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Abstract

In a recent research paper, we have proposed an extension of the light-
weight Description Logic (DL) EL in which concepts can be defined in an
approximate way. To this purpose, the notion of a graded membership
function m, which instead of a Boolean membership value 0 or 1 yields
a membership degree from the interval [0, 1], was introduced. Threshold
concepts can then, for example, require that an individual belongs to a
concept C with degree at least 0.8. Reasoning in the threshold DL τEL(m)
obtained this way of course depends on the employed graded membership
function m. The paper defines a specific such function, called deg , and
determines the exact complexity of reasoning in τEL(deg). In addition, it
shows how concept similarity measures (CSMs) ∼ satisfying certain prop-
erties can be used to define graded membership functions m∼, but it does
not investigate the complexity of reasoning in the induced threshold DLs
τEL(m∼). In the present paper, we start filling this gap. In particular,
we show that computability of ∼ implies decidability of τEL(m∼), and we
introduce a class of CSMs for which reasoning in the induced threshold DLs
has the same complexity as in τEL(deg).
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1 Introduction

DLs are a well-investigated family of logic-based knowledge representation lan-
guages, which are frequently used to formalize ontologies for application domains
such as biology and medicine. To define the important notions of such an applica-
tion domain as formal concepts, DLs state necessary and sufficient conditions for
an individual to belong to a concept. Once the relevant concepts of an application
domain are formalized this way, they can be used in queries in order to retrieve
new information from data. The DL EL, in which concepts can be built using
concept names as well as the concept constructors conjunction (u), existential
restriction (∃r.C), and the top concept (>), has drawn considerable attention in
the last decade since, on the one hand, important inference problems such as the
subsumption problem are polynomial in EL [4, 1, 6]. On the other hand, though
quite inexpressive, EL underlies the OWL 2 EL profile1 and can be used to define
biomedical ontologies, such as the large medical ontology SNOMEDCT.2

Like all traditional DLs, EL is based on classical first-order logic, and thus its
semantics is strict in the sense that all the stated properties need to be satisfied
for an individual to belong to a concept. In applications where exact definitions
are hard to come by, it would be useful to relax this strict requirement and allow
for approximate definitions of concepts, where most, but not all, of the stated
properties are required to hold. For example, in clinical diagnosis, diseases are
often linked to a long list of medical signs and symptoms, but patients that have
a certain disease rarely show all these signs and symptoms. Instead, one looks
for the occurrence of sufficiently many of them. Similarly, people looking for a
flat to rent or a bicycle to buy may have a long list of desired properties, but
will also be satisfied if many, but not all, of them are met. In order to support
defining concepts in such an approximate way, in [2] we have introduced a DL
extending EL with threshold concept constructors of the form C./ t, where C is an
EL concept, ./ ∈ {<,≤, >,≥}, and t is a rational number in [0, 1]. The semantics
of these new concept constructors is defined using a graded membership function
m that, given a (possibly complex) EL concept C and an individual d of an
interpretation I, returns a value from the interval [0,1], rather than a Boolean
value from {0, 1}. The concept C./ t then collects all the individuals that belong
to C with degree ./ t, where this degree is computed using the function m. The
DL τEL(m) is obtained from EL by adding these new constructors. There are,
of course, different possibilities for how to define a graded membership function
m, and the semantics of the obtained new logic τEL(m) depends on m.

In addition to introducing the family of DLs τEL(m), we have also defined a
concrete graded membership function deg , which is obtained as a natural exten-
sion of the well-known homomorphism characterization of crisp membership and

1see http://www.w3.org/TR/owl2-profiles/
2see http://www.ihtsdo.org/snomed-ct/
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subsumption in EL [4]. It is proved in [2] that concept satisfiability and ABox
consistency are NP-complete in τEL(deg), whereas the subsumption and the in-
stance checking problem are co-NP complete (the latter w.r.t. data complexity).
In addition, it is shown how a CSM ∼ that is equivalence invariant, role-depth
bounded and equivalence closed3 (see [11]) can be used to define a graded mem-
bership function m∼. In particular, the graded membership function deg can be
obtained in this way, i.e., there is a standard CSM ∼∗ such that m∼∗ = deg .
However, the complexity of reasoning in the DLs τEL(m∼) for ∼ 6= ∼∗ has not
been investigated in [2].

The goal of the present paper is to start filling this gap. Firstly, we will show
that, for computable standard CSMs ∼, reasoning in τEL(m∼) can effectively
be reduced to reasoning in the DL ALC. Though the complexity of reasoning in
ALC is known to be “only ” PSpace [12], the complexity of the decision procedures
for reasoning in τEL(m∼) obtained this way is non-elementary, due to the high
complexity of the reduction function. Secondly, in order to obtain threshold DLs
of lower complexity, we determine a class of standard CSMs definable using the
simi framework of [11] such that reasoning in τEL(m∼) for a member ∼ of this
class has the same complexity as reasoning in τEL(deg). Thirdly, we consider
the problem of answering relaxed instance queries [7] using CSMs from this class.
For the CSM ∼∗ corresponding to deg , it was shown in [2] that relaxed instance
queries w.r.t. this CSM can be answered in polynomial time. We extend this result
to all members of our class. This improves on the complexity upper bounds for
answering relaxed instance queries in [7].

3In the following we will call a CSM satisfying these three properties a standard CSM.
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2 The family of DLs τEL(m∼)

First, we introduce the DL EL and show how, up to equivalence, all EL concept
descriptions over a finite vocabulary and with a bounded role depth can be effec-
tively computed. This will be used later to show the decidability result mentioned
in the introduction. Second, we recall the definition of graded membership func-
tions and the induced threshold DLs as well as some additional definitions and
results from [2]. Third, we recall how concept similarity measures can be used to
define graded membership functions.

2.1 The Description Logic EL

Let NC and NR be finite sets of concept and role names, respectively. The set
CEL(NC,NR) of EL concept descriptions over NC and NR is inductively built from
NC using the concept constructors conjunction (C u D), existential restriction
(∃r.C), and top (>). The semantics of EL concept descriptions is defined using
standard first-order logic interpretations. An interpretation I=(∆I , .I) consists
of a non-empty domain ∆I and an interpretation function .I that interprets con-
cept names in NC as subsets of ∆I and assigns binary relations over ∆I to role
names in NR. This function is inductively extended to complex concept descrip-
tions as follows.

>I := ∆I ,

(C uD)I := CI ∩DI , and
(∃r.C)I := {x ∈ ∆I | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}.

Given two EL concept descriptions C and D, we say that C is subsumed by D
(in symbols C v D) iff CI ⊆ DI for all interpretations I. These two concepts
are equivalent (in symbols C ≡ D) iff C v D and D v C. In addition, C is
satisfiable iff CI 6= ∅ for some interpretation I.4

Information about specific individuals (represented by a set of individual names
NI) can be stated in an ABox, which is a finite set of assertions of the form C(a)
or r(a, b), where C ∈ CEL(NC,NR), r ∈ NR, and a, b ∈ NI. An interpretation I is
then extended to assign domain elements aI to individual names a. We say that
I satisfies an assertion C(a) iff aI∈CI , and r(a, b) iff (aI , bI) ∈ rI . Furthermore,
I is a model of the ABox A (denoted as I |=A) iff it satisfies all the assertions
of A. The ABox A is consistent iff I |=A for some interpretation I. Finally, an
individual a is an instance of C in A iff aI∈CI for all models I of A.

As shown in [9], EL concept descriptions C can be transformed into an equivalent
reduced form Cr by applying the rewrite rule C u D −→ C if C v D modulo

4In EL, all concept descriptions are satisfiable, but this is no longer the case for its extensions
by threshold concepts introduced below.
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associativity and commutativity of u as long as possible, not only on the top-level
conjunction of the description, but also under the scope of existential restrictions.
Up to associativity and commutativity of u, equivalent EL concept descriptions
have the same reduced form.

The size s(C) of an EL concept description C is the number of occurrences of
symbols needed to write C. The role depth rd(C) of C is the maximal nesting of
existential restrictions in C. More formally,

rd(>) = rd(A) := 0,

rd(C1 u C2) := max(rd(C1), rd(C2)),

rd(∃r.C) := rd(C) + 1.

As shown in [5], for finite sets NC and NR and a fixed bound k on the role
depth, CEL(NC,NR) contains only finitely many equivalence classes of concept
descriptions of role depth ≤ k. The following lemma shows that finitely many
representatives of these equivalence classes can be computed.

Lemma 1. For all k ≥ 0 there exists a finite set Rk ⊆ CEL(NC,NR) consisting of
EL concept descriptions in reduced form and of role depth ≤ k such that Cr ∈ Rk

holds for all C ∈ CEL(NC,NR) with rd(C) ≤ k, and this set can effectively be
computed.

Proof. The lemma can be shown by induction on k. Concept descriptions of role
depth k = 0 are conjunctions of concept names, where the empty conjunction
corresponds to >. The requirement to be reduced corresponds to the fact that
each concept name occurs at most once in the conjunction. Thus,

R0 =
{ l

A∈S

A | S ⊆ NC

}
,

which is obviously finite and, given NC, can easily be computed.

Up to equivalence, concept descriptions of role depth ≤ k for k > 0 are of the
form

A1 u . . . u An u ∃s1.D1 u . . . u ∃sq.Dq

where n≥ 0, q ≥ 1, {A1, . . . , An} ⊆ NC, and Di ∈ Rk−1 for all 1 ≤ i ≤ q. The
requirement to be reduced imposes the constraint that two different conjuncts
∃r.Di and ∃r.Dj occurring in this conjunction satisfy that:

• Di and Dj are concepts in reduced form, and

• Di 6v Dj (and thus also Di 6≡ Dj).
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Thus, for every role r ∈ NR there are at most |Rk−1| conjuncts that are existential
restrictions for r. Since by induction we know thatRk−1 is finite, this implies that
Rk is finite as well. In addition, starting from Rk−1 the set Rk can be computed
as follows:
1: Rk := Rk−1.
2: {r1, . . . , r|NR|} is a linear order of NR.
3: for all (Sε, S1, . . . , S|NR|) ∈ 2NC × 2R

k−1 × . . .× 2R
k−1︸ ︷︷ ︸

|NR|

do

4: if (∀Si. [(C,D ∈ Si ∧ C 6=D)⇒ C 6v D]) and
5: (rd(C)=k−1 for at least one C in Si) then
6: construct the EL concept description X as:
7:

X :=
l

A∈Sε

A u
|NR|l

i=1

l

Y ∈Si

∃ri.Y

8: Rk := Rk ∪ {X}
9: end if
10: end for

Since subsumption in EL is decidable and by induction Rk−1 is computable, this
procedure provides an effective way to compute Rk.

