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Abstract

Probabilistic databases (PDBs) are usually incomplete, e.g.,
contain only the facts that have been extracted from the
Web with high confidence. However, missing facts are often
treated as being false, which leads to unintuitive results when
querying PDBs. Recently, open-world probabilistic databases
(OpenPDBs) were proposed to address this issue by allow-
ing probabilities of unknown facts to take any value from
a fixed probability interval. In this paper, we extend Open-
PDBs by Datalog* ontologies, under which both upper and
lower probabilities of queries become even more informa-
tive, enabling us to distinguish queries that were indistin-
guishable before. We show that the dichotomy between P
and PP in (Open)PDBs can be lifted to the case of first-order
rewritable positive programs (without negative constraints);
and that the problem can become NP -complete, once neg-
ative constraints are allowed. We also propose an approxi-
mating semantics that circumvents the increase in complexity
caused by negative constraints.

1 Introduction

The effort for building large-scale knowledge bases from
data in an automated manner has resulted in a number of
systems including NELL (Mitchell et al. 2015), Yago (Hof-
fart et al. 2013), DeepDive (Shin et al. 2015), Microsoft’s
Probase (Wu et al. 2012), and Google’s Knowledge Vault
(Dong et al. 2014). They combine methods from information
extraction, natural language processing, relational learning,
and databases to process large volumes of uncertain data.
The state of the art to store and process such data is founded
on probabilistic databases (PDBs) (Imieliski and Lipski
1984; Fuhr and Rolleke 1997; Suciu et al. 2011).

Each of the above systems encodes only a portion of the
real world, and this description is necessarily incomplete.
Thus, a meaningful querying semantics must provide a way
to deal with missing information. Recently, an effort in this
direction was made by introducing open-world probabilis-
tic databases (OpenPDBs) (Ceylan, Darwiche, and Van den
Broeck 2016), which generalize PDBs to be able to deal with
incompleteness. More precisely, in OpenPDBs the probabil-
ities of facts that are not in the database, called open tuples,
are relaxed to a default probability interval, which is very
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different from the closed-world assumption of PDBs, which
requires the probabilities of such facts to be zero. In the
resulting framework of OpenPDBs, query probabilities are
given in terms of upper and lower probability values, which
is more in line with an incomplete view of the world.

While forming a natural and flexible basis for querying
incomplete data sources, OpenPDBs are limited in the fol-
lowing sense: All open tuples can take on probability val-
ues from a single fixed interval [0, ], which results in the
same upper and lower probabilities for many queries. Con-
sider, for instance, the PDB containing the probabilistic tu-
ples (Author(a) : 0.8), (Pub(a,b) : 0.6), (Pub(c,d) : 0.9),
(Novel(d) : 1). In OpenPDBs, Author(c) and Author(d)
evaluate to the same lower and upper probabilities (0 and ),
respectively), since both tuples are open. Intuition, however,
tells us that c is more likely to be an author, as we already
know (with high confidence) that ¢ has published a novel.
On the other hand, Author(d) is unlikely to hold, since we
know (almost surely) that d is a novel. Essentially, we lack
the common-sense knowledge that

(i) anyone who has published a novel is an author, and
(i1) authors and novels are disjoint entities,

which helps us to distinguish such queries. Observe that (i)
is a positive axiom and would lead to higher probabilities,
whereas (ii) is a negative (constraining) axiom and would
entail lower probabilities for some queries.

This problem has been widely studied in the context of
classical databases under the name of ontology-based data
access (OBDA) (Poggi et al. 2008), a popular paradigm that
encodes the domain knowledge through an ontology, thus
being able to deduce facts not explicitly specified in the
database. Following this, we encode the domain knowledge
using a Datalog® ontology (Cali, Gottlob, and Lukasiewicz
2012), which helps to break down the symmetries between
open tuples, letting us distinguish more queries by compar-
ing their upper and lower probability values.

We study the semantic and computational properties of
OpenPDBs under Datalog* programs. The main distinction
between a PDB and an OpenPDB is that the latter repre-
sents a set of probability distributions instead of a single one,
and introduces the difficulty of choosing the distribution that
will maximize (or minimize) the probability of a query. It is
known that the data complexity of probabilistic UCQ evalu-



ation in OpenPDBs exhibits the same dichotomy between P
and PP as in PDBs for unions of conjunctive queries (Dalvi
and Suciu 2012; Ceylan, Darwiche, and Van den Broeck
2016). We lift this dichotomy to first-order rewritable (posi-
tive) Datalog* programs using standard techniques. We then
show that, once negative constraints are allowed, reasoning
can become NP"F-hard. This result demonstrates the differ-
ence between OpenPDBs and PDBs, as in the latter reason-
ing with ontologies remains in PP.

We also propose an approximating semantics that cir-
cumvents the increase in complexity caused by negative
constraints, and lift the dichotomy to general first-order
rewritable programs under this semantics. We conclude with
complexity results beyond the data complexity for ontology-
mediated query evaluation relative to (tuple-independent)
PDBs and OpenPDBs.

2 Background and Motivation

We briefly recall the basics of tuple-independent PDBs and
their open-world variant OpenPDBs. We then highlight the
advantages of accessing probabilistic data through a logical
theory and provide an overview of Datalog* programs.

We consider a relational vocabulary v consisting of finite
sets R of predicates, C of constants, and 'V of variables. A
~-term is a constant or a variable. A y-atom is of the form
P(s1,...,8,), where P is an n-ary predicate, and s, ..., sp
are ~y-terms. A y-tuple is a y-atom without variables.

Queries and Databases. A conjunctive query (CQ) over -y
is an existentially quantified formula 3x ¢, where ¢ is a con-
junction of ~y-atoms, written as a comma-separated list. A
union of conjunctive queries (UCQ) is a disjunction of CQs.
A query is Boolean if it has no free variables. A database D
over 7 is a finite set of ~y-tuples. The central problem stud-
ied for databases is query evaluation: Finding all answers
to a query Q over a database D, which are assignments of
the free variables in Q to constants such that the resulting
first-order formula is satisfied in D in the usual sense, i.e.,
there is a homomorphism from the atoms in Q to the tuples
in D. In the following, we consider only Boolean queries Q,
and focus on the associated decision problem, i.e., deciding
whether Q is satisfied in D, denoted as usual by D = Q.

Example 1. Consider the database D., := {Author(a),
Pub(a,b), Pub(c,d), Novel(d)} and the Boolean query
Qi := 31, 29 Author (), Pub(xy,22).! Then, D,, = Q1,
since {Author(a), Pub(a,b)} F Q.

Probabilistic Databases. The most elementary proba-
bilistic database model is based on the tuple-independence
assumption. We adopt this model and refer to (Suciu et al.
2011) for details on this model and alternatives. A proba-
bilistic database induces a set of classical databases (called
worlds), each of which is associated with a probability value.

