
Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

THE DISTRIBUTIVE, GRADED LATTICE OF
EL CONCEPT DESCRIPTIONS AND ITS
NEIGHBORHOOD RELATION
(EXTENDED VERSION)
LTCS-REPORT 18-10

Francesco Kriegel
francesco.kriegel@tu-dresden.de

16th November 2018



ABSTRACT

For the description logic EL, we consider the neighborhood relation which is induced by the sub-
sumption order, and we show that the corresponding lattice of EL concept descriptions is distributive,
modular, graded, and metric. In particular, this implies the existence of a rank function as well as the

existence of a distance function.
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1. INTRODUCTION

Description Logics (Baader, Horrocks, Lutz, and Sattler, 2017) are a family of well-founded languages
for knowledge representation with a strong logical foundation as well as a widely explored hierarchy

of decidability and complexity of common reasoning problems. The several reasoning tasks allow for

an automatic deduction of implicit knowledge from given explicitly represented facts and axioms, and

many reasoning algorithms have been developed. Description Logics are utilized in many different

application domains, and in particular provide the logical underpinning ofWeb Ontology Language (OWL)
(Hitzler, Krötzsch, and Rudolph, 2010) and its profiles.

EL is an example of a description logic with tractable reasoning problems, i.e., the usual inference
problems can be decided in polynomial time, cf.Baader, Brandt, and Lutz in (Baader, Brandt, and

Lutz, 2005). From a perspective of lattice theory, EL has not been deeply explored yet. Of course, it is
apparent that the subsumptionv with respect to some TBox T constitutes a quasi-order. Furthermore,
in description logics supremums in the corresponding ordered set are usually called least common
subsumers, and these exist in all cases if either no TBox is present, or if greatest fixed-point semantics
are applied. Apart from that not much is known about the lattice of EL concept descriptions. In this
document, we shall consider the neighborhood relation which is induced by the subsumption order, and

we shall show that the lattice of EL concept descriptions is distributive, modular, graded, and metric.
In particular, this implies the existence of a rank function as well as the existence of a distance function.

This report extends a previous publication (Kriegel, 2018b) by solving its remaining problems.
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2. THE DESCRIPTION
LOGIC EL AND SOME VARIANTS

In this section we shall introduce the syntax and semantics of the light-weight description logic EL
Baader, Brandt, and Lutz, 2005; Baader, Horrocks, Lutz, and Sattler, 2017.

2.1. SYNTAX

Throughout the whole document assume that Σ is a signature, i.e., Σ = ΣC ]ΣR is a disjoint union

of a set ΣC of concept names and a set ΣR of role names. An EL concept description over Σ is a term
that is constructed by means of the following inductive rule where A ∈ ΣC and r ∈ ΣR.

C ::= > | A | CuC | E

r. C

The set of all EL concept descriptions over Σ is denoted by EL(Σ). We call> the top concept description,
CuD the conjunction of C andD, and

E

r. C the existential restriction of C with respect to r. Furthermore,
we call concept names and existential restrictions atomic.
As syntactic sugar, we also allow using words of role names within existential restrictions: we de-

fine

E

ε. C := C and

E

rw. C :=

E

r.

E

w. C for any role name r ∈ ΣR and for each non-empty role

word w ∈ Σ+
R . Furthermore, if C is a finite set of EL concept descriptions, then the conjunction

d
C is, modulo equivalence, defined as > if C is empty and otherwise as the concept description

C1 u (C2 u (. . . (Cn−1 uCn) . . . )) where {C1, . . . , Cn} is an arbitrary enumeration of C. Alternatively,
we could also define

d
∅ := > as well as

d
C := C u

d
(C \ {C}) where C is an arbitrary element

of C. As we shall see in the next section on the semantics, these two ambivalent definitions do not
cause any problems and indeed always denote equivalent concept descriptions, since (EL(Σ),u,>)
is a commutative monoid in which each element is idempotent.

The size ||C|| of an EL concept description C is the number of nodes in its syntax tree, and we can
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recursively define it as follows.

||>|| := 1

||A|| := 1

||CuD|| := ||C||+ 1+ ||D||
|| Er. C|| := 1+ ||C||

The role depth rd(C) of some EL concept description C is recursively defined as follows.

rd(>) := 0

rd(A) := 0

rd(CuD) := rd(C)∨ rd(D)

rd(

E

r. C) := 1+ rd(C)

For a role-depth bound d ∈N, we denote by EL(Σ)�d the set of all EL concept descriptions with a role
depth not exceeding d. The set Sub(C) of all subconcepts of an EL⊥ concept description C is recursively
defined as follows.

Sub(>) := {>}
Sub(A) := {A}

Sub(CuD) := {CuD} ∪ Sub(C)∪ Sub(D)

Sub(

E

r. C) := { E

r. C} ∪ Sub(C)

A concept inclusion is an expression C v D where both the premise C as well as the conclusion D
are concept descriptions. A terminological box (abbrv.TBox) is a finite set of concept inclusions. For a
CI C v D, we define its set of subconcepts as Sub(C v D) := Sub(C)∪ Sub(D), and furthermore for

a TBox T , its set of subconcepts is defined as Sub(T ) :=
⋃{Sub(C v D) | C v D ∈ T }.

2.2. SEMANTICS

An interpretation I := (∆I , ·I) over Σ consists of a non-empty set ∆I of objects, called the domain, and
an extension function ·I that maps concept names A ∈ ΣC to subsets AI ⊆ ∆I and maps role names
r ∈ ΣR to binary relations rI ⊆ ∆I ×∆I . Then, the extension function is canonically extended to all
EL concept descriptions by the following definitions.

>I := ∆I

(CuD)I := CI ∩DI

(

E

r. C)I := { δ ∈ ∆I | (δ, ε) ∈ rI for some ε ∈ CI }

A concept inclusion C v D is valid in I if CI ⊆ DI . We then also refer to I as amodel of C v D, and
denote this by I |= C v D. Furthermore, I is amodel of a TBox T , symbolized as I |= T , if each
concept inclusion in T is valid in I. The relation |= is lifted to TBoxes as follows. A concept inclusion
C v D is entailed by a TBox T , denoted as T |= C v D, if each model of T is a model of C v D too.

2. The Description Logic EL and Some Variants 3



We then also say that C is subsumed by D with respect to T . A TBox T entails a TBoxU, symbolized as
T |= U, if T entails each concept inclusion inU, or equivalently if each model of T is also a model ofU.
Two EL concept descriptionsC andD are equivalentwith respect to T , andwe shall write T |= C ≡ D,

if T |= {C v D, D v C}. As a further abbreviation, let T |= C vp D if both T |= C v D and
T 6|= C w D, and we then say that C is strictly subsumed by D with respect to T . We say that two EL
concept descriptions C and D are incomparable with respect to T , written T |= C ‖ D, if T 6|= C v D
as well as T 6|= C w D holds true. In the sequel of this document we may also write C ≤Y D instead of
Y |= C ≤ D where Y is either an interpretation or a terminological box and≤ is some suitable relation
symbol, e.g.,v,vp ,≡, or ‖.

2.3. COMPUTATIONAL COMPLEXITY

Reasoning in the description logic EL⊥ is tractable. More specifically, the subsumption problem, which
is defined as follows, is decidable in deterministic polynomial time, cf. (Baader, Brandt, and Lutz, 2005;

Baader, Lutz, and Brandt, 2008).

Instance: Let T ∪ {C v D} be an EL⊥ TBox.
Question: Is C subsumed by D w.r.t. T ?

Since the satisfiability problem in propositional Horn logic is P-complete and can be reduced to the

subsumption problem for EL⊥, we conclude that the latter is P-complete as well.

2.4. REDUCED FORMS

It is not hard to find EL concept descriptions that are equivalent, i.e., have the same extension in all
interpretations, but are not equal. It is therefore helpful for technical details to have a unique normal
form for EL concept descriptions. According to Baader and Morawska, 2010; Küsters, 2001 an EL
concept description C can be transformed into a reduced form that is equivalent to C by exhaustive
application of the reduction rule Du E 7→ D whenever ∅ |= D v E to the subconcepts of C (modulo
commutativity and associativity of u). It is immediately clear that each EL concept description C is
essentially a conjunction of atomic EL concept descriptions. In particular, if we define Conj(C) as the
set of all atomic top-level conjuncts in C, then C has the form

d
Conj(C) (modulo commutativity and

associativity of u). Furthermore, for some role name r ∈ ΣR, we define the set of r-successors of C as

Succ(C, r) := {D | E

r. D ∈ Conj(C) }.

2.5. THE LATTICE OF CONCEPT DESCRIPTIONS

We do not refrain basic definition from order theory and lattice theory, and rather refer the interested

reader to the following references: Birkhoff (1940), Davey and Priestley (2002), Ganter and Wille (1999),

and Grätzer (2002).

It is readily verified that the subsumptionv∅ constitutes a quasi-order on EL(Σ). Hence, the quotient
of EL(Σ) with respect to the induced equivalence ≡∅ is an ordered set. In what follows we will not

distinguish between the equivalence classes and their representatives. Furthermore,> is the greatest

2. The Description Logic EL and Some Variants 4



element, and the quotient set EL(Σ)/∅ is a lattice that we shall symbolize by EL(Σ). It is easy to verify
that the conjunction u corresponds to the finitary infimum operation. In a description logic allowing for
disjunctionst, it dually holds true that the disjunctiont corresponds to the finitary supremum operation.
Unfortunately, this does not apply to our considered description logic EL. As an obvious solution, we
can simply define the notion of a supremum specifically tailored to the case of EL concept descriptions
as follows. The supremum or least common subsumer (abbrv.LCS) of two EL concept descriptions C
and D is an EL concept description E with the following properties.

1. C v∅ E and D v∅ E

2. For each EL concept description F, if C v∅ F and D v∅ F, then E v∅ F.

Since all least common subsumers of C and D are unique up to equivalence, we may denote a
representative of the corresponding equivalence class by C∨D. It is well known that LCS-s always exist
in EL; in particular, the least common subsumer C ∨D can be computed, modulo equivalence, by
means of the following recursive formula.

C∨D =
l

(ΣC ∩Conj(C)∩Conj(D))

u
l
{ E

r. (E∨ F) | r ∈ ΣR,

E

r. E ∈ Conj(C), and

E

r. F ∈ Conj(D) }

It is easy to see that the equivalence≡∅ is compatible with both u and ∨. Of course, the definition
of a LCS can be extended to an arbitrary number of arguments in the obvious way, and we shall then

denote the LCS of the concept descriptions Ct, t ∈ T, by
∨{ Ct | t ∈ T }. We say that two concept

descriptions C, D ∈ EL(Σ) are orthogonal or disjoint w.r.t.∅, written∅ |= C ⊥ D or C ⊥∅ D, if it holds
true that C∨D ≡∅ >.
Let T be an EL TBox over some signature Σ. For any EL concept description C over Σ, we denote

by [C]T the equivalence class of C with respect to≡T , that is, we set it as follows.

[C]T := {D | D ∈ EL(Σ) and C ≡T D }

Let C ⊆ EL(Σ) be a set of concept descriptions and let T be an EL TBox. The quotient of C w.r.t. T
consists of all equivalence classes w.r.t.≡T that have representatives in C, that is, we set

C/T := { [C]T | C ∈ C }.

Furthermore,MinT (C) is the set of concept descriptions from C that are most specific w.r.t. T ; analo-
gously,MaxT (C) contains those concept descriptions from C which are most general w.r.t. T . Formally,
we define the following.

MinT (C) := {C | C ∈ C and there does not exist some D ∈ C such that D vp T C }
MaxT (C) := {C | C ∈ C and there does not exist some D ∈ C such that C vp T D }

2.6. SIMULATIONS AND CANONICALMODELS

A pointed interpretation is a pair (I, δ) consisting of an interpretation I and an element δ ∈ ∆I . Now
let (I, δ) and (J , ε) be two pointed interpretations, and assume that Γ ⊆ Σ. A Γ-simulation from (I, δ)

to (J , ε) is a relationS ⊆ ∆I ×∆J that satisfies (δ, ε) ∈ S as well as the following conditions for all

pairs (ζ, η) ∈ S.

2. The Description Logic EL and Some Variants 5



1. For all concept names A ∈ ΓC, if ζ ∈ AI , then η ∈ AJ .

2. For all role names r ∈ ΓR, if there is an element θ ∈ ∆I such that (ζ, θ) ∈ rI , then there is an
element ι ∈ ∆J such that (η, ι) ∈ rJ and (θ, ι) ∈ S.

We then also writeS : (I, δ) ⇀∼Γ (J , ε), and to express the mere existence of a Γ-simulation from (I, δ)

to (J , ε) wemay write (I, δ) ⇀∼Γ (J , ε). Furthermore, if Γ = Σ, then we speak of simulations instead
of Γ-simulations, and we leave out the subscript Γ, i.e., we use the symbol⇀∼ instead of⇀∼Γ.

Assume that (I, δ) ⇀∼ (J , ε). It is easily verified that for all EL concept description C, it holds true
that δ ∈ CI only if ε ∈ CJ . Further important notions and statements related to simulations are cited
from Lutz and Wolter (2010) in the following.

(Lutz andWolter, 2010, Definition 11). Let T be an EL TBox, and C be an EL concept description.
The canonical model IC,T of T and C consists of the following components.

∆IC,T := {C} ∪ {D | E

r ∈ ΣR :

E

r. D ∈ Sub(T )∪ Sub(C) }

·IC,T :


A 7→ {D | D vT A } for any A ∈ ΣC

r 7→
{
(D, E)

∣∣∣∣∣ D vT

E

r. E and

E

r. E ∈ Sub(T ),
or

E

r. E ∈ Conj(D)

}
for any r ∈ ΣR

Furthermore, we set IC := IC,∅ for any C ∈ EL(Σ). 4

(Lutz andWolter, 2010, Lemma 12). Let T be an EL TBox, and C be an EL concept description. Then,
the following statements hold true.
1. D ∈ DIC,T for all D ∈ ∆IC,T

2. IC,T |= T

3. (IC,T , E) ⇀∼ (ID,T , E) for all D ∈ EL(Σ) and all E ∈ ∆IC,T ∩∆ID,T �

(Lutz andWolter, 2010, Lemma 13). Let T be an EL TBox, and C be an EL concept description.
1. For all models I of T and all objects δ ∈ ∆I , the following statements are equivalent.

a) δ ∈ CI

b) (IC,T , C) ⇀∼ (I, δ)

2. For all EL concept descriptions D, the following statements are equivalent.
a) C vT D

b) C ∈ DIC,T

c) (ID,T , D) ⇀∼ (IC,T , C) �

As an immediate corollary, we get that the following two statements are equivalent for all EL concept
descriptions C and D, and thus yield a recursive procedure for checking subsumption with respect to ∅.

1. C v∅ D

2. Conj(D, ΣC) ⊆ Conj(C, ΣC), and for each existential restriction

E

r. F ∈ Conj(D), there is an

existential restriction

E

r. E ∈ Conj(C) such that E v∅ F.

2. The Description Logic EL and Some Variants 6



2.7. EDIT OPERATIONS

Let (V,≺) be tree-shaped directed graph with root vertex v0 and such that all edges point away from

v0. Then the induced partial order ≤ on V is defined as the reflexive transitive closure of≺. Obviously,
the root vertex v0 is minimal with respect to≤, and arbitrary, but not nullary, infima exist w.r.t.≤. For
a vertex v ∈ V, we define its prime filter as ↑ v := {w ∈ V | v ≤ w }; the filter of a subsetU ⊆ V is
defined as ↑U :=

⋃{ ↑u | u ∈ U }.
We say that an interpretation I is tree-shaped if the directed graph (∆I ,

⋃{ rI | r ∈ ΣR }) is tree-
shaped. We shall denote the induced partial order as ≤I , or just as ≤ if it is clear from the context
which interpretation is meant. Analogously, prime filters are symbolized as ↑I δ, or simply as ↑ δ, for

objects δ ∈ ∆I ; and similarily for filters.

Definitio 2.7.1. Wedefine the following edit operations on finite tree-shaped interpretations. For this pur-
pose let I be such a finite tree-shaped interpretation with root δ and which is defined over a signature Σ.

1. For each ε ∈ ∆I and each A ∈ ΣC, let delete(I, ε, A) be the interpretation with the following

components.

∆delete(I,ε,A) := ∆I

Adelete(I,ε,A) := AI \ {ε}
Bdelete(I,ε,A) := BI for each B ∈ ΣC \ {A}
rdelete(I,ε,A) := rI for each r ∈ ΣR

2. For each ε ∈ ∆I \ {δ} and each n ∈ N, let duplicate(I, ε, n) be the interpretation with the
following components.

∆duplicate(I,ε,n) := (∆I \ ↑I ε)∪ ({1, . . . , n}× ↑I ε)

Aduplicate(I,ε,n) := (AI \ ↑I ε)∪ ({1, . . . , n}× (AI ∩ ↑I ε))

rduplicate(I,ε,n) := (rI \ (∆I ×↑I ε))

∪ { (ζ, (i, ε)) | (ζ, ε) ∈ rI and i ∈ {1, . . . , n} }
∪ { ((i, η), (i, θ)) | (η, θ) ∈ rI ∩ (↑I ε×↑I ε) and i ∈ {1, . . . , n} }

We say that a finite tree-shaped interpretation J is constructed from I with edit operations if there is
a finite sequence of edit operations starting with I and ending with J . Accordingly, we say that an
EL(Σ) concept description D is constructed from an EL(Σ) concept description C with edit operations
if (an isomorphic copy of) the canonical model ID is constructed from the canonical model IC with

edit operations. 4

Note that we do not allow for applications of the duplicate operation to the root of an interpretation.

This ensures that the result is always a tree-shaped finite interpretation too. Later in Section 3.1.2 we

are going to ignore this current restriction; it is readily verified that the result of the duplicate operation

applied to the root of a tree-shaped finite interpretation is a forest-shaped finite interpretation containing

some copies of the input interpretation.

Lemma2.7.2. LetC andD be EL concept descriptions over some signatureΣ. Then the following statements
are equivalent.

2. The Description Logic EL and Some Variants 7



1. C is subsumed by D with respect to the empty TBox.
2. D is constructed from C with edit operations.

Approbatio. Let C v∅ D and fix a homomorphism φ : (ID, D) ⇀∼ (IC, C). Set i := 1, IC,1 := IC, and

φ1 := φ. Apply the following rule exhaustively.

Find a minimal element δi ∈ ∆IC,i such that |φ−1
i ({δi})| 6= 1, and set ni := |φ−1

i ({δi})|. Then set

IC,i+1 := duplicate(IC,i, δi, ni),

and define the mapping φi+1 : ∆ID → ∆IC,i+1 as follows.

φi+1(ζ) := η if φi(ζ) = η and η ∈ ∆IC,i \ ↑IC,i
δi

φi+1(ζk) := (k, δi) if φ−1
i ({δi}) = {ζ1, . . . , ζni} and k ∈ {1, . . . , ni}

φi+1(ζ) := (k, η) if φi(ζ) = η and η ∈ ↑IC,i
δi \ {δi} and ζk ≤IC,i ζ for some k ∈ {1, . . . , ni}

Finally, increment i.

We shall prove that each φi is a homomorphism from (ID, D) to (IC,i, C). Please note that the
root node C always satisfies that φ−1

i ({C}) = {D}, and is henceforth left untouched. Consequently,
φi(D) = C holds true. Now consider an arbitrary element ζ ∈ ∆ID ; we proceed with a case distinction.

� Assume φi(ζ) = η and η 6≥IC,i δi, i.e., it holds true that φi+1(ζ) = η. Now if ζ ∈ AID , then η ∈
AIC,i , since φi is a homomorphism. Furthermore, η 6≥IC,i δi then implies that η ∈ AIC,i+1 as well.

Consider an r-successor ζ′ of ζ, i.e., an edge (ζ, ζ′) ∈ rID . Since φi is a homomorphism, it

follows that (φi(ζ), φi(ζ
′)) ∈ rIC,i . We need to show that also (φi+1(ζ), φi+1(ζ

′)) ∈ rIC,i+1 holds

true. Let φi(ζ
′) = η′, i.e., (η, η′) ∈ rIC,i . Two cases are now possible: either η′ 6≥IC,i δi, or

η′ = δi. In the first case it immediately follows that φi+1(ζ
′) = η′ and (η, η′) ∈ rIC,i+1 , that is,

(φi+1(ζ), φi+1(ζ
′)) ∈ rIC,i+1. In the second case we know that φ−1

i ({η′}) = {ζ1, . . . , ζni}, and
furthermore that (η, (k, η′)) ∈ rIC,i+1 as well as φi+1(ζk) = (k, η′) for all k ∈ {1, . . . , ni}. Since
ζ′ = ζk for some k, we conclude that φi+1(ζ

′) = (k, η′) and thus (φi+1(ζ), φi+1(ζ
′)) ∈ rIC,i+1.

