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Abstract

In contrast to qualitative linear temporal logics, which can be used to state that some
property will eventually be satisfied, metric temporal logics allow to formulate constraints
on how long it may take until the property is satisfied. While most of the work on combining
Description Logics (DLs) with temporal logics has concentrated on qualitative temporal
logics, there has recently been a growing interest in extending this work to the quantitative
case. In this paper, we complement existing results on the combination of DLs with metric
temporal logics over the natural numbers by introducing interval-rigid names. This allows
to state that elements in the extension of certain names stay in this extension for at least
some specified amount of time.

1 Introduction

Description Logics [7] are a well-investigated family of logic-based knowledge representation
languages, which provide the formal basis for the Web Ontology Language OWL.1 As a con-
sequence, DL-based ontologies are employed in many application areas, but they are particularly
successful in the medical domain (see, e.g., the medical ontologies Galen and SNOMEDCT2).
For example, the concept of a patient with a concussion can formally be expressed in DLs as
Patient u ∃finding.Concussion, which is built from the concept names (i.e., unary predicates)
Patient and Concussion and the role name (i.e., binary predicate) finding using the concept
constructors conjunction (u) and existential restriction (∃r.C). Concepts and roles can then be
used within terminological and assertional axioms to state facts about the application domain,
such as that concussion is a disease (Concussion v Disease) and that patient Bob has a concussion
(Patient(BOB), finding(BOB,F1),Concussion(F1)).

This example, taken from [8], can also be used to illustrate a shortcoming of pure DLs. For a
doctor, it is important to know whether the concussed patient has lost consciousness, which is the
reason why SNOMEDCT contains a concept for “concussion with no loss of consciousness” [18].
However, the temporal pattern inherent in this concept (after the concussion, the patient
remained conscious until the examination) cannot be modelled in the DL used for SNOMEDCT.

To overcome the problem that pure DLs are not able to express such temporal patterns, a
great variety of temporal extensions of DLs have been investigated in the literature.3 In the
present paper, we concentrate on the DL ALC and combine it with linear temporal logic (LTL),
a point-based temporal logic whose semantics assumes a linear flow of time. But even if these
two logics are fixed, there are several other design decisions to be made. One can either apply
temporal operators only to axioms [8] or also use them within concepts [14,19]. With the latter,
one can then formalize “concussion with no loss of consciousness” by the (temporal) concept
∃finding.Concussion u (Conscious U ∃procedure.Examination), where U is the until-operator of
LTL. With the logic of [8], one cannot formulate temporal concepts, but could express that
a particular patient, e.g., Bob, had a concussion and did not lose consciousness until he was
examined. Another decision to be made is whether to allow for rigid concepts and roles, whose
interpretation does not vary over time. For example, concepts like Human and roles like hasFather
are clearly rigid, whereas Conscious and finding are flexible, i.e., not rigid. If temporal operators
can be used within concepts, rigid concepts can be expressed using terminological axioms, but
rigid roles cannot. In fact, they usually render the combined logic undecidable [14, Proposition
3.34]. In contrast, in the setting considered in [8], rigid roles do not cause undecidability, but
adding rigidity leads to an increase in complexity.

In this paper, we address a shortcoming of the purely qualitative temporal description logics
1https://www.w3.org/TR/2009/WD-owl2-overview-20090327/
2see http://www.opengalen.org/ and http://www.snomed.org/
3We refer the reader to [14,16] for an overview of the field of temporal DLs.

2

https://www.w3.org/TR/2009/WD-owl2-overview-20090327/
http://www.opengalen.org/
http://www.snomed.org/


mentioned until now. The qualitative until-operator in our example does not say anything about
how long after the concussion that examination happened. However, the above definition of
“concussion with no loss of consciousness” is only sensible in case the examination took place in
temporal proximity to the concussion. Otherwise, an intermediate loss of consciousness could
also have been due to other causes. As another example, when formulating eligibility criteria for
clinical trials, one needs to express quantitative temporal patterns [11] like the following: patients
that had a treatment causing a reaction between 45 and 180 days after the treatment, and
had no additional treatment before the reaction: Treatmentu#

(
(¬Treatment)U[45,180]Reaction

)
,

where # is the next-operator. On the temporal logic side, extensions of LTL by such intervals
have been investigated in detail [1, 2, 15]. Using the next-operator of LTL as well as disjunction,
their effect can actually be simulated within qualitative LTL, but if the interval boundaries are
encoded in binary, this leads to an exponential blowup. The complexity results in [1] imply
that this blowup can in general not be avoided, but in [15] it is shown that using intervals
of a restricted form (where the lower bound is 0) does not increase the complexity compared
to the qualitative case. In [12], the combination of the DL ALC with a metric extension of
LTL is investigated. The paper considers both the case where temporal operators are applied
only within concepts and the case where they are applied both within concepts and outside of
terminological axioms. In Section 2, we basically recall some of the results obtained in [12], but
show that they also hold if additionally temporalized assertional axioms are available.

In Section 3, we extend the logic LTLbin
ALC of Section 2 with interval-rigid names, a means of

expressiveness that has not been considered before. Basically, this allows one to state that
elements belonging to a concept need to belong to that concept for at least k consecutive time
points, and similarly for roles. For example, according to the WHO, patients with paucibacillary
leprosy should receive MDT as treatment for 6 consecutive months,4 which can be expressed
by making the role getMDTagainstPB rigid for 6 time points (assuming that each time point
represents one month).

In Section 4, we consider the effect of adding interval-rigid concepts and roles as well as metric
temporal operators to the logic ALC-LTL of [8], where temporal operators can only be applied
to axioms. Interestingly, in the presence of rigid roles, interval-rigid concepts actually cause
undecidability. Without rigid roles, the addition of interval-rigid concepts and roles leaves the
logic decidable, but in some cases increases the complexity (see Table 2). Finally, in Section 5 we
investigate the complexity of this logic without interval-rigid names, which extends the analysis
from [8] to quantitative temporal operators (see Table 3). Detailed proofs of all results can be
found in the appendix.

Related Work. Apart from the above references, we want to point out work on combining DLs
with Halpern and Shoham’s interval logic [3,4]. This setting is quite different from ours, since it
uses intervals (rather than time points) as the basic time units. In [6], the authors combine ALC
concepts with the (qualitative) operators ♦ (‘at some time point’) and 2 (‘at all time points’)
on roles, but do not consider quantitative variants. Recently, an interesting metric temporal
extension of Datalog over the reals was proposed, which however cannot express interval-rigid
names nor existential restrictions [10].

2 The Temporal Description Logic LTLbin
ALC

We first introduce the description logic ALC and its metric temporal extension LTLbin
ALC [12],

which augments ALC by allowing metric temporal logic operators [1] both within ALC axioms
and to combine these axioms. We actually consider a slight extension of LTLbin

ALC by assertional
4see http://www.who.int/lep/mdt/duration/en/.
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axioms, and show that this does not change the complexity of reasoning compared to the results
of [12].

Syntax. Let NC, NR and NI be countably infinite sets of concept names, role names, and
individual names, respectively. An ALC concept is an expression given by C,D ::= A | > | ¬C |
C u D | ∃r.C, where A ∈ NC and r ∈ NR. LTLbin

ALC concepts extend ALC concepts with the
constructors #C and C UID, where I is an interval of the form [c1, c2] or [c1,∞) with c1, c2 ∈ N
given in binary. We may use [c1, c2) to abbreviate [c1, c2− 1], and similarly for the left endpoint.
For example, AU[2,5)B u ∃r.#A is an LTLbin

ALC concept.

An LTLbin
ALC axiom is either a general concept inclusion (GCI) of the form C v D, or an assertion

of the form C(a) or r(a, b), where C,D are LTLbin
ALC concepts, r ∈ NR, and a, b ∈ NI. LTLbin

ALC
formulae are expressions of the form φ, ψ ::= α | > | ¬φ | φ ∧ ψ | #φ | φUIψ, where α is an
LTLbin

ALC axiom.

Semantics. A DL interpretation I = (∆I , ·I) over a non-empty set ∆I , called the domain,
defines an interpretation function ·I that maps each concept name A ∈ NC to a subset AI of ∆I ,
each role name r ∈ NR to a binary relation rI on ∆I and each individual name a ∈ NI to an
element aI of ∆I , such that aIi 6= bIi whenever a 6= b, a, b ∈ NI (unique name assumption). As
usual, we extend the mapping ·I from concept names to ALC concepts as follows:

>Ii := ∆I, (¬C)Ii := ∆I \ CIi , (C uD)Ii := CIi ∩DIi ,

(∃r.C)Ii := {d ∈ ∆I | ∃e ∈ CIi : (d, e) ∈ rIi}.

A (temporal DL) interpretation is a structure I = (∆I, (Ii)i∈N), where each Ii = (∆I, ·Ii), i ∈ N,
is a DL interpretation over ∆I (constant domain assumption) and aIi = aIj for all a ∈ NI and
i, j ∈ N, i.e., the interpretation of individual names is fixed. The mappings ·Ii are extended to
LTLbin

ALC concepts as follows:

(#C)Ii := {d ∈ ∆I | d ∈ CIi+1},
(C UID)Ii := {d ∈ ∆I | ∃k : k − i ∈ I, d ∈ DIk , and ∀j ∈ [i, k) : d ∈ CIj}.

The concept C UID requires D to be satisfied at some point in the interval I, and C to hold at
all time points before that.

The validity of an LTLbin
ALC formula φ in I at time point i ∈ N (written I, i |= φ) is inductively

defined as follows:

I, i |= C v D iff CIi ⊆ DIi I, i |= φ ∧ ψ iff I, i |= φ and I, i |= ψ
I, i |= C(a) iff aIi ∈ CIi I, i |= #φ iff I, i+ 1 |= φ
I, i |= r(a, b) iff (aIi , bIi) ∈ rIi I, i |= φUIψ iff ∃k : k − i ∈ I, I, k |= ψ,
I, i |= ¬φ iff not I, i |= φ and ∀j ∈ [i, k) : I, j |= φ.

As usual, we define ⊥ := ¬>, C tD := ¬(¬C u ¬D), ∀r.C := ¬(∃r.¬C), φ ∨ ψ := ¬(¬φ ∧ ¬ψ),
αUβ := αU[0,∞)β, ♦Iα := >UIα, 2Iα := ¬♦I¬α, ♦α := >Uα, and 2α := ¬♦¬α, where α, β
are either concepts or formulae [7, 14].

Relation to LTLALC. The notation ·bin refers to the fact that the endpoints of the intervals
are given in binary. However, this does not increase the expressivity compared to LTLALC [16],
where only the qualitative U operator is allowed. In fact, one can expand any formula φU[c1,c2]ψ
to
∨
c1≤i≤c2

(#iψ ∧
∧

0≤j<i #
jφ), where #i denotes i nested # operators, and similarly for

concepts. Likewise, φU[c1,∞)ψ is equivalent to
(∧

0≤i<c1
#iφ

)
∧#c1φUψ. If this transformation

is recursively applied to subformulae, then the size of the resulting formula is exponential:
ignoring the nested # operators, its syntax tree has polynomial depth and an exponential
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branching factor; and the #i formulae have exponential depth, but introduce no branching. This
blowup cannot be avoided in general [1, 12].

