
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS-Report

Finite Herbrand Models for Restricted

First-Order Clauses

Stefan Borgwardt and Barbara Morawska

LTCS-Report 19-07

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Abstract

We call a Herbrand model of a set of first-order clauses finite, if each of
the predicates in the clauses is interpreted by a finite set of ground terms.
We consider first-order clauses with the signature restricted to unary pred-
icate and function symbols and one variable. Deciding the existence of
a finite Herbrand model for a set of such clauses is known to be Exp-
Time-hard even when clauses are restricted to an anti-Horn form. Here we
present an ExpTime algorithm to decide if a finite Herbrand model exists
in the more general case of arbitrary clauses. Moreover, we describe a way
to generate finite Herbrand models, if they exist. Since there can be in-
finitely many minimal finite Herbrand models, we propose a new notion of
acyclic Herbrand models. If there is a finite Herbrand model for a set of re-
stricted clauses, then there are finitely many (at most triple-exponentially
many) acyclic Herbrand models. We show how to generate all of them.

1 Introduction

We consider the problem of existence of the so called finite Herbrand model for
a set of restricted first-order clauses. This is a special case of the problem of
satisfiability a set of the first order formulas in FOL which continues to be a
great area of research in logic, computer science, automated deduction. The
problem is in general undecidable, not even semi-decidable. Hence the focus is
on finding models for restricted classes of clauses. Our restrictions consists of
allowing only unary predicates, unary function symbols, one constant and only
one variable.1

Such sets of clauses can be seen as skolemized versions of Ackermann formulas,
for which satisfiability is known to be decidable [8; 11]. If a set of such clauses
is satisfiable, then it has a Herbrand model. This model may not be finite, i.e.
the predicates may be interpreted by infinite sets of the first order elements from
Herbrand universe.

We search for the finite Herbrand models, i.e. the models in which each predicate
is interpreted by a finite set of terms. In other words, we search for a special
kind of ground atomic representation of a Herbrand model in the terminology of
[5].2 Hyperresolution-based methods have been proposed, cf. [4; 9], but its precise
complexity is still unclear. We prove that the problem of deciding whether a finite
Hebrand model of a given set of first-order clauses exists, is ExpTime-complete,
provided that the signature is restricted as mentioned above.

This restricted class of clauses came to our focus, while looking for methods

1One constant restriction is not essential.
2Ground atomic representations are not finite, because Herbrand universe is not finite. Our

notion of finite Herbrand model is not equivalent to a ground atomic representation as such.

1

of solving certain language equations or unification for description logics [1]. We
have found that these problems may be reduced to finding finite Herbrand models
for a set of anti-Horn clauses restricted in this way, [2]. As a continuation of
that research, we show a generalization of the methods used there to the set of
all clauses under the same restrictions. It is interesting that this more general
problem is in the same complexity class as in the case of anti-Horn clauses. In
future one can attempt to further generalize this class by lifting some of the
restrictions.

Our solution to the problem is given by an algorithm that is not based on resolu-
tion techniques nor is an enumeration procedure explicitly constructing a model
in a bottom-up fashion. Instead it follows a top-down approach, starting from
the largest terms that appear in the model. However, we also demonstrate how
to use our approach to actually construct models, and discuss how to find all
so-called acyclic Herbrand models of a given set of clauses.

Our methods may be relevant to problems like that of (i) termination in logic
programming with function symbols [10] and (ii) acyclicity for existential rules
[7]. While in (i) also Herbrand models are of chief interest, the setting (ii) usually
considers arbitrary first-order structures, but the so-called Skolem chase, related
to Herbrand models, is sometimes investigated in the context of finding approx-
imating criteria for termination [13]. However, there are two main differences
to our setting. First, termination requires that all (minimal) models must be
finite, instead of just one (as in our case). Only in the case of Horn clauses, our
algorithm is a decision procedure for termination, because in this case there is
a unique minimal Herbrand model. Second, usually predicates and functions of
arbitrary arity are allowed, whereas we restrict ourselves to the unary case.

The problem of finding one finite Herbrand model is related to finite model find-
ing [12], and useful for explaining to a user why a consequence does not hold since
such a finite Herbrand model is relatively easy to understand due to its tree-like
structure. Our construction can also be used for finding one terminating compu-
tation of a disjunctive logic program, which cannot be guaranteed to terminate
for all possible computation paths [6].

In the next section, we introduce propagation rules as a class of first-order clauses
and discuss the problem of finding finite Herbrand models. In Section 3, we
introduce a characterization of such models via so-called shortcuts, and use them
in Section 4 to decide the existence of finite Herbrand models. Finally, in Section 5
we discuss how to actually construct such models. Detailed proofs can be found
in the accompanying technical report [3].

2

2 Clauses and Herbrand models

Let P be a set of unary predicate symbols, F be a set of unary function symbols,
a be a constant symbol, and x be a variable. We consider first-order clauses c of
the form

P1(t1) ∧ · · · ∧ Pk(tk)→ Q1(s1) ∨ · · · ∨Q`(s`),

where P1, . . . , Pk, Q1, . . . , Q` ∈ P and the terms t1, . . . , tk, s1, . . . , s` are con-
structed over F, a, and x. The single variable x is considered to be universally
quantified. Since all function symbols are unary, we usually denote such terms
without parentheses, e.g. as fga for f, g ∈ F. The height |t| of a term t is defined
as the number of occurrences of function symbols it contains. The left-hand side
of c is called its body, and the right-hand side is the head. The set of all predicates
in the body of c is denoted by b(c), and h(c) is the set of all predicates in the
head of c. Note that the body may be empty, in which case we denote it by >,
and similarly write ⊥ for an empty head.

We call such clauses (extended) propagation rules [2]. In the following, we con-
sider a set C of such clauses, and are looking for a finite Herbrand model H of C,
i.e. essentially a finite subset of the Herbrand universe over P, F and a. By “fi-
nite” we mean that each predicate symbol is interpreted by a finite set of ground
terms, i.e. objects of the Herbrand universe. We will use two equivalent represen-
tations for Herbrand interpretations H, depending on which is more convenient
for our arguments: either H specifies sets of ground terms PH for each P ∈ P,
or alternatively it can be seen as a single set of ground atoms of the form P (t),
specifying exactly which atoms are true in H.

2.1 Normalization

Before we check for the existence of a finite Herbrand model, we first normalize
the set C.
Definition 1. A set of propagation rules is in normal form iff it consists of only

• one positive ground clause of the form > → A(a) such that A does not
occur in the head of any other clause,

• flat clauses of the form P1(x)∧· · ·∧Pk(x)→ Q1(x)∨· · ·∨Q`(x) with k ≥ 1,
and

• increasing and decreasing clauses of the forms

Qf (x)→ Q(fx) and Q(fx)→ Qf (x),

respectively, where Qf is a unique predicate, i.e. for every Q ∈ P and f ∈ F,
there can be at most one Qf ∈ P for which the above two clauses exist (and
then they must both exist).

3

Although technically > → A(a) can also be seen as a flat clause (as it involves
only a single term of a fixed height, instead of multiple terms with different
heights), we do not consider it part of the flat clauses, due to its special status
as the only ground clause.

In order to transform C into normal form, we first identify possibly existing pairs
of increasing and decreasing clauses, then flatten the remaining clauses by intro-
ducing more increasing and decreasing clauses. Afterwards, we have to eliminate
the clauses that are mixed, i.e. contain both a and x. We do this by guessing
for each predicate P , whether P (a) will be true or not, and replacing P (a) in
all clauses by > or ⊥, respectively. In this process, we also eliminate all ground
clauses and replace them with the single ground clause > → A(a).

In more detail, we do the following.

N1 For any Q ∈ P and f ∈ F, if there is a unique P ∈ P such that C contains
the clauses P (x)→ Q(fx) and Q(fx)→ P (x), then rename P to Qf (which
we assume to be fresh). Initially, these are the only increasing and decreasing
clauses.

N2 Do the following until all clauses are either increasing, decreasing, or flat (but
possibly mixed):

For any non-flat clause c ∈ C that has not been identified as increasing or
decreasing, choose an atom P (ft) in c and replace it by P f (t). Add the
increasing and decreasing clauses P f (x)→ P (fx) and P (fx)→ P f (x) to C
if they do not already exist.

N3 Introduce a fresh predicate A and the clause > → A(a).