� Let φi(ζ) = δi, i.e., there exists a k ∈ {1, . . . , ni} such that ζ = ζk and φi+1(ζ) = (k, δi). If

ζ ∈ AID for a concept name A ∈ ΣC, then δi ∈ AIC,i , and consequently (k, δi) ∈ AIC,i+1.

Assume that (ζ, ζ′) ∈ rID , and hence (φi(ζ), φi(ζ
′)) ∈ rIC,i . Since δi ≤IC,i φi(ζ

′), we can

immediately conclude that ((k, φi(ζ)), (k, φi(ζ
′))) ∈ rIC,i+1 , i.e., (φi+1(ζ), φi+1(ζ

′)) ∈ rIC,i+1.

� Suppose that φi(ζ) = η, δi <IC,i η, and ζk ≤ID ζ for some k ∈ {1, . . . , ni}. By definition
then φi+1(ζ) = (k, η). If ζ ∈ AID , then η ∈ AIC,i is immediate. The definition of IC,i+1 yields

(k, η) ∈ AIC,i+1.

Let (ζ, ζ′) ∈ rID , then we know that (φi(ζ), φi(ζ
′)) ∈ rIC,i . Since δi <IC,i φi(ζ) <IC,i φi(ζ

′), we

infer that ((k, φi(ζ)), (k, φi(ζ
′))) ∈ rIC,i+1 , i.e., (φi+1(ζ), φi+1(ζ

′)) ∈ rIC,i+1.

If ni = 0, then an application of the abovementioned rule would delete the whole subtree rooted at δi.

The following claim and its proof shows that this would not cause any problems and wemay safely do so.

Effatum 2.7.3. If δ ∈ ∆IC \Ran(φ), then ↑IC
δ∩Ran(φ) = ∅.
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Approbatio. Assume that δ ≤IC ε and φ(η) = ε. We shall justify the existence of an element ζ such

that φ(ζ) = δ. We do this by induction on the length ` of the path from δ to ε. If ` = 0, then δ = ε and

henceforth we may choose ζ := η. Now assume that (δ, δ′, . . . , ε) is a path of length `+ 1. By induction
hypothesis there exists an element ζ′ with φ(ζ′) = δ′. Now let ζ be the unique parent of ζ′, i.e., (ζ, ζ′) ∈
rID for some role name r ∈ ΣR. Since ζ is reachable from the root node, (φ(ζ), φ(ζ′)) = (φ(ζ), δ′) ∈ rIC

must hold true. However, we also know that (δ, δ′) ∈ rIC , and we can thus infer that φ(ζ) = δ.

Let IC,∗ be the interpretation and φ∗ the homomorphism constructed by the last possible application

of the above mentioned rule. Clearly, then φ∗ : (ID, D) ⇀∼ (IC,∗, C) is a bijective homomorphism. The
trees ID and IC,∗ can now only differ in the labels of vertices (and, of course, in the names of the

vertices). To remove these differences, the following rule shall be applied exhaustively. Beforehand,

set i := 1 and IC,∗,1 := IC,∗.

Find an element εi ∈ ∆IC,∗,i and a concept name Ai ∈ ΣC such that εi ∈ AIC,∗,i
i , but φ−1

∗ (εi) 6∈ AID
i .

Then set

IC,∗,i+1 := delete(IC,∗,i, εi, Ai),

and increment i.

Denote by IC,∗,∗ the last constructed interpretation after which no further rule application is pos-

sible. It is readily verified that then φ∗ : (ID, D) ⇀∼ (IC,∗,∗, C) is an isomorphism, i.e., φ∗ is a bijective
homomorphism and its inverse φ−1

∗ is a homomorphism too. Eventually, we have thus demonstrated

that D is constructed from C with edit operations.
For proving the other direction, we show that applying an edit operation to a concept description C

always yields a subsumer of C. By a simple induction on the length of the sequence of edit operations
the claim then follows.

� It is apparent that the identity is a homomorphism from (delete(I, ε, A), δ) to (I, δ) for arbitrary

interpretations I, objects δ, ε ∈ ∆I , and concept names A ∈ ΣC.

� Eventually, we define a homomorphism ψ : (duplicate(I, ε, n), δ) ⇀∼ (I, δ). Let ζ ∈ ∆I . If ζ 6≥I ε,

then ψ(ζ) := ζ. Otherwise, set ψ(k, ζ) := ζ for all k ∈ {1, . . . , n}. The proof that ψ is indeed a

homomorphism is obvious.

2.8. GREATEST FIXED-POINT SEMANTICS

We cite two description logics introduced by Lutz, Piro, and Wolter (2010b) that are extensions of EL
with greatest fixed-point semantics. According to (Lutz, Piro, and Wolter, 2010b, Theorem 10) there

are polynomial time translations between both, and furthermore reasoning in these extensions remains

P-complete, cf. (Lutz, Piro, and Wolter, 2010b, Theorem 12).

The description logic ELsi extends EL by the concept constructor

E

sim (I, δ) where (I, δ) is a pointed

interpretation such that I is finitely representable. The semantics of the additional concept con-
structor is defined as follows: for each interpretation J and any object ε ∈ ∆J , it holds true that
ε ∈ (

E

sim (I, δ))J if (I, δ) ⇀∼ (J , ε). As shown in (Lutz, Piro, and Wolter, 2010b, Lemma 7), every ELsi
concept description is equivalent to a concept description of the form

E

sim (I, δ), and furthermore,
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such an equivalent concept description can be constructed in linear time. Adding the bottom concept

description⊥ yields the description logic EL⊥si.
Furthermore, Lutz, Piro, and Wolter (2010a, Definition 28) define the nth characteristic concept descrip-

tion Xn(I, δ) of a pointed interpretation (I, δ) that has a finite active signature recursively as follows.

X0(I, δ) :=
l
{ A | A ∈ ΣC and δ ∈ AI }

Xn+1(I, δ) := X0(I, δ)u
l
{ E

r.Xn(I, ε) | r ∈ ΣR and (δ, ε) ∈ rI }

For any finitely representable pointed interpretation (I, δ), the sequence (Xn(I, δ) | n ∈N ) converges

to

E

sim (I, δ), that is, it holds true that

(

E

sim (I, δ))J =
⋂
{ (Xn(I, δ))J | n ∈N}

for every interpretation J , and so we also call Xn(I, δ) the nth approximation of E

sim (I, δ). In general,

we shall denote the nth approximation of an EL⊥si concept description C as C�n where we additionally
need to define that ⊥�n := ⊥ for each n ∈ N. Clearly, if C is an EL⊥ concept description with role
depth d, then C ≡∅ C�n holds true for each n ≥ d. Alternatively, we may call an nth approximation
C�n also a restriction of C to a role depth of n.
The description logic ELst extends EL by the concept constructor

E

sim Γ. (T , C), where Γ ⊆ Σ is a
finite signature, T is a TBox, and C is a concept description. More specifically, ELst concept descriptions,
ELst concept inclusions, and ELst TBoxes are defined by simultaneous induction as follows.

1. Every EL concept description, EL concept inclusion, and EL TBox, is an ELst concept description,
ELst concept inclusion, and ELst TBox, respectively;

2. if T is an ELst TBox, C an ELst concept description, and Γ ⊆ Σ a finite signature, then

E

sim Γ. (T , C) is an ELst concept description;

3. if C and D are ELst concept descriptions, then C v D is an ELst concept inclusion;

4. an ELst TBox is a finite set of ELst concept inclusions.

The semantics of the additional concept constructor is defined as follows: let I be an interpretation,
then δ ∈ (

E

sim Γ. (T , C))I if there exists a pointed interpretation (J , ε) such that J is a model of
T , ε ∈ CJ , and (J , ε) ⇀∼Σ\Γ (I, δ). In case Γ = ∅ we may abbreviate

E

sim Γ. (T , C) as

E

sim (T , C).
Adding the bottom concept description⊥ yields the description logic EL⊥st.

2.9. MOST SPECIFIC CONSEQUENCES

In (Kriegel, 2016a, 2018a), the author has introduced the notion of a most specific consequence as a

new non-standard inference problem. Given a concept description C and a TBox T , the most specific
consequenceCT is, informally speaking, a concept descriptionwhich contains all information that follows
from C in T . It has a number of interesting properties, e.g., we can reduce the problem of subsumption
w.r.t. T to the problem of subsumption w.r.t. ∅ of the respective most specific consequences.

(Kriegel, 2018a). Consider a TBox T and an EL⊥ concept description C. Then an EL⊥ concept descrip-
tion D is called amost specific consequence of C with respect to T if it satisfies the following conditions.
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1. C vT D

2. For each EL⊥ concept description E, if C vT E, then D v∅ E. 4

It is readily verified that all most specific consequences of C with respect to T are unique up to
equivalence, and hence we shall denote the most specific consequence of C with respect to T by
CT—provided that it exists. Furthermore, it holds true that C vT CT , and C is of course a consequence
of itself with respect to T , i.e., CT v∅ C. Consequently, C and its most specific consequence CT are
equivalent with respect to T .
Most specific consequences need not exist in EL⊥. To see this, consider the exemplary TBox T :=
{A v E

r. A}, and define C0 := A as well as Cn+1 := Au E

r. Cn for all n ∈N. It is easy to verify that

for each n ∈N, the concept descriptionCn is a consequence of Aw.r.t. T , and furthermore thatCn+1 is

strictlymore specific thanCn. Consequently, AT does not exist in EL⊥. However, it always holds true that
CT ≡∅

E

sim (IC,T , C), i.e., most specific consequences exist in extensions of EL⊥ with greatest fixpoints.

(Kriegel, 2018a). The mapping φT : C 7→ CT is a closure operator in the dual of EL⊥(Σ), i.e., for all EL⊥
concept descriptions C and D, the following conditions are satisfied.
1. CT v∅ C

2. CT ≡∅ CT T

3. C v∅ D implies CT v∅ DT �

(Kriegel, 2018a). Let T ∪ {C v D} be an EL⊥ TBox. Then, the following statements are equivalent.
1. C vT D

2. CT v∅ D

3. CT v∅ DT

4. ET v∅ C implies ET v∅ D for each EL⊥ concept description E. �

2.10. MOST GENERAL DIFFERENCES

Definitio 2.10.1. Let C, D ∈ EL(Σ) be two concept descriptions such that C v∅ D. Then, some
concept description E ∈ EL(Σ) is calledmost general difference (abbrv.MGD) of C with respect to D
(or, alternatively, complement of D relative to C) if it satisfies the following conditions.

1. C v∅ E

2. C ≡∅ Du E

3. C v∅ F and C ≡∅ Du F implies F v∅ E for any F ∈ EL(Σ).

Furthermore, if C 6v∅ D, then a most general difference of C w.r.t. D is defined as a most general
difference of C w.r.t. C∨D. 4
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It is an immediate consequence from the above definition that all most general differences of C with
respect to D are equivalent. Thus, we shall denote themost general difference by C \D if it exists. Of
course, in the extension EL⊥ of EL with the bottom concept description⊥most general differences
cannot exist, since⊥\Cmust be equivalent to the negation ¬C, which is a concept description that
cannot be expressed in EL⊥ if ⊥ 6≡∅ C 6≡∅ >. If we consider the exemplary concept descriptions
C :=

E

r. (Au B) and D :=

E

r. Au E

r. B, then we see that C \D ≡∅ C holds true. We continue our
investigations by considering the question whether such most general differences always exist.

Definitio 2.10.2. For two concept descriptions C, D ∈ EL⊥(Σ), the syntactic difference of C with respect
to D is defined as the following concept description.

C \\D :=
l

Conj(C) \ {E | D v∅ E } 4

Lemma 2.10.3. Most general differences always exist in EL and can be computed in deterministic poly-
nomial time. In particular, C \D ≡∅ C \\D holds true for any two concept descriptions C, D ∈ EL(Σ)
satisfying C v∅ D.
Approbatio. It is obvious that C v∅ C \\D. This fact together with the precondition C v∅ D implies
that C v∅ Du (C \\D) is satisfied as well. Now fix some X ∈ Conj(C). In case D v∅ X it immediately
follows thatDu (C \\D) v∅ X. Otherwise ifD 6v∅ X, then X ∈ Conj(C \\D) holds true, which implies

Du (C \\D) v∅ X as well. We conclude that Du (C \\D) v∅ C is satisfied.
Eventually, let E ∈ EL(Σ) such that C v∅ E and C ≡∅ Du E. We shall show that E v∅ C \\D. Fix

some Y ∈ Conj(C \\D), that is, Y ∈ Conj(C) such that D 6v∅ Y. Since C ≡∅ D u E, it follows that
Du E v∅ Y and so D 6v∅ Y implies E v∅ Y.

Lemma 2.10.4. The following statements hold true for any concept descriptions C, D, E, F ∈ EL(Σ).
1. C \D v∅ E \ F if C v∅ E and D w∅ F

2. C \> ≡∅ C or, more generally, C \D ≡∅ C if C ⊥∅ D

3. (CuD) \ E ≡∅ (C \ E)u (D \ E)

4. (C∨D) \ E w∅ (C \ E)∨ (D \ E)

5. (C \D) \ E ≡∅ C \ (Du E)

Approbatio. Statements 1 and 2 easily follow from Lemma 2.10.3. Since Conj(C uD) = Conj(C)∪
Conj(D) holds true, Statement 3 follows from Lemma 2.10.3 as well. We shall now prove Statement 4.

It is well-known that Conj(C∨D) = {X ∨Y | X ∈ Conj(C) and Y ∈ Conj(D) } holds true. It then
follows according to Lemma 2.10.3 that

Conj((C∨D) \ E) = {X ∨Y | X ∈ Conj(C) and Y ∈ Conj(D) such that E 6v∅ X ∨Y }

and likewise

Conj((C \ E)∨ (D \ E)) = {X ∨Y | X ∈ Conj(C) and Y ∈ Conj(D) such that E 6v∅ X and E 6v∅ Y }.

Clearly, we have that Conj((C∨D) \ E) ⊆ Conj((C \ E)∨ (D \ E)), which yields the claim.
Statement 5 is again immediately clear due to Lemma 2.10.3.
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Note that the converse direction of Statement 2 does not hold true: as a counterexample one can

consider the concept descriptions C :=

E

r. (Au B) and D :=

E

r. Au E

r. B again. Furthermore, a
counterexample against the converse direction of Statement 4 is C :=

E

r. (Au B1), D :=

E

r. (Au B2),

and E :=

E

r. A: it then holds true that (C∨D) \ E ≡∅ > and (C \ E)∨ (D \ E) ≡∅ E.
We say that C is strongly not subsumed by D, denoted as ∅ |= C 6 6v D or, alternatively, as C 6 6v∅ D,

if C 6v∅ E for each E ∈ Conj(D). Note that, in contrast, it holds true that C 6v∅ D if, and only if, there
is some E ∈ Conj(D) such that C 6v∅ E.

Lemma 2.10.5. Let C, D, E ∈ EL(Σ) be concept descriptions. If C v∅ E and D 6 6v∅ E, then C \D v∅ E.
Approbatio. Let Z ∈ Conj(E). Then, C v∅ E implies there is some X ∈ Conj(C) such that X v∅ Z.
Furthermore, from D 6 6v∅ E it follows that D 6v∅ Z. We infer that D 6v∅ X, that is, X ∈ Conj(C \D)

holds true as well.
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3. THE NEIGHBORHOOD PROBLEM
FOR EL CONCEPT DESCRIPTIONS

In this section we consider the neighborhood problem for EL. We have already seen that the set of
EL concept descriptions constitutes a lattice. It is only natural to consider the question whether there
exists a neighborhood relation which corresponds to the subsumption order. Remark that for an order

relation≤ on some set P its neighborhood relation or transitive reduction is defined as

≺ := � \ (� ◦�) = { (p, q) | p � q and there exists no x such that p � x � q }.

Clearly, if P is finite, then the transitive closure≺+
equals the irreflexive part�. However, there are

infinite ordered sets where this does not hold true; even worse, there are cases where≺+
is empty.

Consider, for instance, the setR of real numbers with their usual ordering≤. It is well-known thatR

is dense in itself, that is, for each pair x � y, there is another real number z such that x � z � y—thus,
there are no neighboring real numbers. In general, we say that≤ is neighborhood generated if≺+ = �
is satisfied. Clearly,≤ is a neighborhood generated order relation if, and only if, there is a finite path
p = x0 ≺ x1 ≺ . . . ≺ xn = q for each pair p ≤ q. An alternative formulation is the following. ≤ is
not neighborhood generated if, and only if, there exists some pair p � q such that every finite path
p = x0 � x1 � . . . � xn = q can be refined, that is, there is some index i and an element y such that
xi � y � xi+1. Of course, if the order relation≤ is bounded, i.e., for each element p ∈ P, there exists
a finite upper bound on the lengths of�-paths issuing from p, then≤ is neighborhood generated.
Although boundedness of a poset (P,≤) is sufficient for neighborhood generatedness, it is not

necessary. The following result of Ganter (2018) immediately implies that any unbounded poset can

be order-embedded into some neighborhood generated poset, which then must be unbounded as well.

(Ganter, 2018). Any poset (P,≤) is order-embeddable into some neighborhood generated poset.
Approbatio. For some given poset (P,≤), we define another poset (≤,v) where

(a, b) v (c, d) if, and only if, (a, b) = (c, d) or b ≤ c.

As one quickly verifies,v is indeed reflexive, antisymmetric, and transitive. In the following, we shall
denote the neighborhood relation ofv by≺.
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We first show that a � b implies (a, a) ≺ (a, b). Let a � b. Of course, we have that (a, a) vp (a, b).
Now consider some pair c ≤ d such that (a, a) v (c, d) vp (a, b). Then, it follows that a ≤ c ≤ d ≤ a,
which shows that (c, d) = (a, a).
Analogously, we infer that a � b implies (a, b) ≺ (b, b). We conclude that (a, a) vp (b, b) always

implies (a, a) ≺ (a, b) ≺ (b, b).
Eventually, assume that a � b � c � d, i.e., (a, b) vp (b, c) vp (c, d) is satisfied. Applying the above

yields that (a, b) ≺ (b, b) ≺ (b, c) ≺ (c, c) ≺ (c, d). Consequently, we have thatvp ⊆ ≺+
. The converse

inclusion is trivial. Thus, (≤,v) is neighborhood generated.
It remains to show that there is an order-embedding of (P,≤) into (≤,v). For this purpose, define

the mapping f : P→ ≤, p 7→ (p, p). It is readily verified that f is order-preserving as well as order-
reflecting, which immediately implies that f is injective as well. As a corollary, we obtain that f is an
order-embedding.

In the sequel of this section, we shall address the neighborhood problem from different perspectives.

We first consider the general problem of existence of neighbors, and then provide means for the

computation of all upper neighbors and of all lower neighbors, respectively, in the cases where these

exist. As it will turn out, neighbors only exist for all concept descriptions in the description logic EL
without any TBox or in EL with respect to acyclic or cycle-restricted TBoxes. The presence of either
a non-cycle-restricted TBox or of the bottom concept description⊥ prevents the existence of neighbors
for some concept descriptions. Furthermore, the extensions of EL with greatest fixed-point semantics
also allow for the construction of concept descriptions that do not possess neighbors. Eventually, a

complexity analysis shows that deciding neighborhood in EL is in P, and that all upper neighbors of
an EL concept description can be computed in deterministic polynomial time, while there exists some
EL concept description that has exponentially many mutually distinct lower neighbors, and the sizes
of reduced forms of lower neighbors are always linear.

Definitio 3.1. Consider a signature Σ, let T be a TBox over Σ, and further assume that C and D are
concept descriptions over Σ. Then, C is a lower neighbor or amost general strict subsumee of D with
respect to T , denoted as T |= C ≺ D or C ≺T D, if the following statements hold true.

1. C vp T D

2. For each concept description E over Σ, it holds true that C vT E vT D implies E ≡T C or
E ≡T D.

Additionally, we then also say that D is an upper neighbor or amost specific strict subsumer of C with
respect to T , and wemay also write T |= D � C or D �T C. 4

Obviously,> does not have any upper neighbors, and dually⊥ does not have any lower neighbors.
We first observe that neighborhood of concept descriptions is not preserved by the concept construc-

tors. It is easy to see that Au B ≺∅ A. However, it holds true that

E

r. (Au B) vp ∅

E

r. Au E

r. B vp ∅

E

r. A, which shows

E

r. (Au B) 6≺∅

E

r. A. Furthermore, we have that Au Bu (Au B) ≡∅ Au (Au
B), and consequently Au Bu (Au B) 6≺∅ Au (Au B). There are according counterexamples when
neighborhood with respect to a non-empty TBox is considered.

It is easily verified that neighborhood with respect to the empty TBox ∅ does not coincide with
neighborhood w.r.t. a non-empty TBox T . For instance, A ≺∅ > holds true, but {> v A} |= A ≡ >.
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For the converse direction, consider the counterexample where {A v B, B v A} |= Au B ≺ > and
Au B vp ∅ A vp ∅ >.

3.1. THE EMPTY TBOX

Since Baader and Morawska (2010, Proof of Proposition 3.5) showed that v∅ is bounded, we can

immediately draw the following conclusion.

