
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Ontology-Based Query Answering for
Probabilistic Temporal Data (Extended Version)

Patrick Koopmann

LTCS-Report 18-13

This is an extended version of the article to appear in the
proceedings of AAAI 2019.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Contents

1 Introduction 2

2 Preliminaries 4

3 Temporal Probabilistic Knowledge Bases and Queries 5

4 Hardness of TPQ Entailment 9

5 Deciding TPQ Entailment 10

6 Positive TPQs 12

7 Conclusion 13

8 Acknowledgements 13

A Proofs of Theorems and Lemmata 15

A.1 Lower Bounds . 15

A.2 Correctness of the Decision Procedure . 17

A.3 Deciding r-Satisfiability . 21

A.4 Complexity Upper Bounds . 26

A.5 Positive Temporal Probabilistic Queries . 27

1

Ontology-Mediated Query Answering for Probabilistic
Temporal Data (Extended Version)∗

Patrick Koopmann

December 20, 2018

Abstract

We investigate ontology-based query answering for data that are both temporal and
probabilistic, which might occur in contexts such as stream reasoning or situation recognition
with uncertain data. We present a framework that allows to represent temporal probabilistic
data, and introduce a query language with which complex temporal and probabilistic
patterns can be described. Specifically, this language combines conjunctive queries with
operators from linear time logic as well as probability operators. We analyse the complexities
of evaluating queries in this language in various settings. While in some cases, combining
the temporal and the probabilistic dimension in such a way comes at the cost of increased
complexity, we also determine cases for which this increase can be avoided.

1 Introduction

The internet has become highly dynamic, with information being frequently added and changed,
and new data being generated from a variety of sources. In addition, new technologies such as
smart phones and the internet of things (IoT) frequently encounter a data environment that
is constantly changing. To make use of these data, there has been an increasing interest in
investigating semantic and reasoning techniques that process not only static data, but streams
of data, such as in the semantic stream reasoning paradigm [29]. One application is that of
situation recognition, where we want to recognise or query temporal patterns in a stream of data.
As [29] illustrate, frequently, the data encountered in stream reasoning applications is not only
temporal, but also probabilistic in nature. In ontology-based query answering (OBQA), queries
are evaluated with respect to an ontology, which specifies background knowledge about the
domain of interest. Using a reasoner, this allows to query also information that follows implicitly
from the data. While OBQA was originally designed for querying static and precise data, there
is good motivation also for semantic stream reasoning as well as for querying historical data,
where data are temporal and probabilistic.

As an example, consider a health or fitness monitoring application, for which one may want
to use concepts from a medical ontology such as SNOMED CT [18] to describe information
about the health status of a patient. Specifically, such an application could be used on a
smartphone in combination with a sensor that measures the diastolic blood pressure of the
patient while he is exercising [25]. As the sensor might be imprecise in its measurements, it might
report information about whether the blood pressure of the patient is high with an associated
probability, and provide this information to the application in regular time intervals. If a too
∗Supported by the DFG within the collaborative research center SFB 912 (HAEC).

2

high blood pressure was observed for several times during a short period, the application should
give a warning to the patient, and advise him to take a break from his exercise.

We assume a representation of the data in form of a sequence of probabilistic data sets, which
may have been obtained using further preprocessing and windowing operations. A typical query
would then ask whether, with a high probability, the patient had at least twice a high blood
pressure during the last 10 minutes. In order to properly take both the temporal and the
probabilistic aspects of this question into account when querying the probabilistic stream, we
propose a query language for OBQA that comes with both temporal and probabilistic operators.
In this language, the query would be expressed as follows, where HighBloodPressure is a concept
defined in the ontology.

P>.8(#−10♦(HighBloodPressure(x)
∧#♦HighBloodPressure(x)))

Our language is an extension of the well-investigated temporal query language introduced in
[8, 3],which extends conjunctive queries with operators from linear temporal logic (LTL). Other
authors considered using these operators also as part of the DL, either to describe temporal
concepts [20], or to make the axioms of the ontology itself temporal [4]. Recently, this work has
been extended also to metric temporal logics [2, 10]. Temporal reasoning for streams of data
has also been considered in the context of Datalog [31]. A recent survey on temporal query
answering with ontologies can be found in [1].

A major restriction of using temporal concepts in the DL is that we cannot keep relations
between objects stable throughout the timeline (rigid) without making the DL undecidable.
This limits their application for querying situations concerning more than one object, which in
applications more involved than in our running example might be crucial. For this reason, we
focus on extensions of the query language rather than the DL in this paper, though investigating
an extension of this framework with temporal DLs might be interesting as future work.

In addition to the temporal dimension, we add a probabilistic dimension to our setting. An
OBQA framework for probabilistic data was presented in [24], though a temporal dimension was
not considered here yet. Since this publication, several authors investigated OBQA in similar
settings [6, 5, 15]. In addition to settings based on probabilistic databases, there is also research
on extending DLs with probability operators, such as in P-SHIF(D)/P-SHOIN (D) [26] or
Prob-ALC/Prob-EL [23]. The probability operator used in our query language syntactically and
semantically corresponds to the probability operator in Prob-ALC and Prob-EL.

To our knowledge, the only work that combines both temporal and probabilistic query answering
in the presence of description logic ontologies is [14]. Albeit, the authors consider a different
setting, in which the flow of time is modeled by a Markov-process, and not by a sequence of
observations as in our case. Moreover, they do not consider a rich query language like ours,
but focus on computing the probability that some axiom is entailed in some given time range.
[17] consider temporal probabilistic databases with temporal Datalog rules and constraints, and
computing probabilities of conjunctive queries in these KBs. Both works do not allow for nested
probabilities as part of the query language.

To handle scenarios like in our example, we propose a framework that combines the ideas from [8]
for temporal knowledge bases with the framework for probabilistic knowledge bases introduced
in [24]. To query data in the resulting temporal probabilistic knowledge bases, our language
extends temporal queries with probabilistic operators, to allow to assign probability bounds to
arbitrary parts of the query. We establish a more or less complete picture of the complexity of
query entailment in this framework for various DLs (see Figure 1, explained in detail throughout
the text), and also discuss a restricted variant of our query language without negation, which
sometimes leads to a restricted complexity.

3

classical NRrig = ∅ NRrig 6= ∅

decidable

ALCHOIQ
...

ALCOIQ

ALCHOIQ
...

ALCOIQ

ALCHOIQ
...

ALCOIQ

2-ExpTime

SHOQ
:

ALCO

SHIQ
:

ALCI

ALCOI . . .SHOI

SHOQ
:

ALCO

SHIQ
:

ALCI

ALCOI . . .SHOI

SHOQ
:

ALCO

SHIQ
:

ALCI

ALCOI . . .SHOI

ExpSpaceExpTime

ALC . . .SHQALC . . .SHQALC . . .SHQ

∅ . . . ELH∅ . . . ELH

PP

PPNP–PPPNP

P

∅..EL(pos)∅..EL(pos)∅ . . . EL

∅..EL(pos,data)∅..EL(pos,data)EL(data)

Figure 1: Complexity of TPQ Entailment vs. classical CQ entailment. Here, ∅ corresponds to
the case without TBox. Except for the PPP and the decidability results, all complexity bounds
are tight.

Detailed proofs can be found in the appendix.

2 Preliminaries

We recall the DLs studied in the paper, conjunctive query answering, and probabilistic complexity
classes.

Description Logics. Let NC, NR and NI be pair-wise countably infinite sets of respectively
concept names, role names and individual names. A role is an expression of the forms r, r−,
where r ∈ NR. Concepts are of the following forms, where A ∈ NC, R is a role, C, D are concepts,
n ∈ N and a ∈ NI:

A | C uD | ∃R.C | ∀R.C | ≥nR.C | {a}.

A TBox is a set of axioms of the forms C v D, R v S and trans(R), where C,D are concepts
and R, S roles, while an ABox is a set of assertions of the forms A(a) and r(a, b), A ∈ NC,
r ∈ NR, a, b ∈ NI. For a TBox T , we define the relation ≺T s.t for two roles R, S, S ≺T R holds
if S′ v R′ ∈ T with S, S′ ∈ {s, s−} and R,R′ ∈ {r, r−}, r, s ∈ NR. A role R is complex wrt. T if
trans(S) ∈ T for some role S s.t. S ≺∗T R. To ensure decidability, we require for every concept
of the form ≥nR.C in T that R is not complex. Now a knowledge base (KB) is a tuple 〈T ,A〉 of
a TBox T and an ABox A. We differentiate different DLs based on the operators allowed: EL
only supports concepts of the form A, C uD and ∃R.C and axioms of the form C v D, no roles
of the form r−, and no axioms of the forms R v S or trans(R). ALC extends EL with concepts
of the form ¬C, and S extends ALC with axioms of the form trans(R). More expressive DLs are
denoted by attaching a letter to the DL, where we use I for support of roles r−, O for concepts
of the form {a}, Q for concepts of the form ≥nR.C, and H for axioms of the form R v S. For
example, SHI extends S with axioms of the form R v S and roles of the form r−, whereas
ALCHOQ extends ALC with concepts of the form {a} and ≥nR.C. Depending on the DL L
used, we speak of L concepts, L axioms, L TBoxes and L KBs.

4

The semantics of KBs is defined in terms of interpretations I = 〈∆I , ·I〉, where ∆I is a set of
domain elements and ·I maps each concept name A ∈ NC to a set AI ⊆ ∆I , each role name
r ∈ NR to a relation rI ⊆ ∆I ×∆I , each individual name a ∈ NI to a domain element aI ∈ ∆I ,
and each role r− to (r−)I = (rI)−. It is extended to concepts as follows.

(C uD)I = CI ∩DI , (¬C)I = ∆I \ CI , {a}I = {aI},
(∃R.C)I = {d ∈ I | ∃e ∈ ∆I : 〈d, e〉 ∈ RI , e ∈ CI},

(≥ nR.C)I = {d ∈ I | #{e ∈ ∆I |
〈d, e〉 ∈ RI , e ∈ CI} ≥ n}

We say that an interpretation I satisfies an axiom/assertion α, in symbols I |= α, if α = C v D
and CI ⊆ DI ; α = R v S and RI ⊆ SI ; α = trans(R) and RI = (RI)+; α = A(a) and
aI ∈ AI ; and α = r(a, b) and 〈aI , bI〉 ∈ rI . I is a model of a TBox/ABox/KB iff it satisfies all
axioms in it. Finally, a TBox/ABox/KB X entails an axiom/assertion α iff α is satisfied by
every model of X .

Conjunctive Queries. A conjunctive query (CQ) takes the form q = ∃~y.φ(~x, ~y), where ~x,
~y are vectors of variables and φ(~x, ~y) is a conjunction over atoms of the forms A(t1) and
r(t1, t2), where A ∈ NC and r ∈ NR is not complex, and t1 and t2 are terms taken from NI, ~x
and ~y. ~x are the answer variables of q. Given an interpretation I and a CQ q with answer
variables x1, . . . , xn, the vector a1 . . . an ⊆ NI

n is an answer of q in I if there exists a mapping
π : term(q) → ∆I s.t. π(xi) = ai for i ∈ J1, nK, π(b) = bI for b ∈ NI, π(t) ∈ AI for every A(t)
in q, and 〈π(t1), π(t2)〉 ∈ rI for every r(t1, t2) in q. A vector a1 . . . an is a certain answer of q in
a KB K if it is an answer in every model of K. If a query does not contain any answer variables,
it is a Boolean CQ, and we say it is entailed by a KB K (interpretation I) if it has the empty
vector as answer. The complexity of query entailment for KBs in various DLs is shown in the
left-part of Figure 1.

