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Abstract
In this paper, we explore how ontological knowl-
edge expressed via existential rules can be com-
bined with possibilistic networks (i) to represent
qualitative preferences along with domain knowl-
edge, and (ii) to realize preference-based answering
of conjunctive queries (CQs). We call these com-
binations ontological possibilistic networks (OP-
nets). We define skyline and k-rank answers to
CQs under preferences and provide complexity (in-
cluding data tractability) results for deciding con-
sistency and CQ skyline membership for OP-nets.
We show that our formalism has a lower complex-
ity than a similar existing formalism.

1 Introduction
The abundance of information on the Web requires new per-
sonalized information filtering techniques that are able to re-
trieve resources that best fit users’ interests and preferences.
These systems should also manage the rapid change of users’
preferences and have means for coping with trust and uncer-
tainty on the Web. Moreover, the Web is evolving at an in-
creasing pace towards the so-called Social Semantic Web (or
Web 3.0), where classical linked information lives together
with ontological knowledge and social interactions of users.
While the former may allow for more precise and rich results
in search and query answering tasks, the latter can be used to
enrich the user profile, and it paves the way to more sophis-
ticated personalized access to information. This requires new
techniques for ranking search results, fully exploiting onto-
logical and user-centered data, i.e., user preferences.

Conditional preferences are statements of the form “in
the context of c, a is preferred over b”, denoted c : a ≻ b
[Ben Amor et al., 2014; Boutilier et al., 2004; Wilson, 2004].
Two preference formalisms that allow for representing such
preferences are possibilistic networks and CP-nets.
Example 1 Bob wants to rent a car and (i) he prefers a new
car over an old one, (ii) given he has a new car, he prefers
it to be black over not black, and (iii) if he has an old car,
he prefers it to be colorful over being black. We have two

variables for car type (new (n) or old (o)) and car color
(black (b) or colorful (c)), T and C, respectively, such that
Dom(T )= {n, o} and Dom(C)= {b, c}. Bob’s preferences
can be encoded as ⊤ : n ≻ o, n : b ≻ c, and o : c ≻ b. In CP-
nets [Boutilier et al., 2004], we have the following ordering
of outcomes: nb ≻ nc ≻ oc ≻ ob. That is, a new and colorful
car is preferred over an old and colorful one, which is not a re-
alistic representation of the given preferences. A more desir-
able order of outcomes for Bob would be nb ≻ oc ≻ nc ≻ ob,
which can be induced in possibilistic networks with an appro-
priate preference weighting in the possibility distribution.

In this paper, we propose a novel language for expressing
preferences over the Web 3.0 using possibilistic networks.
It has lower complexity compared to a similar existing for-
malism: OCP-theories [Di Noia et al., 2015], which are an
integration of Datalog+/− with CP-theories [Wilson, 2004].
This is because deciding dominance in possibilistic networks
can be done in polynomial time, while it is PSPACE-complete
in CP-theories. Furthermore, every possibilistic network en-
codes a unique (numerical) ranking on the outcomes, while
CP-theories encode a set of (qualitative) total orders on the
outcomes. Additionally, our framework allows to specify the
relative importance of preferences [Ben Amor et al., 2014].

We choose existential rules in Datalog+/− as ontology lan-
guage for their intuitive nature, expressive power for rule-
based knowledge bases, and the capability of performing
query answering. Possibilistic networks are also a simple and
natural way of representing conditional preferences and ob-
taining rankings on outcomes, and can be easily learned from
data [Borgelt and Kruse, 2003]. The integration between the
two formalisms is tight, as possibilistic network outcomes are
constrained by the ontology, but they also dictate the ranking
of answers to a query.
The main contributions of this paper are the following:
• We introduce a novel formalism, called ontological possi-
bilistic networks (OP-nets), combining Datalog+/– with pos-
sibilistic networks, to encode preferences over atoms.
• We define skyline and k-rank answers for conjunctive
queries (CQs) relative to the preferences encoded in OP-nets,
and describe how to compute such answers.



• We analyze the complexity of deciding consistency and
skyline membership of answers to CQs, for different types
of complexity, and provide results for Datalog+/– languages.
We also obtain several tractability results. Notably, these re-
sults hold for any preference formalism where dominance be-
tween two outcomes can be decided in polynomial time.

This is an extended version of [Borgwardt et al., 2016].

2 Preliminaries
We first recall the basics on Datalog+/– [Calı̀ et al., 2012a]
and on possibilistic networks.

2.1 Datalog+/–
Databases. Let ∆ be a set of constants, ∆N a set of labeled
nulls, and V a set of (regular) variables. A term t is a con-
stant, null, or variable. An atom has the form p(t1, . . . , tn),
where p is an n-ary predicate, and t1, . . . , tn are terms. Con-
junctions of atoms are often identified with the sets of their
atoms. An instance I is a (possibly infinite) set of atoms p(t),
where t is a tuple of constants and nulls. A databaseD is a fi-
nite instance that contains only constants. A homomorphism
is a substitution h : ∆ ∪ ∆N ∪ V → ∆ ∪ ∆N ∪ V that is
the identity on ∆. We assume that the reader is familiar with
conjunctive queries (CQs). The set of answers to a CQ q over
an instance I is denoted q(I). A Boolean CQ (BCQ) q has a
positive answer over I , denoted I |= q, if q(I) ̸= ∅.
Dependencies. A tuple-generating dependency (TGD) (or
existential rule) σ is a first-order formula ∀X∀Yφ(X,Y) →
∃Z p(X,Z), where X∪Y∪Z ⊆ V , φ(X,Y) is a conjunction
of atoms, and p(X,Y) is an atom; φ(X,Y) is the body of σ,
denoted body(σ), while p(X,Z) is the head of σ, denoted
head(σ). For clarity, we consider single-atom-head TGDs;
however, our results can be extended to TGDs with a conjunc-
tion of atoms in the head. An instance I satisfies σ, written
I |= σ, if the following holds: for all homomorphisms h such
that h(φ(X,Y))⊆ I , there exists h′ ⊇h|X∪Y, where h|X∪Y

is the restriction of h to X ∪ Y, such that h′(p(X,Z))∈ I .
A negative constraint (NC) ν is a first-order formula of the
form ∀Xφ(X) → ⊥, where X ⊆ V , φ(X) is a conjunc-
tion of atoms and is called the body of ν, denoted body(ν),
and ⊥ denotes the truth constant false . An instance I satis-
fies ν, written I |= ν, if there is no homomorphism h such
that h(φ(X)) ⊆ I . Given a set Σ of TGDs and NCs, I satis-
fies Σ, written I |= Σ, if I satisfies each TGD and NC of Σ.
Datalog+/– Ontologies. A Datalog+/– ontology O=(D,
Σ), where Σ=ΣT ∪ ΣNC, consists of a finite database D
over ∆, a finite set ΣT of TGDs, and a finite set ΣNC of NCs.
The set of models of D and Σ, denoted mods(D,Σ), con-
tains all instances I with I ⊇ D and I |= Σ. The ontology is
consistent if this set is not empty.
Example 2 Consider the database D in Table 1, modeling
the domain of an online car booking system. Moreover,