Reasoning. We are interested in the complexity of the satisfiability problem in LTLbin
ALC , i.e.,

deciding whether there exists an interpretation I such that I, 0 |= φ holds for a given LTLbin
ALC

formula φ. We also consider a syntactic restriction from [8]: we say that φ is an LTLbin
ALC formula

with global GCIs if it is of the form 2T ∧ ϕ, where T is a conjunction of GCIs and ϕ is an
LTLbin

ALC formula that does not contain GCIs. By satisfiability w.r.t. global GCIs we refer to the
satisfiability problem restricted to such formulae.

First results. The papers [12,16] consider the reasoning problems of concept satisfiability in
LTLbin

ALC w.r.t. TBoxes (corresponding to formulae with global GCIs and without assertions) and
satisfiability of LTLbin

ALC temporal TBoxes (formulae without assertions). However, these results
from [12, 16] can be extended to our setting by incorporating named types into their quasimodel
construction to deal with assertions (see also [19], our Section 3, and [14, Theorem 2.27]).

Theorem 1. Satisfiability in LTLbin
ALC is 2-ExpSpace-complete, and ExpSpace-complete w.r.t.

global GCIs. In LTLALC, this problem is ExpSpace-complete, and ExpTime-complete w.r.t.
global GCIs.

Note that ExpSpace-completeness for LTLALC with assertions has already been shown in [19]; we
only state it here for completeness. In [12], also the intermediate logic LTL0,∞

ALC was investigated,
where only intervals of the form [0, c] and [c,∞) are allowed. However, in [15], it was shown for
a branching temporal logic that U[0,c] can be simulated by the classical U operator, while only
increasing the size of the formula by a polynomial factor. We extend this result to intervals of
the form [c,∞), and apply it to LTL0,∞

ALC .

Theorem 2. Any LTL0,∞
ALC formula can be translated in polynomial time into an equisatisfiable

LTLALC formula.

This reduction is quite modular; for example, if the formula has only global GCIs, then this is
still the case after the reduction. In fact, the reduction applies to all sublogics of LTLbin

ALC that
we consider in this paper. Hence, in the following we do not explicitly consider logics with the
superscript ·0,∞, knowing that they have the same complexity as the corresponding temporal
DLs using only U .

3 LTLbin
ALC with Interval-Rigid Names

In many temporal DLs, so-called rigid names are considered, whose interpretation is not allowed
to change over time. To formally define this notion, we fix a finite set NRig ⊆ NC ∪ NR of rigid
concept and role names, and require interpretations I = (∆I, (Ii)i∈N) to respect these names, in
the sense that XIi = XIj should hold for all X ∈ NRig and i, j ∈ N. It turns out that LTLbin

ALC
can already express rigid concepts via the (global) GCIs C v #C and ¬C v #¬C. The same
does not hold for rigid roles, which lead to undecidability even in LTLALC [14, Theorem 11.1].
Hence, it is not fruitful to consider rigid names in LTLbin

ALC (they will become meaningful later,
when we look at other logics).

To augment the expressivity of temporal DLs while avoiding undecidability, we propose interval-
rigid names. In contrast to rigid names, interval-rigid names only need to remain rigid for a
limited period of time. Formally, we take a finite set NIRig ⊆ (NC ∪ NR) \ NRig of interval-rigid
names, and a function iRig : NIRig → N≥2. An interpretation I = (∆I, (Ii)i∈N) respects the
interval-rigid names if the following holds for all X ∈ NIRig with iRig(X) = k, and i ∈ N:
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Table 1: Complexity of satisfiability in LTLbin
ALC w.r.t. interval-rigid names. For (*), we have

2-ExpTime-completeness for the temporal semantics based on Z (Th. 5).

NIRig ⊆ NC ∪ NR NIRig ⊆ NC

LTLbin
ALC 2-ExpSpace ≤ [Th. 4] 2-ExpSpace ≥ [12]

LTLbin
ALC , global GCIs 2-ExpTime-hard (*) ExpSpace ≥ [2], ≤ [Th. 1]

LTLALC 2-ExpTime-hard ExpSpace ≥ [14], ≤ [19]
LTLALC , global GCIs 2-ExpTime-hard [Th. 8] ExpTime ≥ [17], ≤ [Th. 1]

For each d ∈ XIi , there is a time point j ∈ N such that i ∈ [j, j + k) and d ∈ XI`

for all ` ∈ [j, j + k).

Intuitively, any element (or pair of elements) in the interpretation of an interval-rigid name must
be in that interpretation for at least k consecutive time points. We call such a name k-rigid.
The names in (NC ∪ NR) \ (NRig ∪ NIRig) are called flexible. For simplicity, we assume that iRig
assigns 1 to all flexible names.

We investigate the complexity of satisfiability w.r.t. (interval-)rigid names (or (interval-)rigid
concepts if NIRig ⊆ NC / NRig ⊆ NC), which is defined as before, but considers only interpretations
that respect (interval-)rigid names. Note that (interval-)rigid roles can be used to simulate
(interval-)rigid concepts via existential restrictions ∃r.>. Therefore, it is not necessary to consider
the case where only role names can be (interval-)rigid. The fact that NRig and NIRig are finite
is not a restriction, as formulae can only use finitely many names. We assume that the values
of iRig are given in binary.

Table 1 summarizes our results for LTLbin
ALC . Since interval-rigid concepts A can be simulated

by conjuncts of the form
(
A v 2[0,k)A

)
∧2

(
¬A v #(¬A t2[0,k)A)

)
, Theorem 1 directly yields

the complexity results in the right column (again, for sublogics of LTLbin
ALC this is not always

so easy). The GCI A v 2[0,k)A that applies only to the first time point does not affect the
complexity results, even if we restrict all other GCIs to be global.

The complexity of LTLbin
ALC with interval-rigid roles is harder to establish. We first show in

Section 3.1 that the general upper bound of 2-ExpSpace still holds, by a novel quasimodel
construction. For global GCIs, we show 2-ExpTime-hardness in Section 4, by an easy adaption
of a reduction from [8]. We show 2-ExpTime-completeness if we modify the temporal semantics
to be infinite in both directions, i.e., replace N by Z in the definition of interpretations (see
Section 3.2). We leave the case for the semantics based on N as future work. To simplify the
proofs of the upper bounds, we usually assume that NIRig ⊆ NR since interval-rigid concepts can
be simulated. Moreover, for this section we assume that NRig is empty, as rigid concepts do not
affect the complexity of LTLbin

ALC , and rigid roles make satisfiability undecidable.

3.1 Satisfiability is in 2-ExpSpace

For the 2-ExpSpace upper bound, we extend the notion of quasimodels from [12]. In [12],
quasimodels are abstractions of interpretations in which each time point is represented by a
quasistate, which contains types. Each type describes the interpretation for a single domain
element, while a quasistate collects the information about all domain elements at a single time
point. Central for the complexity results in [12] is that every satisfiable formula has a quasimodel
of a certain regular form, which can be guessed and checked in double exponential space. To
handle interval-rigid roles, we extend this approach so that each quasistate additionally provides
information about the temporal evolution of domain elements over a window of fixed width, and
show that under this extended notion, satisfiability is still captured by the existence of regular
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quasimodels.

We now formalize this intuition. Let ϕ be an LTLbin
ALC formula. Denote by csub(ϕ)/fsub(ϕ)/

ind(ϕ)/rol(ϕ) the set of all concepts/formulae/individuals/roles occurring in ϕ, by clc(ϕ) the
closure of csub(ϕ) ∪ {C UD | C U[c,∞)D ∈ csub(ϕ)} under single negations, and likewise for
clf(ϕ) and fsub(φ). A concept type for ϕ is any subset t of clc(ϕ) ∪ ind(ϕ) such that

T1 ¬C ∈ t iff C 6∈ t, for all ¬C ∈ clc(ϕ);

T2 C uD ∈ t iff C,D ∈ t, for all C uD ∈ clc(ϕ); and

T3 t contains at most one individual name.

Similarly, we define formula types t ⊆ clf(ϕ) by the following conditions:

T1’ ¬α ∈ t iff α 6∈ t, for all ¬α ∈ clf(ϕ); and

T2’ α ∧ β ∈ t iff α, β ∈ t, for all α ∧ β ∈ clf(ϕ).

Intuitively, a concept type describes one domain element at a single time point, while a formula
type expresses constraints on all domain elements. If a ∈ t ∩ ind(ϕ), then t describes an named
element, and we call it a named type.

To put an upper bound on the time window we have to consider, we consider the largest number
occurring in ϕ and iRig, and denote it by `ϕ. Then, a (concept/formula) run segment for ϕ is a
sequence σ = σ(0) . . . σ(`ϕ) composed exclusively of concept or formula types, respectively, such
that

R1 #α ∈ σ(0) iff α ∈ σ(1), for all #α ∈ cl∗(ϕ);

R2 for all a ∈ ind(ϕ) an n ∈ (0, `ϕ], we have a ∈ σ(0) iff a ∈ σ(n);

R3 for all αUIβ ∈ cl∗(ϕ), we have αUIβ ∈ σ(0) iff (a) there is j ∈ I ∩ [0, `ϕ] such that β ∈ σ(j)
and α ∈ σ(i) for all i ∈ [0, j), or (b) I is of the form [c,∞) and α, αUβ ∈ σ(i) for all
i ∈ [0, `ϕ],

where cl∗ is either clc or clf (as appropriate), and R2 does not apply to formula run segments.
A concept run segment captures the evolution of a domain element over a sequence of `ϕ + 1
time points, and a formula run segment describes general constraints on the interpretation over
a sequence of `ϕ + 1 time points.

The evolution over the complete time line is captured by (concept/formula) runs for ϕ, which
are infinite sequences r = r(0)r(1) . . . such that each subsequence of length `ϕ + 1 is a
(concept/formula) run segment, and additionally

R4 αU[c,∞)β ∈ r(n) implies that there is j ≥ n + c such that β ∈ r(j) and α ∈ r(i) for all
i ∈ [n, j).

A concept run (segment) is named if it contains only (equivalently, any) named types. We
may write ra (σa) to denote a run (segment) that contains an individual name a. For a run
(segment) σ, we write σ>i for the subsequence of σ starting at i+ 1, σ<i for the one stopping at
i− 1, and σ[i,j] for σ(i) . . . σ(j).

Since we cannot explicitly represent infinite runs, we use run segments to construct them
step-by-step. For this, it is important that a set of concept runs (segments) can actually be
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composed into a coherent model. In particular, we have to take care of (interval-rigid) role
connections between elements. A role constraint for ϕ is a tuple (σ, σ′, s, k), where σ, σ′ are
concept run segments, s ∈ rol(ϕ), and k ∈ [1, iRig(s)], such that

C1 {¬C | ¬∃s.C ∈ σ(0)} ⊆ σ′(0); and

C2 if σ′ is named, then σ is also named.

We write σ s
k σ
′ as a shorthand for the role constraint (σ, σ′, s, k). Intuitively, σ s

k σ
′ means that

the domain elements described by σ(0), σ′(0) are connected by the role s at the current time
point, and also at the k − 1 previous time points. In this case, we need to ensure that these
elements stay connected for at least the following iRig(s)− k time points. Condition C1 ensures
that, if σ(0) cannot have any s-successors that satisfy C, then σ′(0) does not satisfy C.