Probabilistic Complexity Classes. The complexity class PP is defined using probabilistic
Turing machines, which are like non-deterministic Turing machines, but with an alternative
acceptance condition: namely, they accept an input iff at least half of the computation paths
end in an accepting state. PP describes the class of all problems that can be decided by a
probabilistic Turing machine in which all paths are polynomially bounded by the size of the
input. By using oracles, we can obtain the complexity classes PPNP and PPP, for which we
have the relations NP ∪ coNP ⊆ PP ⊆ PPNP ⊆ PPP ⊆ PSpace [33]. Strongly related to the
decision class PP is the function class #P, which is the class of functions that can be computed
by counting accepting paths in a non-deterministic polynomial time-bounded Turing machine.

3 Temporal Probabilistic Knowledge Bases and Queries

We introduce our framework for temporal probabilistic query answering.

Temporal Probabilistic Knowledge Bases. Regarding the probabilistic aspects, we follow
the paradigm introduced in [24] for atemporal probabilistic KBs. To keep things simple, we focus
on the easiest type of probabilistic fact bases presented there, the so-called assertion-independent
probabilistic ABoxes (ipABoxes). Here, assertions are assigned probabilities, which are assumed
to be statistically independent. They correspond to the tuple-independent probabilistic databases
studied in [16].

5

ΩK A′1 A′3 A′4 µK
w1 hBP(p, b),HBP(b) HBP(b) HBP(b) 0.378
w2 hBP(p, b) HBP(b) HBP(b) 0.162
w3 hBP(p, b),HBP(b) ∅ HBP(b) 0.042
w4 hBP(p, b) ∅ HBP(b) 0.018
w5 hBP(p, b),HBP(b) HBP(b) ∅ 0.252
w6 hBP(p, b) HBP(b) ∅ 0.108
w7 hBP(p, b),HBP(b) ∅ ∅ 0.028
w8 hBP(p, b) ∅ ∅ 0.012

Table 1: Probability space of example TPKB.

An ipABox is a set of probabilistic ABox assertions of the form α: p, where α is an ABox
assertion and p is a probability value between 0 and 1. Intuitively, α: p expresses that the
assertion α holds with a probability of at least p. Instead of α: 1, we may just write α if the
meaning is clear from the context. ipABoxes only specify a lower bound on the probability,
to conform with the open-world semantics common in ontology-based representations. This
means, we might infer using other information in the KB that the probability is in fact higher.1
A temporal probabilistic KB (TPKB) is now a tuple 〈T , (Ai)i∈J1,nK〉, where T is a TBox and
(Ai)i∈J1,nK is a sequence of ipABoxes.

We define the semantics of TPKBs using the possible worlds semantics, as common to probabilistic
logics and databases [16]. For a given a TPKB K = 〈T , (Ai)i∈J1,nK〉, the set ΩK of possible worlds
of K contains all sequences w = (A′i)i∈J1,nK of classical ABoxes such that for every i ∈ J1, nK
and α ∈ A′i, Ai contains an axiom of the form α: p. Each TPKB uniquely defines a probability
space 〈ΩK, µK〉, where the probability measure µK : 2ΩK → [0, 1] satisfies

µK({(A′i)i∈J1,nK}) =
∏

i∈J1,nK
α: p∈Ai

α∈A′i

p ·
∏

i∈J1,nK
α: p∈Ai

α 6∈A′i

(1− p)

and for W ⊆ ΩK, µK(W) =
∑
w∈W µ({w}). Intuitively, µK(W) gives the probability of being in

one of the possible worlds in W , by summing up the probabilities of each possible world. The
definition of µK(W) reflects the assumption that all probabilities in the TPKB are statistically
independent.

Example 1. We define the TPKB K = 〈T , (Ai)i∈J1,5K〉, where T contains the axiom

HighBloodPressurePatient ≡
∃hasBloodPressure.HighBloodPressure,

and the probabilistic ABoxes are

A1 = {hasBloodPressure(a, b),
HighBloodPressure(b):0.7}

A3 = {HighBloodPressure(b): 0.9}
A4 = {HighBloodPressure(b): 0.6}

and A2 = A5 = ∅. Every possible world w = (A′i)i∈J1,5K with hasBloodPressure(a, b) 6∈ A′1 has
probability µK(w) = 0. The remaining possible worlds, excluding time points 2 and 5, are shown
in Figure 1, with the probability measure µK shown in the last column, where hBP is short for
hasBloodPressure and HBP is short for HighBloodPressure.

1This is different to the open-world semantics for probabilistic databases suggested in [13], which assumes a
fixed upper probability for facts absent in the data.

6

Remark 1. We follow the semantical idea of ipABoxes, in which all assertions are assumed to
be statistically independent, mainly to keep the representation simple. Of course, for realistic
applications, the assumption that all probabilistic facts are statistically independent is not
always accurate, and already [24] specify a more general concept of probabilistic ABoxes. The
complexity upper bounds established in this paper only rely on a fixed probability distribution
over the possible worlds, which is why they can be easily extended to more refined settings.

Based on the probability measure, we define models by assigning to each possible world a
sequence of classical interpretations. A model of a TPKB K = 〈T , (Ai)i∈J1,nK〉 is a mapping ι
from possible worlds w = (A′i)i∈J1,nK ∈ ΩK to sequences (ι(w)i)i>0 of (classical) models of T s.t.
for all i ∈ J1, nK, ι(w)i is a model of the classical knowledge base 〈T ,A′i〉, and all ι(w)i have the
same set ∆ι of domain elements (constant domain assumption).

Rigid Names. As typical for temporal knowledge bases, we may assume in addition a set
Nrig of rigid names, containing the set NCrig ⊆ NC of rigid concept names and the set NRrig ⊆ NR
of rigid role names. Rigid names denote names whose interpretation is independent of the flow
of time. We say that a model ι of a TPKB K = 〈T , (Ai)i∈J1,nK〉 respects rigid names iff for all
w ∈ ΩK, i, j ∈ J1, nK and X ∈ Nrig, Xι(w)i = Xι(w)j . Allowing for rigid names often has a direct
impact on complexity and decidability of common reasoning problems, which is why typically
different cases based on whether NCrig = ∅ or NRrig = ∅ are studied for complexity.

Example 2. In the above example, the relation hasBP is rigid, as its interpretation should be
independent of time, while the concept HighBP is not rigid, as the blood pressure of a patient
can change from high to not high. As a consequence, the individual p will be related to the
blood pressure b at all time points, even though the assertion hasBP(p, b) only occurs in A1.

Temporal Probabilistic Queries. To query temporal data in the OBDA framework, ex-
tensions of conjunctive queries with operators from linear temporal logic (LTL) have been
considered and well-investigated as temporal queries (TQs) [8]. When applied on a temporal
probabilistic KB, an assignment of the answer variables in a TQ becomes an answer with a
certain probability, depending on the query, we might be interested only in answers that holds
with a certain minimal or maximal probability. Rather than just assigning an overall probability
threshold, we might want to mark parts of the query with different probability upper and lower
bounds. For example, in the scenario sketched in the introduction, the smart-phone could be
equipped with a motion sensor to detect the probability that the patient is currently exercising,
and one might want to detect situations in which the probability of them exercising is low, while
the probability of his blood pressure being above some threshold is high.

To be able to describe all this, we extend TQs with probability operators. A temporal probabilistic
query (TPQ) is of one of the following forms, where q is a CQ, φ1 and φ2 are a TPQs, p ∈ [0, 1]
and ∼ ∈ {<,≤,=,≥, >}.

q | ¬φ1 | φ1 ∧ φ2 | φ1 ∨ φ2 | #φ1 | ♦φ1 | 2φ1 | φ1 Uφ2

#−φ1 | ♦−φ1 | 2−φ1 | φ1Sφ2 | P∼pφ1

The propositional operators, # (next), ♦ (eventually), U (until) are found in TQs, while P∼p
is the operator that we add to this language. Note that due the disjunction operator, we can
also express unions of conjunctive queries (UCQs), which are simply disjunctions of CQs. The
answer variables of a TPQ φ are the answer variables of the CQs in φ. A TPQ φ is Boolean if
every variable in φ is bound by an existential quantifier.

In order to define the semantics of TPQs, we have to take into consideration the two dimensions
in which queries refer to a temporal probabilistic model. While the temporal operators refer to

7

φ ι, w, i |= φ iff
∃~y.ψ(~y) ι(w), i |= ∃~y.ψ(~y)
¬φ1 ι, w, i 6|= φ1

φ1 ∧ φ2 ι, w, i |= φ1 and ι, w, i |= φ2
φ1 ∨ φ2 ι, w, i |= φ1 or ι, w, i |= φ2

#φ1 ι, w, i+ 1 |= φ1
#−φ1 ι, w, i− 1 |= φ1 and i > 0
♦φ1 ι, w, j |= φ1 for some j ≥ i
♦−φ1 ι, w, j |= φ1 for some j ≤ i
2φ1 ι, w, j |= φ1 for all j ≥ i
2−φ1 ι, w, j |= φ1 for all j ≤ i
φ1 Uφ2 ι, w, j |= φ2 for some j ≥ i, and

ι, w, k |= φ1 for all k ∈ Ji, j − 1K
φ1Sφ2 ι, w, j |= φ2 for some j ≤ i, and

ι, w, k |= φ1 for all k ∈ Jj + 1, iK

P∼pφ µK({w′ ∈ ΩK | ι, w′, i |= φ}) ∼ p,
where ∼ ∈ {<,≤,=,≥, >}

Table 2: Entailment of Boolean TPQs under interpretation ι.

the time line in a single possible world, for the probability operators we have to aggregate the
probabilities of the possible worlds in which a query is entailed.

Let K be a TPKB, ι a model of K, and φ a Boolean TPQ. For a single possible world w ∈ ΩK
and a time point i, we say that φ is satisfied at w, i under ι, in symbols ι, w, i |= φ iff the
conditions in Table 2 are satisfied. Note that the temporal operators refer to the time line
of a single possible world, for which they are defined as in [8]. In contrast, the probability
operators refer to the current time point in multiple possible worlds, and are defined similar
to the probabilistic concept constructor in Prob-ALC [23]. A Boolean TPQ φ is satisfied in
an interpretation ι at i, in symbols ι, i |= φ, iff ι, w, i |= φ for all w ∈ ΩK. It is entailed by the
TPKB K at i, in symbols K, i |= φ, iff ι, i |= φ for all models ι of K. φ is satisfiable in K at i iff
there exists a model ι of K s.t. ι, i |= φ. Note that satisfiability is complementary to entailment:
namely, φ is satisfiable in K at i iff K, i 6|= ¬φ.

Now given a TPKB K, a TPQ φ with answer variables ~x, a time point i > 0, and a mapping
σ : ~x→ NI, σ is a certain answer for φ in K at i iff K, i |= φ′, where φ′ is the result of applying
σ on φ. As common, since computing answers for TPQs can be seen as a search problem that
uses Boolean TPQ entailment, we focus on the decision problem of query entailment, and may
refer to Boolean TPQs simply as TPQs.
Example 3. We consider a slight variation of the query from the introduction.

P>.8(#−5♦(HighBPP(x) ∧#♦HighBPP(x)))

For x = p and time point 5, the query below the probability operator is entailed in every
model of the possible worlds w1, w2, w3 and w5, which together have a probability of 0.834.
Consequently, p is an answer to the query at time point 5. Now consider the variation where
the probability operators are moved inside.

#−5♦(P>.8(HighBPP(x)) ∧#♦P>.8(HighBPP(x)))

This corresponds to the situation where at least twice in the last 5 time units, the probability of
having a high blood pressure was above 0.8. As this probability is only once above this bound,
this query is not entailed.

8

0
1
2
3

1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

2
3
0
1

3
0
1
2

0
1
2
3

1
2
3
0

time

wo
rld

s

Figure 2: Illustration of how the counters are used in the possible worlds.