Σ = {offer(V, P, S) → ∃C,F, T specs(S,C, F, T ),
offer(V, P, S) → ∃R vendor(V,R),
specs(S,C, F, T ) → color(C) ∧ type(T ),
specs(S,C, F, T ) → ∃N feature(F,N),

offer(V, P1, S) ∧ offer(V, P2, S) → P1 = P2 }

Table 1: Database D.

id color feature type
t1 s1 b f1 o
t2 s2 c f2 n
t3 s3 c f2 o

specs

id name
t7 f1 ac
t8 f2 map
t9 f3 cd

feature

vendor price specs
t4 v1 30 s1
t5 v1 40 s2
t6 v2 50 s3

offer

id review
t10 v1 p
t11 v2 n

vendor

says that every offer must have a specification and a vendor.
It also says that there cannot be two equivalent offers from
the same company with different prices (represented via a
special equality-generating dependency (EGD), which can be
encoded as an NC [Calı̀ et al., 2012a]). We denote by t1 the
term specs(s1, b, f1, o) and by t1 the tuple (s1, b, f1, o).
Conjunctive Query Answering. Given a Datalog+/– ontol-
ogyO = (D,Σ), we only consider answers that are true in all
models of O. Formally, the set of answers to a CQ q w.r.t. D
and Σ is ans(q,D,Σ) :=

⋂
I∈mods(D,Σ){a |a∈ q(I)}. The

answer to a BCQ q is positive, denoted D ∪ Σ |= q, if
ans(q,D,Σ) ̸= ∅. The problem of CQ answering is the fol-
lowing: givenD, Σ, and q as above and a tuple of constants a,
decide whether a ∈ ans(q,D,Σ). Following Vardi’s taxon-
omy (1982), the combined complexity of CQ answering is cal-
culated by considering all the components, i.e., the database,
the set of dependencies, and the query, as part of the in-
put. The bounded-arity combined (ba-combined) complex-
ity is calculated by assuming that the arity of the underly-
ing schema is bounded by a constant. In description logics
(DLs) [Bienvenu and Ortiz, 2015], the arity of the underlying
schema is always bounded by 2. The fixed-program combined
(fp-combined) complexity is calculated by considering the set
of TGDs and NCs as fixed. Finally, for data complexity, we
take only the size of the database into account.

2.2 Possibilistic Networks
We now recall possibilistic networks from [Ben Amor et al.,
2014], which are a direct counterpart of Bayesian networks
from probability theory, the main differences being that possi-
bilities maximize (rather than summarize) over disjoint events
(thus, in the normalized case, one often assumes that their
maximum (rather than their sum) over all disjoint elementary
events is 1), and we measure the degree of potential surprise
of an event, as opposed to the degree of its likelihood.
Syntax. Let X be a finite set of variables with pairwise dis-
joint, non-empty, finite domains Dom(X), X ∈X . A possi-
bilistic network Γ defines a possibility distribution over X us-
ing a combination of a graphical and a data component. The
former is a directed acyclic graph (DAG) G=(X , E), where
E is a set of edges encoding conditional (in)dependencies be-
tween variables. The data component associates a normalized
conditional possibility distribution π(Xi | pa(Xi)) to each
Xi ∈X , where pa(Xi) is the set of parents of Xi in G. The



joint distribution over X = {X1, . . . , Xn} is then given by the
chain rule [Ben Amor et al., 2014; Benferhat et al., 2000]:

π(X1, . . . , Xn) :=⊗n
i=1π(Xi| pa(Xi)),

where ⊗ denotes the product (resp., minimum) in a quantita-
tive (resp., qualitative) setting.
Semantics. A value u for a set of variables U ⊆ X assigns to
each X ∈U an element u(X)∈Dom(X), and the set of all
such values u is called the domain of U , denoted Dom(U).
The empty set has a single value, denoted ⊤. Observe that
Dom(X) and Dom({X}) are isomorphic, and hence the no-
tation is consistent. The values o∈Dom(X ) are called out-
comes. For two outcomes o, o′, we say that o dominates o′
(in Γ), denoted o≻ o′, if π(o)>π(o′).
Encoding Conditional Preferences. A conditional prefer-
ence [Ben Amor et al., 2014] has the form φ=u : x≻x′,
where u∈Dom(Uφ) for some Uφ⊆X , and x, x′∈Dom(Xφ)
for some Xφ ∈X − Uφ. The intention is that, given u and
any t∈Dom(Tφ), where Tφ =X −Uφ−{Xφ}, we prefer x
over x′. More formally, the outcome obtained from u, t, and x
should dominate the one using x′ instead. A conditional pref-
erence theory P is a finite set of conditional preferences.

As long as there are no cyclic dependencies between vari-
ables or cyclic preferences over the same variable X under
the same precondition u, one can encode a conditional pref-
erence theory into a possibilistic network [Ben Amor et al.,
2014]: The conditional preference φ from above induces sev-
eral directed edges in the DAG of the possibilistic network,
one from each X ∈Uφ to Xφ. The conditional possibility
measure must then be chosen such that π(x|u) > π(x′|u).
Example 3 Consider again the preference theory from Ex-
ample 1: P = {⊤ : n ≻ o, n : b ≻ c, o : c ≻ b}, where X =
{T,C}, and the outcomes are denoted by nb, nc, ob, and oc.
One possibilistic network expressing these conditional prefer-
ences is shown in Figure 1, where α, β, γ ∈ (0, 1). To com-
pare the outcomes, we compute their possibility values (us-
ing the quantitative semantics): π(nb) = π(b|n) · π(n) = 1,
π(oc) = α, π(nc) = γ, and π(ob) = α · β. To obtain the
desired total order nb ≻ oc ≻ nc ≻ ob, it thus suffices to
choose the values such that α > γ > α · β.