2.2 Extending EL with threshold concepts

In [2], EL is extended with threshold concepts C./ t, where C is an EL concept de-
scription, ./ ∈ {<,≤, >,≥}, and t is a rational number in [0, 1]. These threshold
concepts can then be used like concept names when building complex concept de-
scriptions such as (∃r.A)<1u∃r.(AuB)≥.8uB. Note that the concept C occurring
within the threshold operator must be an EL concept description, and thus nest-
ing of these operators is not allowed. The semantics of the threshold operators is
defined using a graded membership function, which is defined as follows.5

Definition 2. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ∆I × CEL(NC,NR) → [0, 1]
satisfying the following conditions (for C,D ∈ CEL(NC,NR)):

M1: ∀I ∀d ∈ ∆I : d∈CI ⇔ mI(d, C)=1,

M2: C≡D ⇔ ∀I ∀d ∈ ∆I : mI(d, C)=mI(d,D).

Intuitively, given an interpretation I and d ∈ ∆I , mI(d, C) ∈ [0, 1] represents
the degree to which d belongs to C in I. The concept C./ t then collects all the

5Note that this definition corrects a typo in Def. 3 of [2].
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TC : v0 : {A}

v1 : {B}

r

v2 : {A}

s

TĈ : v0 : {A,C>.8}

v1 : {B,D≤.5}

r

v2 : {A}

s

Figure 1: EL and τEL(m) description trees

elements of ∆I that belong to C with degree ./ t, as measured by m. To be more
precise, the formal semantics of threshold concepts is then defined as follows:

(C./ t)
I := {d ∈ ∆I | mI(d, C) ./ t}.

This way, a new family of DLs called τEL(m) is obtained, wherem is a parameter
indicating which function is used to obtain the semantics of threshold concepts.

In addition to this family of DLs, [2] introduces a concrete membership func-
tion deg , and investigates the computational properties of its corresponding DL
τEL(deg). We show that satisfiability and consistency are NP-complete, whereas
subsumption and instance checking (w.r.t. data complexity) are coNP-complete
in τEL(deg) (Th. 5 and 6 in [2]). An important step towards obtaining these
results was to characterize when an individual is an instance of a τEL(deg) con-
cept description in an interpretation. This characterization generalizes the corre-
sponding one for crisp membership in EL, which is based on the representation
of concepts and interpretations as graphs, and the existence of homomorphisms
between these graphs. Since it is needed in Section 3.3, we briefly describe the
general ideas behind it. In fact, it turns out that this characterization works for
τEL(m) regardless of which graded membership function m is used.

EL description graphs are graphs where the nodes are labeled with sets of concept
names and the edges are labeled with role names. As shown in [1, 4], interpre-
tations can be represented as (arbitrary) EL description graphs and EL concept
descriptions as EL description trees, i.e., as description graphs that are trees
(whose root we will always denote as v0). Description trees can be extended to
τEL(m) by allowing the node labels also to contain elements of the form C./ t.
For instance, the left-hand side of Figure 1 depicts the EL description tree corre-
sponding to the EL concept description Au∃r.B u∃s.A, whereas the right-hand
side shows the τEL(m) description tree corresponding to the τEL(m) concept
description A u C>.8 u ∃r.(B uD≤.5) u ∃s.A.

Based on the definition of homomorphisms between EL description trees in [4],
the notion of a τ -homomorphism φ from a τEL(m) description tree Ĥ into an
EL description graph GI representing an interpretation I is defined in [2] to be
a mapping from the nodes of Ĥ to the nodes of GI such that

8



1. the concept names occurring in the label set of a node v of Ĥ are contained
in the label set of its image φ(v);

2. if (v, w) is an edge with label r in Ĥ, then there is an edge (φ(v), φ(w))
with label r in GI ;

3. if the label set of a node v of Ĥ contains C./ t, then mI(φ(v), C) ./ t.

Conditions 1 and 2 correspond to the classical definition of homomorphisms be-
tween EL description graphs. From the results presented in [4], these classical
homomorphisms can be used to characterize classical membership in EL concept
descriptions.

Theorem 3. Let I be an interpretation, d ∈ ∆I, and C an EL concept descrip-
tion. Then, d ∈ CI iff there exists a homomorphism ϕ from TC to GI such that
ϕ(v0) = d.

Similarly, using τ -homomorphisms, membership in τEL(m) concept descriptions
can be characterized as follows (the proof is very tedious, the details can be found
in the Appendix).

Theorem 4. Let I be an interpretation with associated EL description graph GI,
d ∈ ∆I, and Ĉ a τEL(m) concept description with associated τEL(m) description
tree TĈ. Then, d ∈ ĈI iff there exists a τ -homomorphism φ from TĈ to GI such
that φ(v0) = d.

If the interpretation I is finite and m is computable in polynomial time, then the
existence of a τ -homomorphism can be checked in polynomial time. For the case
m = deg this fact as well as Theorem 4 were already shown in [2].

2.3 CSMs and graded membership functions

A concept similarity measure (CSM) is a function that maps pairs of concept
descriptions to values in [0, 1]. Intuitively, the larger this value is the more similar
the concept descriptions are. More formally, a CSM for EL concept descriptions
over NC and NR is a mapping ∼ : CEL(NC,NR) × CEL(NC,NR) → [0, 1]. Examples
of such measures as well as properties these measures should satisfy can, e.g., be
found in [13, 7, 11].

We reproduce here the Definition 10 in [2], which shows how a CSM ∼ can be
used to define an associated graded membership function m∼.

Definition 5. Let ∼ be a CSM. Then, for all interpretations I the function
mI∼ : ∆I × CEL(NC,NR)→ [0, 1] is defined as:

mI∼(d, C) := max{C ∼ D | D ∈ CEL(NC,NR) and d ∈ DI}.

9



To ensure that this definition yields a well-defined graded membership function,
∼ is required to be a standard CSM, which means that it needs to satisfy the
following three properties:

• ∼ must be equivalence invariant, i.e., C≡C ′ and D≡D′ implies C∼D=
C ′∼D′;

• ∼ must be role-depth bounded, i.e., C ∼ D = Ck ∼ Dk where k >
min{rd(C), rd(D)} and Ck, Dk are the restrictions of C,D to role depth
k, which are obtained from C,D by removing all existential restrictions
occurring at role depth k. More formally,

Ck := C if C ∈ NC or C = >,
Ck := [C1]k u . . . u [Cn]k if C = C1 u . . . u Cn,

[∃r.C]k :=

{
> if k = 0,

∃r.[C]k−1 otherwise;

• ∼ must be equivalence closed, i.e., the equivalence C ≡ D iff C ∼ D = 1
holds.

The first two conditions ensure that mI∼(d, C) is well-defined, i.e., the maximum
in the definition of this value really exists. In fact, these conditions imply that
one can restrict the search for an appropriate D ∈ CEL(NC,NR) to finitely many
concept descriptions.

Lemma 6. Let C ∈ CEL(NC,NR) with rd(C) = k. Then,

mI∼(d, C) = max{C ∼ D | D ∈ Rk+1 and d ∈ DI}

Proof. Since ∼ is role-depth bounded, this means that to compute mI∼ as ex-
pressed in Definition 5, one can restrict the attention to concepts D of role depth
at most k + 1. Moreover, for all such concept descriptions D we know that
Dr ∈ Rk+1 (see Lemma 1). Thus, being ∼ equivalence invariant, allows us to
assume without loss of generality that D ∈ Rk+1.

Equivalence closedness is additionally needed to ensure that m satisfies the prop-
erties required in Definition 2.

10



3 Reasoning in τEL(m∼)

We will now present a preliminary study of the complexity of reasoning in DLs
τEL(m∼) for standard CSMs ∼. Obviously, there is a great variety of standard
CSMs and not all of them are well-behaved from a computational point of view.
In fact, we will start by showing that there are standard CSMs that are not
computable. While non-computability of ∼ does not automatically imply that
reasoning problems in τEL(m∼) are undecidable, we will see that there are non-
computable CSMs ∼ such that the standard reasoning problems satisfiability,
subsumption, consistency, and instance checking are undecidable in τEL(m∼).
Afterwards, we will show that computability of ∼ implies decidability of these
reasoning problems in τEL(m∼). Finally, we determine a class of standard CSMs
such that reasoning in τEL(m∼) for a member ∼ of this class has the same
complexity as reasoning in τEL(deg).

3.1 Undecidability

Despite the properties required for a CSM to be standard, the set of all such
measures still exhibits a great diversity. In fact, it contains infinitely many CSMs
that have very simple definitions but are, nevertheless, non-computable functions.
We now define a particular set of standard CSMs, and we will see that it is not
difficult to put it into a one-to-one correspondence with the power set of the
natural numbers. This is the case even if the CSMs in such a set are defined
w.r.t. CEL({A}, {r}).

Definition 7. Let N ⊆ N and 0 < a < 1 a fixed rational number. Then, we
define the concept similarity measure ∼N as follows:

C ∼N D :=

{
1 if C ≡ D

µ(C,D) otherwise.

where µ corresponds to the expression:

µ(C,D) :=

{
a if rd(C) = rd(D) and rd(C) ∈ N
0 otherwise.

We now show that ∼N is a standard CSM.

Lemma 8. Let N ⊆ N and ∼N defined as in Definition 7. Then, ∼N is a
standard CSM.

Proof. That ∼N is equivalence closed follows directly from its definition. Let us
look at the other two properties.

11



1. equivalence invariance: let C,C ′, D,D′ ∈ CEL({A}, {r}) such that C ≡ C ′

and D ≡ D′. According to the definition of ∼N there are three possible
values for C ∼N D:

• C ∼N D = 1. This means that C ≡ C ′ ≡ D ≡ D′, and by definition
C ∼N D = C ′ ∼N D′ = 1.

• C ∼N D = 0. There are two possibilities:

– rd(C) 6= rd(D). Since C ≡ C ′ and D ≡ D′, this means that
rd(C ′) 6= rd(D′). Hence, C ′ ∼N D′ = 0.

– rd(C) 6∈ N . Then, rd(C ′) 6∈ N as well, and thus C ′ ∼N D′ = 0.

• C ∼N D = a. Then, C 6≡ D, rd(C) = rd(D) and rd(C) ∈ N . Similarly
as in the previous case, we obtain C ′ 6≡ D′, rd(C ′) = rd(D′) and
rd(C ′) ∈ N . Thus, C ′ ∼N D′ = a.

2. role-depth boundedness : let C,D ∈ CEL({A}, {r}). Whenever rd(C) =
rd(D) the role-depth boundedness condition trivially holds for C and D,
since for any k > rd(C) it is the case that C = Ck and D = Dk. It remains
to look at the case where rd(C) 6= rd(D). It follows from the definition of
∼N that C ∼N D = 0. Now, without loss of generality, let rd(C) < rd(D).
For any value k > rd(C) we have rd(Ck) < rd(Dk). Then, rd(Ck) 6= rd(Dk),
and consequently Ck ∼N Dk = 0 = C ∼N D.

Hence, each subset N of the natural numbers induces a standard CSM ∼N . More
importantly, for all pairs of distinct subsets N1, N2 ∈ N, the induced CSMs ∼N1

and ∼N2 are different. Just take a number n such that n ∈ N1 and n 6∈ N2 (or
vice versa). Then, take two concepts C and D such that rd(C) = rd(D) = n and
C 6≡ D (the fixed signature {A} ∪ {r} ensures that this is always possible). By
definition we will obtain C ∼N1 D = a and C ∼N2 D = 0.