The complexity of TPQ entailment for various DLs is shown in Figure 1, where we compare
against the complexity of classical query entailment (left column), and distinguish the cases
based on whether NRrig = ∅ (middle column) or NRrig 6= ∅ (right column). All complexities
remain tight independent on whether we admit rigid concept names (NCrig 6= ∅). Note that the
ExpSpace-result for ELH remains tight even without any TBox. Results marked with (pos)
regard positive TPQs, which we discuss towards the end of the paper.

4 Hardness of TPQ Entailment

We show that TPQ satisfiability, and thus entailment, is ExpSpace-hard even if T = ∅ and
NCrig = NRrig = ∅, by reduction of the exponential variant of the corridor tiling problem [34].
In this problem, we are given a set T of tile types, two special tile types ts,te ∈ T , a natural
number n, and two functions v and h of compatibility constraints v : T → 2T (vertical) and
h : T → 2T (horizontal). The input is an instance of the exponential corridor tiling problem
if there exists a number m ∈ N and a tiling f : J0,mK× J0, 2n − 1K→ T such that f(0, 0) = ts,
f(m, 0) = te, and for all x ∈ J0,mK and y ∈ J0, 2n − 1K, if x < m, f(x+ 1, y) ∈ h(f(x, y)) and if
y < 2n − 1, f(x, y + 1) ∈ v(f(x, y)).

We use n concept names Ai to mark the different possible worlds w ∈ ΩK with a counter, such
that in interpretations ι that satisfy both the TPQ and the TPKB, ι, w, j |= Ai(a) iff the ith
bit of the counter is 1 at time point j, and ι, w, j 6|= Ai(a) iff the ith bit is 0 at time point j.
The ipABox A1 = {Ai(a) ∼ 0.5 | i ∈ J1, nK} assigns every possible world a different counter
value. Our query makes sure that the counter values are increased for each time point. Figure 2
illustrates this idea. Each possible world corresponds to a row in the tiling, with its counter
value at time point 1 denoting the row number.

At each time point, two possible worlds can be recognised by simple queries: the one whose
counter value is 0 (which satisfies

∧
1≤i≤n ¬Ai(a)), and the one whose counter value is 2n − 1

(which satisfies
∧

1≤i≤nAi(a)). Unless the latter one represents the last row, these worlds
correspond to neighbours in the tiling, which means that for these worlds, we can enforce the
vertical tiling conditions with the following query, where L(a) is an assertion that marks the
last row, and for a tile type t ∈ T , Bt(a) expresses that the current cell has a tile of type t.

2
∧
t1∈T

Bt1(a) ∧
∧

i∈J1,nK

Ai(a) ∧ ¬L(a)


→

∨
t2∈v(t1)

P=1

 ∧
i∈J1,nK

¬Ai(a)

→ Bt2(a)


As we can only check the vertical tiling conditions for one pair of rows at a time, we represent
each cell by up to 2n succeeding time points in each possible world, switching to the next tile
only when the counter reaches 2n − 1. The remaining details of the reduction can be found in

9

the appendix. The hardness for ALC with rigid roles follows from the non-probabilistic case [3].

Theorem 4. The lower bounds regarding general TPQs in Figure 1 hold.

5 Deciding TPQ Entailment

We show the complexity upper bounds for general queries shown in Figure 1, where we again
focus on the complementary problem of query satisfiability.

The main idea is to define appropriate abstractions of models of the TPKB K = 〈T , (Ai)i∈J1,nK〉
which we call quasi-models, and then show how an abstraction that witnesses the satisfiability
can be guessed and verified within the targeted complexity bound. We first define the structure
to represent single time points, which we call quasi-states. We can assume without loss of
generality that φ contains only the operators ∧, ¬, U , S and P∼p, since the remaining operators
can be linearly encoded using known equivalences. Denote by sub(φ) the sub-queries of φ and
set T (φ) = {ψ,¬ψ | ψ ∈ sub(φ)}. A quasi-state is now a mapping Q : ΩK → T (φ) that satisfies
the following conditions:

S1 ¬ψ ∈ Q(w) iff ψ 6∈ Q(w),

S2 for all ψ1 ∧ ψ2 ∈ T (φ): ψ1 ∧ ψ2 ∈ Q(w) iff ψ1 ∈ Q(w) and ψ2 ∈ Q(w), and

S3 for all P∼p(ψ) ∈ T (φ): P∼p(ψ) ∈ Q(w) iff µK({w | ψ ∈ Q(w)}) ∼ p.

The quasi-state abstracts probabilistic interpretations at a single time point by assigning queries
to each possible world according to the semantics of the atemporal operators in our query
language. To incorporate the temporal dimension, we consider unbounded sequences of quasi-
states (Qi)i≥1, which we call quasi-models for K, and which have to satisfy the following
conditions for i ≥ 1 and w = (A′i)i∈J1,nK ∈ ΩK:

Q1 if i ∈ J1, nK, then 〈T ,A′i〉 6|= ¬
(∧

ψ∈X ψ
)
, where X = {ψ ∈ Qi(w) | ψ is a CQ or a negated

CQ}.

Q2 for all #ψ ∈ T (φ), #ψ ∈ Qi(w) iff ψ ∈ Qi+1(w),

Q3 for all #−ψ ∈ T (φ), #−ψ ∈ Qi+1(w) iff ψ ∈ Qi(w),

Q4 for all ψ1 Uψ2 ∈ T (φ), ψ1 Uψ2 ∈ Qi iff there exists j ≥ i s.t. ψ2 ∈ Qj(w) and for all
k ∈ Ji, j − 1K, ψ1 ∈ Qk(w), and

Q5 for all ψ1Sψ2 ∈ T (φ), ψ1Sψ2 ∈ Qi iff there exists j ≤ i s.t. ψ2 ∈ Qj(w) and for all
k ∈ Jj − 1, iK, ψ1 ∈ Qk(w).

Again, the intuition behind these conditions is given directly by the semantics of the temporal
operators.

To handle rigid names, we need an additional structure to make sure that the queries assigned to
different time points in a possible world correspond to a sequence of interpretations that respects
rigid names. Let {q1, . . . , qn} be the CQs that occur in the query φ. For each w ∈ ΩK, we guess
the set S(w) ⊆ 2{q1,...,qm} of sets of queries that are allowed be satisfied together at a time point
in w, and thus obtain a mapping S : ΩK → 22{q1,...,qm} . To be consistent with the rigid names,
S(w) has to correspond to a set of interpretations that agree on the rigid names, where each
set of queries corresponds to one interpretation. To also take into account the ABoxes, we use

10

a second mapping a : ΩK × J1, nK→ 2{q1,...,qn}, which for each w ∈ ΩK assigns elements from
S(w) to the ABoxes in w. Given such mappings S and a, we say that a quasi-model (Qi)i≥1 is
compatible to S and a if for every i ≥ 0 and w ∈ ΩK:

Q6 Qi(w) ∩ {q1, . . . , qm} ∈ S(w), and

Q7 if i ∈ J1, nK, Qi(w) ∩ {q1, . . . , qm} = a(w, i).

The following definition captures when S and a correspond to a model of K that respects rigid
names.

Definition 5. Let w = (A′i)i∈J1,nK ∈ ΩK, S : ΩK → 22{q1,...,qm} and a : ΩK×J1, nK→ 2{q1,...,qm},
where S(w) = {X1, . . . , Xk}. Then, S is called r-satisfiable wrt. w and a iff there exist (classical)
interpretations J1, . . . ,Jk, I1, . . . , In such that

R1 the interpretations are models of T ,

R2 for any two interpretations I, I ′ ∈ {J1, . . . ,Jk, I1, . . . , In}, we have ∆I = ∆I′ and
XI = XI

′ for all X ∈ Nrig,

R3 for all i ∈ J1, kK, Ji |=
∧
q∈Xi

q ∧
∧
q 6∈Xi

¬q, and

R4 for all i ∈ J1, nK, Ii |=
∧
q∈a(w,i) q ∧

∧
q 6∈a(w,i) ¬q and Ii |= A′i.

S is r-satisfiable wrt. a, if for all w ∈ ΩK, S is r-satisfiable wrt. w and a.

Note that the interpretations J1, . . . ,Jk in the interpretation correspond to the elements
{X1, . . . , Xk} = S(w), so that Condition R2 ensures that we can find sequences of interpretation
that respect rigid names.

Lemma 6. Wrt. the size of K and φ, r-satisfiability for L-TPKBs can be decided in

1. NExpTime for L = ELH,

2. NExpTime for L = SHQ if NRrig = ∅,

3. 2-ExpTime for L ∈ {SHIQ,SHOQ,SHOI}, and

4. it is decidable for L = ALCHOIQ.

Proof(Sketch). We define a classical KB based on the mappings a and a world w ∈ ΩK which
encodes the interpretation of non-rigid names Y ∈ (NC ∪ NR) \ Nrig for different elements
Xi ∈ Si(w) using fresh names Y i. A similar translation is applied to the CQs q ∈ Xi. We can
then reduce the properties in Definition 5 to a query entailment problem, where the KB and the
query are of exponential size with respect to the input. While query entailment for ALCI and
ALCO is 2-ExpTime-hard [27, 30], we obtain by inspection of the procedures in [22, 21, 11]
that this particular query entailment test can be performed in 2-ExpTime. For SHQ and
NRrig = ∅, the complexity follows from results in [3].

Quasi-models are indeed sufficient to witness the satisfiability of a TPQ. If the quasi-model is
additionally compatible to mappings S and a s.t. S is r-satisfiable wrt. a, then they witness the
satisfiability of a TPQ from TKBs with rigid names. Crucially for our complexity result, it is
further sufficient to focus on quasi-models that have a regular shape.

11

Lemma 7. φ is satisfiable in K at time point i iff there exists mappings S : ΩK → 22{q1,...,qm}

and a : ΩK × J1, nK→ 2{q1,...,qm} and a quasi-model (Qj)j≥1 for K such that

1. φ ∈ Qi(w) for all w ∈ ΩK,

2. (Qj)j≥1 is compatible with S and a,

3. S is r-satisfiable wrt. to a, and

4. (Qj)j≥1 is of the form Q1, . . . Qm(Qm+1, . . . Qm+o)ω, where m and o are both double
exponentially bounded in the size of K.

Theorem 8. The complexity upper bounds for general TPQs in Figure 1 hold.

Proof (Sketch). We first guess the numbers m and o from Lemma 7. If Nrig 6= ∅, we additionally
guess the mappings S and a and verify that S is r-satisfiable wrt. a. We now guess the quasi-states
Q1, . . ., Qm+o one after the other, where we carefully make sure that all the conditions in the
definition of quasi-states and quasi-models are satisfied, and verify that Qm+o is compatible to
Qm+1. This procedure runs in exponential space if r-satisfiability can be decided in exponential
space, and in double exponential time if deciding r-satisfiability requires double exponential
time.

6 Positive TPQs

It turns out that for EL, we can obtain better complexity bounds if we restrict ourselves to positive
TPQs, which are TPQs that do not use the operators ¬, P<p and P=p. The probability operators
P<p and P=p can be seen as implicit negation operators, as they express the non-entailment of a
query φ in some possible worlds, whereas P>pφ only expresses the positive entailment of φ in
some possible worlds. The examples used in this paper all use only positive TPQs.

Definition 9. A TPQ is positive iff it does not use the operators ¬, P<p, P≤p and P=p.