3 OP-Nets
We now introduce ontological possibilistic networks (OP-
nets), which extend possibilistic networks by ontologies.

W.l.o.g., the set ∆N of nulls is the set of all ground terms
constructed from the set ∆ of constants and a set F of func-
tions used to skolemize all existential variables in TGDs. Let
O=(D,Σ) be a Datalog+/– ontology, and XO be a finite
set of variables, where each X ∈XO corresponds to a pred-
icate from O, denoted pred(X). Each Dom(X) consists
of at least two ground atoms of the form p(c1, . . . ck) with
p= pred(X) and c1, . . . , ck ∈ ∆ ∪ ∆N . Hence, every out-
come o ∈ Dom(XO) can be seen as a conjunction of ground
atoms. An ontological possibilistic network (OP-net) is of the
form (O,Γ), where Γ is a possibilistic network over XO.
Example 4 Consider the OP-net (O,Γ) given by the ontol-
ogy O of Example 2, the DAG in Figure 2, and the con-
ditional possibility distribution in Table 2. Here, we have

T
π(n) π(o)

1 α

C

π(C|T ) n o

b 1 β
c γ 1

Figure 1: Example 3.

FO

π(FO|ROCO)

CO

π(CO)

RO

π(RO)

Figure 2: DAG for Example 4.

Table 2: Possibility distribution for Example 4.

π(specs(t1)) π(specs(t2)) π(specs(t3))
1 0.5 0.4

π(vendor(t10)) π(vendor(t11))
1 0.4

π(·|·) t1t10 t1t11 t2t10 t2t11 t3t10 t3t11
feature(t7) 1 0.3 0.2 0.2 0.2 0.2
feature(t8) 0.7 0.5 0.7 1 0.4 0.3
feature(t9) 0.5 0.3 0.5 0.3 1 0.2

XO = {CO, RO, FO} with the domains

Dom(CO) = {specs(t1), specs(t2), specs(t3)},
Dom(FO) = {feature(t7), feature(t8), feature(t9)},
Dom(RO) = {vendor(t10), vendor(t11)}.

The possibility distribution could either be learned or derived
from explicit preferences, as shown in Section 3.2 below. The
possibilities of outcomes are then computed as follows:

π(COROFO) = π(FO|CORO)⊗ π(CO)⊗ π(RO).

For example, the outcome o given by o(CO) = specs(t1),
o(RO)= vendor(t10), and o(FO)= feature(t7) encodes the
conjunction t1 ∧ t10 ∧ t7 and has the possibility 1.

3.1 Consistency and Dominance
Since outcomes are conjunctions of ground atoms, some out-
comes may be inconsistent, and some may be equivalent.
This means that we need a notion of consistency for OP-nets.

An outcome o of (O,Γ) is consistent, if the ontology
Oo = O ∪ {o(X) | X ∈ XO} is consistent. Two outcomes
o and o′ are equivalent, denoted o ∼ o′, if Oo and Oo′ have
the same models. The dominance o ≺ o′ w.r.t. Γ is defined as
in Section 2.2, and can be decided in polynomial time in the
size of Γ by comparing the possibility values of o and o′.

An interpretation I for (O,Γ) is a total preorder over the
consistent outcomes in Dom(XO). It satisfies (or is a model
of) (O,Γ), if, for all consistent outcomes o and o′,

• if o ≺ o′, then (o, o′) ∈ I and (o′, o) /∈ I, and
• if o ∼ o′, then (o, o′), (o′, o) ∈ I.

An OP-net is consistent, if it has at least one consistent out-
come, and it has a model.
Theorem 1 An OP-net (O,Γ) is consistent iff (i) it has a con-
sistent outcome, and (ii) there are no two equivalent consis-
tent outcomes having different possibility values.



3.2 Encoding Preferences with OP-Nets
In [Di Noia et al., 2015], conditional preferences were gen-
eralized to the Datalog+/– setting as follows. Let Dom+(X)
be the set of all atoms p(t1, . . . , tk), where each ti is a term
over ∆, V , and F . An ontological conditional preference φ
over X is of the form v : ξ ≻ ξ′, where

• v ∈ Dom+(Uφ) for some Uφ ⊆ X , and
• ξ, ξ′ ∈ Dom+(Xφ) for some Xφ ∈ X − Uφ.

A ground instance vθ : ξθ ≻ ξ′θ of φ is obtained via a substi-
tution θ such that vθ ∈ Dom(Uφ) and ξθ, ξ′θ ∈ Dom(Xφ).
Under suitable acyclicity conditions, we can hence find an
OP-net (O,Γ) that respects all ground instances of some
given ontological conditional preferences in the same way as
described in Section 2.2.
Example 5 Consider the ontological conditional preference
specs(I, C, F, o) : vendor(V1, p)≻ vendor(V2, n), which
says that for an old car, it is preferable to have a vendor with
positive feedback. One ground instance for this preference
is specs(t1) : vendor(t10)≻ vendor(t11). Thus, we could
choose π(vendor(t10)|specs(t1)) = 1 and π(vendor(t11)|
specs(t1)) = α < 1.
Although possibilistic networks are less expressive than full
CP-theories, they allow for a compact encoding of condi-
tional preferences over ground atoms and enable us to show
lower complexity bounds (see Section 5).