Thus, there are as many CSMs of this type as subsets of the natural numbers,
namely, uncountably many. Since there are only countable many Turing Ma-
chines, there must be non-computable standard CSMs.

Proposition 9. The set of standard CSMs on EL concept descriptions defined
over CEL({A}, {r}), contains non-computable functions.

As explained in Section 2.3, since ∼N is a standard CSM, the function m∼N is a
well-defined graded membership function for all N ⊆ N, and it induces the DL
τEL(m∼N ). Furthermore, the very simple definition of ∼N makes possible to use
an algorithm deciding concept satisfiability in τEL(m∼N ) as a component of an
algorithm computing ∼N . More precisely, given two EL concept descriptions C
and D:

12



1. C ≡ D ⇒ C ∼N D = 1.

2. C 6≡ D and rd(C) 6= rd(D) ⇒ C ∼N D = 0.

3. Otherwise, the computation of C ∼N D solely depends on whether rd(C) ∈
N . This could be alternatively solved by asking for satisfiability of the
concept C ′≤a u C ′≥a in τEL(m∼N ), where C ′ is the following EL concept
description:

∃ r . . . r︸ ︷︷ ︸
rd(C)

.A

A positive answer corresponds to C ∼N D = a, while the opposite one
yields C ∼N D = 0. Let us see why this is true.

• Satisfiability of C ′≤a u C ′≥a implies that for some interpretation I and
d ∈ ∆I :

mI∼N (d, C ′) = a

This means that for some concept F , C ′ ∼N F = a which by definition
of ∼N implies rd(C ′) ∈ N .

• Conversely, let C ′≤auC ′≥a be unsatisfiable. Consider the interpretation
I having the following description graph:

d0 d1 d2 drd(C)

{}
r r r

One can observe that:

d0 6∈ (C ′)I and d0 ∈ (C∗)I , where C∗ := ∃ r . . . r︸ ︷︷ ︸
rd(C)

.>

This means that mI∼N (d0, C
′) < 1. Since we are in the unsatisfiability

case, it must be that mI∼N (d0, C
′) = 0. Moreover, since d0 ∈ (C∗)I ,

such a concept is considered to compute mI∼N (d0, C
′). Consequently,

C ′ ∼N C∗ = 0. Thus, since C ′ 6≡ C∗ and rd(C ′) = rd(C∗), by definition
of ∼N it follows that rd(C ′) 6∈ N .

The first two steps of the previous algorithm consist of solving “fairly” easy tasks.
Consequently, it becomes clear that decidability of the satisfiability problem in
a DL τEL(m∼N ) implies computability of the CSM ∼N . Hence, the following
undecidability result follows.

Proposition 10. Let N ⊆ N and ∼N its corresponding concept similarity mea-
sure defined as in Definition 7. If ∼N is non-computable, then it induces an
undecidable threshold DL τEL(m∼N ).

13



Summing up, on the one hand, we have shown that there are non-computable
standard CSMs. This has been established by setting a one-to-one correspondence
with the power set of the natural numbers. On the other hand, a subset of all
non-computable standard CSMs ∼ induces a set of undecidable DLs τEL(m∼),
where m∼ is constructed as described in Definition 5. Nevertheless, it is not
yet clear to us whether non-computability of a standard CSM ∼ always implies
undecidability of the induced DL τEL(m∼).

3.2 Decidability

Let ∼ be a computable standard CSM. We show decidability of reasoning in
τEL(m∼) using an equivalence preserving and computable translation of τEL(m∼)
concept descriptions into ALC concept descriptions. Since the standard reason-
ing problems are decidable in ALC such an effective translation obviously yields
their decidability in τEL(m∼).

Recall that ALC [12] is obtained from EL by adding negation ¬C, whose seman-
tics is defined in the usual way, i.e.,

(¬C)I := ∆I \ CI

Clearly, negation together with conjunction also yields disjunction C tD. Since
EL is a fragment of ALC, it suffices to show how to translate threshold concepts
C./ t into ALC concept descriptions. In addition, we can concentrate on the case
where ./ ∈ {≥, >} since C<t≡¬C≥t and C≤t≡¬C>t.

Lemma 11. Let ./ ∈ {≥, >}, t ∈ [0, 1]∩Q, and C ∈ CEL(NC,NR) with rd(C) = k.
Then

C./ t ≡
⊔
{D | D ∈ Rk+1 and C ∼ D ./ t}.

Proof. Let I be an interpretation and d ∈ ∆I . By the semantics of threshold
concepts and Lemma 6, we know that d ∈ (C./ t)

I iff

mI∼(d, C) = max{C ∼ D | D ∈ Rk+1 and d ∈ DI} ./ t.

Since ./ ∈ {≥, >}, this is equivalent to saying that there is a D ∈ Rk+1 such
that C ∼ D ./ t and d ∈ DI . This is in turn equivalent to d ∈

⋃
{DI | D ∈

Rk+1 and C ∼ D ./ t}.

SinceRk+1 is finite, the disjunction on the right-hand side of the equivalence in the
formulation of the lemma is finite, and thus this right-hand side is an admissible
ALC concept description. This description can effectively be computed since
Rk+1 is computable by Lemma 1 and ∼ is computable by assumption.
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Theorem 12. If ∼ is a computable standard CSM, then satisfiability, subsump-
tion, consistency and instance checking are decidable in τEL(m∼).

Since the cardinality of Rk increases by one exponent with each increase of k, this
approach provides only a non-elementary bound on the complexity of reasoning
in τEL(m∼). We will now show that, for a restricted class of CSMs, one can
obtain better complexity upper bounds.

3.3 Complexity

As shown in [2], there is a decidable standard CSM ∼∗ such that deg = m∼∗ , and
the complexity of reasoning in τEL(deg) is NP/coNP-complete for the standard
reasoning problems. We will now identify a class of standard CSMs ∼ such that
the complexity of reasoning in the induced threshold DLs τEL(m∼) is the same
as in τEL(deg).

The CSM ∼∗ inducing deg is an instance of the simi framework introduced in [11].
This framework can be used to define a variety of similarity measures between EL
concepts satisfying certain desirable properties. Here, we introduce a fragment of
simi that is sufficient for our purposes.

To construct a CSM ∼ using simi, one first defines a directional measure ∼d, and
then uses a fuzzy connector ⊗ to combine the values obtained by comparing the
reduced concepts in both directions with ∼d:

C ∼ D := (Cr ∼d Dr)⊗ (Dr ∼d Cr), (1)

where the fuzzy connector ⊗ is a commutative binary operator ⊗ : [0, 1]× [0, 1]→
[0, 1] satisfying certain additional properties (see [11]). The definition of C ∼d D
(see Def. 3 in [11]) depends on several parameters:

• A function g that assigns to every EL atom (i.e., concept name or existential
restriction) a weight in R>0. This could be helpful, for instance, if one
wants to express that some atom contributes more (is more important) to
the similarity than others.

• A discounting factor w ∈ [0, 1)6. The purpose of using this value is the
following. Given two concept descriptions ∃r.C and ∃s.D, if C ∼d D = 0,
having w > 0 allows to distinguish between the cases r = s and r 6= s.

• A primitive measure between concept names and between role names: pm :
(NC × NC) ∪ (NR × NR) → [0, 1], satisfying the following basic properties
(different from [11] we do not deal with role inclusion axioms):

6The definition of w in [11] excludes the value 0. Nevertheless, all the properties shown in
[11] to be satisfied by ∼d that are relevant to obtain our results also hold for w = 0.
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– pm(A,B) = 1 iff A = B for all A,B ∈ NC,
– pm(r, s) = 1 iff r = s for all r, s ∈ NR.

In particular, the default primitive measure pmd is defined as:

pmd(A,B) :=

{
1 if A = B

0 otherwise.

and

pmd(r, s) :=

{
1 if r = s

0 otherwise.

Once these parameters are fixed, the induced directional measure ∼d is defined
as follows.

Definition 13 (extracted from Def. 3 in [11]). Let C,D ∈ CEL(NC,NR). If C ≡ >,
then C ∼d D := 1; if C 6≡ > and D≡>, then C ∼d D := 0; otherwise, we use
top(C) and top(D) to denote the set of EL atoms occurring in the top-level
conjunction of C and D, and define

C ∼d D :=

∑
C′∈top(C)

[
g(C ′) × max

D′∈top(D)

(
simia(C

′, D′)
)]

∑
C′∈top(C)

g(C ′)
, where

simia(A,B) := pm(A,B) for all A,B ∈ NC,

simia(∃r.E, ∃s.F ) := pm(r, s)[w+(1−w)(E ∼d F )], and
simia(C

′, D′) := 0 in any other case.

The following two properties are satisfied by ∼d (see Lemma 1 in [11] ). They
will be useful later on to obtain our results. Let C,D and E be EL concept
descriptions, then:

C ∼d D = 1 iff D v C (2)

D v E ⇒ C ∼d E ≤ C ∼d D (3)

The proofs can be found in the extended version [10] of [11] (Lemma 14 and
Lemma 15). They indicate that these properties hold regardless of whether the
concepts C,D and E are in reduced form or not.

If ⊗, g and pm can be computed in polynomial time, then the induced CSM ∼
can also be computed in polynomial time (see [11], Lemma 2). Moreover, all the
CSMs obtained as instances of simi where g assigns 1 to atoms of the form ∃r.C
are standard CSMs (see Lemma 30 in the Appendix). One such instance of simi
is ∼∗, where ⊗= min, w= 0, g assigns 1 to all atoms, and pm = pmd. We now
define a class of instances of simi containing ∼∗.

16



A1 B1
◦ ∃r.( )2

A1 ∃r.( )2 ∃s.( )3

B◦ A◦

A1 B2 ∃r.( )2 ∃r.( )

A1 ∃r.( )2 ∃s.( )3 ∃s.( )

A B A

Figure 2: Computation of simid

Definition 14. The class simi-mon is obtained from simi by restricting the
admissible parameters as follows:

• ⊗ is computable in polynomial time and monotonic w.r.t. ≥;7

• g is computable in polynomial time and assigns 1 to all atoms of the form
∃r.C;
• pm = pmd and w is arbitrary.

In the following we will show that, for all ∼ ∈ simi-mon, reasoning in τEL(m∼)
is not harder than reasoning in τEL(deg). We start with illustrating some useful
properties satisfied by CSMs in simi-mon.

3.3.1 Some properties satisfied by measures in simi-m∗n

We first illustrate such properties through the following example.

Example 15. We consider a CSM ∼ whose definition deviates from the one of
∼∗ only in one place: we use w= .5. Consider

C := A uB1 u ∃r.(A u ∃r.B u ∃s.A),

D := A uB2 u ∃r.(A u ∃r.A u ∃s.B) u ∃r.∃s.A.

Figure 2 basically shows the atoms in D chosen by max when computing C∼dD.
The superscripts are used to denote the corresponding pairings for which the
value is > 0. For instance, at the top level of C, A1 means that A is paired
with the top-level atom of D having the same superscript. The symbol ◦ on the
left-hand side tells us that no match yielding a value > 0 exists. Now, removing
the atoms without superscript in D yields the concept Y :=Au∃r.(∃r.>u∃s.>).
One can easily verify that C∼dD=C∼d Y = 5/9, and it is clear that C and D
are both subsumed by Y .

