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Abstract

Large-scale knowledge bases are at the heart of modern
information systems. Their knowledge is inherently uncer-
tain, and hence they are often materialized as probabilistic
databases. However, probabilistic database management sys-
tems typically lack the capability to incorporate implicit back-
ground knowledge and, consequently, fail to capture some
intuitive query answers. Ontology-mediated query answer-
ing is a popular paradigm for encoding commonsense knowl-
edge, which can provide more complete answers to user
queries. We propose a new data model that integrates the
paradigm of ontology-mediated query answering with proba-
bilistic databases, employing a log-linear probability model.
We compare our approach to existing proposals, and provide
supporting computational results.

1 Introduction
Advances in automated knowledge base construction have led
to successful systems, such as DeepDive (Shin et al. 2015),
NELL (Mitchell et al. 2015), and Google’s Knowledge Vault
(Dong et al. 2014). They extract structured knowledge from
multiple sources, through a chain of statistical techniques,
and produce probabilistic knowledge bases (PKBs). The ba-
sic data model underlying these systems is given by prob-
abilistic databases (PDBs) (Suciu et al. 2011); see recent
surveys focusing on PKBs (Van den Broeck and Suciu 2017;
Borgwardt, Ceylan, and Lukasiewicz 2018).

PKBs are inherently incomplete, which makes reasoning
more challenging. One common way to alleviate incomplete-
ness is to encode commonsense knowledge, in the form of
logical theories, to allow for deductions that go beyond ex-
isting facts in the knowledge base. Unifying first-order logic
(FOL) and probability is an old endeavor in artificial intel-
ligence (Halpern 2003); there is a vast literature on models
with such capabilities. Here, we confine ourselves to more re-
cent proposals with a special emphasis on large-scale PKBs.

Statistical relational models are concise, and lifted rep-
resentations of probabilistic graphical models (Getoor and
Taskar 2007). Well-known examples include Markov logic
networks (MLNs) (Richardson and Domingos 2006), rela-
tional Bayesian networks (Jaeger 1997), and approaches to
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probabilistic logic programming (PLP). All these models can
encode commonsense knowledge, but they are based on the
closed-domain assumption (CDA) that requires the set of rel-
evant objects to be finite, and known at design-time, which is
not always an easy condition to be met.

Other proposals that can encode commonsense knowledge
while allowing an open domain include PLP with function
symbols (Sato and Kameya 1997; De Raedt, Kimmig, and
Toivonen 2007), the probabilistic programming language
BLOG (Milch et al. 2005), and ontology-based approaches
(Jung and Lutz 2012; Borgwardt, Ceylan, and Lukasiewicz
2017). The latter are further distinguished from the rest by
the open-world assumption, i.e., they do not interpret the
absence of facts as the negation of these facts; this means that
the incomplete nature of the PKB is respected.

We build on the rich tradition of ontology languages, and
propose a robust data model, based on log-linear probability
distributions, for reasoning in PKBs. We assume the database
given as a set of facts with associated weights, which is then
interpreted as a log-linear model. Our inspiration comes from
MLNs, which are expressive probabilistic-logical models that
use log-linear distributions. As in MLNs, we restrict the prob-
ability distribution to the known objects, but additionally use
first-order semantics over arbitrary, possibly infinite domains,
whereby we achieve open-world, open-domain reasoning.

We briefly summarize this paper’s main contributions. We
introduce a new data model for ontology-mediated query
answering over probabilistic data, based on log-linear prob-
ability distributions. We compare it to existing data models,
including MLNs and PDBs, and highlight the semantic dif-
ferences. We then show that reasoning in our model can be
reduced (via polynomial rewriting techniques) to inference
in MLNs, or PDBs. These results are significant given the
expressive nature of our formalism. As a consequence of the
above reductions, a whole host of computational complexity
results from previous models carry over to the new probabilis-
tic data model. We conclude by describing a new approach
to learn the weights for our model, based on the principle of
maximum entropy, to establish the connection with existing
PKBs. This is independent of the other results, however; in
principle, we could use any other weight learning method.

All proofs can be found at tu-dresden.de/inf/lat/papers.



2 Motivation
In this section, we clarify the motivation of this work on two
concrete examples. More specifically, we show that MLNs
and PDBs as two of the most popular existing probabilis-
tic data models are unable to directly capture some natural
modeling capabilities needed for ontology-mediated query
answering over probabilistic data in practice. We first illus-
trate the problems with the CDA when dealing with logical
theories, in particular with existential quantification.
Example 1 (CDA). The first-order logical constraint

∀xEmp(x)→ ∃yAddress(x, y) (1)

expresses that every employee has an address. In the closed
domain C = {c1, . . . , cn}, this formula is equivalent to

∀xEmp(x)→ Address(x, c1) ∨⋯ ∨Address(x, cn). (2)

There are two problems with this representation. First, it
says that all employee’s addresses must be one of the known
objects in the database. If the address of some new employees
is still unknown, in each world, they will be randomly as-
signed the address of another employee. A common remedy
is to introduce a fixed number of auxiliary objects into C
that can serve as “unknown addresses”. However, it is not
reasonable to assume that all objects of interest can be known
a priori, and no other objects exist. In particular, it is unclear
how many additional objects need to be taken into account.

The second problem is the large disjunction in (2). This
is very impractical, as it introduces a huge amount of non-
determinism. For closed-domain models like MLNs, this
is a known problem, and more sophisticated techniques to
eliminate existential quantification exist (Van den Broeck,
Meert, and Darwiche 2014). However, in the worst case,
these techniques also cannot avoid the nondeterminism over
the domain of constants. Hence, in theory, MLNs allow
for arbitrary first-order formulas, but this is not the case
in practice. In fact, almost all MLN implementations operate
solely on universally quantified formulas (Niu et al. 2011;
Domingos and Lowd 2009).

