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Projection in a Description Logic of Context with Actions
(Extended Version)

Satyadharma Tirtarasa Benjamin Zarrieß

Abstract

Projection is the problem of checking whether the execution of a given sequence of
actions will achieve its goal starting from some initial state. In this paper, we study a
setting where we combine a two-dimensional Description Logic of context (ConDL) with
an action formalism. We choose a well-studied ConDL where both: the possible states of
a dynamical system itself (object level) and also different context-dependent views on this
system state (context level) are organised in relational structures and can be described using
usual DL constructs. To represent how such a system and its views evolve we introduce
a suitable action formalism. It allows to describe change on both levels. Furthermore,
the observable changes on the object level due to an action execution can also be context-
dependent. We show that the formalism is well-behaved in the sense that projection has
the same complexity as standard reasoning tasks in case ALCO is the underlying DL.

1 Introduction

The role-based paradigm of modelling languages has been introduced for the design of adaptive
and context-sensitive software systems. The concept of roles has been used at different levels
of abstraction, for example in data models [5], in a formal high-level modelling language [9]
for dynamical systems, and as an extension of more low-level object-oriented programming lan-
guages [10]. Unlike in a classical object-oriented setting, where an object has a fixed number
of methods attached to it, in a role-based setting an object adapts its behaviour dynamically
according to the roles it can play in different contexts. For example, in the conference manage-
ment system used for this workshop the concept of roles is quite prominent. In the context of
this workshop a researcher might play the role of an author whereas in context of some other
conference also the role of a program committee member can be played by the same researcher.
Both the view on submissions and the abilities to change something are context-dependent and
can change over time in this scenario.

How to deal with explicit context extensions of modelling languages efficiently is a well-studied
research topic in different areas (e.g. [8, 10, 6]). In [7] Böhme and Lippmann studied a family
of contextualized Description Logics (ConDLs). For this family a reasoning tool has been
implemented and it has been used for translating and checking consistency of models of a
role-based modelling language for software systems [9, 6].

However, ConDLs are only suitable for expressing static context-dependent knowledge. In this
paper, we focus on an extension with dynamic aspects and introduce a ConDL-based action
formalism for reasoning about change in context models. To talk about particular states we
consider the ConDL ALCOJALCOK from [7]. It is a two-sorted logic with a meta level signature
for describing contexts and an object level signature for the object domain. ALCO is the outer
meta level logic and is used to describe sets of contexts and relations among them. Each context
element of the meta level domain corresponds to a relational structure of the inner object level,
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which is represented using ALCO as well. Both levels are connected with a modality that allows
to access the object level from the meta level. In the example of the conference management
system one could think of a model, where we talk about researcher accounts with their properties
(for example, being PC member or author) and relations (like conflict of interest with someone
else) on the meta level, and where each account corresponds to an individual view on concrete
submissions and reviews on the object level. The action formalism we introduce allows to
describe changes on both levels. For example, the meta level can change if someone becomes a
PC member or declares conflict of interest with someone. An object level action could be if a
particular review is entered for a submission. The observable changes of this action from the
perspective of a particular account depend on its meta level properties. As a reasoning task we
consider the projection problem. Projection is the problem of checking whether the execution of
a given sequence of actions will achieve its goal starting from some initial state. In our example,
a typical projection query could ask whether, after a subreviewer has been assigned by a PC
member to some submission sub and after a review has been entered by some other PC member
for this submission sub, the subreviewer is able to see this review or not. To solve projection
we reduce it polynomially to consistency in the underlying logic ALCOJALCOK by applying
techniques that have been used before for reasoning in DL-based action formalisms [4].

The remainder of this paper is structured as follows. In the next section we recall the definitions
of ALCOJALCOK. Section 3 introduces our action formalism and defines projection. In Section
4 we present our reduction method for deciding projection and we finish with a conclusion in
Section 5.

2 The Description Logic of Context

For representing context-dependent knowledge we choose ALCOJALCOK, a simple member of
the family of ConDLs studied in [7]. To keep this part as simple as possible we focus only on
the standard DL ALCO on both levels. Before defining the two dimensional DL ALCOJALCOK
we first briefly recall the basic definitions of standard ALCO. For a thorough introduction to
DLs we refer to [1, 2].

Definition 1 (Syntax and semantics of ALCO). Let N = (NC,NR,NI) be a signature of disjoint
sets of concept names, role names and individual names, respectively. Let A ∈ NC, r ∈ NR and
a ∈ NI. An ALCO-concept C is built according to the following syntax rule

C ::= > | A | {a} | C u C | ¬C | ∃r.C.

Let C and D be ALCO-concept. A general concept inclusion (GCI) is of the form C v D. An
ALCO-KB ϕ is a Boolean combination of GCIs.

The semantics is defined in terms of an interpretation I = (∆I , ·I) over N, where ∆I is the
non-empty domain of I and ·I is a mapping that maps each A ∈ NC to a set AI ⊆ ∆I , each
r ∈ NR to a relation rI ⊆ ∆I×∆I and each a ∈ NI to an element aI ∈ ∆I . We make the unique
name assumption, that is, all individual names refer to different domain elements. Furthermore,
the mapping ·I is extended to complex concepts C,D as follows: >I := ∆I , ({a})I := {aI},
(C uD)

I
:= CI ∩DI , (¬C)

I
:= ∆I \ CI , (∃r.C)

I
:= {d ∈ ∆I | there is e ∈ ∆I with (d, e) ∈

rI and e ∈ CI}. The interpretation I is a model of a GCI C v D iff CI ⊆ DI . The definition
of a model of a KB ϕ as a Boolean combination of GCIs is defined as usual.