Propositio 3.1.1. For any signature Σ, the subsumption relationv∅ on EL(Σ) is neighborhood generated.
�

After this first promising result, we continue with describing the neighborhood relation≺∅. As an

immediate consequence of v∅ being neighborhood generated, we can deduce that neighbors in

arbitrary directions exist. More specifically, whenever C vp ∅ D holds true, there areU and L such that
C ≺∅ U v∅ D as well as C v∅ L ≺∅ D. We then also say thatU is an upper neighbor of C in direction
D and, dually, that L is some lower neighbor of D in direction C.

Lemma 3.1.2. Let C and D be EL⊥ concept descriptions over a signature Σ. Then C ≺∅ D holds true only
if rd(C) ∈ {rd(D), rd(D) + 1}.
Approbatio. Assume that C is a lower neighbor of D with respect to ∅. In particular, C v∅ D fol-
lows, and so there is a simulation from the tree-shaped interpretation (ID, D) to the tree-shaped

interpretation (IC, C). The mere existence of such a simulation yields that the depth of the tree
(∆ID ,

⋃{ rID | r ∈ ΣR }) is bounded by the depth of the tree (∆IC ,
⋃{ rIC | r ∈ ΣR }), that is, it must

hold true that rd(D) ≤ rd(C).
Finally, assume that rd(C) > rd(D) + 1. Then C vp ∅ C�rd(D)+1 vp ∅ D.  

There is a well-known recursive characterization ofv∅ as follows: C v∅ D if, and only if, A ∈ Conj(D)

implies A ∈ Conj(C) for each concept name A, and for each

E

r. F ∈ Conj(D), there is some

E

r. E ∈ Conj(C) such that E v∅ F. With the help of that we can prove that there is the following
necessary condition for neighboring concept descriptions.

3.1.1. A NECESSARY CONDITION

Lemma 3.1.1.1. Let C and D be some reduced EL concept descriptions over a signature Σ. If C ≺∅ D,
then exactly one of the following statements holds true.
1. There is exactly one concept name A ∈ Conj(C) such that C ≡∅ Du A.
2. There is exactly one existential restriction E

r. E ∈ Conj(C) such that C ≡∅ Du E

r. E.
Approbatio. Consider two reduced EL concept descriptionsC andD overΣ such thatC is a lower neigh-
bor ofDwith respect to∅. It follows thatC v∅ D, whichmeans that A ∈ Conj(D) implies A ∈ Conj(C)
for any concept name A ∈ ΣC and further that, for each existential restriction

E

r. F ∈ Conj(D), there

is some

E

r. E ∈ Conj(C) such that E v∅ F.
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If there exist two distinct concept names A, B ∈ ΣC satisfying {A, B} ⊆ Conj(C) \Conj(D), then it

would immediately follow that

C v∅ Du Au B vp ∅ Du A vp ∅ D,

which contradicts our assumption that C ≺∅ D.  Consequently, only one of the following two

mutually exclusive cases can occur: either there is exactly one concept name A ∈ ΣC such that

{A} = (Conj(C) \ Conj(D))∩ ΣC, or it holds true that Conj(C)∩ ΣC = Conj(D)∩ ΣC. We proceed

with a case analysis.

1. Assume that {A} = (Conj(C) \Conj(D))∩ΣC holds true for some concept name A. It follows
that C v∅ Du A vp ∅ D, and so C ≺∅ D implies C ≡∅ Du A.

2. Now let Conj(C)∩ ΣC = Conj(D)∩ ΣC. Since C 6w∅ D holds true by assumption, there must
exist some existential restriction

E

r. E ∈ Conj(C) such that E 6w∅ F for any

E

r. F ∈ Conj(D). In

particular, we have that D 6v∅

E

r. E. Now suppose that there are two such existential restrictions

E

r. E and

E

s. F on the top-level conjunction of C. Since C is assumed to be reduced,

E

r. E and

E

s. F are incomparable w.r.t. ∅. It follows that

C v∅ Du E

r. Eu E

s. F vp ∅ Du E

r. E vp ∅ D,

which obviously contradicts our assumption that C ≺∅ D. As a consequence we obtain that
there exists exactly one such existential restriction

E

r. E ∈ Conj(C) with D 6v∅

E

r. E. It is now
straight-forward to conclude that C v∅ D u E

r. E vp ∅ D is satisfied, which together with the
precondition C ≺∅ D implies that C ≡∅ Du E

r. E.

3.1.2. UPPER NEIGHBORHOOD

Propositio 3.1.2.1. LetC be a reduced EL concept description over some signatureΣ, and recursively define

Upper(C) := {
l

Conj(C) \ {A} | A ∈ Conj(C) }

∪ {
l

Conj(C) \ { E

r. D} u
l
{ E

r. E | E ∈ Upper(D) } | E

r. D ∈ Conj(C) }.

Then Upper(C) contains, modulo equivalence, exactly all upper neighbors of C; more specifically, for each
EL concept description D over Σ, it holds true that

C ≺∅ D if, and only if, Upper(C) 3 D′ for some D′ with D ≡∅ D′.

Approbatio. We show the claim by induction on the role depth ofC. The induction basewhere rd(C) = 0
is obvious. For the induction step let now rd(C) > 0.

Soundness. It is easily verified that, for any concept name A ∈ Conj(C), the concept description
d
Conj(C) \ {A} is an upper neighbor ofC. Now fix some existential restriction E

r. E ∈ Conj(C) and let

D :=
l

Conj(C) \ { E

r. E} u
l
{ E

r. F | F ∈ Upper(E) },

i.e., D ∈ Upper(C). We shall demonstrate that C ≺∅ D.

1. It is easily verified that C v∅ D.
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2. We proceed with proving that C 6w∅ D. In particular, we are going to show that there is no
existential restriction

E

r. F ∈ Conj(D) such that E w∅ F. Assume that there was some such F.
Since C is reduced, we infer that

E

r. F 6∈ Conj(C), and hence E ≺∅ F.  

3. Let X be a concept description such that C vp ∅ X v∅ D. We need to show that X w∅ D.

a) According to the definition of D, it holds true that Conj(C) ∩ ΣC = Conj(D) ∩ ΣC. Fur-

thermore, the precondition C vp ∅ X v∅ D implies that Conj(C)∩ ΣC ⊇ Conj(X)∩ ΣC ⊇
Conj(D)∩ΣC. We conclude that A ∈ Conj(D) implies A ∈ Conj(X) for any concept name

A ∈ ΣC.

b) Now consider an existential restriction

E

s. Y ∈ Conj(X). Then, C v∅ X yields some

E

s. G ∈ Conj(C) satisfying G v∅ Y. If s 6= r or G 6= E, then by definition of D we have that

E

s. G ∈ Conj(D) as well.

Eventually, we consider the case where s = r and G = E. As C 6w∅ X, there exists some

E

t. K ∈ Conj(C) such that K 6w∅ Z for all

E

t. Z ∈ Conj(X). If t 6= r or K 6= E, then

E

t. K ∈ Conj(D) follows and immediately yields a contradiction to X v∅ D. As a corollary
it follows that E vp ∅ Y, and so there must be an upper neighbor F of E with F v∅ Y. The
induction hypothesis ensures the existence of some concept description F′ with F ≡∅ F′ and

E

r. F′ ∈ Conj(D).

Summing up, we have shown that C vp ∅ D, and furthermore that, for each concept description X, it
holds true that C vp ∅ X v∅ D implies X ≡∅ D. Hence, C is a lower neighbor of D with respect to ∅.

Completeness. Vice versa, consider a concept description D such that C ≺∅ D. Without loss of gener-
ality suppose that both C and D are reduced. We have to show that, up to equivalence, Upper(C) 3 D.
In accordance with Lemma 3.1.1.1 we shall only consider two cases. In the first case, if C ≡∅ Du A
for some unique concept name A ∈ Conj(C), the claim is trivial.

In the second case, there exists exactly one existential restriction

E

r. E ∈ Conj(C) such that C ≡∅

Du E

r. E. We have already proven that C ≺∅ D′ where

D′ :=
l

Conj(C) \ { E

r. E} u
l
{ E

r. F | F ∈ Upper(E) }.

We proceed with demonstrating that D′ v∅ D, which then immediately yields that D′ ≡∅ D, and thus
D ∈ Upper(C)modulo equivalence.

If A ∈ Conj(D), then it follows that A ∈ Conj(C) and further that A ∈ Conj(D′). Now fix some
existential restriction

E

s. H ∈ Conj(D). Then, there exists some

E

s. G ∈ Conj(C) satisfying G v∅ H.
In case s 6= r or G 6= E we have that

E

s. G ∈ Conj(D′) as well. Otherwise, E v∅ H holds true.
If H v∅ E would hold true too, then it would follow that D v∅ D u E

r. E, yielding D v∅ C—a
contradiction to our assumption that C ≺∅ D. So, we conclude that E vp ∅ H. Thus, there exists an
F with E ≺∅ F v∅ H. The induction hypothesis shows the existence of some F′ ∈ Upper(E) with
F′ ≡∅ F, and then

E

r. F′ ∈ Conj(D′) is satisfied.

For instance, consider the concept description Au E

r. Bu E

s. (Au B). It is in reduced form and has
three upper neighbors, namely

E

r. Bu E

s. (Au B), Au E

r.>u E

s. (Au B), and Au E

r. Bu E

s. Au

E

s. B.
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According to Propositio 3.1.2.1, each top-level conjunct D of some concept description C has exactly
one upper neighbor D↑. If C is reduced, then replacing D with D↑ yields one upper neighbor of C, and
(an equivalent concept description of) each upper neighbor of C can be generated in this manner. We
denote the concept description that is produced from C by replacing D with D↑ by C↑D. It then holds
true that

Upper(C) = {C↑D | D ∈ Conj(C) }

modulo equivalence. Furthermore, there is a bijection between Conj(C) and Upper(C), cf. the next
lemma.

Lemma 3.1.2.2. Let C be some reduced EL concept description. The mapping

υC : Conj(C)→ Upper(C)

D 7→ C↑D

is bijective, that is, |Conj(C)| = |Upper(C)| holds true.
Approbatio. Apparently, υC is surjective. We proceed with demonstrating that it is injective as well. It

is readily verified that removing one of the concept names on the top-level conjunction of C yields
one unique upper neighbor, that is, if A, B ∈ Conj(C) with A 6= B, then C↑A =

d
Conj(C) \ {A} and

C↑B =
d
Conj(C) \ {B} are non-equivalent upper neighbors of C. Analogous statements obviously

hold true for top-level conjuncts A and

E

r. D, or

E

r. D and

E

s. E where r 6= s.
Eventually, assume that

E

r. D and

E

r. E are top-level conjuncts of C. Since we have assumed C to
be reduced, D and E are incomparable, i.e., it holds true that D 6v∅ E as well as E 6v∅ D. These two
conjuncts induce the following upper neighbors.

C↑

E

r. D =
l

Conj(C) \ { E

r. D} u
l
{ E

r. F | F ∈ Upper(D) }

C↑

E

r. E =
l

Conj(C) \ { E

r. E} u
l
{ E

r. F | F ∈ Upper(E) }

For proving thatC↑

E

r. D
andC↑

E

r. E
are incomparable, we assume the contrary, i.e., letC↑

E

r. D v∅ C↑

E

r. E
.

Since

E

r. D ∈ Conj(C↑

E

r. E), there must exist some

E

r. G ∈ Conj(C↑

E

r. D) satisfying G v∅ D. As C
is reduced, it cannot be the case that

E

r. G ∈ Conj(C) \ { E

r. D}; it can henceforth only happen
that

E

r. G ∈ { E

r. F | F ∈ Upper(D) }, i.e., G = F for some F ∈ Upper(D). Thus, we have that

F = G v∅ D ≺∅ F—a contradiction.  

Lemma 3.1.2.3. Let C ∈ EL⊥(Σ) be a concept description. For each setD containing only upper neighbors
of C and at least two incomparable upper neighbors of C, it holds true that C ≡∅

d
D.

Approbatio. Without loss of generality let C be reduced. Assume thatD consists of upper neighbors of
C only and further contains two incomparable upper neighbors D and E of C. In particular, there must
exist incomparable top-level conjuncts X, Y ∈ Conj(C) such that D ≡∅ C↑X and E ≡∅ C↑Y. Obviously,
it now follows that

C v∅

l
D v∅ Du E ≡∅ C↑X uC↑Y ≡∅ C.
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3.1.3. LOWERNEIGHBORHOOD

A FIRST CHARACTERIZATION

Propositio 3.1.3.1. For an EL concept description C over some signature Σ, let

Lower(C) := {Cu A | A ∈ ΣC and C 6v∅ A }
∪ {Cu E

r. D | r ∈ ΣR, C 6v∅

E

r. D, and C v∅

E

r. E for all E with D ≺∅ E }.

Then Lower(C) contains, modulo equivalence, exactly all lower neighbors of C; more specifically, for each
EL concept description D over Σ, it holds true that

D ≺∅ C if, and only if, D′ ∈ Lower(C) for some D′ with D ≡∅ D′.

Approbatio. Soundness. We begin with proving soundness. Thus, fix some L ∈ Lower(C) and, without
loss of generality, let C be reduced. If L = Cu A for some concept name A with C 6v∅ A, then it is
apparent that L is a lower neighbor of C. Henceforth, suppose L = Cu E

r. D for some role name r
and a concept description D which satisfies C 6v∅

E

r. D as well as C v∅

E

r. E for each upper neighbor
E of D. Then, it follows that L vp ∅ C. Furthermore, C is obviously equivalent to the concept description

C′ := Cu
l
{ E

r. E | E ∈ Upper(D) },

and it is readily verified that C′ ∈ Upper(L). Propositio 3.1.2.1 shows that L ≺∅ C′ holds true, which
yields L ≺∅ C.

Completeness. We continue with showing completeness. For this purpose, consider a lower neighbor
L of C. Without loss of generality, assume that both C and L are reduced. According to Lemma 3.1.1.1,
two mutually exclusive cases can occur. In the first case there exists a concept name A such that
L ≡∅ Cu A. Clearly, C 6v∅ Amust hold true, as otherwise L ≡∅ Cu A ≡∅ C.  We conclude that

Cu A ∈ Lower(C). In the second case, there is exactly one existential restriction

E

r. D ∈ Conj(L) such
that L ≡∅ Cu E

r. D. Since L ≺∅ C holds true, and Propositio 3.1.2.1 yields that

L ≡∅ Cu E

r. D ≺∅ Cu
l
{ E

r. E | E ∈ Upper(D) } v∅ C,

it follows that C 6v∅

E

r. D as well as C ≡∅ C u
d
{ E

r. E | E ∈ Upper(D) }, or equivalently, that
C v∅

E

r. E for all E with D ≺∅ E. Summing up, we have shown that Cu E

r. D ∈ Lower(C).

While the recursive characterization of Upper in Propositio 3.1.2.1 immediately yields a procedure

for enumerating all upper neighbors of a given concept description, the situation is not that apparent

for lower neighbors. We can, however, constitute a procedure for computing lower neighbors by means

of Propositio 3.1.3.1. Let C be an EL concept description over some signature Σ. Proceed as follows.

1. For each concept name A ∈ ΣC with C 6v∅ A, output Cu A as a lower neighbor of C.

2. For each role name r ∈ ΣR, recursively proceed as follows.

a) Let D := >.

b) While C v∅

E

r. D, replace D with a lower neighbor of D.

c) If C v∅

E

r. E for all E with D ≺∅ E, then output Cu E

r. D as a lower neighbor of C.
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As we shall infer from the results in Section 4.5, the above algorithm always terminates but has

non-elementary time complexity. Thus, we are going to develop a cheaper procedure for enumerating all

lower neighbors of a given EL concept description in the next section. A complexity analysis shows that
the proposed procedure needs only non-deterministic polynomial time or deterministic exponential time,

and that there indeed exist EL concept descriptions with an exponential number of lower neighbors.

AMORE EFFICIENT CHARACTERIZATION

According to Propositio 3.1.3.1, we can enumerate all lower neighbors of the form C u A by simply
iterating through the set of concept names while checking, for each such A ∈ ΣC, whether C 6v∅ A
or, equivalently, whether A 6∈ Conj(C) is satisfied and if so, then output C u A as a lower neighbor
of C. Clearly, this can be done in polynomial time with respect to the size of C plus the size of Σ.
Let C ∈ EL(Σ) be some reduced concept description and consider a role name r ∈ ΣR. Then, for

each subset S ⊆ Succ(C, r), we define a mapping ChoicesS : S→ ℘(EL(Σ)) as follows.

ChoicesS : F 7→ {X | X ∈ EL(Σ) such that FuX ≺∅ F and F′ v∅ X for each F′ ∈ S \ {F} }

According to Propositio 3.1.3.1, each such set ChoicesS(F) contains only atomic concept descriptions,
i.e., concept descriptions that are either a concept name or some existential restriction. In the following,

we consider choice functions in×ChoicesS :=×{ChoicesS(F) | F ∈ S }. We call some such choice
function χ ∈×ChoicesS admissible if C 6v∅

E

r.
d
Ran(χ).

Lemma 3.1.3.2. A choice function χ ∈×ChoicesS is admissible if, and only if, F 6v∅
d
Ran(χ) for each

F ∈ Succ(C, r) \ S.
Approbatio. Fix some χ ∈×ChoicesS. The only if direction is obvious. We continue with proving the
if direction, for which it suffices to show that D 6v∅

d
Ran(χ) holds true for any D ∈ Succ(C, r). By

assumption, this is satisfied for each D ∈ Succ(C, r) \ S. Furthermore, the above definition shows that
F 6v∅ χ(F) for each F ∈ S, which immediately implies that F 6v∅

d
Ran(χ) for any F ∈ S, and we are

done.

Propositio 3.1.3.3. A concept description C u E

r. D is a lower neighbor of C if there is some subset
S ⊆ Succ(C, r) as well as an admissible choice function χ ∈×ChoicesS such that D ≡∅

d
Ran(χ).

Approbatio. Since χ is admissible, we have that C 6v∅

E

r. D. Thus, in order to show that C u E

r. D
is a lower neighbor of C it remains to prove that C v∅

E

r. E for any upper neighbor E of D, cf.
Propositio 3.1.3.1.

We proceed with showing that all concept descriptions in Ran(χ) are mutually incomparable, which

implies that, modulo equivalence, the upper neighbors of
d
Ran(χ) are exactly the concept descriptions

d
Ran(χ)↑χ(F) for F ∈ S. If F, F′ ∈ S are incomparable, then X and X′ are incomparable as well for any

X ∈ ChoicesS(F) and for any X′ ∈ ChoicesS(F′): otherwise it would hold true that F′ v∅ X v∅ X′ or
F v∅ X′ v∅ X, which both yields a contradiction.  Consequently, all top-level conjuncts in

d
Ran(χ)

must be mutually incomparable, and so there are bijections between S, Ran(χ), and Upper(
d
Ran(χ)).

Fix some F ∈ S, i.e., χ(F) is a top-level conjunct in
d
Ran(χ) and

d
Ran(χ)↑χ(F) is an upper neighbor

of
d
Ran(χ). Then, we have that Fu χ(F) ≺∅ F, and F v∅ χ(F′) for each F′ ∈ S \ {F}. Furthermore,

it holds true that Fu χ(F) v∅ Fu χ(F)↑ v∅ F. Now assume that Fu χ(F)↑ v∅ Fu χ(F) would be
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satisfied, which would imply that Fuχ(F)↑ v∅ χ(F). Since χ(F)↑ v∅ χ(F) cannot hold true, we would
infer that F v∅ χ(F). However, this yields the contradiction F ≡∅ Fu χ(F) ≺∅ F.  We conclude

that Fu χ(F) vp ∅ Fu χ(F)↑ v∅ F, which together with the precondition Fu χ(F) ≺∅ F implies that
Fuχ(F)↑ ≡∅ F. Clearly, this implies that F v∅

d
Ran(χ)↑χ(F) and, thus,C v∅

E

r.
d
Ran(χ)↑χ(F).

Lemma 3.1.3.4. Let C u E

r. D be a lower neighbor of C where both C and D are reduced. Then, there
is a mapping φ : Conj(D)→ Succ(C, r) with the following properties.
1. φ(X) v∅ D↑X for each X ∈ Conj(D)

2. φ is injective
3. φ(X) 6v∅ X for any top-level conjunct X ∈ Conj(D)

4. φ(Y) v∅ X for any two mutually distinct X, Y ∈ Conj(D)

Approbatio. Fix reduced concept descriptions C, D ∈ EL⊥(Σ) and some role name r ∈ ΣR such that

Cu E

r. D ≺∅ C. An application of Propositio 3.1.3.1 yields that C 6v∅

E

r. D and C v∅

E

r. E for each
upper neighbor E of D.

1. We start with defining such a mapping φ : Conj(D)→ Succ(C, r). Fix some top-level conjunct
X ∈ Conj(D). Then, D↑X is an upper neighbor of D. Since C v∅

E

r. D↑X is satisfied according
to the preconditions, we conclude that there exists some successor FX ∈ Succ(C, r) such that
FX v∅ D↑X. Thus, we can set φ(X) := FX.