Formally, a probabilistic database (PDB) P over y is a
finite set of (probabilistic) tuples of the form (¢ : p) , where ¢
is a y-tuple and p € [0, 1], and, whenever (¢ : p),(t: ¢q) € P,

"For ease of presentation, we assume that - consists of the sym-
bols appearing in the database and query (and later in the program).

then p = ¢. A PDB P assigns, to every y-tuple ¢, the proba-
bility p, if (¢ : p) € P, and the probability 0, otherwise.

Under the tuple-independence assumption, any such prob-
ability assignment P induces the following unique joint
probability distribution over classical databases D:

P(D):=[]P(t) [T(1-P()).
teD t¢D

Accordingly, query evaluation is enriched to also consider
the probabilistic information. More formally, the probability
of a Boolean query Q w.r.t. Pis P(Q) := Y p_q P(D). Here,
we do not need to consider worlds with probability 0; e.g., if
P(t) = 0, then the worlds containing ¢ do not affect P(Q).

Example 2. Consider the PDB P., from the introduction
and Q; from Example 1. The probability of Q; on P, is
obtained by summing the probabilities of the worlds that sat-
isfy Qy, i.e., all worlds containing the first two tuples, result-
ing in the probability 0.48. In contrast, the natural query

Q2 := 3x1, x2 Author(z ), Pub(zq,x3), Novel(xs)

evaluates to 0 on P,,, since all worlds that satisfy this query
have probability 0.

Open-World Probabilistic Databases. An open-world
probabilistic database (OpenPDB) over ~ is a pair
G=(P,\), where A € [0,1] and P is a PDB. A -
completion of G is a PDB that is obtained by introducing,
for each v-tuple ¢ that does not occur in P (called an open
tuple), a probabilistic tuple (¢ : p) with p € [0, A]. For a fixed
value «v € [0, A], we define a special A-completion, denoted
Po, in which the probabilities of all open tuples are equal
to a. Note that Py is equivalent to P.

Example 3. Consider the OpenPDB G, := (P.,,0.5). The
set P, U {{Novel(d):0.2)} is a A\-completion of G, (tu-
ples with probability O are omitted).

An OpenPDB G = (P, \) defines the set K¢ of all prob-
ability distributions P induced by the A-completions of G.
K¢ constitutes a so-called credal set, which means that it is
closed, convex, and has a finite number of extremal points
(Cozman 2000). The range of probabilities of a query under
such a set can be expressed as a probability interval. For-
mally, the probability interval of a Boolean query Q w.r.t. G

isKg(Q) := [BQ(Q),ﬁg(Q)], where
Pg(Q):= min P(Q) and Pg(Q) = max P(Q).

Example 4. Consider again the OpenPDB G.,. While the
lower probability P;(Q2) remains 0, the upper probability

evaluates to Pg(Qz) > 0 due to the A\-completion
Po.5 = Pex U {(Author(d) : 0.5), (Author(c):0.5),...},
which contains all open tuples with probability A = 0.5.

This example shows that OpenPDBs improve our view of
the domain compared to PDBs. However, we have already
illustrated in the introduction that OpenPDBs can further
benefit from an axiomatic encoding of the domain knowl-
edge, since many queries involving open tuples will yield
the same lower and upper probabilities, although according
to common-sense knowledge, they should differ. This mo-
tivates our introduction of a logical theory, in the form of
Datalog* rules, to formalize such knowledge.
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Figure 1: Inclusion relations and data complexity of UCQ
entailment for Datalog* languages (Lukasiewicz et al. 2015)
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Datalog* Programs. We now extend the vocabulary ~ by
a (potentially infinite) set N of nulls. An instance I over vy
is a (possibly infinite) set of «-tuples that may additionally
contain nulls.

A tuple-generating dependency (TGD) o is a first-order
formula Vx p(x) — Jy P(x,y), where ¢(x) is a conjunc-
tion of y-atoms, called the body of o, and P(x,y) is a -
atom, called the head of o. A negative constraint (NC) v is
a first-order formula Vx ¢(x) — 1, where (x) is a con-
junction of ~-atoms, called the body of v, and 1 is the truth
constant false. A (Datalog*) program ¥ is a finite set of
TGDs and NCs.2 An ontology-mediated query (OMQ) is a
pair (Q, X), where X is a program, and Q is a Boolean query.

An instance [ satisfies a TGD or NC o, if I = o, where
£ denotes the standard first-order entailment relation. [ sat-
isfies a program 3, written I = 3, if I satisfies each for-
mula in Y. The set of models of a program X relative to a
database D, denoted mods(D, %), is {I | I 2D and I = X}.
D is consistent w.r.t. 3, if mods(D,X) is non-empty. The
OMQ (Q, X) is entailed by D, denoted D E (Q,X),if [ = Q
holds for all I € mods(D,X).

In general, the entailment problem is undecidable (Beeri
and Vardi 1981). For this reason, many different restrictions
on the TGDs have been proposed. We consider here guarded
(G), linear (L), sticky (S), acyclic (A), weakly guarded (WG),
weakly sticky (WS), and weakly acyclic (WA) sets of TGDs
(Cali, Gottlob, and Kifer 2013; Cali, Gottlob, and Pieris
2012). Other important classes are given by full TGDs (F),
full and guarded TGDs (GF), and similarly for LF, SF, and
AF. Figure 1 illustrates the inclusion relations between these
classes; for a more detailed description, see the extended
version of this paper. We extend all these notions to pro-
grams Y in the obvious way; for instance, X is guarded if all
the TGDs in ¥ are guarded. In the following, we use £ to
denote the set of Datalog* languages introduced above.

A key paradigm in OBDA is the FO-rewritability of
queries; an OMQ (Q,X) is FO-rewritable, if there exists
a Boolean UCQ Qyx such that, for all databases D that are
consistent w.r.t. 3, we have D (Q,X) iff D E Qgx. In this

?For brevity, we omit the universal quantifiers in TGDs and
NCs, and use commas (instead of A) for conjoining atoms. For clar-
ity, we consider single-atom-head TGDs; however, our results can
be easily extended to TGDs with conjunctions of atoms in the head.

case, Qy is called a FO-rewriting of (Q,X). A class of pro-
grams X is FO-rewritable, if it admits an FO-rewriting for
any UCQ and program in X; these classes are characterized
by a data complexity of AC? (see Figure 1).

3 Ontology-Mediated Queries for OpenPDBs

We now introduce the basics of OMQ evaluation relative
to OpenPDBs. In the following, we assume that the input
PDB P induces a consistent distribution w.r.t. the program.
Formally, a probability distribution P is consistent w.r.t. 3,
if the database {t | P(¢) > 0} is consistent w.r.t. ¥. Note that
this assumption does not change the nature of the problem.
The semantics of OMQs is again based on A-completions.
The difference appears in the deductive power provided by
the Datalog* program, which is taken into consideration in
the query semantics.