7Examples are average and all polynomially computable bounded t-norms.

17



TĈ : v0 :{E<t0}

vx :{C≥tx}

v0

vxI0

d0

dx

φ(v0)

φ(vx)

IJ
...

Figure 3: Polynomial bounded model construction

These properties can be generalized to all pair of concepts and measures in
simi-mon, as stated in the following lemma whose proof is deferred to the Ap-
pendix.

Lemma 16. Let ∼ ∈ simi-mon. For all EL concept descriptions C and D, there
exists an EL concept description Y such that:

1. D v Y and s(Y ) ≤ s(C),

2. C ∼d D = C ∼d Y ,

3. C v Y .

3.3.2 Decidability in NP/coNP

We use the properties shown in Lemma 16 to prove that, like τEL(deg) (see
Lemma 4 in [2]), τEL(m∼) enjoys a polynomial model property if ∼ ∈ simi-mon.

Lemma 17. Let ∼ ∈ simi-mon and Ĉ a τEL(m∼) concept description. If Ĉ is
satisfiable, then there is a tree-shaped interpretation J such that ĈJ 6= ∅ and
|∆J | ≤ s(Ĉ).

Proof. Figure 3 outlines the description tree TĈ of a τEL(m∼) concept Ĉ, an
interpretation I such that d0 ∈ ĈI , and a corresponding τ -homomorphism φ
obtained by applying Theorem 4. The tree in the middle represents the small
interpretation J we want to build. The construction of J starts with a base
interpretation I0 that corresponds to TĈ (first ignoring labels of the form C./ t).
Consequently, the identity mapping φid from TĈ to GI0 satisfies Conditions 1
and 2 required for τ -homomorphisms. However, the third condition need not
be satisfied since, for instance, mI0∼ (vx, C) could well be smaller than tx. To fix
this, I0 is extended into J by attaching to vx a tree-shaped interpretation (the
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gray triangle in the figure) such that mJ∼(vx, C) ≥ tx. This interpretation can
be extracted from I using the fact that φ(vx) = dx implies that mI∼(dx, C)≥ tx
(because φ is a τ -homomorphism). To be more precise, consider an EL concept
description D such that

dx∈DI and mI∼(dx, C) = C ∼ D.

In principle, we could use the interpretation ID having the description tree TD as
the one to be attached to vx. Note that mI∼(dx, C) ≥ tx implies that C ∼ D ≥ tx.
Moreover, vx ∈ DJ would hold, and then by definition of m∼ we would obtain
that mJ∼(vx, C) ≥ C ∼ D ≥ tx. However, we do not know anything about the
size of D. This is where Lemma 16 comes into play. Instead of D it allows us to
use the concept Y .

We now explain why it is possible to do that. First, we apply Lemma 16 with
respect to the reduced form Cr of C. Then, Statement 1. tells us that s(Y ) ≤
s(Cr) and that dx also belongs to Y I (since D v Y ). Statement 2. shows that Y
yields the same value as D in the directional measure, i.e.,

Cr ∼d D = Cr ∼d Y

Now, using Property 3 and the fact that Dr v D and D v Dr (similarly for Y
and Y r, we also have:

Cr ∼d Dr = Cr ∼d Y r (4)

Finally, Statement 3. can be used to show that (4) also holds for ∼.

• C v Y implies that Y r ∼d Cr = 1 (by Property 2). Therefore, C ∼ Y =
(Cr ∼d Y r)⊗ 1. As ⊗ is monotonic and commutative, by definition of ∼ it
holds that C ∼ D ≤ C ∼ Y 1 (see (1)). But then, it must be the case that
C ∼ D = C ∼ Y , for otherwise the maximality of D in Definition 5 would
be contradicted.

This approach can be applied to all threshold concepts of the form C ′>t or C ′≥t
occurring in Ĉ. Let J denote the set of interpretations used to extend I0 into J ,
selected in the way we have just described. We remark that, except for nodes like
vx in I0 (where they will be plugged-in), their domain sets and ∆I0 are considered
as pairwise disjoint. Then,

|∆J | = |∆I0 |+
∑
IY ∈J

|∆IY | (5)

For each threshold concept C ′>t or C ′≥t occurring in Ĉ, the number of domain
elements added to satisfy it (in the corresponding ∆IY ) is bounded by the size
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of C ′. Notice, that Lemma 16 is applied to (C ′)r and s(Y ) ≤ s((C ′)r). More-
over, since as shown in [9] reduced forms are the smallest representatives of their
equivalence classes, this confirms that |∆IY | ≤ s(C ′). Finally, since the size of I0
is bounded by the size of Ĉ (without counting the threshold concepts occurring
in it), it thus holds that |∆J | ≤ s(Ĉ). The tree shape of J is guaranteed since I0
is tree-shaped and only fresh tree-shaped interpretations IY are attached to it.

Nevertheless, it remains to see why threshold concepts using < or ≤, like E<t0
in the figure, are not violated. The reason is basically that they are satisfied
in I, and that everything occurring in the attached pieces TY also occurs in I
(since dx ∈ Y I). This intuition can be formally justified through the following
observations:

• Since φ is a τ -homomorphism from TĈ to GI , it is also a classical homo-
morphism from TI0 to GI (i.e., it satisfies Conditions 1 and 2 required for
τ -homomorphisms).

• Each TY added to a node v in TI0 is such that φ(v) ∈ Y I . Consequently,
using Theorem 3, it is not hard to extend φ to a classical homomorphism
ϕ from GJ to GI such that ϕ(v) = φ(v) for all v ∈ ∆I0 .

• In the particular case of v0, let F be a concept such that v0 ∈ FJ and
mJ∼(v0, E) = E ∼ F . By definition of m∼, this means that v0 ∈ FJ . Let
w0 be the root of the description tree TF associated to F , by Theorem 3
there exists a homomorphism ϕ0 from TF to GJ such that ϕ0(w0) = v0.
Then, the composition ϕ ◦ ϕ0 is a homomorphism from TF to GI with
(ϕ ◦ ϕ0)(w0) = d0. Hence, another application of Theorem 3 yields that
d0 ∈ F I . Consequently,

mJ∼(v0, E) ≤ mI∼(d0, E)

We know thatmI∼(d0, E) < t0 (because φ(v0) = d0 and φ is a τ -homomorph-
ism). Thus, mJ∼(v0, E) < t0. For any other occurrence of a threshold
concept E ′<t or E ′≤t in the label of a node v′ of TĈ , the same reasoning can
be applied based on the fact that ϕ(v′) = φ(v′) as mentioned in the previous
point.

Overall, we can then conclude that J satisfies Ĉ.

Lemma 16 can also be used to show the following lemma (see the Appendix for
the proof).

Lemma 18. Let ∼ ∈ simi-mon. Additionally, let I be an interpretation, d ∈ ∆I

and C ∈ CEL(NC,NR) with rd(C) = k. Then, there exists a concept D ∈ Rk+1

such that:
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1. d ∈ DI and Cr ∼d D = max{Cr ∼d D′ | D′ ∈ Rk+1 and d ∈ (D′)I},

2. mI∼(d, C) = (Cr ∼d D)⊗ 1.

This lemma tells us, that to computemI∼(d, C), it is enough to compute the value:

max{Cr ∼d D′ | D′ ∈ Rk+1 and d ∈ (D′)I}

Based on this, we provide an algorithm (Algorithm 3 in the Appendix), which
correctly computes the value mI∼(d, C) for finite interpretations I in time poly-
nomial in the size of I and C.

Proposition 19. Let ∼ ∈ simi-mon. For every finite interpretation I, d ∈ ∆I,
and EL concept description C, mI∼(d, C) can be computed in time polynomial in
the size of I and C.

Together with this proposition, Lemma 17 yields a standard guess-and-check NP-
procedure for satisfiability in τEL(m∼). Regarding the other reasoning tasks,
the constructions introduced in [2] for τEL(deg) to provide appropriate bounded
model properties for them can also be applied for τEL(m∼):

• subsumption: a polynomial bounded model property is shown in [2] for
τEL(deg) concept descriptions of the form Ĉ u ¬D̂. This yields an NP de-
cision procedure for the non-subsumption problem, hence the subsumption
problem is in coNP. Such a construction starts with an interpretation J
satisfying Ĉ, and proceeds to extend it into an interpretation Jp satisfying
Ĉ u¬D̂, by attaching to J interpretations of size polynomial in s(D̂). The
construction can then be adapted to τEL(m∼), by using the interpretations
associated to the concept Y obtained from the application of Lemma 16.

• ABox consistency and instance checking are generalizations of satisfiability
and subsumption, respectively. The same technique can be used to replicate
the constructions provided for them in the setting of τEL(deg) to τEL(m∼).

Theorem 20. Let ∼ ∈ simi-mon. In τEL(m∼), satisfiability and consistency are
in NP, whereas subsumption and instance checking (w.r.t. data complexity) are
in coNP.

3.3.3 NP-hardness

In [2], satisfiability in τEL(deg) is shown to be NP-hard by reducing an NP-
complete variant V of propositional satisfiability to it. More precisely, such a
variant V corresponds to the problem ALL-POS ONE-IN-THREE 3SAT (see [8],
page 259), which we now introduce.
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Definition 21 (ALL-POS ONE-IN-THREE 3SAT). Let U be a set of proposi-
tional variables and C be a finite set of propositional clauses over U such that:

• each clause in C is a set of three literals over U , and

• no c ∈ C contains a negated literal.

ALL-POS ONE-IN-THREE 3SAT is the problem of deciding whether there exists
a truth assignment to the variables in U , such that each clause in C has exactly
one true literal.

Nevertheless, the reduction provided in [2] introduces a fresh concept name for
each propositional variable occurring in an instance of V . Since in the present
paper we assume that concept descriptions in τEL(m∼) are defined over a fixed
finite vocabulary NC ∪ NR, it is thus not possible to use the same reduction. We
will now present a new reduction that shows that satisfiability in τEL(m∼) is
NP-hard, even if only one concept name and one role name is available. However,
for this result to hold we need additional restrictions on ∼. Let simi-smon be the
subset of simi-mon whose measures are defined using a fuzzy connector ⊗ that:

• is strictly monotonic, i.e.,

x < y ⇒ x⊗ z < y ⊗ z holds for all x, y, z ∈ [0, 1]

, or

• has 1 as an identity element, i.e., x⊗ 1 = x holds for all x ∈ [0, 1].

We know prove NP-hardness for the satisfiability problem in all threshold logics
τEL(m∼) induced by a similarity measure ∼ in simi-smon.