We can now describe the behaviour of a whole interpretation and its elements at a single time
point, together with some bounded information about the future (up to `ϕ time points). A
quasistate for ϕ is a pair Q = (RQ, CQ), where RQ is a set of run segments and CQ a set of role
constraints over RQ such that

Q1 RQ contains exactly one formula run segment σQ;

Q2 RQ contains exactly one named run segment σa for each a ∈ ind(ϕ);

Q3 for all C v D ∈ clf(ϕ), we have C v D ∈ σQ(0) iff C ∈ σ(0) implies D ∈ σ(0) for all
concept run segments σ ∈ RQ;

Q4 for all C(a) ∈ clf(ϕ), we have C(a) ∈ σQ(0) iff C ∈ σa(0);

Q5 for all s(a, b) ∈ clf(ϕ), we have s(a, b) ∈ σQ(0) iff σa s
k σb ∈ CQ for some k ∈ [1, iRig(s)]; and

Q6 for all σ ∈ RQ and ∃s.D ∈ σ(0), there is σ s
k σ
′ ∈ CQ with D ∈ σ′(0) and k ∈ [1, iRig(s)].

We next capture when quasistates can be connected coherently to an infinite sequence. A pair
(Q,Q′) of quasistates is compatible if there is a compatibility relation π ⊆ RQ ×RQ′ such that

C3 every run segment in RQ and RQ′ occurs at least once in the domain and range of π,
respectively;

C4 each pair (σ, σ′) ∈ π satisfies σ>0 = σ′<`ϕ ;

C5 for all (σ1, σ
′
1) ∈ π and σ1

s
k σ2 ∈ Q with k < iRig(s), there is σ′1

s
k+1 σ

′
2 ∈ Q′ with

(σ2, σ
′
2) ∈ π; and

C6 for all (σ1, σ
′
1) ∈ π and σ′1

s
k+1 σ

′
2 ∈ Q′ with k > 1, there is σ1

s
k σ2 ∈ Q with (σ2, σ

′
2) ∈ π.

Such a relation makes sure that we can combine run segments of consecutive quasistates such
that the interval-rigid roles are respected. Note that the unique formula run segments must
be matched to each other, and likewise for the named run segments. Moreover, the set of all
compatibility relations for a pair of quasistates (Q,Q′) is closed under union, which means
that compatible quasistates always have a unique maximal compatibility relation (w.r.t. set
inclusion).

To illustrate this, consider Figure 1, showing a sequence of pairwise compatible quasistates,
each containing two run segments. Here, `ϕ = iRig(s) = 3. The relations π0, π1, and π2 satisfy
Conditions C3–C6, which, together with C1 and C2, ensure that a run going through the
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Q0 Q1 Q2 Q3

(t1 t2 t3 t4)

(t′1 t′2 t′3 t′4)

s
1

(t2 t3 t4 t5)

(t′2 t′3 t′4 t′5)

s
2

π0

π0

(t3 t4 t5 t6)
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Figure 1: Illustration of role constraints and compatibility relations.

types t1, t2, t3, and t4 can be connected to another run via the role s for at least 3 consecutive
time points.

Finally, a quasimodel for ϕ is a pair (S,R), where S is an infinite sequence of compatible
quasistates S(0)S(1) . . . and R is a non-empty set of runs, such that

M1 the runs in R are of the form σ0(0)σ1(0)σ2(0) . . . such that, for every i ∈ N, we have
(σi, σi+1) ∈ πi, where πi is the maximal compatibility relation for the pair (S(i), S(i+ 1));

M2 for every σ ∈ RS(i), there exists a run r ∈ R with r[i,i+`ϕ] = σ;

M3 every role constraint in S(0) is of the form σ1
s
1 σ2; and

M4 ϕ ∈ σS(0)(0).

By M1, the runs σ0(0)σ1(0)σ2(0) . . . always contain the whole run segments σ0, σ1, σ2, . . . , since
we have σ1(0) = σ0(1), σ2(0) = σ0(2), and so on. Moreover, R always contains exactly one
formula run and one named run for each a ∈ ind(ϕ).

We can show that every quasimodel describes a satisfying interpretation for ϕ and, conversely,
that every such interpretation can be abstracted to a quasimodel. Moreover, one can always
find a quasimodel of a regular shape.

Lemma 3. An LTLbin
ALC formula ϕ is satisfiable w.r.t. interval-rigid names iff ϕ has a quasimodel

(S,R) in which S is of the form

S(0) . . . S(n)(S(n+ 1) . . . S(n+m))ω,

where n and m are bounded triple exponentially in the size of ϕ and iRig.

This allows us to devise a non-deterministic 2-ExpSpace algorithm that decides satisfiability of a
given LTLbin

ALC formula. Namely, we first guess n and m, and then the quasistates S(0), . . . , S(n+
m) one after the other. To show that this sequence corresponds to a quasimodel as in Lemma 3,
only a constant number of quasistates has to be kept in memory, and the size of each quasistate
is double exponentially bounded in the size of the input. 2-ExpSpace-hardness holds already
for the case without interval-rigid names or assertions [12].

Theorem 4. Satisfiability in LTLbin
ALC with respect to interval-rigid names is 2-ExpSpace-

complete.

3.2 Global GCIs

For LTLbin
ALC formulae with global GCIs, we can show a tight (2-ExpTime) complexity bound

only if we consider a modified temporal semantics that uses Z instead of N. With a semantics
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over Z, every satisfiable formula has a quasimodel in which the unnamed run segments and
role constraints are the same for all quasisates. This is not the case if the semantics is only
defined for N, since then a quasistate at time point 1 can have role constraints σ s

k σ
′ with k > 1,

whereas one at time point 0 cannot (see M3).

Hence, interpretations are now of the form I = (∆I, (Ii)i∈Z), where ∆I is a constant domain
and Ii are classical DL interpretations, as before. Recall that an LTLbin

ALC formula with global
GCIs is an LTLbin

ALC formula of the form 2T ∧ φ, where T is a conjunction of GCIs and φ is
an LTLbin

ALC formula that does not contain GCIs. In order to enforce our GCIs on the whole
time line (including the time points before 0), we replace 2T with 2−+ in that definition,
where 2−+T expresses that in all models I, I, i |= T for all i ∈ Z. We furthermore slightly
adapt some of the notions introduced in Section 3.1. First, to ensure that GCIs hold on the
whole time line, we require (in addition to T1’ and T2’) that all formula types contain all
GCIs from T . Additionally, we adapt the notions of runs . . . r(−1)r(0)r(1) . . . and sequences
. . . S(−1)S(0)S(1) . . . of quasistates to be infinite in both directions. Hence, we can now drop
Condition M3, reflecting the fact that, over Z, role connections can exist before time point 0.
All other definitions remain unchanged.

The complexity proof follows a similar idea as in the last section. We first show that every
formula is satisfiable iff it has a quasimodel of a regular shape, which now is also constant in its
unnamed part, in the sense that, if unnamed run segments and role constraints occur in S(i),
then they also occur in S(j), for all i, j ∈ Z. This allows us to devise an elimination procedure
(in the spirit of [16, Theorem 3] and [12, Theorem 2]), with the difference that we eliminate run
segments and role constraints instead of types, which gives us a 2-ExpTime upper bound. The
matching lower bound can be shown similarly to Theorem 8 in Section 4.

Theorem 5. Satisfiability in LTLbin
ALC w.r.t. interval-rigid names and global GCIs over Z is

2-ExpTime-complete.

4 ALC-LTLbin with Interval-Rigid Names

After the very expressive DL LTLbin
ALC, we now focus on its sublogic ALC-LTLbin, which does

not allow temporal operators within concepts (cf. [8]). That is, an ALC-LTLbin formula is an
LTLbin

ALC formula in which all concepts are ALC concepts. Recall that ALC-LTL, which has
been investigated in [8] (though not with interval-rigid names), restricts ALC-LTLbin to intervals
of the form [0,∞). In this section, we show several complexity lower bounds that already hold
for ALC-LTL with interval-rigid names. As done in [8], for brevity, we distinguish here the
variants with global GCIs by the subscript ·|gGCI . In contrast to LTLbin

ALC, in ALC-LTL rigid
concepts cannot be simulated by GCIs and rigid roles do not lead to undecidability [8]. Hence,
we investigate here also the settings with rigid concepts and/or roles.

The results of this section are summarized in Table 2. Central to our hardness proofs is
the insight that interval-rigid concepts can express the operator # on the concept level. In
particular, we show that the combination of rigid roles with interval-rigid concepts already
leads to undecidability, by a reduction from a tiling problem. If rigid names are disallowed, but
we have interval-rigid names, we can only show 2-ExpTime-hardness. If only interval-rigid
concepts are allowed, then satisfiability is ExpSpace-hard. All of these hardness results already
hold for ALC-LTL, and some of them even with global GCIs.
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Table 2: Complexity of satisfiability in ALC-LTLbin w.r.t. (interval-)rigid names.

NIRig ⊆ NC, NIRig ⊆ NC ∪ NR, NIRig ⊆ NC,
NRig ⊆ NC ∪ NR NRig ⊆ NC or NRig = ∅ NRig ⊆ NC or NRig = ∅

ALC-LTLbin undec. 2-ExpTime-hard ExpSpace ≤ [Th. 1]
ALC-LTLbin

|gGCI undec. 2-ExpTime-hard ExpTime-hard
ALC-LTL undec. 2-ExpTime-hard ExpSpace ≥ [Th. 9]
ALC-LTL|gGCI undec. [Th. 6] 2-ExpTime-hard [Th. 8] ExpTime ≥ [17], ≤ [Th. 1]

4.1 Rigid Roles and Interval-Rigid Concepts

We show that satisfiability of ALC-LTL with rigid roles and interval-rigid concepts is undecidable,
even if we only allow global GCIs. Our proof is by a reduction from the following tiling problem.

Given a finite set of tile types T with horizontal and vertical compatibility relations
H and V , respectively, and t0 ∈ T , decide whether one can tile N × N with t0
appearing infinitely often in the first row.

We define an ALC-LTL|gGCI formula φT that expresses this property. In our encoding, we use
the following names:

• a rigid role name r to encode the vertical dimension of the N× N grid;

• flexible concept names A0, A1, A2 to encode the progression along the horizontal (temporal)
dimension; for convenience, we consider all superscripts modulo 3, i.e., we have A3 = A0

and A−1 = A2;

• flexible concept names Pt, t ∈ T , to denote the current tile type;

• 2-rigid concept names N0
t , N

1
t , N

2
t , for the horizontally adjacent tile type;

• an individual name a denotes the first row of the grid.

We define φT as the conjunction of the following ALC-LTL|gGCI formulae. First, every domain
element must have exactly one tile type:

2
(
> v

⊔
t∈T

(
Pt u

l

t′∈T, t 6=t′
¬Pt′

))

For the vertical dimension, we enforce an infinite rigid r-chain starting from a, and restrict
adjacent tile types to be compatible:

2(> v ∃r.>), 2
(
Pt v

⊔
(t,t′)∈V

∀r.Pt′
)

For each time point i, we mark all individuals along the r-chain with the concept name A(imod 3),
by using the following formulae, for 0 ≤ i ≤ 2:

A0(a), 2
(
Ai(a)→ #Ai+1(a)

)
, 2(Ai v ¬Ai+1 u ∀r.Ai)
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To encode the compatibility of horizontally adjacent tiles, we add the following formulae, for
0 ≤ i ≤ 2 and t ∈ T :

2
(
Pt uAi v

⊔
(t,t′)∈H

N i
t′

)
, 2(N i

t uAi+1 v Pt), 2(Ai−1 v ¬N i
t )

These express that any domain element with tile type t (expressed by Pt) at a time point marked
with Ai must have a compatible type t′ at the next time point (expressed by N i

t′). Since all
N i
t′ are false at the previous time point (designated by Ai−1) and iRig(N i

t′) = 2, any N i
t′ that

holds at the current time point is still active at the next time point (described by Ai+1), where
it then implies Pt′ .