This inefficiency appears also in ontology languages. For
example, (1) can be formulated in the description logic EL�,
where reasoning is P-complete, but becomes NP-complete
when restricted to closed domains (Gaggl, Rudolph, and
Schweizer 2016). In contrast, for ontology languages under
the open-world assumption (OWA), it is sufficient to intro-
duce a single anonymous individual to satisfy (1), which is a
deterministic operation. Although the OWA means that one
has to do this in infinitely many interpretations, the determin-
istic nature of EL� entails that one can restrict the attention
to a single representative universal model. ∎

The CDA may be reasonable for certain application do-
mains, but as shown in Example 1, this is often not the case
(even if we consider trivial domains). Noteworthy is also the
fact that the CDA does not necessarily imply efficiency in
comparison to open-domain models.

Another problem that is inherent to ontology-based prob-
abilistic models is related to inconsistent worlds, which are
usually removed, and the resulting probability distribution
is renormalized by uniformly distributing the probability of

the inconsistent worlds among the consistent ones. However,
this does not always select the most reasonable distribution.
Example 2 (Inconsistency). Consider the following PDB P
and theory T :

P ∶= {⟨A(a) ∶ 0.5⟩, ⟨B(a) ∶ 0.5⟩}
T ∶= {∀xA(x)→ B(x)}.

The possible worlds are then given as

W1 ∶= {A(a),B(a)},W2 ∶= {A(a),¬B(a)},
W3 ∶= {¬A(a),B(a)},W4 ∶= {¬A(a),¬B(a)}.

Without T , each of these worlds has the probability 0.25, by
the independence assumptions of P . However, sinceW2 is
inconsistent with T , its probability is reduced to 0, and the
probability of the remaining worlds is renormalized to add
up to 1, yielding a probability of 0.33 each. However, this
also means that, as an undesired side effect, the probabilities
for A(a) and B(a) change to 0.33 and 0.66, respectively. ∎

In this paper, we propose a different approach to integrate
a given PDB into our model (see Section 7). We argue that
the observed probabilities should be preserved, and try to find
a log-linear distribution that deviates from these input values
as little as possible. In Example 2, by assigning both W2

andW3 a probability of 0 and the remaining worlds 0.5 each,
we obtain a model that satisfies the constraints of both T
and P . This respects both the probabilistic and the logical
input, and does not favor one over the other, which results
in a more fine-grained approach than simply renormalizing
the probabilities of the consistent worlds. However, the new
model that we introduce in Section 4 is independent of the
precise method used to obtain the probability distribution,
and can use the standard renormalization, if so desired.

3 Preliminaries
We recall FOL, PDBs, and MLNs from a model-theoretic
perspective, and highlight their main assumptions.
FOL. We consider a relational vocabulary consisting of finite,
mutually disjoint sets R and C of predicates and constants,
respectively, and a (possibly infinite) set V of variables. A
first-order formula is built as usual from atoms R(s1, . . . , sn)
over the given vocabulary, truth constants ⊺, �, operators ¬,
∨, ∧, →, and quantifiers ∃, ∀. A ground atom (also fact or tu-
ple) is an atom where all terms si are constants. A quantifier-
free formula is a formula that does not use quantifiers. A
variable in a formula is quantified (or bound), if it is in the
scope of a quantifier; otherwise, it is free. A sentence is a
formula without any free variables. A theory (or ontology)
is a finite set of sentences. A ground instance of a formula
Φ(x) with free variables x is a sentence of the form Φ(c),
where c are constants from C.

The semantics of FOL is given by means of interpretations
I = (∆I , ⋅I), where ∆I is a possibly infinite domain, and
⋅I is an interpretation function that maps every constant a
to a domain element aI ∈ ∆I , and every predicate R with
arity n to a relation RI ⊆ (∆I)n. A sentence Φ is satisfied
by an interpretation, if I ⊧ Φ, where ⊧ is the standard first-
order satisfaction relation. An interpretation I is a model of



a theory T , denoted I ⊧ T , if I satisfies all Φ ∈ T . T is
consistent, if it has a model. T entails a sentence Φ, written
T ⊧ Φ, if all models of T are also models of Φ.
Databases and Query Answering. A database D is a fi-
nite set of facts over the (finite) vocabulary. From a model-
theoretic perspective, D is a first-order interpretation, where

(i) the domain is given as ∆D =C,
(ii) cD = c, for all constants c ∈C,

(iii) (c1, ..., cn) ∈ RD iff R(c1, ..., cn) ∈ D.
Notably, (i) corresponds to the closed-domain assumption
(CDA), (ii) to the unique name assumption (UNA), and (iii) to
the closed-world assumption (CWA) of databases.

The core task of databases is query answering. A query
is simply a first-order formula. A conjunctive query (CQ) is
an existentially quantified formula ∃xφ, where φ is a con-
junction of atoms. A union of conjunctive queries (UCQ) is a
disjunction of CQs. A query is Boolean if it is a sentence. In
query answering, we want to find all answers to a query Q
over a database D, which are assignments of the free vari-
ables in Q to constants in C such that the resulting ground
instance is satisfied in D. We focus on Boolean queries Q
and the associated decision problem of query evaluation, i.e.,
deciding whether Q is satisfied in D, denoted D ⊧ Q.
Ontology-Mediated Queries. Reasoning in FOL is undecid-
able, which motivated the study of fragments, to navigate the
trade-off between high expressivity and low computational
complexity. Ontology languages based on Datalog± (Calı̀,
Gottlob, and Lukasiewicz 2012; Calı̀, Gottlob, and Kifer
2013) and description logics (Baader et al. 2007) are widely
studied examples of such fragments. Ontology-mediated
query answering is the task of determining whether a query Q
is entailed by the database D with the help of an additional
ontology T , i.e., whether D ∪ T ⊧ Q holds. Since first-order
entailment considers many interpretations with arbitrary do-
mains, neither the CDA nor the CWA hold in this context.
Probabilistic Query Answering. We discuss two basic prob-
abilistic models: PDBs and MLNs. Both of them define
probability distributions P over the set of possible worlds,
which correspond to complete, deterministic states. Formally,
a worldW is a set that contains, for each fact t over R and C,
either t or its negation ¬t (in contrast to databases, the tuples
that do not hold are represented explicitly).