2. We now show that φ is injective. Assume the contrary, i.e., there are two non-equivalent top-level

conjuncts X, Y ∈ Conj(D) such that φ(X) = φ(Y). It then holds true that φ(X) v∅ D↑X uD↑Y.
Now Lemma 3.1.2.3 implies that D↑X u D↑Y ≡∅ D, which contradicts the assumption that
C 6v∅

E

r. D.  

3. Assume to the contrary that φ(X) v∅ X is satisfied. Of course, it then immediately follows
that φ(X) v∅ X u D↑X ≡∅ D would be satisfied, which contradicts the assumption that

C 6v∅

E

r. D.  

4. Let X be a top-level conjunct of D. It then follows that D↑X is some upper neighbor of D and,
for each upper neighbor E of D that is incomparable to D↑X, it holds true that E v∅ X, cf.
Propositio 3.1.2.1. Fix a further top-level conjunct Y ∈ Conj(D) that is incomparable to X. Of
course, D↑Y is incomparable to D↑X, since υD : Z 7→ D↑Z is a bijection between Conj(D) and

Upper(D), cf. Lemma 3.1.2.2. We conclude that φ(Y) v∅ D↑Y v∅ X.

As a corollary we obtain that |Conj(D)| = |Upper(D)| ≤ |Succ(C, r)| holds true.

Propositio 3.1.3.5. A concept description Cu E

r. D is a lower neighbor of C only if there is some subset
S ⊆ Succ(C, r) as well as an admissible choice function χ ∈×ChoicesS such that D ≡∅

d
Ran(χ).

Approbatio. We know that there is some injective mapping φ : Conj(D) → Succ(C, r) with all the
properties stated in Lemma 3.1.3.4. Set S := Ran(φ), and define amapping χ by χ(F) := X if F = φ(X).

We proceed with showing that χ(F) ∈ ChoicesS(F) for each F ∈ S, and for this purpose we have
to show that Fu χ(F) ≺∅ F and F′ v∅ χ(F) for each F′ ∈ S \ {F}. Fix some F ∈ S. Then, χ(F) = X
if, and only if, F = φ(X).
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� We have that φ(X) v∅ D↑X. In particular, this implies that φ(X) v∅ X↑, that is, F v∅ χ(F)↑.
From φ(X) 6v∅ X, we immediately infer that F 6v∅ χ(F). It follows that F u χ(F) vp ∅ F and,
since (F u χ(F))↑χ(F) = F u χ(F)↑ ≡∅ F is an upper neighbor of F u χ(F), we conclude that
Fu χ(F) is a lower neighbor of F as claimed.

� Furthermore, we have that φ(Y) v∅ X for each Y ∈ Conj(D) \ {X}. If we now consider some
F′ ∈ S \ {F}, then there is some Y ∈ Conj(D) \ {X} satisfying χ(F′) = Y or, equivalently,
F′ = φ(Y). We conclude that F′ v∅ χ(F).

Summing up, we have that χ is a choice function in×ChoicesS. Obviously, it holds true that

D ≡∅
d
Ran(χ) and, thus, χ is admissible.

Corollarium 3.1.3.6. Let C ∈ EL(Σ) be some reduced concept description and define the following.

Lower∗(C) = {Cu A | A ∈ ΣC and C 6v∅ A }

∪
{

Cu E

r.
l

Ran(χ)

∣∣∣∣∣ r ∈ ΣR and there exists some S ⊆ Succ(C, r)

such that χ ∈×Choices∗S and χ is admissible

}

Note that, for each subset S ⊆ Succ(C, r), we define the mapping Choices∗S : S → ℘(EL(Σ)) slightly
different from ChoicesS, namely as follows.

Choices∗S : F 7→ {X | X ∈ EL(Σ) such that FuX ∈ Lower∗(F) and F′ v∅ X for each F′ ∈ S \ {F} }

Then Lower∗(C) contains, modulo equivalence, exactly all lower neighbors of C; more specifically, for each
EL concept description D over Σ, it holds true that

D ≺∅ C if, and only if, D′ ∈ Lower∗(C) for some D′ with D ≡∅ D′. �

Lemma 3.1.3.7. For a fixed concept description C as well as a fixed role name r, all admissible choice
functions are incomparable with respect to⊆. In particular, if S ( T ⊆ Succ(C, r), then there does not exist
admissible choice functions χ ∈×Choices∗S and ψ ∈×Choices∗T such that χ ⊆ ψ.
Approbatio. Consider some G ∈ T \ S. Further assume that χ ∈ Choices∗S is admissible, i.e., it follows

that G 6v∅
d
Ran(χ), which shows that there exists some F ∈ S such that G 6v∅ χ(F). Consequently,

we cannot extend χ to some (admissible) choice function ψ in×ChoicesT.

Corollarium 3.1.3.8. For any reduced EL concept description C, it holds true that all lower neighbors in
Lower∗(C) are mutually incomparable. �

3.1.4. COMPUTATIONAL COMPLEXITY

Eventually, we finish our investigations of≺∅ with analyzing the computational complexity of three

problems related to the neighborhood of EL concept descriptions. In particular, we shall prove the
following results.

� ≺∅ is in P.

� Upper can be computed in deterministic quadratic time. In particular, each upper neighbor in

Upper(C) has a quadratic size, and Upper(C) has a linear cardinality.
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� Lower∗ can be computed in deterministic exponential time. Furthermore, any lower neighbor

in Lower∗(C) has a quadratic size, and Lower∗(C) has an exponential cardinality.

� There is a non-deterministic polynomial time procedure which on input C has one (successful)
computation path that returns a concept description equivalent to L for any lower neighbor L ofC.

ENUMERATING ALL UPPER NEIGHBORS

Propositio 3.1.4.1. The mapping Upper can be computed in deterministic polynomial time. More specif-
ically, Upper(C) can be enumerated in deterministic quadratic time w.r.t. ||C|| for each reduced EL concept
description C.
Approbatio. We could try to prove the claim by induction on the role depth of C. However, the
straight-forward attempt to do so would only yield that Upper(C) is computable in deterministic time
O(||C||rd(C)+2). Thus, we shall follow amore sophisticated approach.

For a finite set C of reduced EL concept descriptions, its size is defined by ||C|| := ∑( ||C|| | C ∈ C );

further let

Upper(C) : C→ ℘(EL(Σ))
C 7→ Upper(C),

and the size of Upper(C) is defined as ||Upper(C)|| := ∑( ||Upper(C)|| | C ∈ C ). More generally, we

shall show by induction on the maximal role depth rd(C) :=
∨{ rd(C) | C ∈ C } that Upper(C) can

be computed in deterministic timeO(||C||2), which implies that ||Upper(C)|| ∈ O(||C||2).
The induction base where rd(C) = 0 is obvious. For the induction step assume rd(C) > 0. For

computing a single Upper(C) we can proceed as follows. For each top-level conjunct of C, create a fresh
copy of C. Clearly, the number of copies is bounded by ||C||, and creating these copies hence takes time
quadratic in ||C||. From some of those copies one concept name is removed, which reduces the size
of that copy, and one removal needs constant time. The sequence of these removal operations thus re-

quires time linear in ||C||. Furthermore, for some other copies, a top-level conjunct E

r. D is replaced by
d
{ E

r. E | E ∈ Upper(D) }. Let Succ(C) :=
⋃{ Succ(C, r) | r ∈ ΣR } = {D | E

r. D ∈ Conj(C) }. By
induction hypothesis, the objectUpper(Succ(C)) can be computed in deterministic timeO(||Succ(C)||2)
and has sizeO(||Succ(C)||2). It is apparent that ||Succ(C)|| ≤ ||C||, and henceforth Upper(Succ(C))
can be computed in timeO(||C||2) and has sizeO(||C||2). For each top-level conjunct E

r. D ∈ Conj(C),
we choose a distinct and so far untouched copy of C, remove

E

r. D, which takes time linear in ||C||,
and add

E

r. E as new top-level conjunct for each E ∈ Upper(D), which takes constant time for finding

Upper(D) within Upper(Succ(C)) if Upper(Succ(C)) is computed as a function like above, and requires
constant time for adding each

E

r. E for E ∈ Upper(D) as a new top-level conjunct, since E is already
computed and we only need to link it to the copy we are editing. Since the number of top-level conjuncts

of C which are existential restrictions is bounded by ||C||, and each replacement takes linear time in
||C||, as the number of concept descriptions in each Upper(D) is bounded by |Conj(C)| ≤ ||C||, we
conclude that only quadratic time in ||C|| is necessary for the replacement of the existential restrictions.
Furthermore, the size of Upper(C) is quadratic in ||C|| too, since in the set of the in ||C|| linearily many
copies of C we have removed some nodes and edges, and have added existential restrictions the
fillers of which are from the in ||C|| quadratically sized Upper(Succ(C)). Finally, if we consider the task
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of computing Upper(C), then we can compute, for each C ∈ C, the set Upper(C) in time O(||C||2)
and collect the results in a function. Clearly, this takesO(∑( ||C||2 | C ∈ C )) = O(||C||2) time, and
||Upper(C)|| can similarily be bounded.

DECIDING NEIGHBORHOOD

Lemma 3.1.4.2. It holds true that≺∅ ∈ P. More specifically, we can decide in deterministic polynomial
time w.r.t. ||C||+ ||D|| whether C is a lower neighbor of D for any EL concept descriptions C and D.
Approbatio. We leave out picky details like the encoding of EL concept description, and recognizing
correctly encoded EL concept descriptions. So, assume that C and D are EL concept descriptions.
We want to show the existence of a procedure which, given C and D as input, decides in deterministic
polynomial time whether C is a lower neighbor of D with respect to ∅. Such a procedure can, e.g., work
as follows for input concept descriptions C and D.

1. Reduce C.

2. Compute Upper(C).

3. Check whether there is some concept description E ∈ Upper(C) such that D ≡∅ E. If yes, accept
(C, D), and otherwise reject (C, D).

Step 1 needs polynomial time in ||C||. Step 2 also needs polynomial time in ||C||, cf. Propositio 3.1.4.1.
Since v∅ ∈ P holds true, |Upper(C)| ≤ |Conj(C)| ≤ ||C|| is satisfied, and ||E|| ≤ ||Upper(C)|| ∈
O(||C||2) for each E ∈ Upper(C), we infer that, for some n that is the exponent for decidingv∅, Step 3

requires deterministic time inO(||C|| · (||C||2 + ||D||)n), which clearly is polynomial in ||C||+ ||D||.

ENUMERATING ALL LOWERNEIGHBORS

Lemma 3.1.4.3. LetC be some reduced EL concept description over the signature Σ. Then, it holds true that
|Lower∗(C)| ≤ |Σ| · (|Σ| · ||C|| · 2||C||−1)rd(C).

Approbatio. We show the claim by induction on the role depth of C. If rd(C) = 0, then it holds true
that |Lower∗(C)| ≤ |Σ|, simply because any lower neighbor in Lower∗(C) is either of the form Cu A
for some concept name A ∈ ΣC or of the form Cu E

r.> for a role name r ∈ ΣR.

Now assume that rd(C) > 0. Then, we have the following.

|Lower∗(C)| ≤ |ΣC|+ ∑
r∈ΣR

∑
S⊆Succ(C,r)

|×Choices∗S |

Furthermore, we can an estimate upper bound for each |×Choices∗S | as follows.

|×Choices∗S | ≤ |S| ·maxF∈S |Choices∗S(F)|
≤ |S| ·maxF∈S |Lower∗(F)|

Applying the induction hypothesis to any F ∈ S yields the following.

|Lower∗(F)| ≤ |Σ| · (|Σ| · ||F|| · 2||F||−1)rd(F)

≤ |Σ| · (|Σ| · ||C|| · 2||C||−1)rd(C)−1
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Summing up shows the following.

|Lower∗(C)| ≤ |ΣC|+ ∑
r∈ΣR

∑
S⊆Succ(C,r)

|S| · |Σ| · (|Σ| · ||C|| · 2||C||−1)rd(C)−1

It is easy to verify that∑n
k=0 (

n
k) · k = n · 2n−1

, and so we can continue with the following.

∑
S⊆Succ(C,r)

|S| =
|Succ(C,r)|

∑
k=0

(|Succ(C,r)|
k ) · k

= |Succ(C, r)| · 2|Succ(C,r)|−1

≤ ||C|| · 2||C||−1

Putting the last two results together provides the following.

|Lower∗(C)| ≤ |ΣC|+ |ΣR| · (||C|| · 2||C||−1) · |Σ| · (|Σ| · ||C|| · 2||C||−1)rd(C)−1

= |ΣC|+ |ΣR| · (|Σ| · ||C|| · 2||C||−1)rd(C)

≤ |Σ| · (|Σ| · ||C|| · 2||C||−1)rd(C)

Propositio 3.1.4.4. Fix some reduced concept description C ∈ EL(Σ). Then, for each lower neighbor
D ∈ Lower∗(C), it holds true that the size of D is quadratic in the size of C.
Approbatio. We show the claim by induction on the role depth of C—more specifically, we prove that
any lower neighbor D ∈ Lower∗(C) satisfies ||D|| ≤ (3+ rd(C)) · ||C||+ 1.
Clearly, if rd(C) = 0, then each D ∈ Lower(C) must be of the form C u A for some concept

name A ∈ ΣC or of the form C u E
r.> for some role name r ∈ ΣR. Obviously, this shows that

||D|| ≤ ||C||+ 3 ≤ 3 · ||C||+ 1.
Now assume that rd(C) > 0. If D is of the form C u A, we again have that ||D|| ≤ 3 · ||C||+ 1 ≤

(3+ rd(C)) · ||C||+ 1. Thus, we continue with the non-trivial case whereD has a formCu E

r.
d
Ran(χ)

for some role name r ∈ ΣR and a subset S ⊆ Succ(C, r) such that χ ∈×Choices∗S is an ad-

missible choice function. It follows that F u χ(F) ∈ Lower∗(F) for each F ∈ S. An application
of the induction hypothesis yields that ||F u χ(F)|| ≤ (3 + rd(F)) · ||F||+ 1, and so we infer that
||χ(F)|| ≤ (2+ rd(F)) · ||F||. Summing up, we have that

||
l

Ran(χ)||

= |Ran(χ)| − 1+∑( ||χ(F)|| | F ∈ S )

≤ ||C|| − 1+∑( (2+ rd(F)) · ||F|| | F ∈ S )

≤ ||C|| − 1+∑( (2+ rd(C)− 1) · ||F|| | F ∈ S )

≤ ||C|| − 1+ (2+ rd(C)− 1) ·∑( ||F|| | F ∈ S )

≤ ||C|| − 1+ (2+ rd(C)− 1) · ||C||
= (2+ rd(C)) · ||C|| − 1

and hence ||Cu E

r.
d
Ran(χ)|| ≤ (3+ rd(C)) · ||C||+ 1 holds true.

Corollarium 3.1.4.5. For each reduced EL concept description C over some signature Σ, it holds true that
the size of an (efficient) encoding of Lower∗(C) is exponential in ||C||+ |Σ|. �
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Propositio 3.1.4.6. The mapping Lower∗ can be computed in deterministic exponential time. More specif-
ically, for any reduced C ∈ EL(Σ), the set Lower∗(C) is computable in deterministic exponential time with
respect to ||C||+ |Σ|.
Approbatio. Using arguments from the proof of Lemma 3.1.4.3, the fact that subsumption in EL can
be decided in polynomial time, and Propositio 3.1.4.4, we see that enumerating all admissible choice

functions as required in Corollarium 3.1.3.6 takes at most exponential time with respect to ||C||+ |Σ|.
This shows the claim.

As a further result regarding the computational complexity of computing lower neighbors, we have the

following. While it shows a lower complexity for the problem of generating one lower neighbor of some

given EL concept description, one can obviously not expect the proposed procedure to outperform
algorithms that efficiently implement Corollarium 3.1.3.6. However, it would be not to hard to suitably

adapt the deterministic manner of these algorithms to let them work in a non-deterministic fashion.

That way, we can significantly decrease the number of failing computation paths.

Propositio 3.1.4.7. For any EL concept description C, we can compute one lower neighbor of C in non-
deterministic polynomial time with respect to ||C||+ |Σ|. More specifically, there is a non-deterministic
polynomial time procedure such that, for any lower neighbor L of C, it has a (successful) computation path
that returns some concept description equivalent to L, when started on C as input.
Approbatio. The claim essentially is a consequence of Lemma 3.1.4.2 and Propositio 3.1.4.4, and the
well-known fact that any EL concept description can be reduced in polynomial time. In particular, a
suitable algorithm could work as follows on an input C.

1. Reduce C.

2. Guess some EL concept description L such that ||L|| ≤ (3+ rd(C)) · ||C||+ 1 is satisfied.

3. Check whether L is a lower neighbor of C. If yes, then return L; otherwise fail.

The next lemma’s aim is to show that the means of enumerating all lower neighbors from Corollar-

ium 3.1.3.6 is optimal in terms of computational complexity. In particular, each efficient algorithmization

of Corollarium 3.1.3.6 runs in exponential time, cf. the above proposition, and there is some example

showing that EL concept descriptions can indeed have exponentially many lower neighbors, cf. the
below lemma.

Lemma 3.1.4.8. There is a sequence of signatures Σn and concept descriptions Cn ∈ EL(Σn) such that,
for any n ∈ N, the set Lower∗(Cn) of (representatives of) lower neighbors of Cn has a cardinality that is
exponential in the size of Σn plus the size of Cn.
Approbatio. We define a sequence of signatures Σn and concept descriptions Cn ∈ EL(Σn) as fol-

lows. Fix some n ∈ N such that n ≥ 2. Set (Σn)C := { Ai, Bi | i ∈ {1, . . . , n} } and (Σn)R := {r}.
Furthermore, let

Cn :=
l
{ E

r. Di
n | i ∈ {1, . . . , n} } where Di

n :=
l
{ Aj, Bj | j ∈ {1, . . . , n} \ {i} }.

If we now set S := Succ(Cn, r), then it obviously holds true that Choices∗S(Di
n) = {Ai, Bi} for any index

i ∈ {1, . . . , n}. It is easy to verify that any choice function χ ∈×Choices∗S is admissible and further that

there are exponentially many such choice functions, i.e., Cn hasΩ(2n)mutually incomparable lower

neighbors while the size of Cn isO(n2) and the size of Σn isO(n).
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3.1.5. APPLICATIONS

Propositio 3.1.5.1. Let Ξ ⊆ EL(Σ) be a problem that is closed under subsumees, that is, C ∈ Ξ and
C w∅ D impliesD ∈ Ξ. We consider the problemMax∅(Ξ), which consists of all most general elements of Ξ.
1. Ξ ∈ C impliesMax∅(Ξ) ∈ PC for each complexity class C.
2. Ξ ∈ P impliesMax∅(Ξ) ∈ P

3. Ξ ∈ ΣP
n impliesMax∅(Ξ) ∈ ∆P

n+1 for any number n ∈N.
4. Ξ ∈ C impliesMax∅(Ξ) ∈ C for any complexity class C such that PSpace ⊆ C.
5. Ξ ∈ PSpace impliesMax∅(Ξ) ∈ PSpace

Approbatio. We only prove Statement 1; the others are then obtained as corollaries. In particular, for
Statement 4 we need that PC ⊆ C holds true for any complexity class C such that PSpace ⊆ C. In

case C = PSpace this follows from

PSpace ⊆ PPSpace ⊆ NPPSpace ⊆ NPSpace ⊆ PSpace,

cf. (Papadimitriou, 1994, Proof of Theorem 14.4). With similar arguments, we see that PC ⊆ C holds

true as well for the general casePSpace ⊆ C, since each polynomial time Turing machine withC-oracle

can be “recompiled” to a C-Turing machine.

A deterministic procedure that decidesMax∅(Ξ) could work as follows when given some EL concept
description C as input.

1. Check if C ∈ Ξ. If not, then reject C.

2. Enumerate all upper neighbors of C.

3. If there exists some upper neighbor D of C with D ∈ Ξ, then reject C; otherwise accept C.

According to Propositio 3.1.4.1, Step 2 requires polynomial time. We conclude that this procedure shows

thatMax∅(Ξ) ∈ PC
holds true.

Propositio 3.1.5.2. Let Ξ ⊆ EL(Σ) be some problem that is closed under subsumers, that is, C ∈ Ξ and
C v∅ D implies D ∈ Ξ. We consider the problemMin∅(Ξ), which consists of all most specific elements of Ξ.
1. Ξ ∈ C impliesMin∅(Ξ) ∈ co(NPC) for each complexity class C.
2. Ξ ∈ P impliesMin∅(Ξ) ∈ coNP

3. Ξ ∈ ΣP
n impliesMin∅(Ξ) ∈ ΠP

n+1 for each number n ∈N.
4. Ξ ∈ C impliesMin∅(Ξ) ∈ coC for any complexity class C such that PSpace ⊆ C.
5. Ξ ∈ PSpace impliesMin∅(Ξ) ∈ PSpace
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Approbatio. It is sufficient to show Statement 1, since the others are then obtained as immediate
consequences. For Statement 4 we use the fact that co(NPC) ⊆ C is satisfied for each complexity class

C satisfying PSpace ⊆ C. If C = PSpace, then this follows fromNPPSpace ⊆ NPSpace ⊆ PSpace, cf.