Finally, we express the condition on t0 via the formula 2♦Pt0(a). We now obtain the claimed
undecidability from known results about the tiling problem [13].

Theorem 6. Satisfiability in ALC-LTL|gGCI w.r.t. rigid roles and interval-rigid concepts is
Σ1

1-hard, and thus not even recursively enumerable.

4.2 Interval-Rigid Roles

Since rigid roles make the logic undecidable, we consider the case where instead only interval-rigid
roles (and concepts) are allowed. While interval-rigid concepts can be expressed using 2[0,k)
in GCIs (see Section 3), this does not work for interval-rigid roles, since this would require (at
least) inclusion axioms on roles. However, the presence of such axioms (denoted by replacing
ALC with ALCH [7]) immediately causes undecidability in conjunction with interval-rigid roles.

Theorem 7. Satisfiability in ALCH-LTL w.r.t. interval-rigid names is Σ1
1-hard.

Without role inclusions, we obtain 2-ExpTime-hardness by an easy adaptation of the proof of
2-ExpTime-hardness for ALC-LTL|gGCI with rigid roles from [8].

Theorem 8. Satisfiability in ALC-LTL|gGCI with respect to interval-rigid names is 2-ExpTime-
hard.

4.3 Rigid and Interval-Rigid Concepts

As the last setting, we consider the case where only concept names can be rigid or interval-rigid,
for which we show ExpSpace-completeness. For the upper bound, recall from Section 3 that
rigid concepts and interval-rigid concepts are expressible in LTL0,∞

ALC via global GCIs, so that we
can apply Theorem 1. The same observation yields an ExpTime upper bound for satisfiability
in ALC-LTL w.r.t. global GCIs, which is tight since satisfiability in ordinary ALC is already
ExpTime-hard [17].

We show the ExpSpace lower bound by a reduction from satisfiability of ALC-LTL#, the
extension of ALC-LTL in which # can be applied to concepts, to satisfiability of ALC-LTL w.r.t.
interval-rigid concepts. It is shown in [14, Theorem 11.33] that satisfiability in (a syntactic
variant of) ALC-LTL# is ExpSpace-hard. To simulate # using interval-rigid concept names,
we use a similar construction as in Section 4.1, where we mark all individuals at time point i
with A(imod 3), and use 2-rigid concept names to transfer information between time points. More
precisely, we first define an ALC-LTL formula ψ as the conjunction of the following formulae,
where 0 ≤ i ≤ 2:

(> v A0), 2((> v Ai)→ #(> v Ai+1)), 2(Ai v ¬Ai+1)

12



Table 3: Complexity of satisfiability in ALC-LTLbin without interval-rigid names.

NRig ⊆ NC ∪ NR NRig ⊆ NC NRig = ∅
ALC-LTLbin 2-ExpTime ≤ [Th. 11] ExpSpace ≤ [Th. 11] ExpSpace
ALC-LTLbin

|gGCI 2-ExpTime ExpSpace ExpSpace ≥ [1]
ALC-LTL 2-ExpTime NExpTime [8] ExpTime ≤ [8]
ALC-LTL|gGCI 2-ExpTime ≥ [8] ExpTime ≤ [8] ExpTime ≥ [17]

We now simulate concepts of the form #C via fresh, 2-rigid concept names Ai#C , 0 ≤ i ≤ 2.
Given any ALC-LTL# formula or concept α, we denote by α# the result of replacing each
outermost concept of the form #C in α by⊔

0≤i≤2
(Ai#C uAi).

To express the semantics of #C, we use the conjunction ψ#C of the following formulae:

2(Ai#C uAi+1 v C#), 2(C# uAi+1 v Ai#C), 2(Ai−1 v ¬Ai#C)

As in Section 4.1, Ai#C must either be satisfied at both time points designated by Ai and Ai+1,
or at neither of them. Furthermore, an individual satisfies #C iff it satisfies Ai#C uAi for some i,
0 ≤ i ≤ 2.

One can show that an ALC-LTL# formula φ is satisfiable iff the ALC-LTL formula φ# ∧ ψ ∧∧
#C∈csub(φ) ψ#C is satisfiable.

Theorem 9. Satisfiability in ALC-LTL with respect to interval-rigid concepts is ExpSpace-hard.

5 ALC-LTLbin without Interval-Rigid Names

To conclude our investigation of metric temporal DLs, we consider the setting of ALC-LTLbin

without interval-rigid names. Table 3 summarizes the results of this section, where we also include
the known results about ALC-LTL for comparison [8]. Observe that all lower bounds follow
from known results. In particular, ExpSpace-hardness for ALC-LTLbin

|gGCI is inherited from
LTLbin [1,2], while rigid role names increase the complexity to 2-ExpTime in ALC-LTL|gGCI [8].

The upper bounds can be shown using a unified approach that was first proposed in [8]. The
idea is to split the satisfiability test into two parts: one for the temporal and one for the DL
dimension. In what follows, let φ be an ALC-LTLbin formula. The propositional abstraction φp

is the propositional LTLbin formula obtained from φ by replacing every ALC axiom by a
propositional variable in such a way that there is a 1:1 relationship between the ALC axioms
α1, . . . , αm occurring in φ and the propositional variables p1, . . . , pm in φp.

The goal is to try to find a model of φp and then use it to construct a model of φ (if such a
model exists). While satisfiability of φ implies that φp is also satisfiable, the converse is not true.
For example, the propositional abstraction p∧ q ∧¬r of φ = A v B ∧A(a)∧¬B(a) is satisfiable,
while φ is not. To rule out such cases, we collect the propositional worlds occurring in a model
of φp into a (non-empty) set W ⊆ 2{p1,...,pm}, which is then used to check the satisfiability of the
original formula (w.r.t. rigid names). This is captured by the LTLbin formula φp

W := φp ∧ φW ,
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where φW is the (exponential) LTL formula

2
∨

W∈W

 ∧
p∈W

p ∧
∧
p∈W

¬p


in which W := {p1, . . . , pm} \W denotes the complement of W . The formula φp

W states that,
when looking for a propositional model of φp, we are only allowed to use worlds from W.

Since satisfiability of φ implies satisfiability of φp
W for someW , we can proceed as follows: choose

a set of worlds W, test whether φp
W is satisfiable, and then check whether a model with worlds

from W can indeed be lifted to a temporal DL interpretation (respecting rigid names). To check
the latter, we consider the conjunction

∧
pj∈W αj ∧

∧
pj∈W ¬αj for every W ∈ W. However,

the rigid names require that all these conjunctions are simultaneously checked for satisfiability.
To tell apart the flexible names X occurring in different elements of W = {W1, . . . ,Wk}, we
introduce copies X(i) for all i ∈ [1, k]. The axioms α(i)

j are obtained from αj by replacing every
flexible name X by X(i), which yields the following conjunction of exponential size:

χW :=
k∧
i=1

( ∧
pj∈Wi

α
(i)
j ∧

∧
pj∈Wi

¬α(i)
j

)
.

The following characterization from [8] can be easily adapted to our setting:

Lemma 10 (Adaptation of [8]). An ALC-LTLbin formula φ is satisfiable w.r.t. rigid names iff
a set W ⊆ 2{p1,...,pm} exists so that φp

W and χW are both satisfiable.

To obtain the upper bounds in Table 3, recall from Section 2 that there is an exponentially larger
LTL formula φp′ that is equivalent to the LTLbin formula φp. Since φW is also an LTL formula
of exponential size, satisfiability of the conjunction φp′ ∧ φW can be checked in ExpSpace.
Since the complexity of the satisfiability problem for χW remains the same as in the case of
ALC-LTL, we obtain the claimed upper bounds from the techniques in [8]. This means that, in
most cases, the complexity of the DL part is dominated by the ExpSpace complexity of the
temporal part. The only exception is the 2-ExpTime-bound for ALC-LTLbin with rigid names.

Theorem 11. Satisfiability in ALC-LTLbin is in 2-ExpTime w.r.t. rigid names, and in
ExpSpace w.r.t. rigid concepts.

6 Conclusions

We investigated a series of extensions of LTLALC and ALC-LTL with interval-rigid names and
metric temporal operators, with complexity results ranging from ExpTime to 2-ExpSpace.
Some cases were left open, such as the precise complexity of LTLbin

ALC with global GCIs, for
which we have a partial result for the temporal semantics based on Z. Nevertheless, this paper
provides a comprehensive guide to the complexities faced by applications that want to combine
ontological reasoning with quantitative temporal logics.

In principle, the arguments for ALC-LTLbin in Section 5 are also applicable if we replace ALC
by the light-weight DLs DL-Lite or EL, yielding tight complexity bounds based on the known
results from [5,9]. It would be interesting to investigate temporal DLs based on DL-Lite and EL
with interval-rigid roles and metric operators.
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A Proofs for Section 2

We now discuss Theorem 1, which for convenience we restate below.

Theorem 1. Satisfiability in LTLbin
ALC is 2-ExpSpace-complete, and ExpSpace-complete w.r.t.

global GCIs. In LTLALC, this problem is ExpSpace-complete, and ExpTime-complete w.r.t.
global GCIs.

The lower bounds all follow from the results in [12,16]. For the 2-ExpSpace upper bound, we
refer to Theorem 4. As we already mentioned, ExpSpace-completeness of LTLALC has already
been shown in [19]. The remaining results are provided in Lemmata 13 and 14 in the following.

The proofs in [12,16] for the remaining cases of LTLbin
ALC and LTLALC w.r.t. global GCIs (but

without assertions) rely on the fact that, if a formula in these logics is satisfiable, then one can
always find a quasimodel (S,R) that is monotone, in the sense that, for all i ∈ N,

S(i) ⊇ S(i+ 1).

With assertions of the form C(a) or r(a, b), each quasistate must have exactly one named type
per individual, so the quasimodels cannot be monotone in the sense described above. In what
follows, we point out that if a formula in these logics has a quasimodel, then it has a quasimodel
that is monotone in its ‘unnamed part’ and sketch the necessary changes (using this modified
notion of monotonicity) to extend the results obtained in [12,16] for LTLbin

ALC and LTLALC w.r.t.
global GCIs to our formulas, which contain assertions.

First we extend the quasimodel construction from [12,16] to deal with assertions. We use the
same notions of concept/formula/named types from Section 3.1 for an LTLbin

ALC/LTLALC formula
ϕ = 2T ∧ φ with global GCIs. To encode the fact that GCIs hold on the whole time line, we
require (in addition to T1’ and T2’) that all GCIs in T occur in all formula types. Here, a
quasistate Q for ϕ is a set of types such that:

• Q contains exactly one formula type tQ;

• Q contains exactly one named type ta for each a ∈ ind(ϕ);

• if t ∈ Q and ∃s.D ∈ t, then there is a t′ ∈ Q with {D} ∪ {¬E | ¬∃s.E ∈ t} ⊆ t′.