Guess a set Pa ⊆ P \ {A}. For every P ∈ P, do the following:

• If P ∈ Pa, then add the flat clause A(x)→ P (x) to C and replace P (a)
with > in all clauses of C.
• If P /∈ Pa, then add the flat clause A(x) ∧ P (x)→ ⊥ to C, and replace
P (a) with ⊥ in all clauses of C.

N4 Remove all clauses from C that contain ⊥ in the body or > in the head.

Remove > from the body of all clauses, and ⊥ from the head of all clause.

N5 If there remains any clause except > → A(a) that has an empty body (>),
then the normalization fails.

Example 2. Consider the clause P1(x) ∧ P2(ga)→ P2(x) ∨ P1(fa).

• Step N1 does not apply, because there are no clauses that we could identify
as increasing or decreasing.

4

• In Step N2, we replace the atom P2(ga) by an atom P g
2 (a) and the atom

P1(f(a)) by P f
1 (a), where P g

2 and P f
1 are new predicates. We add the

corresponding increasing and decreasing clauses, and now the set of clauses
has the following form:

mixed clause: P1(x) ∧ P g
2 (a)→ P2(x) ∨ P f

1 (a),
increasing/decreasing P g

2 (x)→ P2(g(x)),
clauses: P2(g(x))→ P g

2 (x),

P f
1 (x)→ P1(f(x)),

P1(f(x))→ P f
1 (x).

• In Step N3, we add > → A(a). Then we have to guess Pa ⊆ P. Let
us guess that P g

2 ∈ Pa and P1, P2, P
f
1 /∈ Pa. P g

2 (a) will be replaced by >
and P f

1 (a) will be replaced by ⊥. We add the clause A(x) → P g
2 (x) and

corresponding clauses for the other predicates. The set of clauses is now of
the following form:

start clause: > → A(a),
flat clauses: A(x)→ P g

2 (x),
A(x) ∧ P1(x)→ ⊥,
A(x) ∧ P2(x)→ ⊥,
A(x) ∧ P f

1 (x)→ ⊥,
P1(x) ∧ > → P2(x) ∨ ⊥,

increasing/decreasing P g
2 (x)→ P2(g(x)),

clauses: P2(g(x))→ P g
2 (x),

P f
1 (x)→ P1(f(x)),

P1(f(x))→ P f
1 (x).

• In Step N4, we remove > and ⊥ from one flat clause and obtain the nor-
malized set of clauses:

start clause: > → A(a),
flat clauses: A(x)→ P g

2 (x),
A(x) ∧ P1(x)→ ⊥,
A(x) ∧ P2(x)→ ⊥,
A(x) ∧ P f

1 (x)→ ⊥,
P1(x)→ P2(x),

increasing/decreasing P g
2 (x)↔ P2(g(x)),

clauses: P f
1 (x)↔ P1(f(x)).

• Since there are no flat clauses with > on the left, Step N5 does not apply,
hence the normalization succeeds.

Obviously, a successful normalization process will terminate with a set of propa-
gation rules in normal form. It is correct in the following sense.

5

Lemma 3. The set C has a finite Herbrand model iff there is a set Pa for which
the normalization process produces a set C ′ that has a finite Herbrand model.

Proof. (⇒): Let H be a finite Herbrand model for C. We show how to construct
a set Pa and a finite Herbrand model H′ for C ′, by following the normalization
steps.

• Initially, we set H′ := H, which is a model of the initial set of clauses.

• In Step N1, we simply replace some predicates by fresh predicates. If P is
renamed to Qf , we set (Qf)H

′
:= PH

′
, which preserves the property that

H′ is a Herbrand model of the resulting set of clauses.

• Step N2 consists of flattening the clauses and creating new predicates on the
way. Each new predicate is of the form P f for some already existing predi-
cate P and a function symbol f . We define the interpretation of these new
predicates recursively: if PH

′
is defined, we set (P f)H

′
:= {t | ft ∈ PH

′}.
Under this modification, it is clear that the atoms P (ft) and P f (t) are
equivalent in H′, and hence H′ remains a model of the flattened clauses,
and also satisfies the new increasing and decreasing clauses.

• In Step N3 we define a special predicate A and we guess Pa ⊆ P \ {A}.
We define AH

′
:= {a}, which satisfies the new clause > → A(a). We

can further guess Pa := {P ∈ P \ {A} | a ∈ PH
′}. Thus, for every

P ∈ Pa, A(x) → P (x) is satisfied by H′, and for every P /∈ Pa except A,
A(x) ∧ P (x)→ ⊥ is satisfied.

• The transformations in Step N4 clearly do not affect the satisfaction of the
remaining clauses.

• The failure condition in Step N5 cannot apply, because any remaining non-
ground clause with > on the left-hand side would mean that H′ is infinite,
which implies by the above constructions that H is infinite.

(⇐): Assume that the normalization process did not fail, so we have guessed a
set Pa to obtain C ′, and that H is a finite Herbrand model of C ′. We show that
H is also a model of C if we extend it with interpretations for the predicates
that were renamed in the first step, i.e. if Qf is the renamed version of P in C ′,
then we extend H by defining PH := (Qf)H. To show this, we demonstrate that
H satisfies the set of clauses as it was before each normalization step, by going
through the steps in reverse order.

• Step N5 does not apply due to our assumption that the normalization did
not fail.

6

• Regarding Step N4, the removed clauses are trivially satisfied by any Her-
brand interpretation, and the addition of > to the body or ⊥ to the head
does not affect the satisfaction of a clause.

• For Step N3, observe that for any P ∈ Pa we have a ∈ PH since H satisfies
> → A(a) and A(x) → P (x), i.e. P (a) is equivalent to > in H. Similarly,
for P 6∈ Pa, the clause A(x) ∧ P (x)→ ⊥ ensures that a /∈ PH.

• In Step N2 the new increasing and decreasing clauses ensure that the re-
placed atoms are equivalent to the original ones under H.

• Finally, the original clauses before Step N1 are satisfied by H due to our
initial extension of H to the renamed predicates.

In the following, we always assume C to be normalized.

2.2 Finding Finite Herbrand Models: A Naive Algorithm

To guide our procedure for finding a finite Herbrand model, we first consider a
naive model construction approach. We start with the small Herbrand interpre-
tation H0 = {A(a)} that satisfies the only ground clause in C, and nondetermin-
istically add atoms that are required to satisfy the clauses in C, in order to extend
the interpretation to H1,H2,H3, If this process terminates, we have found a
finite Herbrand model Hm.

Formally, we follow the following steps to construct each Hi+1 from Hi, as long
as there are still unsatisfied clauses.

Definition 4. Let Hi be a finite Herbrand interpretation.

• Choose an arbitrary clause c from C and an arbitrary ground term t to
substitute for the variable x, such that Hi 6|= c[x 7→ t], i.e. the clause is not
yet satisfied.

If c is flat or increasing, we say that the term t is active inHi at the clause c.
If c is a decreasing clause of the form Q(fx)→ Qf (x), then we say that ft
is active in Hi at c.

The set of all pairs (t, c) such that t is active at c inHi is denoted by act(Hi).

• Choose an arbitrary disjunct Q(t′) from the head of c (where t′ is either x
or fx for some f ∈ F) and set Hi+1 := Hi ∪ {Q(t′)[x 7→ t]} to satisfy the
clause for t.

We call this the expansion rule, and denote by Hi
c,t,Q−−→ Hi+1 the application of

this rule for the clause c, active term t and predicate Q (if it is applicable). The

7

expansion step Hi � Hi+1 denotes that the above relation holds for some c, t and
Q. Given a Herbrand interpretation H0, an expansion sequence (starting in H0)
is a finite sequence H0 � H1 � . . .� Hm. The sequence is called terminating if
Hm is a model of C, in which case the expansion rule is not applicable anymore.
We say that C terminates if it has a terminating expansion sequence starting
in H0 = {A(a)}.

Termination is obviously equivalent to C having a finite Herbrand model.

Example 5. Let our set of propagation rules C be the following:

start clause: c0 = > → A(a)
flat clauses: c1 = A(x)→ P1(x)

c2 = A(x)→ P f
1 (x)

c3 = A(x)→ Qf
2(x)

c4 = A(x) ∧Q1(x)→ ⊥
c5 = A(x) ∧Q2(x)→ ⊥
c6 = P1(x)→ Q1(x) ∨Qf

2(x)
c7 = Q1(x) ∧Q2(x)→ ⊥

increasing/decreasing c8/9 = P f
1 (x)↔ P1(f(x))

clauses: c10/11 = Qf
2(x)↔ Q2(f(x))

The choice of Pa is obviously: {P1, P
f
1 , Q

f
2}.