In what follows we assume that the propositional variables occurring in any for-
mula ϕ (as described in Definition 21) are ordered, and we will refer to them as
x1, . . . , xn. To cope with the fix number of concept names in NC, we use existen-
tial restrictions to simulate/represent the propositional variables occurring in a
propositional formula ϕ. Let c1 ∧ . . . ∧ cq be the clauses of ϕ (as considered in
Definition 21), and x1, . . . , xn the propositional variables occurring in ϕ. Truth
assignments of the variables x1, . . . , xn can be identified in an interpretation I as
follows. First, for each variable xi occurring in ϕ, we associate to it the concept
description X{i} which has the following definition:

X{i} := ∃ r . . . r︸ ︷︷ ︸
i

.A

Second, let d ∈ ∆I , then the pair (I, d) induces a truth assignment td such that
for all 1 ≤ i ≤ n:

td(xi) = true iff d ∈
(
X{i}

)I
(6)
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The idea for our reduction is to construct a τEL(m∼) concept description Ĉϕ
such that d ∈ (Ĉϕ)I iff td satisfies exactly one literal in each clause of ϕ. To this
end, we define two concepts D̂1 and D̂2. One expresses that no two variables are
satisfied by td in the same clause, while the other one states that at least one
must be satisfied.

For each pair of variables xi and xj occurring in ϕ (i 6= j), we define the concept
description X{i,j} as:

X{i} uX{j}

Using these concepts, we construct the threshold concepts
(
X{i,j}

)
<1

to express
that the variables xi and xj are not both mapped to true by an assignment td.

Lemma 22. Let I be an interpretation and d ∈ ∆I. Then, d ∈ [(X{i,j})<1]
I iff

td(xi) = false or td(xj) = false.

Proof. Suppose that d ∈ [(X{i,j})<1]
I . Sincem∼ satisfies propertyM1, this means

that d 6∈ (X{i,j})I . Therefore,

d 6∈
(
X{i}

)I
or d 6∈

(
X{j}

)I
Hence, the claim holds by construction of td in (6). The converse can be proved
in a similar way.

Thus, to enforce that td does not satisfy two literals in a clause of ϕ, we define
the following concept description D̂1 :

D̂1 :=
l

c ∈ ϕ

l

xi,xj ∈ c
i 6=j

(
X{i,j}

)
<1

It remains to show how to express that td must satisfy at least one. For each
clause ck (1 ≤ k ≤ q) we define its corresponding EL concept description Ck as
∃r.Ek

1 , where Ek
1 is of the following form:

Ek
1 := γk1 u ∃r.Ek

2

. . .

Ek
i := γki u ∃r.Ek

i+1 (1 ≤ i < n)

. . .

Ek
n := γkn

Here γki = > if xi does not occur in ck, otherwise γki = A.

Example 23. Let ϕ be the following propositional formula in CNF:

{x1, x2, x3} ∧ {x1, x4, x3} ∧ {x4, x2, x3}
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A total of four propositional variables and three clauses occur in ϕ. Then, the
concept descriptions C1, C2 and C3 are the ones having the following EL descrip-
tion trees:

TC1 : {} {A} {A} {A} {}rrrr

TC2 : {} {A} {} {A} {A}rrrr

TC3 : {} {} {A} {A} {A}rrrr

The nodes at the ith level (except for the root) tell us whether the variable xi
occurs in a clause of ϕ. For x2, the empty set (or >) is used in TC2 to represent
that x2 does not occur in c2, while {A} is used in the the other two trees to state
that x2 occurs in c1 and c3. The same idea applies for the rest of the variables
occurring in ϕ.

One can easily verify that for all concepts Ck and variables xi occurring in the
clause ck of ϕ, it holds that Ck v X{i}. The idea now is to use a threshold concept
(Ck)≥tk to express that a domain element d is an instance of at least one X{i}.
For this to work, we have to show that tk can be selected such that if that were
not the case, then mI∼(d, Ck) would always be smaller than tk.

Let X{i}n denote the following extension of X{i}:

X{i}n := ∃ r . . . r︸ ︷︷ ︸
i

.(A u ∃ r . . . r︸ ︷︷ ︸
n−i

.>)
(
vs. X{i} = ∃ r . . . r︸ ︷︷ ︸

i

.A
)

Again, it is easy to see that for all concepts Ck and variables xi occurring in the
clause ck of ϕ, Ck v X

{i}
n v X{i} holds.

The following lemma tells us why such a value for tk always exists.

Lemma 24. Let ck be a clause in ϕ and xi, xj, x` the variables occurring in it.
Additionally, let D be an EL concept description such that:

D 6v X{i}, D 6v X{j} and D 6v X{`}

Then, for all ∼ ∈ simi-mon, Ck ∼d Dr < Ck ∼d X{a}n , a ∈ {i, j, `}.

Proof. The proof can be found in the Appendix.

Now, let t̄ and t be the following values:

t̄ := max{(Ck ∼d Dr)⊗ 1 | D 6v X{a}, for all a ∈ {i, j, `}}
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t := min
xi ∈ ck

{(Ck ∼d X{i}n )⊗ 1}

From the proof of Lemma 24, one can see that the maximum defining t̄ always
exists. Moreover, for all ∼ ∈ simi-smon, whether is ⊗ strictly monotonic or it has
1 as identity element, by Lemma 24: t̄ < t holds. Then, we define the threshold
concept (Ck)≥tk by selecting tk as a rational number such that:

t̄ < tk < t (7)

Lemma 25. Let ∼ ∈ simi-smon, I be an interpretation and d ∈ ∆I. IfmI∼(d, Ck) ≥
tk, then d ∈

(
X{i}

)I
for at least one variable xi occurring in ck.

Proof. Suppose thatmI∼(d, Ck) ≥ tk. Then, by Definition 5, there exists a concept
description D such that d ∈ DI and mI∼(d, Ck) = Ck ∼ D ≥ tk. We want to
show that D v X{i} for some xi occurring in ck. Suppose that this is not true.
Then, by Lemma 24 we know that:

Ck ∼d Dr < Ck ∼d X{i}n , for all xi ∈ ck (8)

Since D is maximal in Definition 5, by the properties shown in Lemma 16 we can
assume that:

Ck ∼ D = (Ck ∼d Dr)⊗ 1

By the selection of tk in (7), it follows that Ck ∼ D < tk which is a contradiction.
Therefore, D v X{i} for at least one variable xi occurring in ck. Since d ∈ DI ,
this means that d ∈

(
X{i}

)I
.

Finally, we define the concept D̂2 as
dq
k=1(Ck)≥tk , and then Ĉϕ corresponds to the

conjunction D̂1 u D̂2. The following lemma shows that our reduction is correct.

Lemma 26. Let ∼ ∈ simi-smon. Moreover, let ϕ be a propositional formula
of the type considered in Definition 21. Then, there exists a truth assignment t
satisfying exactly one literal in each clause of ϕ iff Ĉϕ is satisfiable in τEL(m∼).

Proof. (⇐) Assume that Ĉϕ is satisfiable in τEL(m∼). Then, there is an in-
terpretation I and an element d ∈ ∆I such that d ∈ (Ĉϕ)I . Consequently,
d ∈ (D̂1 u D̂2)

I . Then, for every clause ck of ϕ (1 ≤ k ≤ q) it hold:

d ∈ [(Ck)≥tk ]
I and d ∈

(
l

xi,xj∈ ck
xi 6=xj

(X{i,j})<1

)I

25



We take the truth assignment td induced by the pair (I, d) as described in (6),
and show that it satisfies exactly one literal in each clause of ϕ. Let ck be an
arbitrary clause of ϕ. Since d ∈ [(Ck)≥tk ]

I it follows that:

mI∼(d, Ck) ≥ tk

Hence, the application of Lemma 25 yields that d ∈
(
X{i}

)I for at least one
variable xi occurring in ck. Therefore, by construction of td we have that td(xi) =
true. Now, let xj and x` be the other two literals occurring in ck. Since d ∈[
(X{i,j})<1

]I and d ∈
[
(X{i,`})<1

]I , the application of Lemma 22 yields that
td(xj) = false and td(x`) = false. Thus, td satisfies exactly one literal of ck.

(⇒) Assume that there is a truth assignment t satisfying exactly one true literal
in each clause of ϕ. We define the interpretation I having the following shape:

d0 d1 d2 dn

r r r

where di ∈ AI iff t(xi) = true, for all 1 ≤ i ≤ n. Note that by definition of td0
in (6), it is the case that t = td0 . We show that d0 ∈ (Ĉϕ)I . Let us start with
D̂1. Assume that d0 6∈ (D̂1)

I , then by definition of D̂1 there exist a clause ck of ϕ
and two variables xi, xj in ck, such that d0 6∈ [(X{i,j})<1]

I . Then, by Lemma 22
we obtain td0(xi) = td0(xj) = true, which is a contradiction since t = td and t

satisfies exactly one literal in ck. Thus, d0 ∈ (D̂1)
I .

Concerning D̂2, let xi be the variable in an arbitrary clause ck satisfied by t. By

construction of I we have that d0 ∈
(
X
{i}
n

)I
. Therefore,

mI∼(d0, Ck) ≥ Ck ∼ X{i}n (9)

Additionally, since Ck v X
{i}
n , by Property (2) we have that X{i}n ∼d Ck = 1.

Consequently, Ck ∼ X
{i}
n =

(
Ck ∼d X{i}n

)
⊗ 1. Hence, combining (7) and (9) we

obtain mI∼(d0, Ck) ≥ tk and d0 ∈ [(Ck)≥tk ]
I . Therefore, d ∈ (D̂2)

I .

Overall, we have shown that d0 ∈ (D̂1uD̂2)
I . Thus, Ĉϕ is satisfiable in τEL(m∼).

Since satisfiability can be reduced to the consistency, non-subsumption and non-
instance problem, we thus obtain the following hardness results.

Proposition 27. Let ∼ ∈ simi-smon. In τEL(m∼), satisfiability and consistency
are NP-hard, whereas subsumption and instance checking are coNP-hard.
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3.4 Relaxed instance checking

In [2], it was shown for τEL(deg) that instance checking becomes polynomial if
instead of arbitrary τEL(deg) concept descriptions one considers only threshold
concepts of the form C>t. We can show that this result holds not just for deg ,
but for all CSMs in our class simi-mon.

Proposition 28. Let ∼ ∈ simi-mon. In τEL(m∼), the instance checking problem
for threshold concepts of the form C>t can be decided in polynomial time.

Proof. Let A be an EL ABox and a an individual of A. Moreover, let IA be the
canonical interpretation of A. Since IA |= A, this means that if aI ∈ (C>t)

I ,
then mIA∼ (aIA , C) > t. Furthermore, it is well-known that for EL, if aIA ∈DIA ,
then aI ∈ DI for all models I of A. Hence, by Definition 5 it follows that
t < mIA∼ (aIA , C)≤mI∼(aI , C) for all I.

Thus, to decide if A |= C>t(a) holds, it suffices to verify whether mIA∼ (aIA , C) > t
holds. This can be done in polynomial time, since IA is linear on the size of A
and mIA∼ can be computed in polynomial time.

Since it was shown in [2] (Proposition 5) that computing instances of threshold
concepts of the form C>t in a logic τEL(m∼) corresponds to answering so-called
relaxed instance queries w.r.t. ∼ (see [7]), this also yields a polynomiality result
for answering relaxed instance queries w.r.t. CSMs in simi-mon.