• for all C v D ∈ clf(ϕ), we have C v D ∈ tQ iff C ∈ t implies D ∈ t for all concept types
t ∈ Q;

• for all C(a) ∈ clf(ϕ), we have C(a) ∈ tQ iff C ∈ ta; and

• for all s(a, b) ∈ clf(ϕ), we have s(a, b) ∈ tQ implies {¬E | ¬∃s.E ∈ ta} ⊆ tb.
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We also adapt the notion of a (concept/formula) run, which here is a sequence r = r(0)r(1) . . .
of types such that, for all n ≥ 0:

• for all a ∈ ind(ϕ), a ∈ r(0) iff a ∈ r(n);

• for all #α ∈ cl∗(ϕ), #α ∈ r(n) iff α ∈ r(n+ 1); and

• for all αUIβ ∈ cl∗(ϕ), αUIβ ∈ r(n) iff there is j ∈ I such that β ∈ r(n+j) and α ∈ r(n+i),
for all i ∈ [0, j).

where cl∗ is clc for concept runs and clf for formula runs, and the first condition does not apply
to formula runs. Note that this definition of runs is equivalent to the definition provided in
Section 3.1, only that we do not refer to run segments explicitly this time.

Finally, here a quasimodel is a pair (S,R), where S is an infinite sequence of quasistates and R
is a set of runs such that:

• ϕ ∈ tS(0);

• r(n) ∈ S(n), for all n ≥ 0 and r ∈ R; and

• for all t ∈ S(n), n ≥ 0, there is a run r ∈ R such that r(n) = t.

Given a quasistate Q, we denote by Qu the unnamed part of Q, that is, the maximal subset
of Q, that does not contain named types or formula types. We say that a quasimodel (S,R) is
u-monotone if, for all i ∈ N,

Su(i) ⊇ Su(i+ 1).

Lemma 12 (Direct adaptation from [12,16]). An LTLbin
ALC/LTLALC formula is satisfiable w.r.t.

global GCIs iff it has a u-monotone quasimodel.

We now argue that we can extend the upper bound for LTLbin
ALC w.r.t. global GCIs in [12] to our

formulae with assertions. Note that the two logics we consider here do not have (interval-)rigid
names and we use `ϕ to denote the largest number occurring in ϕ. We use \ϕ to denote the size
of the (exponential) set of all possible types for ϕ. The main idea in the argument provided
in [12] is that if there is a quasimodel, then we can assume w.l.o.g. that there is a quasimodel
(S,R) where S is of the form

Qn0
0 . . . Q

nm−1
m−1 Q

ω
m

for quasistates Q0, . . . , Qm with Qi ) Qi+1, 0 ≤ i < m, and numbers n0, . . . , nm−1 double
exponentially bounded in |ϕ|. Since these numbers can be encoded in binary using exponential
space, this regularity allows the authors to devise a non-deterministic ExpSpace algorithm to
decide satisfiability of LTLbin

ALC w.r.t. global GCIs. Using our modified notion of monotonicity
(Lemma 12), we can assume w.l.o.g. that if there is a quasimodel then there is a quasimodel
(S,R) where the unnamed part of S is of the form

(Qu
0)n0 . . . (Qu

m−1)nm−1(Qu
m)ω

with Qu
i ) Qu

i+1, 0 ≤ i < m, and numbers n0, . . . , nm−1 double exponentially bounded in |ϕ|.

We cannot obtain the same kind of monotonicity if we take into account the named part of
quasimodels, but we can find a different regularity that is sufficient to decide the existence
of quasimodels in exponential space. Note that a regular quasimodel as above takes na =∑
i<m ni+ 1 time points until the unnamed part stabilizes, where na is still double exponentially

bounded. That is, for all i > na, we have Su(i) = Su(na), and therefore, in this part of the
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quasimodel, the only variation happens due to the formula run and the linear number of named
runs. By [12, Lemma 4], for every type t ∈ S(i), we can find a run that goes through t in S(i)
which is of the following regular form:

r(0) . . . r(n)(r(n+ 1) . . . r(n+m))ω,

where n and m are double exponentially bounded in the size of the input. Using a similar idea
as in the proof for this lemma, and the fact that there is only a linear number of named and
formula runs in each quasimodel, one can show that any quasimodel can be transformed into a
quasimodel for the same formula which is of the following form:

S(0) . . . S(n)(S(n+ 1) . . . S(n+m))ω,

where n > na, and both n and m are double exponentially bounded. This allows one to devise a
non-deterministic ExpSpace-algorithm for satisfiability as follows: first construct the unnamed
part of the quasimodel, then guess the numbers n and m and each quasistate one by one, where
we keep a constant number of unnamed quasistates in memory to decide the satisfaction of
until-formulae. (See also Appendix B for a similar algorithm.) We thus have the following result.

Lemma 13. Satisfiability in LTLbin
ALC w.r.t. global GCIs is ExpSpace-complete.

Following the argument provided in [16], one can further show membership in ExpTime of
satisfiability in LTLALC w.r.t. global GCIs, by using a type elimination procedure to construct
sets S0, . . . , Sn with Si ⊇ Si+1 and n exponentially bounded in |ϕ|. If we apply a similar
procedure to our formula with assertions, these sets are not yet quasistates, since they do
not ensure the conditions related to named and formula types. To check the existence of a
quasimodel, one can first use a similar type elimination procedure to find sets S0, . . . , Sn with
Su
i ⊇ Su

i+1 (the unnamed part of the quasimodel) and then consider the graph (VS , ES), where
the set VS of vertices is the set of all quasistates S′i such that S′ui = Su

i . It follows from Lemma 12
that VS has at most (\ϕ)|ind(ϕ)|+2 many quasistates.

To define the edges of our graph, we use a notion of compatibility between types. More
specifically, we say that a pair (t, t′) of types is compatible if there is a run r where r(n) = t and
r(n+ 1) = t′, for some n ≥ 0. Then, ES contains all pairs (S′i, S′j) ∈ VS × VS such that there is
a compatibility relation between the types with all types in S′i in the domain and all types in
S′j in the range of this relation. We can then decide the existence of a regular quasimodel by
performing a series of reachability tests in this graph (see Appendix C for a similar and more
detailed argument on how to construct the named part of a quasimodel using a graph with
quasistates as vertices).

Lemma 14. Satisfiability in LTLALC w.r.t. global GCIs is ExpTime-complete.

We now move to the proof of Theorem 2.

Theorem 2. Any LTL0,∞
ALC formula can be translated in polynomial time into an equisatisfiable

LTLALC formula.

Proof. We first describe the reduction of temporal concepts. The idea from [15] is to use a
counter to determine the temporal distance to the nearest time point that satisfies a concept of
the form C U[0,c]D (i.e., it satisfies D, and C is satisfied at all time points in between). This
counter counts (backwards in time) from 0 up to c + 1, and then stays at c + 1; the concept
C U[0,c]D is satisfied iff the counter value is ≤ c. The counter is represented by fresh concept
names, one for each bit in the binary representation, of which there are polynomially many.
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This suffices, since for each individual and each time point there is a unique nearest time point
satisfying C U[0,c]D, which uniquely determines the counter value. For a concept of the form
C U[c,∞)D, we can use a similar counter, which however determines the distances to the furthest
time point that satisfies the concept. Then, C U[c,∞)D is satisfied iff the counter value is ≥ c.

More formally, let ϕ be an LTL0,∞
ALC formula. For each subconcept of the form F = C UID

occurring in ϕ, where I is either [0, c] or [c,∞), we introduce fresh concept names AF0 , . . . , AF`F
,

where `F = dlog(c+ 1)e − 1. We now define a recursive transformation ·∗ on LTL0,∞
ALC concepts

as follows:

>∗ := >
A∗ := A for all A ∈ NC

(¬C)∗ := ¬C∗

(C uD)∗ := C∗ uD∗

(#C)∗ := #C∗

(C U[0,c]D)∗ := (AC U[0,c]D ≤ c)
(C U[c,∞)D)∗ := (AC U[c,∞)D ≥ c),

where (AF ≤ c) is the concept

(C∗ UD∗) u
(

`Fl

i=0
(AFi = ci) t

`F⊔
i=0

(
(AFi < ci) u

`Fl

j=i+1
(AFi = ci)

))
.

Here, ci denotes the i-th bit of c, and (AFi = ci) is defined as AFi if ci = 1, and ¬AFi otherwise.
Similarly, (AFi < ci) is ¬AFi if ci = 1, and ⊥ otherwise. The concept (AF ≤ c) simply compares
the counter value represented by the concept names AFi to the value of c. The concept C UD
ensures that the counter value is well-defined, i.e., that there actually exists a future time point
that satisfies D such that C remains satisfied in the meantime. We similarly define (AF ≥ c),
and finally obtain ϕ∗ from ϕ by replacing every concept C by C∗.

To describe the behaviour of the counter, we use the global GCI > v BF0 uBF1 uBF2 , where for
F = C U[0,c]D we define

BF0 := D∗ ↔ (AF = 0),

BF1 := (C∗ u ¬D∗ u#(AF ≤ c))→
`Fl

i=0

((
i−1l

j=0
#AFj

)
↔
((

#AFi
)
↔
(
¬AFi

)))
,

BF2 := (C∗ u ¬D∗ u#(AF = c+ 1))→ (AF = c+ 1).

These three concepts express that the counter AF is reset to 0 whenever we encounter D, it is
increased (backwards in time) up to c+ 1 as long as C remains satisfied, and it remains at c+ 1
afterwards (until we encounter the next D or C is not satisfied any more). The big conjunction
in BF1 expresses that a bit i of the counter is flipped (from 0 to 1 or from 1 to 0) iff all lower bits
are 1 at the next time point, because then a carry bit has to be added. These concepts formalize
the intuition described in the beginning of this proof, that the counter AF represents the time
until the nearest occurrence of D that satisfies the until-concept. Then, instead of F , we can
equivalently use the concept F ∗ = (AF ≤ c) to check whether the counter value is at most c.

19



For F = C U[c,∞)D, we similarly define

BF0 := (D∗ u#¬(C UD))↔ (AF = 0),

BF1 := (C∗ u#(AF ≤ c))→
`Fl

i=0

((
i−1l

j=0
#AFj

)
↔
((

#AFi
)
↔
(
¬AFi

)))
,

BF2 := (C∗ u#(AF = c+ 1))→ (AF = c+ 1).

The differences to the previous case are that the counter is only reset to 0 at the last possible D,
i.e., whenever C UD does not hold afterwards, and that the counter is increased regardless of D.
This again reflects the intuition described above, that AF marks the distance to the last possible
occurrence of D that satisfies F . Intermediate occurrences of D can simply be ignored, as long
as C remains satisfied.

It is easy to check that ϕ is satisfiable iff ϕ∗ ∧
∧
F 2(> v BF0 uBF1 uBF2 ) is satisfiable, where

F ranges over all until-concepts in ϕ that are not already of the form C UD.

To simulate until-formulae ψ in ϕ, we use exactly the same construction, where we replace
concepts by formulae, i.e.,

• instead of AFi we use the GCI Aψi (a), where a is a fresh individual name,

• instead of u we use ∧,

• we define the translation ·∗ similarly on formulae,

• instead of > v BF0 uBF1 uBF2 we use Bψ0 ∧B
ψ
1 ∧B

ψ
2 .