Given a probabilistic model P, the main task is to compute
the probability of first-order queries Q, defined as follows:

P(Q) ∶= ∑
W⊧Q

P(W), (3)

where ⊧ denotes first-order satisfaction, i.e., the question
whether Q holds in the finite first-order interpretation over
the domain C that is described by the worldW .
PDBs. The most elementary probabilistic data model is based
on the tuple-independence assumption. It is the basis of the
research on PDBs, although more sophisticated models exist
(Suciu et al. 2011).

Given a finite relational vocabulary, a probabilistic data-
base P is defined as a set of probabilistic facts ⟨t ∶ p⟩, where
t is a fact and p ∈ [0,1], such that ⟨t ∶ p⟩, ⟨t ∶ p′⟩ ∈ P implies

p = p′. The probability of a fact t, denoted PP(t), is p, if
⟨t ∶ p⟩ ∈ P , and 0, otherwise. The latter case reflects the
CWA of PDBs: any fact that is not in the PDB gets assigned
the probability 0. By the tuple-independence assumption, the
probability of a worldW is given as

PP(W) ∶= ∏
t∈W

PP(t) ⋅ ∏
¬t∈W

(1 −PP(t)). (4)

Importantly, all assumptions of databases (i)–(iii) are em-
ployed in PDBs, while the tuple-independence assump-
tion (iv) is an additional assumption on the probability space.
MLNs. MLNs (Richardson and Domingos 2006) were intro-
duced as a template language for statistical relational AI. An
MLNM is determined by a set T of first-order formulas and
a weight function w assigning a rational weight wΦ to each
Φ ∈ T . A formula with weight ∞ is a hard constraint, the
others are soft constraints.M determines the probability of
each worldW as

PM(W) ∶= 1
Z

exp ( ∑
Φ∈T

wΦnΦ(W)), (5)

where nΦ(W) is the number of ground instances of Φ that
are satisfied inW; Z is a normalization factor.

Differently from PDBs, MLNs allow first-order formulas,
which introduce dependencies, i.e., there is no assumption of
independence of tuples. Another difference is that MLNs do
not employ the CWA, i.e., a fact t that is not explicitly given
a weight wt can still get a positive probability, which is not
the case in PDBs. However, the assumptions (i) and (ii) are
also present in MLNs. Specifically, the CDA remains as an
essential ingredient of the semantics, i.e., only instantiations
over the finitely many constants from C are considered; in
practice, these are the objects from the input data, possibly
extended by a fixed, finite number of additional elements.

4 Log-Linear PKBs
We assume that the probabilistic data is represented in terms
of a weighted database Dw, which is a finite set of tu-
ples t with associated rational weights wt. We use log-linear
probabilistic knowledge bases for reasoning over weighted
databases using ontological background knowledge.
Definition 3. A log-linear PKB K = (Dw,T ) consists of a
weighted database Dw and a theory T . It defines the follow-
ing distribution over worldsW . IfW is consistent with T ,
i.e.,W ∪ T /⊧ �, then

PK(W) ∶= 1
Z

exp ( ∑
t∈W

wt), (6)

and PK(W) ∶= 0, otherwise; Z is a normalization factor.
There are two main differences to MLNs. First, when

checking W ∪ T /⊧ �, we employ standard first-order se-
mantics, in contrast to the CDA used by MLNs. Second, our
model allows only hard constraints (except for facts). The
reason is that under the open-domain assumption it does not
make sense to count the (infinite) number of satisfying as-
signments of a formula. Instead, our model supports a weaker
kind of weighted sentences: we can simulate a sentence Φ
with weight wΦ by a fresh 0-ary fact RΦ() with the same



weight and the modified sentence RΦ() → Φ. For example,
an uncertain version of the rule r = ∀xA(x) → B(x) in
Example 2 is given by ∀xR() ∧A(x)→ B(x) along with a
weight wR() for the fact R(). Intuitively, this then means that
r as a whole holds only with some uncertainty in each world,
as governed by wR(). This essentially extends the worlds to
also cover the sentences in T , i.e., each world specifies which
of the sentences from T should hold in it.

We consider two probabilistic inference problems: query
evaluation and maximum a posteriori computation.
Definition 4. Given K = (Dw,T ) and a first-order query Q,
the probability of Q in K is given by

PK(Q) ∶= ∑
W∪T ⊧Q

PK(W).

Query evaluation is the task of deciding PK(Q) > p for some
query Q and threshold p ∈ [0,1).

Again, we do not merely sum over all worlds that satisfy
the query, but those that, together with T , entail the query,
according to the open-domain semantics of FOL.
Definition 5. Given a PKB K = (Dw,T ) and a query Q,
a most probable database (MPD) is a world W with W ∪
T ⊧ Q that maximizes PK(W). The corresponding decision
problem is to decide whether there exists a world W such
that PK(W) > p andW ∪ T ⊧ Q, for a given p ∈ [0,1).

The MPD problem was investigated for PDBs in (Gribkoff,
Van den Broeck, and Suciu 2014; Ceylan, Borgwardt, and
Lukasiewicz 2017) and is an extension of maximum a poste-
riori inference (MAP), which is widely studied for statistical
relational models, including MLNs. More precisely, MAP is
the special case of MPD where the query is fixed to ⊺.

5 Semantic Results
We recall some techniques for query evaluation over on-
tologies, as they are crucial ingredients for our results. An
ontology-mediated query (OMQ) is a pair (Q,T ), where
Q is a UCQ, and T is a theory. A prominent paradigm to
evaluate such compound queries is based on the notion of
rewritability. Formally, a query Q is FO-rewritable (resp.,
Datalog-rewritable) w.r.t. T , if there is a first-order query
(resp., Datalog query) QT such that, for every worldW con-
sistent with T (i.e.,W ∪ T /⊧ �), we have

W ∪ T ⊧ Q iffW ⊧ QT ,

i.e., QT is satisfied inW when considered as a finite interpre-
tation. Similarly,W ∪ T ⊧ � iffW ⊧ �T for a rewriting �T
of � (i.e., �T is a query that encodes inconsistency w.r.t. T ).
Notably, many ontology languages admit efficient rewritings
to one of these query languages (Gottlob and Schwentick
2012; Eiter et al. 2012).