For DLs that have negation, our reduction used to show ExpSpace-hardness can be adapted
to query entailment for positive TPQs. As we reduced the corridor tiling problem to query
satisfiability, the corresponding query entailment problem is of the form K |= ¬φ, where φ is
the defined query. By pushing negations inside, we obtain a query in which every probability
operator is of the form P>0 or P≥1, and negation only occurs in front of concept names. Therefore,
for any DL extending ALC, the complexity bounds established in the last sections remain tight
even for positive TPQs. In contrast to ALC, EL has the canonical model property, which makes
it possible to test for entailment in different possible worlds independently. This allows for
a strategy in which the TPQ is evaluated “inside out”, by first evaluating the most nested
probability operators, and then proceeding on the next level. Due to the known closure properties
of the complexity class PP, we obtain a PPNP complexity upper bound if the nesting depth
of the probability operators is bound, which we show to be tight, and otherwise a PNP upper
bound. This approach further allows us to establish tight complexity for data complexity, where
the size of the query is assumed to be fix, marked in Figure 1 with (pos,dat).

Theorem 10. The complexity results regarding positive TPQs in Figure 1 hold.

12

7 Conclusion

We introduced a framework for representing and querying temporal probabilistic data within
the ontology-based query answering paradigm, and established tight complexity bounds for most
common description logics. While for expressive DLs starting from ALCI and ALCO, adding
both the temporal and the probabilistic dimension comes at no additional cost compared to
classical query answering, for ALC and below, reasoning becomes harder both in comparison
to purely temporal and purely probabilistic query answering. For instance, probabilistic query
answering is ExpTime-complete for ALC and PPNP-complete for EL, and for NRrig = ∅, it is
ExpTime-complete for ALC and PSpace-complete for EL, which contrasts with our ExpSpace-
hardness that occurs already without a TBox. For EL, this situation can be improved if we
forbid negation in the query language, in which case temporal probabilistic query answering
is not harder as in the atemporal case. We believe that our technique for showing the upper
bound here could also be used for practical implementations. We are currently looking at how
query rewriting techniques for simpler DLs such as DL-Lite could be used for this in connection
with existing probabilistic database systems.

8 Acknowledgements

This work is supported by the German Research Foundation (DFG) within the Collaborative
Research Center SFB 912 HAEC.

References

[1] Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Ontology-mediated query answering over temporal data: A
survey (invited talk). In Proc. TIME 2017, pages 1:1–1:37, 2017.

[2] Franz Baader, Stefan Borgwardt, Patrick Koopmann, Ana Ozaki, and Veronika Thost.
Metric temporal description logics with interval-rigid names. In Proc. FroCoS 2017, pages
60–76. Springer International, 2017.

[3] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal query entailment in the
description logic SHQ. J. Web Sem., 33:71–93, 2015.

[4] Franz Baader, Silvio Ghilardi, and Carsten Lutz. LTL over description logic axioms. ACM
Trans. Comput. Log., 13(3):21:1–21:32, 2012.

[5] Franz Baader, Patrick Koopmann, and Anni-Yasmin Turhan. Using ontologies to query
probabilistic numerical data. In Proc. FroCoS 2017, pages 77–94. Springer International,
2017.

[6] Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated
queries for probabilistic databases. In Proc. AAAI 2017, pages 1063–1069. AAAI Press,
2017.

[7] Stefan Borgwardt, Marcel Lippmann, and Veronika Thost. Temporalizing rewritable query
languages over knowledge bases. J. Web Sem., 33:50–70, 2015.

[8] Stefan Borgwardt and Veronika Thost. Temporal query answering in the description logic
EL. In Proc. IJCAI 2015, pages 2819–2825. AAAI Press, 2015.

13

[9] Camille Bourgaux, Patrick Koopmann, and Anni-Yasmin Turhan. Ontology-mediated query
answering over temporal and inconsistent data. Semantic Web Journal, 2018. To appear.

[10] Sebastian Brandt, Elem Güzel Kalayci, Roman Kontchakov, Vladislav Ryzhikov, Guohui
Xiao, and Michael Zakharyaschev. Ontology-based data access with a Horn fragment of
metric temporal logic. In Proc. AAAI 2017, pages 1070–1076. AAAI Press, 2017.

[11] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Regular path queries in expressive
description logics with nominals. In Proc. IJCAI 2009, pages 714–720. AAAI Press, 2009.

[12] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path queries in
expressive description logics via alternating tree-automata. Inf. Comput., 237:12–55, 2014.

[13] İsmail İlkan Ceylan, Adnan Darwiche, and Guy van den Broeck. Open-world probabilistic
databases: An abridged report. In Proc. IJCAI 2017, pages 4796–4800. AAAI Press, 2017.

[14] İsmail İlkan Ceylan and Rafael Peñaloza. Dynamic Bayesian description logics. In Proc.
DL 2015. CEUR-WS, 2015.

[15] İsmail İlkan Ceylan and Rafael Peñaloza. The Bayesian ontology language BEL. J. Autom.
Reasoning, 58(1):67–95, 2017.

[16] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. VLDB
J., 16(4):523–544, 2007.

[17] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic database
model for information extraction. Proceedings of the VLDB Endowment, 6(14):1810–1821,
2013.

[18] Peter L Elkin, Steven H Brown, Casey S Husser, Brent A Bauer, Dietlind Wahner-Roedler,
S Trent Rosenbloom, and Ted Speroff. Evaluation of the content coverage of SNOMED CT:
ability of SNOMED clinical terms to represent clinical problem lists. Mayo Clin. Proc.,
81(6):741–748, 2006.

[19] Lance Fortnow and Nick Reingold. PP is closed under truth-table reductions. In Proceedings
of the Sixth Annual Structure in Complexity Theory Conference, pages 13–15, 1991.

[20] Dov M Gabbay, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Many-dimensional
modal logics: Theory and applications. Elsevier, 2003.

[21] Birte Glimm, Ian Horrocks, and Ulrike Sattler. Unions of conjunctive queries in SHOQ.
In Proc. KR 2008, pages 252–262, 2008.

[22] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. Conjunctive query answering
for the description logic SHIQ. J. Artif. Intell. Res., 31:157–204, 2008.

[23] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, and Lutz Schröder. Proba-
bilistic description logics for subjective uncertainty. J. Artif. Intell. Res., 58:1–66, 2017.

[24] Jean Christoph Jung and Carsten Lutz. Ontology-based access to probabilistic data with
OWL QL. In The Semantic Web - ISWC 2012, volume 7649 of LNCS, pages 182–197.
Springer, 2012.

[25] Nilay Kumar, Monica Khunger, Arjun Gupta, and Neetika Garg. A content analysis of
smartphone–based applications for hypertension management. Journal of the American
Society of Hypertension, 9(2):130–136, 2015.

[26] Thomas Lukasiewicz. Expressive probabilistic description logics. Artif. Intell., 172(6-7):852–
883, 2008.

14

[27] Carsten Lutz. Inverse roles make conjunctive queries hard. In Proc. DL 2007, volume 250
of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[28] Carsten Lutz. Two upper bounds for conjunctive query answering in SHIQ. In Proc. DL
2008, volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[29] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Streaming the
web: Reasoning over dynamic data. Web Semantics: Science, Services and Agents on the
World Wide Web, 25:24 – 44, 2014.

[30] Nhung Ngo, Magdalena Ortiz, and Mantas Simkus. Closed predicates in description logics:
Results on combined complexity. In Proc. KR 2016, pages 237–246. AAAI Press, 2016.

[31] Alessandro Ronca, Mark Kaminski, Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks.
Stream reasoning in temporal datalog. In Proc. AAAI 2018. AAAI Press, 2018.

[32] Riccardo Rosati. On conjunctive query answering in EL. In Proc. DL 2007, volume 250 of
CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[33] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991.

[34] Peter van Emde Boas. The convenience of tilings. Lecture Notes in Pure and Applied
Mathematics, pages 331–363, 1997.

[35] Klaus W. Wagner. The complexity of combinatorial problems with succinct input represen-
tation. Acta Informatica, 23(3):325–356, Jun 1986.

A Proofs of Theorems and Lemmata

We provide proofs for the theorems and lemmata in the paper. Note that this document has an
extended bibliography section at the end.

A.1 Lower Bounds

Theorem 4. The lower bounds regarding general TPQs in Figure 1 hold.

Proof. For DLs extending ALCI or ALCO, 2-ExpTime lower bounds follow from the corre-
sponding results in classical query entailment [27, 30].

For the remaining DLs, we provide a reduction of the ExpSpace-complete 2n corridor tiling
problem as specified in the main text. We provide an encoding of this problem using a single
ipABox A and a TPCQ φ with negations. A and φ are constructed in such a way that there is a
correspondence between solutions f to the tiling problem and models ι of K = 〈∅, (A)〉 and φ.
The (bounded) vertical dimension of the corridor is represented across the 2n possible worlds,
while the (unbounded) horizontal dimension is represented along the time line. Specifically, the
correspondence from ι to a tiling f is specified via two mappings:

1. y : J0, 2n − 1K→ ΩK maps each y-coordinate of the tiling to a possible world

2. c : N× ΩK → T maps each pair of x-coordinate and possible world to the tile type.

15

The query will then be constructed in such a way that, in case of satisfiability, we can obtain
the tiling by f(i, j) = c(2n · j + i, y(j)).

We use a concept name Bt for every tile type t ∈ T , and use the assertion Bt(a) to denote that
the cell corresponding to a possible world/time point pair has a tile of type t. To make sure that
every pair of a possible world and a time point represents exactly one t ∈ T , we use the query

2
∧
t1∈T

Bt1(a)↔
∧

t2∈T,t1 6=t2

¬Bt2(a)

 .

We can already define the first mapping c from pairs of possible worlds and time points to their
tile type: given a model ι of the final query, we define c(i, w) = t, where ι, w, i |= Bt(a).

To provide for the mapping y : [0, 2n − 1]→ ΩK, which assigns row numbers to possible worlds,
we set

A1 = {Ai(a): 0.5 | i ∈ J1, nK},

where A1, . . . , An are concept names that correspond to bits in a binary counter. Since all
probabilities are statistically independent, each counter value is represented by some possible
world. For i ∈ [0, 2n− 1], the value of y(i) is then simply the possible world in which the counter
has the value i at the first time point. We mark the possible world which represents the last
row with the assertion L(a) using the following queries. ∧

i∈J1,nK

Ai(a)

↔ L(a)

2 (L(a)↔ #L(a))

The previous queries ensure that the mappings y and c are well-defined. The following query
ensures the tiling conditions regarding the special tiles ts and te, which have to occur in the
first row of respectively the first and the last column of the tiling solution.

 ∧
i∈J1,nK

¬Ai(a)

→ (Bts(a) ∧ ♦Bte(a))

It remains to provide queries that enforce the tiling conditions. The following queries ensure
that the counters in each possible world get incremented across the time line.

2
∧

i∈J1,nK

¬Ai(a) ∧
∧
j<i

Aj(a)

→ #

Ai(a) ∧
∧
j<i

¬Aj(a)


2

∧
i∈J1,nK

¬Ai(a) ∧
∨
j<i

¬Aj(a)

→ #¬Ai(a)


2

∧
i∈J1,nK

Ai(a) ∧
∨
j<i

¬Aj(a)

→ #Ai(a)


2

 ∧
i∈J1,nK

Ai(a)

→ #
∧

i∈J1,nK

¬Ai(a)



16

In each possible world, the current tile type is transported to the next time point until until the
counter reaches 2n − 1.

2
∧
t∈T

Bt(a) ∧
∨

i∈J1,nK

¬Ai(a)

→ #Bt(a)


Note that we only have to check the tiling conditions until the special tile te has been placed in
the first row: afterwards, we do not care. We use the assertion Bend(a) to mark the last column
of the tiling:

 ∧
i∈J1,nK

¬Ai(a)

→ (P=1(¬Bend(a))U(Bend(a) ∧ te(a))

This query ensures that no possible world satisfies Bend(a) until the last tile has been placed in
the first row.