Definition 5 (Semantics). The probability of an OMQ
(Q, X) relative to a probability distribution P is

P(Q,%)= ) P(D),

D=(Q,X)

where D ranges over all databases over . The probability
interval of (Q,X) relative to an OpenPDB G is then given

by Kg(Q,%) := [P4(Q, ¥),Pg(Q,X)], where
Ps(Q,X) = FI)Jflligl {P(Q,X) | P is consistent w.r.t. ¥} ,
g

Pg(Q,X) := gg}a()g({P(Q,E) | P is consistent w.r.t. ¥} .

The special case of A = 0 corresponds to having a single
(closed-world) PDB P. In this case, we simply speak of the
probability of (Q,X) relative to a PDB P.

This semantics defers the decision of whether a world sat-
isfies a query to an entailment test. However, we maximize
only over consistent A\-completions, i.e., the ones that induce
consistent distributions, which is the most important aspect
of this semantics.

3.1 Semantic Considerations

In the following, we evaluate our semantics w.r.t. the goals
identified in the motivation of this paper, and discuss our
choice of restricting to the consistent A-completions.

Distinguishing Queries. We argued that OpenPDBs can
benefit from an axiomatic encoding of the knowledge of the
domain. Consider again our running example, which is now
enriched with a program.

Example 6. Consider the OpenPDB G., given be-
fore and the program X, := {Author(xz),Novel(z) — 1,
Pub(z,y),Novel(y) — Author(x)} which states that au-
thors and novels are disjoint entities, and that anyone who
has published a novel is an author. The lower probability of
Author(d) remains 0, while the upper probability is now
reduced to 0 with the help of the program 3..,. In contrast,
the lower probability of Author(c) increases to 0.9, while
the upper probability increases to 0.95. These intervals are
much more informative than the default interval [0, 0.5].



Restricting to Consistent Distributions. The most sub-
tle aspect of choosing the best distribution is the question of
how to deal with inconsistent worlds. Ignoring inconsisten-
cies (and optimizing over all completions) leads to a drown-
ing effect: since inconsistent worlds entail everything, this
semantics would be biased towards choosing inconsistent A-
completions. This does not satisfy our goals, as even an un-
satisfiable query could evaluate to a positive probability.

An alternative approach, which is standard for (closed-
world) PDBs, and is quite intuitive at first glance, would
be to choose the distribution which maximizes the condi-
tional probability P((Q,%) | (D,X) # 1), i.e., the prob-
ability of the query on the set of all consistent worlds. A
careful inspection, however, shows that this semantics also
favors inconsistent distributions over consistent ones. To il-
lustrate this, consider our running example, and suppose that
we want to compute the upper probability of Qs (mediated
by X..). The semantics based on the conditional probability
would favor the A\-completion Py 5, even though this PDB is
highly inconsistent. This is mainly due to the normalization
process internal to the computation. As part of this normal-
ization, the probability mass of inconsistent worlds is dis-
tributed to consistent worlds. As a consequence, it is often
possible to increase the query probability by simply increas-
ing the probability of inconsistent worlds. This is not a de-
sired effect, since we are interested in finding the most suit-
able A-completion from the open world, and not the one that
increases the query probability by increasing the probability
mass of inconsistent worlds.

To avoid such drowning effects, our proposal considers
only consistent distributions. That is, we do not want to
introduce inconsistencies when completing our knowledge
over the domain by choosing a A-completion. One drawback
of our approach is the fact that inconsistencies are not toler-
ated even if the inconsistency degree is very small. However,
it would be easy to introduce a threshold value, say 0.1, to
tolerate the inconsistent completions where the probability
of the inconsistent worlds does not exceed this threshold.

4 Data Complexity Results

We now formulate the task of probabilistic query evaluation
as a decision problem.

Definition 7 (Decision Problems). Let (Q, ) be an OMQ,
G an OpenPDB and p € [0,1]. The problem of upper
(resp., lower) probabilistic query entailment is to decide
whether Pg(Q, %) > p (resp., P;(Q, %) < p) holds. Proba-
bilistic query entailment relative to PDBs is a special case,
where A = 0.

Note that this definition is rather general, but in the scope
of this paper, we are concerned with UCQs, and thus we use
the term probabilistic UCQ entailment instead. Moreover,
we are mainly concerned with the data complexity, which
is calculated based on the size of the OpenPDB; i.e., the
schema R, the query Q, and the program X are assumed to
be fixed (Vardi 1982). The relevant data complexity results
for UCQ entailment in Datalog* are summarized in Figure 1.

Most of our complexity results are related to the com-
plexity class PP (Gill 1977), which comprises the languages

recognized by a polynomial-time non-deterministic Turing
machine that accepts an input if and only if more than half
of the computation paths are accepting (Toran 1991). Intu-
itively, PP is the decision counterpart of #P (Valiant 1979).
For details on the complexity classes used in our results,
and the types of reductions, we refer to the extended ver-
sion of this paper. It has been shown in (Dalvi and Suciu
2012) that probabilistic UCQ entailment for PDBs exhibits
a dichotomy between P and PP. Queries that admit a P al-
gorithm are called safe and the remaining ones unsafe. This
result has been lifted to OpenPDBs in (Ceylan, Darwiche,
and Van den Broeck 2016). For detailed insights on the
class of safe queries, we refer to the original papers. The
CQ Fz,yC(x) AL(x,y) A S(y) is the prototypical example
of an unsafe query; it is connected and can not be decom-
posed into independent queries in an efficient manner (ap-
plying certain rules from (Dalvi and Suciu 2012)). However,
removing any of the atoms from this query makes it safe.

We borrow this notion, and say that an OMQ (Q, X) is
safe, if there exist polynomial-time algorithms for lower
and upper probabilistic entailment of (Q, X)) relative to any
OpenPDB (resp., PDB).

4.1 Positive Programs

We first consider positive Datalog* programs, which do not
contain NCs. Under this restriction, there are no inconsistent
distributions, and Definition 5 simplifies. We later show that
this distinction is important, since the complexity increases
in the presence of NCs. This is surprising, as in the classical
case NCs are usually not problematic.

Recall that OpenPDBs induce an infinite set of probability
distributions that form a credal set, which has the following
useful property (Cozman 2000): To determine the upper or
lower probability of an event, it suffices to consider the ex-
tremal probability distributions, which are obtained by set-
ting the probability values of all elementary events to one of
the extreme points. In the context of OpenPDBs, this means
that each of the open tuples may have probability A or 0, but
no intermediate choices need to be examined. For UCQs,
this implies an even stronger result.