We make the standard data complexity assumption, i.e., the
set R and the size of T are fixed. In particular, the maximal
arity of predicates is fixed, and hence there are polynomially
many facts over C, and exponentially many worlds. This
assumption is standard for PDBs and MLNs, and also central
in research on OMQ answering. In the combined complexity,
inference in MLNs is already super-exponential, since the
size of each possible world is exponential.

We now present our techniques to reduce log-linear PKBs
directly to other models, in order to use existing inference
methods. In Section 5.1, we describe reductions of the ontolo-
gical component that produce MLNs, while in Section 5.2 we
reduce the probabilistic component to the tuple-independent
model of PDBs, inspired by (Gribkoff and Suciu 2016).

5.1 Reductions to MLNs
Let K = (Dw,T ) be a PKB and Q a query. We start with
a simple observation. As explained before, the difference
between Equations (5) and (6) lies in the open-domain entail-
ment. It is easy to see that this difference is diminished when
T contains no existential quantifiers (cf. Example 1).

Theorem 6. If all formulas in T are of the form ∀xφ(x),
where φ is quantifier-free, then we can construct an MLNM
with PK = PM in linear time.

Thus, our model naturally devolves into a special kind
of MLN, if there are no open-domain existential quantifiers.
However, closed-domain existential quantification can still
be expressed (Van den Broeck, Meert, and Darwiche 2014).

To deal with existential quantifiers over open domains, we
can encode Datalog rewritings into an MLN and use existing
MLN systems for query evaluation over open-domain PKBs.

Theorem 7. If Q and � are Datalog-rewritable w.r.t. T , then
query evaluation in log-linear PKBs can be reduced to infer-
ence in MLNs in polynomial time.

Proof Sketch. A naive idea would be to use the Datalog rules
in QT and �T directly as formulas in an MLNM. However,
the rewriting process can introduce additional predicates,
which means thatM has “larger” worlds than K. We need to
restrict these extended worldsW ′ over the signature ofM,
such that for each original worldW over K, there is a unique
consistent extensionW ′.

Fortunately, there exists a theory T ′ such thatW ∪ T ′ has
exactly one Herbrand model (corresponding toW ′), namely,
the minimal Herbrand model ofW ∪QT ∪ �T . This theory,
called the tight completion of the Datalog program QT ∪ �T
(Wallace 1993) is based on the idea of Clark’s completion,
which essentially replaces the implication (→) in Datalog
rules by equivalence (↔). However, since this is only correct
for nonrecursive Datalog programs, additional care needs to
be taken for recursive dependencies.

By assigning the unique extensionW ′ the same probability
as the original world W , we ensure that M evaluates the
Datalog rewriting to the same probability as PK(Q).

Hence, ontology-based rewriting techniques can augment
MLNs with open-domain existential quantifiers essentially for
free (in data complexity). Moreover, there are many rewriting
techniques that only result in a polynomial blowup of the
formulas (Bienvenu and Ortiz 2015).

5.2 Reductions to PDBs
There is also a close connection between log-linear PKBs
and OMQs over PDBs, as used in (Borgwardt, Ceylan, and
Lukasiewicz 2017). There, the distribution is simply PP for



Datalog±
Languages data fixed-program bounded-arity

L, S, LF, AF, SF PP PPNP PPNP

A PP PPNP NEXP

GF, F PP PPNP PPNP

G PP PPNP EXP

WS, WA PP PPNP 2EXP
WG EXP EXP EXP

Table 1: UCQ evaluation over log-linear PKBs.

a PDB P , but T is viewed as part of an OMQ (Q,T ). The
probability of this is defined as

PP(Q,T ) ∶= ∑
W∪T ⊧Q

PP(W),

where ⊧ is again the open-domain entailment relation (cf.
Definition 4). In that setting, inconsistent worlds can have a
positive probability, and simple renormalization is applied:

Pn
P(Q,T ) ∶= PP(Q,T ) −PP(�,T )

1 −PP(�,T ) .

Theorem 8. Query evaluation in log-linear PKBs can be
reduced to OMQ evaluation over tuple-independent PDBs,
and vice versa, in polynomial time.

Proof Sketch. We convert each weight wt into a probability
exp(wt)
(1+exp(wt) , which accounts for the factor exp(wt) in (6) and
the absence of 1 − exp(wt) when compared to (4). More-
over, since PKBs do not make the closed-world assumption,
we need to add all tuples t that do not occur in Dw with a
neutral probability of 0.5. In data complexity, there are only
polynomially many such tuples. Under these transformations,
the normalization in the resulting PDB coincides with the
normalization factor Z in (6).

For the other direction, we replace each tuple probability p
by the weight log(p) − log(1 − p), and assign all tuples that
do not occur in the PDB the weight −∞.

We can adapt the reduction in Theorem 8 to obtain the
following result for the MPD problem.

Theorem 9. The MPD problem for log-linear PKBs can be
reduced to the MPD problem for OMQs over PDBs, and vice
versa, in polynomial time.

6 Complexity Results
So far, we have shown several generic reductions to existing
probabilistic-logical models. We now analyse the complexity
of query evaluation over log-linear PKBs in more detail.

6.1 General Results
By the reductions of Theorem 8, we can import the complex-
ity results for OMQ evaluation over PDBs from (Borgwardt,
Ceylan, and Lukasiewicz 2017; Ceylan 2017):

Datalog±
Languages data fixed-program bounded-arity

L, S, LF, AF, SF NP NP ΣP
2

A NP NP PNE

GF, F NP NP ΣP
2

G NP NP EXP
WS, WA NP NP 2EXP
WG EXP EXP EXP

Table 2: MPD for UCQs over log-linear PKBs.

Corollary 10. If query answering in a Datalog± language L
is C-complete, then query evaluation over log-linear PKBs
(Dw,T ) with T ∈ L is PP-hard, C-hard and in PPC.