We start with H0 = {A(a)} and construct an expansion sequence, by choosing

c1, a and P1: H0
c1,a,P1−−−−→ H1 where H1 = {A(a), P1(a)}. Now we choose c2 for

expansion with the same term a: H1

c2,a,P
f
1−−−−→ H2. Similarly, we do expansion with

c3: H2

c3,a,Q
f
2−−−−→ H3. At this moment clauses 4, 5 and 7 are satisfied. Since Qf (a)

is in H3 clause 6 is also satisfied. This leave us with increasing clauses c8 and c10.

H0
c1,a,P1−−−−→ H1 = {A(a), P1(a)}

H1

c2,a,P
f
1−−−−→ H2 = H1 ∪ {P f

1 (a)}

H2

c3,a,Q
f
2−−−−→ H3 = H2 ∪ {Qf

2(a)}
H3

c8,a,P1−−−−→ H4 = H3 ∪ {P1(fa)}

H4

c10,a,Q
f
2−−−−→ H5 = H4 ∪ {Q2(fa)}

At this moment the c6 is not satisfied, because P1(fa) is in H5. We have a choice
in expanding H5 either adding Q1(fa) or Qf

2(fa) to the interpretation.

If we choose Q1(fa) we will not get a terminating expansion sequence:

H5
c6,fa,Q1−−−−−→ H6 = H5 ∪ {Q1(fa)}

8

At this moment c7 is not satisfied and we have no way to satisfy it. Hence since
H6 is not a model, the sequence does not terminate. Nevertheless another choice
in expanding H5 leads to termination.

H0
c1,a,P1−−−−→ H1 = {A(a), P1(a)}

H1

c2,a,P
f
1−−−−→ H2 = H1 ∪ {P f

1 (a)}

H2

c3,a,Q
f
2−−−−→ H3 = H2 ∪ {Qf

2(a)}
H3

c8,a,P1−−−−→ H4 = H3 ∪ {P1(fa)}

H4

c10,a,Q
f
2−−−−→ H5 = H4 ∪ {Q2(fa)}

H5

c6,fa,Q
f
2−−−−−→ H6 = H5 ∪ {Qf

2(fa)}
H6

c10,fa,Q2−−−−−→ H6 = H5 ∪ {Q2(ffa)}

Here is another example.

Example 6. Let the set of predicates Pa = {P f , Qf
2}. Let our set of propagation

rules C be the following with some clauses added by the choice of Pa omitted.

start clause: c0 = > → A(a)
flat clauses: c1 = A(x)→ P f (x)

c2 = A(x)→ Qf
2(x)

c3 = A(x) ∧Rf (x)→ ⊥
c4 = P (x)→ Q1(x) ∨Q2(x)
c5 = Q1(x) ∧Q2(x)→ R(x)

increasing/decreasing c6/7 = P f (x)↔ P (f(x))

clauses: c8/9 = Qf
2(x)↔ Q2(f(x))

c10/11 = Rf (x)↔ R(f(x))

We start with H0 = {A(a)} and construct an expansion sequence, by choosing

c1, a and P f : H0
c1,a,P f

−−−−→ H1 where H1 = {A(a), P f (a)}. Now we choose c2 for

expansion with the same term a: H1

c2,a,Q
f
2−−−−→ H2 and H2 = {A(a), P f (a), Qf

2(a)}.
Now the increasing clauses are not satisfied, hence we have to create term f(a)
in the interpretation of P and Q2.

The expansion steps are in the following table.

9

H0
c1,a,P f

−−−−→ H1 = {A(a), P f (a)}

H1

c2,a,Q
f
2−−−−→ H2 = H1 ∪ {Qf

2(a)}
H2

c6,a,P−−−→ H3 = H2 ∪ {P (fa)}
H3

c4,fa,Q1−−−−−→ H4 = H3 ∪ {Q1(fa)}
H4

c8,a,Q2−−−−→ H5 = H4 ∪ {Q2(fa)}
H5

c5,fa,R−−−−→ H6 = H5 ∪ {R(fa)}
H6

c11,fa,Rf

−−−−−→ H6 = H5 ∪ {Rf (a)}
Now, because of the clause 3, which cannot be satisfied, we cannot terminate this
sequence. Nevertheless there is a sequence that terminates. It differs from the
above one by taking different order in satisfying the increasing and flat clauses.

H0
c1,a,P f

−−−−→ H1 = {A(a), P f (a)}

H1

c2,a,Q
f
2−−−−→ H2 = H1 ∪ {Qf

2(a)}
H2

c6,a,P−−−→ H3 = H2 ∪ {P (fa)}
H3

c8,a,Q2−−−−→ H4 = H3 ∪ {Q2(fa)}
At this moment all clauses are satisfied. The sequence terminates.

There are two reasons for an expansion sequence starting in H0 to be non-
terminating:

• It may be impossible to avoid a contradiction, i.e. a clause with an active
ground term and an empty head (⊥).

• Any expansion sequence that avoids such contradictions is forced into a
cycle of producing atoms with higher and higher ground terms.

The main idea of our decision procedure is based on an obvious observation that
in order for a sequence to terminate, the atoms added in the expansion sequence
must contain terms of a bounded height. Moreover we can trace expansion steps
independently for each of these terms, because of the restrictions on the signature.

The simplest terminating sequence would be one which avoids applying the ex-
pansion rule to increasing clauses completely (if that is possible), i.e. that never
involves terms other than a. Since there are only finitely many predicates, such
a flat sequence must be terminating.

10

3 Taking Shortcuts

Let us consider a terminating expansion sequence H0 � H1 � . . . � Hm. We
want to divide it into subsequences that can serve as building blocks for the whole
sequence. Here is an informal description of how this is done.

As observed above, the terms that appear in the atoms are of bounded height.
We first consider a term of maximal height, e.g. ft.3 Hence it was created by
an expansion rule applied to an increasing clause with a predicate P f . Let
X = {P | P f (t) ∈ Hi} for some interpretation Hi in the original sequence. Now
we can reconstruct an expansion sequence starting with H′0 = {P (ft) | P ∈ X}
following the way the term ft was deactivated in the clauses C, in the original
expansion sequence. We say that the expansion sequence for ft obtained in this
way has height 0, because ft is of maximal height and no bigger term is created.

Now, consider t, the subterm of ft. Let us assume that t = gt′. Such term had
to be created by an increasing clause with a predicate Qg. We repeat the process
to extract an expansion sequence for the term gt′ setting X ′ = {Q | Qg(t′) ∈ Hj}
for some interpretation Hj and starting with H′′0 = {Q(gt′) | Q ∈ X ′}. Now, the
sequence has height 1, because for the bigger terms (of maximal height), we have
already extracted expansion sequences of heights 0.

We can proceed in the same way for the term t′, extracting an expansion sequence
of height 2, etc., until we come to the term a. For this term the original sequence
is reconstructed by starting with H0 = {A(a)}, and following the way a is deac-
tivated in the original sequence, while the bigger terms are taken care of by the
already extracted subsequences.

In order to capture these ideas, we define the notion of a shortcut that represents
an extracted expansion subsequence of an assumed terminating sequence.

Definition 7. Let X ⊆ Y ⊆ P. The pair (X ,Y) is called a shortcut (for C)
if there is a ground term t and an expansion sequence H0 � . . . � Hm that
satisfies the following conditions.

S1 H0 = {P (t) | P ∈ X}, i.e. H0 contains only the term t in the predicates
from X .

S2 For all P (t′) ∈ Hm, we have t′ = wt with w ∈ F∗, i.e. every term in Hm has
suffix t.

S3 Y = {P | P (t) ∈ Hm}, i.e. Hm contains the term t in exactly the predicates
from Y .

S4 For every (t′, c) ∈ act(Hm), we have t′ = t and c is decreasing.

3Here we assume that the maximal term is not a.

11

The height of this expansion sequence is max{|wt| − |t| | P (wt) ∈ Hm}. The
height of the shortcut (X ,Y) is the smallest height of an expansion sequence
satisfying S1–S4 for (X ,Y) and some ground term t.