(Papadimitriou, 1994, Proof of Theorem14.4), sincewe can conclude that co(NPPSpace) ⊆ coPSpace =

PSpace. More generally if PSpace ⊆ C, we can “recompile” any non-deterministic polynomial time

Turing machine with C-oracle to some deterministic polynomial space Turing machine with C-oracle,

which itself can be “recompiled” to a C-Turing machine.

The following non-deterministic procedure decides the complement ofMin∅(Ξ). Let C be an EL
concept description that is given as input.

1. Check whether C ∈ Ξ. If not, then accept C.

2. Guess some lower neighbor D of C.

3. If D ∈ Ξ, then accept C; otherwise reject C.

Now Propositio 3.1.4.7 implies that the above is a procedure that needs non-deterministic polynomial

time, and since it uses a C-oracle to decide Ξ, we conclude that the complement ofMin∅(Ξ) is inNPC
,

which implies thatMin∅(Ξ) ∈ co(NPC).

3.2. THE BOTTOM CONCEPT DESCRIPTION

Now consider the extension of EL with the bottom concept description ⊥ the semantics of which is
defined as⊥I := ∅ for any interpretation I. Thenv∅ is not bounded andw∅ is not well-founded,

since the following infinite chain exists.

⊥ vp ∅ . . . vp ∅

E

rn+1.> vp ∅

E

rn.> vp ∅ . . . vp ∅

E

r2.> vp ∅

E

r.> vp ∅ >

Furthermore,v∅ is not neighborhood generated, as⊥ does not have any upper neighbors. To see
this, consider a concept description C such that⊥ vp ∅ C; it then follows that⊥ vp ∅ Cu E

r. C vp ∅ C.
Anyway,⊥ is the only concept description that causes problems here: for each satisfiable EL⊥ concept
description, that is, for any C ∈ EL⊥(Σ) such that C 6≡∅ ⊥, we can enumerate all upper and lower
neighbors with the same techniques as in Section 3.1. This is due to the fact that some EL⊥ concept
description is satisfiable if, and only if, it does not contain⊥ as a subconcept.

3.3. GREATEST FIXED-POINT SEMANTICS

Unfortunately, the situation is also not rosy for extensions of EL with greatest fixed-point semantics
Baader, 2003; Lutz, Piro, and Wolter, 2010b. It then also holds true thatv∅ is neither bounded nor

neighborhood generated, and w∅ is not well-founded. One culprit is a concept description which

represents a cycle, for instance ν X.

E

r. X, the extension of which is maximal w.r.t. the property of
containing elements that have some other element in that extension as an r-successor.
The following infinite chain justifies thatv∅ is not bounded and further thatw∅ is not well-founded.

ν X.

E

r. X vp ∅ . . . vp ∅

E

rn+1.> vp ∅

E

rn.> vp ∅ . . . vp ∅

E

r2.> vp ∅

E

r.> vp ∅ >
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Lemma 3.3.1. There is some signature Σ such that the subsumption relation v∅ on ELν(Σ) is not
neighborhood generated.
Approbatio. Consider the signature Σ with ΣC := ∅ and ΣR := {r}. We will show that then
(ELν(Σ),v∅)/∅ is isomorphic to the ordinal (ω + 1,≥), which is apparently not neighborhood
generated.

In (Lutz, Piro, and Wolter, 2010b), Lutz, Piro, and Wolter showed that all ELν(Σ) concept descriptions
are equivalent to an ELsi(Σ) concept description, which has the form

E

sim (I, δ) for a finite pointed

interpretation (I, δ) and the extension of which in an interpretation J is given as follows.

(

E

sim (I, δ))J := { ε | ε ∈ ∆J and (I, δ) ⇀∼ (J , ε) }

As an immediate consequence of this definition we infer that

E

sim (I, δ) v∅

E

sim (J , ε) if, and only

if, (J , ε) ⇀∼ (I, δ).

The finite interpretations over Σ essentially are just finite directed graphs, in which the vertices
have no labels and in which the edges are (virtually) labeled with r. We first show that the loop (the
one-element cycle) is maximal with respect to the simulation order. In particular, we show that the

following finite pointed interpretation (Iω, δ0) is maximal w.r.t.⇀∼.

Iω

δ0

r

If (J , ε) is an arbitrary pointed interpretation over Σ, then the binary relation σ := { (η, δ0) | η ∈ ∆J }
apparently is a simulation from (J , ε) to (Iω, δ0).

η

θ

r δ0

r
σ

σ

As an immediate corollary we obtain that

E

sim (Iω, δ0) ≡ ν X.

E

r. X =: Cω is the smallest ELν(Σ)
concept description.

As next step we prove that each finite pointed interpretation (J , ε) over Σ which contains a cycle
through ε is equi-similar to (Iω, δ0). It is only left to show the existence of a simulation from (Iω, δ0)

to such (J , ε). We essentially do this by connecting δ with each element in the cycle, i.e., if

ε rJ ε1 rJ ε2 rJ . . . rJ εn rJ ε

is the cycle containing ε, then the binary relation τ := {(δ0, ε)} ∪ { (δ0, εi) | i ∈ {1, . . . , n} } clearly is
a simulation from (Iω, δ0) to (J , ε).
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δ0r ε

ε1

ε2

εn

r r

r
τ

τ

τ

τ

τ

Continuing our investigations, we now consider a finite pointed interpretation (J , ε) which does

not contain a cycle through ε, i.e., all paths starting with ε do not contain ε twice. It is readily verified

that then there cannot exist a simulation from (Iω, δ0) to (J , ε), simply because the loop in (Iω, δ0)

cannot be simulated in (J , ε). As a corollary, each of these finite pointed interpretations (J , ε) is

strictly smaller than (Iω, δ0) with respect to the simulation order ⇀∼. Furthermore, we observe that
each path starting with ε is of finite length, and only finitely many mutually distinct paths starting with

ε exist. If we now define n as the maximal length of a path starting with ε, we conclude that (J , ε) and

the finite pointed interpretation (In, δ0) are equi-similar where

In := ({δ0, δ1, . . . , δn},{r 7→ { (δi−1, δi) | i ∈ {1, . . . , n} }}).

In

δ0 δ1 δ2 δn. . .
r r r r

Clearly, it holds true that

E

sim (In, δ0) ≡

E

rn.> =: Cn, and since (Im, δ0) ⇀� (In, δ0) is satisfied if

m < n, it follows that Cn vp ∅ Cm wheneverm < n.
In summary, we have shown that

ELν(Σ)/∅ = { [Cn]∅ | n < ω } ∪ {[Cω]∅},

and that these concept descriptions are ordered as follows.

Cω vp ∅ . . . vp ∅ C2 vp ∅ C1 vp ∅ C0

This immediately proves that Cω does not have upper neighbors although it is subsumed by each Cn.

3.4. CYCLE-RESTRICTED TBOXES

According to Baader, Borgwardt, and Morawska (2012), a TBox T is called cycle-restricted if there does
not exist a word w ∈ Σ+

R and a concept description C ∈ EL(Σ) such that C vT

E

w. C. Furthermore,
deciding whether a TBox is cycle-restricted can be done in polynomial time. In (Kriegel, 2018a), the
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author has shown that most specific consequences with respect to cycle-restricted TBoxes always exist

in EL (without greatest fixed-point semantics). Thus, we can utilize our results on neighborhood in
EL without any TBox to constitute procedures for deciding neighborhood and for enumerating all
neighbors in EL with respect to cycle-restricted TBoxes.

(Baader, Borgwardt, andMorawska, 2012, Definition 2). An EL TBox T is cycle-restricted if there
is no EL concept description C and no non-empty role word w ∈ Σ+

R such that C vT

E

w. C. 4

(Kriegel, 2018a). Let T be an EL TBox. Then, the following statements are equivalent.
1. T is cycle-restricted.
2. The canonical model IC,T is tree-shaped for every EL concept description C.
3. The most specific consequence CT exists in EL for any EL concept description C. �

Lemma 3.4.1. For each cycle-restricted TBox T , the subsumption relationvT is neighborhood generated.
Approbatio. It is readily verified that C ≺T D if, and only if, CT vp ∅ DT and there is no most specific
consequence ET such thatCT vp ∅ ET vp ∅ DT . According to Section 3.4, all most specific consequences
of T exist in EL. Furthermore, we know thatv∅ is bounded, cf. (Baader and Morawska, 2010, Proof

of Proposition 3.5). Of course, if we now restrict the subsumption relation v∅ to the most specific

consequences of T , that is, if we consider the relationv∅ ∩MSS(T )×MSS(T ) whereMSS(T ) :=
{ CT | C ∈ EL(Σ) }, then this relation must also be bounded. Now since there exists an order
isomorphism [C]T 7→ [CT ]∅ between (EL(Σ),vT )/T and (MSS(T ),v∅ ∩MSS(T )×MSS(T ))/∅,
we conclude thatvT is bounded as well and is, thus, neighborhood generated.

Lemma 3.4.2. Fix some cycle-restricted EL TBox T as well as two EL concept descriptions C and D. It then
holds true that C ≺T D if, and only if, C vp T D and C vT L implies C ≡T L for any L ∈ Lower∗(DT ).
Furthermore, it holds true that≺T ∈ coNP, i.e., neighborhood of two EL concept descriptions is decidable
in non-deterministic polynomial time w.r.t. ||C||+ ||D||+ ||T ||+ |Σ|.
Approbatio. We start with proving the if statement. Let C vT X vp T D, that is, CT v∅ XT vp ∅ DT .
Now there is some L ∈ Lower∗(DT ) such that XT v∅ L, and it follows that X vT L. We conclude that
C ≡T L holds true, which implies C ≡T X.
We proceed with the only if direction. Assume C ≺T D, which immediately yields that C vp T D, and

further let L ∈ Lower∗(DT ) such that C vT L. The very definition of a most specific consequence
shows that L ≺∅ DT implies L vp T D. Eventually, our assumption yields that C ≡T L.
The complexity result can be obtained as a corollary of the following facts.

� Subsumption in EL can be decided in polynomial time.

� Most specific consequences w.r.t. cycle-restricted TBoxes always exist in EL and can be computed
in polynomial time.

� Lower neighbors of an EL concept description can be guessed in polynomial time, cf. Proposi-
tio 3.1.4.7.
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Lemma 3.4.3. Let T be a cycle-restricted EL TBox and C an EL concept description. Then the set

LowerT (C) := MaxT (Lower
∗(CT ))

contains exactly all lower neighbors of C with respect to T modulo equivalence and can further be computed
in exponential time w.r.t. ||C||+ ||T ||+ |Σ|.
Approbatio. Soundness. Let L ∈ LowerT (C) and assume that L vT X vp T C. It then follows that
LT v∅ XT vp ∅ CT and, thus, there is some M such that LT v∅ XT v∅ M ≺∅ CT . We conclude
that L vT X vT M. As L isvT -maximal in Lower∗(CT ), we conclude that L ≡T M, which shows that
X ≡T L, that is, L ≺T C.

Completeness. Vice versa, assume that L ≺T C. We infer that L vp T C and further that LT vp ∅ CT .
According to Corollarium 3.1.3.6, there exists some lower neighbor M ∈ Lower∗(CT ) satisfying
LT v∅ M ≺∅ CT . Thus, it follows that L ≡T LT vT M vp T CT ≡T C, which yields L ≡T M. It
remains to prove thatM isvT -maximal. IfM vp T N for someN ∈ Lower∗(CT ), thenM vp T N ≺∅ CT

immediately implies the contradictionM vp T N vp T C.

Complexity. The complexity result can be obtained as a corollary of the following facts.
� Subsumption in EL can be decided in polynomial time.

� Most specific consequences w.r.t. cycle-restricted TBoxes always exist in EL and can be computed
in polynomial time.

� (Representatives of) all lower neighbors of some EL concept description can be enumerated in
exponential time, cf. Propositio 3.1.4.6.

Propositio 3.4.4. Fix some cycle-restricted EL TBox T and consider an EL concept description C. Then
the set

UpperT (C) := Min∅(
⋃
{Upper(X) | X ∈ Max∅([C]T ) })

contains exactly all upper neighbors of C with respect to T modulo equivalence.
Approbatio. Soundness. Assume that C ≺T D holds true. It follows that CT vp ∅ DT . Now consider
some concept description E such that CT v∅ E v∅ DT . According to the properties of most specific
consequences, we can infer that C vT E vT D, which yields that either E ≡T C or E ≡T D.
Formulated alternatively, we have that E ≡T C if, and only if E 6≡T D.

It is readily verified that some E satisfying CT v∅ E v∅ DT and E ≡T C exists, namely E = CT .
We now fix some such E that is most general (w.r.t. ∅) such that CT v∅ E v∅ DT and E ≡T C.
Then, we immediately conclude that E 6≡T D as well as E vp ∅ DT , and furthermore we have that
C 6≡T F ≡T D for any F with E ≺∅ F v∅ DT . In particular, at least one such upper neighbor F of
Emust exist and we infer that F ≡∅ DT holds true. Summing up, we have shown that D ≡T F for
some F ∈ ⋃{Upper(X) | X ∈ Max∅([C]T ) }.

It remains to show that F is most specific w.r.t. ∅. Assume the contrary, i.e., let E′ ∈ Max∅([C]T ) and
F′ ∈ Upper(E′) such that F′ vp ∅ F andD ≡T F′. It then follows thatD vT F′, which impliesDT v∅ F′.
Putting everything together yields the contradiction DT v∅ F′ vp ∅ F ≡∅ DT .  
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Completeness. Vice versa, assume that there are two concept descriptions X and D such that X ∈
Max∅([C]T ), D ∈ Upper(X), and where D is most specific with respect to these two properties, that
is, there does not exist any X′ ∈ Max∅([C]T ) and some D′ ∈ Upper(X′) with D′ vp ∅ D. We claim that
then C ≺T D holds true. Before we proceed with proving this, we show the following auxiliary claim.

Lemma. For each Y such that C vT Y vp ∅ D, we have C ≡T Y.
Approbatio. Let C vp T Y vp ∅ D. Then, there must exist some Z ∈ Max∅([C]T ) such that CT v∅ Z vp ∅

Y. Thus, there is someU ∈ Upper(Z) such that CT v∅ Z ≺∅ U v∅ Y. It follows thatU vp ∅ D where
U ∈ Upper(Z) and Z ∈ Max∅([C]T ).  

From D �∅ X w∅ XT ≡∅ CT we infer that CT vp ∅ D, which immediately implies that C vT D.
Apparently, C ≡T D would contradict the precondition that X is most general in [C]T ; we conclude
that C vp T D.

Furthermore, it holds true that D ≡∅ DT . To see this, assume the contrary, i.e., let DT vp ∅ D. Since
C vT D and D ≡T DT , an application of the above lemma would yield the contradiction C ≡T DT .  

According to Lemma 3.4.2, it suffices to check whetherC vT L impliesC ≡T L for any L ∈ Lower∗(DT ).
However, this is an immediate consequence of the above lemma: if C vT L ≺∅ DT , then due to
D ≡∅ DT we infer that C vT L vp ∅ D, and so it follows that C ≡T L.

3.5. ACYCLIC TBOXES

A concept definition is an expression of the form A ≡ C where A ∈ ΣC is a concept name and where

C ∈ EL(Σ) is a concept description. We then also say that A is a defined concept name and C is its
defining concept description. A concept name that is not defined is called primitive. An acyclic TBox is
a finite set of concept definitions that contains at most one concept definition A ≡ C for each concept
name A ∈ ΣC, and for which the following directed graph, called the dependency graph of T , is acyclic.

(ΣC,{ (A, B) | A, B ∈ ΣC,

E

C : A ≡ C ∈ T and B ∈ Sub(C) }+)

The expansionCT of an EL concept descriptionCwith respect to an acyclic TBox T is obtained fromC by
exhaustively replacing eachdefined concept namewith its defining concept description. It thenholds true

that C and its expansion CT are equivalent with respect to T , that is, C ≡T CT . Furthermore, deciding
subsumption of two concept descriptions with respect to T can be reduced to deciding subsumption of
the respective expansions with respect to∅, that is, it holds true that C vT D if, and only if, CT v∅ DT .
It is apparent that any acylic TBox is cycle-restricted. Thus, we can simply pull and apply the re-

sults from the preceeding section and, in particular, conclude that the subsumption relation vT is
neighborhood generated for any acyclic TBox T .

3.6. GENERAL TBOXES

A similar situation as for greatest fixed-point semantics arises when considering subsumption with

respect to a non-cycle-restricted TBox T .

3. The Neighborhood Problem for EL Concept Descriptions 34



Lemma 3.6.1. There is an EL TBox T over some signature Σ such thatvT is not bounded andwT is not
well-founded.
Approbatio. Wedemonstrate the claim by giving a counterexample. Define the TBox T := {A v E

r. A}
over the signature Σ where ΣC := {A} and ΣR := {r}. Apparently, then the following infinite chain
exists.

A vp T

E

r. A vp T

E

r2. A vp T

E

r3. A vp T . . .

The following model I of T shows that the subsumptions in the chain are indeed strict.

I

. . .
A

r r r r

r

Lemma 3.6.2. There is an EL TBox T over some signature Σ and an EL concept description C over Σ that
strictly subsumes some other EL concept description w.r.t. T , but does not have lower neighbors with respect
to T .
Approbatio. We consider a simple signature with exactly one concept name and exactly one role name,
i.e., let Σ be given by ΣC := {A} and ΣR := {r}. We are going to show that > does not have lower
neighbors with respect to the TBox

T := {> v E

r.>, A v E

r. A}.

For this purpose, we first prove the validity of the following two statements.

1. If C does not contain the concept name A as a subconcept, then C ≡T >.

2. If in the canonical model of an EL(Σ) concept description C with respect to T the shortest path
from the vertex C to a vertex labelled with A has length n, then C ≡T

E

rn. A.

As a corollary, we then obtain that

EL(Σ)/T = { [ E

rn. A]T | n ∈N} ∪ {[>]T },

and furthermore that the subsumption ordering of these concept descriptions is as follows.

A vp T

E

r. A vp T

E

r2. A vp T

E

r3. A vp T . . . vp T >

The following interpretation I is a model of T and witnesses the validity of the strictness of the above
mentioned subsumptions.

I

. . .
A

r r r

r
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Wemay now safely conclude that> indeed does not have any lower neighbors with respect to T .
However, we still have to prove the two statements above, with which we proceed now.

1. Let C be an EL(Σ) concept description which does not contain A as a subconcept. It is easy
to verify that in the canonical model IC,T there is an r-edge from C to>, and the latter has an
r-loop. Thus, (IC,T , C) and (I>,T ,>) are equi-similar, whence C ≡T >.

2. As supposed, let n be the length of a shortest path~p from C to a vertex D with label A within
the canonical model IC,T . In particular, A is an r-successor of D and A is an r-successor of itself.
Henceforth, the other r-paths starting with D can already be simulated in the r-loop of A. All
other r-paths starting with Cmay also be simulated by means of~p and the r-loop of A. Thus,
we conclude that (IC,T , C) and the canonical model of

E

rn. A w.r.t. T are equi-similar, that is,
C ≡T

E

rn. A.

Lemma 3.6.3. There is an EL TBox T over some signature Σ and an EL concept description C over Σ that
is strictly subsumed by another EL concept description w.r.t. T , but does not have upper neighbors with
respect to T .
Approbatio. We try to keep things simple, and consider a rather small signature, namely Σ defined by
ΣC := {A, B} and ΣR := {r}. Furthermore, in order to find a suitable counterexample, we define a
TBox by

T := { E

r. A v A, B v A, B ≡ E

r. B}.

From the very definition of T it follows that the following subsumptions hold true.

B ≡T

E

rn. B vp T

E

rn. A

. . . vp T

E

rn+1. A vp T

E

rn. A vp T . . . vp T

E

r2. A vp T

E

r. A vp T A

The following interpretation I is a model of T and justifies the strictness of the subsumptions above.

I

. . .
A A A A, B

r r r r

Let Cn :=

E

rn. A for n ∈N. According to the previous observations, the following infinite chain exists.

B vp T . . . vp T Cn+1 vp T Cn vp T . . . vp T C2 vp T C1 vp T C0 = A

The canonical models ICn,T and IB,T are depicted below.
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ICn,T

CnA

C2A

C1A

C0A

...

r

r

r

r

IB,T

B
A, B

r

It is readily verified that for each n ∈ N, there exists a simulation from (ICn,T , Cn) to (IB,T , B), but
there is no simulation in the converse direction, i.e., it indeed holds true that B vp T Cn.

Let C ∈ EL(Σ). We proceed with a case distinction on whether C contains B as a subconcept.