27



4 Conclusions

We have shown that the complexity results for reasoning in the threshold logic
τEL(deg) of [2] can be extended to a large class of logics τEL(m∼) that are
induced by appropriate concept similarity measures. Like in [2], we do not con-
sider terminological axioms (TBoxes) in the present paper. In [3], reasoning
w.r.t. acyclic TBoxes in τEL(deg) was considered. It would be interesting to see
whether the results of [3], which surprisingly show that acyclic TBoxes increase
the complexity, can also be extended to our logics τEL(m∼) for ∼ ∈ simi-mon.
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5 Appendix

Missing proofs of Section 2

The role depth of a τEL(m) concept description Ĉ is defined as for EL concept
descriptions, by considering threshold concepts as atomic concepts. Formally, we
denote a τEL(m) description graph Ĝ as a tuple (VG, EG, ̂̀G) where:

• VG is a set of nodes,

• EG ⊆ VG × NR × VG is a set of edges labeled with role names, and

• ̂̀G is a function labeling the nodes in VG.

We write `G(v) to denote the subset of ̂̀G(v) containing only labels from NC.

Theorem 4. Let I be an interpretation with associated EL description graph GI ,
d ∈ ∆I , and Ĉ a τEL(m) concept description with associated τEL(m) description
tree TĈ . Then, d ∈ ĈI iff there exists a τ -homomorphism φ from TĈ to GI such
that φ(v0) = d.

Proof. Let TĈ = (VT , ET , v0, ̂̀T ) be the description tree associated to Ĉ and Ĉ

be of the form Ĉ1 u . . . u Ĉq u ∃r1.D̂1 u . . . u ∃rn.D̂n, where each Ĉi is either a
concept name A ∈ NC or a threshold concept E∼t.

(⇒) Assume that d ∈ ĈI . Then, d ∈ (Ĉi)
I and d ∈ (∃rj.D̂j)

I for all 1 ≤ i ≤ q

and 1 ≤ j ≤ n. We show by induction on the role depth of Ĉ that there exists a
τ -homomorphism φ from TĈ to GI with φ(v0) = d.

Induction Base. rd(Ĉ) = 0. Then, n = 0 and TĈ consists only of one node
v0 (the root), it has no edges, and

{
Ĉ1, . . . , Ĉq

}
is the label set of v0. The

mapping φ(v0) = d is a τ -homomorphism from TĈ to GI . For each Ĉi of the form
A ∈ NC we know that d ∈ AI . Therefore, A is contained in the label set of d,
and consequently φ satisfies Condition 1 required for τ -homomorphisms. In case
Ĉi is of the form E∼t, the fact that d ∈ (Ĉi)

I implies that φ satisfies the third
condition.

Induction Step. Assume that the claim holds for all EL concept descriptions with
role depth smaller than k. We show that it also holds for rd(Ĉ) = k.

First, consider the concept D̂0 = Ĉ1 u . . . u Ĉq. One can see that TD̂0
=

(V0, E0, v0, ̂̀0) is exactly the description tree with V0 = {v0}, E0 = ∅ and ̂̀0(v0) =̂̀
T (v0). Since d ∈ (D̂0)

I and rd(D̂0) = 0, by induction hypothesis there exists a
τ -homomorphism φ0 from TD̂0

to GI with φ0(v0) = d.
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Now, consider any edge v0rjvj in ET . By the relationship between TĈ and Ĉ, there
exists a top level atom ∃rj.D̂j of Ĉ such that TD̂j = (Vj, Ej, vj, ̂̀j) is precisely the
subtree of TĈ with root vj. In addition, since d ∈ (∃rj.D̂j)

I there exists dj ∈ ∆I

such that drjdj ∈ EI and dj ∈ (D̂j)
I . Since rd(D̂j) < k, the application of the

induction hypothesis to dj and D̂j yields a τ -homomorphism φj from TD̂j to GI
with φj(vj) = dj.

It is not hard to see that for all nodes v ∈ VT , there exists exactly one of these
τ -homomorphisms φj (0 ≤ j ≤ n) such that v ∈ dom(φj). Based on this, we build
a mapping φ from VT to VI as φ =

⋃n
j=0 φj. Note that φ(v0) = d by definition of

φ0. Hence, it remains to show that φ is τ -homomorphism.

1. φ is a homomorphism from TC to GI: Let v be any node in VT . We
know that v is a node of one description tree TD̂j and φ(v) = φj(v) for the
corresponding mapping φj. Since φj is a homomorphism, this means that
`j(v) ⊆ `I(φj(v)). Therefore, `(v) = `j(v) implies `(v) ⊆ `I(φ(v)). Now,
let vrw be any edge from ET . There are two possibilities:

• vrw is of the form v0rjvj. As explained before we have φ(v0) = d,
φj(vj) = dj and drjdj ∈ EI . Hence, φ(v0)rjφ(vj) ∈ EI .
• v, w ∈ dom(φj) for some j ∈ {1 . . . n}. By construction of φ and the

fact that φj is a homomorphism, it follows that φ(v)rφ(w) ∈ EI .

2. Condition 3 required for τ -homomorphisms follows from the fact that φ is
constructed using τ -homomorphisms.

Thus, φ is a τ -homomorphism from TĈ to GI with φ(v0) = d.

(⇐) Assume that there exists a τ -homomorphism φ from TĈ toGI with φ(v0) = d.
We show by induction on the size of VT that d ∈ ĈI .

Induction Base. |VT | = 1. Then, Ĉ is of the form Ĉ1 u . . . u Ĉq and {Ĉ1, . . . , Ĉq}
is the label set of v0. We distinguish two cases for all Ĉi:

• Ĉi is of the form A ∈ NC. Since φ is τ -homomorphism, it is also a classical
homomorphism, i.e., it satisfies Conditions 1 and 2. Hence, ignoring the
labels of the form E∼t we have `T (v0) ⊆ `I(d). Thus, d ∈ AI .

• Ĉi is of the form E∼t. By Condition 3 required for τ -homomorphisms we
also have d ∈ (E∼t)

I .

Hence, d ∈ (Ĉi)
I for all conjuncts Ĉi of Ĉ. Thus, d ∈ ĈI .

Induction Step. Assume that the claim holds for |VT | < k. We show that it also
holds for |VT | = k. Since k > 0, there exist nodes v1, . . . , vn in VT such that
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v0rjvj ∈ ET . This also means that Ĉ is of the form Ĉ1 u . . .u Ĉq u∃r1.D̂1 u . . .u
∃rn.D̂n with n > 0, and the description tree TD̂j = (Vj, Ej, vj, ̂̀j) associated to
D̂j is the subtree of TĈ rooted at vj. We consider the following two cases:

• q > 0. Then, d ∈ (Ĉi)
I can be shown in the same way as for the base case.

• Consider any ∃rj.D̂j, with j ∈ {1 . . . n}. Since φ is also a homomorphism
from TĈ to GI and v0rjvj ∈ ET , then there exists ej ∈ ∆I such that
drjej ∈ EI and φ(vj) = ej. Moreover, it is clear that |Vj| < |VT | and it is
not difficult to see that the restriction of the domain of φ to Vj is also a τ -
homomorphism from TD̂j to GI with φ(vj) = ej. Hence, the application of
induction hypothesis yields ej ∈ (D̂j)

I , and this means that d ∈ (∃rj.D̂j)
I .

Thus, we have shown that d ∈ ĈI .

Deciding the existence of a τ-homomorphism. If the interpretation I is
finite and m is computable, then the existence of a τ -homomorphism can be
decided. We present an algorithm that (under the previous conditions) can be
used to decide the relation characterized by Theorem 4. As for deg , the starting
point is the polynomial time algorithm (Algorithm 1 below) introduced in [4] to
decide the existence of a homomorphism between two EL description trees.

Algorithm 1 Homomorphisms between EL description trees.
Input: Two EL description trees T1 and T2.
Output: “yes”, if there exists a homomorphism from T1 to T2; “no”, otherwise.

1: Let T1 = (V1, E1, v0, `1) and T2 = (V2, E2, w0, `2). Further, let {v1, . . . , vn} be
a post-order sequence of V1, i.e., v1 is a leaf and vn = v0.

2: Define a labeling δ : V2 → 2V1 as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ V2.
4: for all 1 ≤ i ≤ n do
5: for all w ∈ V2 do
6: if (`1(vi) ⊆ `2(w) and for all virv ∈ E1 there is w′ ∈ V2 such that
7: v ∈ δ(w′) and wrw′ ∈ E2) then
8: δ(w) := δ(w) ∪ {vi}
9: end if
10: end for
11: end for
12: If v0 ∈ δ(w0) then return “yes”, else return “no”.

Theorem 4 characterizes membership in τEL(m) concept descriptions via the
existence of a τ -homomorphism from a τEL(m) description tree TĈ to an EL
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description graph GI associated to an interpretation I. If I is finite, then Al-
gorithm 1 can be used to decide whether there exists a mapping satisfying the
three conditions required for τ -homomorphisms. One needs only to replace the
last line by v0 ∈ δ(d) for some d ∈ ∆I , since now T2 becomes GI . In order to
verify the third condition, we modify the test in line 6 to also consider whether
mI(d,E) ∼ t for all E∼t ∈ ̂̀T

Ĉ
(vi). Algorithm 2 implements this modification.

Algorithm 2 τ -homomorphism from a τEL(m) description tree to GI .

Input: A τEL(m) description tree T̂ and a finite interpretation I.
Output: “yes”, if there exists a τ -homomorphism from T̂ to GI ; “no”, otherwise.

1: Let T̂ = (VT , ET , v0, ̂̀T ) and GI = (VI , EI , `I). Further, let {v1, . . . , vn} be a
post-order sequence of VT , i.e., v1 is a leaf and vn = v0.

2: Define a labeling δ : VI → 2VT as follows.
3: Initialize δ by δ(w) := ∅ for all w ∈ VI .
4: for all 1 ≤ i ≤ n do
5: for all d ∈ ∆I do
6: if (`T (vi) ⊆ `I(d) and [E∼t ∈ ̂̀T (vi)⇒ mI(d,E) ∼ t] and
7: [virv ∈ ET ⇒ ∃d′ ∈ ∆I : v ∈ δ(d′)] and drd′ ∈ EI) then
8: δ(d) := δ(d) ∪ {vi}
9: end if
10: end for
11: end for
12: If there exists d ∈ ∆I such that v0 ∈ δ(d) then return “yes”, else return “no”.

Then, if one wants to know whether a precise element e ∈ ∆I belongs to (Ĉ)I ,
Algorithm 2 shall be invoked on TĈ and I. Note that a simple modification in
line 12, namely testing whether v0 ∈ δ(e), adapts the algorithm to answer the
question for e.

Now, the main difference between Algorithms 1 and 2 is that the latter needs to
compute mI to verify whether mI(d,E) ∼ t. Therefore, its computational com-
plexity depends on how difficult is to computemI for a chosenm. In particular, if
mI can be computed in polynomial time as for the graded membership functions
obtained from CSMs ∼ in simi-mon, Algorithm 2 will run in polynomial time.