This yields a data complexity of PP for UCQs in Dat-
alog, EL�, or guarded (G) Datalog± (Dantsin et al. 2001;
Calı̀, Gottlob, and Lukasiewicz 2012), and even expres-
sive languages like weakly-acyclic (WA) or weakly-sticky
(WS) Datalog± (Fagin et al. 2005; Calı̀, Gottlob, and Pieris
2012). Table 1 gives an overview of the complexity of
query evaluation in log-linear PKBs for some selected
ontology languages of the Datalog± family, where fixed-
program refers to the assumption that only the theory (not
the query) is viewed as fixed, while in the bounded-arity
case the arity of all predicates is fixed. The reductions
in Theorem 8 are still polynomial under these assump-
tions. The table includes tight complexity results beyond
Corollary 10 (Borgwardt, Ceylan, and Lukasiewicz 2017;
Ceylan 2017): UCQ evaluation is PPNP-hard in the fixed-
program case, even if the theory is empty, and is in NEXP in
the bounded-arity case for acyclic (A) Datalog± theories.

We get similar results in Table 2 for the MPD problem via
(Ceylan, Borgwardt, and Lukasiewicz 2017; Ceylan 2017).

Corollary 11. If query answering in a Datalog± language L
is C-complete, then MAP for log-linear PKBs (Dw,T ) with
T ∈ L is NP-hard, C-hard and in NPC.

Additionally, MAP is ΣP
2-hard in the bounded-arity case

in all the languages of Table 2, it is only in NP in the fixed-
program case, and is PNE-hard for acyclic Datalog±.

6.2 Tractability Results
The reduction of Theorem 8 adds polynomially many tuples t
with probability 0.5 to P , which is not efficient. Fortunately,
if we can transform the query into a UCQ, we can apply a
lifted inference method from (Ceylan, Darwiche, and Van
den Broeck 2016) for default probabilities in PDBs. This
only applies to so-called safe UCQs, but guarantees query
evaluation in polynomial time. Safe UCQs are defined by a
syntactic restriction that can be checked in polynomial time;
for details, see (Ceylan, Darwiche, and Van den Broeck 2016).
In contrast to Theorem 7, this result puts stronger restrictions
on the query, but allows for query evaluation in P.

Theorem 12. If Q, � are FO-rewritable w.r.t. T and QT ∨�T
and �T are safe UCQs, then PK(Q) can be evaluated in P.



7 Learning the Weights
As is common for probabilistic models, we need to address
the question of how to obtain the parameters wt and Z.
There is a large body of research on learning log-linear
models using the principle of maximum entropy (ME) in
the presence of (logical) constraints (Bacchus et al. 1996;
Kuželka et al. 2018). Of all distributions consistent with the
observations, the idea is to select the one with maximum
entropy; in information-theoretic terms, this is the one that
makes the fewest additional dependency assumptions neces-
sary to be consistent with our knowledge base (Paskin 2001).

We also follow this direction here, but we propose a partic-
ular ME formulation that draws the input data from existing
PKBs like NELL and Knowledge Vault (Mitchell et al. 2015;
Dong et al. 2014), represented as PDBs. Importantly, this is
a process that can be done once, in an off-line processing
phase, before the actual query answering takes place.
Definition 13 (ME Problem). Given a PDB P and a the-
ory T , find the probability distribution P that

maximizes H(P) ∶= −∑
W

P(W) log P(W) (7)

subject to ∑
W

P(W) = 1

P(W) = 0 for all worldsW withW ∪ T ⊧ �
P(t) = [p − `t, p + ut] for all ⟨t ∶ p⟩ ∈ P
∑
⟨t∶p⟩∈P

`t + ut = ε

over the non-negative variables P(W), `t, and ut.
The first constraint requires that the probability of all

worlds adds up to 1. Second, inconsistent worlds should
have the probability 0. The remaining constraints say that the
probabilities from the PDB should be respected as much as
possible, depending on a parameter ε (`t and ut are additional
slack variables). If ε = 0, then PK(t) = p for all ⟨t ∶ p⟩ ∈ P ,
which cannot always be ensured: if the probabilities of many
tuples are fixed to a specific value, then there may not be
enough consistent worlds to realize all of them. In this case,
we can increase ε to guarantee the existence of a solution.
Finding ε. The value for ε is obtained in a preprocessing
step, by a separate optimization; cf. (Hansen et al. 1995):

Minimize ε ∶= ∑
⟨t∶p⟩∈P

`t + ut (8)

subject to ∑
W

P(W) = 1

P(W) = 0 for all worldsW withW ∪ T ⊧ �
P(t) = [p − `t, p + ut] for all ⟨t ∶ p⟩ ∈ P .

That is, we minimize εwith the to obtain the most constrained
feasible region for (7) that is still non-empty. Since (8) is a
linear program, it is easier to solve. However, there may be
(infinitely) many solutions that yield the same ε.
Example 14. Consider the PDB P and the theory T where

P = {⟨A(a) ∶ 0.9⟩, ⟨B(a) ∶ 0.1⟩},
T = {∀xA(x)→ B(x)},

andW1, . . . ,W4 from Example 2. If ε = 0, then (7) has no
solution:W2 ∪ T ⊧ �, and hence 0.9 = P(A(a)) = P(W1)
and 0.1 = P(B(a)) = P(W1) +P(W3) are contradictory.

Any solution for (8) must satisfy ε = lA(a) + uB(a) = 0.8,
i.e., P(A(a)) = 0.9 − lA(a) = 0.1 + uB(a) = P(B(a)). This
happens for infinitely many values of lA(a) and uB(a). ∎

A solution of (8) also contains information that can be
used to simplify (7): If ut > 0 for some solution to (8), then
there are no solutions with `t > 0, and vice versa. That is, we
know the only possible direction of change for each tuple.

Lemma 15. For solutions P1,P2 of (8) and all ⟨t ∶ p⟩ ∈ P ,
P1(t) − p > 0 implies P2(t) − p ≥ 0.

