TECHNISCHE Technische Universitdt Dresden
UNIVERSITAT Institute for Theoretical Computer Science
DRESDEN Chair for Automata Theory

LTCS—Report

A Tableau Algorithm for SROZQ under Infinitely Valued
Godel Semantics

Stefan Borgwardt and Rafael Penialoza

LTCS-Report 15-18

Postal Address: _ http://lat.inf.tu-dresden.de
Lehrstuhl fiir Automatentheorie

Institut fiir Theoretische Informatik Visiting Address:
TU Dresden Nothnitzer Str. 46

01062 Dresden Dresden




A Tableau Algorithm for SROZQ under Infinitely
Valued Godel Semantics

Stefan Borgwardt and Rafael Penialoza

Abstract

Fuzzy description logics (FDLs) are knowledge representation formalisms capable of
dealing with imprecise knowledge by allowing intermediate membership degrees in the
interpretation of concepts and roles. One option for dealing with these intermediate degrees
is to use the so-called Gédel semantics. Despite its apparent simplicity, developing reasoning
techniques for expressive FDLs under this semantics is a hard task. We present a tableau
algorithm for deciding consistency of a SROZQ ontology under Gédel semantics. This
is the first algorithm that can handle the full expressivity of SROZQ as well as the full
Godel semantics.

1 Introduction

Description logics (DLs) |1] are a family of knowledge representation formalisms designed to
represent the terminological knowledge of an application domain in an unambiguous and easy-to-
understand manner. They have been successfully applied for the modelling of many real-world
domains, including several from the bio-medical sciences. In addition, many efficient reasoners
are now available.

As it has been widely argued in the literature, one of the important deficits of classical DLs
is their inability to handle imprecise notions for which a clear-cut characterisation cannot be
achieved. To cover this gap, it has been proposed to extend the semantics of DLs following the
ideas of mathematical fuzzy logic |12]|. Briefly, fuzzy description logics allow intermediate truth
degrees—usually real numbers between 0 (false) and 1 (true)—to be used in the definition of
imprecise knowledge [2]. To interpret these intermediate degrees, the logical connectives need
to be extended accordingly. In general, there are many possible extensions that can be used;
hence, each (classical) DL gives rise to a family of FDLs. However, for most of these extensions,
reasoning becomes undecidable, even if the underlying DL is relatively inexpressive [6]. In fact,
the only decidable expressive FDLs are those based on the Gdédel semantics, and the variant
Zadeh semantics.

Developing a reasoning algorithm for the very expressive DL SROZQ is far from trivial, as one
needs to handle all the constructors, including nominals and number restrictions, adequately.
This difficulty is accentuated when the Gddel semantics are considered, since this logic does not
have the finitely valued model property [5]. This means that there are ontologies whose models
must use infinitely many truth degrees, and hence must have an infinite domain. Indeed, this
is one of the reasons why the crispification approach as described in [4}/7] is only valid under
finitely valued semantics.

To the best of our knowledge, the only existing algorithms for deciding consistency of ontologies
in expressive DLs with (infinitely valued) Godel semantics are the automata-based approach
from [5,/8] and the new crispification method from [11]. Rather than trying to find a model



directly, the automata-based approach produces an abstract representation of a large class of
models. In this representation, the actual degrees of truth used in a model are abstracted to
consider only the order among them. This abstraction from the actual degrees is also exploited
by the crispification approach, which translates a fuzzy ontology into a classical ontology by
using concepts that simulate the order between the relevant truth degrees. As an added benefit,
considering only the order between concepts allows for a more flexible representation of the
domain knowledge in which, for instance, one can express that an individual is more tall than
strong, without having to specify truth degrees for each of these concepts.

Although they provide good theoretical results such as tight complexity bounds for reasoning,
these approaches are restricted to sublogics of SROZQ, and there is no obvious way to extend
them to the full expressivity of SROZQ. Moreover, the automata-based approach is not adequate
for producing efficient implementations, as it requires the construction of an exponentially large
automaton before any reasoning steps are made. In this paper we present a new tableau-
based algorithm that combines the ideas of the classical tableau approach for SROZQ with
the order-based abstraction developed to handle the Goédel semantics. The result is the first
reasoning algorithm that can handle the full expressivity of fuzzy SROZQ under Gédel semantics.
Interestingly, our algorithm inherits the properties that allow an efficient implementation of the
classical tableau algorithm. In particular, the algorithm behaves better when the input ontology
only uses less expressive features of the logic, and applies complex constructions only when it is
absolutely necessary.

2 Preliminaries

We recall basic definitions about FDLs and weighted automata using Godel semantics [2,[5,[11].

2.1 Godel Fuzzy Logic and Order Structures

The two basic operators of Godel fuzzy logic are conjunction and implication, interpreted by the
Godel t-norm and residuum, respectively. The Godel t-norm of two fuzzy degrees x,y € [0, 1] is
defined as minimum function min{x, y}. The residuum = is uniquely defined by the equivalence
min{z,y} < z iff y < (x = 2) for all z,y,z € [0, 1], and can be computed as

N 1 ifz<y,
€T =
Y y otherwise.

For a deeper introduction to t-norms and t-norm-based fuzzy logics, see [12}|13}21].

An order structure S is a finite set containing at least the numbers 0, 0.5, and 1, together with
an involutive unary operation inv: S — S such that inv(z) = 1 — z for all numbers z € SN0, 1].
A total preorder (on S) is a transitive and total binary relation <, C S x S. For a, § € S, we
write a ~, S if a <, f and 8 <, «a, and we write a <, [ if it is not the case that f <, «a. Notice
that ~, is an equivalence relation on S. For a relation symbol i € {<, <, =, >, >}, we denote
by >, the corresponding relation induced by =,; that is, <., <., ~., =, or =, respectively.
The set order(S) contains exactly those total preorders <, over S which

e have 0 and 1 as least and greatest element, respectively,
e preserve the order of the real numbers on S N[0, 1], and
e satisty a <, 8 iff inv(8) <, inv(a) for all a, 8 € S.

Given =, € order(5), the following functions on S that mimic the operators of Godel fuzzy logic



over [0, 1] are well-defined since <, is total:

in. (o, B} a ifa=x,p
min,{a, 8} := .
B otherwise,
1 if a =,
a=, 3= . 6
[ otherwise.

It is easy to see that these operators agree with min and = on the set S N[0, 1].

An order assertion (over S) is an expression of the form « > 8, where < € {<, <, =,>, >}
and o, 8 € S. An order formula is a Boolean combination of order assertions. An element
=, € order(S) satisfies (or is a model of)

e the order assertion a <1 8 iff v <, 3 holds;

e an order formula if there is a satisfying Boolean valuation of all its order assertions such
that =<, satisfies all order assertions evaluated to true, and does not satisfy any order
assertions evaluated to false.

e a set of order assertions if it satisfies all assertions contained in it.

A set of order assertions @ is satisfiable if it has a model, and it entails an order assertion ¢
if all models of ® are also models of ¢. Deciding satisfiability of a set of order assertions ®
is clearly possible in time polynomial in the size of S: one can saturate ® w.r.t. the axioms
defining order(.S), i.e. transitivity, the order on S N0, 1], and the properties of inv, and then
check whether the resulting set contains an assertion of the form a < a. Furthermore, ® entails
a < piff ®U{B > a} is unsatisfiable (and similarly for < and >), and ® entails « = g iff it
entails both a < 8 and a > .

For convenience, we also sometimes use expressions like @ > min{3,v} or « = § = ~, where
min and = are interpreted using the operators min, and =, respectively, introduced above.

2.2 G-SROIQ

We now define the fuzzy description logic G-SROZQ. Let N;, N¢, and Ng be three mutually
disjoint sets of individual names, concept names, and role names, respectively, where Ng contains
the universal role r,. The set of roles is Ng := Nr U {r~ | r € Nr}, where the elements
of the form r~ are called inverse roles. Since we need to make several syntactic restrictions
based on which roles appear in which role axioms, we start by defining role hierarchies. A role
hierarchy Ry, is a finite set of (complex) role inclusions of the form w C r > p, where r # r,, is a
role name, w € (Ng)™ is a non-empty role chain not including the universal role, and p € (0, 1].
Such a role inclusion is called simple if w € N;. We extend the notation -~ to inverse roles and
role chains as usual, by setting (r=)” :==r and (r1...7,)" =7, ...7] .

n

We recall now the regularity condition from [3,/16]. Let < be a strict partial order on Ng such
that r < s iff 7~ < s. A role inclusion w C r > p is <-regular if

e w is of the form rr or r—, or
e w is of the form ry...7,, rry ... 7y, or 71 ...7,7, and for all 1 < ¢ < n it holds that r; < r.