1. Assume that B is a subconcept of C. We are going to show that then C ≡T B. The canonical
model IC,T contains an r-path from the vertex C to some vertex D which has label B. Since
B ≡ E

r. B ∈ T , the very definition of canonical models yields that each vertex on this path must
be labelled with B, and hence each of these vertices has B as an r-successor. Furthermore, B
is an r-successor of itself. We conclude that the canonical model IC,T has the following structure.

IC,T

C
A, B A, B A, B

D
A, B

B
A, B

. . .
. . .
. . .
. . .

. . .

. . .

. . .

r r r r
r

r
r r r

r

r
r
r

r
r
r

It is not hard to see that (IB,T , B) and (IC,T , C) are equi-similar, and thus B ≡T C.

2. Now let B be no subconcept of C, and consider only the connected component of the canonical
model IC,T which contains the vertex C. Then this part must be tree-shaped, and each vertex
may either have label A or no labels at all. Furthermore, if in a branch of this tree there is a vertex
D with label A, then all ancestors of Dmust also have label A due to the presence of the concept
inclusion

E

r. A v A in T . If we set n to the length of a longest path in this tree, then (IC,T , C)
can apparently be simulated in (ICn,T , Cn), i.e., Cn vT C. Furthermore, there exists a simulation
from (ICm,T , Cm) to (IC,T , C) where within the treem is the length of a longest path all vertices
of which are labelled with A. Hence, C vT Cm.

We conclude that each EL(Σ) concept description C either is equivalent to B w.r.t. T or there exists
an n ∈N such that B vp T Cn−1 vp C, i.e., B does not have upper neighbors with respect to T .

3. The Neighborhood Problem for EL Concept Descriptions 37



Corollarium 3.6.4. There is some EL TBox T over some signature Σ for which the subsumption relation
vT is not neighborhood generated. �

3.7. RELATIONSHIPS BETWEEN /0-NEIGHBORS AND T -NEIGHBORS

This section’s goal is to explore relationships between neighbors w.r.t. ∅, neighbors w.r.t. T , and
most specific consequences. For this purpose, let T be some EL⊥ TBox, let C, D, E be EL⊥ concept
descriptions, and let r be some role name.

1. We have that C ≺T D does not imply

E

r. C ≺T

E

r. D. As a counterexample define T :=
{ E

r. A ≡ E

r.>}. Then it holds true that A ≺T >, but

E

r. A 6≺T

E

r.>.

2. It does not hold true that C ≺T D implies C u E ≺T D u E. Consider the counterexample
T := {Au B ≡ B}: it holds true that A ≺T >, but Au B 6≺T B.

3. C ≺T D is equivalent to CT ≺T DT , since C ≡T CT holds true for all EL⊥ TBoxes T .

4. C ≺∅ D does not imply C ≺T D. As a simple counterexample consider C := A, D := >, and
T := {> v A}.

5. CT ≺∅ DT implies C ≺T D.

Approbatio. Assume that CT is a lower neighbor of DT with respect to the empty TBox ∅. We
shall immediately conclude thatCT v∅ DT aswell asCT 6w∅ DT . Applying Section 2.9 yields that
C vT D andC 6wT D, i.e., Statement 1 of Definitio 3.1 are satisfied. Now consider an EL⊥ concept
description E such that C vT E vT D, i.e., by means of Section 2.9 this is equivalent to CT v∅

ET v DT . By assumption, wemay conclude that ET ≡∅ CT or ET ≡∅ DT , i.e., E ≡T C or E ≡T
D. Consequently, also Statement 2 of Definitio 3.1 holds true, and thus C ≺T D as claimed.

6. We have that C ≺∅ D does not always imply CT ≺∅ DT .

7. Furthermore, C ≺T D does not imply C ≺∅ D.

Approbatio. Consider the signature Σ where ΣC := ∅ and ΣR := {r}. Define T := { E

r.> v

E

r.

E

r.>}, and consider the concept descriptions C :=

E

r.

E

r.> and D := >. Obviously,
modulo equivalence w.r.t. T there are only two distinct concept descriptions, namely E

r.> and>.
In particular, [>]T = {>} and [ E

r.>]T = EL⊥(Σ) \ {>}. We conclude that C ≺T D. However,
C vp ∅

E

r.> vp ∅ D, and thus C 6≺∅ D.

8. Eventually, C ≺T D does not imply CT ≺∅ DT .

Approbatio. Let the signature Σ be defined by ΣC := {A1, A2, B1, B2} and ΣR := ∅, and consider
the TBox T := {A1 ≡ A2, B1 ≡ B2}. Then, modulo equivalence w.r.t. T there exists exactly four
distinct EL(Σ) concept descriptions, which are>, A1, B1, and A1 u B1.

Now define C := A1 u B1 and D := A1. The corresponding most specific consequences satisfy

CT ≡∅ A1 u A2 u B1 u B2 and DT ≡∅ A1 u A2, respectively. It is apparent that A1 u A2 u B1

is strictly between CT and DT with respect to the empty TBox, i.e., CT 6≺∅ DT .

Eventually, we can readily verify that C ≺T D.
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4. THE DISTRIBUTIVE, GRADED LATTICE
OF EL CONCEPT DESCRIPTIONS

The goal of this section is to explore the properties of the lattice of EL concept descriptions ordered by
subsumption with respect to the empty TBox. In particular, Blyth Blyth, 2005, Chapters 4 and 5 shows

that it suffices to investigate whether this lattice is distributive and of locally finite length, such that as

an immediate corollary we then obtain that also the Jordan-Dedekind chain condition is satisfied, which

states that for each pairC v∅ D, all maximal chains in the intervall [C, D] have the same length. Further-

more, this length can then be utilized to define a distance betweenC andD, and in particular tomeasure
a distance from each concept descriptionC to the top concept description>, which we call the rank ofC.

4.1. DISTRIBUTIVITY

Lemma 4.1.1. For each signature Σ, the lattice EL(Σ) is distributive, i.e., for all concept descriptions
C, D, E ∈ EL(Σ), it holds true that

Cu (D∨ E) ≡∅ (CuD)∨ (Cu E),

and C∨ (Du E) ≡∅ (C∨D)u (C∨ E).

Approbatio. We first show that the concept names occuring on the top level are the same for both
concept descriptions C u (D ∨ E) and (C uD)∨ (Cu E). For this purpose we use the fact that the
power-set lattice is distributive.

Conj(Cu (D∨ E), ΣC) = Conj(C, ΣC)∪Conj(D∨ E, ΣC)

= Conj(C, ΣC)∪ (Conj(D, ΣC)∩Conj(E, ΣC))

= (Conj(C, ΣC)∪Conj(D, ΣC))∩ (Conj(C, ΣC)∪Conj(E, ΣC))

= Conj(CuD, ΣC)∩Conj(Cu E, ΣC)

= Conj((CuD)∨ (Cu E), ΣC)

Now consider an existential restriction

E

r. Y ∈ Conj((C u D) ∨ (C u E)), i.e., there must exist

E

r. Y1 ∈ Conj(CuD) and

E

r. Y2 ∈ Conj(Cu E) such that Y = Y1 ∨Y2. We need to show that there
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is some

E

r. X ∈ Conj(Cu (D∨ E)) with X v∅ Y. If

E

r. Yi ∈ Conj(C) for some i ∈ {1, 2}, then choose
X := Yi. Otherwise it must hold true that

E

r. Y1 ∈ Conj(D) and

E

r. Y2 ∈ Conj(E), which implies

E

r. (Y1 ∨Y2) ∈ Conj(D∨ E), and hence wemay choose X := Y1 ∨Y2.

Vice versa, let

E

r. X ∈ Conj(Cu (D∨E)). If

E

r. X ∈ Conj(C), then

E

r. X ∈ Conj((CuD)∨ (CuE)).
If otherwise

E

r. X ∈ Conj(D ∨ E), there exist

E

r. X1 ∈ Conj(D) ⊆ Conj(C u D) and

E

r. X2 ∈
Conj(E) ⊆ Conj(Cu E) such that X = X1 ∨X2. Thus, it follows that

E

r. X ∈ Conj((CuD)∨ (Cu E))
too.

Lemma 4.1.2. For each signature Σ, the lattice EL(Σ) is of locally finite length, that is, for all concept
descriptions C, D ∈ EL(Σ) with C v∅ D, every chain in the interval [C, D] has a finite length.
Approbatio. The claim is an immediate consequence of the boundedness ofv∅, which Baader and

Morawska showed in Baader and Morawska, 2010, Proof of Proposition 3.5.

According to Blyth (Blyth, 2005, Chapters 4 and 5), the following statements are obtained as immediate

consequences of Lemmata 4.1.1 and 4.1.2.

Corollarium 4.1.3. 1. For each signature Σ, the lattice EL(Σ) is modular, i.e., for all concept descrip-
tions C, D, E ∈ EL(Σ), it holds true that

(CuD)∨ (Cu E) ≡∅ Cu (D∨ (Cu E)),

(C∨D)u (C∨ E) ≡∅ C∨ (Du (C∨ E)),

C v∅ D implies C∨ (EuD) ≡∅ (C∨ E)uD,

and C w∅ D implies Cu (E∨D) ≡∅ (Cu E)∨D.

2. For each signature Σ, the lattice EL(Σ) is both upper and lower semi-modular, i.e., for all concept
descriptions C, D ∈ EL(Σ), it holds true that

CuD ≺∅ C if, and only if, D ≺∅ C∨D.

3. For each signature Σ, the lattice EL(Σ) satisfies the Jordan-Dedekind chain condition, i.e., for all
concept descriptions C, D ∈ EL(Σ) with C vp ∅ D, it holds true that all maximal chains in the interval
[C, D] have the same length. �

4.2. RANK FUNCTIONS

The notion of a rank function can be defined for ordered sets. The following definition specifically tailors

this notion for the lattice EL(Σ).

Definitio 4.2.1. An EL rank function is a mapping | · | : EL(Σ)→Nwith the following properties.

1. |>| = 0

2. C ≡∅ D implies |C| = |D| (equivalence closed)

3. C vp ∅ D implies |C|  |D| (strictly order preserving)

4. C ≺∅ D implies |C|+ 1 = |D| (neighborhood preserving)
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For an EL concept description C, we say that |C| is the rank of C. 4

Lemma 4.2.2. For each C ∈ EL(Σ), let |C| := 0 if C ≡∅ >, and otherwise define

|C| := max{n + 1 | E

D1, . . . , Dn ∈ EL(Σ) : C ≺∅ D1 ≺∅ . . . ≺∅ Dn ≺∅ >}.

Then, | · | is an EL rank function.
Approbatio. It is readily verfied that | · | satisfies Statements 1 and 2 of Definitio 4.2.1. We proceed with
proving that Statement 4 holds true for | · |, which implies the validity of Statement 3 for | · |. Consider
EL concept descriptions C and D such that C ≺∅ D. Clearly, if we consider a maximal chain from D
to>, and add C as prefix, then we have a maximal chain from C to>. It is thus immediate to conclude
|C|+ 1 = |D|.

Since EL(Σ) satisfies the Jordan-Dedekind chain condition, we infer that in order to compute the
rank |C| of an EL concept description C over Σ with C 6≡∅ >, we simply need to find one chain C ≺∅

D1 ≺∅ D2 ≺∅ . . . ≺∅ Dn ≺∅ >, and then it follows that |C| = n+ 1. Furthermore, |C| = 0 if C ≡∅ >.

Corollarium 4.2.3. For each signature Σ, the lattice EL(Σ) is graded. �

Lemma 4.2.4. For all EL concept descriptions C and D over some signature Σ, the following equation
holds true.

|C|+ |D| = |CuD|+ |C∨D|

Approbatio. follows from Lemma 4.1.2, Corollarium 4.1.3, and (Blyth, 2005, Theorem 4.6).
Lemma 4.2.5. Let C be a set of n EL concept descriptions over Σ. Then, the following equation holds true.

|
l

C| =
n

∑
i=1

(−1)i+1 ·∑
D∈(C

i )

|
∨

D|

Approbatio. We show the claim by induction on n. The induction base where n ∈ {0, 1} is trivial, and
for n = 2 has been shown in Lemma 4.2.4. For the induction step let now n > 2. Using the equation
from Lemma 4.2.4, we infer the following for each C ∈ C.

|C|+ |
l

C \ {C}| = |
l

C|+ |C∨
l

C \ {C}|

By means of the finitely generalized distributivity law and another application of Lemma 4.2.4 we

conclude that the following equation holds true for each C ∈ C.

|C|+ |
l

C \ {C}| = |
l

C|+ |
l
{C∨D | D ∈ C \ {C} }|

The induction hypothesis allows for replacing the ranks of the (n− 1)-ary conjunctions, and thus yields
the following equation for each C ∈ C.

|C|+
n−1

∑
j=1

∑
D∈(C\{C}

j )

(−1)j+1 · |
∨

D| = |
l

C|+
n−1

∑
k=1

∑
E∈({C∨D | D∈C\{C} }

k )

(−1)k+1 · |
∨

E|

= |
l

C|+
n−1

∑
k=1

∑
E∈(C\{C}

k )

(−1)k+1 · |C∨
∨

E|
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If we sum up the n equations, then we see that on the left hand side there are exactly n occurences of
|C| for each C ∈ C, and furthermore that for each j ∈ {2, . . . , n− 1} and for eachD ∈ (C

j ), there exist

exactly n− j occurences of the summand (−1)j+1 · |∨D|. On the right hand side, there are, obviously,
n occurences of |

d
C|. Furthermore, for each k ∈ {2, . . . , n} and for each E ∈ (C

k), there are exactly

k occurences of the summand (−1)k · |∨E|. Rearranging and then dividing by n eventually yields the
induction claim for n.

Let C = A1 u . . .u Am u

E

r1. C1 u . . .u E

rn. Cn be a reduced EL concept description. Then its rank
can be computed as follows, cf. Lemma 4.2.5.

|C| = |A1 u . . .u Am u

E

r1. C1 u . . .u E

rn. Cn|
= |A1 u . . .u Am|+ |

E

r1. C1 u . . .u E

rn. Cn| − |>|
= m + | Er1. C1 u . . .u E

rn. Cn|

Furthermore, it holds true that

E

r. C∨ E

s. D ≡∅ > if r 6= s. It follows that we can further simplify the
rank computation as follows.

| Er1. C1 u . . .u E

rn. Cn| = |
l
{
l
{ E

ri. Ci | i ∈ {1, . . . , n} and ri = r } | r ∈ ΣR }|

= ∑
r∈ΣR

|
l
{ E

ri. Ci | i ∈ {1, . . . , n} and ri = r }|

The rank of the conjunction of existential restrictions can be computed by means of Lemma 4.2.5, and

finally it is readily verified that the rank of one existential restriction

E

r. C satisfies the following equation.

| Er. C| = 1+ |
l
{ E

r. D | C ≺∅ D }|

Lemma4.2.6. Let E

r. C be an EL concept description over some signatureΣ. Then the following inequalities
hold true.

1+ |C| ≤ | Er. C| ≤ 1+
|C|

∑
i=1

i−2

∏
j=0

(|C| − j) ≤ 1+ |C| · |C|! ≤ 1+ |C|1+|C|.

Approbatio. For each natural number n with n ≤ |C|, let

Xn :=
l
{ E

r. D | C ≺n D }.

Clearly, it then holds true that

E

r. C ≡∅ X0 vp ∅ X1 vp ∅ X2 vp ∅ . . . vp ∅ X|C| ≡∅

E

r.> ≺∅ >, i.e.,
| Er. C| ≥ 1+ |C|. As a further step, we infer that | Er. C| = 1+ ∑|C|i=1 d(Xi−1, Xi), and the distances

d(Xi−1, Xi) can be approximated as follows. Beforehand note that |Upper(Y)| ≤ |Conj(Y)| ≤ |Y| holds
true for all EL concept descriptions Y.
Apparently, d(X0, X1) = 1 holds true.
In order to construct a chain of neighbors from X1 to X2, we could simply iterate over all top-level

conjuncts of X1 and replace each with its unique upper neighbor. Of course, the number of top-level
conjuncts of X1 is bounded by the number of upper neighbors of C, is henceforth bounded by the
number of top-level conjuncts of C, and thus we obtain that d(X1, X2) ≤ |Conj(X1)| ≤ |Upper(C)| ≤
|Conj(C)| ≤ |C|.
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The distance between the next two concept descriptions can be approximated as follows.

d(X2, X3) ≤ |{

E

r. E | C ≺2 E }| ≤ ∑
C≺D
|{ E

r. E | D ≺ E }|︸ ︷︷ ︸
≤ |Conj(D)| ≤ |D| ≤ |C| − 1

≤ |C| · (|C| − 1)

Continuing the approach, we infer the following upper bound for the distance between X3 and X4.

d(X3, X4) ≤ |{

E

r. F | C ≺3 F }| ≤ ∑
C≺2E
|{ E

r. F | E ≺ F }|︸ ︷︷ ︸
≤ |Conj(E)| ≤ |E| ≤ |C| − 2

≤ ∑
C≺D

∑
D≺E

(|C| − 2) ≤ ∑
C≺D
|D|︸︷︷︸
= |C| − 1

· (|C| − 2) ≤ |C| · (|C| − 1) · (|C| − 2)

In general, for each i ∈N∩ [1, |C|], we observe the following.

d(Xi−1, Xi) ≤ |{

E

r. D | C ≺i−1 D }|
≤ ∑

C≺Y1

∑
Y1≺Y2

. . . ∑
Yi−2≺Yi−1

1

≤ |C| · (|C| − 1) · . . . · (|C| − (i− 2))

=
i−2

∏
j=0

(|C| − j).

Eventually, we conclude that the following inequalities are satisfied.

| Er. C| = 1+
|C|

∑
i=1

d(Xi−1, Xi)

≤ 1+
|C|

∑
i=1

i−2

∏
j=0

(|C| − j)

≤ 1+
|C|

∑
i=1
|C|!

= 1+ |C| · |C|!
≤ 1+ |C|1+|C|

4.3. DISTANCE FUNCTIONS

Definitio 4.3.1. An ELmetric or EL distance function is a mapping d : EL(Σ)×EL(Σ)→Nwith the

following properties.

1. d(C, D) ≥ 0 (non-negative)

2. d(C, D) = 0 if, and only if, ∅ |= C ≡ D (equivalence closed)

3. d(C, D) = d(D, C) (symmetric)

4. d(C, E) ≤ d(C, D) + d(D, E) (triangle inequality)

We then also say that d(C, D) is the distance between C and D. 4
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C∨D

C D

CuD
mC mD

|CuD|nC

|C|

nD

|D||C∨D|

Figure 4.1.: Obtaining a distance function from the rank function

Lemma 4.2.5 for the case n = 2 yields that in the rectangle shown in Figure 4.1 opposite edges have
the same length, where length means length of a maximal chain between the endpoints. It is easy to

see that |C uD| = |C|+ mC = |D|+ mD and |C ∨D| = |C| − nC = |D| − nD. Thus, we infer that

mC = |CuD| − |C| = |D| − |C∨D| = nD, and similarily thatmD = nC. Consequently, we can define

an EL distance function in the following way.

Propositio 4.3.2. For all C, D ∈ EL(Σ), define

d(C, D) := |CuD| − |C∨D|.

Then, d is an ELmetric.
Approbatio. Statements 1 to 3 are obvious. We proceed with proving the triangle inequality in State-
ment 4. Fix some EL concept descriptions C, D, and E. Firstly, we observe that

|D| ≤ |Du (C∨ E)| = |(CuD)∨ (Du E)|,
and |Cu E| ≤ |Du (Cu E)| = |(CuD)u (Du E)|.

Since |X ∨Y|+ |X uY| = |X|+ |Y| for all EL concept descriptions X, Y, Z, we infer that

|Cu E|+ |D| ≤ |CuD|+ |Du E|.

Multiplying the inequality with 2, adding some summands, and rearranging now yields

|Cu E| − (|C|+ |E| − |Cu E|)
≤ |CuD| − (|C|+ |D| − |CuD|) + |Du E| − (|D|+ |E| − |Du E|).

Finally, using the identity |X ∨Y| = |X|+ |Y| − |X uY| we conclude that

(|Cu E| − |C∨ E|) ≤ (|CuD| − |C∨D|) + (|Du E| − |D∨ E|).

The next lemma justifies the name of a distance function. Indeed, if we consider the graph of EL
concept descriptions such that edges exist exactly between neighboring concept descriptions, then

the distance d(C, D) is the length of a shortest path between C and D in this graph.
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Lemma 4.3.3. In the graph (EL(Σ),≺∅ ∪�∅) it holds true that d(C, D) is the length of a shortest path
from C to D for all C, D ∈ EL(Σ).
Approbatio. Set∼∅ := ≺∅ ∪�∅. Firstly, we show by induction over ` that for all EL concept descrip-
tions C andD over Σ and all paths from C toD of length `, it holds true that d(C, D) ≤ `. The induction

base where ` ∈ {0, 1} is obvious. For the induction step now let C ∼∅ . . . ∼∅ E ∼∅ D be a path of
length ` > 1. In particular, the prefix C ∼∅ . . . ∼∅ E is a path of length `− 1 from C to E, and the
induction hypothesis yields that d(C, E) ≤ `− 1. With the triangle inequality we can infer that

d(C, D) ≤ d(C, E) + d(E, D) ≤ (`− 1) + 1 = `.

