.

1: Let Ĝ(A) be as in De�nition 11 and GI = (VI , EI , `I).
2: for all r(a, b) ∈ A do

3: If aIrbI /∈ EI then
4: return �no�.
5: end for

6: for all a ∈ Ind(A) do

7: If aI /∈ [Ĉa]
I then {this can be checked using Algorithm 2}

8: return �no�.
9: end for

10: return �yes�.
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4 The membership function deg

To make things more concrete, we now introduce a speci�c membership function,
denoted deg . Given an interpretation I, an element d ∈ ∆I , and an EL concept
description C, this function is supposed to measure to which degree d satis�es
the conditions for membership expressed by C. To come up with such a measure,
we use the homomorphism characterization of membership (see Theorem 5) as
starting point. Basically, we consider all partial mappings from TC to GI that
map the root of TC to d and respect the edge structure of TC . For each of
these mappings we then calculate to which degree it satis�es the homomorphism
conditions, and take the degree of the best such mapping as the membership
degree degI(d, C).

TC :

v0 : {A,B}

v1 : {B1}

v3 : {B3}

r

v2 : {B2}

r

s

GI :

d : {A,C}

d2 : {B1}

d4 : {B3}

r

d5 : {}

r

s

d1 : {B1}

d3 : {}

r

s

Figure 4

Example 16. Figure 4 shows the EL description tree corresponding to the EL
concept description C := A u B u ∃s.(B1 u ∃r.B3 u ∃r.B2) and a fragment of an
interpretation graph GI . In addition, it depicts two mappings from VTC to VI .
The one represented by the dashed lines and a variation represented with the
dotted lines. None of them are a homomorphism from TC to GI in the sense of
De�nition 3 and moreover, since obviously d 6∈ CI , by Theorem 5 there exists no
such homomorphism.

To compute the membership value induced by an speci�c mapping, we count the
number of properties of v0 (say m), see how many of those does d in I actually
have (say n) and give n

m
as the membership degree value. In the example v0 has

three properties, e.g., A, B and the existence of an s-successor (represented by v1)
with certain properties. Interesting to see is that for both mappings, the selected
s-successor of d does not satisfy all the properties of v1. Should we just assume
that d does not have this last property and give 1

3
as the membership degree

value? Instead of that, we would like to compute a value that expresses to which
degree the s-successor of d (to which v1 is mapped to), satis�es the conditions for
membership expressed by the subtree of TC rooted at v1. This will be done using
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the very same idea recursively.

As mentioned before, we consider partial mappings rather than total ones since
one of the violations of properties demanded by C could be that a required role
successor does not exist at all.

TC : v0 : {A}

v1 : {B1}

v3 : {B3}

r3

r1

v2 : {B2}

r2

GI : d : {A}

d1 : {B1}

r1

d2 : {B2}

r2

Figure 5

Example 17. Consider the description tree TC and the fragment of I depicted in
Figure 5. Obviously, there exists no total mapping from TC to GI since neither d1
nor d2 have a successor. Thus, restricting to consider only total mappings would
give zero as the membership degree value of d in C. This is not desired, since just
like concept names may be missing and the membership value does not become
zero, also role successors (required by C) may be missing and the membership
degree not need to be zero.

To formalize this idea, we �rst de�ne the notion of partial tree-to-graph homo-

morphisms from description trees to description graphs. In this de�nition, the
node labels are ignored (they will be considered in the next step).

De�nition 18 (Partial tree-to-graph homomorphisms). Let T = (Vt, Et, `t, v0)
and G = (Vg, Eg, `g) be a description tree (with root v0) and a description graph,
respectively. A partial mapping h : Vt → Vg is a partial tree-to-graph homomor-

phism (ptgh) from T to G i� the following conditions are satis�ed:

1. dom(h) is a sub-tree of T with root v0, i.e., v0 ∈ dom(h) and if (v, r, w) ∈ Et
and w ∈ dom(h), then v ∈ dom(h);

2. for all edges (v, r, w) ∈ Et, w ∈ dom(h) implies (h(v), r, h(w)) ∈ Eg.

To abbreviate, from now on we will write ptgh(ptghs for the plural) instead of
partial tree-to-graph homomorphism.

In order to measure how far away from a homomorphism according to De�nition 3
such a ptgh is, we de�ne the notion of a weighted homomorphism between a �nite
EL description tree and an EL description graph.
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De�nition 19. Let T be a �nite EL description tree, G an EL description graph
and h : VT → VG a ptgh from T to G. We de�ne the weighted homomorphism
induced by h from T to G as a recursive function hw : dom(h)→ [0..1] as follows:

hw(v) :=

1 if |`T (v)|+ k∗(v) = 0

|`T (v)∩`G(h(v))|+
∑

1≤i≤k hw(vi)

|`T (v)|+k∗(v)
otherwise.

The elements used to de�ne hw have the following meaning. For a given v ∈
dom(h), k∗(v) denotes the number of successors of v in T , and v1, . . . , vk with
0 ≤ k ≤ k∗(v) are the children of v in T such that vi ∈ dom(h).

It is easy to see that hw is well-de�ned. In fact, T is a �nite tree, which ensures
that the recursive de�nition of hw is well-founded. In addition, the �rst case in
the de�nition ensures that division by zero is avoided. Using value 1 in this case
is justi�ed since then no property is required. In the second case, missing concept
names and missing successors decrease the weight of a node since then the required
name or successor contributes to the denominator, but not to the numerator.
Required successors that are there are only counted if they are successors for the
correct role, and then they do not contribute with value 1 to the numerator, but
only with their weight (i.e., the degree to which they match the requirements for
this successor).

When de�ning the value of the membership function degI(d, C), we do not use
the concept C directly, but rather its reduced from Cr. This will ensure that deg
satis�es property M2.

De�nition 20. Let I = (∆I , .I) be an interpretation, d an element of ∆I and C
an EL concept description with reduced form Cr. In addition, let H(TCr , GI , d)
be the set of all ptghs from TCr to GI with h(v0) = d. The set VI(d, Cr) of all
relevant values is de�ned as:

VI(d, Cr) := {q | hw(v0) = q and h ∈ H(TCr , GI , d}

Then we de�ne degI(d, C) := maxVI(d, Cr).

In case the interpretation I is in�nite, there may exist in�nitely many ptghs from
TCr to GI with h(v0) = d. Therefore, it is not immediately clear whether the
maximum in the above de�nition actually exists, and thus whether degI(d, C) is
well-de�ned. To prove that the maximum exists also for in�nite interpretations,
we show that the set VI(d, Cr) is actually a �nite set. For this purpose, we
introduce canonical interpretations induced by ptghs.

De�nition 21 (Canonical interpretation). Let I = (∆I , .I) be an interpretation,
C an EL concept description and h be a ptgh from TCr to GI . The canonical
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interpretation Ih induced by h is the one having the description tree TIh =
(VIh , EIh , v0, `Ih) with

VIh := dom(h),

EIh := {vrw ∈ ETCr | v, w ∈ dom(h)}
`Ih(v) := `TCr (v) ∩ `I(h(v)) for all v ∈ dom(h).

Remark 22. From the previous de�nition, one can see that TIh satis�es VIh ⊆
VTCr , EIh ⊆ ETCr , `Ih(v) ⊆ `TCr (v) and `Ih(v) ⊆ `I(h(v)) for all v ∈ dom(h).
Moreover, the construction of Ih veri�es that the mapping h is a homomorphism
from TIh to GI .

Lemma 23. Let I = (∆I , .I) be an interpretation, d ∈ ∆I and C an EL concept

description. The set VI(d, Cr) contains �nitely many elements.

Proof. Let IH be the set of all canonical interpretations induced by each h ∈
H(TCr , GI , d), i.e.,

IH := {Ih | h ∈ H(TCr , GI , d)}

Consider now the following set {(VIh , EIh , v0) | Ih ∈ IH}, i.e., the set of trees
corresponding to interpretations in IH without labels. From Remark 22 we have
that VIh ⊆ VTCr and |EIh| ≤ |ETCr |. Therefore, the previously de�ned set is
�nite. Since each interpretation Ih corresponds to one of these trees with the
addition of the labelling function and we assume that NC and NR are �nite, it
follows that IH must be a �nite set. Hence, there are only �nitely many di�erent
canonical interpretations induced by ptghs h ∈ H(TCr , GI , d).

Now, consider any h ∈ H(TCr , GI , d) and let iIh : dom(h) → VIh be a mapping
such that iIh(v) = v for all v ∈ dom(h). Note that iIh is well-de�ned by de�nition
of Ih and it is easy to see that it is a ptgh from TCr to TIh . Furthermore, let VIH
be the set:

VIH := {q | iIhw (v0) = q for all h ∈ H(TCr , GI , d)}

Since dom(h) ⊆ VTCr , there are �nitely many sets that could act as the source for
a mapping iIh . Moreover, IH is a �nite set of �nite interpretations. Hence, there
can only be �nitely many di�erent mappings iIh . Consequently, the set VIH must
be �nite. In addition, one can see that the following three properties hold:

• dom(iIh) = dom(h),

• `Ih(iIh(v)) = `TCr (v) ∩ `I(h(v)) for all v ∈ dom(h), and

• for all v, w ∈ dom(h): if vrw ∈ ETCr , then h(v)rh(w) ∈ EI and iIh(v)riIh(w) ∈
EIh .
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Then, from De�nition 19 it follows that hw(v0) = iIhw (v0). This means that for all
h ∈ H(TCr , GI , d) it is the case that hw(v0) ∈ VIH . Hence, VI(d, Cr) ⊆ VIH and
VI(d, Cr) is a �nite set.

Thus, maxVI(d, Cr) exists and degI(d, C) is well-de�ned.

Based on the proof of Lemma 23, we show that the value degI(d, C) is preserved
by the canonical interpretation corresponding to a ptgh h such that hw(v0) =
degI(d, C). To this end, we also use the following lemma (see the Appendix)
which shows that deg satis�es a monotonicity property with respect to two inter-
pretations I and J which are related by the existence of a homomorphism.

Lemma 24. Let I and J be two interpretations such that there exists a ho-

momorphism ϕ from GI to GJ . Then, for any individual d ∈ ∆I and any EL
concept description C it holds: degI(d, C) ≤ degJ (ϕ(d), C).

Lemma 25. Let I = (∆I , .I) be an interpretation, d be an individual of ∆I and
C an EL concept description. Let h be a ptgh from TCr to GI such that h(v0) = d
and hw(v0) = degI(d, Cr). In addition, let Ih be the canonical interpretation

induced by h. Then, degIh(v0, C) = degI(d, C).

Proof. Assume that degI(d, C) = q. From De�nition 20 we have:

degI(d, C) = maxVI(d, Cr) = degI(d, Cr) = q

In the proof of Lemma 23 we saw that iIh is a ptgh from TCr to TIh with i
Ih(v0) =

v0 and hw(v0) = iIhw (v0). Hence, degIh(v0, C
r) ≥ q. Remark 22 tells us that h

is a homomorphism from TIh to GI with h(v0) = d. Then, the application of
Lemma 24 yields:

degIh(v0, C
r) ≤ degI(d, Cr)

Therefore, degIh(v0, C
r) = q and consequently, De�nition 20 yields degIh(v0, C) =

q = degI(d, C).

If the interpretation I is �nite, degI(d, C) for d ∈ ∆I and an EL concept de-
scription C can actually be computed in polynomial time. The polynomial time
algorithm described below is inspired by the polynomial time algorithm for check-
ing the existence of a homomorphism between EL description trees [11, 4], and
similar to the algorithm for computing the similarity degree between EL concept
descriptions introduced in [17].
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Algorithm 4 Computation of degI .

Input: An EL concept description C, a �nite interpretation I and d ∈ ∆I .
Output: degI(d, C).

1: Let Cr be the reduced form of C, GI = (VI , EI , `I) and {v1, . . . , vn} be a
post-order sequence of VTCr where vn = v0.

2: The assignment S : VTCr × VI → [0..1] is computed as follows:
3: for all 1 ≤ i ≤ n do

4: if |`TCr (vi)|+ k∗(vi) = 0 then

5: S(vi, e) := 1 for all e ∈ ∆I

6: else

7: for all e ∈ VI do
8: c := |`TCr (vi) ∩ `I(e)|
9: for all virv ∈ ETCr do
10: c := c+ max{S(v, e′) | ere′ ∈ EI}
11: end for

12: S(vi, e) := c
|`TCr (vi)|+k

∗(vi)

13: end for

14: end if

15: end for

16: return S(v0, d).

Since the algorithm considers each pair of nodes (v, e) with v ∈ VTCr and e ∈ VI
only once, it is easy to see that it runs in polynomial time in the size of C and
I. The following lemma shows that Algorithm 4 computes the value of degI , i.e.,
degI(d, C) = S(v0, d) (see the Appendix).

Lemma 26. Let C be an EL concept description, I a �nite interpretation and

d ∈ ∆I. Then, Algorithm 4 terminates on input (C, I, d) and outputs degI(d, C),
i.e., S(v0, d) = degI(d, Cr).

Finally, it remains to show that deg satis�es the properties required for a mem-
bership function.

Proposition 27. The function deg satis�es the properties M1 and M2.

Proof. We �rst show that M1 is satis�ed by deg . Assume that d ∈ CI . Since
C is equivalent to its reduced form, we also have d ∈ [Cr]I . The application
of Theorem 5 yields that there exists a homomorphism ϕ from TCr to GI with
ϕ(v0) = d. Then it is easy to verify from De�nition 19 that ϕw(v0) = 1 and hence,
degI(d, Cr) = 1. Thus, degI(d, C) = 1. Conversely, assume that degI(C, d) =
1. This means that there exists a ptgh h from TCr to GI with h(v0) = d and
hw(v0) = 1. Similar as before, it is easy to see that h is homomorphism according
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to De�nition 3. The application of Theorem 5 yields d ∈ [Cr]I and consequently,
d ∈ CI .

We now turn into M2. As mentioned in Section 3, the right to left implication is
already a consequence ofM1, which we just proved to be satis�ed by deg . Assume
that C ≡ D, then by Theorem 6 there exists an isomorphism ψ between TCr and
TDr . Consider an arbitrary interpretation I and any element d of ∆I . We show
that degI(d, Cr) = degI(d,Dr), which obviously implies degI(d, C) = degI(d,D)
(see De�nition 20).