It is easy to check that, whenever there is a sequence satisfying S1–S4, then there
is a similar sequence for all ground terms t. This is because, without applying
the expansion rule to decreasing clauses with active term t, the term t cannot be
decomposed, and all other applications of expansion rules can only extend t by
more function symbols. For this reason, shortcuts (X ,Y) do not have to refer to
a specific term, because the definition is satisfied either for all terms or for none.

There always exists the trivial shortcut (∅, ∅), which corresponds to a trivially
empty expansion sequence. This shortcut does not have a well-defined height, so
we just fix it to −1 (which is impossible for any other shortcut).

Obviously, C is terminating iff there is a shortcut of the form ({A},Y), because a
can never be active at decreasing clauses. We can thus try to construct an expan-
sion sequence as in S1–S4 for ({A},Y), by composing it from smaller sequences.
We could try to use a bottom-up approach: if we have to add the atom P (fa)
due to an increasing clause in C, we can try to deal with this atom by finding
a shortcut of the form ({P},Y ′) and apply it to fa. Once we have found this
shortcut, we can apply the expansion rule to any atoms Q(fa), Q ∈ Y ′, for which
a matching decreasing clause Q(fx)→ Qf (x) exists, thereby adding the smaller
term a to the interpretation of Qf , which then may lead to more atoms over a.

Any time we produce a new term t in this process, we look for a shortcut that
we can use for t in a recursive manner. This bottom-up approach can easily lead
to a large complexity algorithm.

Here we will instead compute shortcuts of increasing height in a top-down manner,
using the following observations. If there is a shortcut ({A},Y) of height 0, it is
quite simple to find it, because it is not necessary to produce terms of height > 0
using increasing clauses. Hence, we simply have to find a way to satisfy all flat
clauses without the expansion rule becoming applicable for any increasing clauses.

Now consider a shortcut ({A},Y) of height larger than 0, and let t be a term
of maximal height in the corresponding expansion sequence for a. Then we can
extract a sub-sequence for t, starting with the atoms P (t) that were initially
produced by increasing clauses, applying the expansion rule only to flat clauses
using t (since t is maximal), and ending with some atoms Q(t), where the term t
is active only at decreasing clauses. We can extract in this way a shortcut (X ,Y)
of height 0.

Since the original shortcut was of positive height, we know that t = ft′ for some
f ∈ F, and that t was produced by increasing clauses P f (x) → P (fx) with
P ∈ X . Hence, can similarly extract a sub-sequence for t′, by again starting
with the atoms P (t′) produced by increasing clauses, and ending with only atoms

12

Q(t′) active at decreasing clauses, such that whenever we produce a term of
larger height, we can employ a shortcut of height 0 that we had extracted in the
previous step. The shortcut corresponding to the resulting sub-sequence will be
of height 1. In this way, we can eventually compose the expansion sequence for
({A},Y) from expansion sequences of smaller height.

Example 8. Let the following be C, Pa = {P f , Q1, Q
f
2}, with some of the clauses

obtained from guessing Pa are omitted.

start clause: c0 = > → A(a)
flat clauses: c1 = A(x)→ P f (x)

c2 = P (x)→ Q1(x) ∨Q2(x)
c3 = Q1(x) ∧Q2(x)→ ⊥
c4 = Qf

2(x)→ Q1(x)
increasing/decreasing c5/6 = P f (x)↔ P (fx)

clauses: c7/8 = Qf
2(x)↔ Q2(fx)

A terminating expansion sequence is the following (some of the steps are omitted,
because of the absent clauses):

H0 = {A(a)} c1,a,P f

−−−−→ H2 = {A(a), P f (a)} c5,a,P−−−→ H3 = {A(a), P f (a), P (fa)}
c2,fa,Q2−−−−−→ H4 = {A(a), P f (a), P (fa), Q2(fa)}
c8,fa,Q

f
2−−−−−→ H5 = {A(a), P f (a), P (fa), Q2(fa), Qf

2(a)}
c4,a,Q1−−−−→ H6 = {A(a), P f (a), P (fa), Q2(fa), Qf

2(a), Q1(a)}

The term of maximal height is fa. It was produced by c5 = P f (x) → P (fx).
After fa has been created, it is active at c2 = P (x) → Q1(x) ∨ Q2(x). We see
that it was deactivated in the expansion sequence by adding Q2(fa) to the next
interpretation. This has activated the decreasing clause, c8.

In this way we can extract the shortcut ({P}, {P,Q2}) for height 0 from the
terminating expansion sequence. This shortcut will correspond to the following
expansion sequence:

H′0 = {P (fa)} c2,fa,Q2−−−−−→ H′1 = {P (fa), Q2(fa)}

Of course, this shortcut and expansion sequence can be used with an arbitrary
term, t.

H′0 = {P (t)} c2,t,Q2−−−−→ H′1 = {P (t), Q2(t)}
Having this shortcut, we can present the original expansion sequence in the fol-
lowing way:

13

Algorithm 1 (Main algorithm)

Input: A set C of propagation rules
Output: true iff C terminates

1: S0 ← {(∅, ∅)}
2: n← 0
3: repeat
4: n← n + 1
5: Sn ← nextShortcuts(C,Sn−1)
6: if there exists ({A},Y) ∈ Sn then
7: return true

8: end if
9: until Sn = Sn−1

10: return false

{A(a)} c1,a,P f

−−−−→ {A(a), P f (a)} incr
99K shortcut

decr
99K {A(a), P f (a), Qf

2(a)}
c4,a,Q1−−−−→ {A(a), P f (a), Qf

2(a), Q1(a)}.

Notice that the atoms P (fa), Q2(fa) are not visible in the final interpretation,
because they are hidden in the shortcut. When we reconstruct a model, we have
to put them back there. But in constructing a shortcut we are interested only in
the atoms containing terms of small height. In this case, constants.

At this point our algorithm will check if there exists a shortcut of the form
({P,Q2},Y) and it will discover that all flat and increasing clauses are satisfied
for {P (fa), Q2(fa)} hence there is a shortcut ({P,Q2}, {P,Q2}) as required.4

In this way we have obtained the shortcut ({A}, {A,P f , Qf
2 , Q1}) of height 1

based on the shortcut of height 0.

4 Detecting the Existence of a Finite Herbrand

Model

As explained above, in order for a finite Herbrand model of C to exist, there must
be a shortcut of the form ({A},Y), that corresponds to a terminating expansion
sequence. We are not given such a sequence from which we can extract all or
some shortcuts. Instead we compute all possible shortcuts for C. If a shortcut
({A},Y) for some Y ⊆ P is in this set of shortcuts, then we can be sure that a
terminating expansion sequence exists.

This idea is formalized in Algorithm 1.

We describe next the procedure nextShortcuts(C,Sn−1), which computes all

4This last step seems redundant in this example, but it is not in general.

14

possible shortcuts of height at most n based on all shortcuts of height at most
n− 1.

4.1 Possibilities

The algorithm for computing shortcuts is using a procedure for the so called pos-
sibilities. Possibilities are just different ways of extending an expansion sequence
with a term t with respect to flat clauses in C, whereas the bigger terms required
by the increasing clauses are dealt with using the already computed shortcuts.

Definition 9. The set possibilities(c) for a flat clause c is h(c), i.e. the set
of all predicates in the head of c. For a finite set C = {c1, . . . , ck} of clauses, we
define possibilities(C) as{

{P1, . . . , Pk} | ∀i ∈ {1, . . . , k} : Pi ∈ possibilities(ci)
}
.

Finally, for X ⊆ P, we set possibilities(X) := possibilities(C|X), where
C|X is defined as the set of all flat clauses c from C with b(c) ⊆ X .

This definition is basically the same as in [2]. Intuitively, possibilities(. . .) de-
scribes all possibilities of deactivating a given term at the involved clauses (either
a single clause, a set of clauses, or the specific set of clauses activated by X). If
there are no predicates on the right-hand side of c, then possibilities(c) = ∅,
and if such a c belongs to C, then possibilities(C) = ∅. In contrast, if C|X = ∅,
then possibilities(X) = possibilities(∅) = {∅}, i.e. there is exactly one
possibility, which is to do nothing, since no terms are active and thus no action
is required.

Example 10. Let us look at some clauses in Example 8.

possibilities(c1) = {P f}
possibilities(c2) = {Q1, Q2}
possibilities(c3) = ∅
possibilities(c4) = {Q1}

Now, let us compute possibilities for some sets of predicates.