An role hierarchy Ry, is regular if there is a strict partial order < as above such that each role
inclusion in Ry, is <-regular. A role name r is simple (w.r.t. Ry) if foreach w Cr > p € Ry,
we have that w is of the form s or s~ for a simple role s. This notion is well-defined since the
regularity condition prevents any cyclic dependencies between role names in Ry. An inverse
role r~ is simple if r is simple. For the rest of this paper, let R, be a regular role hierarchy.



Table 1: Syntax and semantics of G-SROZQ

Name Syntax Semantics (CZ(d) / rZ(d,e))
concept name A A%(d) € [0,1]
truth constant I P
conjunction CnD min{C%(d),DI(d)}
implication C — D C%(d) = D*(d)
negation -C 1—-C%(d)
existential restriction Jr.C' sup min{rZ(d,e), C%(e)}
e€eAT
value restriction vr.C inAfI rf(d,e) = C%(e)
ec
1 ifd=ad”
nominal {a} ' O.l
0 otherwise
n
at-least restriction >ns.C sup mi{l min{s(d, e;),C*(e;)}
€1,4.nes e, €A T
pairlwise diefferent
local reflexivity 3s.Self  rZ(d,d)
role name T rZ(d,e) €[0,1]
inverse role r rZ(e,d)
universal role Ty 1

G-SROIQ concepts [11] are built using the constructors listed in the upper part of Table
where C, D denote concepts, p € [0,1], n € N, A€ N¢, a € N, r € Ng, and s € Ny is a simple
role. The restriction to simple roles in at-least restrictions is necessary to ensure decidability,
already in the classical case |18]. We also use the common DL constructors T :=1 (top concept),
1 :=0 (bottom concept), C'U D := =(=C' M =D) (disjunction), and <n s.C' := —(=(n + 1) 5.C)
(at-most restriction).

The semantics of G-SROZQ is based on (fuzzy) interpretations T = (AZ,-T) over a non-empty
domain AT, which assign to each individual name a € N; an element a € A%, to each concept
name A € Nc a fuzzy set AZ: AT — [0,1], and to each role name r € Ng a fuzzy binary relation
rZ: AT x AT — [0,1]. This interpretation is extended to complex concepts and roles as defined
in the last column of Table|l} for all d,e € AZ.

As it is common for fuzzy DLs, we restrict reasoning to witnessed interpretations [14]. Intuitively,
these interpretations require that the suprema and infima in the semantics are in fact maxima
and minima, respectively. In other words, the degrees of these constructors are witnessed by an
element in the domain. Formally, an interpretation Z is witnessed if, for every d € AT, n > 0,
r € Ng, simple s € Ng, and concept C, there are e, €', eq,...,e, € AT such that ey, ..., e, are
pairwise different,

(3r.C)F(d) = min{s=(d, ), C¥(e)},
(vr.C)E(d) = T (d,e') = CT(€), and
(zns.C)E(d) = rlnz{l min{s”(d, e;),C%(e;)}.

As we have seen already with the role inclusions, the axioms of G-SROZQ extend classical
axioms by allowing to state a degree in (0, 1] to which the axioms hold. An ordered ABozx is



a finite set of (fuzzy) concept assertions of the form C(a) 1 1 for a € Ny, a concept C, and
€ {<,>}. A TBoz is a finite set of general concept inclusions (GCIs) of the form C T D > p
for concepts C, D and p € (0,1]. An RBox R = Rj, UR, consists of a role hierarchy R, and a
finite set R, of disjoint role azioms dis(s1, s2) > p and reflexivity axioms ref(r) > p, where r is
a role, s1, so are simple roles, and p € (0,1]. An ontology O = (A, T,R) consists of an ABox A,
a TBox 7T, and an RBox R.

For an ontology O, we denote by rol(O) the set of all roles occurring in O, together with their
inverses, and by ind(O) the set of all individual names occurring in O. We denote by Vo the
closure under the involutive negation x — 1 — = of the set of all truth degrees appearing in O
(either in axioms or directly as truth constants), together with 0, 0.5, and 1. The size of this set
is linear in the size of O.

An interpretation Z satisfies (or is a model of)

e the concept assertion C(a) > 1 if CZ(a?) > 1;

o the GCI O C D > p iff C%(d) = D¥(d) > p for all d € AZ;

e the role inclusion ry...7, T r > p iff (r1...7,)%(do,dn) = 1r%(do,d,) = p for all
do,d,, € AT, where

z ooz
(r1...r)"(do,dp) := sup minr; (d;—1,d;);
di,...,dp_1€EAT i=1
e the disjoint role axiom dis(s1,s2) = p iff min{s?(d,e), s (d,e)} <1 —p for all d,e € AT;
o the reflexivity axiom ref(r) > p iff r2(d,d) > p for all d € AZ;
e an ontology if it satisfies all its axioms.

An ontology is consistent if it has a witnessed model.

Other common reasoning problems for FDLs, such as concept satisfiability and subsumption
can be reduced to consistency in linear time [5]. For instance, the subsumption between C
and D to degree p w.r.t. a TBox 7 and an RBox R is equivalent to the inconsistency of
{p — (C — D)(a) < 1},T,R), and the satisfiability of C' to degree p w.r.t. 7 and R is
equivalent to the consistency of ({p — C(a) > 1}, T, R).

Using the axioms previously introduced, it is possible to simulate other axioms that are common
for SROZQ [4.[15] as follows:

transitivity axioms tra(r) = p by rr Cr > p;

r)
symmetry axioms sym(r) = p by r~ Cr > p;
asymmetry axioms asy(s) = p by dis(s,s™) = p;
irreflexivity axioms irr(s) > p by 3s.Self C —p > 1;

individual equality assertions a =~ b by {b}(a) > 1; and

individual inequality assertions a % b by {b}(a) < 1.

Moreover, due to the expressivity of our language, we can express arbitrary order assertions as
in [5,/11], even over negated roles. For example, the axiom r(a,b) > —s(c,d) can be expressed as

((Elr.{b}) — 3ry.({c} 1 ﬁEls.{d})) (a) < 1.

2.3 Weighted Automata for Fuzzy Role Inclusions

To deal with complex role inclusions, in [16] an automata construction was developed that allows
to break down inferences about long role chains into smaller steps. We recall the generalization
of this construction to Gédel semantics from [11].



Definition 2.1 (WFA). A weighted finite automaton (WFA) is a tuple A = (Q, X, gini, Wt, gin),
consisting of a non-empty set Q) of states, a non-empty input alphabet ¥, an initial state gin; € Q,
a transition weight function wt: Q x (XU {e}) x Q@ — [0,1], and a final state ggn € Q. Given
an input word w € ¥*, a run of A on w is a non-empty sequence of pairs r = {(w;, ;) fo<i<m
such that (wo,q0) = (W, ¢ni)s (Wm,Gm) = (¢,¢sn), and for each i, 1 < i < m, it holds that
w;—1 = x;w; for some z; € ¥ U {e}. The weight of this run is wt(r) := minj"; wt(g;—1, x;, ¢)-
The behavior of A on w is defined as (||All,w) := Sup,cyns(a,w) Wt(r), where runs(A, w) denotes
the set of all runs of A on w.

We often denote by ¢ —2» ¢’ € A the fact that wt(g,z,q") = p. Further, for a state q of A, we
denote by A9 the automaton resulting from A by making ¢ the initial state. The following
connection is a direct consequence of the definition of the behavior of a WFA.

Proposition 2.2. Let A be a WFA over %, ¢ LN qd € A, and w € ¥*. Then we have
(IA9]}, zw) = min{p, (|AT ]|, w)}.

Let now O = (A, T,RrUR,) be a G-SROZQ ontology. In order to characterize the complex
role inclusions in Ry, [11,/16] construct a family of WFA (A..),croi(0) that “read” role chains, i.e.
words over the input alphabet ¥ := rol(O). Intuitively, the automaton A, recognizes all role
chains that imply the role r via the role hierarchy (with associated truth values). The size of
these automata may be exponential in the size of Ry,.

Lemma 2.3 ( [11]). Let O = (A, T,RnURa) be an ontology and (A;),croi0) be the family of
WFA constructed in (11, and T be an interpretation. Then T satisfies Ry, iff for every r € rol(O),
every w € rol(O)*, and all d,e € AT, we have

min {(|A, ||, w), w"(d,e)} < r*(d,e).

A mirrored copy A~ is constructed from such a WFA A over rol(Q) by exchanging initial

and final states, and replacing each transition ¢ RN q by ¢ z P q, where ¢~ := ¢. By the
construction in [11], each automaton A, is a mirrored copy of A,..

Proposition 2.4. Let A be a WFA over X, A’ be a mirrored copy of A, and w € ¥*. Then
we have (Al w) = (A, w").