Let h be a ptgh h from TCr to GI with h(v0) = d and hw(v0) = maxVI(d, Cr).
Since ψ is an isomorphism, it is not hard to see that the composition h ◦ ψ is a
ptgh from TDr to GI , with (h◦ψ)(v0) = d and (h◦ψ)w(v0) = hw(v0). This means
that degI(d, Cr) ≤ degI(d,Dr). Since the same reasoning applies starting with
TDr , we thus have shown degI(d, Cr) = degI(d,Dr).

Note that the proof of M2 is based on the fact that we use the reduced form of
a concept description rather than the description itself. Otherwise, M2 would
not hold. For example, consider the concept description C := ∃r.Au ∃r.(AuB),
which is equivalent to its reduced form Cr = ∃r.(A u B). Let d be an individual
that has a single r-successor belonging to A, but not to B. Then using C instead
of Cr would yield membership degree 3

4
, whereas the use of Cr yields the degree

1
2
.

4.1 Some properties of τEL(deg)

We mentioned in Section 3 that, although τEL(m) can express negation of EL
concept descriptions, negation cannot be nested using the constructors of τEL(m).
We now formally prove that deg cannot express full negation by showing that it
cannot express the concept constructor ∀r.A. In addition, we highlight that
negated threshold concepts can be equivalently expressed by threshold concepts.

Let us start with the concept constructor ∀r.C, whose semantics is de�ned as
follows:

[∀r.C]I := {d ∈ ∆I | ∀e ∈ ∆I .((d, e) ∈ rI ⇒ e ∈ CI)}
We show, that there exists no τEL(deg) concept description equivalent to the
very simple concept description ∀r.A where A ∈ NC.

Lemma 28. In τEL(deg), there is no concept description Ĉ such that ∀r.A ≡ Ĉ,
where A ∈ NC.

Proof. Suppose we could �nd a τEL(deg) concept description Ĉ such that ∀r.A ≡
Ĉ. Then for each interpretation I we have [∀r.A]I = ĈI . Consider now the
interpretation I0 = ({d}, .I0) such that XI0 = ∅ for all X ∈ NC ∪ NR. It is

obvious that d ∈ [∀r.A]I0 and by assumption d ∈ ĈI0 .
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By Theorem 14 there exists a τ -homomorphism φ from TĈ to GI0 with φ(v0) = d.
Since d has no r-successors in ∆I0 nor it is an instance of any concept name, this
means that Ĉ must be of the following form:

E1
∼q1 u . . . u E

k
∼qk

where each Ei is an EL concept description. Note that, without loss of generality,
one can forget conjuncts of the form >. In addition, Ĉ = > is not possible since
∀r.A 6≡ >.

Let us now consider the interpretations I1 and I2 which have the description
graphs shown below.

I0 : d : {} I1 : d1 : {}

d3 : {}

I2 : d2 : {}

d4 : {A}

r r

Then, in addition to d ∈ [∀r.A]I0 , it is also the case that d2 ∈ [∀r.A]I2 . Since

Ĉ ≡ ∀r.A, we also have d2 ∈ ĈI2 . This implies that d ∈ [Ei
∼qi ]

I0 and d2 ∈ [Ei
∼qi ]

I2

for each conjunct Ei
∼qi in Ĉ. Furthermore, it is easy to see that Lemma 24 can

be applied to obtain for all Ei:

degI0(d,Ei) ≤ degI1(d1, E
i) ≤ degI2(d2, E

i)

Hence, it is immediate that d1 ∈ [Ei
∼qi ]

I1 for all Ei
∼qi in Ĉ, and consequently

d1 ∈ ĈI1 . But then, since we assumed ∀r.A ≡ Ĉ, we have d1 ∈ [∀r.A]I1 which is
a contradiction since obviously this is not the case.

Thus, we have shown that there is no τEL(deg) concept description Ĉ such that

Ĉ 6≡ ∀r.A.

This lemma immediately implies that full negation of arbitrary concept descrip-
tions cannot be expressed in τEL(deg). Otherwise, since ∀r.A ≡ ¬∃r.¬A, there
would be a τEL(deg) concept description D̂ such that D̂ ≡ ¬∃r.¬A contradict-
ing Lemma 28. Furthermore, since ∃r.¬A ≡ ∃r.A<1, this implies that neither
negation of τEL(deg) concept descriptions can be expressed.

Last, for any threshold concept E∼q, it is easy to verify that its negation ¬E∼q is
equivalent to the threshold concept Eγ(∼) q, where γ is the following mapping:

γ(<) :=≥ γ(≤) :=> γ(>) :=≤ γ(≥) :=<
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5 Reasoning

In this section we investigate the complexity of reasoning problems in τEL(deg).
We start with investigating the complexity of terminological reasoning (satis�a-
bility, subsumption), and then turn to assertional reasoning (consistency, instance
checking.)

5.1 Terminological reasoning

We start by recalling the two decision problems we will look at:

• Concept satis�ability : Let Ĉ be a τEL(deg) concept Ĉ. The concept Ĉ is

satis�able i� there exists an interpretation I such that ĈI 6= ∅.

• Subsumption: Let Ĉ and D̂ be two τEL(deg) concept descriptions. Ĉ is

subsumed by D̂ i� ĈI ⊆ D̂I for every interpretation I.

The size s(Ĉ) of a τEL(deg) concept description Ĉ is the number of occurrences

of symbols needed to write Ĉ.

In contrast to EL, where every concept description is satis�able, we have seen
in Section 3 that there are unsatis�able τEL(deg) concept descriptions, such as
A≥1uA<1. Thus, the satis�ability problem is non-trivial in τEL(deg). In fact, by
a simple reduction from the well-known NP-complete problem ALL-POS ONE-
IN-THREE 3SAT (see [12], page 259), we can show that testing τEL(deg) concept
descriptions for satis�ability is actually NP-hard.

De�nition 29 (ALL-POS ONE-IN-THREE 3SAT). Let U be a set of proposi-
tional variables and C = {C1, . . . , Cn} be a �nite set of propositional clauses over
U such that:

• Each clause in C is a set of literals over U which, in addition, contains
exactly three literals,

• Each clause in C is positive, i.e., no clause contains a negative literal.

ALL-POS ONE-IN-THREE 3SAT is the problem of deciding whether there exists
a truth assignment to the variables in U such that each clause in C has exactly
one true literal.

Now, we show how to build a concept description ĈC in τEL(deg) such that U
has a truth assignment where exactly one literal per clause in C is true if, and
only if, ĈC is satis�able. For each propositional variable u ∈ U we use a concept
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name Au. In addition, to each clause Ci = (ui1, ui2, ui3) in C we associate an

EL-concept description Di of the form Aui1 u Aui2 u Aui3 . Then the concept ĈC
is de�ned as follows:

ĈC :=
nl

i=1

(Di≤ 1
3
uDi≥ 1

3
)

The main idea underlying this reduction is that, for any three distinct concept
names Ai, Aj, Ak, an individual belongs to (AiuAj uAk)≤1/3u (AiuAj uAk)≥1/3
i� it belongs to exactly one of these three concepts.

Lemma 30. ĈC is satis�able i� there exists a truth assignment to the variables

in U such that each clause in C has exactly one true literal.

Proof. (⇒) Assume that ĈC is satis�able. Then, there exists an interpretation I
such that [ĈC]

I 6= ∅ and for some d ∈ ∆I it holds d ∈ [ĈC]
I . We construct an

assignment for U in the following way:

u = > i� d ∈ [Au]
I , for all u ∈ U

Now, let Ci = (ui1, ui2, ui3) be any clause in C. Since d ∈ [ĈC]
I , then d ∈ [Di≤ 1

3
]I

and d ∈ [Di≥ 1
3
]I . This means that degI(d,Di) = 1

3
and by de�nition of degI , d is

an instance of exactly one of the concepts Aui1 , Aui2 , Aui3 . Thus, only one literal
in Ci is assigned to >.

(⇐) We assume that there exists a truth assignment to the variables in U such
that exactly one literal is true for each clause in C. Then, we build a single-pointed
interpretation I = ({d}, .I) such that:

d ∈ [Au]
I i� u = >, for all u ∈ U

By the properties of U with respect to C, a similar reasoning as before yields
degI(d,Di) = 1

3
for all i (1 ≤ 1 ≤ n). Consequently, d ∈ [ĈC]

I and I satis�es

ĈC.

This also yields coNP-hardness for subsumption in τEL(deg) since unsatis�ability

can be reduced to subsumption: Ĉ is not satis�able i� Ĉ v A≥1 u A<1.

Lemma 31. In τEL(deg), satis�ability is NP-hard and subsumption is coNP-

hard.

To show an NP upper bound for satis�ability, we use the τ -homomorphism char-
acterization of membership in a τEL(deg) concept description shown in Section 3.
Using Theorem 14 we prove a bounded model property for τEL(deg) concept de-
scriptions.
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Lemma 32. Let Ĉ be a τEL(deg) concept description of size s(Ĉ). If Ĉ is

satis�able, then there exists an interpretation J such that ĈJ 6= ∅ and |∆J | ≤
s(Ĉ).

Proof. Since Ĉ is satis�able, there exists an interpretation I such that d ∈ ĈI
for some d ∈ ∆I . Therefore, there exists a τ -homomorphism φ from TĈ to GI
with φ(v0) = d (Theorem 14). The idea is to use φ and small fragments of I to
build J and a τ -homomorphism from TĈ to GJ , and then apply Theorem 14 to

Ĉ and J .

The interpretation J is built in two steps. We �rst use as base interpretation
I0, the one associated to the description tree TĈ , where we ignore the labels of
the form E∼q. It is easy to see that the identity mapping φid is a homomorphism
from TĈ to GI0 . However, this interpretation and homomorphism need not satisfy

Condition 2 of De�nition 13, i.e., v 6∈ [E∼q]
I0 for some v ∈ ∆I0 with E∼q ∈ ̂̀

T
Ĉ

(v).
To repair this we extend I0 to J by adding appropriate fragments of I.

More precisley, for a given node v in I0 such that E∼q ∈ ̂̀
T
Ĉ

(v) we know that

φ(v) ∈ [E∼q]
I , i.e., degI(φ(v), E) ∼ q. By Lemma 25 we do not need all of I

to obtain degI(φ(v), E) for v in J . It is su�cient to use the canonical inter-
pretation Ih induced by a ptgh h from TEr to GI such that h(w0) = φ(v) and
degI(φ(v), E) = hw(w0). Here, w0 is the root of TEr and we rename it as v for
the rest of the proof.

We denote Ih as IEv and the ptgh h which induces Ih as hEv . Let I be the family
of all interpretations IEv needed to repair the inconsistencies in I0, i.e.,

I := {IEv | v ∈ ∆I0 , E∼q ∈ ̂̀
T
Ĉ

(v) and v 6∈ [E∼q]
I0}

We assume each pair ∆I
E1
v and ∆I

E2
w , for IE1

v , IE2
w ∈ I, to be pairwise disjoint in

the following sense: if v 6= w they do not have any common element and only
share v if v = w. In addition, each set ∆I

E
v shares only the distinguished element

v with ∆I0 . Then, J is built in the following way:

• ∆J := ∆I0 ∪
⋃
K∈I ∆K,

• XJ := XI0 ∪
⋃
K∈IX

K for all X ∈ (NC ∪ NR).

We now show that Condition 2 of De�nition 13 is satis�ed by φid and J . Let
E∼q ∈ ̂̀

T
Ĉ

(v) for some v ∈ VT
Ĉ
. We distinguish two cases:

• ∼∈ {>,≥}. Suppose that v ∈ [E∼q]
I0 . Since I0 ⊆ J , this makes Lemma 24

to be applicable to I0,J and v. Then we have degI0(v, E) ≤ degJ (v, E) and
obviously v ∈ [E∼q]

J . Conversely, suppose that v 6∈ [E∼q]
I0 . The selection

of IEv to build J and the application of Lemma 25 yields:

degI
E
v (v, E) = degI(φ(v), E)
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This means that v ∈ [E∼q]
IEv , since φ(v) ∈ [E∼q]

I . Note, in addition, that
IEv ⊆ J . Then a second application of Lemma 24 yields v ∈ [E∼q]

J .

• ∼∈ {<,≤}. Since φ(v) ∈ [E∼q]
I , we intend to use again Lemma 24 with

respect to J and I. For this, we build a mapping ϕ from VJ to VI such
that ϕ(v) = φ(v) for all v ∈ ∆I0 , and show that it is a homomorphism from
GJ to GI .

ϕ := φ ∪
⋃
IEv ∈I

hEv

One can see that the mapping is de�ned for all d ∈ ∆J and since φ and
each hEv have VI as their image, ϕ is a mapping from VJ to VI . In addition,
by the disjointness assumptions made for the construction of ∆J and the
fact that φ(v) = hEv (v), we have that ϕ is unambiguous and ϕ(v) = φ(v)
for all v ∈ ∆I0 . We now show that it is a homomorphism in the sense of
De�nition 3:

� Let w ∈ ∆J , we either have w ∈ ∆I0 and

`J (w) = `I0(w) ∪
⋃
IEw∈I

`IEw (w)

or w ∈ ∆I
E
v for some IEv ∈ I and `J (w) = `IEv (w). Since φ is a

homomorphism from TĈ to GI , this means that `I0(w) ⊆ `I(φ(w)). In
addition, by Remark 22 we know that each hEv is also a homomorphism
from TIEv to GI . Therefore, `IEv (w) ⊆ `I(h

E
v (w)) for all IEv ∈ I and

w ∈ ∆I
E
v . Hence, the way ϕ is de�ned implies that `J (w) ⊆ `I(ϕ(w))

for all w ∈ ∆J .

� v1rv2 ∈ EJ . If v1, v2 ∈ ∆I0 , then φ implies that ϕ(v1)rϕ(v2) ∈ EI .
Otherwise, v1, v2 are part of the same interpretation IEv and the ho-
momorphism hEv implies that ϕ(v1)rϕ(v2) ∈ EI .

Consequently, ϕ is a homomorphism from GJ to GI with ϕ(v) = φ(v) for
all v ∈ ∆I0 . Then a further application of Lemma 24 with respect to I, J
and v yields v ∈ [E∼q]

J .

Thus, we have shown that φid is τ -homomorphism from TĈ to GJ . Since φid(v0) =

v0, the application of Theorem 14 yields v0 ∈ ĈJ .