• possibilities({A}) = {{P f}}, because b(c1) ∈ {A}.

• possibilities({P}) = {{Q1}, {Qf
2}}, which corresponds to a choice we

have when deactivating a term at a clause c2.

• Notice that possibilities({Q1, Q2}) = ∅, hence we cannot terminate a
sequence if we reach these two predicates with the same term.

• possibilities({Q1}) = {∅}, because C|{Q1} = ∅.

15

Algorithm 2 possibilities(C,S,X)

Input: A set C of propagation rules, a set S of shortcuts, a set X of predicates,
Output: The set P of possibilities for X w.r.t. C, S

1: P← {∅}
2: for all f ∈ F do . Increasing clauses
3: P←

{
Z ∪W+f | Z ∈ P, (X−f ,W) ∈ S}

4: end for
5: for all c = P1(x) ∧ · · · ∧ Pk(x)→ Q1(x) ∨ · · · ∨Q`(x) ∈ C do . Flat clauses
6: if {P1, . . . , Pk} ⊆ X then
7: P←

{
Z ∪ {Q1}, . . . ,Z ∪ {Q`} | Z ∈ P

}
8: end if
9: end for

10: return P

• possibilities({Q2}) = {∅}, for the same reason as above.

In the presence of shortcuts, we can extend the notion of possibilities to the
increasing clauses, the predicates labeled with a function symbol, and sets of
such predicates that include them. Notice that if P f ∈ X and there are no
shortcuts of the form ({P},Y), we don’t know what to do with the bigger
terms with the prefix f and then if we take increasing clauses into considera-
tion, possibilities(X) = ∅. If S is a set of shortcuts,
the extended possibilities(P f) = {Qf ∈ P | ({P},Y) ∈ S, Q ∈ Y}. The
extended notion of possibilities is defined in the Algorithm 2.

For convenience, given a set X ⊆ P and a function symbol f ∈ F, we define
the following abbreviations to translate back and forth between the predicates P
and P f :

X+f := {P f ∈ P | P ∈ X},
X−f := {P ∈ P | P f ∈ X}.

Notice that if a predicate is in X+f , it has the form P f . Hence if P (ft) is in an
interpretation, then P f (t) must be there too. Hence the term ft is decomposed
in P f . Notice too that not all predicates in X has the form P f defined in the
set P. Similarly, if a predicate is in X−f , it has the form P , where P f ∈ X . We
know that if P f (t) is in an interpretation, then P (ft) must be there too.

Algorithm 2 computes all possibilities for a set of predicates X , with respect to
a set of shortcuts S, and a set of clauses C. Hence it has two parts: computing
possibilities for increasing clauses with the available shortcuts and computing
possibilities for flat clauses.

Notice that since (∅, ∅) is always a shortcut, if the set X−f is empty, then in
Line 3 the set P is not changed. In contrast, if there is no shortcut of the form

16

(X−f ,Y) ∈ S, then P will become empty. In Line 7, if P is already empty, then
it will stay empty; if it is not, it can become empty in case ` = 0.

Algorithm 2 can be optimized, because in the present formulation it produces
many unuseful possibilities, i.e. it includes predicates even if a clause is already
satisfied. Nevertheless, all productive possibilities are included in P.

Example 11. Consider Example 8 and assume that we have not yet computed
any shortcuts. We consider the computation of possibilities(C,S, {A}) with
S = {(∅, ∅)}.

At the beginning the set of possibilities P is initialized to the set containing empty
set, which means that no extension is required. Since {A} does not contain any
predicates of the form P f , for each f ∈ F, hence for each f ∈ F, the empty
shortcut (∅, ∅) is used and thus we add the empty set to the empty possibility in
P, hence the set of possibilities remains unchanged (line 4).

In the for-loop for the flat clauses, the algorithm considers c1 = A(x) → P f (x).
Inside the body of this loop, the set of possibilities is redefined to P = {{A,P f}}.
Since no other flat clauses satisfy the conditions in the if-condition, the algorithm
will return P = {{A,P f}}, i.e. there is only one possibility for {A}, which is
{A,P f}.5

If we want to compute possibilities for {A,P f}, we will get ∅ as a result. This is
because there is no shortcut of the form ({P},W) in S = {(∅, ∅)}. Since there
is no W+f available, P becomes empty (Line 3). It will stay empty through the
loop for flat clauses too (there is no Z available in Line 7).

The following lemma shows that Algorithm 2 is sound.

Lemma 12. Assume that for every (X ,W) ∈ S there is a shortcut (X ,Y) for C
of height ≤ n with Y ⊆ W, and let Z be an element of possibilities(C,S,X).
Then, for every ground term t, there is an expansion sequence H0 � . . .� Hm of
height ≤ n+ 1 satisfying S1, S2 (see Definition 7), and the following conditions.

S3 ′ X ∪Z ⊇ {P | P (t) ∈ Hm}, i.e. Hm contains the term t only in the predicates
from X ∪ Z.

S4 ′ For every (t′, c) ∈ act(Hm) we have t′ = t and, if c is not decreasing, then
b(c) * X .6

Proof. We construct the required expansion sequence, initializing H0 to the set
{P (t) | P ∈ X}, as required for S1. We then have act(H0) = {(t, c) | b(c) ⊆ X}.

5For the sake of clarity this example (following Example 8) omits some clauses that should
be in C because of the choice of Pa. The set of possibilities for {A} is exactly Pa. In Example 8

Pa can be defined as Pa = {A,P f , Qf
2 , Q1}.

6Computing possibility for X corresponds to an expansion sequence, which allows for some
clauses to be still activated, but not those that were activated in the predicates in X alone.

17

We proceed to deactivate t at all such increasing and flat clauses; the decreasing
clauses are allowed to have t active due to Condition S4 ′.

Consider first the increasing clauses with active term t. We follow the computa-
tion of Algorithm 2 that led to Z. By Line 3, for each f ∈ F, there must be a
pair (X−f ,W) ∈ S with W+f ⊆ Z. By assumption, there is a shortcut (X−f ,Y)
of height ≤ n with Y ⊆ W . Such a shortcut induces an expansion sequence
of height ≤ n starting with the term ft in the predicates X−f . This sequence
uses only terms with suffix ft and ends with ft active only at decreasing clauses
P (fx)→ P f (x) with P ∈ Y ⊆ W .

We hence start constructing our expansion sequence for t by expansion steps for
all increasing clauses with active term t, followed by the sequences of height ≤ n
that exist due to the pairs (X−f ,W) ∈ S as described above. We then add
expansion steps for the decreasing clauses with active term ft, which induces
new atoms of the form P f (t) with P f ∈ W+f ⊆ Z. After this, t is still the
only active term, and it is not active anymore at any increasing clauses c with
b(c) ⊆ X .

For c = P1(x) ∧ · · · ∧ Pk(x) → Q1(x) ∨ · · · ∨ Q`(x) ∈ C with {P1, . . . , Pk} ⊆ X ,
by Line 7 we must have Q` ∈ Z for some i ∈ {1, . . . ,m}. Hence, we can add the
appropriate expansion step to deactivate t at c. The final Herbrand interpreta-
tion Hm clearly satisfies S2 and S3 ′. Moreover, the term t is only active at flat
or increasing clauses whose body contains at least one predicate from Z \ X , as
well as possibly some decreasing clauses. Hence, Condition S4 ′ is also satisfied.
Finally, the obtained expansion sequence for t is of height ≤ n + 1 since it is
composed only of expansion steps for flat clauses with active term t, as well as
expansion sequences of height ≤ n for terms ft with f ∈ F (and associated steps
for increasing and decreasing clauses translating between t and ft)

Next we explain in more detail, but still informally, how computing possibilities
is used for obtaining a shortcut.

4.2 Shortcuts of Height 0

To construct a shortcut of height 0 starting from a set X of predicates, we
need to choose from possibilities(X) in such a way that no predicates of
the form P f are reached. One way to realize this is to assume for now that
possibilities(c) = ∅ for all increasing clauses c, and extend Definition 9 ac-
cordingly, obtaining an empty set of possibilities whenever an increasing clause
is involved [2]. We will relax this assumption later, when we consider shortcuts
of larger height (see Algorithm 2).

18

In order to compute all possible shortcuts of height 0 for X , we must then consider

P1 := possibilities(X)

P2 :=
⋃
{possibilities(X ∪ Z) | Z ∈ P1}

...