We define now the relation C,,, which can be understood as the “transitive closure” of the simple
role inclusions in R: we set r C,, s iff p is the supremum of the values min{pi,...,p,} over all
sequences of simple role inclusions r C ry > p1, ..., rp_1 C s > p, in R. Note in particular
that r C; r holds for every simple role r. The following is a special case of Lemma [2.3

Proposition 2.5 (|11]). For a simple role r and w € rol(O)*, we have

p ifw=s¢crol(O) and sC,r,
(1A}, w) = . ?
0 otherwise.

3 From Models to Tableaux

In this section, we extend the classical tableau construction from [15,{17] with the ideas de-
veloped in [5,/11] to produce a reasoning algorithm for G-SROZQ. For the rest of this paper,
O = (A, T,R) is an arbitrary, but fixed, G-SROZQ ontology. To simplify the presentation, we
will assume in the following that O contains no existential restrictions. These concepts can be



handled in the same way as value restrictions, by dualizing the constructions, i.e. replacing <
with > and = with min.

The set sub(C) of (extended) sub-concepts of a concept C' contains at least C' and —C, as well
as the concepts of the following set, which is defined recursively:

sub(D) if C =-D,

sub(D) Usub(E) ifCe{DNE,D— E},
sub(D) U{VAL.D,-VALD | qis a state of A,} if C =Vr.D,
sub(D)U{Zmr.D,~2mr.D|1<m<n—-1} ifC=2>2nrD,

0 otherwise.

In the following, we consider =—C' to be equal to C. The set sub(Q) of sub-concepts of O is
defined as the union of all sets sub(C'), sub(D) for all axioms C C D > p e T and C(a) <1 € A.
The size of sub(O) is exponential in the size of the role hierarchy (due to the automata A,) and
exponential in the largest number appearing in number restrictions in O (if such numbers are
given in binary encoding).

The semantics of the newly introduced expressions of form VA.C is defined by

(VA.C)E(d) := werlcl;ll(fO)* inf_ min{(||A|,w),w”(d,e)} = C%(e),

where eZ(d,e) := 1 if d = e, and €% (d, €) := 0 otherwise (cf. Lemma.

Our construction uses order assertions to deal with relations between the values of concepts.
The domain of these assertions is the order structure

UA) :=Vo U{C(z) | C esub(0), z € A} U{r(z,y), ~r(z,y) | rcrol(0), z,y € A},

where A is a set of nodes, inv(C(x)) := =C(z), and inv(r(z,y)) := —r(x,y). To simplify dealing
with inverse roles, we will treat the expressions r(z,y) and r~(y,z) as 1f they were the same;
this is clearly in line with the semantics of inverse roles.

As in [15/17], we define the notion of a tableau, which is an abstract version of a model of O
that may still be infinite, but allows us to simplify the semantics: for example, all complex role
inclusions are handled by three simple rules for the behavior of the concepts VA.C'. Recall that
we use the term “satisfiability” only w.r.t. total preorders over U(A), and not w.r.t. full DL
interpretations.

Definition 3.1 (Tableau). A tableau for O is a pair (A, A*), where A is a non-empty set of
nodes and A* is a satisfiable set of order assertions over U(A) such that the following conditions
are satisfied, for all z,y € A, C, D € sub(O), r, s € rol(O), and a € ind(O):

(T1) If p(x) occurs in A*, then A* entails p(z) = p.

(T2) If (Ir.Self)(z) occurs in A*, then A* entails (Ir.Self)(z) = r(z, z).

(T3) If (- )( ) occurs in A*, then C(x) also occurs in A*.

(T4) If (C 1 D)(x) occurs in A*, then A* entails (C'M D)(x) = min{C(x), D(z)}.
(T5) If (C — D)(z) occurs in A*, then A* entails (C — D)(x) = C(z) = D(x).
(T6) If (Vr. )( ) occurs in A*, then there is a y € A such that A* entails

(Vr.C)(x) = r(z,y) = C(y).

(T7) If (Vr.C)(x) occurs in A*, then A* entails (Vr.C)(z) < (VA,.C)(z).
(T8) If (VAL.C)(z) and r(z,y) occur in A* and ¢ ~% ¢/ € A, then A* entails

(VAL.0)(z) < min{p, r(z,y)} = (VA?.C)(y).



(T9) If (VA2.C)(x) occurs in A* and ¢ =2 ¢/ € A, then A* entails (VAL.C)(z) < p = (VA .C)(x).
(T10) If (VA1.C)(x) occurs in A* and ¢ is final, then A* entails (VA2.C)(z) < C(z).
(T11) If (>n7r.C)(z) occurs in A*, then there are at least n elements y € A for which A* entails
(Znr.C)(z) < min{r(z,y), Cy)}.
(T12) If (nr.C)(x) occurs in A*, then there are at most n — 1 elements y € A for which A*
entails (Znr.C)(z) < min{r(z,y),C(y)}.
(T13) If (znr.C)(z) and r(z,y) occur in A*, then A* entails either

(Znr.C)(x) =2 min{r(z,y),C(y)} or (Znr.C)(z) < min{r(z,y),C(y)}.

(T14) If {a}(x) occurs in A*, then A* entails either {a}(z) > 1 or {a}(z) <0
(T15) There is exactly one z, € A such that A* entails {a}(z,) > 1.

(T16) If r(x,y) occurs in A*, then A* entails r(x,y) =~ (y, ).

(T17) If C(a) 11 € A, then A* entails C'(z,) > 1.

(T18) f CC D > p e T, then A* entails C(z) = D(x) > p.

(T19) If r C s > p € R, then A* entails r(z,y) = s(:c y) = p.

(T20) If ref(r) > p € R, then A* entails r(x,z) >

(T21) If dis(r,s) > p € R, then A* entails min{r(m,y), s(z,y)} <1—p.

(T22) A* entails r,(x,y) > 1.

The main differences to the classical tableau conditions of [15[17], in addition to the use of order
assertions, are the following:

e We do not need a dedicated condition for negation other than to add the relevant subconcept
to the tableau. The semantics of the involutive negation is handled by the conditions that
define the order structure U(A).

e We do not internalize the ABox, TBox, or the universal role, which is why we need to
include dedicated conditions for them.

e Although we do not consider existential restrictions or at-most number restrictions here,
the corresponding conditions from [15,/17] can also be found in Definition The
reason for this is that fuzzy value restrictions and at-least number restrictions additionally
exhibit a behavior similar to that of (classical) existential restrictions and at-most number
restrictions. For example, due to the supremum used in its semantics, the value of an
at-least restriction >nr.C at a node x also imposes an upper bound (namely n — 1) on the
number of nodes y for which min{r(z,y), C(y)} can exceed this value. Similarly, a fuzzy
value restriction also enforces the existence of a successor node (classically the behavior of
an existential restriction) due to our witnessing conditions.

The following lemma shows that it suffices to construct a countable tableau to show that O
is consistent. The requirement on the cardinality of the tableau is the main difference to the
corresponding result in [15]. It is due to the necessity of finding enough values to instantiate all
relevant concepts and roles. We could also use a tableau having the same cardinality as the real
numbers, but a countable tableau suffices for our purposes (see Lemma .

Lemma 3.2. If O is consistent, then there is a tableau, and if there is a countable tableau, then
O is consistent.

Proof. Let first T = (AZ,-T) be a model of ©. We construct the tableau (AZ, A*), where A*
is the set of all order assertions u > v such that u,v € U(AZ) with u? > vZ, where p? := p,
C(d)t := C*(d), r(d,e)* := rf(d,e), and (-r(d,e))t := 1 —rZ(d,e). By construction, A*
is satisfiable, and hence we only need to prove that it satisfies the conditions |('T1)H(T22)| of
Definition This can be verified by a trivial, but lengthy, case analysis, very similar to the



proof of the corresponding result in [11]. For example, if (VA2.C)(d) occurs in A* and ¢ is final,
then we know that (||A9||,w) =1 for every word w € rol(O)*, and hence

(VAL.C)E(d) = e rigll(fo)* eienAfI wh(d,e) = C*(e) < e¥(d,d) = C*(d) = C*(d).

By our construction, this means that (VA?.C)(d) < C(d) is contained in A*, and thus |(T10)|is
satisfied.

For the second part of the lemma, let (A,.4*) be a tableau where A is countable, and hence
U(A) and A* are also countable. Since A* is satisfiable, it has a model <,. Since this model
is an element of order(U(A)), there must exist a mapping v: U(A) — [0, 1] with the following
properties:

(P1) for all p € Vo, we have v(p) = p;
(P2) for all o, B € U(A), we have v(a) < v(f) iff @ =, 3; and
(P3) for all & € U(A), we have v(inv(a)) =1 — v(a).

We now define the interpretation Z as follows, for all a € ind(O), A € sub(O) N N¢, and = € A:

o AT = A;
e o’ :=a; and

o A(z) :=v(A(x)) if A(z) occurs in A*, and AZ(z) := 0 otherwise.