To conclude, we look at the size of J . By construction of J we have:

|∆J | = |∆I0 |+
∑
K∈I

|∆K|

It is not hard to see that the size of I0 is bounded by the size of Ĉ (without
counting the threshold concepts). In addition, each occurrence of a threshold
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concept E∼q in Ĉ is considered at most once to build J . Finally, since the size of
the canonical interpretation IvE is bounded by the size of Er (see De�nition 21)
and the size of Er is obviously smaller than the size of E, we have |∆IvE | ≤ s(E∼q).

Thus, it is clear that |∆J | ≤ s(Ĉ).

This lemma yields a standard guess-and-check NP-algorithm to decide satis�abil-
ity of a concept Ĉ: the algorithm �rst guesses an interpretation J of size at most
s(Ĉ), and then it checks whether there exists a τ -homomorphism from TĈ to GJ .
To verify the existence of a τ -homomorphism it uses Algorithm 2 in Section 3.2.
Since deg can be computed in polynomial time (Section 4), Algorithm 2 checks
whether there exists a τ -homomorphism from TĈ to GJ in polynomial time with
respect to deg .

Remark 33. We would like to point out that the interpretation J constructed
in the previous lemma is tree-shaped, i.e., GJ is a tree. Since TĈ is a tree, it is
also the case for GI0 . In addition, by the disjointness assumptions applied on the
canonical interpretations which are used to extend I0 into J and since those are
also tree-shaped, it is clear that GJ is a tree.

A co-NP upper bound for subsumption cannot directly be obtained from the
fact that satis�ability is in NP. In fact, though we have Ĉ v D̂ i� Ĉ u ¬D̂ is
unsatis�able, this equivalence cannot be used directly since ¬D̂ need not be a
τEL(deg) concept description, as shown in Section 4.1. Nevertheless, we can
extend the ideas used in the proof of Lemma 32 to obtain a bounded model
property for satis�ability of concepts of the form Ĉ u ¬D̂.

Lemma 34. Let Ĉ and D̂ be τEL(deg) concept descriptions of respective sizes

s(Ĉ) and s(D̂). If Ĉ u ¬D̂ is satis�able, then there exists an interpretation J
such that ĈJ \ D̂J 6= ∅ and |∆J | ≤ s(Ĉ)× s(D̂).

Proof. Since Ĉu¬D̂ is satis�able there exists an interpretation I such that d ∈ ĈI
and d 6∈ D̂I for some d ∈ ∆I . We �rst apply the construction used in Lemma 32
to construct, with respect to I, an interpretation J0 such that ĈJ0 6= ∅ and
|∆J0| ≤ s(Ĉ). From Lemma 32 we know:

• GJ0 is a tree and v0 ∈ ĈJ0 .

• φ is a τ -homomorphism from TĈ to GI with φ(v0) = d.

• ϕ is a homomorphism from GJ0 to GI with ϕ(v) = φ(v) for all v ∈ VT
Ĉ
.

Since ϕ(v0) 6∈ D̂I , the idea is to use ϕ to extract from I the necessary information

to extend J0 into an interpretation J that falsi�es D̂ in v0, while keeping v0 ∈ ĈJ .
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For this we consider all the nodes in ∆J0 in a top-down manner, starting with
the root v0.

We compute a sequence of pairs (J0, S0)(J1, S1) . . . where each Ji is an inter-

pretation and each Si is a set of pairs of the form (v, F̂ ) where v ∈ ∆J0 and

F̂ is a τEL(deg) concept description. The initial pair (J0, S0) is de�ned as

(J0, {(v0, D̂)}). We make this construction such that ϕ(v) 6∈ F̂ I represents an

invariant for each pair (v, F̂ ) ∈ Si. This will then be used to show that v 6∈ F̂J
and hence, v0 6∈ D̂J .

Each pair (Ji, Si) (for i > 0) is computed from the pair (Ji−1, Si−1) as follows:

• We �rst compute an auxiliar set S∗i to decompose concepts F̂ of the form

F̂1 u . . .u F̂n. For each such concept F̂ we choose one concept F̂ ′ such that
F̂ ′ = F̂j for some j (1 ≤ j ≤ n) and ϕ(v) 6∈ [F̂j]

I . The set S∗i is de�ned as
follows:

S∗i := Si−1 ∪
⋃

(v,F̂ )∈Si−1

F̂=F̂1u...uF̂n

{(v, F̂ ′)}

• Then Si is obtained from S∗i as:

Si := {(w, F̂ ) | (v,∃r.F̂ ) ∈ S∗i , (v, w) ∈ rJ0 and w ∈ F̂J0}

• For each (v, E∼q) ∈ S∗i such that v ∈ [E∼q]
J0 we consider the interpretation

IEv (see the proof of Lemma 32) with hEv (w0) = ϕ(v). Let Ii be the following
set:

Ii := {IEv | (v, E∼q) ∈ S∗i and v ∈ [E∼q]
J0}

Using the same disjointness assumptions as in Lemma 32, we build Ji as
follows:

� ∆Ji := ∆Ji−1 ∪
⋃
K∈Ii ∆K,

� XJi := XJi−1 ∪
⋃
K∈Ii X

K for all X ∈ (NC ∪ NR).

Since GJ0 is a tree, this construction considers every node in ∆J0 only once in
the following sense. A node v does not occur in more than one set Si (i ≥ 0). In

addition, if (v, F̂ ) ∈ Si, there is no other pair (v,_) occurring in Si. This implies
that the construction terminates for some p where Sp = ∅. Moreover, one can

see that for each (v, F̂ ) ∈ Si the concept description F̂ is a sub-description of D̂.

Since |∆J0 | is bounded by s(Ĉ) and since at most one canonical interpretation is

added for each v ∈ ∆J0 (whose size is bounded by s(D̂)), we have that |∆Jp | ≤
s(Ĉ)× s(D̂).
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We now show that v0 ∈ ĈJp and v0 6∈ D̂Jp . Let us start with v0 ∈ ĈJp . Consider
the mapping ϕ∗ from VJp to VI :

ϕ∗ := ϕ ∪
p⋃
i=1

⋃
IEv ∈Ii

hEv

One can show that ϕ∗ is homomorphism from GJp to GI with ϕ∗(v) = φ(v)
for all v ∈ VT

Ĉ
. The proof uses the same arguments in Lemma 32 which show

that ϕ is a homomorphism from GJ to GI . The rest is to show that φid is a τ -
homomorphism from TĈ to GJp . Since J0 ⊆ Jp and we have the homomorphism
ϕ∗, we use the same idea in Lemma 32, that shows that φid is τ -homomorphism
from TĈ to J0. Finally, since φid is the identity mapping, we thus have v0 ∈ ĈJp .

Before going into the main details of why v0 6∈ D̂Jp , we make clear why the
invariant mentioned before is satis�ed along the construction of Jp:

(v, F̂ ) ∈ S∗i ⇒ ϕ(v) 6∈ F̂ I

Note that the initial pair (v0, D̂) satis�es it, since ϕ(v0) = d and d 6∈ D̂I . The new
pairs added when computing S∗i clearly satisfy the property. Finally, if ϕ(v) 6∈
[∃r.F̂ ]I , for any r-successor w of v the homomorphism makes (ϕ(v), ϕ(w)) ∈ rI
and consequently, ϕ(w) 6∈ F̂ I .

Now, to prove that v0 6∈ D̂Jp , we show the following more general claim.

Claim: If (v, F̂ ) ∈ S∗i (0 < i ≤ p), then v 6∈ F̂Jp

We show the claim by induction on the role-depth of F̂ . We will not explicitly
consider pairs where F̂ is of the form F̂1 u . . . u F̂n. Note that the computation
of S∗i from Si−1 and the fact that ϕ(v) 6∈ F̂ I , ensure that there exists always a

pair (v, F̂i) ∈ S∗i . In addition, F̂i will �t into one of the two cases treated below,

and v 6∈ [F̂i]
Jp implies v 6∈ F̂Jp .

Let (v, F̂ ) ∈ S∗i for some i (0 < i ≤ p):

• rd(F̂ ) = 0. Then F̂ could be of the form >, A ∈ NC or E∼q. Since ϕ(v) 6∈ F̂ I
the case F̂ = > could not happen, and since ϕ∗ is a homomorphism from
GJp to GI with ϕ

∗(v) = ϕ(v) for all v ∈ ∆J0 , we have v 6∈ AJp .

If F̂ is of the form E∼q, since ¬E∼q ≡ Eγ(∼)q (see Section 4.1) we know
that ϕ(v) ∈ [Eγ(∼)q]

I . We do a similar case distinction, as in the proof of
Lemma 32, with respect to whether γ(∼) is in {>,≥} or in {<,≤}. Note
that we have J0 ⊆ Jp and the homomorphism ϕ∗ from GJp to GI with
ϕ∗(v) = ϕ(v) for all v ∈ ∆J0 . Moreover, whenever v ∈ [E∼q]

J0 (equiva-
lently v 6∈ [Eγ(∼)q]

J0), the construction adds an interpretation IEv such that

degI
E
v (v, E) = degI(ϕ(v), E). Therefore, we will obtain v ∈ [Eγ(∼)q]

Jk and
consequently v 6∈ [E∼q]

Jk .
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• rd(F̂ ) > 0. Then F̂ is of the form ∃r.F̂ ′. Since each node is considered only
once in the construction, one can see that each direct r-successor of v in
GJp is a node in ∆J0 . Let w ∈ ∆J0 such that (v, w) ∈ rJ0 . We distinguish

two cases. If w ∈ [F̂ ′]J0 , then (w, F̂ ′) ∈ Si and consequently (w, F̂ ′) ∈ S∗i+1.

Since rd(F̂ ′) < rd(∃r.F̂ ′), the application of induction hypothesis yields

w 6∈ [F̂ ′]Jp .

Suppose now that w 6∈ [F̂ ′]J0 . Since GJ0 is a tree, this means that neither
w nor any of its successors in ∆J0 is considered in the construction of Jp.
Therefore, the reachable elements from w in Jp are exactly the same as

in J0. Assume that w ∈ [F̂ ′]Jp , then by Theorem 14 there exists a τ -
homomorphism φ′ from TF̂ to GJp with φ

′(w0) = w (w0 is the root of TF̂ ).
But then, it would also be a τ -homomorphism from TF̂ to GJ0 contradicting

w 6∈ [F̂ ′]J0 . Consequently w 6∈ [F̂ ′]Jp .

In conclusion, we have that for any w ∈ ∆Jp such that (v, w) ∈ rJp it is the
case that w 6∈ [F̂ ′]Jp . Hence, v 6∈ [∃r.F̂ ′]Jp .

Since (v0, D̂) ∈ S∗1 , we have shown that v0 6∈ D̂Jp . Overall we have [Ĉu¬D̂]Jp 6= ∅
and |∆|Jp ≤ s(Ĉ)× s(D̂). Thus, Jp is the interpretation J that satis�es our main
claim.

The lemma yields an obvious guess-and-check NP-algorithmn for non-subsumption,
which shows that subsumption is in co-NP. Like for the satis�ability problem,
the algorithm guesses an interpretation J of size s(Ĉ)× s(D̂), and then checks if

d ∈ ĈJ and d 6∈ D̂J for some element d ∈ ∆J . This can obviously be done, in
polynomial time, by using Algorithm 2.

Overall, we thus have shown:

Theorem 35. In τEL(deg), satis�ability is NP-complete and subsumption is

coNP-complete.

5.2 Assertional reasoning

In this section we consider the following two decision problems.

• ABox consistency: Let A be a τEL(deg) ABox. The ABox A is consistent
i� there exists an interpretation I which is a model of A (denoted I |= A).

• Instance checking: Let A be τEL(deg) ABox, Ĉ a τEL(deg) concept de-

scription and a an individual. The individual a is an instance of Ĉ in A
(denoted A |= Ĉ(a)) i� aI ∈ ĈI holds in all models of A.
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We de�ne the size s(A) of an ABox A as:

s(A) :=
∑

Ĉ(a)∈A
a∈Ind(A)

s(Ĉ) +
∑

r(a,b)∈A
a,b∈Ind(A)

1

Since satis�ability can obviously be reduced to consistency (Ĉ is satis�able i�

{Ĉ(a)} is consistent), and subsumption to the instance problem (Ĉ v D̂ i�

{Ĉ(a)} |= D̂(a)), the lower bounds shown above also hold for assertional reason-
ing.

Lemma 36. In τEL(deg), ABox consistency is NP-hard and instance checking

is coNP-hard.

Regarding upper bounds, we proceed in the same way as for concept satis�ability
and subsumption. We �rst show a bounded model property for consistent ABoxes,
which yields an NP-upper bound for ABox consistency. Then, similar to our
treatment of subsumption, this bounded model can then be used to obtain a
bounded model property for the complement of the instance problem (a is not

an instance of Ĉ in A). However, as we will show, the bound of the model has

the size of Ĉ in the exponent. For this reason, we obtain a coNP upper bound
for the instance problem only if we consider data complexity [8], where the size

of the query concept Ĉ is assumed to be constant.

The consistency problem can be tackled in a similar way as the satis�ability
problem. As we have shown in Section 3, based on the translation given in
[15], τEL(deg) ABoxes can be translated into τEL(deg) description graphs and
consistency can be characterized using τ -homomorphisms (see Theorem 15). We
use this characterization to prove an appropriate bounded model property with
a polynomial bound, in a similar way as the satis�ability problem.

Lemma 37. Let A be an ABox in τEL(deg) of size s(A). If A is consistent,

then there exists an interpretation J such that J |= A and |∆J | ≤ s(A).

Proof. Assume that A is consistent, then there exists an interpretation I such
that I |= A. Therefore, there exists a τ -homomorphism φ from Ĝ(A) to GI such
that φ(a) = aI for all a ∈ Ind(A) (Theorem 15).

We proceed in the same way as in Lemma 32. The base interpretation I0 is the
one having the description graph Ĝ(A), where we ignore the labels of the form

E∼q. Again, the identity mapping φid is a homomorphism from Ĝ(A) to GI0 , but
need not satisfy Condition 2 of De�nition 13. Then, we extend I0 into J using
the same procedure in Lemma 32. In addition, we also have a homomorphism ϕ
from GJ to GI with ϕ(v) = φ(v) for all v ∈ VA.
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Hence, the same arguments can be used to show that φid is a τ -homomorphism
from Ĝ(A) to GJ . If, in addition, we make aJ = a we then have φid(a) = aJ for
all a ∈ Ind(A), and the application of Theorem 15 yields J |= A.