Pn :=
⋃
{possibilities(X ∪ Z) | Z ∈ Pn−1}

until there are no new possibilities, i.e. Pn = Pn−1.

Intuitively, we iteratively expand the set X by new possibilities Z (which are
sets of predicates), until nothing more needs to be added.7 Each of the final
possibilities represents one way of using the expansion rule to deactivate a given
term t at all flat clauses, assuming that we start with the atoms P (t) for all
P ∈ X . Hence, each Z ∈ Pn yields a kind of extended shortcut (X ,Y) of height 0
with Y ⊆ X ∪ Z. Note that Z may contain superfluous predicates that are not
necessary to form a shortcut, because some clauses are considered multiple times
during the computation, and a different possibility may be chosen each time.

4.3 Shortcuts of larger height

We proceed to compute shortcuts by induction on their height: assuming that we
know all possible shortcuts of height (at most) n, we use them to construct new
shortcuts of height n+ 1. In an expansion sequence of height n+ 1, we now allow
a term t to become active at increasing clauses P f (x) → P (fx), but only if we
know a shortcut for {P}, or more generally for a set predicates X that all contain
the higher term ft. Assuming that (X ,Y) is such a shortcut of height ≤ n (which
we have already computed before), the corresponding expansion sequence may
cause ft to become active at decreasing clauses Q(fx) → Qf (x) with Q ∈ Y ,
which forces us to add t to each such Qf . Essentially, we can now extend the
definition of possibilities(c) for increasing clauses c by considering shortcuts
to deal with the propagation of the produced higher terms.

4.4 Computing shortcuts

The above ideas are formalized in Algorithm 3 which uses Algorithm 2 to compute
all shortcuts of height ≤ n + 1 from the already known shortcuts of height ≤ n.
The algorithm works with a set T of triples of the form (X , RX , VX) with X ⊆ RX
and VX ⊆ RX , where X represents the starting predicates, RX is the set of

7At each step we have to check possibilities for the augmented set of predicates, because
more predicates reached means that more clauses may be activated. This is the difference with
our previous work [2] concerning the anti-Horn clauses.

19

Algorithm 3 (nextShortcuts(C,S))

Input: A set C of propagation rules and a set S of shortcuts
Output: A set of shortcuts for the next height

1: T←
{

({A}, {A}, ∅)
}
∪
{

(X−f ,X−f , ∅) | X ⊆ P, f ∈ F
}

2: while there is (X , RX , VX) ∈ T with RX \ VX 6= ∅ do
3: T← T \

{
(X , RX , VX)

}
4: for all Z ∈ possibilities(C,S, RX) do
5: T← T ∪

{
(X , RX ∪ Z, RX)

}
6: end for
7: end while
8: return

{
(X , RX) | (X , RX , RX) ∈ T

}
predicates that have already been reached from X by choosing some possibilities,
and VX is a set of predicates for which we have already computed the possibilities.
While RX \VX 6= ∅, there are still some new predicates that need to be processed
using Algorithm 2. The form of the initial triples in Line 1 reflects the kind of
shortcuts that we need: first, a shortcut starting from {A} (to show termination
of C), and, second, shortcuts for any combination of predicates X which may
contain a common term ft due to increasing clauses for X+f being applied to the
shallower term t. The latter case also covers the trivial shortcut (∅, ∅), which is
always included in the output of Algorithm 3.8

Example 13. Consider Example 8. If the algorithm newShortcuts is used with
the empty set of shortcuts, i.e. S0 = {(∅, ∅)}, one of the triples initialized in
Line 1 is ({A}, {A}, ∅). This triple is an element of the set T.

It is removed from there in the while-loop starting at Line 2. Now, possibilities
for {A} are computed, and as we have already seen in Example 11, the only
possibility for {A} is {A,P f}. Hence a new triple ({A}, {A,P f}, {A}) is added
to T.9

In the next execution of the while-loop, this triple is again removed from T.
The possibilities for {A,P f} are computed. But as we have already seen in
Example 11, there are no possibilities for this set. Hence nothing is added to T
in Line 5. There are no shortcut of the form ({A},Y) if S is empty.

In the same run of the algorithm newShortcuts, another triple ({P}, {P}, ∅) is
considered. Inside the while-loop it is removed from T, and possibilities for {P}
are being computed. The only clause relevant for P is c2 = P (x)→ Q1(x)∨Q2(x).
Hence possibilities for P computed by Algorithm 2 is the set {{P,Q1}, {P,Q2}}.

8First the main algorithm initializes set of shortcuts S0 to contain the empty shortcut. Then
for the next shortcuts, in line 3, if we take X = ∅, then the triple (∅, ∅, ∅) is created, and never
modified. Thus, line 8 returns (∅, ∅).

9In fact the set of possibilities will be larger. For explanation look at the footnote in Exam-
ple 11.

20

Hence two triples are added to T: ({P}, {P,Q1}, {P}) and ({P}, {P,Q2}, {P}).

In the next execution of the while-loop, these triples will be replaced in T by
({P}, {P,Q1}, {P,Q1}) and ({P}, {P,Q2}, {P,Q2}). Finally, from these two
triples we obtain two shortcuts: ({P}, {P,Q1}) and ({P}, {P,Q2}).

The soundness of the procedure is stated in the following lemma.

Lemma 14. If for every (X ,W) ∈ Sn there is a shortcut (X ,Y) for C of
height ≤ n with Y ⊆ W, then for every (X , RX) ∈ nextShortcuts(C,S), there
is a shortcut (X ,Y) for C of height ≤ n + 1 with Y ⊆ RX .

Proof. We consider an arbitrary ground term t and a triple (X , RX , VX) as it
appears in the final set T in Line 8 of Algorithm 3. We follow this triple through
the whole computation, starting with an initial triple (X ,X , ∅) in Line 1, and
show that the following invariant remains satisfied: there exists an expansion
sequence H0 � . . . � Hm of height ≤ n + 1 that satisfies S1, S2, and the
following conditions.

S3 ′′ RX ⊇ {P | P (t) ∈ Hm}, i.e. Hm contains the term t only in the predicates
from RX .

S4 ′′ For every (t′, c) ∈ act(Hm), we have t′ = t and, if c is not decreasing, then
b(c) * VX .

This condition is satisfied for the initial triple (X ,X , ∅) since we can simply choose
H0 = Hm according to S1. Now assume that such a sequence H0 � . . . � Hm

exists for the triple (X , RX , VX) with RX \VX 6= ∅ in Line 2 and that the next triple
(X , R′X , V ′X) = (X , RX ∪ Z, RX) is obtained via Z ∈ possibilities(C,S, RX)
in Line 5. By Lemma 12, there is an expansion sequence of height ≤ n + 1 that
deactivates t at all clauses c with b(c) ⊆ RX , thereby adding t to the interpretation
of some predicates from Z. From this expansion sequence, we can reuse all steps
that deactivate terms at clauses that were not already deactivated in Hm.

In the resulting Herbrand interpretation, we have the term t only in the predicates
from R′X = RX ∪ Z, and, except for decreasing clauses, t can only be active at
clauses c with b(c) * V ′X = RX . This shows that Conditions S3 ′′ and S4 ′′ remain
satisfied.

For the final triple (X , RX , VX) with VX = RX , these conditions yield an ex-
pansion sequence satisfying S1–S4 for the set Y := {P | P (t) ∈ Hm}, because
(t, c) ∈ act(Hm) with b(c) * VX = RX is impossible when only the predicates
from RX can contain t in Hm. Since we have used Lemma 12 only w.r.t. the
term t, the constructed expansion sequence is of height at most n + 1, which
shows that (X ,Y) is a shortcut for C of height ≤ n + 1.

21

We now prove correctness of Algorithm 1.

Lemma 15. (Soundness) If Algorithm 1 returns true, then C terminates.

Proof. From Lemma 14, it follows that for every element (X ,W) ∈ Sn, as com-
puted in Line 5, there is a shortcut (X ,Y) of height ≤ n with Y ⊆ W . Hence,
if Algorithm 1 returns true in Line 7, this means that C has a shortcut of
the form ({A},Y). By Definition 7, there exists an expansion sequence start-
ing in H0 = {A(a)} that is terminating since a cannot be active at decreasing
clauses.

Lemma 16. (Completeness) If C terminates, then Algorithm 1 returns true.