Lemma 8. Ler (Q,X) be an OMQ, where Q is a UCQ
and ¥ is a positive Datalog* program. Then, it holds that

KQ(Q7 Z) = [PPO (Q’ E)a Pp, (Q’ E)]

Thus, it suffices to consider a single A-completion (either
Po or Py) and the particular distribution it induces. As a re-
sult, probabilistic UCQ entailment can be solved by standard
methods; i.e., summing up the probabilities of all worlds
that pass the entailment test. This naive approach yields tight
complexity bounds for the considered problems.

Theorem 9. Probabilistic UCQ entailment is PP-complete
for the languages in L ~ {WG}; it is EXP-complete in WG.

This result is of no surprise given the PP-hardness of in-
ference in OpenPDBs. However, all our PP-hardness results
are based on the result of (Dalvi and Suciu 2012), and hence
are valid only with respect to Turing reductions. All other
complexity results in this paper also hold under standard
many-one reductions. It is an open problem to find a UCQ



for which probabilistic entailment is PP-hard w.r.t. many-
one reductions. The striving question is now whether it is
possible to lift the dichotomy result from OpenPDBs. For
this purpose, we elaborate on query rewritability.

Lemma 10. Let (Q,X) be an OMQ, P be a tuple-
independent probability distribution over worlds such that
P(D) = 0 whenever D is inconsistent w.r.t. ¥, and Qx; be an
FO-rewriting of (Q,X). Then, we have P(Q,Y) = P(Qx).

Since all worlds are consistent under positive programs,
Lemmas 8 and 10 imply that we can reduce probabilis-
tic UCQ entailment under positive programs to the case of
OpenPDBs via query rewriting.

Corollary 11. Ler (Q,X) be an OMQ, where Q is a
UCQ, and ¥ is a positive program, and Qx, be an FO-
rewriting of (Q, X). Then, for any OpenPDB G, it holds that

Pg(Q,%) = Pg(Qs) and P4(Q,T) = Pg(Qx).

We now obtain a dichotomy from the results in (Dalvi and
Suciu 2012; Ceylan, Darwiche, and Van den Broeck 2016).

Theorem 12. Let (Q,Y) be an OMQ , where Q is a UCQ,
and ¥ is a positive program, and Qx. be a rewriting of
(Q,X). Then, (Q,X) is safe iff Qs is safe (over OpenPDB:s).
If (Q,X) is not safe, then it is PP-hard.

In particular, either all rewritings of (Q,Y) are safe, or
none of them are. Hence, in FO-rewritable languages, we
can take an arbitrary rewriting and check safety using the
characterization of (Dalvi and Suciu 2012). Such a rewriting
can be obtained by well-known algorithms, e.g., using back-
ward chaining of TGDs (Gottlob, Orsi, and Pieris 2011).

To conclude this section, we illustrate some effects that
simple positive programs can have on the complexity of
probabilistic query entailment.

Example 13. The query 3z,yC(x) A M(x,y) is safe
for OpenPDBs. It becomes unsafe under the TGD
R(z,y),T(y) — M(z,y), since then it rewrites to the
query (3z,yC(z),M(z,y)) v (3z,yC(z),R(z,y),T(y)).
Conversely, the CQ Jx,yC(x) AL(z,y) AS(y) is not safe
for OpenPDBs, but becomes safe under L(z,y) — S(y), as
it rewrites to 32,y C(x) AL(z,y). Note that these are very
simple TGDs, which are full, acyclic, guarded, and sticky.

4.2 Programs with Negative Constraints

In the presence of NCs, it still suffices to consider the ex-
tremal A\-completions. In fact, once the correct completion is
known, the probabilistic UCQ entailment problem can still
be reduced to probabilistic inference (in FO-rewritable lan-
guages). The key difference in the presence of NCs is that we
have to make sure that this completion is consistent. That is,
choosing the completion P), that sets all open tuples to A (as
in Lemma 8) is not feasible, as this will very likely lead to
inconsistencies. However, observe that the lower probability
can still be obtained from the completion Py (which we as-
sumed to be consistent), and hence the previous results still
hold for lower probabilistic UCQ entailment with NCs.

A naive way of solving the upper probabilistic UCQ en-
tailment problem is to guess a A-completion and then check
whether it is consistent and compare the resulting probabil-
ity to the threshold. This yields an NP** upper bound for our

decision problem. Our next result shows a matching lower
bound for the class GF, and so for all considered Datalog*
languages with data complexity above ACY (see Figure 1).

Theorem 14. Upper probabilistic UCQ entailment is NPT -
complete in full, guarded programs. It is PP-complete for all
languages with polynomial data complexity once restricted
to PDBs.

This result is by reduction from the NP*P-complete prob-
lem of finding a partial assignment for designated variables
of a propositional formula in CNF, for which the number of
satisfying assignments extending this partial assignment is
above some threshold (Wagner 1986). On the one hand, this
result is surprising, as NCs are not problematic for PDBs,
even with normalization semantics; on the other hand, this is
not so surprising, as non-monotonicity is also a source of ad-
ditional hardness in OpenPDBs: query evaluation becomes
NPFP_complete in OpenPDBs if negated atoms are allowed
in UCQs (Ceylan, Darwiche, and Van den Broeck 2016). In
contrast, our result applies to UCQs without negated atoms,
and thus it is much more involved. The proof encodes the
non-determinism into the NCs, which are not as powerful as
non-monotone queries, and uses TGDs to check the satisfac-
tion condition of the clauses in the CNF.

Before concluding this section, we illustrate the effects of
NCs on some examples, which also show the difficulties in
lifting the dichotomy of Theorem 12 to NCs.

Example 15. Consider the query (3z,yC(z) A S(y)) v
(3z,yC(z) A L(z,y)), which is not safe for OpenPDBs,
but becomes safe relative to the NC S(y),L(xz,y) — L. The
reason is that the algorithm of (Dalvi and Suciu 2012) that
decides safety will produce the unsafe query Jz,yC(x) A
S(y) A L(x,y) through a sequence of reduction rules; how-
ever, this query automatically has probability O under the
given NC, and hence becomes trivially safe.

Approximations for Programs with NCs. Motivated by
the high complexity of reasoning in programs with NCs, we
propose an alternative semantics, which approximates the
semantics of Definition 5. Observe that the upper probabil-
ity Pg(Q, X) will always be obtained at a A-completion that
adds as many open tuples as possible to the original P with-
out causing an inconsistency. This is related to the notion
of a database repair, which is a maximal consistent subset
of an inconsistent database (Arenas, Bertossi, and Chomicki
1999). Instead of considering all possible repairs, an easier
alternative is to compute the intersection of all repairs and
use this for query answering (Lembo et al. 2010). In our set-
ting, however, we are not actually repairing an inconsistent
initial database P, but rather assume that all tuples in P are
correct and consistent, and hence need to take care that no
such tuples are removed in this intersection. Formally, given
an OMQ (Q,X) and an OpenPDB G = (P, ), we consider
the special A\-completion P that is constructed as the inter-
section of all c-maximal consistent subsets of P, that con-
tain P (all tuples not in this intersection have probability 0).