4 Query Answering under OP-Nets
Using the notions of consistency and dominance, we can de-
fine the semantics of query answering, as well as skyline and
k-rank answers, in the context of OP-nets. We first formal-
ize query answering for a given consistent OP-net (O,Γ).
Since the semantics of OP-nets is similar to that of OCP-
theories [Di Noia et al., 2015], the definitions are similar.
Let q(X) = ∃Yϕ(X,Y) be a CQ. To extract answers based
on the outcomes of a possibilistic network, the atoms in the
query must be related to the atoms in conditional preferences.
For this purpose, we assume a bijection β from a set of atoms
ϕβ(X,Y) ⊆ ϕ(X,Y) in q to a set of variables of (O,Γ),
such that for every atom p(Z) ∈ ϕβ(X,Y) there exists some
variable X in (O,Γ) with pred(X) = p and β(p(Z)) = X .
We collect in Yβ those quantified variables from Y that occur
in the atoms ϕβ(X,Y), and denote by Yβ the set of all re-
maining variables from Y. When ϕβ is empty, i.e., the query
atoms are not related to the preferences, then the answers for
the query are standard CQ answers w.r.t. O.
Definition 1 Let (O,Γ) with O = (D,Σ) be a consistent
OP-net, q(X) = ∃Yϕ(X,Y) be a CQ, and o be a consis-
tent outcome of (O,Γ). An answer to q w.r.t. (O,Γ) and o
is a tuple a over ∆ ∪ ∆N for which there exists a homo-
morphism h : X ∪ Yβ → ∆ ∪ ∆N with (i) h(X) = a,
(ii) D ∪ Σ |= ∃Yβ h(ϕ(X,Y)), and (iii) h(a) = o(β(a))

for all a ∈ ϕβ(X,Y). The set of all such answers is denoted
by ans(q,O,Γ, o).
We want to point out that ∃Yβ h(ϕ(X,Y)) is a BCQ that
uses elements from ∆∪∆N ∪V as arguments in its atoms. In
the following, we call such queries BCQNs. Since the values

of the homomorphism h on Yβ are determined by the out-
come o, BCQN answering w.r.t. o has the same complexity as
classical BCQN answering. k-rank answers are obtained by
iteratively computing sets of skyline answers until k answers
have been found. However, a tuple may be an answer under
more than one outcome. To avoid repetition of answers, we
need to keep track of exhausted outcomes and answers.
Definition 2 (Skyline Answer) A skyline answer to q w.r.t.
(O,Γ) outside a given set Y ⊆ Dom(XO) of outcomes is any
tuple a ∈ ans(q,O,Γ, o) for some consistent outcome o /∈ Y
such that there exists no consistent outcome o′ /∈ Y with o′ ≻
o and ans(q,O,Γ, o′) ̸= ∅. A skyline answer to q w.r.t. (O,Γ)
is a skyline answer to q w.r.t. (O,Γ) and ∅.
Definition 3 (k-Rank Answer) A k-rank answer to Q w.r.t.
(O,Γ) outside Y and outside a given set of ground tuples S
is a sequence ⟨a1, . . . ,ak⟩ such that either a1, . . . ,ak are k
skyline answers to Q w.r.t. (O,Γ) outside Y that do not be-
long to S; or a1, . . . ,ai are all the skyline answers to Q w.r.t.
(O,Γ) outside Y that do not belong to S and ⟨ai+1, . . . ,ak⟩
is a (k − i)-rank answer to Q w.r.t. (O,Γ) outside Y ∪ {o}
and S ∪ {a1, . . . ,ai}, where o is an undominated outcome
w.r.t. (O,Γ). A k-rank answer to Q w.r.t. (O,Γ) is a k-rank
answer to Q w.r.t. (O,Γ) outside ∅ and ∅.
Example 6 Consider the consistent OP-net (O,Γ) of Ex-
ample 4 and the CQ q(C,F, T,N)=∃I specs(I, C, F, T ) ∧
feature(F,N). Then, ⟨b, f1, o, ac⟩ is the skyline answer un-
der the consistent outcome t1 ∧ t10 ∧ t7. The skyline answer
for q′(C, T ) = ∃N q(C, f2, T,N) is ⟨c, n⟩ with possibility
π(t2t10t8) = 0.5 · 1 · 0.7 = 0.35, while the 2-rank answer is
⟨⟨c, n⟩, ⟨c, o⟩⟩. Hence, if feature f2 is mandatory, the offered
new and colorful car is preferred over the old and colorful
one, mainly due to positive feedback about vendor v1.

5 Computational Complexity
We now analyze the computational complexity of the follow-
ing problems, and delineate some tractable special cases:
Consistency: Is a given OP-net (O,Γ) consistent?
CQ Skyline Membership: For an OP-net (O,Γ), a CQ q,
and a tuple a over ∆ ∪ ∆N , is a a skyline answer to q
w.r.t. (O,Γ)?

5.1 Complexity Classes
We assume some familiarity with the complexity classes AC0,
P, NP, co-NP, ΣP

2, ΠP
2, PSPACE, EXP, and 2EXP. The class

DP = NP ∧ co-NP (resp., DP
2 = ΣP

2 ∧ ΠP
2) is the class of all

problems that are the intersection of a problem in NP (resp.,
ΣP

2) and a problem in co-NP (resp., ΠP
2). The class ∆P

2 (resp.,
∆P

3) is the class of all problems that can be computed in poly-
nomial time with an oracle for NP (resp., ΣP

2). The above
complexity classes and their inclusion relationships (which
are all currently believed to be strict) are shown below:

AC0 ⊆ P ⊆ NP, co-NP ⊆ DP ⊆ ∆P
2 ⊆ ΣP

2,Π
P
2

⊆ DP
2 ⊆ ∆P

3 ⊆ PSPACE ⊆ EXP ⊆ 2EXP.

5.2 Decidability Paradigms
The main (syntactic) conditions on TGDs that guarantee the
decidability of BCQ answering are guardedness [Calı̀ et al.,



2013], stickiness [Calı̀ et al., 2012b], and acyclicity. Interest-
ingly, each such condition has its “weak” counterpart: weak
guardedness [Calı̀ et al., 2013], weak stickiness [Calı̀ et al.,
2012b], and weak acyclicity [Fagin et al., 2005], respectively.

A TGD σ is guarded if an atom a∈ body(σ) exists that
contains (or “guards”) all the body variables of σ. The class
of guarded TGDs, denoted G, is defined as the family of all
possible sets of guarded TGDs. A key subclass of guarded
TGDs are linear TGDs with just one body atom (which is
automatically a guard), and the corresponding class is de-
noted L. Weakly-guarded TGDs extend guarded TGDs by re-
quiring only “harmful” body variables to appear in the guard;
the associated class is denoted WG. Notice that L⊂G⊂WG.

Stickiness is inherently different from guardedness, and its
central property is as follows: variables that appear more than
once in a body (i.e., join variables) are always propagated (or
“stick”) to the inferred atoms. A set of TGDs that enjoys the
above property is sticky, and the corresponding class is de-
noted S. Weak-stickiness is a relaxation of stickiness where
only “harmful” variables are taken into account. A set of
TGDs that enjoys weak-stickiness is weakly-sticky, and the
associated class is denoted WS. Observe that S⊂WS.