Overall, this yields an LTLALC formula of polynomial size that is satisfiable iff ϕ is satisfiable.

To apply this construction to sublogics of LTL0,∞
ALC, observe that we only introduce global

GCIs, and hence satisfiability in LTL0,∞
ALC w.r.t. global GCIs can be polynomially reduced to

satisfiability in LTLALC w.r.t. global GCIs. Moreover, the reduction is not affected by the
(interval-)rigidity of the used names, and temporal operators on the concept level are only used
if they were already present in ϕ.

B Proofs for Section 3.1

We first prove that the existence of quasimodels completely captures satisfiability of LTLbin
ALC-

formulae.

Lemma 15. The LTLbin
ALC formula ϕ is satisfiable w.r.t. interval-rigid names iff there is a

quasimodel for ϕ.

Proof. (⇒) Assume there is a model I = (∆I, (Ii)i∈N) of ϕ that respects interval-rigid names.
We can assume without loss of generality that no unnamed domain element has a named element
as a role successor. If this is not the case, we can easily generate such a model by unraveling [7],
thereby creating unnamed copies of the named elements whenever they appear as role successors.
We now associate a concept run rd to every domain element d ∈ ∆I by setting

rd(i) = {C ∈ clc(ϕ) | d ∈ CIi} ∪ {a ∈ ind(ϕ) | d = aIi}.

Moreover, we define the formula run rI by rI(i) = {ψ ∈ clf(ϕ) | I, i |= ψ}. We now set
R = {rd | d ∈ ∆I} ∪ {rI}, and define the infinite sequence of quasistates S(i), i ∈ N, as follows.
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For i ∈ N, RS(i) contains all run segments r[i,i+`ϕ] with r ∈ R. Furthermore, CS(i) is the set of
role constraints σ s

k σ
′, such that σ = r

[i,i+`ϕ]
d , σ′ = r

[i,i+`ϕ]
d′ , k ∈ [1, iRig(s)], (d, d′) ∈ sI` for all

` ∈ (n− k, n− k + iRig(s)], and (d, d′) /∈ sIn−k . It is straightforward to show that (S,R) is a
quasimodel. In particular, the maximal compatibility relations πi, i ∈ N, must contain the pairs
(r[i,i+`ϕ], r[i+1,i+1+`ϕ]) with r ∈ R.

(⇐) Assume there is a quasimodel (S,R) for ϕ. We define the LTLbin
ALC interpretation I =

(∆I, (Ii)i∈N) as follows:

∆I = {dr | r ∈ R is a concept run}
aIi = dr for the unique r ∈ R with a ∈ r(0)
AIi = {dr | A ∈ r(i), r ∈ R}
sIi = {(dr, dr′) | r[j,j+`ϕ] s

1 r
′[j,j+`ϕ] ∈ S(j), i− j ∈ [0, iRig(s)), r, r′ ∈ R}

To see that I respects interval-rigid names, consider any (dr, dr′) ∈ sIi . There must be a j
with i− j ∈ [0, iRig(s)) and r[j,j+`ϕ] s

1 r
′[j,j+`ϕ] ∈ S(j). But then we have (dr, dr′) ∈ sI` for all

` ∈ [j, j + iRig(s)), and this interval includes i.

To show that I is also a model of ϕ, we prove the following claim.
Claim. For all concept runs r ∈ R, C ∈ clc(ϕ) and i ∈ N, we have

C ∈ r(i) iff dr ∈ CIi .

Proof of the claim. We argue by structural induction. It should be clear that it holds whenever
C is a concept name. Moreover, the cases C = ¬D and C = D u E are straightforward. It
remains to consider ∃, #, and UI .

• Assume C = ∃s.D: if ∃s.D ∈ r(i), then by M1 and Q6 there is a run segment σ ∈ RS(i)
such that r[i,i+`ϕ] s

k σ ∈ CS(i), D ∈ σ(0), and k ∈ [1, iRig(s)]. By repeated application
of M1, C4, and C6, we can find another run segment σ′ ∈ RS(i−(k−1)) such that
r[i−(k−1),i−(k−1)+`ϕ] s

1 σ
′ ∈ CS(i−(k−1)) and σ′≥k−1 = σ≤`ϕ−(k−1). By M2, there must

be a run r′ ∈ R such that r′[i−(k−1),i−(k−1)+`ϕ] = σ′ and D ∈ r′(i). By the induction
hypothesis and the definition of sIi , we obtain dr′ ∈ DIi and (dr, dr′) ∈ sIi , and hence
dr ∈ (∃s.D)Ii .
Conversely, if dr ∈ (∃s.D)Ii , then there is r′ ∈ R such that (dr, dr′) ∈ sIi and dr′ ∈
DIi . By the induction hypothesis and the definition of sIi , we have D ∈ r′(i) and
r[j,j+`ϕ] s

1 r
′[j,j+`ϕ] ∈ CS(j) for some j with i − j ∈ [0, iRig(s)). By repeated application

of C4 and C5, we obtain a role constraint r[i,i+`ϕ] s
i−j+1 σ′, where σ′ ∈ RS(i) is such that

σ′≤j+`ϕ−i = r′[i,j+`ϕ]. Hence, we have D ∈ r′(i) = σ′(0), and thus ∃s.D ∈ r(i) by C1.

• Assume C = #D: we have that #D ∈ r(i) iff D ∈ r(i + 1) (by R1) iff dr ∈ DIi+1 (by
induction) iff dr ∈ (#D)Ii .

• Assume C = D UIE: we have that D UIE ∈ r(i) iff there is j such that j − i ∈ I, E ∈ r(j)
and D ∈ r(`) for all ` ∈ [i, j) (by R3–R4); by induction, this happens iff dr ∈ EIj and
dr ∈ DIi for all ` ∈ [i, j), which is equivalent to dr ∈ (D UIE)Ii .

Using Q3–Q5 and similar arguments as above, we can now show that, for all ψ ∈ clf(ϕ), it
holds that I, i |= ψ iff ψ ∈ r(i), where r is the unique formula run in R. Hence, by M3 we
obtain that I, 0 |= ϕ.

Before we show Lemma 3, we prove the following two auxiliary results.
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Lemma 16. Let (S,R) be a quasimodel for ϕ such that S(n) = S(m) for n < m. Then (S′,R′)
with S′ = S≤n · S>m and

R′ = {r≤n1 · r>m2 | r1, r2 ∈ R, r
[n,n+`ϕ]
1 = r

[m,m+`ϕ]
2 }

is also a quasimodel for ϕ.

Proof. We want to show that (S′,R′) satisfies conditions M1–M4. First note that if (S,R) is a
quasimodel for ϕ then (S′,R′) satisfies M3 and M4. Also, if r1, r2 ∈ R and r[n,n+`ϕ]

1 = r
[m,m+`ϕ]
2

then r≤n1 · r>m2 is a run and so, R′ is a set of runs. Since S(n) = S(m), for every r1 ∈ R there
is r2 ∈ R that satisfies r[n,n+`ϕ]

1 = r
[m,m+`ϕ]
2 and vice versa (by swapping n and m). It follows

that (S′,R′) satisfies M2. Finally, as S(n) = S(m), the pair (S(n), S(m+ 1)) is compatible and
since we require r[n,n+`ϕ]

1 = r
[m,m+`ϕ]
2 , we also have that M1 holds for (S′,R′).

In the following, let ]ϕ denote the size of the (double exponential) set of all possible run segments
and role constraints for ϕ. We further say that a (finite or infinite) sequence r of types starting
at r(0) realizes an until-expression αUIβ ∈ r(0) if there is an i ∈ I with β ∈ r(i) and α ∈ r(j)
for all j ∈ [0, i).

Lemma 17. ϕ has a quasimodel iff there is a sequence of quasistates

S(0) . . . S(n)S(n+ 1) . . . S(n+m)

such that

• n,m ≤ (|ϕ| · ]2ϕ + 1) · 2]ϕ ;

• for all i ∈ [0, n+m), the pair ((S(i), S(i+ 1)) is compatible, with πi being the maximal
compatibility relation;

• S(n) = S(n+m);

• S(0) satisfies M3 and M4;

• for every σ1 ∈ RS(n), there is a sequence r = σ1(0)σ2(0) . . . σm(0) that realizes all until-
expressions in σ1(0) such that (σi, σi+1) ∈ πn+i for all i ∈ [0,m).

Proof. (⇒) Let (S,R) be a quasimodel for ϕ and observe that the number of possible quasistates
is bounded by 2]ϕ . We can assume w.l.o.g. that there is some n ≤ 2]ϕ such that all quasistates
in S≥n occur infinitely often. If this is not the case, we can simply take n as the maximal
number such that S(m) 6= S(n) holds for all m > n, and use Lemma 16 to remove repeating
quasistates in S[0,n].

Consider now an arbitrary αUIβ ∈ σ(0) for some σ ∈ RS(n), and take any r ∈ R with
r[n,n+`ϕ] = σ, which must exist by M2. Let m′ ≥ n be the minimal number such that r[n,n+m′]

realizes αUIβ. Assume now that there are i, j such that n < i < j < m′, r[i,i+`ϕ] = r[j,j+`ϕ],
and S(i) = S(j). By Lemma 16, there is a quasimodel (S′,R′) for ϕ such that S′ = S≤i · S>j
and r≤i · r>j is a run in R′. It follows that we can construct a quasimodel (S1,R1) for ϕ with
S≤n1 = S≤n and a run r1 ∈ R1 such that r[n,n+`ϕ]

1 = σ ∈ RS1(n) = RS(n) and αUIβ is realized
by the subsequence r[n,n+m1]

1 , for some m1 ≤ ]ϕ · 2]ϕ (2]ϕ is the number of possibilities for S(i),
and ]ϕ is the number of possibilities for r[i,i+`ϕ]).

Then we consider the next expression of the form α′ UI′β′ ∈ σ(0) and assume that r[n,n+m′′]
1

realizes it for some minimal m′′ ≥ m1. Using the same construction as above, we obtain a
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quasimodel (S2,R2) for ϕ with S≤n+m1
2 = S≤n+m1

1 and a run r2 ∈ R2 such that r[n,n+`ϕ]
2 =

σ ∈ RS(n) and r[n,n+m2]
2 realizes both αUIβ and α′ UI′β′, for some m2 ≤ 2 · ]ϕ · 2]ϕ . We can

proceed in this way and construct a quasimodel containing a run through σ that realizes all
until-expressions in σ(0) after at most |ϕ| · ]ϕ · 2]ϕ steps.

After that, we consider in the same manner another run segment σ′ ∈ RS(n). To realize all
until-expressions in some run through σ′, we need at most |ϕ| · ]ϕ · 2]ϕ additional steps. Since
there are at most ]ϕ run segments in RS(n), we require at most |ϕ| · ]2ϕ · 2]ϕ steps to realize all
until-expressions in all run segments in RS(n). We now take another 2]ϕ steps to find a time
point m ≤ (|ϕ| · ]2ϕ + 1) · 2]ϕ such that we have S∗(n) = S∗(n+m) in the resulting quasimodel
(S∗,R∗) (since we assumed that S(n) occurs infinitely often). By our construction, we have
that all until-expressions in S∗(n) can be realized by runs through S∗[n,n+m], and hence the
sequence S∗≤n+m satisfies all conditions required in the lemma.