Missing proofs of Section 3.3

The following theorem was shown in [9].

Theorem 29. Let C,D be EL concept descriptions, Cr, Dr their reduced forms,
and TCr , TDr the corresponding EL description trees. Then C ≡ D iff there exists
an isomorphism between TCr and TDr .

Lemma 30. Let ∼ be an instance of simi such that g(C) = 1 for all EL atoms
C of the form ∃r.C ′. Then, ∼ is a standard concept similarity measure.
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Proof. The equivalence closedness property has been already shown in [2] to hold
for all instances of simi. Regarding equivalence invariance, it follows from the
facts that C ∼ D is computed using the reduced forms of C and D, and that
C ≡ C ′ and D ≡ D′ imply that the structures of Cr and (C ′)r, respectively,
Dr and (D′)r are isomorphic (see Theorem 29). It remains to show that by
restricting the function g as stated in our claim, the resulting instances of simi
are also role-depth bounded.

To this end, we show that for every pair of EL concepts C,D and all k >
min{rd(C), rd(D)} it holds that:

C ∼d D = Ck ∼d Dk

We proceed by induction on the role depth of C.

Induction base. rd(C) = 0. Then, C is of the form A ∈ NC or >, and C = Ck.
For C = A, the value C ∼d D is the result of the following expression:

g(A)×max{simia(A,D
′) | D′ ∈ top(D)}

g(A)

As C = Ck, the value Ck ∼d Dk corresponds to:

g(A)×max{simia(A,D
′) | D′ ∈ top(Dk)}

g(A)

By definition of simia, we know that simia(A,D
′) = pm(A,D′) if D′ ∈ NC and 0

otherwise. Since concept names occurring as top-level atoms in D also occur in
Dk, this means that C ∼d D = Ck ∼d Dk. If C ≡ >, the definition of ∼d implies
that C ∼d D = 1 and Ck ∼d Dk = 1.

Induction step. Let C be an EL concept such that rd(C) = ρ with ρ ≥ 1.
Assuming our claim holds for all concepts of role depth smaller than ρ, we prove
it also holds for C.

Since rd(C) ≥ 1, this means that C is of the form C = C1u . . .uCn, where n ≥ 1
and rd(Ci) ≤ ρ for all 1 ≤ i ≤ n. For C and D we have:

C ∼d D =

n∑
i=1

[
g(Ci)×max{simia(Ci, D

′) | D′ ∈ top(D)}
]

n∑
i=1

g(Ci)
, (10)

and for Ck and Dk:

Ck ∼d Dk =

n∑
i=1

[
g([Ci]k)×max{simia([Ci]k, [D

′]k) | [D′]k ∈ top(Dk)}
]

n∑
i=1

g([Ci]k)
(11)
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Let us now use the induction hypothesis on all pairs of atoms (C ′, D′) and
([C ′]k, [D

′]k), where C ′ ∈ top(C) and D′ ∈ top(D). We distinguish two cases:

• C ′ ∈ NC. Obviously, it is still the case that k > min{rd(C ′), rd(D′)}. There-
fore, since rd(C ′) = 0 < ρ, the application of induction yields C ′ ∼d D′ =
[C ′]k ∼d [D′]k.

• C ′ is of the form ∃r.Ec. If D′ ∈ NC, then C ′ ∼d D′ = simia(C
′, D′) = 0.

Additionally, we have that [∃r.Ec]k = ∃r.[Ec]k−1 and [D′]k = D′. This again
means that [C ′]k ∼d [D′]k = simia(∃r.[Ec]k−1, [D′]k) = 0.

The other possibility corresponds to D′ being of the form ∃s.Ed. Similarly
to ∃r.Ec, we have [∃s.Ed]k = ∃s.[Ed]k−1. Then, by definition of ∼d we have:

C ′ ∼d D′ = pm(r, s)[w + (1− w)Ec ∼d Ed]

[C ′]k ∼d [D′]k = pm(r, s)[w + (1− w)[Ec]k−1 ∼d [Ed]k−1]

Now, having k > min{rd(C), rd(D)} implies that k−1 > min{rd(Ec), rd(Ed)}.
Hence, we can apply induction hypothesis to Ec (notice that rd(Ec) < ρ) to
obtain:

Ec ∼d Ed = [Ec]k−1 ∼ [Ed]k−1

Thus, it follows that C ′ ∼d D′ = [C ′]k ∼d [D′]k.

Overall, we have just shown that for all pairs of atoms (C ′, D′) where C ′ ∈ top(C)
and D′ ∈ top(D), it holds C ′ ∼d D′ = [C ′]k ∼d [D′]k.

Let us now take any top-level atom C ′ of C, and denote by D∗ a top-level atom
of D that maximizes the value simia(C

′, D′) among all D′ ∈ top(D). We make
the following observations:

• g(C ′) = g([C ′]k). If C ′ ∈ NC, it is clear since C ′ = [C ′]k. Otherwise, C ′ is
an existential restriction as it is [C ′]k because k > 0.

• Suppose that simia([C
′]k, [D

∗]k) is not the maximum among all the values
simia([C

′]k, [D
′]k) in (11). Then, there exists [Dx]k ∈ top(Dk) such that

simia([C
′]k, [D

∗]k) < simia([C
′]k, [D

x]k). From this we obtain:

simia(C
′, D∗) = C ′ ∼d D∗ (C ′ and D∗ are atoms)

= [C ′]k ∼d [D∗]k

= simia([C
′]k, [D

∗]k) ([C ′]k and [D∗]k are atoms)
< simia([C

′]k, [D
x]k)

= [C ′]k ∼d [Dx]k ([C ′]k, [Dx]k are atoms)
= C ′ ∼d Dx

= simia(C
′, Dx) (C ′, Dx are atoms)
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Hence, it follows that simia(C
′, D∗) < simia(C

′, Dx) which contradicts
the maximality of D∗ with respect to simia and C ′. Therefore, the value
simia([C

′]k, [D
∗]k) is the maximum among all the values simia([C

′]k, [D
′]k)

in (11).

Combining these two observations with the expressions in (10) and (11) we obtain
that C ∼d D = Ck ∼d Dk. Once we have this, it follows that:

(Cr ∼d Dr)⊗ (Dr ∼d Cr) = ([Cr]k ∼d [Dr]k)⊗ ([Dr]k ∼d [Cr]k)

for all k > min{rd(C), rd(D)} (note that rd(C) = rd(Cr)). Thus, C ∼ D = Ck ∼
Dk holds, and ∼ is role-depth bounded.

Lemma 16. Let ∼ ∈ simi-mon. For all EL concept descriptions C and D, there
exists an EL concept description Y such that:

1. D v Y and s(Y ) ≤ s(C),

2. C ∼d D = C ∼d Y ,

3. C v Y .

Proof. We use induction on the structure of C to prove the claim.

• C is of the form A ∈ NC or >. If C = A, the value C ∼d D is the result of
the following expression:

g(A)×max{simia(A,D
′) | D′ ∈ top(D)}

g(A)

Since pm = pmd, this means that A ∼d D = 1 if A ∈ top(D), otherwise
A ∼d D = 0. Choosing Y := A or Y := >, accordingly, ensures that our
claims are true. Finally, if C ≡ >, then the general definition of ∼d implies
C ∼d X = 1 for all concept descriptions X. Thus, setting Y := > satisfies
the our claims.

• C = C1 u . . . u Cn with n > 1. In this case we have:

C ∼d D =

n∑
j=1

[
g(Cj)×max{simia(Cj, D

′) | D′ ∈ top(D)}
]

n∑
j=1

g(Cj)

Let Dj (1 ≤ j ≤ n) be a top-level atom of D that maximizes the value
simia(Cj, D

′) among all D′ ∈ top(D). The application of the induction
hypothesis to Cj and Dj yields a concept description Yj such that:
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– Dj v Yj and s(Yj) ≤ s(Cj),

– Cj ∼d Dj = Cj ∼d Yj,
– Cj v Yj.

Obviously, C1 u . . . uCn v Y1 u . . . u Yn and D1 u . . . uDn v Y1 u . . . u Yn.
Therefore, the concept description Y := Y1u . . .uYn satisfy C v Y , D v Y
and s(Y ) ≤ s(C).

Now, the value of C ∼d Y is computed by the following expression:

C ∼d Y =

n∑
j=1

[
g(Cj)×max{simia(Cj, Y

′) | Y ′ ∈ top(Y )}
]

n∑
j=1

g(Cj)
(12)

Suppose that for some Cj (1 ≤ j ≤ n), simia(Cj, Yj) is not the maximum
among all the values simia(Cj, Y

′). Then, there is Y` ∈ top(Y ) such that
j 6= ` and simia(Cj, Yj) < simia(Cj, Y`). From this we obtain:

simia(Cj, Dj) = Cj ∼d Dj (Cj and Dj are atoms)
= Cj ∼d Yj
= simia(Cj, Yj) (Cj and Yj are atoms)
< simia(Cj, Y`)

≤ simia(Cj, D`) (D` v Y`, (3) and Cj, Y`, D` are atoms)

Hence, it follows that simia(Cj, Dj) < simia(Cj, D`) which contradicts the
maximality of Dj with respect to simia and Cj. Hence, simia(Cj, Yj) is
actually the maximum, and once this is true it is easy to see that C ∼d
D = C ∼d Y .

• C is of the form ∃r.C ′. Let D∗ be the top-level atom of D maximizing the
value simia(C,D

∗). If D∗ ∈ NC, then simia(C,D
∗) = 0 and C ∼d D = 0.

Then, choosing Y = > satisfies our claims.

If D∗ is of the form ∃s.D′, then ∼

C ∼d D = pm(r, s)[w + (1− w)× (C ′ ∼d D′)]

For r 6= s we have pm(r, s) = 0 and C ∼d D = 0. Then, again choosing Y
as > is enough. Otherwise, the application of induction hypothesis to C ′
w.r.t. D′ yields a concept description Y ′ such that:

– D′ v Y ′ and s(Y ′) ≤ s(C ′),

– C ′ ∼d D′ = C ′ ∼d Y ′,
– C ′ v Y ′.
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Then, for the concept descriptions Y := ∃r.Y ′ we have that C v Y (recall
that we already ruled out the case r 6= s), D v ∃r.D′ v Y and s(Y ) ≤ s(C).
Additionally,

C ∼d Y = pm(r, r)[w + (1− w)× (C ′ ∼d Y ′)]

Lemma 18 Let ∼ ∈ simi-mon. Additionally, let I be an interpretation, d ∈ ∆I

and C ∈ CEL(NC,NR) with rd(C) = k. Then, there exists a concept D ∈ Rk+1

such that:

1. d ∈ DI and Cr ∼d D = max{Cr ∼d D′ | D′ ∈ Rk+1 and d ∈ (D′)I},

2. mI∼(d, C) = (Cr ∼d D)⊗ 1.