The interpretation of all other individual names and concept names can be fixed arbitrarily.
For the role names r € rol(O) N Ng, we first define a “simple” interpretation Z, as follows:
rfo(x,y) :=v(r(z,y)) if r(x,y) occurs in A*, and r°(z,y) := 0 otherwise. By and
for every inverse role r~ € rol(O) for which r~ (z,y) occurs in A*, we know that r(y,z) also
occurs in A* and we have (r~)%(z,y) = r¥(y,2) = v(r(y,z)) = v(r~(x,y)), similar to the
definition of 770. We now use the automaton A, to “complete” Z, with additional links as
follows: we set

ay) = sup min{(JA.],w), 0 (z,y)} 1)

werol(O)+

for all z,3y € A. Note that this expression is equal to 7% (z,y) if r is simple: by Proposition
we have (||A,||,s) = p whenever s T, r, (||A,||,7) =1, and (||A,||,w) = 0 for all other words w,
and moreover [(T19)] yields

min{(|A[l,r), 7 (z,y)} = r7(z,y) > min{p, s™ (z,y)} = min{(| A, s), 5™ (z,)}.

The expression can also be used to evaluate inverse roles due to the semantics of role
chains, the fact that A,- is a mirrored copy of A, [11], and Proposition Finally, for the
universal role r,,, we have r2°(z,y) = 1 due to By the construction of A, [11], we have

u
(JJAr, ||, 7.) = 1, and hence the expression also holds for the universal role.

To show that Z is a model of O, we first prove the following claim by induction on the structure
of C:

For all € A and C € sub(O) for which C(x) occurs in A*, we have CF(z) = v(C(z)). (2)

For most concept constructors, this easily follows from the conditions in Definition [3.I] and the
fact that <., and hence v, satisfies all entailments of A*.

For negation, assume that (—C')(x) occurs in A*. We get
(=C)F(x) =1~ C*(z) =1~ v(C(x)) = v((=C)(x))
by and the induction hypothesis.



Assume now that (vr.C')(z) occurs in A*. By [(T11)| there must be a yo € A such that
v((¥r.C)(@)) = v(r(z, o)) = v(C(yo)) = r°(z,y0) = C* (yo) > r*(x,y0) = C¥(yo). Hence, yo
can act as a witness for (Vr.C)Z(z) if we can show that the latter implication is > v((Vr.C)(z))
for all elements y € A. For this purpose, we consider the remaining tableau conditions for value

restrictions. By [(T7), we get
rHayy) = CTy) = (s min{(JA ], w), v (@,y)}) = CT(y)
werol(O)+

inf  min{(||A, To ct
werndoy min{ ([ A, w), w (@ y)} = CH(y)

—~

*

Z

= v((VA,.C)(z))
= v((Vr.C)(x)).

as required, if we can show (%), i.e. it remains to show that
min{([[A,[|,w), w™ (z,9)} = C*(y) = v((VA,.C)(x))

holds for all w =71 ... 7, € rol(O)*. If y is not connected to z, i.e. we have wZ°(x,y) = 0 for all
such w, then this is trivial. The claim for all other y can be shown exactly as in |10, Section 4.1].

Consider now a number restriction for which (Znr.C')(z) occurs in A*. Recall that r must

be simple, and hence we have rZ = rZo. If, for some y € A, r(z,y) does not occur in A*,

then we know that v((=n7.C)(z)) > 0 = min{r(z,y),C*(y)}. By and the

induction hypothesis, we know that there are at most n — 1 elements y € A for which
min{rZ(z,y), CZ(y)} is strictly greater than v((>nr.C)(z)). This means that for any n different

elements y1,...,y, € A, we have v((=n7.C)(z)) > min]_, min{r?(z,v;), C*(y;)}. Hence, to
prove v((=nr.C)(z)) = (=nr.C)%(x), it suffices to find n witnessing elements where the latter
inequation holds with = instead of only >. This follows directly from |(T11)| O

4 A Tableau Algorithm

The construction of a possibly infinite tableau for O is hardly a decision procedure for consistency.
For that purpose, we need to appropriately lift the notion of blocking [15,/17] to our sets of order
assertions, in order to arrive at a finite structure. We also need to take a more fine-grained
view at the structure of a tableau. First, we designate a subset A, C A as mominal nodes.
Furthermore, in the tableau algorithm we need to introduce new individual names that do
not occur in ind(Q), and we assume that the corresponding nominals are contained in sub(O).
Instead of allowing to connect arbitrary pairs of individuals with roles, we will maintain a binary
neighbor relation N on A. For a node x, we consider its neighborhood

N(@):={z}U{y| (z,y) e N or (y,z) e N'}.

Further, if (x,y) € N, then y is a successor of x, and z is a predecessor of y. Ancestor is the
transitive closure of predecessor, and descendant the transitive closure of successor. Finally,
instead of a global set A*, we will maintain for each node x € A a local set of order assertions
L(z) over the localized order structure

U(z) :=Vo U{C(a) | C € sub(0), a € Ay} U{r(a,b),r(a,b)|rcrol(O), a,be A,}
U{C(y) | C € sub(0), y e N(2)} U {r(z,y),~r(z,y) | r € rl(0), y € N(2)},
where inv is defined as for U(A). Tt follows that U(x) is a subset of U(A) if all nominal nodes are
neighbors of each other. However, order assertions over () can only contain information about

the concepts at neighbors of  and role connections between x and its neighbors; additionally,
information about concepts and roles at nominal nodes is shared by all nodes.

10



Definition 4.1. A completion graph for O is a tuple G = (A, N, L, #), where A is a finite set
of nodes, N is a binary neighbor relation on A, L is a labeling function that assigns each node
x € A aset L(x) of oder assertions over U(x), and # is a binary relation on A.

The relation # indicates which nodes must be kept different. If = # y does not hold, then we can
merge them, which may be necessary in order to satisfy some number restrictions. We denote
by = the complement of #; if x = y, then this does not mean that z and y will necessarily be
merged, but only that it is possible to do so.

Nominal nodes and blockable nodes. The set A, is not fixed, but rather defined as the
set of all € A such that L£(x) entails {a}(z) > 1 for some a € N|. Recall that we may need
to introduce more such individual names in the construction of the completion graph. All
nodes in A\ A, are called blockable nodes. The idea is that nominal nodes may be arbitrarily
interconnected in NV, but blockable nodes always form a tree structure among themselves. Each
nominal node may be the root of such a tree, and additionally all blockable nodes may have
N-successors that are nominal nodes.

Rule applications. The initial completion graph for O is Gy := (Ag, No, Lo, #y), where
Ag :=ind(0), Ny := Ag x Ay, Lo(a) consists of all assertions containing a, and #, is empty.
Starting from Gy, the tableau algorithm nondeterministically applies the rules in Tables [2}{]
which modify the completion graph according to the semantics of concepts and axioms. To
guarantee termination, it is important that we only add order assertions to a label if they are
not already entailed by this label. Since labels of nodes may refer to neighboring nodes, we need
the dedicated rule (~=) to ensure that labels of neighbors are synchronized.

When we extend the neighborhood of x by adding a new node y with (x,y) € N, L(x) still
contains order assertions over the (extended) order structure U (z). The same holds when we
introduce a new nominal node using the rule (NN).

We now explain all relevant notions used in the tableau rules, most of which are suitably lifted
variants of the definitions in [15,/17]. For the following exposition, let G = (A, N, L, #) be an
arbitrary completion graph produced during the tableau algorithm.

Complete and clash-free. Our completion graph contains a clash if one of the following
conditions holds:

e For some node z € A, the set £(z) is unsatisfiable.

e For some (=nr.C) € sub(O), there are nodes z,y1,...,yn € A, such that £(x) entails
(znr.C)(r) < min{r(z,y),C(y:)}, 1 <i<n,and y; #y;, 1 <1< j<n.

e For some a € N|, there are nodes z,y € A such that x # y, L(x) entails {a}(z) > 1, and
L(y) entails {a}(y) > 1.

A completion graph is complete if it contains a clash or none of the tableau rules are applicable.

If the tableau rules can be applied to Gy such that a complete and clash-free completion graph
is obtained, then the algorithm has successfully proven the consistency of O. If we obtain a
clash, then either we have made the wrong choices in the rule applications, or O is inconsistent.

Blocking and safe neighbors. We adapt the notion of blocking from [17] to sets of order
assertions. A node x is directly blocked if it has ancestors z’, y, and 3’ such that

o (' 2),(y,y) €N;

11



Table 2: The tableau rules for the propositional constructors

(p) If p(x) occurs in L(x),

then add p(x) = p to L(x) unless it is already entailed.
(Self) If (Ir.Self)(z) occurs in L(z),

then then add (3r.Self)(z) =

(=) If (=C)(z) occurs in L(x),
then add C(z) < C(z) to L(x).