As explained in the main text, if the counter in a possible world reaches 2n − 1, we can identify
the world that corresponds to the next row easily, as its counter then has the value 0. Note that
we only have to enforce the tiling conditions until the last tile has been placed, which is the case
as soon as in some possible world the assertion Bend(a) is satisfied. We can thus enforce the
vertical tiling conditions using the following query.

∧
t1∈T

Bt1(a) ∧ ¬L(a) ∧
∧

i∈J1,nK

Ai(a)


→

∨
t2∈v(t1)

P=1

 ∧
i∈J1,nK

¬Ai(a)

→ Bt2(a)

 U P>0(Bend(a))

To enforce the horizontal constraints, we only have to identify the next time point when the
counter is 2n − 1.

∧
t1∈T

Bt1(a) ∧
∧

i∈J1,nK

Ai(a)

→ #
∨

t2∈h(t1)

Bt2(a)

 U P>0(Bend(a))

The final query φ is the conjunction of all queries. It is now standard to verify that the tiling
problem has a solution f iff φ is satisfiable in A, and that this solution is then obtained by
f(i, j) = c(2n · j + i, y(j)).

A.2 Correctness of the Decision Procedure

We first show that our notion of quasi-models compatible to the mappings S and a indeed
captures query satisfiability.

Lemma 11. φ is satisfiable in K at i iff there exist mappings S : ΩK → 22{q1,...,qm} and
a : ΩK × J1, nK→ 2{q1,...,qm} s.t.

1. S is r-satisfiable wrt. a, and

17

2. there exists a quasi-model (Qj)j≥1 for φ in K compatible with S and a s.t. φ ∈ Qi(w) for
all w ∈ ΩK.

We show both directions of the lemma separately.

Lemma 12. If φ is satisfiable in K at i, then there exist mappings S : ΩK → 22{q1,...,qm} and
a : ΩK × J1, nK→ 2{q1,...,qm} s.t.

1. for every w ∈ ΩK, S is r-satisfiable wrt. a and w, and

2. there exists a quasi-model (Qj)j≥1 for φ in K compatible with S and a s.t. φ ∈ Qi(w) for
all w ∈ ΩK.

Proof. Assume φ is satisfiable in K at i. There then exists a temporal probabilistic model ι of K
s.t. for all w ∈ ΩK, ι, w, i |= φ. For w ∈ ΩK and j ≥ 1, set Xj(w) = {q is a CQ in φ | ι(w)i |= qi}.
S and a are now defined by setting for all w ∈ ΩK and i ∈ J1, nK:

S(w) = {Xj(w) | j ≥ 1}
a(w, i) = Xi(w).

It follows by construction that for each w ∈ S, S is r-satisfiable wrt. a and w. Indeed, the
interpretations I1, . . . , In,J1, . . . ,Jk that witness this can be directly taken from ι: for i ∈ J1, nK,
we have Ii = ι(w)i, and for each Xi ∈ S(w), there exists some j ≥ 1 s.t. Xj(w) = Xi, for which
we set Ji = ι(w)j . Conditions R1–R4 are now readily checked.

The quasi-model (Qj)j≥1 is now defined by setting

Qj(w) = {ψ ∈ T (φ) | ι, w, j |= ψ}

for all w ∈ ΩK and i > 1.

We show that (Qj)j≥1 is indeed a quasi-model compatible with S and a.

For each j ≥ 1, it follows by direct correspondence between the semantics of the atemporal
query operators defined in Table 2 to Conditions S1–S3 that Qj is a quasi-state. Specifically,
for Condition S3, we have ι, w, j |= Psim(ψ) iff

µK({w′ ∈ ΩK | ι, w′, j |= ψ}) ∼ p,

and consequently, by induction, P∼p(ψ) ∈ Qj(w) iff

µK({w′ ∈ ΩK | ψ ∈ Qj(w)}) ∼ p.

Similarly, (Qj)j≥1 satisfies Conditions Q2–Q5 by direct correspondence to the semantics of
the temporal query operators defined in Table 2. For Condition Q1, we have to show that for
w = (A′i)i∈JiK ∈ ΩK and i ∈ J1, nK,

〈T ,A′i〉 6|= ¬

 ∧
ψ∈X

ψ

 ,

where
X = {ψ ∈ Qi(w) | ψ is a CQ or a negated CQ}.

Let X = {ψ ∈ Qi(w) | ψ is a CQ or a negated CQ}. By construction, ι, w, i |=
∧
ψ∈X ψ.

Furthermore, since ι is a model of K, ι(w)i is a model of 〈T ,A′i〉. As a consequence, we cannot

18

have 〈T ,A′i〉 |= ¬
(∧

ψ∈X ψ
)
, and therefore 〈T ,A′i〉 6|= ¬

(∧
ψ∈X ψ

)
and (Qj)j≥1 satisfies

Condition Q1. We obtain that (Qj)j≥1 satisfies Conditions Q1–Q5, and thus that (Qj)j≥1 is a
quasi-model.

It remains to show that (Qj)j≥1 is compatible with S and a, that is, that it satisfies ConditionsQ6
and Q7. Let j ≥ 1 and w ∈ ΩK.

Q6 We have to show that Qj(w) ∩ {q1, . . . , qm} ∈ S(w). Let X = Qj(w) ∩ {q1, . . . , qm}. By
construction of Qj(w), X contains exactly the CQs from {q1, . . . , qm} that are entailed by
ι(w)j . Consequently, X = Xj(w). We have Xj(w) ∈ S(w) by construction of S(w), and
therefore, X ∈ S(w).

Q7 We have to show that if j ∈ J1, nK, then Qj(w) ∩ {q1, . . . , qm} = a(w, j). Let j ∈ J1, nK
and X = Qj(w) ∩ {q1, . . . , qm}. By construction of Qj(q), X contains exactly the CQs
from {q1, . . . , qm} that are entailed by ι(w)j , and therefore, X = Xj(w). By definition of
a, we have a(w, j) = Xj(w), and therefore a(w, j) = X.

We established that S is r-satisfiable wrt. a, and that (Qj)j≥1 is a quasi-model compatible to S
and a. Furthermore, we have φ ∈ Qi(w) for all w ∈ ΩK, since by assumption, ι, w, i |= φ for all
w ∈ ΩK. It follows that Conditions 1 and 2 from the Lemma are satisfied.

Lemma 13. Let S : ΩK → 22{q1,...,qm} and a : ΩK × J1, nK→ 2{q1,...,qm} be such that

1. for every w ∈ ΩK, S is r-satisfiable wrt. a and w, and

2. there exists a quasi-model (Qj)j≥1 for φ in K compatible with S and a s.t. φ ∈ Qi(w) for
all w ∈ ΩK.

Then, φ is satisfiable in K at i.

Proof. Assume there exist the mappings S and a, as well as a quasi-model (Qj)j≥1, as in the
lemma. We construct a temporal probabilistic model ι of K s.t. for all w ∈ ΩK, ι, w, 1 |= φ. For
all w ∈ ΩK, assume S(w) = {Xw

1 , . . . X
w
kw
}. By Definition 5 of r-satisfiability, for every w ∈ ΩK,

there exists interpretations J w1 , . . . ,J wkw
, Iw1 , . . . , Iwn such that

R1 the interpretations are models of T ,

R2 for any two interpretations I ′, I ′′ ∈ {J w1 , . . . ,J wkw
, Iw1 , . . . , Iwn }, we have ∆I′ = ∆I′′ and

XI
′ = XI

′′ for all X ∈ Nrig,

R3 for all i ∈ J1, kK, J wi |=
∧
q∈Xw

i
q ∧

∧
q 6∈Xw

i
¬q, and

R4 for all i ∈ J1, nK, Iwi |=
∧
q∈a(w,i) q ∧

∧
q 6∈a(w,i) ¬q and Iwi |= A′i.

ι is now defined by setting for all w ∈ ΩK and j ≥ 1:

1. if j ∈ J1, nK: ι(w)i = Iwi , and

2. for all j > n: ι(w)i = J wj , where j is such that Qi(w) ∩ {q1, . . . , qm} = Xw
j (by Condi-

tion Q6).

19

By Condition R1, ι respects rigid names. Furthermore, for every w = (A′j)j∈J1,nK ∈ ΩK and
j ≥ 1, ι(w)j |= T , and if j ∈ J1, nK, ι(w)j |= A′j . It follows that ι is a model of K. It remains to
show that ι satisfies φ at i. We do this by structural induction on φ and show for every ψ ∈ T ,
w ∈ ΩK and j ≥ 1, ι(w)j |= ψ iff ψ ∈ Qj(w). Since φ ∈ Qi(w) for all w ∈ ΩK, this proves that
ι, i |= φ. We distinguish the cases based on the syntactical shape of ψ.

1. ψ is a CQ. We have two cases. Either i) j ∈ J1, nK and ι(w)j = Iwj , or ii) j > n and
ι(w) = J wj′ for some j′ ∈ J1, kK. In the first case, ψ ∈ a(w, j) iff ι(w)j |= ψ by ConditionR4,
and ψ ∈ a(w, j) iff ψ ∈ Qj(w) by Condition Q7. Consequently, ψ ∈ Qj(w) iff ι(w)j |= ψ
and ι, w, j |= ψ.
In the second case, by Condition R3, we have ψ ∈ Xw

j′ iff ι(w)j |= ψ. Furthermore, we
have Qj(w)∩{q1, . . . , qm} = Xw

j′ by construction, and consequently ψ ∈ Qj(w) iff ψ ∈ Xw
j′ .

It follows that ψ ∈ Qj(w) iff ι(w)j |= ψ and ι, w, j |= ψ.

2. ψ = ¬ψ′. By inductive hypothesis, ι, w, j |= ψ′ iff ψ′ ∈ Qj(w). Consequently, by the
semantics of negation and Condition S1 ι, w, j |= ¬ψ′ iff ¬ψ′′ ∈ Qj(w).

3. ψ = ψ1 ∧ ψ2. By inductive hypothesis, ι, w, j |= ψ1 iff ψ1 ∈ Qj(w), and ι, w, j |= ψ2
iff ψ2 ∈ Qj(w). By the semantics of conjunction and Condition S3, we obtain that
ι, w, j |= ψ1 ∧ ψ2 iff ψ1 ∧ ψ2 ∈ Qj(w).

4. ψ = #ψ′. By Condition Q2, #ψ′ ∈ Qj(w) iff ψ′ ∈ Qj+1(w). By inductive hypothesis,
ψ′ ∈ Qj+1(w) iff ι, w, j + 1 |= ψ′. By the semantics of the TPQs, ι, w, j + 1 |= ψ′ iff
ι, w, j |= #ψ′. Consequently, #ψ′ ∈ Qj(w) iff ι, w, j |= #ψ′. The case where ψ = #−ψ′ is
similar.

5. ψ = ψ1 Uψ2. Assume ψ1 Uψ2 ∈ Qj(w). By Condition Q4, there then exists j′ ≥ j s.t.
ψ2 ∈ Qj′(w) and ψ1 ∈ Qk′ for all k′ ∈ Jj, j′K. By the inductive hypothesis, we then also
have ι, w, j′ |= ψ2 and ι, w, k′ |= ψ2 for all k′ ∈ Jj, j′K, which, by the semantics of the
until-operator, implies ι, w, j |= ψ1 Uψ2. For the other direction, assume ι, w, j |= ψ1 Uψ2.
By the semantics of the until-operator, there then exists some j′ ≥ j s.t. ι, w, j′ |= ψ2
and ι, w, k′, |= ψ1 for all k′ ∈ Jj, j′K, which by Condition Q4 implies that ψ1 Uψ2 ∈ Qj(w).
The case where ψ = ψ1Sψ2 is similar.