A set Σ of TGDs is acyclic if its predicate graph is acyclic,
and the underlying class is denoted A. In fact, an acyclic set
of TGDs can be seen as nonrecursive. We say Σ is weakly-
acyclic if its dependency graph enjoys a certain acyclicity
condition, which actually guarantees the existence of a finite
canonical model; the associated class is denoted WA. We
have A⊂WA⊂WS.

Another key fragment of TGDs are full TGDs, i.e., TGDs
without existentially quantified variables, and the correspond-
ing class is denoted F. If full TGDs enjoy linearity, guarded-
ness, stickiness, or acyclicity, then we obtain the classes LF,
GF, SF, and AF, respectively. Note that F⊂WA and F⊂WG.

5.3 Overview of Results
Our complexity results for the consistency and the CQ sky-
line membership problem for OP-nets over the decidable
Datalog+/– languages mentioned above are compactly sum-
marized in Tables 3 and 4, respectively. Observe that com-
pared to OCP-theories [Di Noia et al., 2015], we obtain lower
complexities for L, LF, AF, G, S, F, GF, SF, WS, and WA in
the fp-combined complexity (completeness for DP and ∆P

2,
respectively, rather than PSPACE), and for L, LF, AF, S, F,
GF, and SF in the ba-complexity (completeness for DP

2 and
∆P

3, respectively, rather than PSPACE). Notice also that the
complexity theorems below are generic results, applying also
to Datalog+/– languages beyond the ones in Tables 3 and 4.
Their proofs even apply to arbitrary preference formalisms,
as long as dominance between two outcomes can be decided
in polynomial time, e.g., rankings computed by Information
Retrieval methods [Joachims, 2002].

5.4 Combined Complexity
We first show some generic upper bounds for the complexity
of consistency and CQ skyline membership w.r.t. OP-nets.
Theorem 2 Let T be a class of OP-nets (O,Γ). If checking
non-emptiness of the answer set of a CQN w.r.t. O is in a

complexity class C, then consistency in T is in NPC ∧ co-NPC

and CQ skyline membership in T is in PNPC .
If C = NP and we consider the fp-combined complexity,

then consistency in T is in DP and CQ skyline membership
in T is in ∆P

2 .
Proof. To check consistency of OP-nets, it suffices to do the
following: guess an outcome o in polynomial time and verify
its consistency (for which we need to check whether BCQNs
corresponding to the NCs have a negative answer w.r.t. Oo);
then verify that, for all equivalent pairs o, o′ of consistent out-
comes, their possibility values are the same. Equivalence can
be decided in C (by answering ground atomic BCQNs), while
computing the possibility values is in P.

For CQ skyline membership, we first calculate the possibil-
ity value of the skyline using a binary search over the space
of possibility values. Starting from the interval [0, 1], in each
step we compute one bit of the skyline value, thereby halv-
ing the search space, and the maximal precision needed is
bounded by the product of the number of variables in the OP-
net and the number of bits needed to represent any possibility
value of the input. Hence, the search needs only polynomi-
ally many steps. In each step, we need to guess an outcome
in polynomial time, check that the outcome has a non-empty
answer to the considered CQ (in C), check that the outcome
is consistent (in co-C), and that its possibility value is in the
considered interval (in P).

If C = NP and we consider the fp-combined complexity,
then BCQN answering for ground atomic queries and fixed
queries (e.g., those corresponding to the fixed NCs of Σ)
w.r.t. O is in P, and hence consistency of OP-nets is decid-
able in NP ∧ co-NP. For CQ skyline membership, the needed
NPNP-oracle is then actually NP-oracle. This is because con-
sistency of a given outcome can be decided in P, and hence
guessing a consistent outcome in the correct possibility in-
terval and checking if it has a non-empty set of answers is
overall in NP.

In particular, for C = PSPACE, we obtain inclusion in PSPACE
for both problems, and the same for any deterministic com-
plexity class above PSPACE. For C = NP, we get the classes
DP

2 and ∆P
3 . We now provide some matching lower bounds.

Theorem 3 Let T be a class of OP-nets (O,Γ). If ground
atomic BCQN answering w.r.t. O is C-hard, where C ⊇
PSPACE is a deterministic complexity class, then consistency
and CQ skyline membership in T are C-hard.
Proof. Note that consistency and equivalence of outcomes
are as powerful as checking entailment of arbitrary ground
BCQNs.

Theorem 4 For OP-nets whose underlying ontology is de-
fined in a Datalog+/– language T that allows for NCs, de-
ciding consistency is DP-hard in the fp-combined complexity.
Proof. We give a reduction from the following DP-complete
problem: given two propositional formulas φ = c1∨· · ·∨cm
and ψ = d1 ∧ · · · ∧ dn in 3-DNF and 3-CNF, respectively,
decide whether φ is a tautology and ψ is satisfiable. W.l.o.g.,
φ and ψ use different variables. We first construct two OP-
nets whose consistency is equivalent to the satisfiability of ψ



Table 3: Combined, ba-combined, fp-combined, and data
complexity of deciding consistency for OP-nets with differ-
ent classes of TGDs.

Class Comb. ba-comb. fp-comb. Data
L, LF, AF PSPACE DP

2 DP in AC0

G 2EXP EXP DP P
WG 2EXP EXP EXP EXP
S, SF EXP DP

2 DP in AC0

F, GF EXP DP
2 DP P

WS, WA 2EXP 2EXP DP P

Table 4: Combined, ba-combined, fp-combined, and data
complexity of deciding CQ skyline membership for OP-nets
with different classes of TGDs.

Class Comb. ba-comb. fp-comb. Data
L, LF, AF PSPACE ∆P

3 ∆P
2 in AC0

G 2EXP EXP ∆P
2 P

WG 2EXP EXP EXP EXP
S, SF EXP ∆P

3 ∆P
2 in AC0

F, GF EXP ∆P
3 ∆P

2 P
WS, WA 2EXP 2EXP ∆P

2 P

and the validity of ϕ, respectively, and then describe how to
combine them into one OP-net.