(M) If (CND)(x) occurs in L(x) and L(x) does not entail (C'N D)(z) = min{C(z), D(z)},
then add either

r(z,z) to L(x) unless it is already entailed.

e (CND)(z)<C(x) and (CND)(z) = D(x), or
. (EC(' I_)l D)(z) = C(z) and (CN D)(z) < D(x)
to L(x).

(=) If (C — D)(x) occurs in L(z) and L(z) does not entail (C' — D)(z) = C(z) = D(x),
then add either
e C(z) < D(z) and (C — D)(
e C(z) > D(z) and (C — D)(z
to L(x).
(o) If {a}(x) occurs in L(x),
then add either {a}(z) > 1 or {a}(x) < 0 to L(x) unless one of them is already
entailed.
(og) If for some a € N there are two nodes z,y such that £(x) entails {a}(z) > 1, L(y)
entails {a}(y) > 1, and = = y,
then merge z into y.

3

~

e .y, and all nodes on the path from y to x are blockable;

e for all order assertions ¢ over U(A) involving only the nodes x and z’, we have that £(z)
entails ¢ iff L£(y) entails o(¢), where o replaces x by y and z’ by y'.

In this case, we say that y blocks x. A node is blocked if it is directly blocked or it is blockable
and its predecessor is blocked, i.e. it is indirectly blocked.

The rules (V), (=), and (NN) are called generating, and the rules (><), (o<) and (NNg) are
called shrinking. Note that generating rules are not applicable to any blocked nodes, but the
other rules may be applied to all nodes. The reason for this is that, due to inverse roles, by
applying these rules to blocked nodes, the order assertions at unblocked nodes may change,
possibly leading to a clash or the breaking of a blocking relation.

A neighbor y of a node x is safe if (i) = is blockable, or (ii) z is a nominal node and y is not
blocked. The reason for this definition is that only safe neighbors really count for the satisfaction
of the witnessing conditions for value and number restrictions, since a blocked predecessor of a
nominal node does not correspond to an individual in the tableau that will be constructed in
Lemma [£3]

Merging and pruning. We sometimes need to merge nodes in order to satisfy nominals or
number restrictions. When we merge y into z, we replace all occurrences of y in L(y) by z
and add these assertions to £(z). Additionally, we modify the neighborhood of x such that it
inherits all neighbors of y, and then remove y (and all blockable subtrees) from the completion
graph. For this reason, we also call x a direct heir of y. Formally, to merge y into x, we do the

12



Table 3: The tableau rules for inverse roles, ontology axioms, and transfer of order assertions
between neighbors

(r7) If r(z,y) occurs in L(x),
then add r(z,y) = r~ (y,z) to L(x) unless it is already entailed.
(Cr) HCCD>peT,
then add either C'(z) < D(x) or p < D(z) to £(z) unless one of them is already
entailed.
(Cr) IrCs>peRandyeN(x),
then add either r(x,y) < s(x,y) or p < s(z,y) to L(x) unless one of them is already
entailed.

(ref) If ref(r) = p e R,
then add r(z,x) > p to L(x) unless it is already entailed.
(dis) If dis(r,s) = p € R and y € N (x),
then add either r(z,y) < 1—por s(z,y) < 1—pto L(x) unless one of them is already
entailed.

(ro) Iy eN(x),
then add r,(z,y) > 1 to L(z) unless it is already entailed.
(~) If 1. L(z) entails a < and
2. there is a y € A such that {«, 5} C U(y),
then add av< 8 to L(y) unless it is already entailed.

following:

1. For all nodes z € A with (z,y) € N, we replace (z,y) by (z,z) in N.
2. For all nominal nodes z € A with (y,2) € N, we replace (y, z) by (z,2) in V.

3. We collect all blockable nodes z € A with (y,z) € N into the set Z; these nodes will be
removed from the completion graph together with y.

4. For all order assertions ¢ € L(y) that do not involve nodes from Z, we add o(¢) to L(x),
where o is a substitution that replaces y by =x.

5. For all nodes z € A with y # 2z, we add = # z.
6. We prune y from the completion graph,

where the operation of pruning y is defined recursively as follows:

1. For all nodes z € A with (y,z) € N, we remove (y,2) from N and, if z is blockable,
prune z from the completion graph.

2. We remove y from A.

The tree-like structure of the blockable parts of a completion graph ensures that pruning removes
only subtrees, but no ancestors of y.

Strategy of rule applications. The level of a nominal node is defined as follows: Every
nominal node & where L£(z) entails {a}(z) > 1 for some a € ind(O) (e.g. one of the initial
nominal nodes) is of level 0; and a nominal node is of level ¢ > 0 if it is not of some lower level
j < i and has a neighbor that is of level ¢ — 1. Note that merging can only decrease the levels of
nodes, but not increase them.

We use a similar strategy of rule applications as in [17], i.e. the priority order between rules is
as follows:

13



Table 4: The tableau rules for value restrictions

(V) If 1. (Vr.C)(z) occurs in L(z), x is not blocked, and
2. there is no safe neighbor y € A (z) such that £(z) entails
(vr.C)(z) =z r(z,y) = Cly),
then 1. introduce a new node y, add (x,y) to A, and
2. add either
e r(z,y) < C(y) and (Vr.C)(x) > 1, or
o r(z,y) > C(y) and (Vr.C)(z) = C(y)
to L(x).
(Va) If (Vr.C)(z) occurs in L(x),
then add (Vr.C)(z) < (VA,.C)(x) to L(z) unless it is already entailed.
(A) If (VAL.C)(z) and r(z,y) occur in £(z) and g ~2 ¢’ € A,
then add either p < (VA?/.C)(y), r(z,y) < (VA?.C)(y), or
(VA1.C)(x) < (VAT .C)(y) to L(x) unless one of them is already entailed.
(A.) If (VAL.C)(x) occurs in L£(x) and ¢ =% ¢/ € A,
then add either p < (VA .C)(x) or (VAL.C)(z) < (VA .C)(x) to L£(x) unless one of
them is already entailed.
(Afin) If (VA2.C)(x) occurs in L(x) and g is final,
then add (VA?.C)(x) < C(x) to L(x) unless it is already entailed.

(~)
(0) and (0<)
. (NN) and (NNg) (first applied to nominal nodes with lower levels)

Ll

all other rules.

Now that we have introduced all relevant definitions, we can prove termination and correctness
of our algorithm. The proof of the following lemma closely follows the one from [17], but has to
deal with order assertions instead of concepts in the node labels.

Lemma 4.2. Every sequence of applications of the tableau rules to Gy terminates.

Proof. Let m := |sub(O)|, k := |rol(O)], n be the maximal number occurring in number
restrictions in sub(Q), ¢ := [ind(O)|, and o := |Vo|. Recall that in the worst case m is
exponential in n and in the size of the role hierarchy. However, the exponential blowup in n is
irrelevant since each set £(z) can contain at most one additional at-least restriction >mr.C' for
each >nr.C that occurs in O.

Observe first that the relation N restricted to the blockable nodes is always tree-shaped. More
precisely, such trees are rooted in nominal nodes and leaves may have outgoing N -edges to
nominal nodes. To see this, assume that the application of one of the tableau rules destroys
this property, i.e. creates a completion graph with a blockable node x that has two different
predecessors, i.e. (y1,), (y2,#) € N. Then the rule that was applied must be a shrinking
rule, and it must further be the case that y; and y, each had a blockable successor, x and 2/,
respectively, and =’ was merged into x by the rule (><) (the other two shrinking rules do merge
two blockable nodes). But then there must be a common neighbor z of x and ' such that £(z)
entails (Znr.C)(z) < min{r(z,z),C(z)} and (Znr.C)(z) < min{r(z,2’),C(2’)}. This means
that z is a nominal node since otherwise the structure among blockable nodes would already
have been non-tree-shaped before. Furthermore, we must have either (z,z) € N or (z/,2) e N
since otherwise either z = y; = y» or either x or z’ already had two different predecessors. This

14



Table 5: The tableau rules for number restrictions

(=) 1. (nr.C)(z) occurs in L(z), x is not blocked, and
2. there do not exist n safe neighbors y1,...,y, € N(z) with y; #y;, 1 <i<j<n,
such that L£(x) entails (Znr.C)(x) < min{r(z,y;),C(y;)}, 1 <i < n,
then 1. introduce n new nodes yi,...,y, with (z,y1),...,(z,yn) € N and y; # y;,
1<1<j<n,and
2. foreach i, 1 <i < n, add (Znr.C)(z) < r(z,y;) and (Znr.C)(x) < C(y;)
to L(x).
(<) If1. (>nr.C)(x) occurs in L(x) and
2. there exist at least n neighbors y € N'(z) such that £(x) entails
(Znr.C)(z) < min{r(z,y), C(y)},
then 1. choose two such neighbors ¥, z such that y = z and
2. do the following:
e if y is a nominal node, then merge z into y;

e else if z is a nominal node or an ancestor of y, then merge y into z;
e else merge z into y.
(ch) If 1. (Znr.C)(x) and r(x,y) occur in L£(z) and

2. L(x) entails neither (Znr.C)(x) < min{r(z,y),C(y)} nor its negation,
then add either

means that there must be m < n — 1 nominal neighbors z1,..., 2y, with 2z; # 2;, 1 <i < j <m,
and L(z) entails (=(m + 1) r.C)(z) < min{r(z, ), C(z)}, 1 <1i < m; otherwise the rule (NN)
would be applicable and would have been applied before (><). But then immediately afterwards
the rule (NNg¢) would have to be applied, and would merge = and z’ into one of the nominal
nodes 21, ..., Zm, thus invalidating our assumption.