Definition 16 (Intersection Semantics). The proba-
bility interval of (Q,X) relative to an OpenPDB



Datalog* PDBs OpenPDBs
Languages fs-c. fp-e.  fs-c. Jp-c.

L,LF, AF  PPY* pp¥ NPPP NPPP
G Exp PPN’  Exp NPFP

WG Exp Exp Exp Exp
S,F,SF,GF pPN?  ppNP NPPP NPPP
A NExp PPN inPNE  NPPP
WS, WA 2exp PP™ 2gxp NPPP

Table 1: (fs/fp)-combined complexity of probabilistic UCQ
entailment relative to OpenPDBs and PDBs.

G =(P,\) under the intersection semantics is defined
as KQ(Q’ ¥):= [PPo (Q E), Pp, (Q, E)]

As with positive programs (cf. Lemma 8), probabilistic
UCQ entailment under this semantics is PP-complete in all
Datalog* languages where classical UCQ entailment is in P.
More interestingly, we can also show a dichotomy for FO-
rewritable queries with the help of Lemma 10.

Theorem 17. Let (Q,XY) be an OMQ , where Q is a UCQ,
and ¥ is a program, and Qs be a rewriting of Q relative
to 3. Then, (Q,X) is safe under intersection semantics iff
Qs is safe (over OpenPDBs). If (Q,X) is not safe under
intersection semantics, then it is PP-hard.

5 Beyond Data Complexity

For the sake of completeness, we also provide results be-
yond the data complexity. We consider fixed-program com-
bined (fp-combined) complexity, which is calculated in the
size of the database and the query, while the program and
schema remain fixed. Additionally, we remove the assump-
tion that the program is fixed, and study fixed-schema com-
bined (fs-combined) complexity. Our results are summarized
in Table 1; all results except one are completeness results.
The results are given relative to both PDBs and OpenPDBs
to emphasize the computational differences.

Theorem 18. Let X be a class of programs, and UCQ en-
tailment in X be C-complete in (fs/fp)-combined complexity.
Then, probabilistic UCQ entailment in X is C-hard and in
PSPACEC in (fs/fp)-combined complexity. If C = NEXP, it is
in PNE, and NEXP-complete when restricted to PDBs.

Hence, if C = EXP or C = 2EXP, the complexity is not af-
fected by adding OpenPDBs, since the complexity of UCQ
entailment dominates the problem. We now consider the spe-
cial case of NP-complete classes.

Theorem 19. Let X be a class of programs. If UCQ en-
tailment in X is NP-complete in (fs/fp)-combined complex-
ity, then probabilistic UCQ entailment in X is complete
for NPP? in (fs/fp)-combined complexity; it is complete for
PP™? when restricted to a PDB.

The hardness proof uses no TGDs and only one NC. This
implies that the additional hardness in probabilistic UCQ en-
tailment relative to OpenPDBs is caused solely by the in-
teraction between NCs and the open-world semantics. This

provides more evidence that OpenPDBs with NCs are more
powerful than PDBs with NCs.

6 Related Work

Our work builds on the research on probabilistic databases,
which has a long tradition (Imieliski and Lipski 1984;
Fuhr and Roélleke 1997; Suciu et al. 2011). We focus on
tuple-independent probabilistic databases, with an empha-
sis on the dichotomy result of Dalvi and Suciu (2012). The
most closely related work is by Jung and Lutz (2012), where
the authors lift the dichotomy result of PDBs to the light-
weight description logics ££ and DL-Lite over PDBs; they
even describe the case of an ontology language that is not
FO-rewritable and causes all CQs of a certain form to be-
come #P-hard. In contrast, we consider the more expressive
languages of the Datalog* family and provide results both
relative to PDBs and OpenPDBs. We show that the seman-
tic differences between these formalisms lead to different
results (even in the data complexity).

Most of the recent work on probabilistic query answer-
ing using ontologies is based on lightweight ontology lan-
guages. Some (D’Amato, Fanizzi, and Lukasiewicz 2008;
Ceylan and Penaloza 2015; Gottlob et al. 2013) result from a
combination of ontologies with probabilistic graphical mod-
els such as Bayesian networks (Pearl 1988) or Markov logic
networks (Richardson and Domingos 2006). Both the se-
mantics and the assumptions used in these works are very
different than ours. More closely related is the work by Cey-
lan, Penaloza, and Lukasiewicz (2016), where the com-
putational complexity of query answering in probabilistic
Datalog* under the possible world semantics is investigated.
Note, however, that the authors consider PDBs, and thus a
unique probability distribution. Moreover, even for PDBs,
the results are not comparable as they allow conditional de-
pendencies and hence the hardness results do not apply to
the special case of tuple-independent PDBs.

Possible world semantics is common in probabilistic logic
programming and relational probabilistic models (Renkens
et al. 2012; Kwiatkowska, Norman, and Parker 2002; Poole
1997). OpenPDBs extend this semantics to a (finite) open
universe, and allow imprecise probabilities (Levi 1980) for
tuples in this universe. The latter can be seen as analogous
to extending Bayesian networks (Pearl 1988) to credal net-
works (Cozman 2000; De Campos and Cozman 2005). Our
framework enriches OpenPDBs further by mediating the
query with an ontology, where the query evaluation prob-
lem over a database is replaced with a logical entailment
problem, allowing us to deduce implicitly encoded facts.

7 Summary and Outlook

We introduced a refinement of the recently proposed Open-
PDBs, using Datalog® ontologies to express additional back-
ground knowledge, and lifted the dichotomy from (Dalvi
and Suciu 2012; Ceylan, Darwiche, and Van den Broeck
2016) to all FO-rewritable languages for positive programs.
We showed that NCs can increase the worst-case complex-
ity, and proposed an approximating semantics circumvent-
ing the increase in the complexity. Additionally, we provided



complexity results beyond the data complexity.

In future work, we want to determine whether it is pos-
sible to obtain a dichotomy result for programs with NCs
for FO-rewritable Datalog* languages. Similarly, the ques-
tion whether the P-complete languages admit a dichotomy
when restricting to positive programs is left as future work.
Note also that we assume a finite set of constants (as in
OpenPDBs), but allow infinitely many unknown individu-
als (nulls). Dealing with distributions over infinitely many
objects as in BLOG (Milch et al. 2005) is an important task,
and a crucial part of future work.
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A Decidable Classes of TGDs

The most important (syntactic) restrictions on TGDs stud-
ied in the literature are guardedness (Cali, Gottlob, and
Kifer 2013), stickiness (Cali, Gottlob, and Pieris 2012)
and acyclicity, along with their “weak” counterparts, weak
guardedness (Cali, Gottlob, and Kifer 2013), weak stick-
iness (Cali, Gottlob, and Pieris 2012), and weak acyclic-
ity (Fagin et al. 2005), respectively.