It remains to show that for all C, D ∈ EL(Σ), there exists a path C ∼∅ . . . ∼∅ D of length d(C, D). We

have already seen that d(C, D) = (|CuD| − |C|) + (|CuD| − |D|),

C D

CuD

|CuD| − |C| |CuD| − |D|

and there exists a path from C to CuD of length |CuD| − |C| as well as a path from CuD to D of
length |CuD| − |D|. Conjoining these two paths obviously yields a path from C to D of length d(C, D).

Corollarium 4.3.4. EL(Σ) is a metric lattice, i.e., a lattice which is also a metric space. �

Furthermore, this metric space is complete, that is, every Cauchy sequence converges modulo

equivalence. All subsets of (EL(Σ)/∅,d) are open, since for each C ⊆ EL(Σ)/∅ and each [C]∅ ∈ C,
it holds true that B 1

2
([C]∅) = {[C]∅} ⊆ C. Consequently, all subsets of (EL(Σ)/∅,d) are closed too.

It follows that for all metric spaces (X,d′), all mappings f : EL(Σ)/∅→ X are continuous.
(EL(Σ)/∅,d) is not bounded, i.e., there is no ε ∈ R such that d(C, D) ≤ ε for all C, D ∈ EL(Σ).

It is also not precompact or totally bounded, as there do not exist finitely many open balls of radius

1
2 the union of which covers EL(Σ)/∅. Furthermore, this metric space of EL concept descriptions is
not compact; the sequence (

E

rn.> | n ∈N ) does contain a converging subsequence. However, it is

locally compact, since for each point [C]∅ its neighborhood B 1
2
([C]∅) clearly is compact. If the signature

Σ is finite, then each closed ball { [D]∅ | d(C, D) ≤ ε } is finite and thus compact; it then follows that
(EL(Σ)/∅,d) is proper. We have already shown that all subsets of EL(Σ)/∅ are clopen, and hence
this metric space is neither connected nor path connected. It is well known that EL(Σ)/∅ is countable,
and so it is separable.

In a canonical way, the metric space of EL concept descriptions over some signature Σ induces a
topological space τd the base of which is the set of open balls Bε([C]∅) for ε ∈ R and C ∈ EL(Σ). In
particular, τd is the smallest subset of℘(EL(Σ)/∅) which contains all open balls, and satisfies the

following conditions.

1. {∅,EL(Σ)/∅} ⊆ τd.
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2.
⋃

C ∈ τd for all C ⊆ τd.

3.
⋂

C ∈ τd for all finite C ⊆ τd.

Since all singletons {[C]∅} are open ballsB 1
2
([C]∅), the induced topology τd contains all these singletons.

Due to the
⋃
-closedness we conclude that τd = ℘(EL(Σ)/∅).

It is readily verified that all pairs of distinct points have disjoint neighborhoods, and thus τd is a

Hausdorff space, separated space, or T2 space. Since all topological spaces the base of which are the

open balls of somemetric space are perfectly normal Hausdorff or T6, we conclude that τd is even a

T6 space. This means that all disjoint (closed) subsets C andD of EL(Σ)/∅ can be precisely separated
by a continuous function f : EL(Σ)/∅→ R, i.e., f−1({0}) = C and f−1({1}) = D.

Lemma 4.3.5. Let C ∈ EL(Σ), then d(C,
∨
Upper(C)) = |Upper(C)|modulo equivalence.

Approbatio. We show by induction on n that ifU ⊆ Upper(C) with |U| = n > 0, then d(C,
∨

U) = n.
The induction base where n = 1 is trivial. For the induction step now assume that n > 1, and let
U = V ∪ {D} such that D 6∈ V. Clearly, d(C, D) = 1, and the induction hypothesis yields that
d(C,

∨
V) = n− 1. Since the conjunction of two non-equivalent upper neighbors of C is equivalent

to C, it follows that an analogous statement holds true for an arbitrary, but greater than 2, number of
upper neighbors, i.e., C ≡∅ Du∨V, and hence we can infer by means of Lemma 4.2.4 that opposite
sides in the rectangle below have the same length.

∨
U

∨
V D

C

n− 1 1

1 n− 1

We conclude that d(C,
∨

U) = n.

According the the previous lemma, we can compute the rank of an EL concept description C as
follows.

1. Let D := C and r := 0.

2. While D 6≡∅ >, compute the set Upper(D) of upper neighbors of D, set r := r + |Upper(D)| and
D :=

∨
Upper(D).

3. Return r.
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4.4. SIMILARITY FUNCTIONS

In Ecke, Peñaloza, and Turhan, 2015 Ecke, Peñaloza, and Turhan defined the notion of a concept

similarity measure as a function of type EL(Σ)×EL(Σ)→ [0, 1], and then considered so-called relaxed
instances of concept descriptions with respect to ontologies. Simply speaking, a is a relaxed instance
of C if there is a concept that is similar enough to C and has a as an instance. It is straight-forward
to consider these relaxed instances also with respect to the distance function we have just introduced.

More formally, we define them as follows.

Definitio 4.4.1. Consider an interpretation I over some signature Σ and a concept description
C ∈ EL(Σ), and let n ∈N. Then, the expression

D≤ n. C is called a relaxed concept description, and
its extension is defined by

(

D≤ n. C)I :=
⋃
{DI | D ∈ EL(Σ) and d(C, D) ≤ n }.

Suppose thatO is an ontology over some signature Σ, and further let a ∈ ΣI be an individual name,

C ∈ EL(Σ) a concept description, and n ∈N. We then say that a is a relaxed instance of C with respect
toO and distance threshold n, denoted asO |= a @− D≤ n. C, if it holds true that aI ∈ (

D≤ n. C)I

for each model I ofO. 4

For transforming our distance function d into a similarity function s : EL(Σ)×EL(Σ)→ [0, 1] we
can proceed as follows. We begin with transforming d into a metric with range [0, 1). For that purpose,
we choose an order-preserving, sub-additive function f : [0, ∞)→ [0, 1) with ker( f ) = {0}. Note that
a function f : [0, ∞)→ R is sub-additive if f ′′ < 0 and f (0) = 0. Then f ◦ d is such a metric with range
[0, 1). Suitable functions are the following.

� f : x 7→ x
1+x or more generally f : x 7→ ( x

1+x)
y
for y > 0

� f : x 7→ 1− 1
2x or more generally f : x 7→ 1− yx

for y ∈ (0, 1)

Then, s := 1− f ◦ d is a similarity function on EL(Σ). It is easy to verify that then s satifies the following
properties which have been defined by Lehmann and Turhan in Lehmann and Turhan, 2012, for all

EL concept descriptions C, D, E over Σ.

1. s(C, D) = s(D, C) (symmetric)

2. 1+ s(C, D) ≥ s(C, E) + s(E, D) (triangle inequality)

3. ∅ |= C ≡ D implies s(C, E) = s(D, E) (equivalence invariant)

4. ∅ |= C ≡ D if, and only if, s(C, D) = 1 (equivalence closed)

5. ∅ |= C v D v E implies s(C, D) ≥ s(C, E) (subsumption preserving)

6. ∅ |= C v D v E implies s(C, E) ≤ s(D, E) (reverse subsumption preserving)

However, as it turns out such a similarity measure 1− f ◦ d does not satisfy the property of struc-
tural dependance. For instance, consider a signature Σ without role names and such that ΣC :=
{A} ∪ { Bn | n ∈N}. It is now readily verified that

(1− f ◦ d)(Au
l
{ B` | ` ≤ n },

l
{ B` | ` ≤ n }) = 1− f (1)
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for all n ∈N, and since f (1) > 0we conclude that the sequence does not converge to 1 for n→ ∞.
For extending our rank function | · | and our distance function d to EL⊥, we can simply define
|⊥| := ∞, d(⊥,⊥) := 0, and d(⊥, C) := d(C,⊥) := ∞ for C 6≡∅ ⊥. When transforming the extended
metric into a similarity measure then two concept descriptions have a similarity of 0 if, and only if,
exactly one of them is unsatisfiable. In EL without the bottom concept description⊥, a similarity of
0 can never occur when utilizing the above construction.

4.5. COMPUTATIONAL COMPLEXITY

We close this section with some first investigations on the complexities of decision problems and

computation problems related to the introduced rank function.

4.5.1. COMPUTING THE RANK FUNCTION

As it turns out, the rank of EL concept descriptions can be asymptotically rd(C)-exponential in the
size of C. This vast growth makes it practically impossible to compute the rank function. It is easy
to prove that in the case where rd(C) = 1, the rank of C can be at least exponential with respect to
the size of C. To see this, consider the concept description Cn :=

E

r.
d
{A1, . . . , An} for each n ∈N.

It is well-known that there are exponentially many subsets of {A1, . . . , An} with bn
2c elements; let

X1, . . . , X` be an enumeration of these, and define Dm :=
d
{ E

r.
d

Xi | i ∈ {m, . . . , `} }. Clearly, then
Cn vp ∅ D1 vp ∅ D2 vp ∅ . . . vp ∅ D` vp ∅ > is an exponentially long chain of strict subsumptions. We
conclude that |Cn| is at least exponential in n.
In the sequel of this section, we show that there is a sequence of EL concept descriptions Cn such

that rd(Cn) = n and further that |Cn| is asymptotically bounded below by (2, ||Cn||) ↑↑ n, i.e., the
following holds true.

|Cn| � 22. . .
22||Cn||

︸︷︷︸
n times

We start with defining the signature Σk by (Σk)C := {A1, . . . , Ak} for some k ∈N with k ≥ 3 and
(Σk)R := {r}. Note that the precondition k ≥ 3 is essential, as we will discuss later. Our aim now is
to construct a suitable sequence of concept descriptions Cn ∈ EL(Σ). However, we shall not do this
directly, but rather translate this problem into a similar problem within order theory. For this purpose,

it is necessary to introduce some notions.

As usual, a partially ordered set (abbrv. poset)P is a pair (P,≤) consisting of a set P and binary relation
≤ on P that is reflexive, antisymmetric, and transitive. An ideal inP is some subset of P that is closed
under≤, that is, a subset I ⊆ P such that p ≤ i implies p ∈ I for each i ∈ I and for any p ∈ P. The
prime ideal of some element p ∈ P is the ideal

↓ p := { q | q ∈ P and q ≤ p }.

Apparently, any ideal is a union of prime ideals. As further abbreviation, let ↓Q :=
⋃{ ↓ q | q ∈ Q }.

We denote the set of all ideals inP by Ideals(P).

Two elements p, q ∈ P are comparable inP if either p ≤ q or q ≤ p holds true. A chain inP is a subset

C ⊆ P such that any two elements in C are comparable, while an antichain inP is a subset A ⊆ P such
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that no two (distinct) elements in A are comparable. The height ofP is defined as the supremum over

all cardinalities of chains inP, denoted by height(P). The width ofP is defined as the supremum over

all cardinalities of antichains inP, denoted by width(P). Dilworth’s theorem, cf. (Dilworth, 1950), states

that there is always a partition of P into n disjoint chains ifP has width n. In particular, we have that
|P| ≤ height(P) ·width(P). A further important theorem that connects the aforementioned notions

is the following. According to Steiner (1993), for each partially ordered setP := (P,≤), it holds true that

2width(P) + |P| −width(P) ≤ |Ideals(P)| ≤
(
|P|+width(P)
width(P)

)width(P)
.

Let P := (P,≤) and Q := (Q,v) be partially ordered sets. We call some mapping f : P → Q
order-preserving if x ≤ y implies f (x) v f (y) for any elements x, y ∈ P. Furthermore, f is order-
reflecting if f (x) v f (y) implies x ≤ y for any elements x, y ∈ P. It is easy to verify that f and g
are both order-reflecting, if g ◦ f = idP and f ◦ g = idQ holds true, and further both f and g are
order-preserving. Another immediate corollary is that any order-reflecting mapping is injective. We

call some such mapping f : P→ Q an order-isomorphism fromP toQ, denoted as f : P ∼⇁ Q, if it is

bijective, order-preserving, and order-reflecting. We conclude that in order to prove that two partially

ordered sets P andQ are isomorphic, it suffices to find two mutually inverse mappings between P
and Q which are both order-preserving.
Let now Pk

0 := (Σk)C and inductively define the posetsPk
n := (Pk

n,⊆) as follows.

Pk
1 := ℘(Pk

0)

Pk
n+1 := Ideals(Pk

n) for any n ∈N+

Note that, if we set Pk
0 := (Pk

0 , ∅), then Pk
1 = Ideals(Pk

0) is satisfied as well. Furthermore, we define

the following posetsEk
n := (Ek

n,w∅).

Ek
1 := {

l
A | A ⊆ (Σk)C }

Ek
n+1 := {

l
{ E

r. C | C ∈ C } | C ⊆ Ek
n } for any n ∈N+

Figure 4.2 displays the posetP3
2 and Figure 4.3 shows the posetE3

2; apparently, both are isomorphic

to FCD(3), the free distributive lattice on three generators.

Lemma 4.5.1.1. Pk
n andEk

n/∅ are isomorphic for any n ∈N+.
Approbatio. To ease readability, we shall not distinguish between equivalence classes of Ek

n w.r.t. ∅
and their representatives. Furthermore, we are going to prove the claim by induction on n.
For the induction base let n = 1. It is readily verified that

ιk1 : Pk
1
∼⇁ Ek

1

A 7→
l

A

is an isomorphism fromPk
1 toEk

1, and has the following inverse isomorphism.

κk
1 : Ek

1
∼⇁ Pk

1
l

A 7→ A
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↓{A, B, C}

↓{A, B} ∪ ↓{A, C} ∪ ↓{B, C}

↓{A, B} ∪ ↓{A, C}

↓{A, B} ∪ ↓{B, C} ↓{A, C} ∪ ↓{B, C}

↓{A, B} ∪ ↓{C} ↓{A, C} ∪ ↓{B}

↓{B, C} ∪ ↓{A}

↓{A} ∪ ↓{B} ∪ ↓{C}

↓{A, B}

↓{A, C}

↓{B, C}

↓{A} ∪ ↓{B}

↓{B} ∪ ↓{C} ↓{A} ∪ ↓{C}

↓{B} ↓{A}

↓{C}

↓∅

∅

Figure 4.2.: The ordered setP3
2

Regarding the induction step assume that n > 1. We now show that

ιkn+1 : Pk
n+1

∼⇁ Ek
n+1

{p1, . . . , pm} 7→

E

r. ιkn(p1)u · · · u

E

r. ιkn(pm)

is an isomorphism fromPk
n+1 toEk

n+1, and that its inverse isomorphism is as follows.

κk
n+1 : Ek

n+1
∼⇁ Pk

n+1

E

r. C1 u · · · u

E

r. Cm 7→ ↓ κk
n(C1)∪ · · · ∪ ↓ κk

n(Cm)

� Consider {p1, . . . , p`}, {p1, . . . , pm} ∈ Pk
n+1 where it holds true that ` ≤ m, that is, {p1, . . . , p`} ⊆

4. The Distributive, Graded Lattice of EL Concept Descriptions 50



E

r. (Au BuC)

E

r. (Au B)u E

r. (AuC)u E

r.(BuC)

E

r. (Au B)u E

r. (AuC)

E

r. (Au B)u E

r. (BuC)

E

r. (AuC)u E

r. (BuC)

E

r. (Au B)u E

r. C

E

r. (AuC)u E

r. B

E

r. (BuC)u E

r. A

E

r. Au E

r. Bu E

r. C

E

r. (Au B)

E

r. (AuC)

E

r. (BuC)

E

r. Au E

r. B

E

r. Bu E

r. C

E

r. Au E

r. C

E

r. B

E

r. A

E

r. C

E

r.>

>

Figure 4.3.: The ordered setE3
2

{p1, . . . , pm}. In particular, both {p1, . . . , p`} and {p1, . . . , pm} are ideals inPk
n. It is obvious that

ιkn+1({p1, . . . , p`}) w∅ ιkn+1({p1, . . . , pm})

holds true.
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� Furthermore, we have the following.

(κk
n+1 ◦ ιkn+1)({p1, . . . , pm})

= κk
n+1(

E

r. ιkn(p1)u · · · u

E

r. ιkn(pm))

= ↓ κk
n(ι

k
n(p1))∪ · · · ∪ ↓ κk

n(ι
k
n(pm))

= ↓ p1 ∪ · · · ∪ ↓ pm

= {p1, . . . , pm}

The penultimate equation follows from the induction hypothesis, while the last equation is true,

since {p1, . . . , pm} is already an ideal.

� Assume that

E

r. C1 u · · · u

E

r. C` w∅

E

r. D1 u · · · u

E

r. Dm. We shall now prove that ↓ κk
n(C1)∪

· · · ∪ ↓ κk
n(C`) is a subset of ↓ κk

n(D1) ∪ · · · ∪ ↓ κk
n(Dm). So, consider some element p of the

former, i.e., p ⊆ κk
n(Ci) for some index i ∈ {1, . . . , `}, which is equivalent to ιkn(p) w∅ Ci. We

now have that there exists some index j ∈ {1, . . . , m} such that Ci w∅ Dj, and we infer that

p ⊆ κk
n(Dj).

� Eventually, we prove that ιkn+1 ◦ κk
n+1 = id.

(ιkn+1 ◦ κk
n+1)(

E

r. C1 u · · · u

E

r. Cm)

= ιkn+1(↓ κk
n(C1)∪ · · · ∪ ↓ κk

n(Cm))

=
l
{ E

r. ιkn(p) | p ∈ ↓ κk
n(C1)∪ · · · ∪ ↓ κk

n(Cm) }

≡∅

l
{ E

r. ιkn(p) | p ∈ {κk
n(C1), . . . , κk

n(Cm)} }

=
E

r. ιkn(κ
k
n(C1))u · · · u

E
r. ιkn(κ

k
n(Cm))

≡∅

E

r. C1 u · · · u

E

r. Cm

The first equivalence follows from the fact that p ⊆ q implies ιkn(p) w∅ ιkn(q) and, consequently,

E

r. ιkn(p) w∅

E

r. ιkn(q). The second equivalence is an immediate consequence of our induction
hypothesis.

Lemma 4.5.1.2. | Ern.
d
(Σk)C| ≥ height(Pk

n+1) holds true for each n ∈N.
Approbatio. Fix some n ∈N. In the previous lemma we have shown thatPk

n+1 andEk
n+1 are isomor-

phic, and so it follows that height(Pk
n+1) = height(Ek

n+1). Apparently,∅ is the smallest element ofP
k
n+1

and Pk
n is the greatest element ofPk

n+1. Since ιkn+1 is an order-isomorphism, it follows that (the equiva-

lence class with representative) ιkn+1(∅) is the smallest element ofEk
n+1 and that (the equivalence class

with representative) ιkn+1(P
k
n) is the greatest element ofE

k
n+1. It obviously holds true that ιkn+1(∅) ≡∅ >.

Furthermore, we show by induction on n that ιkn+1(P
k
n) ≡∅

E

rn.
d
(Σk)C is satisfied. If n = 0, then

ιk1(P
k
0) = ιk1((Σk)C) =

d
(Σk)C =

E

r0.
d
(Σk)C holds true. Now let n > 0. Then we have the following.

ιkn+2(P
k
n+1)

=
l
{ E

r. ιkn+1(p) | p ∈ Pk
n+1 }

=

E

r. ιkn+1(P
k
n)

=

E

r.

E

rn.
l

(Σk)C

=

E

rn+1.
l

(Σk)C
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The second equality follows from the fact that Pk
n is the greatest element within Pk

n+1, which means

that ιkn+1(p) w∅ ιkn+1(P
k
n) is satisfied for any p ∈ Pk

n+1. The penultimate equation is a consequence

of the induction hypothesis. Eventually, we conclude that the rank of

E

rn.
d
(Σk)C must be greater than

or equal to the height ofPk
n+1.

The next lemma shows that each antichain A inPk
n induces an antichain inPk

n+1 the cardinality of

which is exponential in |A|. In particular, this implies that the width ofPk
n+1 is exponential in the width

ofPk
n. Since the width ofPk

1, the power-set lattice of {A1, . . . , Ak}, obviously is asymptotically bounded
above and below by 2k

, it now follows by induction that the width of Pk
n is asymptotically bounded

above and below by (2, k) ↑↑ n, that is,

width(Pk
n) � (2, k) ↑↑ n.

Lemma 4.5.1.3. Let n > 0 and consider some antichain A inPk
n such that |A| = 2 · `. Then, the following

A′ is an antichain inPk
n+1.