Further observe that nodes and elements from node labels can only be removed by the shrinking
rules, and new nodes can only be added by the generating rules. Moreover, each generating
rule can be triggered at most once for each concept in sub(Q) occurring in the label of a node x.
For the rules involving role connections to neighboring nodes, this observation is due to the
fact that, if a neighbor y of x is merged into another node z, then z inherits all relevant order
assertions from y, and either z is then a neighbor of z (if x is a nominal node or y is a successor
of z) or z is removed by pruning (if  is a blockable node and z is a successor of y). This means
that each node can have at most mn blockable successors.

The next crucial observation is that blocking, which can occur only within a path consisting
only of blockable nodes, occurs after at most \ := 22(o+2m+4k+2)* | | steps. For this, it suffices
to determine the total number of possible order assertions (not involving min or =, and using
only < or >) that can be formulated about two neighboring nodes. The underlying order
structure contains o + 2m + 4k + 2 elements, and hence there are 2(o + 2m + 4k + 2)? such order
assertions. This means that each N -chain of blockable nodes must contain a directly blocked
node after at most A steps. This implies that all blockable subtrees of the completion graph
have branching degree at most mn and depth at most A.

The last step is to show that the number of nominal nodes is bounded by O(¢(mn)*). The proof
of this proceeds as in [17]: The rule (NN) can initially only be triggered due to a newly created

15



Table 6: The special tableau rules for nominals

(NN) If 1. (>nr.C)(z) occurs in L(z), z is a nominal node,

2. there is a blockable node y with (y,z) € N such that £(z) entails
(znr.C)(z) < min{r(z,y),C(y)}, and

3. there do not exist ¢ < n — 1 nominal nodes z1, ..., 2, such that £(x) entails
Z(l+1)r.C)x)=(nr.C)(z) and (¢ + 1) r.C)(x) < min{r(x, z;),C(z;)},
1<i</land 2 25, 1 <1< j <Y,

then 1. guess a number m between 1 and n — 1, and add
Zm+1)r.C)(z) = (2nr.C)(z) to L(x),

2. introduce m new nodes y1, ..., ym, with (z,21),...,(z,2zm) € N and z; # zj,
1<i<j<m,

3. introduce m new individual names ay, ..., a,,, and for each i, 1 <i < m, add
Zm+1)r.C)(z) <r(z,z), (Zm+1)r.C)(z) < C(z), and {a;}(z) =1
to L(x).

(NNg) If 1. (>nr.C)(z) occurs in L(z), = is a nominal node,
2. there is a blockable node y € N(z) such that £(z) entails
(Znr.C)(z) < min{r(z,y),C(y)}, and
3. there are nominal nodes z1, ..., z,-1 € N(z) with z; #z;, 1 <i<j<n—1,
such that £(z) entails (Znr.C)(z) < min{r(z,z;),C(z)}, 1 <i<n—1,
then 1. choose a z;, 1 <7 < n — 1, such that y = z; and
2. merge y into z;.

nominal node z, which must be of level 0 since the only individual names occurring in sub(O)
are those in ind(O). Afterwards, it may be applied to predecessors of z that were originally
blockable but were then merged into nominal neighbors of . Since the length of such a chain
of blockable nodes is at most A, the rule (NN) can be applied only to nominal nodes of level
below A. Furthermore, this rule can be applied at most m times to each node of level i (or
its heirs), each time generating at most n new nominals, and hence at most £(mn)**! nominal
nodes of level ¢ + 1. Since it can only be applied up to level A, this gives an upper bound of
O(¢(mn)*) new nominal nodes. Additionally, each nominal node may be the root of a blockable
tree of size O((mn)*). Hence, the total number of nodes in a completion graph is finite, and
thus each completion graph must become complete after finitely many steps. O

We now prove that the algorithm correctly decides consistency of O (cf. Lemma.

Lemma 4.3. If the tableau rules can be applied to Gy in such a way that a complete and
clash-free completion graph is obtained, then there exists a countable tableau for O.

Proof. Assume that the tableau rules have been applied to Gy, resulting in a complete and
clash-free completion graph G = (A, N, L, #). We first modify the labeling function for all
nominal nodes x, by removing all assertions from £(x) that refer to blockable nodes, and adding
all entailments about nominal nodes that may have been lost in this process. More formally, we
define £'(z) as the restriction of £(z) to the order structure

Uy, :=Vo U{C(a) | C €sub(0), a e A,}U{r(a,b),~r(a,b)|rerol(0), a,be A,},

and then add all order assertions over U, that are entailed by the original £(x) to £'(x). This
allows a better separation of the behavior of the nominal nodes from that of the blockable nodes.
Observe that all relevant order assertions that refer to the connection between a nominal node =
and a blockable neighbor y have already been transferred to £(y) by the rule (~). Furthermore,
G is still clash-free after this modification; however, it may not be complete anymore for the

16



nominal nodes. The blocking relationships between nodes are not affected since they do not
involve nominal nodes.

We now construct a countable tableau (A, A*) of O by following the structure of A" and, at
each directly blocked node x, unraveling the structure by replacing = with a copy of an ancestor
that blocks it. At the same time, we will construct a function f: A’ — A that specifies which
node was used to construct each element of A’.

We initially set

o A':={x € A |z is not blocked},
o A" :=U,cn £'(2), and
o f(z):=xforall z € A,

and assume first that A* is unsatisfiable. This can be the case only because of a sequence
of elements a; <y -+ <,_1 g, where <; € {<,<,=}, each order assertion «o; <; a;t1,
1 <i < n—1,is entailed by some £'(z;) with z; € A’, we have a; = a,,, and at least one of
the <; is a strict inequality (<). Let this be a sequence that has minimal length among all
sequences with this property. We show the following properties:

(a) We have n > 2. Otherwise, a; <; 3 would be entailed by £’(x1), which contradicts the
clash-freeness of G.

(b) We have z; # x;41 for all4, 1 < i < n—2, and x,,_1 # 1. Otherwise, by@we would have
a situation like c; <5 a9 Jy a3 (modulo cyclic index shifts), where both order assertions
are entailed by the same £'(z). But then also ay < a3 would be entailed by £'(x), where
dis < if < € {9y, 95}, and otherwise it is <. But this shows the existence of a shorter
sequence with the same properties as before, in contradiction to our minimality assumption.

(¢) There is no «; that refers only to nominal nodes. Otherwise, by @ we would have a
situation like a; <7 ap <y as, where 1 is of the form p € Vo, C(z,), or r(x,,zp), where
x, and xp are nominal nodes. But then we would have a1, as € U(x2); in particular, if
Zo is a nominal node, then both a7 and as would refer only to nominal nodes due to our
modification. But then the rule (~) implies that «; <y ap would also entailed by £'(z2),
which contradicts @

Since the (modified) labels of nominal nodes may only refer to nominal nodes, implies that
the z; are all blockable nodes. Furthermore, since we have a; € U(z;—1) NU(x;), 2 <i < n—1,
and o1 = ay, € U(x1) NU(2p—1), each pair (z;—1,2;), 2 <1< n-—1, and (z1,2,-1) must be
neighbors. The tree structure of N on the blockable nodes and @ imply that there is a situation
like oy <3 ag <9 a3 <3 a4 such that 7 = z3. Hence, we have as, a3 € U(x1), which shows
by (~) that a; < ay is already entailed by £'(x1), where < is obtained as in the proof of
But this again contradicts the minimality of n.