A TGD is guarded, if there exists a body atom that con-
tains (or “guards”) all body variables. The class of guarded
TGDs, denoted G, is defined as the family of all possible
sets of guarded TGDs. A key subclass of guarded TGDs are
the linear TGDs with just one body atom, which is automat-
ically the guard. The class of linear TGDs is denoted by L.
Weakly guarded TGDs extend guarded TGDs by requiring
only the body variables that are considered “harmful” to ap-
pear in the guard (see (Cali, Gottlob, and Kifer 2013) for full
details). The associated class of TGDs is denoted WG. It is
easy to verify that L ¢ G c WG.

Stickiness is inherently different from guardedness, and
its central property can be described as follows: variables
that appear more than once in a body (i.e., join variables)
must always be propagated (or “stuck”) to the inferred
atoms. A TGD that enjoys this property is called sticky, and
the class of sticky TGDs is denoted by S. Weak stickiness
generalizes stickiness by considering only “harmful” vari-
ables, and defines the class WS of weakly sticky TGDs. Ob-
serve that S ¢ WS.

A set X of TGDs is acyclic (and belongs to the class A),
if its predicate graph is acyclic. Equivalently, an acyclic set
of TGDs can be seen as a non-recursive set of TGDs. X
is weakly acyclic, if its dependency graph enjoys a certain
acyclicity condition, which guarantees the existence of a fi-
nite canonical model; the associated class is denoted WA.
Clearly, A c¢ WA. Interestingly, it also holds that WA ¢ WS
(Cali, Gottlob, and Pieris 2012).

Another key fragment of TGDs which deserves our atten-
tion are full TGDs, i.e., TGDs without existentially quanti-
fied variables. The corresponding class is denoted by F. Re-
stricting full TGDs to satisfy linearity, guardedness, stick-
iness, or acyclicity yields the classes LF, GF, SF, and AF,
respectively. It is known that F ¢ WA (Fagin et al. 2005) and
F ¢ WG (Cali, Gottlob, and Kifer 2013).

B Complexity Classes

Throughout the paper, we use the standard assumption that
the probability values are rational. The central complexity
class for our analysis is the complexity class PP (Gill 1977),
which defines the set of languages recognized by a polyno-
mially time-bounded non-deterministic Turing machine that
accepts an input if and only if more than half of the compu-
tation paths are accepting (Tordn 1991). Intuitively, the class
PP can be seen as the decision counterpart of #P (Valiant
1979). In fact, it is known that P*¥ = P* (Toda 1989). More-

over, in (Toda 1989) it is also shown that ppPH ¢ PPP, and
ppPH pfP PP
hence we have NP =NP" =NP .

Observe that the original dichotomy by Dalvi and Suciu
(2012) is formulated using the class #P. We adopt the view of
Ceylan, Darwiche, and Van den Broeck (2016), and consider
the associated decision complexity class PP. Note however,
that #P-hardness is shown as usual using FP-Turing reduc-
tions, which translates to a P versus PP dichotomy under
polynomial-time Turing reductions, for the associated deci-
sion problem. All our results except the PP-hardness results
hold even under standard many-one reductions. It is an open
problem to find a UCQ for which probabilistic query entail-
ment is PP-hard w.r.t. many-one reductions.

Some of the complexity classes relevant to our results re-
late to standard classes as follows:

NP c PP c PP NP??

= = )

PSPACE

C Proof Sketch of Lemma 8§

Since Q contains no negations, switching the probability of
an open tuple from 0 to A\ cannot decrease the query proba-
bility P(Q, X): even if this decreases the probability of the
previous worlds that entail Q and have non-zero probability
by a factor of (1 - \), for each of these worlds, there is now
an additional world that entails Q and has non-zero probabil-
ity with a corresponding factor of A, which makes up for the
loss. Additionally, adding a new tuple may add new worlds
with non-zero probability that entail Q w.r.t. ¥. Hence, the
minimal (maximal) query probability is obtained in the com-
pletion that contains the minimal (maximal) number of open
tuples with probability . O

D Proof Sketch of Theorem 9

WG: By Lemma 8, it suffices to consider the probability dis-
tribution P induced by a special A-completion (which can be
constructed efficiently). Consider an algorithm that enumer-
ates all possible worlds D that succeed on the entailment test
and sums up their probabilities P(D). This algorithm runs
in exponential time. Hardness follows from EXP-hardness
of classical UCQ entailment in WG, which corresponds to
probabilistic UCQ entailment where A = 0 and all probabil-
ities are 1.

L~{WG}: We need to consider only a single probability dis-
tribution P. We now create multiples of each world (which
then correspond to the nondeterministic branches of a Tur-
ing machine M), in such a way that the uniform distribu-
tion over all thus generated worlds is equivalent to P when
each copy is taken to represent its original world. Then, for
thresholds properly below (resp., above) 0.5, introduce arti-
ficial success (resp., failure) branches into M such that satis-
fying the original threshold corresponds to having a majority
of successful computations. Then, the answer to our entail-
ment problem is yes iff the answer of M is yes in the ma-
jority of its runs. Hardness holds even if we consider PDBs
since probabilistic entailment in PDBs (and thus in Open-
PDBs) is PP-hard, which correspond to PDBs with empty
programs. O



E Proof Sketch of Lemma 10
We have

rQ)? ¥ p@? ¥ p@PPrQy),
D=(QUX) DEQs
mods(D,X)+@
where (1) follows from Definition 5 and the fact that P(D)
is 0 for all inconsistent worlds D; (2) follows from Qs being
the FO-rewriting of Q w.r.t. 3; and (3) is the definition of the
semantics of Qyx; in PDBs. O

F Proof Sketch of Theorem 12

By Corollary 11, any polynomial-time algorithm that can
evaluate Qx, over OpenPDBs also yields the upper and lower
probabilities of the OMQ (Q, X) relative to an OpenPDB,
and vice versa. Moreover, by the same result the lower
and upper probabilities of all rewritings of Q coincide, and
hence the same algorithm can be used for all of them.
Thus, if (Q,X) is unsafe, then Qs must also be unsafe for
OpenPDBs. By the dichotomy of (Dalvi and Suciu 2012;
Ceylan, Darwiche, and Van den Broeck 2016) and Corol-
lary 11, this implies that evaluating the lower and upper
probabilities must be PP-hard, for both Qg and (Q, ). O

G Proof Sketch of Theorem 14

TGDs with polynomial data complexity relative to PDBs
Since we only need to consider a single probability distri-
bution P, we can create multiples of each world (which then
correspond to the nondeterministic branches of a Turing ma-
chine M), in such a way that the uniform distribution over
all thus generated worlds is equivalent to P when each copy
is taken to represent its original world. Then, for thresholds
properly below (resp., above) 0.5, introduce artificial suc-
cess (resp., failure) branches into M such that satisfying the
original threshold corresponds to having a majority of suc-
cessful computations. Then, the answer of the probabilistic
UCQ entailment problem is yes iff the answer of M (regard-
ing entailment of the query under the program) is yes in the
majority of its runs.