This helps with the problematic inequalities P(t) ≥ p − `t,
P(t) ≤ p+ut in (7), for which we do not know which of them
will be active, i.e., satisfied as an equality, which makes this
problem much harder (Kazama and Tsujii 2005). However,
once we have a solution P of (8), Lemma 15 allows us to do
the following, for each ⟨t ∶ p⟩ ∈ P: If P(t) − p > 0, then we
fix `t to 0 since no solution can yield P(t) < p. Moreover,
every solution then has to satisfy P(t) = p + ut, i.e., we can
replace two inequalities from (7) with one equality. Dual
arguments apply, if P(t) − p < 0, where we get P(t) = p − `t.
In the following, we write this equality as P(t) = p+xt, where
xt is either ut or −`t, depending on which case applies.

Unfortunately, a solution with P(t)−p = 0 does not contain
information about whether we need `t or ut. However, for
each such tuple ⟨t ∶ p⟩ ∈ P , we can solve (8) two more times
(with the previous simplifications) to see whether there is
another solution with either P(t) ≥ δ or P(t) ≤ δ (where δ
is very small) and the same ε-value. We then set xt ∶= ut or
xt ∶= −`t, respectively. If neither case applies, then we know
that P(t) must remain equal to p, and we set xt ∶= 0.
Solving the ME Problem. We thus obtain a simplified ver-
sion of (7), where we can replace P(t) = [p− `t, p+ut] with
P(t) = p + xt, where each xt is either ut, −`t, or 0 (with
ut, `t ≥ 0). The usual method to solve such a problem is
to find Lagrange multipliers λ0, λε, λt for all ⟨t ∶ p⟩ ∈ P ,
and λW for all inconsistent worldsW , where the constraints
of (7) are satisfied and the gradient of the following expres-
sion vanishes (Jaynes 1957):

− (∑
W

P(W) log P(W)) − λ0(∑
W

P(W) − 1)

− ∑
⟨t∶p⟩∈P

λt(( ∑
W ∣t∈W

P(W)) − (p + xt))

− ∑
W∪T ⊧�

λW P(W) − λε(( ∑
⟨t∶p⟩∈P

∣xt∣) − ε).

Solving these equations, we obtain the expression

P(W) = 1
Z

exp ( ∑
t∈W

λt − λW),

where the normalization factor Z incorporates λ0 and λε, and
λW = 0, ifW is consistent with T (Jaynes 1957).

The parameters λW of inconsistent worldsW end up be-
ing ∞, forcing their probability to exp(−∞) = 0, in accor-
dance with the constraints. Unfortunately, the number of the



parameters λW is exponential in the size of K. However, the
number of variables of the optimization problem is already
exponential (for each worldW , we have to find P(W)). Thus,
the constraints P(W) = 0 actually help to solve the optimiza-
tion problem faster, since some variables can be fixed to 0
from the beginning. The drawback is that we have to check
the inconsistency (W ∪ T ⊧ �) of all worldsW .

Then, the probability of a consistent worldW (w.r.t. T )
under the ME distribution can be written as

P(W) = 1
Z

exp ( ∑
t∈W

λt), (9)

i.e., we obtain a log-linear PKB with weights wt ∶= λt.
To compute the parameters λ0 and λt, and hence the

full probability distribution, one can use gradient-based ap-
proaches, e.g., the LMVM method, as described in (Malouf
2002). This is not a trivial task, and in general requires expo-
nential time in the size of K, but it is feasible to implement.

Note that this is only one way to obtain the weights forDw
from an existing PDB. It is straightforward to adapt this
approach to the standard renormalization technique employed
in PDBs. One could also integrate the parameter ε into the
objective function, to achieve a tradeoff between entropy and
slack, but more research is need on how precisely this should
be done, and how to solve the resulting optimization problem.

8 Discussion and Related Work
There is a vast literature on combinations of logic and prob-
ability. Apart from the above-mentioned semantic differ-
ences, the main difference to previous proposals lies in the
methods we propose. In Section 5.1, we have shown how
to reduce a log-linear PKB to an MLN. Thus, we can use
existing reasoners (Niu et al. 2011; Domingos and Lowd
2009) while incorporating the open-domain assumption. This
shows that ontology-based rewriting techniques can augment
MLNs with open-domain existential quantifiers essentially
for free. In Section 5.2, we have described another reduc-
tion to ontology-mediated querying over PDBs that allows us
to employ existing rewritability notions and algorithms for
PDBs. In Section 7, we have described how to convert PDBs
into our log-linear models. In spite of clear connections to
previous research, none of the constructions in this paper
have been considered before. We discuss the most closely
related proposals, and clarify the differences to our approach.
MLNs. For statistical relational models, the closest work is
MLNs (Richardson and Domingos 2006), where our motiva-
tion stems from. Our approach differs from MLNs in our use
of ontological reasoning, in particular using the open-domain
assumption for entailment. This is beyond the capabilities of
MLNs under the CDA (see Example 1), which motivated the
study of MLNs over infinite domains (Singla and Domingos
2007). That work also differs from ours since it allows only
universal quantifiers to range over an infinite domain. Infer-
ence in MLNs (and in PDBs) can be translated to weighted
model counting (Van den Broeck and Suciu 2017), which
has recently been extended towards open-domains, but this is
also restricted to a universal fragment of FOL (Belle 2017).
PLP. Function-free PLP is very common, and it is based on
the CDA. PLP with function symbols is Turing-complete (De

Raedt, Kimmig, and Toivonen 2007), and hence strong condi-
tions need to be imposed on the programs to keep the distribu-
tions well-behaved, i.e., essentially finite (Sato and Kameya
1997). This problem also appears in probabilistic program-
ming; for example, the programming language BLOG (Milch
et al. 2005) allows reasoning over open domains, but defines
rather strong restrictions on the language.
Log-Linear Probabilistic Models. Log-linear models have
a strong theoretical representation as solutions to maximum-
entropy problems (Bacchus et al. 1996; Potyka and Thimm
2017; Kuželka et al. 2018). We exploit this connection in
Section 7, and obtain weights from the probabilities given in
PDBs using an ME formulation. The principle of ME embod-
ies several commonsense reasoning principles (Paris 1998):
insensitivity to renaming, indifference to irrelevant informa-
tion, and the assumption of independence in the absence of
explicit information to the contrary (Paskin 2001).
Ontologies. The most closely related work in probabilis-
tic ontologies is given in (Niepert, Noessner, and Stucken-
schmidt 2011), where the description logic EL++ is extended
with log-linear distributions. Less closely related is the work
(Gottlob et al. 2013), which combines an ontology with an
MLN, and the work (Peñaloza and Potyka 2016) that com-
bines linear probabilistic constraints with description logics.
Our approach is more general than these in the sense that
our results apply to a class of ontology languages. Most im-
portantly, we present reducibility results to MLNs and PDBs
(see Section 5), which are novel.