For every propositional variable xi of ψ, we use the vari-
ableXi in the possibilistic network with the 2-ary predicate v
(where v(i, t) encodes that variable xi has the truth value t)
and the domain {v(i, 0), v(i, 1)}. The NC v(i, 0)∧ v(i, 1) →
⊥ enforces that all variables have exactly one truth value. In
this way, each outcome uniquely represents a variable assign-
ment. Moreover, all variables are independent and all atomic
values have possibility 1.

For each disjunction dj in ψ, we put one tuple s(j, i1, t1,
i2, t2, i3, t3) into the database D, where tl is 0 if xil occurs
positively in dj , and tl is 1 if xil occurs negatively in dj (note
the inversion of truth values). We express the non-satisfaction
of any disjunction by an NC:

v(i1, t1) ∧ v(i2, t2) ∧ v(i3, t3) ∧
s(j, i1, t1, i2, t2, i3, t3) → ⊥

Here, j, il, and tl are variables. Hence, the consistent out-
comes of the resulting OP-net uniquely represent the satisfy-
ing valuations of ψ. Since there are no equivalent outcomes
with different possibility values, the consistency of the OP-
net is equivalent to the satisfiability of ψ.

For the second OP-net, we similarly introduce, for each
variable yi of φ, a variable Yi with domain {u(i, 0), u(i, 1),
u(i, 2)} and the NC u(i, 0)∧u(i, 1) → ⊥. The goal is to have
exactly one additional outcome, namely u(1, 2), . . . , u(n, 2),
that does not represent a truth value assignment. For this pur-
pose, we use the additional NCs u(i1, 0) ∧ u(i2, 2) → ⊥ and
u(i1, 1) ∧ u(i2, 2) → ⊥.

We also use an additional variable W with predicate w and
domain {w(0), w(1)}. The variable X1 depends on W and
we set π(u(1, 0)|w(0)) = π(u(1, 1)|w(0)) = 0.5. There
are no other dependencies between variables and all other

(conditional) possibility values are 1. By putting the atoms
w(0) and w(1) into the database, we ensure that any two out-
comes that differ only in w(0) and w(1) are equivalent. If
the rest of these outcomes represents a variable assignment,
then these outcomes have different possibility values. How-
ever, the equivalent outcomes (u(1, 2), . . . , u(n, 2), w(0))
and (u(1, 2), . . . , u(n, 2), w(1)) both have possibility 1.

For each conjunction cj in φ, we put one tuple r(j, i1, t1,
i2, t2, i3, t3) into D, where tl is 1 iff xil occurs positively
in cj , and tl is 0 iff xil occurs negatively in cj . Additionally,
we use the following NC to express the satisfaction of any
conjunction:

u(i1, t1) ∧ u(i2, t2) ∧ u(i3, t3) ∧
r(j, i1, t1, i2, t2, i3, t3) → ⊥

This ensures that φ is a tautology iff all equivalent outcomes
with different possibility values are inconsistent. Moreover,
the outcome (u(1, 2), . . . , u(1, 2), w(0)) is clearly consistent
since the above NC is not applicable.

To combine these two OP-nets, we take the union of the
constructed variables, possibilistic networks, databases, and
ontologies. As they are formulated over disjoint signatures,
we obtain a single OP-net that is consistent iff both the orig-
inal OP-nets are consistent, which is the case iff ψ is satisfi-
able and φ is a tautology. Finally, note that the NCs we have
constructed are independent of the actual form of φ and ψ.

Theorem 5 For OP-nets whose underlying ontology is de-
fined in a Datalog+/– language T that allows for NCs, decid-
ing consistency is DP

2-hard in the ba-combined complexity.
Proof. We reduce the validity problem of Φ ∧ Ψ, where
Φ = ∃X∀Yφ(X,Y), Ψ = ∀Z∃Yψ(Z,Y), ϕ(X,Y) is a
propositional 3-DNF formula, and ψ(Z,Y) is a propositional
3-CNF formula. W.l.o.g., X and Z are disjoint. As in the pre-
vious proof, we construct two disjoint OP-nets for each of the
subproblems, and then combine them.

For the first OP-net, for each variable xi ∈X, we
again use a variable Xi with the predicate v, the domain
{v(1, 0), v(i, 1)}, and the NC v(i, 0) ∧ v(i, 1) → ⊥. We
illustrate the encoding of the conjunctions of φ(X,Y) on
the example cj =x3∧¬x5∧y6 with x3, x5 ∈X and y6 ∈Y.
We use the variables Cj,0, Cj,1, where pred(Cj,0) =
pred(Cj,1)= sj is a binary predicate that encodes the truth
value of cj in dependence of that of y6, i.e., sj(tj , v6)
expresses that (under fixed values for the variables Xi),
the truth value v6 of y6 implies the truth value tj of cj .
Their domains are Dom(Cj,0)= {sj(0, 0), sj(1, 0)} and
Dom(Cj,1)= {sj(0, 1), sj(1, 1)}. We constrain this predi-
cate using the following NCs:

sj(0, v6) ∧ sj(1, v6) → ⊥
v(3, 1) ∧ v(5, 0) ∧ sj(0, 1) → ⊥
sj(1, 0) → ⊥
v(3, 0) ∧ sj(1, v6) → ⊥
v(5, 1) ∧ sj(1, v6) → ⊥

In this order, they express that
• cj cannot be true and false at the same time, regardless

of the value of y6;



• if x3 and y6 are true and x5 is false, then cj is true;
• if y6 is false, then cj is false;
• if x3 is false, then cj is false; and
• if x5 is true, then cj is false.

We similarly encode all other conjunctions cj in φ(X,Y) us-
ing predicates sj whose arity reflects the cardinality of Ycj
(the set of all variables from Y that occur in cj). For example,
if Ycj = {y1, y2, y3}, then sj(1, 0, 0, 0) expresses that cj is
true if all three variables are false. Correspondingly, we have
to use 8 variables: Cj,0,0,0, . . . , Cj,1,1,1.

Finally, we use the NC
∧

j sj(0,Ycj ) → ⊥ to enforce that,
given an outcome fixing the truth value assignment for X,
the existence of a single assignment for Y that falsifies all
conjunctions in φ(X,Y) is equivalent to the inconsistency of
the outcome. Hence, the existence of a consistent outcome is
equivalent to the validity of Φ. Moreover, no two equivalent
consistent outcomes with different possibility values exist.