This shows that the initial tableau constructed above is satisfiable. We now iteratively expand
it by unraveling A/ at the blocked nodes. Let 2’ € A’ be such that f(z') has a directly blocked
successor x in G that is not yet represented in our tableau, i.e. there is no z” € A’ such that
f(2") = z and 2" is connected to 2’ by some role assertions. Let further 2 be the name that
is used in A* to refer to this still missing successor of 2/, y € A be a node that blocks z in G,
and 3’ be the predecessor of y in /. Recall that ¢/, y, f(2'), x, and all nodes in between are
blockable. Consider now the subtree A, C A consisting of all blockable descendants of y that
are not blocked. To distinguish these nodes from those already present in A’, for each blockable
node z occurring in £'(v) for some v € A, let z® be a unique new node name that does not yet
occur in A’. We now do the following;:

e add {2 |z € A,} to A/;

e replace all occurrences @ in A* by y® and add UzeAy L'(2)® to A*, where L'(2)® is

17



obtained from £’(z) by replacing all occurrences of f(a’) by 2/, and of any other blockable
nodes z by 29; and

o set f(2®):=zforall z € A,

The resulting set A* is such that it looks as if = has never been blocked, but rather that the
tableau rules have been applied to it and its successors without restrictions. Assume now that A*
has become unsatisfiable by this construction, and hence there is a sequence oy < --- <,,_1 ap,
as above, where 7 is minimal. Since the original A*, and hence also . A, L'(2)@, are satisfiable,
it must be the case that this sequence involves nodes from the previous A’ as well some of the
form 2@ for z € A,. We can show the properties |(a)H{(c)| as before. Moreover, the tree-shape
of the connections between blockable nodes is maintained by our construction. To derive a
contradiction in the same way as above, it suffices to note that due to the blocking condition all
order assertions shared by f(z') and 2’ are also shared by z’ and y© (after renaming 2 to y®
and f(z') to 2’), and hence £'(y)® and the set corresponding to £'(f(z')) in A* behave as if
the rule (~) has been applied exhaustively.

If we continue this process infinitely, taking care that every directly blocked node is unraveled
eventually, we obtain the final tableau (A’, A*). The set A* is satisfiable due to the compactness
theorem of first-order logic. It remains to verify the tableau conditions. It is easy to verify that

the local conditions [[TDH(T5)} [(T7)} [(T9)] [[T10)} [T14)} [(T18)] and [[T20)} are satisfied due to
the corresponding tableau rules. We consider the remaining ones:

If 2 € A’ is such that (Vr.C)(x) occurs in A*, then we know that f(z) is not blocked in G.
Hence, by the rule (V) there must be a safe neighbor y € M (z) such that £(z) entails
(vr.C)(f(2)) =2 r(f(z),y) = C(y).

Consider first the case that x is blockable. If y is not blocked, then we have directly
introduced (a copy ¥’ of) y into A’, together with (the copy z of) f(x), and the (renamed)
entailment still holds in A*. If y is a successor of x, then it may be the case that y is
directly blocked in G. But then we have introduced a node 3’ into A’ that can serve as a
replacement for this missing successor, i.e. A* entails (Vr.C)(x) > r(z,y’) = C(y’) due
to the blocking condition.

If z is a nominal node, then we know that y is not blocked since it is a safe neighbor
of x. Nevertheless, it may be that we have removed from L£(x) some assertions that
were necessary to derive the above entailment; this can only be the case if y is blockable.
However, by the rule (~), this entailment has been transferred to L£(y), and is still present
in £'(y), which is why it is still entailed by A*.

If (VA.C)(z) and r(z,y) occur in A*, then the required entailment is provided by the
rule (A). Again, the modification of £ to £ for the nominal nodes is rendered irrelevant
by the rule (~).

This case can be handled by similar arguments as for Additionally, the n safe
neighbors created by the rule (>) are still distinct in A’ since they can never be merged.

Assume that (Znr.C)(z) occurs in A* and there are different y1,...,y, € A’ such
that A* entails (Znr.C)(z) < min{r(z,y;), C(y;)}. By our construction, we know that
(Znr.C)(f(x)) occurs in L(f(x)) and there exist n neighbors ¥}, ...,y of f(x) (which
are possibly blocked) for which similar assertions are entailed by L£(f(x)). Since G is
clash-free, there must be two of these neighbors that are not in the relation #, and hence
the rule (><) is applicable to G. This contradicts our assumption that G is complete.

For each a € ind(O), the existence of exactly one nominal node for a is due to the
definition of the initial completion graph Gy, clash-freeness of G, the rule (o<), and our
construction of the tableau.

We consider the example of an assertion r(a,b) > C(c) in A. In Gy, there exist nodes
a, b, ¢ that are all neighbors, and each label entails r(a,b) > C(c). Due to merging, in G
there exist heirs x,, 2, z. of these original nodes, which inherit the neighbor relationships

18



as well as the required entailment. Hence, A* also entails r(x4,2) > C(2z.). The proofs
for the other kinds of assertions are similar.

Finally, [(T13)} [[T16)} [[T19)] [[T21)] and [[T22)] can be shown using similar arguments. O

The other direction is easier to show.

Lemma 4.4. If there is a tableau for O, then the tableau rules can be applied to Gy in such a
way that a complete and clash-free completion graph is obtained.

Proof. If O is consistent, then by Lemma [3.2] there exists a tableau (A’,.A*) for O. We use this
tableau to guide the application of the completion rules to Gy. We will maintain a function
f: A — A’ that matches the nodes of our completion graph to the nodes of the tableau, such
that the following conditions are satisfied:

(i) If a < B occurs in L£(z) and «, § do not involve number restrictions or nominals that do
not occur in @, then A* entails f(«) > f(5), where f(«) is obtained from « by replacing
all nodes according to f.
(i) 1f = £y, then f(z) # £(3).
(iii) If Zmr.C € sub(O) does not occur in O and (Zmr.C)(z) occurs in L(x), then there are
exactly m — 1 elements y € A’ such that A* entails

(Enr.C)(f(z)) <min{r(f(z),y), Cy)}-

For each (=mr.C')(x) occurring in L£(x) for which >m r.C does not occur in O, we know that
L(z) entails (Zmr.C)(z) = (nr.C)(x) for some >nr.C that does occur in O. Hence, |(1)| and
the satisfiability of A* imply that all node labels of our completion graph will be satisfiable.
Furthermore, clashes due to number restrictions are ruled out by |(1)H(ii1)| and Finally,
nominals behave correctly due to and Hence, our final completion graph will be
clash-free.

For the initial completion graph, we set f(a) := z, for all ind(Q), where z, is the nominal node
that exists by Due to [(T15)|and [[T17)} this mapping satisfies all our conditions. We now
show by induction on the sequence of rule applications how the tableau rules can be applied in
order to maintain the conditions |(i)H(iii)} For most of the tableau rules, it is trivial to show that
they can be applied in such a way that the conditions remain satisfied. In particular, for the
simple rules that only have to make nondeterministic choices because of the semantics of =
and min (i.e. the rules (M), (=), (E7), (CEr), (dis), (A), (A¢), (ch), and (0)), we know by the
corresponding conditions of Definition [3.1] and our semantics that we can always choose one of
the alternatives such that [(i)|is not violated. It is also clear that the rule (~~) does not affect
this condition.

Consider now the generating rule (>); the arguments needed for (V) are similar. Assume that
we have to apply this rule because (=nr.C')(z) occurs in L£(x), and hence by |(1)| the element
(Znr.C)(f(x)) occurs in A*. Due to there are at least n elements y1,...,y, € A’ such
that A* entails (Znr.C)(z) < min{r(z,y),C(y)}, and hence we can introduce n new neighbors
Yyi, ...y, according to (=) and set f(y}) :=y;, 1 <i < n, in order to keep the conditions [(i)H(ii)]
satisfied.

For the shrinking rule (NNg), consider any (Znr.C)(x), y, and 21, ..., 2,1 as in the precondi-
tions of this rule. Then by or and we know that A’ contains at most n — 1 nodes z
for which A* entails (Znr.C)(f(x)) < min{r(f(x), z),C(z)}. Furthermore, by the nodes
fy), f(z1),..., f(zn—1) all satisfy this condition. By this implies that there is an index 1,
1 <i<n—1,such that f(y) = f(2), and hence y = z;. This shows that the rule (NNg) can be
applied in such a way that all conditions remain satisfied. The same can be shown for (>¢)
using similar arguments.

19



For (0g), assume that there exist an a € N; and two nodes z,y whose labels entail {a}(z) > 1
and {a}(y) > 1, respectively. This can only be the case for a € ind(O) since the rule (NN)
always introduces new individual names. Hence, [(i)|and imply that m(x) = 7(y), and thus
we can again merge these two nodes.

Finally, consider the rule (NN). If all its preconditions are satisfied by (Znr.C)(z) and y,
then we know that it has not been applied to this number restriction at = (or any node
that was merged into x) before. Hence, >nr.C must occur in O, and thus and [(T'12)]

imply that there are exactly m < n — 1 elements zi,...,z/, € A’ for which £(z) entails
enr.C)(z) < min{r(f(z),z}),C(z))}, 1 <i < m. This shows that we can apply the rule and
create m new nominal nodes z1, ..., z, € A, for which we set f(z;) := 2z, 1 <i < m, without

violating the conditions.