Previous combinations of PDBs with ontologies are given
in (Jung and Lutz 2012; Borgwardt, Ceylan, and Lukasiewicz
2017). The difference to our approach lies in the treatment of
inconsistency (see Example 2). These models employ stan-
dard renormalization, whereas we follow a more fine-grained
approach (see Section 7). More general models than the ones
based on tuple-independent PDBs (Ceylan, Lukasiewicz, and
Peñaloza 2016; Ceylan and Peñaloza 2017) additionally al-
low to encode conditional dependencies, but also differ from
our approach in the handling of inconsistency.

9 Summary and Outlook
We introduced a new data model for ontology-mediated query
answering over probabilistic data, and compared this model
to existing proposals. Since reasoning in our model can be
reduced to inference in MLNs or PDBs, we obtain a host of
complexity results. We described an approach to learn the
weights in our model, based on the principle of ME, to estab-
lish the connection of the new model with existing PKBs. We
leave as future work an implementation, combining existing
gradient-based optimization methods with efficient rewriting
techniques and PDB or MLN inference engines.
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A Proofs
Proof of Theorem 6
LetM consist of the weighted facts from Dw, and all sen-
tences Φ ∈ T with weight ∞. It is enough to show that, for
all worldsW , we haveW ∪ T ⊧ � (under the open-domain
assumption) iff for some ∀xφ(x) ∈ T there is a ground in-
stance φ(c) that is not satisfied inW . The “if”-direction is
trivial. Assume now that all ground instances of the formulas
in T are satisfied inW . ThenW itself can be seen as a (finite)
first-order interpretation that satisfiesW ∪ T , which shows
thatW ∪ T is consistent.

Proof of Theorem 7
A (safe) Datalog rule is a first-order formula of the form
A1 ∧ ⋅ ⋅ ⋅ ∧An → B, where A1, . . . ,An,B are atoms over R
and additional predicates (so-called IDB predicates), such
that B uses an IDB predicate and only variables that also
occur in A1, . . . ,An; all variables are implicitly universally
quantified. A Datalog query Q is a set of Datalog rules with
a distinguished (0-ary) goal (IDB) predicate GQ, and it is
satisfied by a worldW ifW ∪Q ⊧ GQ; equivalently, if the
minimal Herbrand model of W ∪ Q satisfies GQ. This is
essentially closed-domain entailment, since Datalog rules
cannot introduce new objects.

Let now QT be a Datalog rewriting of Q w.r.t. T with goal
predicate GQ, and similarly for �Q and G�. To prove the
claim, we construct an MLNM with PK(Q) = PM(GQ),
in polynomial time. In principle, we want to constructM by
simply viewing all rules in QT and �T as hard constraints.
The problem is that these Datalog queries may contain ad-
ditional (IDB) predicates, which means thatM has “larger”
worlds than K. Intuitively, we additionally need to restrict
these extended worldsW ′ over the signature ofM in such a
way that, for each original worldW over K, there is a unique
consistent extensionW ′, which corresponds exactly to the
minimal Herbrand model of W ∪ QT ∪ �T . Then, we can
restrict this world to be inconsistent iff it contains G� (by
including the hard constraint G� → �), and let it have the
same probability as the original worldW .

Fortunately, there exists a first-order theory T ′ such that
W ∪ T ′ has exactly one Herbrand model (corresponding
to one of our extended worlds W ′), namely the minimal
Herbrand model of W ∪ QT ∪ �T . This theory, called the
tight completion of the Datalog program QT ∪ �T (Wallace
1993) is based on the idea of Clark’s completion, which es-
sentially replaces the implication (→) in Datalog rules by
equivalence (↔). However, since this is only correct for non-
recursive Datalog programs, additional care needs to be taken
for recursive dependencies. For this purpose, T ′ needs access
to the theory of natural numbers with the successor predicate.
Fortunately, since the maximal recursion depth is bounded
polynomially in the size of R and C, we need only finitely
many natural numbers. One can now either view the (finite)
successor predicate as a built-in predicate of the MLN sys-
tem, or express it via nonrecursive Datalog rules, assuming
only a total order on the constants C to be given, as done in
(Gottlob and Schwentick 2012).

Let now M be the MLN that consists of the weighted
facts from Dw, all sentences from the tight completion T ′ of
QT ∪ �T with weight ∞, and the additional hard constraint
G� → �. Then, for every worldW over K, there is a unique
extension ofW to a worldW ′ overM (including all ground
instances of IDB predicates over C), which corresponds to
the minimal Herbrand model of W ∪ QT ∪ �T ; all other
extensions ofW are inconsistent w.r.t. the hard constraints,
and thus have probability 0 in M. Now, W ′ contains G�
iff W ∪ QT ∪ �T ⊧ G� iff W ∪ T ⊧ � (the Datalog rules
in QT are irrelevant here, since they can be assumed to use
a disjoint set of IDB predicates). That is, worlds that are
inconsistent in K have no consistent extensions inM. This
also means that we always have PM(W ′) = PK(W) since
the equations (5) and (6) are based on the same weights (and
hence the same normalization factor Z).

For consistent worldsW , we similarly get thatW ′ contains
GQ iffW ∪QT ∪ �T ⊧ GQ iffW ∪ T ⊧ Q. Hence,

PM(GQ) = ∑
W ′⊧GQ

PM(W ′) = ∑
W∪T ⊧Q

PK(W) = PK(Q),

which concludes the proof.