For the second OP-net, we again use a similar construc-
tion. We introduce the variables Zi for each variable zi ∈ Z,
the corresponding domains {u(i, 0), u(i, 1), u(i, 2)}, and the
NCs u(i, 0) ∧ u(i, 1) → ⊥, u(i1, 0) ∧ u(i2, 2) → ⊥, and
u(i1, 1) ∧ u(i2, 2) → ⊥, in addition to the variable W with
predicate w and domain {w(0), w(1)}. As before, Z1 de-
pends on W , π(u(1, 0)|w(0)) = π(u(1, 1)|w(0)) = 0.5, and
all other possibility values are 1. We also add the atoms w(0)
and w(1) to the database.

We encode the disjunctions in ψ(Z,Y) similarly as above;
e.g., dj = z3∨¬z5∨y6 with z3, z5 ∈Z and y6 ∈Y is ex-
pressed via the predicate rj , the variables Dj,0, Dj,1 with
Dom(Dj,0) = {rj(0, 0), rj(1, 0), rj(2, 0)}, Dom(Dj,1) =
{rj(0, 1), rj(1, 1), rj(2, 1)}, and the following NCs:

rj(0, v6) ∧ rj(1, v6) → ⊥
rj(0, v6) ∧ rj(2, v′6) → ⊥
rj(1, v6) ∧ rj(2, v′6) → ⊥
u(i, 0) ∧ rj(2, v6) → ⊥
u(i, 1) ∧ rj(2, v6) → ⊥
u(i, 2) ∧ rj(0, v6) → ⊥
u(i, 2) ∧ rj(1, v6) → ⊥
u(3, 0) ∧ u(5, 1) ∧ rj(1, 0) → ⊥
rj(0, 1) → ⊥
u(3, 1) ∧ rj(0, v6) → ⊥
u(5, 0) ∧ rj(0, v6) → ⊥∧

j rj(1,Ydj
) → ⊥

The last NC ensures that, given any outcome representing a
truth value assignment for Z, the existence of an assignment
for Y that satisfies all disjunctions in ψ(Z,Y) is equivalent
to inconsistency of the outcome. The inconsistency of all
equivalent outcomes with different possibility values is hence
equivalent to the validity of Ψ. Note that we again have ex-
actly two consistent outcomes, namely the ones that do not
represent a truth value assignment for Z, which differ only
in w(0) and w(1). Since they both have the same possibil-
ity, validity of Ψ is even equivalent to the consistency of the
constructed OP-net.

We can now again combine these two OP-nets into one
whose consistency is equivalent to the original problem. No-
tice also that the used predicates’ arity is bounded by 4.

Theorem 6 For OP-nets whose underlying ontology is de-
fined in a Datalog+/– language T that allows for NCs, de-
ciding CQ skyline membership is ∆P

2-hard in the fp-combined
complexity.
Proof. We give a polynomial transformation from the follow-
ing ∆P

2-complete problem [Krentel, 1988] (cf. Theorem 5.9).
Given a satisfiable 3-CNF formula ψ = d1 ∧ · · · ∧ dm over
the variables x1, . . . , xn, decide whether the lexicographi-
cally maximal truth assignment satisfying ψ maps xn to true.

For every propositional variable xi, we use the variable Xi

in the possibilistic network with the 2-ary predicate v (where
v(i, t) encodes that variable xi has the truth value t) and the
domain {v(i, 0), v(i, 1)}. The NC v(i, 0) ∧ v(i, 1) → ⊥ en-
forces that all variables have exactly one truth value. More-
over, all variables are independent, and the possibility values
of v(i, 0) and v(i, 1) are 2−2n−i

and 1, respectively. This
ensures that the resulting possibilistic order on the outcomes
coincides with the lexicographic order.

For each disjunction dj in ψ, we put one tuple s(j, i1, t1,
i2, t2, i3, t3) into the database D, where tl is 0 if xil occurs
positively in dj , and tl is 1 if xil occurs negatively in dj (note
the inversion of truth values). As in the previous proof, we
express the non-satisfaction of any disjunction by an NC:

v(i1, t1) ∧ v(i2, t2) ∧ v(i3, t3) ∧
r(j, i1, t1, i2, t2, i3, t3) → ⊥

Hence, the consistent outcomes uniquely represent the satis-
fying valuations of ψ. Furthermore, v(n, 1) is in the skyline
for the CQ v(n, t) iff v(n, 1) holds in the consistent outcome
with the highest possibility. As argued above, the latter is in
turn equivalent to xn being true in the lexicographically max-
imal satisfying truth assignment.

Theorem 7 For OP-nets whose underlying ontology is de-
fined in a Datalog+/– language T that allows for NCs, decid-
ing CQ skyline membership is ∆P

3-hard in the ba-combined
complexity.

Proof. We give a polynomial transformation from the fol-
lowing ∆P

3-hard problem [Krentel, 1992]. Given a valid QBF
Φ = ∃X∀Yφ(X,Y), where φ(X,Y) = c1 ∨ · · · ∨ cm is in
3-DNF, decide whether the lexicographically maximal truth
assignment for X = {x1, . . . , xn} that satisfies ∀Yφ(X,Y)
maps xn to true. For this, we combine the proofs of Theo-
rems 5 and 6.

We use the same encoding of the variables in X and con-
junctions in φ(X,Y) using the variablesXi, Cj,t,... and pred-
icates v, sj , and the NCs from the proof of Theorem 5. Hence,
the consistent outcomes uniquely represent those assignments
for X that satisfy ∀Yφ(X,Y). Moreover, since Φ is valid,
there must exist at least one consistent outcome, and there
do not exist two different outcomes that are equivalent. This
means that the constructed OP-net is consistent.

Using the possibility distribution from the proof of Theo-
rem 6, namely π(v(i, 0)) = 2−2n−i

and π(v(i, 1)) = 1, we



can again identify the lexicographically maximal assignment
via the outcome with the highest possibility value. Thus, the
CQ v(n, t) has v(n, 1) as a skyline answer iff xn is true in the
lexicographically maximal truth assignment for X that satis-
fies ∀Yφ(X,Y).

From the known complexity results for ontology languages of
the Datalog+/– family (see, e.g., [Di Noia et al., 2015]), we
obtain the complexity results w.r.t. combined, ba-combined,
and fp-combined complexity listed in Tables 3 and 4.