Using Lemma this shows that after finitely many steps we will have produced a complete
and clash-free completion graph. O

Note that the bound on the number of nodes derived in Lemma [4.2]is triply exponential in
the size of O, and hence Lemmas and [£.4] prove a 3-NEXPTIME upper bound on the
complexity of consistency in G-SROZQ, which is the same bound that is obtained from the
classical tableau algorithm for SROZQ |15|. This is in contrast to 2-NEXPTIME-completeness
of classical SROZQ |20|, where the upper bound is obtained by a reduction to the two-variable
fragment of first-order logic with counting quantifiers. The 2-NEXpPTIME-hardness can be
transferred to our setting via a linear reduction from consistency in a sublogic of G-SROZQ to
consistency in classical SROZQ |6].

5 Conclusions

This paper continues the study of fuzzy extensions of expressive DLs with the Gddel semantics
of [5L|11]. We extend the previous constructions to develop a goal-oriented tableau algorithm
that can be the basis of a practical implementation to decide consistency in G-SROZQ. In
contrast, the reduction to a classical ontology proposed in |11] exhibits an exponential blowup if
both nominals and number restrictions are used, and furthermore is restricted to sublogics of
G-SROZQ with the (quasi-)forest model property only.

Tableau algorithms developed for FDLs using the closely related Zadeh semantics [24}25] or
finitely valued semantics [9}/19,/26] are conceptually much closer to the classical algorithms, and
explicitly represent the truth degrees of all concepts in the node labels. In contrast, due to
the lack of the finitely valued model property, our tableau algorithm needs to use a novel data
structure to reason about order relations between truth degrees for different concepts. The main
technical challenge was to find a way to represent these relations that still allowed us to keep
the good characteristics of the classical algorithm.

Nevertheless, in order to obtain a practically feasible implementation, more optimizations are
necessary. For example, we can reduce the amount of nondeterminism in some of the tableau
rules by exploiting the order assertions that are already entailed by £(x); e.g., in the rule (=),
if L(x) already entails C(z) < D(x), then it suffices to add (C'— D)(x) > 1 to L(z), and the
other case can be discarded immediately. Moreover, the naive algorithm suggested in Section 77
to decide satisfiability and entailment for sets of order assertions is hardly practical. This should
be done by a more streamlined algorithm, e.g. using reachability analysis in the graph formed
by an order structure S and a set of order assertions over S. Moreover, this algorithm should
employ caching techniques in order to avoid having to repeat the whole reachability analysis
every time a single assertion (i.e. edge) is added. Another obvious optimization would be to put

20



all order assertions that refer only to the nominal nodes into a global set that is shared by all
nodes, instead of replicating these assertions in all node labels.

On the theoretical side, future work includes the analysis of sublogics with better complexities,
e.g. Horn variants of G-SROZQ [22], and other reasoning problems such as answering (fuzzy)
conjunctive queries [7,[23].

Acknowledgments

We want to thank Daniel Borchmann for fruitful discussions on the topic of this paper.

References

1

2

3]

[4

[5]

[6]

7]

18]

19]

[10]

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2nd edition, 2007.

Fernando Bobillo, Marco Cerami, Francesc Esteva, Angel Garcia-Cerdafia, Rafael Pefialoza,
and Umberto Straccia. Fuzzy description logics. In Petr Cintula, Christian G. Fermiiller,
and Carles Noguera, editors, Handbook of Mathematical Fuzzy Logic, volume 3 of Studies in
Logic. College Publications, 2015. In press.

Fernando Bobillo, Miguel Delgado, and Juan Gémez-Romero. Optimizing the crisp rep-
resentation of the fuzzy description logic SROZQ. In Uncertainty Reasoning for the
Semantic Web I, volume 5327 of Lecture Notes in Artificial Intelligence, pages 189-206.
Springer-Verlag, 2008.

Fernando Bobillo, Miguel Delgado, Juan Goémez-Romero, and Umberto Straccia. Join-
ing Godel and Zadeh fuzzy logics in fuzzy description logics. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 20(4):475-508, 2012.

Stefan Borgwardt, Felix Distel, and Rafael Penaloza. Decidable Gédel description logics
without the finitely-valued model property. In Chitta Baral, Giuseppe De Giacomo,
and Thomas Eiter, editors, Proc. of the 14th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’14), pages 228-237. AAAT Press, 2014.

Stefan Borgwardt, Felix Distel, and Rafael Penaloza. The limits of decidability in fuzzy
description logics with general concept inclusions. Artificial Intelligence, 218:23-55, 2015.

Stefan Borgwardt, Theofilos P. Mailis, Rafael Penaloza, and Anni-Yasmin Turhan. Answer-
ing fuzzy conjunctive queries over finitely valued fuzzy ontologies. CoRR, abs/1508.02626,
2015.

Stefan Borgwardt and Rafael Penaloza. Reasoning in fuzzy description logics using automata.
Fuzzy Sets and Systems, 2015. In press.

Stefan Borgwardt and Rafael Penaloza. Consistency reasoning in lattice-based fuzzy
description logics. International Journal of Approzimate Reasoning, 55(9):1917-1938, 2014.

Stefan Borgwardt and Rafael Pefialoza. Infinitely valued Gédel semantics for expressive
description logics. LTCS-Report 15-11, Chair for Automata Theory, TU Dresden, Germany,
2015. See http://lat.inf.tu-dresden.de/research/reports.html.

21



[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

23]

[24]

[25]

[26]

Stefan Borgwardt and Rafael Penialoza. Reasoning in expressive description logics under
infinitely valued Godel semantics. In Carsten Lutz and Silvio Ranise, editors, Proc. of the
10th Int. Symp. on Frontiers of Combining Systems (FroCoS’15), volume 9322 of Lecture
Notes in Artificial Intelligence, pages 49-65. Springer-Verlag, 2015.

Petr Cintula, Petr Hajek, and Carles Noguera, editors. Handbook of Mathematical Fuzzy
Logic, volume 37-38 of Studies in Logic. College Publications, 2011.

Petr Hajek. Metamathematics of Fuzzy Logic (Trends in Logic). Springer-Verlag, 2001.

Petr Hajek. Making fuzzy description logic more general. Fuzzy Sets and Systems, 154(1):1-
15, 2005.

Tan Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROZQ. In
Patrick Doherty, John Mylopoulos, and Christopher Welty, editors, Proc. of the 10th Int.

Conf. on Principles of Knowledge Representation and Reasoning (KR’06), pages 57—67.
AAAT Press, 2006.

Tan Horrocks and Ulrike Sattler. Decidability of SHZQ with complex role inclusion axioms.
Artificial Intelligence, 160(1-2):79-104, 2004.

Tan Horrocks and Ulrike Sattler. A tableau decision procedure for SHOZQ. Journal of
Automated Reasoning, 39(3):249-276, 2007.

Tan Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the Interest Group in Pure and Applied Logic, 8(3):239—
263, 2000.

Yuncheng Jiang, Yong Tang, Ju Wang, Peimin Deng, and Suqin Tang. Expressive fuzzy
description logics over lattices. Knowledge-Based Systems, 23(2):150-161, 2010.

Yevgeny Kazakov. RZQ and SROZQ are harder than SHOZQ. In Gerhard Brewka and
Jérome Lang, editors, Proc. of the 11th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’08), pages 274-284. AAAT Press, 2008.

Erich Peter Klement, Radko Mesiar, and Endre Pap. Triangular Norms. Trends in Logic,
Studia Logica Library. Springer-Verlag, 2000.

Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler. Complexities of horn description
logics. ACM Transactions on Computational Logic, 14(1):1-36, 2013.

Jeff Z. Pan, Giorgos B. Stamou, Giorgos Stoilos, Stuart Taylor, and Edward Thomas.
Scalable querying services over fuzzy ontologies. In Jinpeng Huai, Robin Chen, Hsiao-Wuen
Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong Zhang, editors, Proc. of
the 17th Int. World Wide Web Conference (WWW’08), pages 575-584. ACM, 2008.

Giorgos Stoilos and Giorgos B. Stamou. Reasoning with fuzzy extensions of OWL and
OWL 2. Knowledge and Information Systems, 40(1):205-242, 2014.

Umberto Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intelli-
gence Research, 14:137-166, 2001.

Umberto Straccia. Uncertainty in description logics: A lattice-based approach. In Proc.
of the 10th Int. Conf. on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU’04), pages 251-258, 2004.

22



	Introduction
	Preliminaries
	Gödel Fuzzy Logic and Order Structures
	G-SROIQ
	Weighted Automata for Fuzzy Role Inclusions

	From Models to Tableaux
	A Tableau Algorithm
	Conclusions