We obtain that for every ψ ∈ T (φ), w ∈ Ω and j ≥ 1, ι, w, j |= ψ iff ψ ∈ Qj(w). Since φ ∈ Qi(w)
for all w ∈ ΩK, this implies ι, i |= φ. Since ι is a model of K, we obtain that φ is satisfiable in K
at i.

We can now prove Lemma 7 from the main text.

Lemma 7. φ is satisfiable in K at time point i iff there exists mappings S : ΩK → 22{q1,...,qm}

and a : ΩK × J1, nK→ 2{q1,...,qm} and a quasi-model (Qj)j≥1 for K such that

1. φ ∈ Qi(w) for all w ∈ ΩK,

2. (Qj)j≥1 is compatible with S and a,

3. S is r-satisfiable wrt. to a, and

4. (Qj)j≥1 is of the form Q1, . . . Qm(Qm+1, . . . Qm+o)ω, where m and o are both double
exponentially bounded in the size of K.

Proof. The direction (⇐) follows directly from Lemma 13. We therefore only have to show the
other direction.

20

Let S : ΩK → 22{q1,...,qm} and a : ΩK × J1, nK→ 2{q1,...,qm} be mappings and (Qj)j≥1 be a quasi-
model for φ compatible with S and a. First note that there can be at most double-exponentially
many distinguishable quasi-states in (Qj)j≥1: ΩK contains at most 2|K| many elements, and for
each w ∈ ΩK, Qi(w) contains at most |φ| elements. We obtain that there are at most 22|K|·|φ|

many different combinations. For indices j, k s.t. Qj = Qk, we define an operation merging
of Qi and Qj in (Qi)i≥1, which replaces the quasi-model with Q1, . . . Qi, Qj+1, One can
verify that the result of merging in a quasi-model is again a quasi-model: Condition Q1 1)
Conditions Q1–Q3 only consider at most two-subsequent states, and 2) Conditions Q4 and Q5
are still satisfied in the new quasi-model. Furthermore, since we only remove quasi-states, the
resulting quasi-model also still satisfies Conditions Q6 and Q7, and is thus compatible to S
and a.

Now let (Qj)j≥1 be any quasi-model, and let m,o be two indices s.t. Qm = Qm+o and the
following condition is satisfied:

(*) for every w ∈ ΩK and ψ1 Uψ2 ∈ Qm(w), there exists k < m+ o s.t. ψ2 ∈ Qk(w).

Such a quasi-model always exists by Condition Q4. From (*), it already follows that Q1, . . . Qm
(Qm+1, . . . Qm+o)ω is also a quasi-model. However, m and o might not be double-exponentially
bounded in the size of K and φ. By the above observation, we may assume that no quasi-state
occurs twice before Qm, since we can always merge any quasi-states that occur more than
once, so that m ≤ 22|K|·|φ|. To reduce the index of Qm+o, we exhaustively merge any two
quasi-states that occur between Qm and Qm+o for which merging does not break Condition (*).
The resulting quasi-state can now be represented as

Q′1, . . . Q
′
m(Q′m+1, . . . Q

′
m+o′)ω.

We give a bound on o′. For every i, j ∈ Jn+ 1, n+ o′K s.t. Q′i = Q′j , there must be some w ∈ ΩK,
ψ1 Uψ2 ∈ Q′n(w), and k ∈ Ji, jK s.t. ψ2 ∈ Q′k(w) and ψ2 6∈ Q′l(w) for all l ∈ Jn, k − 1K, since
otherwise Q′i and Q′j would have been merged. It follows that every quasi-state is repeated at
most 2|K| · |φ| times, because there are at most 2|K| possible worlds in ΩK and for each w ∈ ΩK,
at most |φ| queries of the form ψ1 Uψ2 in Q′n(w). Because the number of distinct quasi-states is
bounded by 22|K|·|φ|, we obtain o′ ≤ 2|K| · |φ| ·22|K|·|φ|, that is, o′ is double-exponentially bounded
in the size of K and φ. It follows that we can transform any quasi-model into a quasi-model
of the required form, and thus that a quasi-model exists iff there exists a regular quasi-model
which is of the form as in the lemma.

A.3 Deciding r-Satisfiability

In order to decide r-satisfiability, we construct a classical KB Ka,w = 〈Aa,w, Ta,w〉 based on
w = (A′i)i∈J1,nK, S = {X1, . . . , Xk} and a, where for each non-rigid name Y ∈ (NC ∪ NR) \ Nrig
and Xi ∈ S(w), we use a fresh name Y i. For every A(a)/r(a, b) ∈ A′i , Aa,w contains the
assertion Ai(a)/ri(a, b) if A 6∈ NCrig/r 6∈ NRrig, and otherwise the assertion A(a)/r(a, b). The
TBox Ta,w contains for every axiom α and every Xi ∈ S(w) the axiom αi, which is obtained
from α by replacing every non rigid name Y by Y i. We do a similar transformation for the
queries q ∈ Xi to obtain queries qi.

Lemma 14. S is r-satifiable wrt. a and w iff the following entailment holds.

Ka,w 6|= ¬

 ∧
Xi∈S(w)

 ∧
q∈Xi

qi ∧
∧
q 6∈Xi

¬qi)

 .

21

Proof. (⇐) Assume the entailment holds, and let I be a model of Ka,w s.t.

I |=

 ∧
Xi∈S(w)

 ∧
q∈Xi

qi ∧
∧
q 6∈Xi

¬qi)

 .

Based on I, we construct the models {I1, . . . , In,J1, . . . ,Jk} as required by Definition 5. For
Xj ∈ S(w), we define the interpretation Jj

1. ∆Ji = ∆I ,

2. for all Y ∈ Nrig: XJi = Y I , and

3. for all Y ∈ (NC ∪ NR) \ Nrig: Y Ji = (Y j)J .

For i ∈ J1, nK and a(w, i) = Xj , we define Ii = Jj . It is now standard to verify the conditions
in Definition 5:

R1: by the construction of the Ta,w, every Ji is a model of T ,

R2: rigid names are interpreted the same for all interpretations,

R3: for all i ∈ J1, kK, I |=
∧
q∈Xi

qi ∧
∧
q 6∈Xi

¬qi, and consequently, Ji |=
∧
q∈Xi

q ∧
∧
q 6∈Xi

¬q,

R4: for i ∈ J1, nK, Ii |=
∧
q∈Xi

q ∧
∧
q 6∈Xi

¬q for the same reason as in the last case, and since
I |= αi for all α ∈ A′i, Ii |= A′i.

We obtain that S is r-satisfiable wrt. a and w.

(⇒) Now for the other direction, assume S is r-satisfiable wrt. a and w, and let I1, . . . , In,J1, . . . ,Jk
be the interpretations from Definition 5. Note that, since a(w, i) ∈ S(w) for all i ∈ J1, nK, we
may assume without loss of generality that {I1, . . . , In} ⊆ {J1, . . . ,Jk}: if there exists inter-
pretations I1, . . . , In,J1, . . . ,Jk satisfying the conditions in Definition 5, then there also exist
such interpretation so that {I1, . . . , In} ⊆ {J1, . . . ,Jk}. We may further assume without loss
of generality that for i ∈ J1, nK, Ii = Ji.

We construct an interpretation I as follows.

1. ∆I = ∆J1 ,

2. for all Y ∈ Nrig, Y J = XJ1 , and

3. for all Y ∈ (NC ∪ NR) \ Nrig and i ∈ J1, kK, (Y i)I = Y Ji .

Note that by Condition R2, the specific choice of an interpretation in Step 1 and 2 does not
affect the result. We show that I is a model of Ka,w s.t.

I |=

 ∧
Xi∈S(w)

 ∧
q∈Xi

qi ∧
∧
q 6∈Xi

¬qi)

 .

By Condition R1, for every j ∈ J1, kK and every α ∈ T , Jj |= α, and consequently, by
construction of I, one easily sees that I |= αj . It follows that I is a model of Ta,w. By
Condition R4, for every i ∈ J1, nK and α ∈ A′i, we have Ji = Ii |= α, which similarly by
construction implies I |= αi. It follows that I is a model of Ka,w. It remains to show that for
the queries q ∈ {q1, . . . , qm}, and for every i ∈ J1, kK, I |= qi iff q ∈ Xi. Again this directly
follows from construction, where we now consider Condition R3.

22

We next show that the entailment in Lemma 14 can be decided within the desired complexity
bounds. By pushing negations inside and reordering, we obtain that the non-entailment in
Lemma 14 is equivalent to the following.

Ka,w 6|=
∨

Xi∈S(w),q∈Xi

¬qi ∨
∨

Xi∈S(w),q 6∈Xi

qi

For a query q, denote by Aq the classical ABox obtained from q by replacing every variable by
a fresh individual name. Clearly, our non-entailment holds if the following non-entailment is
satisfied.

〈Ta,w,Aa,w ∪
⋃

Xi∈S(w),q∈Xi

Aqi〉 6|=
∨

Xi∈S(w),q 6∈Xi

qi

We obtain that, in order to use this to decide r-satisfiability, we have to decide the entailment of
an exponentially-sized union of linearly sized CQs from an exponentially sized KB. For ELH and
SHQ with NRrig 6= ∅, this already gives us the desired complexity bounds, since query entailment
is in NP for ELH [32] and in ExpTime for SHQ [28], thus giving us NExpTime and 2-ExpTime
upper bounds immediately. On the other hand, for DLs extending ALCI and ALCO, query
entailment is 2-ExpTime-hard [27, 30], so that we would obtain at least a 3-ExpTime upper
bound if we just apply these complexity bounds directly. To show that the above entailment
can still be decided in 2-ExpTime wrt. K and φ, we examine the decision procedures presented
in [22, 21, 11] to show that query entailment is in 2-ExpTime for SHIQ, SHOQ and SHOI,
and show that they run in 2-ExpTime wrt. K and φ for the above entailment. The crucial
property here is that, even though the KB and the UCQ are exponential in size, each CQ is
only linear in the size of the input. We therefore first give some auxiliary lemmata that refine
the complexity results from [22, 21] by close inspection of the construction used there. The
lemmata are all of the same form and only differ in the DL under consideration.

Lemma 15. For a given natural number n, entailment of disjunctions over CQs from SHIQ-
KBs can be decided in time double exponential in n if

• the size of the KB is at most exponential in n,

• the number of CQs in the disjunction is at most exponential in n, and

• the size of each CQ is polynomial in n.

Proof. The result follows from a close analysis of the 2-ExpTime decision procedure for
entailment of UCQs from SHIQ KBs presented in [22]. The authors show the result for the
slightly more expressive DL SHIQu, which additionally supports conjunctions of roles. The
decision procedure makes use of several satisfiability tests of SHIQu KBs constructed based on
the input. We show that this procedure runs within the bounds provided by the lemma by direct
reference to the results from this publication. The main result is given in Theorem 32 in that
paper. The main construction underlying the decision procedure is provided in Definition 21.

We first sketch the idea to decide query entailment for CQs q from classical KBs K = (T ,A,).
For a given CQ q, the authors define the set treesK(q) which contain rewritings of q in form of
concepts corresponding to all possible tree-shaped matches of q in models of K, and the set
groundK(q), which contains ground CQs (that is, CQs that only contain individual names as
terms, which may however use complex concepts) corresponding to forest-shaped matches in
models of K in which every root of the forest is matched to an individual in K. The authors define
the SHIQu-TBox Tq = {> v ¬C | C ∈ treesK(q)}, which only has models in which there is no
purely-tree shaped match of q. In addition, they define a series of classical SHIQu-ABoxes Aq,
which contain from each ground query q′ ∈ groundK(q) at least one assertion ¬α, where α ∈ q′.