5.5 Data Complexity
We now show that tractability in data complexity for deciding
consistency and CQ skyline membership for OP-nets carries
over from classical BCQN answering. Here, data complexity
means that Σ and the variables and possibility distributions
of Γ are both fixed, while D is part of the input.
Theorem 8 Let T be a class of OP-nets (O,Γ) for which
BCQN answering in O is possible in polynomial time (resp.,
in AC0) in the data complexity. Then, deciding consistency
and CQ skyline membership in T is possible in polynomial
time (resp., in AC0) in the data complexity.
Proof. We can decide these problems in the same way as in
the proof of Theorem 2. Under data complexity assumptions,
however, we can enumerate all outcomes in constant time, or
incorporate them into a constant-depth circuit, without affect-
ing the complexity class. Since both P and AC0 are closed un-
der complementation and conjunction, it is easy to construct
a P-Turing machine or an AC0-circuit to check consistency
of (O,Γ). Moreover, the binary search used for CQ skyline
membership also needs only constantly many steps now, and
hence can be encoded into the Turing machine or circuit as
well.

As a corollary, we obtain the data tractability results listed
in the last column of Tables 3 and 4. Note that all mem-
berships in P are also P-hard, due to a standard reduction
of propositional logic programming to guarded full TGDs.
These results do not apply to WG, where BCQN answering
is data complete for EXP, and data hardness holds even for
ground atomic BCQs; however, data completeness for EXP
can be proved similarly to Theorems 2 and 3.

6 Related Work
Preferences have long been studied in many disciplines, pro-
minently in philosophy, databases, and AI. In philosophy, the
research mainly deals with preference logics, where prefer-
ences are usually expressed over mutually exclusive worlds
like truth assignments to formulas and the research focus lies
on axiomatizations. One of the earliest works on model-
ing preferences in databases is [Lacroix and Lavency, 1987],
which extends the relational calculus with preference model-
ing mechanisms for query answering. Since then, many ap-
proaches go in this direction [Stefanidis et al., 2011]. In AI,
preference modeling is more concerned with compact repre-
sentation and computational issues. In this regard, [Bienvenu
et al., 2010] bridges the gaps between the two streams of
preference modeling and suggests that most AI formalisms
are fragments of a prototypical preference logic. CP-nets

[Boutilier et al., 2004] are one of the most widely used pref-
erence representation languages. Possibilistic logic [Benfer-
hat et al., 2001; Dubois and Prade, 2004] has recently also
been discovered as a useful tool, and a lot of work has been
done in bridging the differences between possibilistic logic
and CP-nets [Dubois et al., 2013]. More recently, possibilis-
tic networks [Ben Amor et al., 2014] have been advocated
as a natural encoding of preferences. Having some computa-
tional and expressive benefits over CP-nets, possibilistic net-
works look very promising.

The work closest in spirit to this paper is perhaps [Di Noia
et al., 2015], which is based on CP-theories [Wilson, 2004].
CP-theories admit preferences of the type “given c, we pre-
fer a to b, irrespective of the value of W ”, which realize a
weakening of the ceteris paribus condition. Although possi-
bilistic networks do not allow for such indifference between
values of some variables W , they are also based on a weak-
ening of the ceteris paribus condition. This is because possi-
bilistic networks represent total preorders of outcomes, based
on the given conditional preferences and the choice of their
relative importance (via their conditional possibility), which
can only be expressed in possibilistic networks. CP-theories
(and CP-nets), in contrast, can handle to some extent cyclic
preference dependency graphs, while possibilistic networks
assume that these graphs are acyclic. Possibilistic networks
can also express certain types of preferences that CP-theories
cannot, as we have seen in Example 1. Clearly, all these se-
mantic properties of possibilistic networks, compared to CP-
theories (and CP-nets), are inherited by OP-nets. Moreover,
OP-nets sometimes have lower combined, ba-combined, and
fp-combined complexity than OCP-theories [Di Noia et al.,
2015], since consistency and dominance in CP-theories are
already PSPACE-hard problems [Goldsmith et al., 2008]. In
summary, OP-nets have advantages over OCP-theories, as
they are computationally less expensive, while retaining most
of the expressivity, and even allow representing some prefer-
ences that cannot be represented in OCP-theories.

Other combinations of Semantic Web formalisms with
preference representation and reasoning include the work by
Lukasiewicz and Schellhase [2007], which presents a system
to rank-order ontologically annotated objects, using a ranking
function based on conditional preferences. Lukasiewicz et
al. [2013] focus on preference-based query answering on on-
tological data by extending Datalog+/− with preference man-
agement capabilities, called PrefDatalog+/−. Preferences
in PrefDatalog+/− have the form of general first-order sen-
tences, and so have a higher complexity. Data tractability re-
sults also hold only for disjunctions of atomic queries and not
conjunctive queries. Di Noia et al. [2013] use ontological ax-
ioms to restrict CP-net outcomes. In information retrieval, in
[Boubekeur et al., 2007], Wordnet is used to add semantics to
CP-net variables. Possibilistic networks have also been used
for information retrieval in [Boughanem et al., 2009], where
the possibility and the necessity measure are used to evaluate
(i) the extent to which a given document is relevant to a query,
and (ii) the reasons of eliminating irrelevant documents.



7 Summary and Outlook
We have introduced OP-nets, which are a novel combina-
tion of Datalog+/– ontologies with possibilistic networks. We
have then defined skyline and k-rank answers for this frame-
work. Furthermore, we have provided a host of complexity
(including several data tractability) results for deciding con-
sistency and CQ skyline membership for OP-nets. Due to the
lower (polynomial) complexity of dominance testing in possi-
bilistic networks, compared to CP-theories, several resulting
complexities for OP-nets are lower than for OCP-theories.

Note that the complexity results and these lower complex-
ities are actually independent of possibilistic networks; they
hold for all rankings on outcomes where each rank can be
computed in polynomial time. For example, they are also ap-
plicable to combinations of Datalog+/– with rankings com-
puted by standard Information Retrieval and Machine Learn-
ing approaches [Joachims, 2002].

Interesting topics of ongoing and future research include
the implementation and experimental evaluation of the pre-
sented approach, as well as a generalization based on possi-
bilistic logic [Benferhat et al., 2002] to gain more expressiv-
ity and some new features towards nonmonotonic reasoning
and belief revision [Ben Amor et al., 2014]; moreover, an
apparent relation between possibilistic logic and quantitative
choice logic [Benferhat et al., 2004] may also be exploited.
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