Proof. Since Rk+1 is a finite set, this means that there is at least one concept D
such that d ∈ DI and

Cr ∼d D = max{Cr ∼d D′ | D′ ∈ Rk+1 and d ∈ (D′)I} (13)

Suppose, however, that mI(d, C) 6= (Cr ∼d D)⊗1. The application of Lemma 16
to Cr and D yields a concept description Y such that:

• D v Y and Cr v Y ,

• Cr ∼d D = Cr ∼d Y .

Hence, D v Y implies d ∈ Y I , and Cr v Y implies Y ∼d Cr = 1. Moreover,
since Y v Y r and Y r v Y , by Property (3), it follows that Cr ∼d Y = Cr ∼d Y r.
Consequently, by definition of ∼ we have:

C ∼ Y = (Cr ∼d Y r)⊗ 1

Thus, since d ∈ Y I and Cr ∼d D = Cr ∼d Y r, by definition of m∼ is must be the
case that

mI∼(d, C) > C ∼ Y (14)

Now, let D∗ ∈ Rk+1 be a concept description such that mI∼(d, C) = C ∼ D∗. By
definition of ∼ we have that:

C ∼ D∗ = (Cr ∼d (D∗)r)⊗ ((D∗)r ∼d Cr)

Again, by Lemma 16 and the monotonicity of ⊗, one can assume that:

C ∼ D∗ = (Cr ∼d (D∗)r)⊗ 1
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Moreover, by the maximality of D in (13) and the properties of Y , we know that:

(Cr ∼d (D∗)r) ≤ Cr ∼d Y r

Hence, since ⊗ is commutative and monotonic it follows that C ∼ D∗ ≤ C ∼ Y .
This is clearly in contradiction with the statement in (14). Thus, mI∼(d, C) =
C ∼ Y , and the lemma holds.

Computation of mI∼. We now provide an algorithm that computes mI∼ for
finite interpretations I. First, we define the following notions which will be
useful in the corresponding proofs.

Definition 31. Let C be an EL concept description and TC its associated EL
description tree. For all nodes v ∈ VTC we denote by TC [v] the subtree of TC
rooted at v. Furthermore, the EL concept description C[v] is the one having the
description tree TC [v]. Finally, the height η(v) of a node v in TC is the length of
the longest path from v to a leaf of TC .

We would like to point out that for all concept descriptions Cr in reduced form,
the concepts Cr[v] are also in reduced form (for all v ∈ VTCr ). This is a conse-
quence of the fact that to obtain the reduced form of a concept C the rules are
not only applied in the top-level conjunction of C, but also under the scope of
existential restrictions (see Section 2.1).

Algorithm 3 considers each pair (v, e) with v ∈ VTCr and e ∈ ∆I only once.
Therefore, since g and ⊗ are computable in polynomial time, it is easy to see that
Algorithm 3 runs in time polynomial in the size of C and I. The following lemma
shows that it actually computes the value of mI∼, i.e., S(v0, d)⊗ 1 = mI∼(d, C).

Lemma 32. Let ∼ ∈ simi-mon, C be an EL concept description, I a finite
interpretation and d ∈ ∆I. Then, Algorithm 3 outputs mI∼(d, C), i.e., S(v0, d)⊗
1 = mI∼(d, C).

Proof. To show that S(v0, d)⊗ 1 = mI∼(d, C), we first prove the following claim:

S(v, e) = max{Cr[v] ∼d D | e ∈ DI}, for all (v, e) ∈ VTCr ×∆I (15)

Notice that for each pair (v, e) the value of S(v, e) is assigned only once during a
run of the algorithm. We prove the claim by induction on the height η(v) of each
node v in TCr .

Induction Base. η(v) = 0. Then, v is a leaf of TCr . This means that Cr[v] is
either > or a conjunction of different concept names. If it is >, the algorithm
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Algorithm 3 Computation of mI∼.
Input: A CSM ∼ ∈ simi-mon, an EL concept description C, a finite interpreta-

tion I and d ∈ ∆I .
Output: mI∼(d, C).

1: Let Cr be the reduced form of C and GI = (VI , EI , `I).
2: Let {w1, . . . , wn} be a post-order sequence of VTCr where wn = v0.
3: The assignment S : VTCr × VI → [0..1] is computed as follows:
4: for all 1 ≤ i ≤ n do
5: v = wi
6: if Cr[v] = > then
7: S(v, e) := 1 for all e ∈ ∆I

8: else
9: Let C∗ be the following concept description:

C∗ :=
l

A∈`TCr (v)

A

10: for all e ∈ ∆I do
11: Let D∗ be the following concept description:

D∗ :=
l

B∈`I(e)

B

12: c :=
∑

A∈top(C∗)

[
g(A)× max

B∈top(D∗)
simia(A,B)

]
13: for all vsivi ∈ ETCr do
14: c := c+ max

(e,e′)∈sIi
w + (1− w)× S(vi, e

′)

15: end for
16: S(v, e) := c∑

A∈top(C∗)
g(A) +

∑
vsivi∈ETCr

1

17: end for
18: end if
19: end for
20: return S(v0, d)⊗ 1
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treats it properly by setting S(v, e) = 1 in line 7. Otherwise, Cr[v] is of the form
A1 u . . . u An. Let D be any concept description such that e ∈ DI . Then,

Cr[v] ∼d D =

n∑
i=1

[
g(Ai)× max

D′∈top(D)
(simia(Ai, D

′))

]
n∑
i=1

g(Ai)

By definition of simia, simia(Ai, D
′) > 0 iff D′ = A. Therefore, existential

restrictions in the top level of D are irrelevant to obtain the value Cr[v] ∼d D.
Therefore, one can restrict the attention to concepts D that are a conjunction
of concept names B such that e ∈ BI . Consequently, by definition of D∗ in
Algorithm 3, it follows that D∗ v D. Since obviously e ∈ (D∗)I , by Property 3
we then have:

Cr[v] ∼d D∗ = max{Cr[v] ∼d D | e ∈ DI}

One can easily see that in this case, S(v, e) gets assigned the value Cr[v] ∼d D∗.

Induction Step. η(v) > 0. Let v1, . . . , vk be the children of v in TCr such that
there exists at least one si successor of e in I. The application of the max
operator in line 14, selects for each si-successor vi of v an si-successor ei of e in
∆I that has the maximum value for S(vi, ei). Such a value is then used in the
computation of c. Let (vi, ei) be the pairs representing such a selection for all vi.
Two observations are in order:

• Since vi is a child of v, it occurs first in the post-oder selected in line 2.
Therefore, the value of S(vi, ei) is computed before the computation of c
for (v, e).

• The value of S(v, e) as computed by Algorithm 3 corresponds to the follow-
ing expression:

S(v, e) =

∑
A∈top(C∗)

[
g(A)× max

B∈top(D∗)
simia(A,B)

]
+

k∑
i=1

[w + (1− w)× S(vi, ei)]∑
A∈top(C∗)

g(A) +
∑

vsivi∈ETCr

1

(16)

• Since η(vi) < η(v), the application of the induction hypothesis yields

S(vi, ei) = max{Cr[vi] ∼d D | ei ∈ DI} (17)

Let now Di be a concept description such that S(vi, ei) = Cr[vi] ∼d Di and
ei ∈ (Di)

I , for all i ∈ {1 . . . k}. We define the EL concept description D as:

D := D∗ u
kl

i=1

∃si.Di
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Since e ∈ (D∗)I and (e, ei) ∈ (si)
I for all 1 ≤ i ≤ k, this means that e ∈ DI .

Again, it is not hard to see that Algorithm 3 assigns the value Cr[v] ∼d D to
S(v, e). Suppose, however, that there exists a concept description E such that
e ∈ EI and Cr[v] ∼d E > Cr[v] ∼d D. Then, by definition of ∼d there must exist
top level atoms Cx and Ex of Cr[v] and Ex, respectively, such that:

simia(C
x, Ex) > max

D′∈top(D)
simia(C

x, D′) (18)

We distinguish three cases regarding the form of Cx.

• Cx if of the form A ∈ NC. In such a case, the only possibility is Ex = A.
But this means that e ∈ AI , and consequently A is also a top level atom of
D, contradicting (18).

• Cx is of the form ∃si.Cr[vi] for 1 ≤ i ≤ k. Then, Ex is of the form ∃si.E ′.
Since e ∈ (Ex)

I , this means that there exists e′ ∈ ∆I such that (e, e′) ∈ (si)
I

and e′ ∈ (E ′)I . Clearly, e′ = ei must hold, for otherwise e′ would have been
selected instead of ei (in view of (18)).

By definition of simia we have:

simia(∃si.Cr[vi],∃si.E ′) = w + (1− w)× Cr[vi] ∼d E ′

and,
simia(∃si.Cr[vi],∃si.Di) = w + (1− w)× Cr[vi] ∼d Di

Since S(vi, ei) = Cr[vi] ∼d Di, the consequence (17) of applying the in-
duction hypothesis tells us that Cr[vi] ∼d E ′ ≤ Cr[vi] ∼d Di. Thus, since
∃si.Di is a top level atom of D, we again obtain a contradiction with (18).

• Cx is any other existential restriction ∃s.C ′ occurring in the top level of
Cr[v]. This means that e has no s-successor in I, and since pm = ±d, it
follows that simia(C

x, Ex) = 0 always holds.

Overall, we have just shown that S(v, e) satisfies our claim in (15). Furthermore,
by Lemma 18 we know that S(v0, d) ⊗ 1 = mI∼(d, C). Thus, Algorithm 3 is
correct.

Lemma 24. Let ck be a clause in ϕ and xi, xj, x` the variables occurring in it.
Additionally, let D be an EL concept description such that:

D 6v X{i}, D 6v X{j} and D 6v X{`}

Then, for all ∼ ∈ simi-mon, Ck ∼d Dr < Ck ∼d X{a}n , a ∈ {i, j, `}.
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Proof. First, notice that Ck and X{a}n are already in reduced form. Since Dr 6v
X{a} for all a ∈ {i, j, `}, the inductive construction of the concept Y w.r.t. Ck
and Dr in the proof of Lemma 16 tells us that such a Y can be of the form:

∃ r . . . r︸ ︷︷ ︸
ρ

.>, where ρ = min(rd(Ck), rd(Dr))

We also know that Ck ∼d Dr = Ck ∼d Y . In addition, it is clear that:

X{a}n v ∃ r . . . r︸ ︷︷ ︸
rd(C)

.> v ∃ r . . . r︸ ︷︷ ︸
ρ

.>

Therefore, by using Property 3 of ∼d we obtain that:

Ck ∼d X{a}n ≥ Ck ∼d ∃ r . . . r︸ ︷︷ ︸
rd(C)

.> ≥ Ck ∼d ∃ r . . . r︸ ︷︷ ︸
ρ

.>

Furthermore, since both Ck and X{a}n have an occurrence of the atom A at the
same role depth, it is not difficult to see that by definition of ∼d, > also holds for
the previous inequalities:

Ck ∼d X{a}n > Ck ∼d ∃ r . . . r︸ ︷︷ ︸
rd(C)

.> > Ck ∼d ∃ r . . . r︸ ︷︷ ︸
ρ

.>

Thus, it follows that Ck ∼d X{a}n > Ck ∼d Dr.
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