23

If for any such ABox Aq, 〈T ∪ Tq,A ∪Aq〉 has a model, then this model is a counter-example
for the entailment of q. Note that both Tq and Aq are linear in the size of treesK(q) and
groundK(q), and that the number of possible choices for Aq is exponentially bounded by the
size of groundK(q). To decide entailment of a query, we therefore iterate over all possible choices
of Aq and decide the satisfiability of 〈T ∪ Tq,A ∪Aq〉.

The details about the construction of the sets treesK(q) and groundK(q) go beyond the skope of
the paper. Relevant for us are the bounds the authors give on their size: by [22][Lemma 20], the
size of treesK(q) is polynomially bounded in the size of K and exponentially bounded in the size
of q, and so is the size of groundK(q).

Now to handle UCQs q1 ∨ . . . ∨ qn, the same procedure is used based on the unions over all sets
treesK(qi) and groundK(qi), i ∈ J1, nK [22][Definition 21]. Clearly, if the number of CQs in the
UCQ is exponentially bounded by a natural number n, and the size of each CQ is polynomiall
bounded in n, then the size of these unions are exponentially bounded in n, and there are at
most double exponentially many KBs that have to tested for satisfiability. As a consequence, if
the KB and the UCQ are of the shape as in the Lemma, then entailment of the UCQ can be
decided in time double exponential in n.

Lemma 16. For a given natural number n, entailment of disjunctions over CQs from SHOQ-
KBs can be decided in time double exponential in n if

• the size of the KB is at most exponential in n,

• the number of CQs in the disjunction is at most exponential in n, and

• the size of each CQ is polynomial in n.

Proof. The result follows from a close analysis of the 2-ExpTime decision procedure for
entailment of UCQs from SHOQ KBs presented in [21]. The decision procedure follows a similar
idea than the one presented in [22], and also apply to the extension SHOQu of SHOQ with
role conjunctions. Specifically, to decide entailment of a CQ, a set conK(q) of CQs of the form
C1(x1) ∨ . . . ∨ Cn(xn) is defined, where each Ci, i ∈ J1, nK is a SHOQu-concept and xi 6= xj
for i 6= j ∈ J1, nK. For UCQs q, conK(q) is defined as the union of all sets conK(q′) where
q′ ∈ q. Intuitively, each ∈ conK(q) corresponds to a forest-shaped match in some model of K,
and every such match is represented by some CQ in conK(q). A consequence of this is that
K |=

∨
qi∈conK(q) qi iff K |= q [21, Theorem 6]. The size bounds on conK(q) are given in [21,

Lemma 7]: its size is at most i) polynomial in the size of K and ii) exponential in the size of
q. For a UCQ whose number of CQs is exponentially bounded in n and the size of each CQ
is polynomially bounded in n, from the fact that conK(q) corresponds to the union of all sets
conK(q′) where q′ ∈ q, it follows that conK(q) is exponential in both n and the size of K.

Now to decide K |=
∨
qi∈conK(q) qi, we use the fact that the atoms in each query in conK(q) are

variable-disjoint, and built a sequence of reduction KBs. Each reduction KB is obtained from
selecting from each CQ in qiconK(q) one atom Ci(xi), and adding > v ¬Ci to K. If one of them
is unsatifiable, K 6|=

∨
qi∈conK(q) qi and K 6|= q.

The size of each KB is linear in conK(q), and there are exponentially many possible choices wrt.
the size of conK(q). If q is shaped as in the lemma, this amounts to a number of satisfiability
tests that is double exponential in n, where each KB is exponential in the size of n. As shown
in the remainder of [21], each such satisfiabiltiy test can be performed in time exponential to
the size of the KB, so that we obtain that the overall decision procedure runs in time double
exponential in n.

Lemma 17. For a given natural number n, entailment of disjunctions over CQs from SHOI-
KBs can be decided in time double exponential in n if

24

• the size of the KB is at most exponential in n,

• the number of CQs in the disjunction is at most exponential in n, and

• the size of each CQ is polynomial in n.

Proof. where we inspect the procedure presented in [11] deciding entailment of regular path
queries (RPQs) in ZOI-KBs. Regular path queries are a generalisation and UCQs, and ZOI is
an extension of SHOI, so that this procedure can also be used to decide UCQ entailment for
SHOI-KBs. The authors in [11] reduce UCQ-entailment to the emptiness problem for one-way
non-deterministic parity tree automata (1NPAs). Specifically, given a ZOI KB K and a RPQ q,
they construct a 1NPA AK6|=q which accepts the empty language iff K |= q. We first give an
overview over the main ideas, before we argue why this approach can decide bounded CQs as
in the Lemma in double-exponential time. Specifically, the authors exploit the fact that ZOI
has the forest model property for query-entailment, that is, query entailment from ZOI-KBs K
can be completely characterized by restricting to models of K that can be mapped to a labeled
forest where every node represents a domain element, edges correspond to role-connections and
the roots of the forest to the named individuals, and every role-connection that does not go to a
named individual has a corresponding edge in the forest. To characterise these forest models
by means of automata, they represent forest-interpretations directly in labeled trees of fixed
branching degree, where the branching degree is bounded by the KB and nodes are labeled
with sets of individual, concept and role names. Here, the role names refer to the incoming
edge, and individual names only occur on the direct successors of the root [11, Definition 3.7
and beginning of Section 4]. They then construct a fully enriched automaton (FEA) with a
polynomial number of states and a constant index, which they step-wise translate into an 1NPA
of AK accepting exactly those labeled trees that correspond to a forest-shaped model of K. AK
has a double-exponential number of states and a constant index2.

To capture query entailment, they define another 1NPA A¬q which accepts exactly those labelled
trees that correspond to a forest-shaped interpretation in which the query q is not entailed, and
build the intersection of the automata AK and A¬q, which is the final 1NPA AK6|=q. If AK6|=q is
empty, that is, the language of accepted trees is empty, there cannot be a forest-shaped model
of K in which q is not entailed, and correspondingly, K |= q.

While [11] only briefly sketch the automaton A¬q, a construction of an automaton accepting
the same language is described in detail in [12]: this automaton has an exponential number of
states while its index is exponential. The relevant construction in [12, Section 5] can be easily
adapted so that number of states and index depend only on the size of the query, as the only
relevant factors are the variables, concept and role names occurring in it.

It is not hard to see that for a UCQ q = q1 ∨ . . . ∨ qm the automaton A¬q is equivalent to the
intersection of the automata A¬q1 , . . ., A¬qm , as the disjuncts can be tested independently on a
given interpretation. Now the number of states and the index of the intersection of two 1NPAs
is determined as follows [12, Proposition 2.15]: Let Q(A) denote the states of A and ind(A) its
index, then

ind(A1 ∩A2) = O(f(A1,A2))

and
|Q(A1 ∩A2)| ≤ 2O(f(A1,A2)2) · f(A1,A2) · |Q(A1)| · |Q(A2)|,

2The authors only explicitly spell out the size of the two-way alternating parity tree (2APA) which they
construct in the second-last step of their transformation and then translate to the 1NPA. The number of states
of the 2APA is polynomially bounded in the size of K and has a constant index. However, according to [12,
Proposition 2.12], the transformation comes with an exponential blow-up in the number of states, while it keeps
the index. Therefore, the final 1NPA AK constructed here has a double-exponential number of states and a
constant index.

25

where f(A1,A2) = A1 + A2 + 1. Let A′¬q ≡ A¬q denote the intersection of Aq1 , . . ., Aqn
. We

obtain that

ind(A′¬q) = O

 ∑
1≤i≤m

ind(A¬qi
) + 1

 ,

and

|Q(A′¬q)| ≤ 2
O

((∑
1≤i≤n

ind(A¬qi
)+1
)2m
)
·

 ∑
1≤i≤n

ind(A¬qi
) + 1

 ·Π1≤i≤n|Q(A¬qi
)|

Since for each A¬qi
, the ind(A¬qi

) is single exponential in the size of qi, and |Q(A¬qi
)| is double

exponential in the size of qi, we obtain that, provided that q is shaped as in the lemma, ind(A′¬q)
is single exponential in n and |Q(A′¬q)| is double exponential in n, and the same holds for
A′K6|=q = AK ∩A′¬q. Emptiness of 1NDAs A can be decided in time O(|Q(A)|ind(A)), which is
double exponential in n for A′K6|=q. We obtain that for SHOI-KBs K, entailment of UCQs q can
be decided in time double exponential in n, provided that the size of K and the number of CQs
in q is exponentially bounded in n and the size of each CQ is polynomially bounded in n.

In connection with Lemmata 14, Lemmata 15, 16 and 17 now allow to prove almost all cases in
Lemma 6. For the only remaining case where L = SHQ and NRrig = ∅, we refer to [3, Section 6],
where r-satisfiability is considered in the context of TQ-satisfiability in non-probabilistic, temporal
KBs.

Lemma 6. Wrt. the size of K and φ, r-satisfiability for L-TPKBs can be decided in

1. NExpTime for L = ELH,

2. NExpTime for L = SHQ if NRrig = ∅,

3. 2-ExpTime for L ∈ {SHIQ,SHOQ,SHOI}, and

4. it is decidable for L = ALCHOIQ.

A.4 Complexity Upper Bounds

We are now ready to prove the complexity upper bound.

Lemma 18. Given the mappings S : ΩK → 22{q1,...,qm} and a : ΩK × J1, nK→ 2{q1,...,qm} s.t. S
is r-satisfiable wrt. a, it can be decided in ExpSpace whether there exists a quasi-model for φ
in K wrt. S and a.

Proof. By Lemma 7, there exists a quasi-model Q1, . . . as in the lemma iff there exists a periodic
quasi-model of the form

Q1, . . . Qm(Qm+1, . . . Qm+o)ω,

where both m and o are double-exponentially bounded.

To verify the existence of such a quasi-model in (non-deterministic) exponential space, we proceed
as follows. We first guess the numbers m and o, which both require at most exponentially many
bits in binary representation. We then guess the quasi-states Qi one after the other, keeping
always two proceeding quasi-states in memory, and verify that they satisfy the Conditions Q1–
Q3, and additionally that ψ1 Uψ2 ∈ Qi(w) iff ψ2 ∈ Qi(w) or ψ1 Uψ2 ∈ Qi+1(w), and similarly
for queries of the form ψ1Sψ2. To verify that each S/U -formula is eventually satisfied, we keep

26

a set of those queries for each possible world that have not been satisfied yet, which we update
at each time point. In the same manner, we check whether the negation of a S/U-formula is
satisfied. After we guessed the quasi-state Qm+1, we store this quasi-state in memory, as well
as all S/U-queries that still have to be satisfied at this point. We then proceed until Qm+o+1,
and verify that all S/U-queries from Qm+1 have been satisfied in the meanwhile, and that
Qm+o+1 = Qm+1. Since NExpSpace = ExpSpace, the above procedure decides existence of a
quasi-model in exponential space.

Theorem 8. The complexity upper bounds for general TPQs in Figure 1 hold.

Proof. Entailment of a query φ corresponds to non-satisfiability of the query ¬φ, and both com-
plexity classes ExpSpace and 2-ExpTime are closed under complement. To decide satisfiability
of a TPQ φ with negations in a TPKB K, we proceed as follows. We iterate over the (double
exponentially many) different possible mappings S and a, each of which require only exponential
space. For each pair S, a, we first verify whether S is r-satisfiable wrt. a, and then whether
there exists a quasi-model that is compatible with S and a. By Lemma 18, the last test takes
exponential space in each iteration. The only step that differs depending on the DL in question
and which rigid names we allow is verifying r-satisfiability, which by Lemma 6, can be decided
in NExpTime (and therefore in ExpSpace) for L = EL, as well as for L = SHQ provided that
NRrig = ∅. For L ∈ {SHIQ,SHOQ,SHOI}, it can be decided in 2-ExpTime. We thus obtain
the required complexity bounds. For L = ALCHOIQ, it suffices to use that r-satisfiability is
decidable for this logic.