Proof. If C terminates, then by Definition 7 there must be a shortcut of the form
({A},Y). We show that all shortcuts that exist for C must eventually be included
in one of the sets Sn computed in Algorithm 1, and hence the algorithm must
return true. More precisely, we show that, for all n ≥ 0, all shortcuts (X ,Y) of
height ≤ n with either X = {A} or X = Z−f for some Z ⊆ P and f ∈ F are
contained in Sn+1. We show the claim by induction on n. The set S0 = {(∅, ∅)}
contains all shortcuts of height ≤ −1. Assume now that Algorithm 3 receives
the set Sn as input, which contains all shortcuts of height at most n ≥ −1
that have one of the specified forms. We show that the algorithm returns all
required shortcuts of height ≤ n + 1. For this, consider any expansion sequence
H0 � . . .� Hm of height ≤ n+ 1, for some ground term t and sets X ,Y , where
X is of the right form, satisfying conditions of Definition 7.

We describe how Algorithm 3 computes (X ,Y) based on the steps of the given
expansion sequence. It computes the first possibility for predicates instantiated
with t in flat or increasing clauses c with b(c) ⊆ X in Line 4 .

Next it extends this possibility to obtain a fixed point. Each step in the exten-
sion sequence using a flat clause and the term t immediately gives rise to a single
possibility as considered in Line 7 of Algorithm 2. For all involved increasing
clauses with function symbol f , we additionally consider the sub-sequence of all
expansion steps that are required by the atoms P (ft) with P ∈ X−f and do
not apply decreasing clauses to ft. This sub-sequence can be viewed as start-
ing in H′0 = {P (ft) | P ∈ X−f} and clearly satisfies S2–S4 for ft and some
set W . Hence, (X−f ,W) is a shortcut of height ≤ n, which is contained in Sn

by the induction hypothesis and has the required form for Line 3 of Algorithm 2.
Subsequently applying the required decreasing clauses corresponds to adding the
set W+f to the possibility we are constructing. In case that X−f = ∅, the con-
structed sub-sequence is empty and corresponds to the empty shortcut (∅, ∅),
which is always present, even in S0.

In total, Algorithm 2 yields a possibility Z for X that is now added to RX in
Line 5 of Algorithm 3 and corresponds to a subset of predicates that contain t
in Hm.

22

In subsequent steps, the set RX is further expanded by possibilities for RX until
no new predicates are reached. The corresponding possibilities output by Algo-
rithm 2 can be obtained as above, by considering the extended set RX as starting
point for our sub-sequence. This may involve a lot of the expansion steps that
were already considered for the previous possibilities, but is always correct in the
sense that the computed possibility Z represents a set of predicates that con-
tains t in Hm. In the end, the set Y = {P | P (t) ∈ Hm} can furthermore not
contain any predicates that are not in RX since any such predicates must have
been added by the expansion rule due to an active term in other predicates, and
this rule can only be applied if it is really necessary to deactivate a term at a
clause. This means that we obtain a triple (X , RX , RX) with RX = Y , and thus
Algorithm 3 returns the shortcut (X ,Y) when called with Sn as input, i.e. we
have (X ,Y) ∈ Sn+1.

We can now examine the complexity of our algorithm.

Lemma 17. Let n > 0 be such that Sn was computed by Algorithm 1. Then
Sn−1 ⊆ Sn.

Proof. For n = 1, it suffices to observe that Algorithm 3 (with the help of Al-
gorithm 2) always produces the empty shortcut if the input set S contains it.
Now assume Sn−1 ⊆ Sn, and consider the computation steps in these two al-
gorithms when given either Sn−1 or Sn. Since all pairs from Sn−1 are also
included in Sn, all possibilities w.r.t. Sn−1 are still possibilities w.r.t. Sn, i.e.
possibilities(C,Sn−1,X) ⊆ possibilities(C,Sn,X) holds for all X (see
Line 3 of Algorithm 2). Due to this, all triples computed by Algorithm 3 on in-
put Sn−1 are also computed when given Sn as input (see Line 4 of Algorithm 3).
Hence, Sn = nextShortcuts(C,Sn−1) ⊆ nextShortcuts(C,Sn) = Sn+1.

Lemma 18. Algorithm 1 terminates after time at most exponential in the size
of C.

Proof. Since the number of relevant predicates is linear, there are at most expo-
nentially many possible shortcuts. Hence, the main loop of Algorithm 1 may be
executed at most exponentially many times.

In each iteration, the execution of Algorithm 3 can be seen as a construction of
a set of trees with the roots (X ,X , ∅) and leaves of the form (X ,Y ,Y). There
are exponentially many such trees, because we create them for every set of the
form X−f . The height of each tree is at most polynomial, because in each round
of the loop the third component of the triple (X , RX , VX) grows. The branching
factor is bounded exponentially, because we can add different possibilities Z to
the second component of the triple in each step. Hence, each tree contains at
most exponentially many nodes, and thus each call of nextShortcuts(C,Sn) can
take only exponential time.

23

In conclusion, Algorithm 1 needs at most exponentially many iterations, each
taking exponential time.

Theorem 19. Deciding whether a finite set of propagation rules has a finite
Herbrand model is ExpTime-complete.

Proof. Algorithm 1 is a deterministic algorithm that decides termination in ex-
ponential time. The problem is ExpTime-hard since this is the case already for
anti-Horn propagation rules [2].

5 Acyclic Herbrand Models

In the previous sections of this paper we were designing algorithms for detecting
existence of a finite Herbrand model for a set of restricted clauses C. In this
section we study the problem of generating such models. The soundness lemma
(Lemma 15) suggests the possibility of reconstructing a finite Herbrand model
from a set of shortcuts.

The question then arises whether every finite Herbrand model can be recon-
structed in this way. The answer is negative. We can reconstruct the models
which are obtained by terminating expansion sequences. If a model does not
have such a sequence, this can be caused by an atom added to the interpreta-
tion in an arbitrary way, when it is not required by an unsatisfied clause. Such
an atom can contain a term which is not constructed by increasing/decreasing
clauses, hence we cannot know what form it has. Thus we cannot reconstruct the
model that contains such atoms.

One can see from the proof of completeness (Lemma 16) that given a finite Her-
brand model, our algorithms compute a model that is a subset of this one. Hence,
the next question is: can we reconstruct all minimal finite Herbrand models?
Consider finite Herbrand models M1,M2 of a set of clauses C. We say that M1

is smaller than M2 iff M1 ⊆ M2, and it is minimal if there is no smaller model
of C. First let us notice that since a set of clauses C may contain some non-Horn
clauses, there may be multiple minimal finite Herbrand models. In fact there can
be an infinite number of them.

Example 20. Let P (x) → P f (x) ∨ Qg(x) be the only flat clause in C. Then
there are infinitely many minimal Herbrand models of the form

{P (a), P (fa), . . . , P (fna), Q(gfna)},

where n > 0 and atoms of P f , Qg are omitted.

Hence if we want to output all minimal finite Herbrand models, the process would
not terminate in some cases. An obvious idea to reduce the number of computed

24

models would be to restrict ourselves to those models containing atoms with
terms of minimal height. But this would leave out some models which can be of
interest, as illustrated in the following example.

Example 21. Let the set C contain the following flat clauses:

A(x)→ Rf (x) ∨Qg(x), R(x)→ Sh(x)

Then a finite Herbrand model of minimal height will contain {A(a), Q(ga)}. But
another one, containing {A(a), R(fa), S(hfa)} is not of minimal height, although
it represents an alternative way of satisfying the clauses.

Example 20 shows that an infinite number of finite models is generated because of
some cycle in the process of constructing terms in atoms. We would like to avoid
computing such models, since they just repeat constructing new terms following
the same pattern. For that we define acyclic Herbrand models.

Definition 22. Let (X1,Y1) be a shortcut. Hence for each f ∈ F, such that Y−f1

is not empty, there is a shortcut (X2,Y2) such that X2 = Y−f1 and Y+f
2 ⊆ Y1.

In this case, we say that (X1,Y1) requires (depends on) (X2,Y2), denoted by

(X1,Y1)
f→ (X2,Y2). We call this relation the dependency relation between short-

cuts.