(⇐) Let now S∗(0) . . . S∗(n + m) be a sequence with the given properties. We construct a
quasimodel (S,R) for ϕ, where S is defined by

S = S∗(0) . . . S∗(n)(S∗(n+ 1) . . . S∗(n+m))ω,

and R contains all sequences of types of the form

σ0
0(0) . . . σ0

n(0) · σ0
n+1(0) . . . σ0

n+m(0) ·
σ1
n+1(0) . . . σ1

n+m(0) ·
σ2
n+1(0) . . . σ2

n+m(0) · . . . ,

where each σji is an element of S∗(i), each pair of adjacent run segments in this sequence is
contained in the corresponding compatibility relation (for σjn+m and σj+1

n+1 we consider πn),
and there are infinitely many j ≥ 1 for which σj−1

n+m(0)σjn+1(0) . . . σjn+m(0) realizes all until-
expressions in σj−1

n+m(0).

Due to C4, for all r ∈ R, each subsequence of length `ϕ + 1 is a run segment from one of the
sets S∗(i). To show that r is a run, we verify Condition R4. But this follows from the local
Condition R3, which states that each until-expression is either satisfied by the next `ϕ types
in r, or it is deferred. In the latter case, our construction ensures that the until-expression is
not deferred indefinitely.

It remains to show that (S,R) satisfies Conditions M1–M4. Condition M1 is immediately
satisfied by our construction of R. Conditions M3 and M4 only concern S(0), and are also
satisfied since S(0) = S∗(0) by construction. For Condition M2, for every i ≥ 0 and σ ∈ S(i),
we need to find a run r ∈ R with r[i,i+`ϕ] = σ. By C3 and C4, we can extend σ to the left
until we reach S(0). The same argument holds for the other direction, but there we additionally
make sure that, whenever we reach a σ′ ∈ S∗(n + m), we continue it in such a way that
all until-expressions in σ′ are realized by the next m types. This is always possible by our
assumptions on the sequence S∗(0) . . . S∗(n+m).

One side result of the constructions in the above proof is that, for a satisfiable formula, we can
always find a regular quasimodel.

Lemma 18. If ϕ has a quasimodel, then it has a quasimodel (S,R) in which S is of the form

S(0) . . . S(n)(S(n+ 1) . . . S(n+m))ω

such that n and m are bounded triple exponentially in the size of ϕ and iRig.

Proof. From any quasimodel for ϕ, we obtain the desired regular quasimodel by first applying
one direction of the proof of Lemma 17, and then the other.
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From Lemmas 15 and 18, Lemma 3 directly follows. Based on this result, we can show
ExpSpace-completeness of satisfiability of LTLbin

ALC-formulae.

Theorem 4. Satisfiability in LTLbin
ALC with respect to interval-rigid names is 2-ExpSpace-

complete.

Proof. Since the lower bound follows from [12], we only need to prove the upper bound. By
Lemmas 15 and 17, it suffices to decide the existence of a sequence of quasistates with certain
properties. We show how the latter can be decided non-deterministically in double exponential
space by guessing such a sequence, quasistate after quasistate. The basic observation is that
storing a single quasistate requires at most double exponential space, and that we only require a
constant number of quasistates in memory at any point of the computation.

We first guess the two numbers n,m from Lemma 17, which can be stored using double
exponentially many bits. We then guess the first n quasistates S(i) one after another, such
that Conditions M3 and M4 are satisfied for S(0), and each pair (S(i), S(i+ 1)) of consecutive
quasistates is compatible. For this, we only need to keep two consecutive quasistates in memory
at any point. We now store the quasistate S(n), and for each σ ∈ RS(n) we keep a list of
until-expressions that need to be satisfied, which initially contains all αUβ ∈ σ(0). We then
guess the next m quasistates as before, where we additionally test whether there is a run starting
in σ that satisfies all required until-expressions. For this, it suffices to guess which run segment
of the next quasistate corresponds to this run; this of course has to be compatible with the run
segment guessed for the previous quasistate. We remove any until-expression from our list that
is satisfied by this guessed run segment, and require that all until-expressions must have been
removed when we reach S(n+m). This only requires double exponential space. Finally, after
we have guessed S(n+m), we accept if S(n+m) = S(n). By Lemmas 15 and 17, our algorithm
is sound and complete. Since at each step we only require double exponential space, we thus
establish that satisfiability of LTLbin

ALC formulae w.r.t. interval-rigid names can be decided in
2-ExpSpace.

C Proofs for Section 3.2

To prove Theorem 5, we show that in order to check satisfiability of an LTLbin
ALC formula ϕ with

global GCIs and interval-rigid roles it suffices to consider quasimodels (S,R) with S of the form:
ω(Ξ0) · Ξ1 · (Ξ2)ω,

where each Ξi is a sequence of quasistates of at most double exponential length. Besides being
regular on both sides, we can assume that the quasistates in S have the same ‘unnamed part’.
Recall that given a quasistate Q = (RQ, CQ), we denote by Qu = (Ru

Q, Cu
Q) the unnamed part

of Q, that is, Ru
Q and Cu

Q are the maximal subsets of RQ and CQ, respectively, that do not
contain named types or formula types. We say that a role constraint is named if it contains a
named run segment. Also, we say that a quasimodel (S,R) is u-constant if

• Su(i) = Su(j), for all i, j ∈ Z.

In the following, we show that, if ϕ is satisfiable, then one can always find a quasimodel that is
u-constant (Lemma 20) and regular (Lemma 24). We then show a 2-ExpTime procedure that
checks the existence of such quasimodel.

First, the following adaptation of Lemma 15 can be shown exactly as before.

Lemma 19. An LTLbin
ALC formula ϕ with global GCIs is satisfiable over Z w.r.t. interval-rigid

names iff there is a quasimodel for ϕ.
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We now proceed to show that we can restrict our search to quasimodels of the special form
described above.

Lemma 20. If ϕ has a quasimodel, then it has a u-constant quasimodel.

Proof. Assume that (S,R) is a quasimodel for ϕ. We modify S(n) by adding
⋃
i∈Z S

u(i). Recall
that, by C2, our quasimodels do not have role constraints of the form σ s

k σa, with σ unnamed
and σa a named run segment. We then have that each modified S(n) satisfies Q6. As all GCIs
are global, we also have that Q3 holds. Since we do not change formula run segments, named
run segments and named role constraints, Conditions Q1, Q2, Q4, and Q5 still hold. Thus,
our modified S is a sequence of quasistates.

We now add to R all runs in

{r←i, r→i | r ∈ R an unnamed concept run, i ≥ 0},

where r←i(n) := r(n− i) and r→i(n) := r(n+ i) for all r ∈ R and n ∈ Z. We then have that
(S,R) is still a quasimodel and satisfies Su(i) = Su(j) for all i, j ∈ Z, as required.

To show regularity as in Lemma 18, the last preparation we need is to establish a bound on the
number of different quasistates that can occur in a quasimodel. This is done in the following
lemma, where we use [ϕ to denote 2 · |csub(ϕ)| · |ind(ϕ)|2 · (`ϕ + 1).

Lemma 21. If ϕ has a quasimodel, then it has a quasimodel (S,R) with at most (]ϕ)[ϕ many
different quasistates.

Proof. By Lemma 20, we can assume w.l.o.g. that if ϕ has a quasimodel (S,R) then Su(i) = Su(j),
for all i, j ∈ Z. Thus, to prove this lemma it suffices to show the following claim.
Claim. If ϕ has a quasimodel, then it has a quasimodel with at most [ϕ named role constraints
in each quasistate.

Let (S,R) be a quasimodel for ϕ. For all n ∈ Z, a ∈ ind(ϕ), and ∃s.D ∈ σa(0), we

select one σa s
k σ ∈ CS(n) with D ∈ σ(0). (†)

These role constraints must exist by Q6. Let S′ be the result of removing from S all non-selected
named role constraints of the form σa

s
k σ with σ an unnamed run segment. Then S′ is a

sequence of quasistates that may not be compatible.

To regain compatibility, we proceed as follows. As (S,R) is a quasimodel, there is a maximal
compatibility relation πn for each pair (S(n), S(n + 1)), n ∈ Z. Then, for each selected
σa

s
k σ ∈ CS(n) with k < iRig(s), there exists a role constraint

σ′a
s

k+1 σ
′ ∈ CS(n+1) such that {(σa, σ′a), (σ, σ′)} ⊆ πn.

We select one such role constraint and add it to CS′(n+1). We proceed in this way until we add
a role constraint σ′′a

s
iRig(s) σ′′ ∈ CS(n+iRig(s)−k) to CS′(n+iRig(s)−k). Similarly, if k > 1 and we go

backwards, there exists a

σ′a
s

k−1 σ
′ ∈ CS(n−1) such that {(σ′a, σa), (σ′, σ)} ⊆ πn−1.

We select one such role constraint, add it to CS′(n−1), and proceed in this way until we add a
role constraint σ′′a s

1 σ
′′ ∈ CS(n−k+1) to CS′(n−k+1). With this construction, for each selected role

constraint there is another role constraint in the next (or the previous) quasistate to satisfy C5
(or C6) for πn. Since each quasistate contains exactly one named run segment, it is easy to see

25



that each πn is still a compatibility relation for (S′(n), S′(n+ 1)). This suffices to show that
(S′,R) is still a quasimodel of ϕ.

Regarding the number of named role constraints in each quasistate, we argue as follows. For each
quasistate in S, the number of role constraints selected in (†) is bounded by |csub(ϕ)| · |ind(ϕ)|.
For each of those role constraints selected in (†), we add at most `ϕ additional role constraints
(forward and backwards). So, in each quasistate, the number of role constraints of the form
σa

s
k σ with an unnamed run segment σ is bounded by 2 · |csub(ϕ)| · |ind(ϕ)| · (`ϕ + 1). The

quadratic term in [ϕ is for role constraints of the form σa
s
k σb (which we did not change and,

so, are the same as in S).

The proof of the following is a straightforward adaptation of the proof of Lemma 16.

Lemma 22. Let (S,R) be a quasimodel for ϕ such that S(n) = S(m) for n < m. Then (S′,R′)
with S′ = S≤n · S>m and

R′ = {r≤n1 · r>m2 | r1, r2 ∈ R, r
[n,n+`ϕ]
1 = r

[m,m+`ϕ]
2 }

is also a quasimodel for ϕ.

Lemma 23. ϕ has a quasimodel iff there is a sequence S = Ξ0 · Ξ1 · Ξ2 of quasistates such that

• the length `i of each Ξi is bounded by (|ϕ| · ]2ϕ + 1) · (]ϕ)[ϕ (denote by ` = `0 + `1 + `2 the
length of S);

• for all i ∈ [0, `), the pair ((S(i), S(i + 1)) is compatible, with πi being the maximal
compatibility relation;

• Su(i) = Su(j), for all i, j ∈ [0, `);

• Ξ0(0) = Ξ1(0) and Ξ1(`1 − 1) = Ξ2(`2 − 1);

• Ξ1(n) satisfies M4, for some n ∈ [0, `1);

• for all σ1 ∈ RΞ1(`1−1), there is a sequence σ1(0)σ2(0) . . . σk(0) that realizes all until-
expressions in σ1(0) such that (σi, σi+1) ∈ π`0+`1−1+i for all i ∈ [0, k).