A.5 Positive Temporal Probabilistic Queries

We first establish the complexity bounds for the non-probabilistic case, that is, entailment of
temporal queries (TQs), which are TPQs without probability operators, from temporal knowledge
bases (TKBs), which are TPKBs without probabilities different from 1.

Lemma 19. Entailment of positive TQs is in P wrt. data complexity and NP complete wrt.
combined complexity, even if NCrig 6= ∅ and NRrig 6= ∅.

Proof. [7] show that query entailment is in P data complexity, even if NRrig 6= ∅. The only
remaining case is the combined complexity for EL TKBs.

To establish the combined complexity, we describe an NP procedure for a given positive TQ φ
and EL TKB 〈T , (Ai)i∈J1,nK〉. For X ∈ NC ∪ NR, denote by X(i) the name X if X ∈ Nrig, and a
fresh name Xi if X 6∈ Nrig, and for a given axiom/assertion/query α, denote by α(i) the result of
replacing every name X in α by X(i). Define an atemporal KB K′ = {T ′,A′} based on the TKB
K = 〈T , (Ai)i∈J1,nK〉 by T ′ = {α(i) | α ∈ T , i ∈ J1, n+1K} and A′ = {α(i) | α ∈ Ai, i ∈ J1, n+1K}.
K′ is polynomial in K, and one can show that for any axiom/assertion/CQ α and i ∈ J1, n+ 1K,
we have K, i |= α iff K′ |= α(i) [8].

In order to decide entailment of a TQ φ, we guess a certificate that assigns to each pair (i, ψ)
of a time point i ∈ J1, n + ntK and a CQ ψ occurring in φ a truth value, and, in case true
is assigned to such a pair (i, ψ), a certificate for the entailment of ψ at i (such a certificate
exists since entailment of CQs is in NP wrt. combined complexity). For any time point after n,
the entailment of a CQ solely depends on the rigid names. Therefore, for every CQ q in φ, if
K, n+ 1 |= q, then K, n+ i |= q for all i > 1. Based on the guessed truth-assignment of CQs,
we can now evaluate the entailment of φ as in the propositional case, which for LTL-formulae
without negation symbols can be done in P [9]. As this certificate can be guessed and verified
in non-deterministic polynomial time, we obtain an NP-upper bound.

27

The proof of Theorem 10 further depends on the following lemma, which limits the time points
we have to consider explicitly.

Lemma 20. Let φ be a TPQ, K = 〈T , (Ai)i∈J1,nK〉 a TKB and nt be the maximal nesting depth
of temporal operators in φ. Then, for every i > n+ nt, K, i |= φ iff K, n+ nt + 1 |= φ.

Proof. We do the proof by structural induction on φ, and distinguish the cases based on the
structure of φ.

1. If φ is a CQ, note that the only way in which K restricts its models for time points after n
is via its rigid names. Therefore, we have for all i > n, K, i |= φ iff K, n+ 1 |= φ.

2. If φ is of one of the forms ψ1 ∧ψ2 and ψ1 ∨ψ2, the hypothesis follows by direct application
of the inductive hypothesis.

3. If φ is of the form #−ψ, we have by inductive hypothesis that for all i > n + nt − 1,
K, n+ nt + 1 |= ψ iff K, i |= ψ iff K, i+ 1 |= #−ψ iff K, j |= φ for all j > n+ nt.

4. If φ is of one of the forms #ψ, ♦ψ, ♦−ψ, 2ψ, 2−ψ, ψ1 Uψ2 or ψ1Sψ2, we note that by
inductive hypothesis, for all i > n+ nt − 1 K, i |= ψ (ψ1, ψ2) iff K, n+ nt |= ψ (ψ1, ψ2),
which implies K, i |= φ iff K, n+ nt + 1 |= ψ for all i > n+ nt − 1, and consequently also
K, i |= φ iff K, n+ nt + 1 |= φ for all i > n+ n1.

We can now provide the upper bounds stated in Theorem 10. A central technique used for
this is to flatten TPQs using an abstraction of the probability expressions P≥p(ψ) occurring in
the query. We identify each such expression with the assertion Ap,ψ(a), where Ap,ψ is fresh,
which we add to the ipABox Ai once we established that P≥p(ψ) is entailed at i. To capture
this abstraction in a given TPQ ψ, we denote by ψf the result of replacing every outermost
sub-query in ψ of the form P≥p(ψ) with ∃x.Ap,ψ(x).

Lemma 21. Entailment of TPQs from EL- and DL-Lite-TPKBs is in PP wrt. data complexity,
even if NRrig 6= ∅. It is in PPNP wrt. combined complexity if the nesting depth of probability-
operators in the query is bounded, and otherwise in PPP.

Proof. Before we consider nested probability operators, we consider the basic case of simple
TPQs of the form P≥p(φ), where φ does not contain any probability operators. Entailment
of such a TPQ can be decided by checking for which possible world w ∈ ΩK, w, i |= φ, and
then summing the probabilities of these worlds. This can be implemented by a probabilistic
Turing machine (which uses an NP-oracle in the case of the combined complexities), which
constructs a single possible world w = (A′i)i∈J1,nK on each branch, while taking care that the
probabilities of the possible worlds are reflected by the probabilities in the Turing machine. For
each i ∈ J1, nK and α: p ∈ Ai, the machine adds α to A′i on b1 succeeding branches, and does
not add α to A′i on b2 succeeding branches, where b1

b1+b2
= p. After all axioms are processed,

accept if 〈T , (A′i)i∈J1,nK〉, i |= φ, which can be decided in P data complexity and NP combined
complexity. By adding further dummy states to the Turing machine, we can ensure that the
machine accepts at least half of its computation paths iff K |= P≥p(φ), so that entailment of the
simple TPQ φ is decided in PP data complexity and PPNP combined complexity.

To decide entailment of TPQS that contain several probability operators, we proceed in k rounds,
where k is the maximal nesting depth of probability operators in φ, and test in each round for
the entailment of probabilistic sub-queries at different time points. Let nt denote the maximal
nesting depth of temporal operators in φ. It can be shown that we have to consider only the

28

first n+nt time points. In each round r ∈ J1, kK, we iterate over all subformulae in φ that are of
the form P≥p(ψ), where ψ contains at most r − 1 nestings of probability operators, and over all
time points i ∈ J1, n+ nt + 1K, and decide whether K, i |= P≥p(ψf). If K, i |= P≥p(ψf), we add
Ap,ψ(a) to Ai. In the last round, we processed all probability operators, and decide whether
K |= P≥1(φk). Provided the nesting depth of probability operators is bounded, (as is always
the case for data complexity), we can now use the fact that PP (and therefore also PPNP) is
closed under k-round polynomial truth table reductions [19]. These are defined as a sequence
of k sets of polynomially many polynomial truth-table reductions, where k is a constant, and
each truth-table reduction only depends on the input and the results of previous rounds. If the
nesting-depth of probability operators is bounded, the above procedure can be described by
such a reduction, and we obtain the PP and PPNP upper bounds. Regarding the combined
complexity with unbounded nesting of probability operators, we note that the above procedure
can be implemented by a polynomial Turing machine that decides entailment of simple TPQs
using a PPNP oracle, so that we obtain a PPPNP

upper bound. Now, using Toda’s result that
PPPH ⊆ PPP [33], we can internalise all calls to the PPNPoracle in a PPP machine, so that we
obtain a PPP upper bound for the combined complexity without bound on the nesting-depth of
probability operators.

For the data complexity, our upper bound is matched by PP-hardness of the atemporal case [24].
We could not find a lower bound for the combined complexity in the literature for our precise
setting (ipABoxes or tuple-independent databases). We therefore provide a proof for it here.

Lemma 22. Entailment of TPQs from TPKBs is PPNP-hard.

Proof. We only need to provide a lower bound for the combined complexity. We do the proof
by reduction of the PPNP complete problem M∃CNF3: given a QBF-formula of the form
φ = ∃x1, . . . , xn.φ

′, where φ is a CNF3-formula over the variables {x1, . . . , xn, y1, . . . , ym} with
clauses {c1, . . . , co} , decide whether at least half of assignments of truth values to the variables
y1, . . . , ym make φ true [35]. As it turns out, we only need a single ipABox for this. The ipABox
contains for every variable xi, i ∈ J1, nK the assertions B(x+

i) and B(x−i), and for every variable
yi, i ∈ J1,mK the assertions B+

i (y+
i): 0.5 and B−i (y−i): 0.5. Intuitively, B+

i (y+
i) is entailed in

a possible world that corresponds to an assignment of true to the variable yi, while B−i (y−i)
is entailed in a possible world that corresponds to an assignment of false to the variable yi.
Since all probabilities are independent, we will have worlds that correspond to “invalid variable
assignments”, in the sense that they either do not assign a truth value to every variable, or
multiple truth values. We will take care of this later. We use the TBox axioms B+

i v Bi,
B−i v Bi, B+

i v B+, B−i v B−, B+ v B and B− v B to abstract away from the specific
assignment if needed.

For every literal l, denote by v(l) the variable in l. For every clause cj = l1 ∨ l2 ∨ l3, c ∈ J1, oK,
and truth valuation π that makes cj true, add the assertions

M(cj , π),M(π, l′1),M(π, l′2),M(π, l′3),

where for i ∈ J1, 3K, l′i = v(li) if π(li) = true, and l′1 = ¬v(li) if π(li) = false. As last assertion,
we add H(a): 0.5, which only serves the purpose of being satisfied in at least half of the possible
worlds.

Our CQ is now composed of three queries q1, q2 and q3 defined next. The query

q1 = ∃y1, . . . , ym : B1(y1) . . . Bn(ym)

is entailed in every possible world which assigns a truth value to each variable yi, i ∈ J1,mK.
The query

q2 = ∃y : B+(y) ∧B−(y)

29

is entailed in the possible worlds that assign two truth values to some variable y. Finally, the
query

q3 = ∃x1, . . . xn, y1, . . . ym, z1, . . . , zo :
∧

i∈J1,oK

τ(ci),

where for ci = l1 ∨ l2 ∨ l3,

τ(ci) =M(ci, zi),M(zi, v(l1)),M(zi, v(l2)),M(zi, v(l3))

∧
∧

i∈J1,3K

B(v(li),

is satisfied in all possible worlds that correspond to an assignment that make φ true. q3 can
only be entailed in a possible world in which q1 is also entailed (otherwise, we lack variables for
some of the clauses). The query (q1 ∧ q2) ∨ (H(c) ∧ q2) is entailed in (1) all possible worlds that
correspond to an assignment that is complete but assigns to at least one variable two values
and (2) half of the possible worlds that correspond to assignments that are both incomplete and
assign two values to a variable. Due to symmetry, this query is thus entailed in exactly half of
those possible worlds that do not correspond to a valid variable assignment. Consequently, the
query

q = (q1 ∧ q2) ∨ (H(c) ∧ q2) ∨ q3

is entailed in more than half of all possible worlds iff φ is satisfied for more than half of its valid
assignments, so that P≥0.5(q) is entailed iff φ is satisfied by at least half of the assignments.
Note furthermore that both the TPKB and the TPQ are polynomial in the input, so that we
obtain the PPNP lower bound.

30

	Introduction
	Preliminaries
	Temporal Probabilistic Knowledge Bases and Queries
	Hardness of TPQ Entailment
	Deciding TPQ Entailment
	Positive TPQs
	Conclusion
	Acknowledgements
	Proofs of Theorems and Lemmata
	Lower Bounds
	Correctness of the Decision Procedure
	Deciding r-Satisfiability
	Complexity Upper Bounds
	Positive Temporal Probabilistic Queries