Proof of Theorem 8

We reduce a PKB K = (Dw,T ) to a PDB P that contains
all weighted tuples t from Dw with probability exp(wt)

(1+exp(wt)) .
This accounts for the presence of exp(wt) in the computation
of PK(Q), and at the same time deals with the absence of
1 − exp(wt) in (6) compared to (4) (see also (Gribkoff and
Suciu 2016)). Moreover, PDBs and log-linear PKBs differ
in the closed-world assumption. Hence, we also need to add
all tuples t that do not occur in Dw with the neutral probabil-
ity 0.5 to P . In data complexity, there are only polynomially
many such tuples. If we define wt ∶= 0 for all tuples t that do
not occur in K, then we also have exp(wt)

1+exp(wt) = 0.5 = PP(t)
for these tuples. Thus, we obtain

PP(�,T ) = ∑
W∪T ⊧�

∏
t∈W

exp(wt)
1+exp(wt) ⋅ ∏¬t∈W

1
1+exp(wt)

= (∏
t

1
1+exp(wt)) ⋅ ∑W∪T ⊧�

∏
t∈W

exp(wt)

= (∏
t

1
1+exp(wt))Z

′,

where Z ′ is the “dual” of the normalization factor in (9):

Z = ∑
W∪T /⊧�

∏
t∈W

exp(wt) and Z ′ = ∑
W∪T ⊧�

∏
t∈W

exp(wt).

Moreover, we have that

∏
t

(1 + exp(wt)) =∑
W
∏
t∈W

exp(wt) = Z +Z ′,



and thus PP(�,T ) = Z′

(Z+Z′) . We similarly obtain

Pn
P(Q,T ) = PP(Q,T ) −PP(�,T )

1 −PP(�,T )

=
1

Z+Z′ ⋅ (∑W∪T ⊧Q∏t∈W exp(wt)) − Z′

Z+Z′
1 − Z′

Z+Z′

=
(∑W∪T ⊧Q∏t∈W exp(wt)) −Z ′

(Z +Z ′) −Z ′ .

SinceW ∪ T ⊧ � impliesW ∪ T ⊧ Q, by (9) we have

∑
W∪T ⊧Q

∏
t∈W

exp(wt)

= ( ∑
W∪T /⊧�,W∪T ⊧Q

∏
t∈W

exp(wt)) + ( ∑
W∪T ⊧�

∏
t∈W

exp(wt))

= Z ⋅PK(Q) +Z ′,
and hence we conclude that

Pn
P(Q,T ) = Z⋅PK(Q)

Z
= PK(Q),

i.e., the query probability under PK coincides with the nor-
malized OMQ probability under PP .

For the other direction, let P be a PDB, T a theory, and
construct a log-linear PKB K = (Dw,T ) by assigning each
tuple t the weight wt ∶= log(PP(t)) − log(1 −PP(t)). Each
tuple that is not present in P gets probability 0, and hence
weight −∞. Hence, we again have exp(wt)

1+exp(wt) = 0.5 = PP(t),
and the above arguments show that the query probability inK
is the same as the normalized OMQ probability in P .

Proof of Theorem 9
Consider the PKB K and PDB P from Theorem 8. It suffices
to show that PK(W) > PK(W ′) iff PP(W) > PP(W ′), for
all worldsW,W ′ that are consistent with T and satisfy the
query Q. Recall that

PP(W) = 1
Z+Z′ ∏

t∈W
exp(λt),

which is related to PK(W) by a factor of Z
Z+Z′ (see (9)).

Hence, if PK(W) > PK(W ′), then

PP(W) = Z
Z+Z′ PK(W) > Z

Z+Z′ PK(W ′) = PP(W ′),
and vice versa.

Proof of Theorem 12
We can use Theorem 8 to obtain a PDB P with default prob-
abilities. Since QT is a first-order rewriting of Q w.r.t. T ,
which is only correct in consistent worlds, PP(QT ) may not
include the probability of all inconsistent worlds, which is
why we consider PP(QT ∨ �T ) instead, which captures all
inconsistent worlds in addition to those that satisfy QT (i.e.,
entail Q w.r.t. T ). Similarly, PP(�T ) is equal to PP(�,T ).

By Theorem 8, we can thus evaluate the following expres-
sion using the lifted algorithm from (Ceylan, Darwiche, and
Van den Broeck 2016), in order to compute PK(Q):

PP(QT ∨ �T ) −PP(�T )
1 −PP(�T )

.

Proof of Lemma 15
In a solution of (8), for each t one of the variables `t and ut
must be 0, and the other satisfies P(t) = p+ut or P(t) = p−`t,
respectively; that is, solutions to (8) are fully determined by
the probability distribution P, and the objective function can
be written as ∑⟨t∶p⟩∈P ∣P(t) − p∣.

Assume now that P1 and P2 are two solutions with opti-
mal value ε, and P1(t0) − p0 > 0, but P2(t0) − p0 < 0, for
some ⟨t0 ∶ p0⟩ ∈ P . We define another distribution Pλ by
Pλ(W) ∶= λP1(W) + (1 − λ)P2(W), which implies that
Pλ(t) ∶= λP1(t) + (1 − λ)P2(t) for all tuples ⟨t ∶ p⟩ ∈ P .
In particular, if we set λ ∶= p0−P2(t0)

P1(t0)−P2(t0) , then Pλ(t0) = p0.

Clearly, Pλ still satisfies the constraints of (8). The value of
the objective function for Pλ is

∑
⟨t∶p⟩∈P

∣Pλ(t) − p∣ < ∑
⟨t∶p⟩∈P

λ∣P1(t) − p∣ + (1 − λ)∣P2(t) − p∣

= λε + (1 − λ)ε = ε

since ∣Pλ(t0) − p0∣ = 0 < λ∣P1(t0) − p0∣ + (1 − λ)∣P2(t0) −
p0∣ and ≤ holds for all other tuples. This contradicts the
assumption that P1 and P2 are solutions of (8).