From the construction of Ĝ(A) it is not di�cult to see that, like in Lemma 32, the
size of I0 is bounded by the size of A without counting the threshold concepts.
Furthermore, each threshold concept E∼q occurring in a concept assertion in A
is also used at most once to build J . Therefore, the same arguments given in
Lemma 32 yield |∆J | ≤ s(A).

Similar as for concept satis�ability, this lemma yields an NP-algorithm to decide
the consistency problem: �rst it guesses an interpretation J of size at most s(A).
Then, it checks (in polynomial time) using Algorithm 3 whether there exists a

τ -homomorphism φ from Ĝ(A) to GJ with φ(a) = aJ for all a ∈ Ind(A).

As mentioned before, we use this bounded model property to obtain a bounded
model property for non-instance, i.e., a is not an instance of Ĉ in A i� A ∪
{¬Ĉ(a)} is consistent. However, di�erent from the interpretation J0 used in the
construction of Lemma 34, the bounded model of an ABox obtained in Lemma 37
does not necessarily have a tree shape. This means that the procedure described
in Lemma 34 to construct J would consider nodes from ∆J0 more than one time.

Example 38. Let E be the EL concept description ∃r.A u ∃r.B. Consider the
following ABox A and τEL(deg) concept description Ĉ:

A := {r(a, a)} and Ĉ := ∃r . . . r︸ ︷︷ ︸
p

.E<1

Obviously a is not an instance of Ĉ in A. The single-pointed interpretation
I = ({d}, .I) with aI = d, (d, d) ∈ rI and d ∈ AI ∩ BI , is a model of A which

does not satisfy Ĉ(a).

Now, if we try to adapt the construction in Lemma 34, it would start with J0

as the bounded model of A obtained in Lemma 37, which is actually I with
d 6∈ AI ∪ BI . The di�erence is that since GJ0 is not a tree, although the same
procedure will still terminate, it will generate a sequence of sets S0, . . . , Sp+1 with
Si = {(d,∃r . . . r︸ ︷︷ ︸

p−i

.E<1)} for all i ≤ p and Sp+1 = ∅.

Since d ∈ [E<1]
J0 and ϕ(d) ∈ [E≥1]

I , J0 is extended by adding a canonical
interpretation which has the same description tree as E. This will ensure that
d 6∈ [E<1]

Jp , however, Jp introduces two new r-successors of d and as �asserted�
in Sp−1 it must also hold d 6∈ [∃r.E<1]

Jp , which is clearly not the case. To
repair this Sp−1 has to be analysed, in addition, with respect to the newly added
elements. Note that after �xing the problem for Sp−1, the same issue will arise
with respect to (d,∃rr.E<1) ∈ Sp−2 and so on. Therefore, whenever a node v
requires the addition of a canonical interpretation and has additional constraints
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(as just explained), the same idea needs to be recursively applied with respect to
its new successors and those constraints.

Finally, one can see in our example, that this recursive application of the pro-
cedure leads to a �nal model whose size is exponential in the size of Ĉ. This,
however, does not necessarily imply that this is the best bound we can hope for.
In fact, as mentioned above, I is a very small model satisfying A ∪ {¬Ĉ(a)},
but the procedure does not realize that d can be an instance of A and B in J0

without contradicting J0 |= A. We do not yet know whether there is a better

bound which applies to all possible combinations of A and Ĉ.

We use the intuition given in Example 38, to extend the idea in Lemma 34
to consistency of an ABox A ∪ {¬Ĉ(a)}. From now on, we will use ABoxes

that besides assertions of the form Ĉ(a) may also contain assertions of the form

¬Ĉ(a). In case we want to refer to an ABox strictly in τEL(deg) we will mention
it explicitely.

We now introduce a set of rules to transform an ABox A ∪ {¬Ĉ(a)} into an
equivalent ABox A′, with the purpose to unfold the necessary information to
falsify Ĉ(a) in a model of A, as it is done for Ĉ u ¬D̂ in the proof of Lemma 34.
They are, in addition, similar some of the pre-processing rules de�ned in [3, 13],
with the addition of speci�c rules to deal with the negation of threshold concepts.

De�nition 39 (pre-processing rules). Let A be an ABox. We de�ne the following
pre-processing rules:

• A →¬u A ∪ {¬D̂(a)}
if ¬Ĉ(a) ∈ A with Ĉ of the form Ĉ1u. . .uĈn, ¬Ĉi(a) 6∈ A for all i ∈ {1 . . . n}
and D̂ = Ĉi for some i ∈ {1 . . . n}.

• A →¬∃ A ∪ {¬D̂(b)}
if (¬∃r.D̂)(a) ∈ A, r(a, b) ∈ A and ¬D̂(b) 6∈ A.

• A →¬∼ A ∪ {Eγ(∼)q(a)}
if ¬E∼q(a) ∈ A and Eγ(∼)q(a) 6∈ A.

• A →¬A A ∪ {A<1(a)}
if A ∈ NC, ¬A(a) ∈ A and A<1(a) 6∈ A.

A pre-processing of A is an ABox A′ obtained by a sequence of rule applications
such that no further rule application is possible over A′. Note that if A is a
τEL(deg) ABox, the unique pre-processing of A is A. The last two rules are
motivated by the fact that ¬E∼q ≡ Eγ(∼q) and ¬A ≡ A<1 (see Section 4.1 and
Section 3).

One can see that no rule application introduces either a new individual or a new
role assertion. Therefore, we have the same set of individuals and role assertions
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in A and A′. In addition, each application of a rule introduces either an assertion
of the form ¬Ĉ(a), Eγ(∼)q(a) or A<1(a). In the �rst case, Ĉ is a sub-description

of some concept D̂ such that ¬D̂(b) is an assertion initially in A, whereas no
further rule is applicable to the other two cases. Hence, since A is �nite, we will
never have an in�nite sequence of rule applications. Finally, we can prove the
following proposition (see the Appendix).

Proposition 40. Let A be an ABox. Then, A is consistent i� there exists a

consistent pre-processing A′ of A.

As a direct consequence from the proof of the previous proposition we have the
following remark.

Remark 41. Let A be an ABox and I an interpretation. If I |= A, then there
exists a pre-processing A′ of A such that I |= A′.

We are now ready to show a bounded model property for consistent ABoxes of the
form A ∪ {¬Ĉ(a)}. Before going into the details it would be useful to introduce
some notation. An ABox which contains only one individual name and no role
assertions is called a single-element ABox. In addition, given an ABox A, the
ABox A(a) consists of all the concept assertions Ĉ(a) or ¬Ĉ(a) occurring in A.
Furthermore, A+ is de�ned as:

A+ :=
⋃

Ĉ(a)∈A
a∈Ind(A)

{Ĉ(a)} ∪
⋃

r(a,b)∈A
a,b∈Ind(A)

{r(a, b)}

and A− is de�ned as:
A− :=

⋃
¬Ĉ(a)∈A
a∈Ind(A)

{¬Ĉ(a)}

The idea is the following, for a consistent ABox A and an arbitrary interpretation
I satisfying A, we �rst consider a pre-processing A′ of A such that I |= A′. In
particular, we look at each of the ABoxes A′(a) for each a ∈ Ind(A). Even when
those contain assertions over negated concepts they are, nevertheless, simpler
than A in the sense that only contain one individual name and do not have
role assertions. We then show how to provide a model of bounded size for this
particular kind of ABox using the following lemma, whose proof is deferred to
the Appendix.

Lemma 42. Let A be a single-element ABox and I an interpretation such that

I |= A. In addition, let J be the bounded model of A+ obtained in Lemma 37.

Then, there exists a tree-shaped interpretation K such that:

1. K |= A,
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2. there exists a homomorphism ϕ from GK to GI such that ϕ(aK) = aI, and

3. |∆K| ≤ |∆J | × n, where:

n :=

{
1, if A− = ∅∏
¬Ĉ(a)∈A− s(Ĉ), otherwise.

The rest is to combine all those models into a model of A′ of bounded size. More
precisley we show that the disjoint union of all those models combined with the
role assertions in A gives the wanted model. This is formalize in the following
lemma (see the Appendix for its proof).

Lemma 43. Let A be an ABox and I an interpretation such that I |= A. In

addition, let A′ be a pre-processing of A such that I |= A′. For each a ∈ Ind(A),
let Ia be a tree-shaped interpretation such that:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(a
Ia) = aI.

Last, let J be the following interpretation:

• ∆J :=
⋃
a∈Ind(A) ∆Ia,

• AJ :=
⋃
a∈Ind(A)A

Ia for all A ∈ NC,

• rJ := {aIarbIb | r(a, b) ∈ A} ∪
⋃
a∈Ind(A) r

Ia for all r ∈ NR, and

• aJ := aIa, for all a ∈ Ind(A).

where the sets ∆Ia are pair-wise disjoint. Then, J |= A.

Using these two lemmas we obtain the bounded model property for consistent
ABoxes of the form A∪{¬Ĉ(a)}. Recall from Section 2 that sub(Ĉ) denotes the

set of sub-descriptions of a concept description Ĉ.

Lemma 44. Let A be an ABox in τEL(deg) of size s(A), Ĉ a τEL(deg) concept

description of size s(Ĉ) and a ∈ NI. If A ∪ {¬Ĉ(a)} is consistent, then there

exists an interpretation J such that:

1. J |= A ∪ {¬Ĉ(a)}, and

2. |∆J | ≤ s(A)× [s(Ĉ)]u, where u = |sub(Ĉ)|.
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Proof. Let I be an interpretation such that I |= A ∪ {¬Ĉ(a)}. By Remark 41

there exists a pre-processing A′ of A ∪ {¬Ĉ(a)} such that I |= A′. For each
a ∈ Ind(A) we apply Lemma 42 with respect to A′(a), to obtain a tree-shaped

interpretation Ia such that:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(a
Ia) = aI .

Then, we can apply Lemma 43 to obtain an interpretation J such that:

J |= A and ∆J =
⋃

a∈Ind(A)

∆Ia

We now look at the size of J . For each a ∈ Ind(A), let Ja be the bounded model
of A′+(a) obtained in Lemma 37. The construction of Ia in Lemma 42 yields:

|∆Ia| ≤ |∆Ja| ×
∏

¬D̂(a)∈A′−(a)

s(D̂) (1)

One can see that each assertion in A′+(a) is either of the form Ĉ(a) ∈ A(a) or
Eγ(∼)q, the latter case obtained by applying the rule→¬∼ or the rule→¬A. For the
rule →¬A, we consider A<1 as Eγ(∼)q, since it is obtained from ¬A and A ≡ A≥1.
In Lemma 36, the interpretation Ja is built starting with the interpretation I0
which have the description graph Ĝ(A′+(a)) (without threshold concepts), and
it is then extended by considering each occurrence of a threshold concept E∼q in

Ĝ(A′+(a)). Since the only assertions of the form Ĉ(a) in A′+(a) are from A(a),
one can easily see that |VA(a)| = |VA′+(a)|. Thus, we obtain:

|∆Ja | ≤ |VA(a)|+
∑

E∼q∈Ĝ(A(a))

s(E∼q) +
∑

Eγ(∼)q(a)6∈Ĝ(A(a))

s(Eγ(∼)q)

Note that the partial sum of the �rst two elements in the right-hande side of the
inequality is actually bounded by the size ofA(a). In addition, since s(Eγ(∼)q) > 1
we further have:

|∆Ja| ≤ s(A(a))×
∏

Eγ(∼)q(a)6∈Ĝ(A(a))

s(Eγ(∼)q) (2)

It is not hard to see that for each concept assertion ¬D̂(a) ∈ A′−(a), the concept

D̂ is a sub-description of Ĉ. In addition, for each Eγ(∼)q(a) 6∈ Ĝ(A(a)), the
threshold concept assertion Eγ(∼)q(a) is obtained after applying the rule →¬∼
(→¬A), to an assertion of the form ¬E∼q(a) (¬A(a)), with E∼q (A) being also a

sub-description of Ĉ. Thus, we combine inequalities (1) and (2) to obtain:

|∆Ia| ≤ s(A(a))× [s(Ĉ)]u
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Thus, since
∑

a∈Ind(A) s(A(a)) is obviously bounded by s(A), we �nally have:

|∆J | =
∑

a∈Ind(A)

|∆Ia | ≤

 ∑
a∈Ind(A)

s(A(a))

× [s(Ĉ)]u ≤ s(A)× [s(Ĉ)]u

Using this bounded model property, we can obtain a non-deterministic procedure
to decide consistency of an ABox of the form A ∪ {¬Ĉ(a)}:

1. Guess an interpretation J of size at most s(A)× [s(Ĉ)]u.

2. Check whether J |= A. Like for the consistency problem, this can be
done in polynomial time using Algorithm 3. If it is not the case, then the
algorithm answers �no� . Otherwise, it remains to verify whether aJ 6∈ ĈJ .

3. To verify aJ 6∈ ĈJ , by Theorem 14 it is enough to check that there ex-
ists no τ -homomorphism φ from TĈ to GJ with φ(v0) = aJ . This can
also be checked in polynomial time by using Algorithm 2 with respect to
deg . If there is no such τ -homomorphism the algorithm answers �yes� , and
�no�otherwise.

Now, if the size of Ĉ is considered as a constant, this algorithm becomes an NP-
procedure for consistency of A ∪ {¬Ĉ(a)} and consequently, a coNP-procedure
to decide instance checking with respect to data complexity. Altogether, we thus
have shown:

Theorem 45. In τEL(deg), consistencty is NP-complete, and instance checking

is coNP-complete w.r.t. data complexity.

The instance problem becomes simpler if we consider only EL ABoxes and positive
τEL(deg) concept descriptions, i.e., concept descriptions Ĉ that only contain
threshold concepts of the form E≥t or E>t. Basically, given an EL ABox, a

positive τEL(deg) concept description Ĉ, and an individual a, one considers the
interpretation I corresponding to the description graph of A, and then checks
whether there is a τ -homomorphism φ from TĈ to GI with φ(v0) = a. The
following lemma supports the previous idea.

Lemma 46. Let A be an EL ABox, a ∈ Ind(A) and Ĉ a positive τEL(deg)
concept description. Additionally, let IA be the interpretation corresponding to

the description graph G(A) with aIA = a for all a ∈ Ind(A). Then, the following

statements are equivalent:

1. A |= Ĉ(a), and
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2. a ∈ [Ĉ]IA.

Proof. (1 ⇒ 2) Assume that A |= Ĉ(a). Then, for every model I of A we have

aI ∈ [Ĉ]I . Since IA is obviously a model of A and aIA = a, this means that

a ∈ [Ĉ]IA .