In Section 3 we describe how to extract shortcuts of height n from a terminating
expansion sequence. For each such sequence H0 � . . . � Hm, we now define
a dependency tree that is composed of dependency relations between shortcuts.
There must be an initial shortcut of the form ({A},Y) that corresponds to the
whole sequence and will be the root of this tree. Then, for every f ∈ F for which
Y−f is not empty, there is a unique shortcut (Xf ,Yf) that ({A},Y) depends on
and corresponds to a subsequence of H0 � . . . � Hm. We thus add the edges

({A},Y)
f→ (Xf ,Yf) to the tree. Continuing this process, we obtain a finite

dependency tree that describes the dependency relations between the shortcuts
used in the sequence.

Notice that for a given shortcut there may be multiple expansion sequences,
and hence there can be different dependency trees with the same root. Given
a terminating expansion sequence, we say that this sequence is acyclic if the
dependency tree of shortcuts extracted from this sequence is acyclic, i.e. there is
no repetition of shortcuts on any branch of the tree. A finite Herbrand model is
called acyclic if there is an acyclic terminating expansion sequence for this model.

Example 23. In Example 8, we show how to extract a shortcut ({P}, {P,Q2}) of
height 0 from an expansion sequence. This shortcut is required by the shortcut

25

({A}, {A.P f , Qf
2 , Q1}) of height 1. To be more precise, ({A}, {A.P f , Qf

2 , Q1})
requires the shortcut ({P,Q2}, {P,Q2}).10

Hence, from that example, we can extract a small dependency tree:

({A}, {A.P f , Qf
2 , Q1})

f→ ({P,Q2}, {P,Q2})

From any acyclic dependency tree rooted in a shortcut ({A},Y), we can easily
define an acyclic Herbrand model H in the following way. For each shortcut
(X ,Y) in the tree, the path from the root uniquely defines a term t, and we add
all atoms P (t) to H where P ∈ Y . For a given set of propagation rules C, we
can thus compute all possible acyclic Herbrand models, by first computing all
shortcuts using Algorithm 1, and from these all acyclic dependency trees.

The above constructions justify the following theorem.

Theorem 24. If a set of propagation rules C has a finite Herbrand model, then it
has an acyclic Herbrand model, and there are at most triple exponentially many
acyclic Herbrand models of C.

Proof. Since there are at most exponentially many shortcuts, any path in the
acyclic dependency tree is at most exponentially long. Hence all terms in an
acyclic Herbrand model are at most exponentially long, too. There are at most
double exponentially many such terms. An interpretation of a predicate is a
subset of these terms. There are at most triple exponentially many possible in-
terpretations of a predicate, and there are at most polynomially many predicates.
Hence there are at most triple exponentially many acyclic Herbrand models.

Example 25. Let us consider Example 20 again. We have three acyclic depen-
dency trees for this C:

1. ({A}, {A,P,Qg}) g→ ({Q}, {Q})
corresponding to the acyclic Herbrand model {A(a), P (a), Qg(a), Q(ga)}.

2. ({A}, {A,P, P f}) f→ ({P}, {P,Qg}) g→ ({Q}, {Q})
describing the model {A(a), P (a), P f (a), P (fa), Qg(fa), Q(gfa)}.

3. ({A}, {A,P, P f}) f→ ({P}, {P, P f}) f→ ({P}, {P,Qg}) g→ ({Q}, {Q})
with the model

{A(a), P (a), P f (a), P (fa), P f (fa), P (ffa), Qg(ffa), Q(gffa)}.
10In computing the set of possibilities, the shortcut ({P}, {P,Q2}) is used first, and then the

shortcut ({P,Q2}, {P,Q2}).

26

6 Conclusions

We have developed a method to decide the existence of a finite Herbrand model of
a set of propagation rules in exponential time. Moreover, we have demonstrated
that finite acyclic Herbrand models may be of double exponential size if one
actually wants to construct them. In future work, it would be interesting to
extend these results to other classes of formulas, e.g. using multiple constants
and variables. We also want to study the applications of our algorithm for the
analysis of termination in logic programming and acyclicity for existential rules.

27

References

[1] Franz Baader and Paliath Narendran. Unification of concept terms in de-
scription logics. Journal of Symbolic Computation, 31(3):277–305, 2001.
doi:10.1006/jsco.2000.0426.

[2] Stefan Borgwardt and Barbara Morawska. Finding finite Herbrand models.
In Nikolaj Bjørner and Andrei Voronkov, editors, Proc. of the 18th Int. Conf.
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-
18), volume 7180 of Lecture Notes in Computer Science, pages 138–152.
Springer, 2012. URL https://doi.org/10.1007/978-3-642-28717-6_13.

[3] Stefan Borgwardt and Barbara Morawska. Finite Herbrand models for re-
stricted first-order clauses. LTCS-Report 19-07, Chair for Automata Theory,
Institute for Theoretical Computer Science, Technische Universität Dres-
den, Dresden, Germany, 2019. URL https://tu-dresden.de/inf/lat/

reports/.

[4] François Bry and Adnan Yahya. Positive unit hyperresolution tableaux and
their application to minimal model generation. Journal of Automated Rea-
soning, 25(1):35–82, 2000. doi:10.1023/A:1006291616338.

[5] R. Caferra, A. Leitsch, and N.Peltier. Automated Model Build-
ing, volume 31 of Applied Logic Series. Springer, Dordrecht, 2004.
doi:https://doi.org/10.1007/978-1-4020-2653-9.

[6] Marco Calautti, Sergio Greco, Francesca Spezzano, and Irina Trubitsyna.
Checking termination of bottom-up evaluation of logic programs with func-
tion symbols. Theory and Practice of Logic Programming, 15(6):854–889,
2015. doi:10.1017/S1471068414000623.

[7] David Carral, Irina Dragoste, and Markus Krötzsch. Restricted chase
(non)termination for existential rules with disjunctions. In Proc. of the
26th Int. Joint Conf. on Artificial Intelligence (IJCAI), pages 922–928, 2017.
doi:10.24963/ijcai.2017/128.

[8] Burton Dreben and Warren D Goldfarb. The decision problem : solvable
classes of quantificational formulas. Reading, Mass : Addison-Wesley, Ad-
vanced Book Program, 1979. ISBN 978-0-201-02540-8. Includes indexes.

[9] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution
for guarded formulae. Journal of Symbolic Computation, 36(1-2):163–192,
2003. doi:10.1016/S0747-7171(03)00034-8.

[10] Sergio Greco, Cristian Molinaro, and Irina Trubitsyna. Logic program-
ming with function symbols: Checking termination of bottom-up evaluation
through program adornments. Theory and Practice of Logic Programming,
13(4-5):737–752, 2013. doi:10.1017/S147106841300046X.

28

http://dx.doi.org/10.1006/jsco.2000.0426
https://doi.org/10.1007/978-3-642-28717-6_13
https://tu-dresden.de/inf/lat/reports/
https://tu-dresden.de/inf/lat/reports/
http://dx.doi.org/10.1023/A:1006291616338
http://dx.doi.org/https://doi.org/10.1007/978-1-4020-2653-9
http://dx.doi.org/10.1017/S1471068414000623
http://dx.doi.org/10.24963/ijcai.2017/128
http://dx.doi.org/10.1016/S0747-7171(03)00034-8
http://dx.doi.org/10.1017/S147106841300046X

[11] Alexander Leitsch. The Resolution Calculus. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, 1997. ISBN 978-3-540-61882-9.
doi:10.1007/978-3-642-60605-2.

[12] Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Constraint solving for
finite model finding in SMT solvers. Theory and Practice of Logic Program-
ming, 17(4):516–558, 2017. doi:10.1017/S1471068417000175.

[13] Heng Zhang, Yan Zhang, and Jia-Huai You. Existential rule languages with
finite chase: Complexity and expressiveness. In Blai Bonet and Sven Koenig,
editors, Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI),
pages 1678–1685. AAAI Press, 2015. URL http://www.aaai.org/ocs/

index.php/AAAI/AAAI15/paper/view/9579.

29

http://dx.doi.org/10.1007/978-3-642-60605-2
http://dx.doi.org/10.1017/S1471068417000175
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9579
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9579

	Introduction
	Clauses and Herbrand models
	Normalization
	Finding Finite Herbrand Models: A Naive Algorithm

	Taking Shortcuts
	Detecting the Existence of a Finite Herbrand Model
	Possibilities
	Shortcuts of Height 0
	Shortcuts of larger height
	Computing shortcuts

	Acyclic Herbrand Models
	Conclusions