A′ := { ↓ a1 ∪ · · · ∪ ↓ a` | {a1, . . . , a`} ∈ (A
` ) }

Approbatio. Consider two mutually distinct {a1, . . . , a`} and {b1, . . . , b`} in (A
` ). It is readily verified

that ↓ a1 ∪ · · · ∪ ↓ a` and ↓ b1 ∪ · · · ∪ ↓ b` are elements ofPk
n+1, and we shall now show that these are

incomparable with respect to⊆.
From the assumption {a1, . . . , a`} 6= {b1, . . . , b`} it follows that, without loss of generality, a1 6∈
{b1, . . . , b`}, that is, a1 6= bi for any index i ∈ {1, . . . , `}. Now the precondition that A is an antichain
yields that a1 6⊆ bi for each index i ∈ {1, . . . , `}, and we infer that a1 6∈ ↓ bi for each i, which means that

a1 6∈ ↓ b1 ∪ · · · ∪ ↓ b`.

Furthermore, it is trivial that a1 ∈ ↓ a1, and consequently we have that

a1 ∈ ↓ a1 ∪ · · · ∪ ↓ a`.

We conclude that ↓ a1 ∪ · · · ∪ ↓ a` 6⊆ ↓ b1 ∪ · · · ∪ ↓ b`. The converse direction follows analogously, and
so we have that ↓ a1 ∪ · · · ∪ ↓ a` and ↓ b1 ∪ · · · ∪ ↓ b` are indeed not comparable.

Propositio 4.5.1.4. width(Pk
n) is asympotically bounded above and below by (2, k) ↑↑ n for any n ∈N+.

Approbatio. We prove the statement by induction on n. For the induction base where n = 1, Sperner’s
theorem, cf. (Sperner, 1928), yields that

width(Pk
1) = (

k
b k

2c
).

Furthermore, for the central binomial coefficients it is well-known that (2·k
k ) ∼

4k
√

π·k is satisfied. We infer

that

width(Pk
1) ∼ 2k√

π
2 · k

or more simplified that width(Pk
1) � 2k

.

Now for the induction step let n > 1. The induction hypothesis states that there exists some
antichain in Pk

n that has n-exponential cardinality in k. An application of Lemma 4.5.1.3 yields an
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antichain inPk
n+1 that has (n+ 1)-exponential cardinality in k, which implies thatwidth(Pk

n+1) is at least

(n + 1)-exponential in k. Since |Pk
n+1| ≤ (2, k) ↑↑ (n + 1) holds true, we conclude that width(Pk

n+1) is

at most (n + 1)-exponential in k as well.

Lemma 4.5.1.5. height(Pk
n+1) ≥ width(Pk

n) for each n ∈N+.
Approbatio. We show that any antichain A inPk

n induces a chain C inPk
n+1 such that |A| = |C|, which

obviously implies our claim. Thus, consider some such antichain A = {a1, . . . , a`} in Pk
n. We define

C as follows.

C := {c1, . . . , c`} where ci := ↓ a1 ∪ · · · ∪ ↓ ai

It is apparent that C consists of ideals ofPk
n, that is, C ⊆ Pk

n+1 is satisfied. Furthermore, we can readily

verify that any two elements in C are comparable with respect to ⊆. We conclude that C is a chain.
It remains to prove that |A| = |C|. Of course, |C| ≤ |A| follows from the very definition of C. We show
the converse inequality by demonstrating that no two elements of C are equal. Let 1 ≤ i1 < i2 ≤ `.

Of course, it then holds true that ci1 ⊆ ci2. Now consider some aj where j ∈ {i1 + 1, . . . , i2}. Since A
is an antichain, it follows that aj is⊆-incomparable to each ah for h ∈ {1, . . . , i1}, which implies that
aj 6∈ ↓ ah although aj ∈ ↓ aj. Consequently, the set inclusion is strict.

Corollarium 4.5.1.6. height(Pk
n+1) is asympotically bounded above and below by (2, k) ↑↑ n for any

n ∈N+, that is,

height(Pk
n+1) � (2, k) ↑↑ n. �

Corollarium 4.5.1.7. | Ern.
d
(Σk)C| is asympotically bounded above and below by (2, k) ↑↑ n for any

n ∈N+, that is,

| Ern.
l

(Σk)C| � (2, k) ↑↑ n. �

We close this section with a justification that the precondition k ≥ 3 is crucial for the non-elementary
growth of the ranks of the concept descriptions

E

rn.
d
(Σk)C. The proof of this asymptotic behaviour

heavily relies on the fact that the width ofPk
n+1 is exponential inPk

n. However, this does not hold true

in case k < 3. To see this, reconsider the proof of Lemma 4.5.1.3. For k < 3 any antichain inPk
1 has

at most two elements. Since for the central binomial coefficient it holds true that (2
1) = 2, we can only

infer that there must exist some antichain inPk
2 with two elements and so on and so forth. In fact, we

can easily verify that width(Pk
n) ≤ 2 is always satisfied. In particular, we have the following.

� EachP0
n is a chain of height n.

� EachP1
n is a chain of height n + 1.

� EachP2
n consists of two chains of height n that are connected by two incomparable elements,

i.e., these are of the following form.
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In fact, the upcoming Lemma 4.5.1.9 shows that the ranks of the concept descriptions

E

rn.>, E

rn. A,
and

E

rn. (Au B) are all linear in n.

Lemma 4.5.1.8. For each n ∈N and each reduced concept description C, it holds true that

Upper(

E

rn+1. C) = { E

rn.
l
{ E

r. D | C ≺∅ D }}.

Approbatio. We show the claim by induction over n. The base case where n = 0 has been proven in
Propositio 3.1.2.1. For the inductive case let n > 0. According to Propositio 3.1.2.1 and the induction
hypothesis, it holds true that

Upper(

E

rn+2. C) = { E

r.

E

rn+1. C}
= { E

r. E | E ∈ Upper(

E

rn+1. C) }

= { E
r.

E
rn.

l
{ E

r. D | C ≺∅ D }}

= { E

rn+1.
l
{ E

r. D | C ≺∅ D }}.

Lemma 4.5.1.9. Let n ∈N. Then the following equalities hold true.
1. | Ern.>| = n

2. | Ern. A| = n + 1

3. | Ern. (Au B)| = 2 · (n + 1)

Approbatio. 1. We show the claim by induction on n. If n = 0, then

E

rn.> = > and we
can thus immediately conclude that | Ern.>| = 0. Let n > 0. Since it holds true that

E

rn+1. C ≺∅

E

rn.
d
{ E

r. D | C ≺∅ D }, we infer that | Ern+1.>| = 1+ | Ern.>| = 1+ n.

2. We know that

E

rn. A ≺∅

E

rn.>, and so we infer that | Ern. A| = 1+ | Ern.>| = 1+ n.
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k\n 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 7
2 2 4 6 8 10 12 14
3 3 8 ≥ (3

1) 20 ≥ 4 84 ≥ (4
2) 8573 ≥ (6

3) ? ≥ (20
10) ? ≥ (184756

92378 )

4 4 16 ≥ (4
2) 168 ≥ (6

3) ? ≥ (20
10) ? ≥ (184756

92378 ) ? ' (2.33·1055614

1.16·1055614) ?

5 5 32 ≥ (5
2) 7581 ≥ (10

5 ) ? ≥ (252
126) ? ' (3.63·1074

1.82·1074) ? ?

6 6 64 ≥ (6
3) ? ≥ (20

10) ? ≥ (184756
92378 ) ? ' (2.33·1055614

1.16·1055614) ? ?
7 7 128 ≥ (7

3) ? ≥ (35
17) ? ' (4.54·109

2.27·109) ? ? ?
8 8 256 ≥ (8

4) ? ≥ (70
35) ? ' (1.12·1020

5.61·1019) ? ? ?
9 9 512 ≥ (9

4) ? ≥ (126
63 ) ? ' (6.03·1036

3.02·1036) ? ? ?

10 10 1024 ≥ (10
5 ) ? ≥ (252

126) ? ' (3.63·1074

1.82·1074) ? ? ?

Table 4.1.: Some ranks of

E

rn. (A1 u · · · u Ak) and corresponding lower bounds of widths ofPk
n.

3. We first observe that the following neighboring subsumptions hold true.

E

rn. (Au B) ≺∅

E

rn−1. (

E

r. Au E

r. B)

≺∅

E

rn−2. (

E

r2. Au E

r2. B)

≺∅ . . .

≺∅
E

rn−j. (
E

rj. Au E

rj. B)

≺∅ . . .

≺∅

E

rn. Au E

rn. B

≺∅

E

rn. Au E

rn.>
≡∅

E

rn. A

We conclude that | Ern. (Au B)| = (n + 1) + | Ern. A| = 2 · (n + 1).

Of course, for the border case where k = 3 Lemma 4.5.1.3 does not immediately show a start of
the non-elementary growth either. This is due to the fact that then P3

1 has width 3, and the central
binomial coefficient (3

1) = (3
2) evaluates to 3, i.e., an application of Lemma 4.5.1.3 does not induce a

bigger antichain inP3
2. However, we have seen in Figure 4.2 thatP3

2 has an antichain of cardinality 4.
Now the sequence ( xn | n ∈N and n ≥ 2 ) where x2 := 4 and xn+1 := (

xn

b xn
2 c

) grows non-elementarily

and eachP3
n contains an antichain of cardinality xn.

n 2 3 4 5 6 7 8

xn 4 (4
2) = 6 (6

3) = 20 (20
10) = 184756 (184756

92378 ) ≈ 2.33 · 1055614 ≈ (2.33·1055614

1.16·1055614) ?

Eventually, we have run some experiments in which we tried to compute ranks of concept descriptions

of the form

E

rn. (A1 u · · · u Ak). The result are listed in Table 4.1. As expected, this only works for

sufficiently small values of n and k and henceforth we have provided lower bounds, namely lower
bounds of the widths ofPk

n, for these ranks if possible. Please note the anomaly in Table 4.1 for the

case where k = 3 and n = 2 as explained above.
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4.5.2. DECISION PROBLEMS RELATED TO THE RANK FUNCTION

Given a concept description C and a natural number n (in binary encoding), then we can decide in
triple exponential time whether the rank of C is equal to n, at most n, or at least n. A procedure can
construct a chain of n neighbors and then check whether> is reached. If n is fixed, then this requires
only deterministic polynomial time.

There are three decision problems tightly related with the rank function on EL concept descriptions:
for some given EL concept description C and a number n ∈ N, the first one asks if the rank of C
equals n, the second one asks whether n is an upper bound for |C|, and the third one asks if |C| ≥ n.
In particular, we define these three decision problems as follows.

PEL-RANK := { (C, n) | C ∈ EL(Σ), n ∈N, and |C| = n }
PEL-RANK-UPPER-BOUND := { (C, n) | C ∈ EL(Σ), n ∈N, and |C| ≤ n }
PEL-RANK-LOWER-BOUND := { (C, n) | C ∈ EL(Σ), n ∈N, and |C| ≥ n }

In the following, we shall investigate the relationships between these problems in terms of reducibility

and we shall provide bounds for their complexities.

Lemma 4.5.2.1. The following Turing reductions exist.
1. PEL-RANK ≤P

T PEL-RANK-UPPER-BOUND

2. PEL-RANK ≤P
T PEL-RANK-LOWER-BOUND

3. PEL-UPPER-BOUND-RANK ≤P
T PEL-RANK if numbers are unarily encoded.

4. PEL-UPPER-BOUND-RANK ≤T PEL-RANK

Approbatio. 1. It is easy to see that (C, n) ∈ PEL-RANK holds true if, andonly if, (C, n) ∈ PEL-RANK-UPPER-BOUND
as well as (C, n− 1) 6∈ PEL-RANK-UPPER-BOUND are satisfied. This shows that in order to construct
some Turing machine that decides PEL-RANK, we could query an oracle Turing machine for
PEL-RANK-UPPER-BOUND twice. Indeed, this Turing machine runs in polynomial time for the following
reason. If n is unarily encoded, then its predecessor n− 1 can be computed in constant time.
Otherwise if n is efficiently encoded, i.e. without loss of generality, if n is binarily encoded, then
its predecessor n− 1 can be computed in linear time (with respect to the size of n, i.e., the length
of an encoding of n) as follows.

� Find the lowest bit in n that is 1. (In particular, all lower bits in n are then 0.)

� Flip this bit and all lower ones.

2. Analogously as for Statement 1, since (C, n) ∈ PEL-RANK holds true if, and only if, (C, n) ∈
PEL-RANK-LOWER-BOUND as well as (C, n + 1) 6∈ PEL-RANK-LOWER-BOUND are satisfied.

3. It is apparent that (C, n) ∈ PEL-UPPER-BOUND-RANK is satisfied if, and only if, (C, m) ∈ PEL-RANK
holds true for some m ≤ n. It follows that we can construct a Turing machine deciding

PEL-UPPER-BOUND-RANK which uses an oracle for PEL-RANK. Obviously, if n is unarily encoded, then the
number of queries to an oracle for PEL-RANK is linear in n.
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4. In case of efficient encodings, i.e., if n is binarily encoded, then it might be the case that we need
to pose an exponential number of queries to the oracle for PEL-RANK, which implies that the oracle
Turing machine constructed for Statement 3 now has an exponential time complexity. Thus, we

can now only infer that there must exist some Turing reduction, but not necessarily a polynomial

time Turing reduction.

Lemma 4.5.2.2. The following statements are satisfied for each complexity class C.
1. PEL-RANK-UPPER-BOUND ∈ C implies PEL-RANK ∈ PC

2. PEL-RANK-LOWER-BOUND ∈ C implies PEL-RANK ∈ PC

3. If PEL-RANK ∈ C and numbers are unarily encoded, then PEL-RANK-UPPER-BOUND ∈ PC.
4. If PEL-RANK ∈ C, then PEL-RANK-UPPER-BOUND ∈ PSpaceC.

Approbatio. 1. Lemma 4.5.2.1 shows that PEL-RANK-UPPER-BOUND ∈ C implies PEL-RANK ∈ PC
.

2. The proof is very similar as for Statement 1.

3. We already know from Lemma 4.5.2.1 that PEL-RANK-UPPER-BOUND ∈ PC
if PEL-RANK ∈ C and numbers

are unarily encoded.

4. Again, we use arguments from Lemma 4.5.2.1 and its proof. It is readily verified that the size

of m is bounded by the size of n whenever m ≤ n holds true. Thus, we only need polynomial
space to successively enumerate all such numbersm that are smaller than n. We conclude that
PEL-RANK-UPPER-BOUND ∈ PSpaceC if PEL-RANK ∈ C is satisfied.

Lemma 4.5.2.3. 1. If numbers are unarily encoded, then PEL-RANK-UPPER-BOUND ∈ 2EXP, otherwise
PEL-RANK-UPPER-BOUND ∈ 3EXP.

2. If n is fixed, then we can decide whether (C, n) ∈ PEL-RANK-UPPER-BOUND in deterministic polynomial time
w.r.t. ||C||.

3. The same upper complexity bounds hold true for PEL-RANK-LOWER-BOUND and PEL-RANK.
Approbatio. 1. In order to decide whether (C, n) ∈ PEL-RANK-UPPER-BOUND, we can use the following

procedure.

a) Set D := C and i := 0.

b) While i < n, replace D with an upper neighbor of D if it exists, and increment i.

c) If D ≡∅ >, then accept (C, n), otherwise reject.

Each computation of an upper neighbor of D requires quadratic time w.r.t. ||D||, and the size of
such an upper neighbor is also quadratic in ||D||. Since the loop is executed n times, we conclude
that it needs time inO(||C||2 + (||C||2)2 + . . . + ||C||2n

). If n is unarily encoded, this is obviously
double exponential. Otherwise if n is binarily encoded, then the length of the encoding of n is
log2(n), and thus we infer that the procedure needs triple exponential time w.r.t. the size of the
encoding of (C, n).
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2. In case of n being fixed, the above procedure is apparently polynomial in ||C|| with exponent
2+ 22 + · · ·+ 22n

.

3. There are obvious variations of the above algorithm with similar complexities for the other

decision problems PEL-RANK-LOWER-BOUND and PEL-RANK.
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5. CONCLUSION

We have investigated the neighborhood problem for the description logic EL and some of its variants. We
found that existence of neighbors can in general only be guaranteed for the case of EL without a TBox,
without the bottom concept description, and without greatest fixed-point semantics. The presence

of a TBox, the bottom concept description, or greatest fixpoint semantics allow for the construction of

concept descriptions that do not have neighbors in certain directions. For the case of EL we proposed
sound and complete procedures for deciding neighborhood as well as for computing all upper neighbors

and all lower neighbors, respectively. Furthermore, we have shown that deciding neighborhood and

computing all upper neighbors requires only deterministic polynomial time. More specifically, the

number of (equivalence classes of) upper neighbors is linear, and any upper neighbor has a quadratic

size. All lower neighbors of an EL concept description can be enumerated in deterministic exponential
time—in particular, the number of (equivalence classes of) lower neighbors is always exponential, and

each lower neighbor has a quadratic size. There is a non-deterministic polynomial time procedure such

that, for any lower neighbor L of the input, it has one (successful) computation path that returns a
concept description equivalent to L.
As further results, we have proven that the lattice of EL concept descriptions is distributive, modular,

graded, and metric. In particular, this means that there exists a rank function as well as a distance

function on this lattice. Unfortunately, the rank function shows a non-elementary growth, which directly

prohibits its practical usage. We have seen that even a supposedly simple concept description can

have a multi-exponential rank: the rank of

E

rn. (A1 u · · · u . . . Ak) is asympotically bounded above and

below by (2, k) ↑↑ n. Furthermore, some first complexity results on decision problems related to these
rank and distance functions were found. However, the exact complexities are currently unknown; we

do not know whether the presented upper bounds are sharp, and lower bounds are also not available.

As an important consequence we infer that the algorithm NextClosures (Kriegel, 2016b) can be utilized
for enumerating canonical bases of closure operators in EL, cf. (Kriegel, 2018a, Section 8).
Other possible future research could consider extensions to more expressive description logics.

Of course, these logics should be considered without any TBox or with cycle-restricted TBoxes for

deciding existence of neighbors in general. Eventually, a further direction for future research is a

more fine-grained characterization of existence of neighbors. That is, given a description logic where

neighbors need not exist in general, how can we decide whether a concept description has neighbors

and how can we enumerate these?
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A. APPENDIX

A.1. ASYMPTOTIC NOTATIONS

We use the following notions the origins of which have been described by Knuth (1976). Let g : N→N

be a function. Then, the setsO(g),Ω(g), andΘ(g) are defined as follows.

O(g) := { f | f : N→N and

E

c ∈ R+

E

n0 ∈N

A

n ≥ n0 : f (n) ≤ c · g(n) }
Ω(g) := { f | f : N→N and

E

c ∈ R+

E

n0 ∈N

A

n ≥ n0 : f (n) ≥ c · g(n) }
Θ(g) := { f | f : N→N and

E

c, d ∈ R+

E

n0 ∈N

A

n ≥ n0 : c · g(n) ≤ f (n) ≤ d · g(n) }

Obviously, we have that g ∈ O( f ) is equivalent to f ∈ Ω(g), and further that Θ( f ) = O( f )∩Ω( f )
holds true. It is not hard to verify that f ∈ O(g) is equivalent to lim supn→∞

f (n)
g(n) < ∞, and dually

f ∈ Ω(g) is equivalent to lim infn→∞
f (n)
g(n) > 0. Furthermore, we write f � g and say that f is

asymptotically bounded above by g if f ∈ O(g), we write f � g and say that f is asymptotically bounded
below by g if f ∈ Ω(g), and we write f � g and say that f is asymptotically bounded above and below
by g if f ∈ Θ(g). Another notation that we use within this document is the following. We write f ∼ g
and say that f asymptotically equals g if limn→∞

f (n)
g(n) = 1. Clearly, f ∼ g implies f � g.

A.2. KNUTH’S UP-ARROWNOTATION

For better readability, we use Knuth’s up-arrow notation, that is, we set

x ↑↑ n := xx. . .
xx

︸ ︷︷ ︸
n times

and further we define the following syntactic sugar as another abbreviation.

(x, y) ↑↑ n := xx. . .
xxy

︸︷︷︸
n times

v



A.3. COMPLEXITY CLASSES

The following standard complexity classes are used within this document.

P := { L | L is decided by a det. TMM in timeO(x 7→ xn) for some n ∈N}
NP := { L | L is decided by a non-det. TMM in timeO(x 7→ xn) for some n ∈N}

PSpace := { L | L is decided by a TMM in spaceO(x 7→ xn) for some n ∈N}
EXP := { L | L is decided by a det. TMM in timeO(x 7→ 2xn

) for some n ∈N}

2EXP := { L | L is decided by a det. TMM in timeO(x 7→ 22xn

) for some n ∈N}

3EXP := { L | L is decided by a det. TMM in timeO(x 7→ 222xn

) for some n ∈N}
nEXP := { L | L is decided by a det. TMM in timeO(x 7→ (2, xm) ↑↑ n) for somem ∈N}

Furthermore, we define the polynomial hierarchy as usual.

∆P
0 := ΣP

0 := ΠP
0 := P

∆P
n+1 := PΣP

n

ΣP
n+1 := NPΣP

n

ΠP
n+1 := (coNP)ΣP

n

PH :=
⋃
{∆P

n | n ∈N}

In particular, it holds true that ∆P
1 = P, ΣP

1 = NP, andΠP
1 = coNP.
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