(2 ⇒ 1) Assume that a ∈ [Ĉ]IA . The characterization for membership in
τEL(deg), given in Theorem 14, yields a τ -homomorphism φ from TĈ to G(A)
with φ(v0) = a. Now, consider any model I of A. The application of Theorem 15
yields the existence of a τ -homomorphism ϕ from G(A) to GI such that ϕ(a) = aI

for all a ∈ Ind(A). We then show that the mapping ϕ ◦ φ is a τ -homomorphism
from TĈ to GI :

• From φ we know that `T
Ĉ

(v) ⊆ `A(φ(v)), for all v ∈ VT
Ĉ
. Similarly, ϕ implies

that `A(a) ⊆ `I(ϕ(a)), for all a ∈ VA. Hence, `T
Ĉ

(v) ⊆ `I((ϕ ◦ φ)(v)), for
all v ∈ VT

Ĉ
. The edge preserving relation can be veri�ed in a similar way.

• Let v ∈ VT
Ĉ
and E∼q ∈ ̂̀

T
Ĉ

(v). Since φ is a τ -homomorphism, this means

that φ(v) ∈ [E∼q]
IA . Furthermore, the application of Lemma 24 to IA, J

and ϕ yields:
degIA(φ(v), E) ≤ degI(ϕ(φ(v)), E)

Then, since Ĉ is positive, this means that ∼ is either > or ≥. Consequently,
(ϕ ◦ φ)(v) ∈ [E∼q]

I .

Hence, ϕ ◦ φ is a τ -homomorphism from TĈ to GI . Since (ϕ ◦ φ)(v0) = aI , then

aI ∈ [Ĉ]I .

Overall, we have shown aI ∈ [Ĉ]I for all models I of A. Thus, A |= Ĉ(a).

Then, since IA is linear on the size of A, checking whether a ∈ [Ĉ]IA can be done

in polynomial time in the size of A and Ĉ by using Algorithm 2. Therefore, we
obtain the following proposition.

Proposition 47. For positive τEL(deg) concept descriptions and EL ABoxes,

the instance checking problem can be decided in polynomial time.
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6 Concept similarity and relaxed instance queries

In this section we compare our graded membership function with similarity mea-
sures on EL concept descriptions.

We �rst show how to use the relaxed instance query approach from [9] to turn a
concept similarity measure (CSM) ./ into a membership degree function m./.
Such a membership degree function, however, need not be well-de�ned. We
present two properties that when satis�ed by ./, are su�cient to obtain well-
de�nedness for m./. Additionally, we show that the relaxed instance queries from
[9] can be expressed as instance queries w.r.t. threshold concepts of the form C>t.

Next, we present the framework simi introduced in [16], which can be used to
de�ne a variety of CSMs. We further show that a particular instance ./1 of this
framework turns out to be equivalent to our membership degree function deg .

6.1 De�ning membership degree functions

In its most general form, a concept similarity measure (CSM) ./ is a function
that maps each pair of concepts C,D (of a given DL) to a value C ./ D ∈ [0, 1]
such that C ./ C = 1. Intuitively, the higher the value of C ./ D is, the more
similar the two concepts are supposed to be. Such measures can in principle be
de�ned for arbitrary DLs, but here we restrict the attention to CSMs between
EL concepts, i.e., a CSM is a mapping ./ : CEL × CEL → [0, 1].

Ecke et al. [9, 10] use CSMs to relax instance queries, i.e., instead of requiring
that an individual is an instance of the query concept, they only require that it
is an instance of a concept that is �similar enough� to the query concept.

De�nition 48 ([9, 10]). Let ./ be a CSM, A an EL ABox, and t ∈ [0, 1). The
individual a ∈ NI is a relaxed instance of the EL query concept Q w.r.t. A,
./, and the threshold t i� there exists an EL concept description X such that
Q ./ X > t and A |= X(a). The set of all individuals occurring in A that are
relaxed instances of Q w.r.t. A, ./, and t is denoted by Relax./t (Q,A).

We apply the same idea on the semantic level of an interpretation rather than
the ABox level to obtain graded membership functions from similarity measures.

De�nition 49. Let ./ be a CSM. Then, for each interpretation I, we de�ne the
function mI./ : ∆I × CEL → [0, 1] as

mI./(d, C) := max{C ./ D | D ∈ CEL and d ∈ DI}.

For an arbitrary CSM ./, the maximum in this de�nition need not exist since D
ranges over in�nitely many concept descriptions. However, two properties that
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are satis�ed by many similarity measures considered in the literature are su�cient
to obtain well-de�nedness for m./. The �rst is equivalence invariance:

• The CSM ./ is equivalence invariant i� C ≡ C ′ and D ≡ D′ implies
C ./ D = C ′ ./ D′ for all C,C ′, D,D′ ∈ CEL.

To formulate the second property, we need to recall that the role depth of an EL
concept description C is the maximal nesting of existential restrictions in C (see
Section 2 for the formal de�nition); equivalently, it is the height of the description
tree TC . The restriction Ck of C to role depth k is the concept description whose
description tree is obtained from TC by removing all the nodes (and edges leading
to them) whose distance from the root is larger than k. More formally,

Ck := Ck if Ck ∈ NC or Ck = >,
Ck := [C1]k u . . . u [Cn]k if C = C1 u . . . u Cn,

[∃r.C]k :=

{
> if k = 0,

∃r.[C]k−1 otherwise.

• The CSM ./ is role-depth bounded i� C ./ D = Ck ./ Dk for all C,D ∈ CEL
and any k that is larger than the minimal role depth of C,D.

Role-depth boundedness implies that, in De�nition 49, we can restrict the maxi-
mum computation to concepts D whose role depth is at most d+1, where d is the
role depth of C. Since it is well-known that, up to equivalence, CEL contains only
�nitely many concept descriptions of any �xed role depth (see Proposition 13 in
[5]), these two properties yield well-de�nedness for m./. For m./ to be a graded
membership function, it also needs to satisfy the properties M1 and M2. To ob-
tain these two properties for m./, we must require that ./ satis�es the following
additional property:

• The CSM ./ is equivalence closed i� the following equivalence holds:
C ≡ D i� C ./ D = 1.

Proposition 50. Let ./ be an equivalence invariant, role-depth bounded, and

equivalence closed CSM. Then m./ is a well-de�ned graded membership function.

Proof. Let I be an interpretation, d ∈ ∆I and C an EL concept description of
role-depth k. Since ./ is role-depth bounded, this means that mI./(d, C) can be
equivalently expressed as:

max{C ./ D | D ∈ CEL, d ∈ DI and rd(D) ≤ k + 1} (3)

Now, let D1 be an EL concept description such that d ∈ [D1]
I . Since ./ is

equivalence invariant, this means that for any other EL concept D2 such that
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D1 ≡ D2, the values C ./ D1 and C ./ D2 are the same. Therefore, since there
are �nitely many concepts in CEL of depth at most k + 1 (up to equivalence), it
follows that the maximum always exists.

Since ./ is equivalence closed, it easily follows that m./ satis�es property M1. As
mentioned in Section 3, the right to left implication in M2 already follows from
M1. The left to right direction is a consequence of the de�nition of m./ and the
fact that ./ is equivalence invariant. Hence, m./ satis�es property M2.

Thus, m./ is a well-de�ned graded membership function.

Consequently, an equivalence invariant, role-depth bounded, and equivalence
closed CSM ./ induces a DL τEL(m./). Moreover, as we show in the follow-
ing, computing instances of threshold concepts of the form Q>t in this logic
corresponds to answering relaxed instance queries w.r.t. ./.

Proposition 51. Let ./ be an equivalence invariant, role-depth bounded, and

equivalence closed CSM, A an EL ABox, and t ∈ [0, 1). Then

Relax./t (Q,A) = {a | A |= Q>t(a) and a occurs in A},
where the semantics of the threshold concept Q>t is de�ned as in τEL(m./).

Proof. (⇒) Let a ∈ Ind(A) such that a ∈ Relax./t (Q,A). Then, there exists an EL
concept description X such that A |= X(a) and Q ./ X > t. Since A |= X(a),
this means that for each interpretation J such that J |= A, it happens that
aJ ∈ XJ . Hence, by de�nition of m./ we have m

J
./(d,Q) > t for all models of A.

Thus, A |= Q>t(a).

(⇐) Conversely, assume that A |= Q>t(a). By de�nition of m./, we know that
for each model J of A there exists XJ such that aJ ∈ [XJ ]J and Q ./ XJ > t.
However, to guarantee that a ∈ Relax./t (Q,A), we need to show that there exists
one such concept which is common for all models of A.

To this end, consider the description graph G(A) induced by A. Additionally,
let IA denote the interpretation corresponding to G(A) such that aIA = a for all
a ∈ Ind(A). The following facts are easy consequences of Theorem 15:

• IA |= A, and

• for each J such that J |= A, there exists a homomorphism ϕJ from G(A)
to GJ with ϕ(a) = aJ for all a ∈ Ind(A).

Since IA |= A, this means that there exists an EL concept descriptionX such that
Q ./ X > t and aIA ∈ XIA . The membership characterization via homomorphism
in Theorem 5, yields the existence of a homomorphism ϕ1 from TX to G(A) with
ϕ1(v0) = a. Then, the composition ϕJ ◦ ϕ1 yields a similar homomorphism to
each model J of A, which implies aJ ∈ XJ . Therefore, A |= X(a) and thus,
a ∈ Relax./t (Q,A).
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6.2 Relation to the membership degree function deg

Lehman and Turhan [16] introduced a framework (called simi framework) that
can be used to de�ne a variety of similarity measures between EL concepts satis-
fying the properties required by our Propositions 50 and 51. They �rst de�ne a
directional measure simid and then use a fuzzy connector ⊗ to combine the val-
ues obtained by comparing the concepts in both directions with this directional
measure. Given two EL concepts C and D, one could say that simi uses simid
to measure how many properties of C are present in D and vice versa. Then, the
bidirectional similarity measure simi is de�ned as:

simi(C,D) := simid(C
r, Dr)⊗ simid(Dr, Cr)

Regarding the fuzzy connector, it is an operator ⊗ : [0, 1]×[0, 1]→ [0, 1] satisfying
certain properties (see [16]). Examples are the average operator and t-norms. The
general de�nition of simi can be found in [16]. Here, we consider only one instance
of this framework and show that the similarity measure obtained this way induces
our graded membership function deg .

De�nition 52 ([16]). Let C,D be two EL concept descriptions. If one of these
two concepts is equivalent to >, then we de�ne simid(>, D) := 1 for all D and
simid(D,>) := 0 for D 6≡ >. Otherwise, let top(C), top(D) respectively be the
set of concept names and existential restrictions in the top-level conjunction of
C,D. We de�ne

simid(C,D) :=

∑
C′∈top(C)

max{simia(C
′, D′) | D′ ∈ top(D)}

|top(C)|
, where

simia(A,A) := 1, simia(A,B) := 0 for A,B ∈ NC, A 6= B,

simia(∃r.E,A) := simia(A, ∃r.E) := 0 for A ∈ NC,

simia(∃r.E, ∃r.F ) := simid(E,F ), simia(∃r.E, ∃s.F ) := 0 for r, s ∈ NR, r 6= s.

The bidirectional similarity measure ./1 is then de�ned as

C ./1 D := min{simid(C
r, Dr), simid(D

r, Cr)}.

In [16], several properties for simid are shown. Among them, the following will
be useful later on to obtain our results.

simid(C,D) = 1 i� D v C (4)

It is easy to show that ./1 is equivalence invariant, role-depth bounded, and
equivalence closed. Equivalence closed follows from [16], since it is shown that
this is the case for any instance of simi . Looking at the de�nition of simid it is
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not hard to see that ./1 is also role-depth bounded. Finally, note that equivalence
invariance depends on the fact that we apply simid to the reduced forms of C, D.
Since ./1 satis�es the properties required by Proposition 50, it induces a graded
membership function m./1 . From now one we will refer to simid, in the context
of m./1 , as ./

1
d.

To show thatm./1 coincides with deg , some intermediate results need to be shown.
We start by showing the following relation between the directional measure ./1d
and deg .

Lemma 53. Let X be an EL concept description and IX be the interpretation

corresponding to the EL description tree TX . Then, for each EL concept descrip-

tion C, it holds:
Cr ./1d X = degIX (d0, C)

where d0 is the domain element corresponding to the root of TX .

Proof. We prove the claim by induction on the structure of C.

Induction Base. C ∈ NC or C = >. Then, C = Cr. If Cr is of the form A, then
A ./1d X = 1 when A ∈ top(X) and 0 otherwise. A similar relationship holds
for degIX (d0, A), but with respect to whether d0 ∈ AIX . Since A ∈ top(X) i�
d0 ∈ AIX , this means that A ./1d X = degIX (d0, A). The case for > is trivial,
since > ./1d X = degIX (d0,>) = 1.