Proof. The proof proceeds in the same way as for Lemma 17, the only exception being that the
number of possible quasistates is now bounded by (]ϕ)[ϕ instead of 2]ϕ . Note that applying
Lemma 22 for cutting out parts of the quasimodel does not affect the properties given by
Lemmas 20–21. One can show regularity on the left side of the quasimodel by simpler arguments
since there we do not have to satisfy any until-expressions, but only modify the quasimodel so
that we can find a repeating quasistate at most 2 · (]ϕ)[ϕ steps before Ξ1(n).

As before, this immediately implies regularity.

Lemma 24. If ϕ has a quasimodel, then it has a quasimodel (S,R) with S of the form

ω(Ξ0) · Ξ1 · (Ξ2)ω,

where each Ξi is a sequence of quasistates of length at most (|ϕ| · ]2ϕ + 1) · (]ϕ)[ϕ .

We now describe the algorithm for checking the existence of a sequence as in Lemma 23. The
first step is to find the unnamed part that is shared by all quasistates. For this, we first compute
in 2-ExpTime the set rs(ϕ) of run segments for ϕ and the set rc(ϕ) of role constraints over
rs(ϕ). We then initialize Q = (RQ, CQ) with RQ = rs(ϕ) and CQ = rc(ϕ). Note that this is not
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a quasistate since it contains several formula run segments and several named run segments for
each a ∈ ind(ϕ).

Given a concept run segment σ ∈ RQ, let Xσ be the set of all images of functions mapping
each concept of the form ∃s.D ∈ σ(0) to a role constraint σ s

k σ
′ ∈ CQ with D ∈ σ′(0). Given

xσ ∈ Xσ and xσ′ ∈ Xσ′ , we say that (xσ, xσ′) is suitable if σ>0 = σ′<`ϕ and

• σ s
k σ1 ∈ xσ with k < iRig(s) implies that there is σ′ s

k+1 σ2 ∈ xσ′ with σ>0
1 = σ

<`ϕ

2 ; and

• σ′ s
k+1 σ2 ∈ xσ′ with k > 0 implies that there is σ s

k σ1 ∈ xσ with σ>0
1 = σ

<`ϕ

2 .

We define a mapping π ⊆ RQ ×RQ, where each π is the set of pairs (σ, σ′) such that, for some
xσ ∈ Xσ and xσ′ ∈ Xσ′ , the pair (xσ, xσ′) is suitable. We then exhaustively eliminate run
segments σ from some RQ if σ violates one of the following conditions:

E1 there is σ′ ∈ RQ such that (σ, σ′) ∈ π;

E2 there is σ′ ∈ RQ such that (σ′, σ) ∈ π;

E3 for all C UID ∈ σ(0) (with σ(0) an unnamed type), there is k > 0 and a sequence

σ2, . . . , σk ∈ RQ

such that σ(0)σ2(0) · · ·σk(0) realizes C UID, (σ, σ2) ∈ π, and (σ`, σ`+1) ∈ π, for all 1 < ` <
k.

We assume that whenever σ ∈ RQ is eliminated we remove all role constraints involving σ
from CQ and, for all remaining σ′ ∈ RQ, we update Xσ′ accordingly. We also remove (σ1, σ2)
from π if there is no xσ1 ∈ Xσ1 and xσ2 ∈ Xσ2 such that (xσ1 , xσ2) is suitable.

When this process terminates, we have found the maximal unnamed part of our quasistates,
and it remains to check whether we can choose a suitable formula run and named runs for each
a ∈ ind(ϕ) to obtain a quasimodel. For this purpose, we consider the following graph (VQ, EQ).
The set VQ contains all quasistates Q′ such that RQ′ ⊆ RQ, CQ′ ⊆ CQ, Q′u = Qu, and Q′

contains at most [ϕ named role constraints, which gives us at most (]ϕ)[ϕ many quasistates (see
Lemma 21). Moreover, EQ contains all pairs (Q′, Q′′) ∈ VQ × VQ that are compatible. Note
that, in contrast to Q, every element Q′ ∈ VQ has exactly one formula run segment and one
named run segment for each individual name, due to the definition of quasistates.

We try to find a regular quasimodel as in Lemma 24 by a series of reachability tests in this
graph. First, we enumerate all pairs of quasistates Q1, Q2 ∈ VQ such that ϕ ∈ σQ1(0) and Q2 is
reachable from Q1. There are at most (]ϕ)2·[ϕ many possibilities to choose these two quasistates,
where Q1 represents a quasistate at some position in Ξ1 that satisfies M4 and Q2 represents
the last quasistate of Ξ1 (as in Lemma 23). This reachability test is clearly possible in double
exponential time.

To find the repeating sequence Ξ2, in particular, we need to ensure that all until-formulae and
until-concepts in named types are realized within Ξ2. Hence, we consider the set U that contains
all (polynomially many) until-expressions in σQ2(0) and σa,Q2(0) for all a ∈ ind(ϕ), where
σa,Q2 ∈ RQ2 is the unique named run segment for a. We enumerate all possible total orders
ψ1 < ψ2 < · · · < ψ|U | over U , of which there are exponentially many. For a fixed such order,
we enumerate all possible choices of quasistates Q1

2, . . . , Q
|U |
2 ∈ VQ such that Q1

2 is reachable
from Q2, each Qi+1

2 is reachable from Qi2, for all i ∈ [1, |U |), and the until-expression ψi is
satisfied on the path to Qi2, for all i ∈ [1, |U |]. As before, there are double exponentially many
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possibilities for these quasistates (since |U | is polynomial), and the reachability checks can also
be done in double exponential time.

Finally, we check reachability of Q2 from Q
|U |
2 to close the loop. Similarly, we also check for

a repeating sequence Ξ0 of quasistates for the left part of our quasimodel from which we can
reach Q1 (chosen before, where ϕ ∈ σQ1(0)). If all of the described checks succeed for one of the
double exponentially many possibilities we enumerate, then our algorithm returns ‘satisfiable’,
and otherwise ‘unsatisfiable’.

Lemma 25. The algorithm returns ‘satisfiable’ iff ϕ is satisfiable w.r.t. interval-rigid names.

Proof. By Lemmas 19 and 23, it suffices to check the existence of a sequence of quasistates as
in Lemma 23.

(⇒) It is straightforward to check that any sequence resulting from a successful series of the
checks described above satisfies the conditions of Lemma 23. In particular, any two consecutive
quasistates are compatible by Conditions E1 and E2 and the definition of EQ. Moreover, the
required sequences of run segments that satisfy the until-expressions exist by Condition E3 and
the reachability checks in (VQ, EQ).

(⇐) Let S = Ξ0 · Ξ1 · Ξ2 be a sequence as in Lemma 23. Then the shared unnamed part of all
the S(i) must be included in Q as constructed by the algorithm. The remaining conditions of
Lemma 23 ensure that all our reachability checks succeed, albeit with a possibly larger unnamed
part in the quasistates. In particular, the order on U is the same as the one in which these
until-expressions are satisfied in Ξ2.

We provide the proof of the corresponding lower bound after the proof of Theorem 8 below,
since both use the same constructions.

Theorem 5. Satisfiability in LTLbin
ALC w.r.t. interval-rigid names and global GCIs over Z is

2-ExpTime-complete.

D Proofs for Section 4

Theorem 7. Satisfiability in ALCH-LTL w.r.t. interval-rigid names is Σ1
1-hard.

Proof. ALCH denotes the extension of ALC by the most basic role inclusions of the form r1 v r2,
where r1, r2 ∈ NR. Using such axioms, we can simulate the rigid role r in the formula φT from
Section 4.1 by three 2-rigid roles r0, r1, r2, together with the following formulae, for 0 ≤ i ≤ 2:

2
(
Ai(a)→

(
(ri−1 v ri) ∧ (> v ¬∃ri+1.>)

))
.

We also have to replace (> v ∃r.>) in φT by (> v ∃r0.>), ∀r.Ai by ∀ri.Ai, and ∀r.Pt′ by
∀r0.Pt′ u ∀r1.Pt′ u ∀r2.Pt′ .

Theorem 8. Satisfiability in ALC-LTL|gGCI with respect to interval-rigid names is 2-ExpTime-
hard.

Proof. We consider the reduction used in [8, Lemma 4.2], and observe that the rigid concept
and role names used in that reduction need to stay rigid only for 2k time points, where k is
polynomial in the size of the original problem. Since 2k can be written using polynomially many
bits, we can instead designate these names to be 2k-rigid. However, we also need to do this for
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all negations of the rigid concept names A, to ensure that, if A is implied to hold at d at some
point in the interval [0, 2k − 1], this information is also propagated backwards in time, i.e., d
satisfies A also at time point 0. This is not needed for the single rigid role r used in the proof,
since all necessary r-connections are already implied at time point 0.

We can adapt this result to show the lower bound for Theorem 5, i.e., for LTLbin
ALC w.r.t. interval-

rigid names and global GCIs and the temporal semantics based on Z. The only problem we face
there is that the 2k-rigid names described above may not be rigid for the interval [0, 2k − 1],
but for any interval of this length that includes 0. However, since we are only interested in
the domain elements reachable by a certain role r at time point 0 from an individual name a,
and all relevant r-connections are present at time point 0, we can use them to propagate a
fresh concept name B to all relevant domain elements, and use the global GCI #B v ¬∃r.>
to enforce that these r-connections do not exist at time point −1, and hence must exist in the
whole interval [0, 2k − 1] since r is 2k-rigid. Similarly, we can express that the value of a 2k-rigid
concept name A (where ¬A is also 2k-rigid) must stay constant in [0, 2k − 1] via the global GCIs
#B uA v ¬A and #B u ¬A v A.

E Proofs for Section 5

Theorem 11. Satisfiability in ALC-LTLbin is in 2-ExpTime w.r.t. rigid names, and in
ExpSpace w.r.t. rigid concepts.

Proof. By Lemma 10, to check satisfiability of φ, we need to do the following:

(1) Find a set W ⊆ 2{p1,...,pm}.

(2) Check satisfiability of χW .

(3) Check satisfiability of φp
W = φp ∧ φW .

Depending on the targeted complexity class, step (1) can be handled in different ways (see [8]
for details):

• If there are no rigid names, it suffices to consider the maximal set W containing all
W ⊆ {p1, . . . , pm} for which

∧
pj∈W αj ∧

∧
pj∈W ¬αj is satisfiable. This works because

there are no rigid names that could enforce dependencies between different worlds.

• Otherwise, one can guess a set W in (non-deterministic) exponential time.

• In general, one can also enumerate all sets W in (deterministic) double exponential time.

Moreover, step (2) is exactly the same as in [8], which means that we can use the complexity
upper bounds from that paper for steps (1) and (2). In particular, they are possible in 2-
ExpTime in general, in NExpTime if we only allow rigid concepts, and in ExpTime if we have
no rigid names, or we have rigid concepts and global GCIs. It only remains to determine the
complexity of step (3), and take the union of the obtained complexity classes.

For this, we translate φp into an exponentially larger LTL formula φp′. Since the exponentially
large φW is already an LTL formula, the satisfiability of the conjunction φp′ ∧ φW can be
checked in exponential space. This yields the claimed results since ExpTime ⊆ NExpTime ⊆
(N)ExpSpace ⊆ 2-ExpTime.
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