Full, guarded programs relative to OpenPDBs To ob-
tain an upper bound; we can guess a completion (NP)
(which is of size polynomial in the size of the input), check
its consistency in P, and make a call to a PP oracle to check
the probability of the query (as explained before). We an-
swer yes iff the probability exceeds the threshold provided
in the original problem.

For the lower bound, we reduce the following NPPP.
complete problem (Wagner 1986), which uses the counting
quantifier C: decide the validity of the formula

D=3z1,...,20CY1, ..., Ym O,

where ¢ = ¢1 A --- A @y, is a propositional formula in CNF,
over the variables x1,...,2¢, Y1,- .- Ym-

This amounts to checking whether there is a partial as-
signment for x1, ...,z that admits at least c extensions to
Y1, -, Ym that satisfy ¢.

We assume without loss of generality that ¢ contains all
clauses of the form z; v -x;, 1 < j < ¢, and similarly y; v

-y, 1 < j < m; clearly, this does not affect the existence or
number of satisfying assignments for ¢.

We first describe the PDB Pg that stores the structure
of ®.

* For each variable y;, 1 < j < m, it contains the tuples
(L(y;,0) : 0.5) and (L(y;,1) : 0.5), where we view y;
as a constant. These tuple represent the assignments that
map y; to false and true, respectively.

* For each literal (-)x occurring in a clause ¢;, 1 < j <k,
we add the tuple D(z, j, ) with probability 1, where i = 1,
if the literal is positive, and ¢ = 0, if the literal is negative.

* We add the tuples T(0), S(0,1),8(1,2),...,S(k-1,k),
K(k), each with probability 1.

Moreover, for each variable z;, 1 < j < £, we need two open
tuples P(x;,0) and P(x;, 1) with similar semantics as the L-
tuples, and we set A := 1. All other tuples over the introduced
signature are added to Py with probability 0.

We now describe the program . To detect when a clause
is satisfied, we use the additional unary predicate E and the
TGDs P((E, 2)7 D({,C,j7 Z) g E(]) and L(y7 7’)7 D(y7j7 7’) -
E(j). However, we still need to ensure that in each world,
exactly one of P(z,0) and P(x,1) holds, and similarly
for L. The clauses x; v -z; and y; v -y; take care of
the lower bound; for the variables x1,...,x, we can rep-
resent the remaining part of this constraint through the NC
P(z,0),P(x,1) — 1. This ensures that each consistent \-
completion (that satisfies ¢ in an as yet unspecified way)
represents exactly one truth assignment for the variables
z1,...,T¢; mMoreover, every such assignment can be ex-
pressed as a consistent A-completion.

For the variables yi,...,Ym, a similar NC would yield
only inconsistent completions. Instead, we use the TGDs
L(y,0),L(y,1) — B and B,D(xz,j,4) — E(j). These en-
sure that any inconsistent assignment for yi,...,Ym, 1.€.,
one where some y; is both true and false, is automatically
marked as satisfying the formula, even if the clauses x ;v -z
and y; v -y, are not actually satisfied. Since there are exactly
4™ —3™ such assignments (where both L(y;,0) and L(y;,1)
hold for at least one y;), we can add this number to the
probability threshold that we will use in the end. Note that
the probability of each individual assignment is 0.25™" since
there are 2m relevant L-tuples (the other tuples are fixed to 0
or 1 and do not contribute here).

It remains to detect whether all clauses of ¢ are satisfied
by a consistent assignment, which we do by the means of
the TGDs T(¢),S(%,7),E(j) = T(4) and T(%),K(i) - Z(7)
and, finally, the simple CQ Q := 3¢ Z(¢). Then it remains to
check whether P (Q, X) > 0.25™ (4™ -3" + (¢—1)) holds,
where G = (Pg, 1) and the program ¥ is as described above.

If this is the case, then there is a A-completion in which
the query probability exceeds this value, which means that
at least some worlds with non-zero probability entail (Q, %),
i.e., all clauses of ¢ are satisfied. Hence, this A-completion
represents a valid assignment of the variables x1,...,xy.
Each of the non-zero worlds under this completion repre-
sents a unique combination of tuples of the form L(y,0)
and L(y, 1). The worlds where for at least one variable y;,



1 < j < m, neither L(y;,0) nor L(y;,1) holds do not
satisfy ¢, and hence do not entail (Q,Y) and are not
counted. Of the remaining worlds, 4™ — 3™ automatically
entail (Q, ). The other worlds represent the actual assign-
ments for yi,...,ym, and hence we know that more than
¢ — 1 of those satisfy ¢.

Conversely, if we are given a partial assignment for
x1,...,T, that satisfies this property, then it is easy to con-
struct a A-completion as above and show that it exceeds the
given threshold, using the ideas described above.

All TGDs used here are full and guarded. Moreover, only
the PDB and the probability threshold depend on the input
formula. Hence, the reduction shows NPFP-hardness of up-
per probabilistic CQ entailment in GF. O

H Proof Sketch of Theorem 17

Observe that both Py and P, assign the probability O to all
inconsistent worlds, since Py is consistent by assumption,
‘P also corresponds to a consistent A-completion, and con-
sistent A\-completions can assign non-zero probabilities only
to consistent worlds. Hence, by Lemma 10, we can reduce
the upper and lower query entailment problems in the spirit
of Corollary 11 to the same problems for an OpenPDB as
follows.

Let P be the input PDB and G = (P, \) be the result-
ing OpenPDB for which we want to compute the probabil-
ity interval of (Q, X) under the intersection semantics. The
OpenPDB G’ = (P’,\) is constructed by adding all tuples
that do not occur in P with probability 0. This construction
is polynomial in data complexity: for each ground tuple ¢,
we need to check whether there exist any matching tuples
that, together with ¢, are an instance of the body of some NC
in X; the number of tuples we have to consider simultane-
ously is bounded by the length of the longest conjunction in
an NC, which is constant. The maximal A\-completion of G’
corresponds to P, and the minimal one remains Py. Hence,
by Definition 16, Lemma 8 (applied to G'), and Lemma 10,
we have Pg(Q,%) = Pg(Qx) and P;(Q, %) = P;(Qx) for
any rewriting Qx, of Q relative to 3.

We can now apply the arguments from the proof of The-
orem 12, together with the fact that the construction of P’
from P is polynomial, to obtain the dichotomy for the inter-
section semantics. 0

I Proof Sketch of Theorem 18

The lower bounds follow from the complexity of UCQ en-
tailment in X, since we can simulate a classical database by
a PDB that uses only the probability 1 if we set A := 0.