Induction Step. We distinguish two cases:

• C is of the form ∃r.D. Then, Cr is of the form ∃r.Dr. By de�nition of ./1d
and deg , it is easy to see that whenever X does not have a top-level atom
of the form ∃r.X ′, it is the case that:

∃r.Dr ./1d X = degIX (d0,∃r.D) = 0

Hence, without loss of generality, we focus on the cases where there exists
at least one top-level atom in X of the form ∃r.X ′. Consequently, since
|top(∃r.Dr)| = 1, we have:

∃r.Dr ./1d X = max{Dr ./1d X
′ | ∃r.X ′ ∈ top(X)} (5)

Since IX is induced by TX , then for each atom ∃r.X ′ ∈ top(X) there exists
a corresponding domain element e ∈ ∆IX such that (d0, e) ∈ rIX . This
correspondence also holds in the opposite direction. Moreover, it is easy to
see that the tree rooted at e in TX corresponds to the EL description tree
TX′ . Hence, the application of induction hypothesis to D yields:

Dr ./1d X
′ = degIX (e,D), for all ∃r.X ′ ∈ top(X)
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Therefore, it follows from Equation 5:

∃r.Dr ./1d X = max{degIX (e,D) | (d0, e) ∈ rIX} (6)

Now, let T∃r.Dr be the corresponding EL description tree of ∃r.Dr and v0 its
root. Obviously, there exists exactly one r-successor v1 of v0 in T∃r.Dr and
moreover, the subtree of T∃r.Dr rooted at v1 is exactly the EL description
tree TDr associated to Dr. Consider, then, the set H(T∃r.Dr , GIX , d0). By
De�nition 20 we have:

degIX (d0,∃r.D) = max{hw(v0) | h ∈ H(T∃r.Dr , GIX , d0)} (7)

Now, let h be any ptgh in H(T∃r.Dr , GIX , d0) with h(v1) = e, for some
e ∈ ∆IX such that (d0, e) ∈ rIX . We know that there exists at least one
and any ptgh h′ of a di�erent form will not be interesting, since h′w(v0) = 0.
By de�nition of hw (De�nition 19), it follows that hw(v0) = hw(v1). Addi-
tionally, for any ptgh h ∈ H(T∃r.Dr , GIX , d0) with h(v1) = e, its restriction
to (VT∃r.Dr \ {v0}) is a ptgh in H(TDr , GIX , e). Conversely, any ptgh g in
H(TDr , GIX , e) can be extended to a ptgh in H(T∃r.Dr , GIX , d0), by de�ning
g(v0) = d0. Hence, Equation 7 can be transformed into:

degIX (d0,∃r.D) = max
(d0,e)∈rIX

{gw(v1) | g ∈ H(TDr , GIX , e)}

Finally, since for each e ∈ ∆IX there exists a ptgh g ∈ H(TDr , GIX , e) such
that degIX (e,D) = gw(v1) and gw(v1) gives the maximum value, we further
obtain the following equation:

degIX (d0,∃r.D) = max{degIX (e,D) | (d0, e) ∈ rIX} (8)

Thus, the combination of Equations 6 and 8 yields

∃r.Dr ./1d X = degIX (d0,∃r.D)

• C is of the form C1 u . . . u Ck. Then, its reduced form Cr is of the form
D1 u . . . u Dn, where 1 ≤ n ≤ k and each Dj is the reduced form [Ci]

r of
some conjunct Ci. Now, it is easy to see from the de�nition of ./1d, that
Cr ./1d X can be equivalently expressed as:

Cr ./1d X =

n∑
j=1

(Dj ./
1
d X)

n
(9)

Furthermore, though more involved, it is not hard to see from the de�nitions
of deg and hw, that a similar situation occurs with respect to deg :

degIX (d0, C
r) =

n∑
j=1

degIX (d0, Dj)

n
(10)
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Then, for each Dj one can apply induction hypothesis to the atom Ci that
has [Ci]

r = Dj to obtain Dj ./
1
d X = degIX (d0, Ci). Since deg is equivalence

invariant (in the sense of propertyM2 ), we haveDj ./
1
d X = degIX (d0, Ci) =

degIX (d0, Dj). Hence, the combination of Equations 9 and 10 yields Cr ./1d
X = degIX (d0, C).

The following lemma is an easy consequence of Lemma 53 and the properties of
deg . It tells us that for ./1d it does not make a di�erence to consider the concept
on the right hand side in reduced form.

Lemma 54. Let C,X1 and X2 be EL concept descriptions such that X1 ≡ X2.

Then,

Cr ./1d X1 = Cr ./1d X2

Proof. From Lemma 53 we have:

Cr ./1d X1 = degIX1 (d01, C) and Cr ./1d X2 = degIX2 (d02, C)

Since X1 ≡ X2, this means that X1 v X2 and X2 v X1. Therefore, by the
characterization of subsumption from Theorem 4, there are homomorphisms ϕ1

and ϕ2 from TX1 to TX2 and vice versa, such that ϕ1(d01) = d02 and ϕ2(d02) = d01,
respectively. Based on this, a double application of Lemma 24 yields:

degIX1 (d01, C) ≤ degIX2 (d02, C) ≤ degIX1 (d01, C)

Thus, Cr ./1d X1 = Cr ./1d X2.

Lemma 53 tells us in a certain way, that given an interpretation I the maximal
value for Cr ./1d X among those X such that d ∈ XI , is the same as degI(d, C).
However, to show that m./1 is equivalent to deg , one must not forget that ./1d is
used in both directions to compute mI./1(d, C). The following example gives the
intuition of why the value Xr ./1d C

r can be ignored.

Example 55. Consider the EL concept description C := A1 u A2 u ∃r.A1 and
the interpretation I:

• ∆I := {d0, d1, d2},

• AI1 := {d0, d1}, AI2 := {d2} and AI3 := {d0},

• rI := {(d0, d1)} and sI := {(d0, d2)}.
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One can see that TC consists of two nodes v0 and v1 and the edge v0rv1. Then,
regarding the computation of degI(d0, C), the best mapping ϕ from TC to GI
with ϕ(v0) = d0 is the one having ϕ(v1) = d1. This yields deg

I(d0, C) = 2/3.

Now, let us see what happens with m./1 . Clearly, for the concept description
X := A1 u A2 u ∃r.A1 u ∃s.A2, it holds d0 ∈ XI . Note that IX = I, therefore
as a consequence of Lemmas 53 and 54 we have Cr ./1d Xr = Cr ./1d X =
degI(d0, C). However, to compute mI./1(d0, C), the opposite direction when using
./1d also counts. In particular, Xr ./1d C

r = 1/2 and then, C ./1 X = Xr ./1d C
r =

1/2.

In contrast, the concept Y := A1 u ∃r.A1 also has d0 as an instance under I, it
keeps the value Cr ./1d Y = 2/3 and more important: since Y v C, by property 4
it holds that Y ./1d C = 1. This implies that C ./1 Y = Cr ./1d Y

r = 2/3. Hence,
by de�nition of m./1 , Y is preferred over X to obtain the value of mI./1(d, C) and
the value Cr ./1d Y

r does not have any in�uence on the �nal value.

We now show that the intuition illustrated in the previous example is always
satis�ed by ./1.

Lemma 56. For every pair of EL concept descriptions C and X, there exists an

EL concept description Y such that:

1. X v Y and C v Y .

2. Cr ./1d X = Cr ./1d Y .

Proof. The application of Lemma 53 yields:

Cr ./1d X = degIX (d0, C)

Once deg is introduced, we know that there exists a ptgh h from TCr to IX such
that h(v0) = d0 and hw(v0) = degIX (d0, C). Let Ih be the canonical interpretation
induced by h (De�nition 21). Since Ih is a tree we can speak of its corresponding
EL concept description and denote it as Y .

By Remark 22, there exists a homomorphism from TIh to IX . Furthermore, by
construction of Ih, it is easy to see that there is also a homomorphism from TIh
to TCr . Since C ≡ Cr, the application of Theorem 4 yields X v Y and C v Y .

Similarly as for X, since Ih corresponds to TY , we have:

Cr ./1d Y = degIh(v0, C)

In addition, the application of Lemma 25 yields degIh(v0, C) = degIX (d0, C).
Thus, we can conclude that Cr ./1d X = Cr ./1d Y .
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As already mentioned in Example 55, since ./1 is an instance of simi , it then
satis�es property 4. Since C ≡ Cr and Y ≡ Y r, this means that Cr v Y r and
therefore, Y r ./1d C

r = 1. In addition, the operator min satis�es min{x, 1} = x
and it is monotonic, i.e.,min{x, y} ≤ min{x, z} whenever y ≤ z. This actually
implies that the value Y r ./1d C

r becomes irrelevant when computing m./1 . We
formally prove this in the following lemma.

Lemma 57. For all interpretations I, d ∈ ∆I, and EL concept descriptions C
we have:

mI./1(d, C) = max{Cr ./1d D | D ∈ CEL and d ∈ DI}

Proof. By De�nition 49

mI./1(d, C) = max{C ./1 D | D ∈ CEL and d ∈ DI}

Let X be a concept description such that mI./1(d, C) = C ./1 X and d ∈ XI . By
de�nition of ./1 we know that:

C ./1 X = min{Cr ./1d X
r, Xr ./1d C

r}

One can assume without loss of generality that X satis�es Xr ./1d C
r = 1. If that

were not the case for any maximal X, the application of Lemma 56 to C and Xr

yields a concept Y such that:

Cr ./1d X
r = Cr ./1d Y, Y ./1d C

r = 1, Xr v Y

This means that d ∈ Y I and since Y ≡ Y r, the application of Lemma 54 yields
Cr ./1d Y = Cr ./1d Y

r. Then,

C ./1 Y = min{Cr ./1d Y, 1}

The monotonicity of min implies C ./1 X ≤ C ./1 Y . Consequently, Y must be a
maximal concept in the de�nition ofmI./1(d, C), which would give a contradiction.
Therefore, it is safe to assume Xr ./1d C

r = 1. Thus,

mI./1(d, C) = C ./1 X = Cr ./1d X
r (11)

Now, suppose for a contradiction that there exists a concept description Y such
that d ∈ Y I and Cr ./1d X

r < Cr ./1d Y . Similarly as before, the application of
Lemmas 54 and 56 to C and Y yields a concept Z such that:

Cr ./1d Y = Cr ./1d Z
r, Zr ./1d C

r = 1, Y v Z

Hence, C ./1 Z = Cr ./1d Z
r and Cr ./1d X

r < Cr ./1d Z
r. Then, using Equation 11

we have C ./1 X < C ./1 Z. Since Y v Z implies d ∈ ZI , we obtain a
contradiction w.r.t. the maximality of X in the de�nition of mI./1 .

Thus, there is no Y such that Cr ./1d X
r < Cr ./1d Y and our claim follows from

Equation 11.
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Next, we �nally show the equivalence between m./1 and deg .

Theorem 58. For all interpretations I, d ∈ ∆I, and EL concept descriptions Q
we have mI./1(d,Q) = degI(d,Q).

Proof. (⇒) From Lemma 57, we know that there exists an EL concept description
X such that mI./1(d,Q) = Qr ./1d X and d ∈ XI . The application of Lemma 53
to Q and X yields:

Qr ./1d X = degIX (d0, Q)

The characterization of crisp membership in EL yields the existence of a homo-
morphism ϕ from GIX (or TX) to GI with ϕ(d0) = d. Hence, the application of
Lemma 24 yields degIX (d0, Q) ≤ degI(d,Q). Therefore, we obtain:

mI./1(d,Q) ≤ degI(d,Q) (12)

(⇐) Consider a ptgh h ∈ H(TQr , GI , d) such that hw(v0) = degI(d,Q). Let Ih
be the canonical interpretation induced by h. Since TIh is a tree, we can speak
of its corresponding EL concept description QIh . Then, we obtain the following
equalities:

Qr ./1d QIh = degIh(v0, Q) (Lemma 53)

= degI(d,Q) (Lemma 25)

Furthermore, it is easy to see that by de�nition of Ih, it holds that d ∈ [QIh ]I .
Hence, Lemma 57 implies that Qr ./1d QIh ≤ mI./1(d,Q) and consequently:

degI(d,Q) ≤ mI./1(d,Q) (13)

Thus, our claim follows from the combination of inequations 12 and 13.

Proposition 51 thus implies that answering of relaxed instance queries w.r.t. ./1

is the same as computing instances for threshold concepts of the form Q>t in
τEL(deg). Since such concepts are positive, Proposition 47 yields the following
corollary.

Corollary 59. Let A be an EL ABox, Q an EL query concept, a an individual

name, and t ∈ [0, 1). Then it can be decided in polynomial time whether a ∈
Relax./

1

t (Q,A) or not.

Note that Ecke et al. [9, 10] show only an NP upper bound w.r.t. data complexity
for this problem, albeit for a larger class of instances of the simi framework.
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7 Conclusion

We have introduced a family of DLs τEL(m) parameterized with a graded mem-
bership function m, which extends the popular lightweight DL EL by threshold
concepts that can be used to approximate classical concepts. Inspired by the
homomorphism characterization of membership in EL concepts, we have de�ned
a particular membership function deg and have investigated the complexity of
reasoning in τEL(deg). It turns out that the higher expressiveness takes its toll:
whereas reasoning in EL can be done in polynomial time, it is NP- or coNP-
complete in τEL(deg), depending on which inference problem is considered. ap-
plications since they provide a �exible and formally well-founded way to de�ne
concepts by approximation. We have also shown that concept similarity measures
satisfying certain properties can be used to de�ne graded membership functions.
In particular, the function deg can be constructed in this way from a particular
instance of the simi framework of Lehmann and Turhan [16]. Nevertheless, our
direct de�nition of deg based on homomorphisms is important since the partial
tree-to-graph homomorphisms used there are the main technical tool for showing
our decidability and complexity results.

While introduced as formalism for de�ning concepts by approximation, a possible
use-case for τEL(deg) is relaxation of instance queries, as motivated and investi-
gated in [9, 10]. Compared to the setting considered in [9, 10], τEL(deg) yields
a considerably more expressive query language since we can combine threshold
concepts using the constructors of EL and can also forbid that thresholds are
reached. Restricted to the setting of relaxed instance queries, our approach ac-
tually allows relaxed instance checking in polynomial time. On the other hand,
[9, 10] can also deal with other instances of the simi framework.

An important topic for future research is to consider graded membership func-
tions m./ that are induced by other instances of simi. We conjecture that
these instances can also be de�ned directly by an appropriate adaptation of our
homomorphism-based de�nition. The hope is then that our decidability and com-
plexity results can be generalized to these functions. Another important topic for
future research is to add TBoxes. While acyclic TBoxes can already be handled
by our approach through unfolding, we would like to treat them directly by an
adaptation of the homomorphism-based approach to avoid a possible exponen-
tial blowup due to unfolding. For cyclic and general TBoxes, homomorphisms
probably need to be replaced by simulations [1, 10].
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8 Appendix

Missing proofs of Section 3

Theorem 14. Let Ĉ be a τEL(m) concept description and I = (∆I , .I) an
interpretation. The following statements are equivalent for all d ∈ ∆I :

1. d ∈ ĈI .

2. there exists a τ -homomorphism φ from TĈ to GI with φ(v0) = d.

Proof. Let TĈ = (VT , ET , v0, ̂̀T ) be the description tree associated to Ĉ and Ĉ

be of the form Ĉ1u . . .u Ĉmu∃r1.D̂1u . . .u∃rn.D̂n, where each Ĉi is of the form
A ∈ NC or E∼q ∈ N̂E.

(⇒) Assume that d ∈ ĈI . Then, d ∈ [Ĉi]
I and d ∈ [∃rj.D̂j]

I for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. We show by induction on the role-depth of Ĉ that there exists a
τ -homomorphism φ from TĈ to GI with φ(v0) = d.

Induction Base. rd(Ĉ) = 0. Then, n = 0 and TĈ consists only of one node v0
(the root), it has no edges and ̂̀

T (v0) = {Ĉ1, . . . , Ĉm}. The mapping φ(v0) = d

is a τ -homomorphism from TĈ to GI . Note that, for each Ĉi of the form A ∈ NC

we know A ∈ `I(d), and consequently φ satis�es Condition 1 in De�nition 13.

In case Ĉi is of the form E∼q, the fact that d ∈ [Ĉi]
I implies that φ satis�es

Condition 2 in De�nition 13.

Induction Step. Assume that the claim holds for all the concepts with role-depth

smaller than k. We show that it also holds for rd(Ĉ) = k. First, consider the

concept D̂0 = Ĉ1u . . .u Ĉm. One can see that TD̂0
= (V0, E0, v0, ̂̀0) is exactly the

description tree with V0 = {v0}, E0 = ∅ and ̂̀
0(v0) = ̂̀

T (v0). Since d ∈ [D̂0]
I and

rd(D̂0) = 0, by induction hypothesis there exists a τ -homomorphism φ0 from TD̂0

to GI with φ0(v0) = d.

Now, consider any edge v0rjvj in ET . By the relationship between TĈ and Ĉ, there

exists top-level concept ∃rj.D̂j of Ĉ such that TD̂j = (Vj, Ej, vj, ̂̀j) is precisley

the subtree of TĈ with root vj. In addition, since d ∈ [∃rj.D̂j]
I there exists

dj ∈ ∆I such that drjdj ∈ EI and dj ∈ [D̂j]
I . Since rd(D̂j) < k, the application

of induction hypothesis on dj and D̂j yields a τ -homomorphism φj from TD̂j to

GI with φj(vj) = dj.

It is not di�cult to see that for each node v ∈ VT , there exists exactly one τ -
homomorphism φj such that v ∈ dom(φj). Based on this, we build the mapping
φ from VT to VI as φ =

⋃n
j=0 φj. Note that φ(v0) = d by de�nition of φ0. It

remains to show that φ is τ -homomorphism.
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1. φ is homomorphism from TC to GI: Let v be any node from VT . We
know there exists φj such that φ(v) = φj(v). Since φj is also a homomor-
phism, `(v) = `j(v) and `j(v) ⊆ `I(φj(v)), it follows that `(v) ⊆ `I(φ(v)).
Now, let vrw be any edge from ET . There are two cases:

• vrw is of the form v0rjvj. As explained before we have φ(v0) = d,
φ(vj) = dj and drjdj ∈ EI . Hence, φ(v0)rjφ(vj) ∈ EI .
• v, w ∈ dom(φj) for some j ∈ {1 . . . n}. By construction of φ and the
fact that φj is a homomorphism, it follows that φ(v)rφ(w) ∈ EI .

2. Condition 2 in De�nition 13 can be veri�ed in a similar way.

Thus, φ is τ -homomorphism from TĈ to GI with φ(v0) = d.

(⇐) Assume that there exists a τ -homomorphism φ from TĈ toGI with φ(v0) = d.

We show by induction on the size of VT that d ∈ ĈI .

Induction Base. |VT | = 1. Then, Ĉ is of the form Ĉ1 u . . . u Ĉm and ̂̀
T (v0) =

{Ĉ1, . . . , Ĉm}. Consider any Ĉi ∈ ̂̀
T (v0). We distinguish two cases:

• Ĉi is of the form A ∈ NC. Since φ is τ -homomorphism, it is also a classical
homomorphism in the sense of De�nition 3 and then, ignoring the labels of
the form E∼q we have `T (v0) ⊆ `I(d). Hence, d ∈ AI .

• Ĉi is of the form E∼q. By Condition 2 in De�nition 13 we also have d ∈
[E∼q]

I .

Thus, we have shown d ∈ [Ĉi]
I for each conjunct Ĉi of Ĉ. Consequently, d ∈ ĈI .

Induction Step. Assume that the claim holds for |VT | < k. We show that it also
holds for |VT | = k. Since k > 0, there exist nodes v1, . . . , vn in VT such that

v0rjvj ∈ ET . This also means that Ĉ is of the form Ĉ1 u . . .u Ĉm u∃r1.D̂1 u . . .u
∃rn.D̂n with n > 0, and the description tree TD̂j = (Vj, Ej, vj, ̂̀j) associated to

D̂j is the subtree of TĈ rooted at vj. We consider the following two cases:

• m > 0. Then, d ∈ [Ĉi]
I can be shown in the same way as for the base case.

• Consider any ∃rj.D̂j, with j ∈ {1 . . . n}. Since φ is also a homomorphism
from TĈ to GI and v0rjvj ∈ ET , then there exists ej ∈ ∆I such that
drjej ∈ EI and φ(vj) = ej. Moreover, it is clear that |Vj| < |VT | and it
is not di�cult to see that the restriction of the domain of φ to Vj is also
a τ -homomorphism from TD̂j to GI with φ(vj) = ej. Hence, the induction

hypothesis can be applied and its application yields that ej ∈ [D̂j]
I . Hence,

d ∈ [∃rj.D̂j]
I .

Thus, we have shown that d ∈ ĈI .
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Missing proofs of Section 4

Lemma 24. Let I and J be two interpretations such that there exists a ho-
momorphism ϕ from GI to GJ . Then, for any individual d ∈ ∆I and any EL
concept description C it holds: degI(d, C) ≤ degJ (ϕ(d), C).

Proof. Let Cr be the reduced form of C and h be any ptgh from TCr to GI with
h(v0) = d. Since ϕ is a homomorphism from GI to GJ , the mapping ϕ ◦ h is a
ptgh from TCr to GJ with (ϕ ◦ h)(v0) = ϕ(d).

Then, we have that for each v ∈ dom(h) the homomorphism ϕ makes `I(h(v)) ⊆
`J ((ϕ ◦ h)(v)). In addition, for each r-successor w ∈ dom(h) of v in TCr , we have
that if h(w) is an r-successor of h(v) in GI , then (ϕ ◦h)(w) is also an r-successor
of (ϕ◦h)(v) in GJ . Hence, it follows from De�nition 19 that hw(v0) ≤ (ϕ◦h)w(v0)
for each ptgh h from TCr to GI with h(v0) = d.

Thus, we can conclude that degI(d, C) ≤ degJ (ϕ(d), C).

De�nition 60. Let C be an EL concept description and TC the corresponding
EL description tree. For any node v ∈ VTC we denote by TC [v] the subtree of TC
rooted at v. In addition, the EL concept description C[v] is the one having the
description tree TC [v].

The height η(v) of a node v in TC is the length of the longest path from v to a
leaf of TC .

In the proof of Lemma 26, we will use concepts and description trees of the form
TC [v] and C[v]. We remark that for each reduced concept Cr the concept Cr[v]
is also in reduced form, for all nodes v in TCr . This is a consequence of the fact
that to obtain the reduced form of a concept C the rules are not only applied in
the top-level conjunction of C, but also under the scope of existential restrictions
(see Section 2).

Lemma 26. Let C be an EL concept description, I a �nite interpretation and
d ∈ ∆I . Then, Algorithm 4 terminates on input (C, I, d) and outputs degI(d, C),
i.e., S(v0, d) = degI(d, Cr).

Proof. To see that the algorithm terminates, it is enough to observe that TCr
and GI are �nite and the algorithm consists of nested iterations over the nodes
and edges in TCr and GI . To show that S(v0, d) = degI(d, Cr), we prove a more
general claim:

Claim: After a run of the algorithm, S(v, e) = degI(e, Cr[v]) for all v ∈ VTCr and
e ∈ ∆I.

Note �rst, that for each pair (v, e) the value of S(v, e) is assigned only once during
a run of the algorithm. We prove the claim by induction on the height η(v) of
each node v ∈ VTCr .
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Induction Base. η(v) = 0. Then v is a leaf in TCr . This means that v has
no successors and for each e ∈ ∆I there exists a unique ptgh h from TCr [v] to
GI with h(v) = e. One can see in Algorithm 4, that the special case where
|`TCr (v)|+ k∗(v) = 0 is treated properly. Otherwise, we have c = |`TCr (v)∩ `I(e)|
and S(v, e) = c

|`TCr (v)|
. Note that this is exaclty the value of hw(v) in De�nition 19.

Since h is unique, this means that degI(e, Cr[v]) = S(v, e).

Induction Step. η(v) > 0. Let v1, . . . , vk be the children of v in TCr such that if
v1 is an r-successor of v in TCr , then e has at least one r-successor in GI . The
application of the max operator in line 10, selects for each r-successor vi of v an
r-successor ei of e in ∆I that has the maximum value for S(vi, ei), and then is
used in the computation of c. Let (vi, ei) be the pair representing such a selection
for each vi. Two observations are in order:

• Since vi is a child of v, it occurs �rst in the post-oder selected in line 1.
Therefore, the value of S(vi, ei) is computed before the computation of c
for (v, e).

• Since η(vi) < η(v), the application of induction hypothesis yields S(vi, ei) =
degI(ei, C

r[vi]).

For each 1 ≤ i ≤ k, let hi be a ptgh from TCr [vi] to GI such that hi(vi) = ei
and hiw(vi) = degI(ei, C

r[vi]). It is easy to see that the mapping h = h1 ∪ . . . ∪
hk ∪ {(v, e)} is a ptgh from TCr [v] to GI with h(v) = e and that hw(v) = S(v, e).
Hence, by De�nition 20 we have S(v, e) ∈ VI(e, Cr[v]). Suppose, however, that
S(v, e) < maxVI(e, Cr[v]). We show that this is not the case by reaching a
contradiction.

Since S(v, e) < maxVI(e, Cr[v]), there exists a ptgh h′ from TCr [v] to GI with
h′(v) = e such that h′w(v) > hw(v). Looking at hw in De�nition 19, the fact
that h(v) = h′(v) implies that the di�erence must be on the values of hw(vi) and
h′w(vi). More precisley, there must exist at least one successor vi of v such that
h′w(vi) > hiw(vi). Based on this, we distinguish two cases:

• h′(vi) 6= h(vi), i.e., the ptgh h′ maps vi to a di�erent element in ∆I . But,
if that were the case, then the application of the max operator in line 10

would have chosen h′(v) as the pairing for vi, instead of ei.

• h′(vi) = h(vi) = ei. This case would contradict the induction hypothesis,
since h′w(vi) > hiw(vi) would imply S(vi, ei) < degI(ei, C

r[vi]).

Hence, we obtain by contradiction that S(v, e) = maxVI(e, Cr[v]) and conse-
quently, S(v, e) = degI(e, Cr[v]). Since S(v0, d) is a particular case, we thus have
shown that S(v0, d) = degI(d, Cr).
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Missing proofs of Section 5

Proposition 40. Let A be an ABox. Then, A is consistent i� there exists a
consistent pre-processing A′ of A.

Proof. (⇒) Let I be an interpretation such that I |= A. One can see that for

any assertion ¬Ĉ(a) which a rule is applicable to, if I |= ¬Ĉ(a) there is a way to
apply the rule such that I also satis�es the new introduced assertion. The case
for →¬∃ is clear. For the rule →¬u, if I |= ¬Ĉ, then there exists a conjunct Ĉi
such that I |= ¬Ĉi(a). This can be the non-deterministic choice made by →¬u.
Last, for assertions of the form ¬E∼q and ¬A the applicable rules are →¬∼ and
→¬A, respectively. Since ¬E∼q ≡ Eγ(∼)q and ¬A ≡ A<1, we have that I satis�es
Eγ(∼)q and A<1.

Thus, since I satis�es every assertion in A we can conclude that there exists
pre-processing A′ such that I |= A′.

(⇐) This direction is trivial since A ⊆ A′.

Lemma 43. Let A be an ABox and I an interpretation such that I |= A. In
addition, let A′ be a pre-processing of A such that I |= A′. For each a ∈ Ind(A),
let Ia be a tree-shaped interpretation such that:

• Ia |= A′(a),

• there exists a homomorphism ϕa from GIa to GI with ϕa(a
Ia) = aI .

Last, let J be the following interpretation:

• ∆J :=
⋃
a∈Ind(A) ∆Ia ,

• AJ :=
⋃
a∈Ind(A)A

Ia for all A ∈ NC,

• rJ := {aIarbIb | r(a, b) ∈ A} ∪
⋃
a∈Ind(A) r

Ia for all r ∈ NR, and

• aJ := aIa , for all a ∈ Ind(A).

where the sets ∆Ia are pair-wise disjoint. Then, J |= A.

Proof. We start by considering the following mapping from VJ to VI :

ϕ∗ :=
⋃

a∈Ind(A)

ϕa

Note that since the sets ∆Ia are disjoint the mapping is unambiguous. In addition,
we have (aI , bI) ∈ rI for all r(a, b) ∈ A, and since ϕa(a

Ia) = aI and ϕb(b
Ib) = bI ,
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this implies that (ϕ∗(aIa), ϕ∗(bIb)) ∈ rI for all (aIa , bIb) ∈ rJ . Then, it is clear
that ϕ∗ is a homomorphism from GJ to GI with ϕ

∗(aJ ) = aI for all a ∈ Ind(A).

We now show that J |= A′ and since A ⊆ A′, this will imply J |= A. First note
that if r(a, b) ∈ A′, then it is also in A. By construction (aIa , bIb) ∈ rJ and since
aJ = aIa for all a ∈ Ind(A), it follows that (aJ , bJ ) ∈ rJ . Therefore, it remains
to show that each concept assertion in A′ is satis�ed by J .

We �rst show that J |= A′+. Let a be any individual name in A and Ĉ(a) ∈ A′+.
Since Ia |= Ĉ(a), we have aIa ∈ ĈIa and the application of Theorem 14 yields
a τ -homomorphism φ from TĈ to GIa with φ(v0) = aIa . Since we require the
interpretation Ia to be tree-shaped, it is not hard to see that φ(v) = aIa only if
v = v0. We then show that φ is also τ -homomorphism from TĈ to GJ . Note that
since Ia ⊆ J , Condition 1 from De�nition 13 is obviously satis�ed by φ and J .
Hence, it remains to show that Condition 2 is also satis�ed.