The generic upper bound of PspACEC is obtained as fol-
lows: We consider one A-completion at a time, check its con-
sistency, compute its probability by enumerating all worlds
and summing the probabilities of the worlds that entail the
query (which can be checked in C), and finally compare
the obtained value to p. Since the schema is fixed, the size
of each A-completion and each world is polynomial. Thus,
the consistency test (i.e., checking whether the A-completion
does not entail 1) is possible in co-C. Moreover, at each
step, we have to store only a single A\-completion, a world,

and two probability values. Hence, all of this is possible in
polynomial space with the help of a C-oracle.

For the case of C = NEXP and A\ = 0, we do not need
to find a consistent A-completion. It suffices to execute an
exponential number of independent entailment tests, each of
which is in NEXP, and compute the sum of all probabili-
ties as above. In the general case relative to OpenPDBs, we
can guess the initial A\-completion in NP, and then use an
NEXP oracle to both check it for consistency and compute
its probability as detailed above. Hence, we obtain an upper
bound of NPNEX? ' which is equal to PNE by (Hemachandra
1989). O

J Proof Sketch of Theorem 19

Ontology-Mediated Queries relative to PDBs. For the
upper bound, we can use a similar approach as in the proof
of Theorem 14. However, the entailment test is now NP-
complete, and thus for each branch of the PP machine, to
check entailment, we make a call to an NP oracle, which
yields the PPN? upper bound. The proof of PPN?-hardness
can be obtained as a special case of the proof below, where
the initial guess of a A-completion is removed. For this rea-

son, below we show hardness explicitly for NPPP" instead
of NPPP; however, these two classes coincide (Toda 1989).

Ontology-Mediated Queries relative to OpenPDBs. To
obtain the upper bound, we can first guess a A-completion
(NP), and then sum the probabilities of the worlds (PP) that
entail the query (NP). Hence, for every guess, we can make
a call to a PPN oracle. We can also use this oracle to check
consistency of the guessed A\-completion (which is possible
in co-NP). This yields the N prP upper bound, which is
equal to NPPF by (Toda 1989).

It remains to show hardness, for which we reduce the

NP
following NPPP" -complete problem (Wagner 1986): decide
validity of

¢ = Elm17' -~7wéccy1a-~-7ym3217- -y 2n ¢1 /\¢2/\"'/\¢k9
where every ¢; is a propositional clause over zi,...,xy,
Y1y Ym»> Z1,---52n, and k, £, m,n>1. That is, the task
is to find an assignment 7 to x1,...,xy, such that, for at
least c of the partial assignments p to 1,...,Z¢, Y1,-- - Ym

that extend 7, the formula 321, ..., 2, p(P1 A Do A A Pg)
is true.

As in the proof of Theorem 14, we can assume without
loss of generality that ¢ contains all clauses of the form
xjv-x;, 1 <j <l and y;v-y;, 1< j < mo We will
also assume that each clause ¢; contains exactly three lit-
erals. This is without loss of generality, since otherwise we
can introduce additional existentially quantified variables to
abbreviate the clauses, or duplicate literals if the clauses are
too short.

The PDB Py for the reduction is defined as follows.

* For each variable y;, 1 < j < m, it contains the tuples
(L(y;,0):0.5) and (L(y;,1) : 0.5).

* Each clause ¢; is described with the help of a predi-
cate M(-,-,-,j) of arity 4, which encodes the satisfying



assignments for ¢;. For example, consider the clause
¢; =22V =ys V z1. For the satisfying assignment xy +~
true, yy — true, z1 — false, we add the tuple M(1,1,0,7)
with probability 1, and similarly for all other satisfying
assignments. There are at most 7 satisfying assignments
for each clause.

We again use the open tuples P(z;,0) and P(z;,1) for
the variables z;, 1 < j < ¢, set A := 1, and fix all other
possible tuples to the probability 0. We define the pro-
gram g for the reduction as follows. We again use the
NC P(z,0),P(z,1) — L to enforce that the variables z;,
1 < j < ¢, get a correct truth assignment. However, we do
not employ any TGDs. The UCQ for which we will check
entailment is

Q<I> = (Elzla sy 2n wl AREN A¢k) v (EIyL(y)O) A L(y7 1))7

where each v; is a conjunction that is derived from ¢; de-
pending on the types of the involved variables. We describe
the details again on the example clause ¢; = 2 V —y4 V 2.
The satisfaction of this clause is encoded by the conjunc-
tion ’(ZJ]' = M(il, 12, Zl,j) A P(LL‘Q, Zl) A L(y4, i2), where i1, 19
are additional existentially quantified variables that are lo-
cal to 9, and j is fixed. Intuitively, v); asserts that the truth
assignment for x3, yy4, and z; (given by i1, 2, and 21, re-
spectively) satisfies ¢;. The assignment for the variables
T1,--.,Tg, Y1,---,Ym 18 fixed by the current A\-completion
(using P) and world (using L), respectively, while the assign-
ment for z1,...,2, is guessed by Qg. Note that the vari-
ables z1, ..., 2, have to be mapped to 0 or 1, since otherwise
they cannot satisfy the M-atoms. An alternative way of sat-
isfying Qg is that L represents an inconsistent assignment
for at least one variable of the form y;, which again hap-
pens in exactly 4™ — 3™ worlds. It remains to check whether
Pg(Qq,X) > 0.25™(4™ - 3™ + (¢ — 1)) holds relative to
the OpenPDB G = (Pg, 1) , where the program ¢ consists
of a single NC P(«,0),P(z,1) - L.

If this is the case, then there exists at least one M-
completion that obtains this value. This A-completion must
represent a valid assignment for the variables x1,...,2
since otherwise only 4™ — 3™ worlds satisfy (Qe, Xg). Of
the 3™ worlds that do not satisfy 3y L(y,0) A L(y, 1) there
are at most 2" that also satisfy the constraints on the vari-
ables y1, ..., Ym, and hence represent a valid extension to an
assignment for y1, ..., Y. Of these remaining 2" worlds,
only those satisfy Qg that admit an extension to a truth as-
signment for z1,..., z, such that all conjunctions %);, and
hence all clauses ¢;, are satisfied. Thus, there must be at
least ¢ assignments for 1, ..., y,, that have such an exten-
sion, which means that ® is valid.

Conversely, if ® is valid, then there exists an assignment
for x1,...,xz¢ (which induces a A-completion), for which
there are at least ¢ extensions to ¥1,..., ¥y, (and hence at
least 4™ — 3™ + ¢ worlds) for which there exists an extension
to 21,...,2, that satisfies all the clauses ¢1,...,¢; (and
hence (Qo, Yo ) is satisfied). This shows that Pg(Qas, X¢)
exceeds the given threshold. Since the reduction is w.r.t. a
fixed schema, we did not use any TGDs and the only NC that
was used does not depend on ®, this shows the claim. O