Let v ∈ TĈ and E∼q ∈ ̂̀
T
Ĉ

(v), we distinguish two cases:

• v = v0. By the relationship that exists between τEL(m) concept descrip-
tions and τEL(m) descriptions trees (see Section 3), we have that E∼q is

top-level atom of Ĉ. Therefore, aIa ∈ [E∼q]
Ia and aI ∈ [E∼q]

I .

We now distinguish between ∼∈ {>,≥} or ∼∈ {<,≤}. Then Lemma 24
can be applied accordingly to obtain aJ ∈ [E∼q]

J , since on the one hand,
we have Ia ⊆ J , and on the other hand ϕ∗ is homomorphism from GJ to
GI with ϕ

∗(aJ ) = aI .

• v 6= v0. As said before, we have φ(v) = e with e 6= aIa and e ∈ ∆Ia . Since
GIa is a tree, the reachable elements from e in ∆J through role relations
are exactly the same as in ∆Ia . Then it is easy to see that degIa(e, E) =
degJ (e, E), and since e ∈ [E∼q]

Ia we also have e ∈ [E∼q]
J .

Thus, φ is τ -homomorphism from TĈ to GJ with φ(v0) = aJ . The application

of Theorem 14 yields aJ ∈ ĈJ . Since we have chosen a and Ĉ(a) arbitrarily, we
can thus conclude that J |= A′+.

We now turn into A′−, i.e., we prove J |= ¬Ĉ(a) for each assertion ¬Ĉ(a) ∈ A′.
We do not consider assertions where Ĉ is of the form Ĉ1u. . .uĈn. The application
of rule →¬u ensures that we always have ¬Ĉi(a) ∈ A′ for some Ĉi which is not

a conjunction and moreover, aJ 6∈ [Ĉi]
J implies aJ 6∈ ĈJ . We use induction on

the role-depth of Ĉ:

1. rd(Ĉ) = 0. Then, ¬Ĉ is of the form ¬E∼q or ¬A. The application of
the rules →¬∼ and →¬A yields, Eγ(∼)q(a) ∈ A′+ and A<1(a) ∈ A′+. Since
¬E∼q ≡ Eγ(∼)q and ¬A ≡ A<1 (see Section 4.1 and Proposition 8) and since

J |= A′+, this yields aJ 6∈ ĈJ .
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2. rd(Ĉ) > 0. Then, ¬Ĉ is of the form ¬∃r.D̂ and (¬∃r.D̂)(a) ∈ A′. Assume
that (aJ , d) ∈ rJ for some d ∈ ∆J . We have two cases:

• d = bJ for some b ∈ Ind(A). By construction of J we have r(a, b) ∈ A.
Then, the application of rule→¬∃ implies that ¬D̂(b) ∈ A′. Obviously,
rd(D̂) < rd(∃r.D̂) and therefore the application of induction hypothesis

yields bJ 6∈ D̂J .
• d 6= bJ for all b ∈ Ind(A). Then, by construction of J we have

d ∈ ∆Ia . Moreover, (¬∃r.D̂)(a) ∈ A′(a) and since Ia |= A′(a), we

have d 6∈ D̂Ia . Now, suppose that d ∈ D̂J . By Theorem 14 there
exists a τ -homomorphism φ from TD̂ to GJ with φ(v0) = d. But,
if that is the case, by the disjointness assumptions made to build J
and the fact that GIa is a tree, we would have that it is also a τ -
homomorphism from TD̂ to GIa , contradicting the fact that d 6∈ D̂Ia .
Thus, d 6∈ D̂J .

We just have shown that for each r-successor d of aJ it is the case that
d 6∈ D̂J . Hence, aJ 6∈ [∃r.D̂]J .

Thus, J |= A′− and consequently J |= A′.

Lemma 42. Let A be a single-element ABox and I an interpretation such that
I |= A. In addition, let J be the bounded model of A+ constructed in Lemma 37.
Then, there exists a tree-shaped interpretation K such that:

1. K |= A,

2. there exists a homomorphism ϕ from GK to GI such that ϕ(aK) = aI , and

3. |∆K| ≤ |∆J | × n, where:

n :=

{
1, if A− = ∅∏
¬Ĉ(a)∈A− s(Ĉ), otherwise.

Proof. Let I be an interpretation such that I |= A and J the interpretation
constructed in Lemma 37 with respect toA+. We start by recalling some elements
from the proof of Lemma 37 which will be used to prove our claim.

• φ is a τ -homomorphism from Ĝ(A) to GI with φ(a) = aI for all a ∈ Ind(A).

• ϕ is a homomorphism from VJ to VI with ϕ(v) = φ(v) for all v ∈ VA.
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Let #(A) denote the number of concept assertions occurring in A. We prove our
claim by induction on the number #(A−).

Induction Base. #(A−) = 0. Then, we have that A− = ∅. Therefore, A = A+

is a τEL(deg) ABox. We choose K to be the interpretation J . Then we have
K |= A and obviously |∆K| ≤ |∆J |. Since aJ = a, this means that ϕ(aK) = aI

and Condition 2 is satis�ed. Moreover, since A contains a single element and no
role assertions, we have that Ĝ(A) is a tree and by construction GK is also a tree.

Thus, we have shown our claims for the chosen interpretation K.

Induction Step. We assume that the claim holds for all single-element ABoxes B
with 0 ≤ #(B−) < k and show that it holds for an ABox A with #(A−) = k.

Consider the bounded model J of A+ (as in the base case). We know that
J |= A+. However, J does not necessarily satis�es A− since the assertions from
A− were not taken into account to obtain it. The idea for the rest of the proof is
to build an ABox AJ which re�ects the structure of J . Then, we will consider
a pre-processing A′ of AJ ∪ A− based on I and show how to use it to extend J
into an interpreation K that satis�es our claims.

Let GJ be the description graph associated to J , from the base case we know
that it is a tree. The ABox AJ is built as follows:

AJ :=
⋃
b∈VJ

A∈`J (b)

{A(b)} ∪
⋃

brc∈EJ

{r(b, c)}

where Ind(AJ ) = ∆J = VJ .

We name the element aJ in J as a in the new ABox AJ . In addition, for
each individual b ∈ Ind(AJ ) with b 6= a, we make bJ = b. Then, since all the
concept assertions in AJ are of the form A(a) with A ∈ NC, it is easy to see that
J |= AJ . We now use the homomorphism ϕ to extend the interpretation of I to
the individual names in AJ as: bI = ϕ(bJ ). Since ϕ(aJ ) = aI , this means that
the element aI does not change. Hence, ϕ is a homomorphism from GJ to GI
with ϕ(bJ ) = bI for all b ∈ Ind(AJ ). Then, for any A(b) ∈ AJ we have bJ ∈ AJ
and using ϕ we also have bI ∈ AI . A similar argument yields (aI , bI) ∈ rI for all
r(a, b) ∈ AJ . Therefore I |= AJ and consequently, I |= AJ ∪ A−.

By Remark 41 there exists a pre-processing A′ of AJ ∪A− such that I |= A′ and,
in addition, Ind(AJ ) = Ind(A′). For each individual b ∈ Ind(AJ ) let A′b be the
ABox:

A′b :=
⋃

Eγ(∼)q(b)∈A′
{Eγ(∼)q(b)} ∪

⋃
¬∃r.D̂(b)∈A′

{¬∃r.D̂(b)}

Here, Eγ(∼)q(b) is an assertion that results from the application of rule →¬∼ or
rule→¬A. For the rule→¬A, we consider A<1 as Eγ(∼)q, since it is obtained from
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¬A and A ≡ A≥1. Then, we de�ne the ABox Ab as:

Ab := A′b ∪
⋃

A(b)∈A′
{A(b)}

The idea now is to show that #(A−b ) < #(A−) and then to apply induction
hypothesis on Ab. As a �rst step one can show that #(A′b) ≤ #(A−). The main
reasons why this is possible are that J is tree-shaped and ∆J = Ind(AJ ). For
example, if we consider the individual b in AJ corresponding to the root of GJ ,
it is not hard to see that for each concept assertion α(b) in A−, either it is in A′b
or there is at most one concept assertion in A′b obtained from α(b) through the
pre-processing rule applications. Moreover, no assertion in A′b can be obtained
in a di�erent way. Consequently, #(A′b) ≤ #(A−). Taking this as the base case,
the same can be shown for the rest of the individuals by induction on the depth2

of each node in VJ .

Consider the set (possibly empty) B ⊆ Ind(AJ ) such that b ∈ B if, and only if,

A′b contains at least one assertion of the form Eγ(∼)q(b). Then, for each b ∈ B
we have #(A−b ) < #(A−) and therefore, the application of induction hypothesis
to Ab yields a tree-shaped interpretation Ib and a homomorphism ϕb from GIb to
GI such that: ϕb(b

Ib) = bI and Ib |= Ab.

For the individuals b ∈ Ind(AJ ) such that b 6∈ B, we consider the single-pointed
interpretation Ib = ({b}, .Ib) which is the restriction of J to {b}. Note then that

Ab can only contain assertions of the form ¬∃r.D̂(b) or assertions from AJ . Since
J |= AJ , it is clear that Ib |= Ab and ϕb with ϕb(bIb) = bI is a homomorphism
from GIb to GI .

Now, for assertions of the form ¬E∼q(b) and ¬A(b) in A′, the application of the
rules →¬∼ and →¬A ensures that Eγ(∼)q(b) and A<1(b) are in Ab. Since Ib |= Ab,
¬E∼q ≡ Eγ(∼)q and ¬A ≡ A<1, we have Ib |= ¬E∼q(b) and Ib |= ¬A(b). In

addition, for assertions ¬Ĉ(b) ∈ A′ where Ĉ is of the form Ĉ1 u . . . u Ĉn, by the

application of rule→¬u we know that there exists some Ĉi such that ¬Ĉi(b) ∈ A′.
Since ¬Ĉi is of one of the previous considered forms, we also have Ib |= ¬Ĉ(b).

Hence, it follows that Ib |= A′(b) for all b ∈ Ind(AJ ). Therefore, considering
the sets ∆Ib pair-wise disjoint, for all b ∈ Ind(AJ ), we can apply Lemma 43 to
AJ ∪ A− to obtain an interpretation K such that K |= AJ ∪ A−. However, we
still need to show that K |= A+. We use again the same idea that shows, in
Lemma 32 and Lemma 37, that φid is still τ -homomorphism after extending I0
into J .

More precisley, in our case we know that φid is τ -homomorphism from Ĝ(A+)
to GJ by construction of J . Since the construction of K in Lemma 43 is based

2The depth of a node in a tree is the length of the path from the root of the tree to the
node. The root of the tree has depth 0.
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on a pre-processing of AJ ∪ A−, it is not hard to see that renaming aIa to a
for each a ∈ Ind(A) makes J ⊆ K. Then we want to show that φid is also τ -

homomorphism from Ĝ(A+) to GK, which amounts to show that Condition 2 of

De�nition 13 is satis�ed. Let v be any node from Ĝ(A+) with E∼q ∈ ̂̀A+(v).
As in Lemma 32, we make the same case distinction on whether ∼∈ {>,≥} or
∼∈ {<,≤}. Since we know that φid(v) ∈ [E∼q]

J , the case for {>,≥} is obvious
because J ⊆ K.

For ∼∈ {<,≤}, we have φ(v) ∈ [E∼q]
I and by Lemma 43 ϕ∗ is a homomorphism

from GK to GI . Hence, if we had ϕ∗(v) = φ(v), we could apply Lemma 24 to
show that v ∈ [E∼q]

K. Now, note that by construction of J in Lemma 37 and by
construction of AJ , v is actually an individual name in AJ . Therefore, ϕ∗(v) =
ϕv(v) = ϕv(v

Iv) = vI . We de�ned above vI = ϕ(v) and since ϕ(v) = φ(v) for
all v ∈ VA+ , we can conclude that ϕ∗(v) = φ(v) and consequently, v ∈ [E∼q]

K.

Hence, φid is τ -homomorphism from Ĝ(A+) to GK with φid(a) = aK. Thus,
K |= A+.

To see that K is tree-shaped, note �rst that J and each interpretation Ib are also
tree-shaped. Then by the construction of K in Lemma 43 one can easily see that
GK is a tree.

Regarding the size of K, if b 6∈ B we have |∆Ib| = 1, otherwise Ib is obtained by
the application of induction hypothesis to Ab. Let Jb be the bounded model for
A+
b constructed in Lemma 37. Then,

|∆Ib | ≤ |∆Jb| ×
∏

¬D̂(b)∈A−b

s(D̂) (1)

A closer look at A+
b shows that it only contains assertions of the form Eγ(∼)q(b)

or A(b), with A(b) ∈ AJ and A ∈ NC. Since, in addition, it only contains one
individual and no role assertions, the construction of Jb in Lemma 37 yields:

|∆Jb | ≤
∑

Eγ(∼)q(b)∈A+
b

s(Eγ(∼)q)

Furthermore, |Eγ(∼)q| > 1 allows to transform this inequality into the following:

|∆Jb | ≤
∏

Eγ(∼)q(b)∈A+
b

s(Eγ(∼)q) (2)

It is not hard to see that for each assertion of the form ¬D̂(b) ∈ A−b , the concept
D̂ is a sub-description of a concept Ĉ such that ¬Ĉ(a) ∈ A−. In addition,
each threshold concept Eγ(∼)q ∈ A+

b is obtained during the pre-processing by the
application of the rule→¬∼ to the concept ¬E∼q, and moreover, E∼q is also a sub-

description of a concept Ĉ with ¬Ĉ(a) ∈ A−. Note that since the pre-processing
is applied to AJ and GJ is a tree, there is at most one of these concepts in A′b for
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each concept assertion ¬Ĉ(a) ∈ A−. Hence, since #(A′b) ≤ #(A−), we combine
(1) and (2) to obtain:

|∆Ib| ≤
∏

¬Ĉ(a)∈A−

s(Ĉ)

Finally, |∆J | = |Ind(AJ )| and the construction of ∆K yield:

|∆K| =
∑

b∈Ind(AJ )

|∆Ib| ≤ |∆J | × n

65


	Introduction
	The Description Logic EL
	The Logic EL(m)
	Description graphs and homomorphisms in EL(m)
	Deciding the existence of a -homomorphism

	The membership function deg
	Some properties of EL(deg)

	Reasoning
	Terminological reasoning
	Assertional reasoning

	Concept similarity and relaxed instance queries
	Defining membership degree functions
	Relation to the membership degree function deg

	Conclusion
	Appendix