Assume in an example domain about conference management we have a concept name Subs
(set of submissions), a role name has-review and an individual sub1. We can describe the set
of submissions without a review as the ALCO-concept: Subs u ¬(∃has-review .>) and a GCI
like {sub1} v Subs u ¬(∃has-review .>) expresses that the individual sub1 is an instance of this
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concept. In the extended logic ALCOJALCOK we are going to define next, one can add an
additional level on top which in our example domain could be the level where we talk about PC
members, authors their potential conflicts and their different views on the level of submissions
and reviews.

The logic is two-sorted with a meta level signature M = (MC,MR,MI) and an object level
signature O = (OC,OR,OI). We call MC, MR and MI the set of meta concept names, role names,
and individual names respectively. Analogously, OC, OR, OI is called the set of object concept
names, role names, and individual names respectively. All sets are assumed to be pairwise
disjoint.

We assume the standard definition of the syntax of ALCO-concepts, general concept inclusions
(GCIs) and KBs (see [1, 2] for details) and the corresponding semantics in terms of interpreta-
tions over some signature (either M or O in our case).

Definition 2 (Syntax). Let ϕ be an ALCO-KB over the object level signature O and A ∈ MC,
r ∈ MR and a ∈ MI meta level names. An ALCOJALCOK-meta level concept description C
over M and O (m-concept for short) is built according to the following syntax rule

C ::= A | {a} | JϕK | C u C | ¬C | ∃r.C.

Further constructors are defined as abbreviations: > := ¬(A u ¬A) and ⊥ := (A u ¬A) (for
some A ∈ MC), C tD := ¬(C u ¬D) and ∀r.C := ¬∃r.¬C.
Let C and D be m-concepts. An ALCOJALCOK-Boolean meta level knowledge base ψ over M
and O (m-KB for short) is built according to the following syntax rule

ψ ::= C v D | ψ ∧ ψ | ¬ψ.

Notation for concept assertions and role assertions is used as abbreviations: (a : C) := {a} v C
and ((a, b) : r) := {a} v ∃r.{b}. Further Boolean connectives like ∨ and → are defined as usual.

The semantics of ALCOJALCOK is defined in terms of nested interpretations. The structure
consists of a single meta level interpretation over M where each domain element is associated
with an object level interpretation over O.

Definition 3 (Nested Interpretation). A nested interpretation I (over M and O) is a tuple of
the form I := (C, ·I,∆, {Ic}c∈C), where

• (C, ·I) is an M-interpretation, and

• Ic := (∆, ·Ic) is an O-interpretation for each c ∈ C.

Definition 4 (Semantics). Let I = (C, ·I,∆, {Ic}c∈C) be a nested interpretation. The extension
of the mapping ·I to complex m-concepts is defined by induction on the structure of m-concepts
C and D as follows:

({a})I := {aI};
(JϕK)I := {c ∈ C | Ic |= ϕ};
(C uD)I := CI ∩DI;

(¬C)I := C \ CI

(∃r.C)I := {c ∈ C | there exists c′ ∈ C such that (c, c′) ∈ rI and c′ ∈ CI},

where a ∈ MI, r ∈ MR and ϕ is an ALCO-KB over O.
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Figure 1: A model of axioms 1-5

Let ψ be an m-KB. Satisfaction of ψ in I, written as I |= ψ (I is a model of ψ), is defined by
induction on the structure of ψ as follows:

I |= C v D iff CI ⊆ DI;

I |= ψ1 ∧ ψ2 iff I |= ψ1 and I |= ψ2;

I |= ¬ψ1 iff I 6|= ψ1.

Example 5. We describe some aspects of a conference management domain. On the meta level
we talk about accounts that can be PC members of a conference (meta level concept name PC)
with possibly conflict of interest (meta level role has-conflict) to authors (concept name Author).
Each account has a particular view on the object level where we have a domain of submissions
and reviews. The object level concept names Subs-To-Review and Own-Subs describe the as-
signed submissions for reviewing and their own written submissions, respectively. The object
level role has-review relates submissions to their reviews. We describe an initial situation using
the meta level individual names bob’s-account and alice’s-account and the object level name sub1

denoting a concrete submission. Intuitively, in this model the meta level concept

Jsub1 : Own-SubsK

describes the set of accounts (meta level domain elements) in which sub1 is an instance of
Own-Subs. Therefore, it represents the set of author accounts of sub1. The following meta level
axioms represent some initial knowledge:

alice’s-account : (∀has-conflict.¬Jsub1 : Own-SubsK) (1)
bob’s-account : Jsub1 : Own-SubsK (2)

> v Jsub1 : ∀has-review .⊥K (3)
Author ≡ ¬JOwn-Subs v ⊥K (4)

¬JSubs-To-Review v ⊥K v PC (5)

Alice has no conflict of interest with an author of the submission sub1 (1). Bob is an author
of sub1 (2), which has not received any reviews yet (3). Author accounts are defined as those
accounts with own submissions (4). Only PC members are allowed to review (5).

We show a model (nested interpretation) of axioms (1) - (5) in Figure 1. It shows the meta level
with PC members and authors on the left labelled with C. For the sake of conciseness, we use
alice and bob to denote alice’s-account and bob’s-account. These are the two named accounts in
our domain. In this particular model alice is a PC member with a conflict of interest to some
unnamed account. In the middle and on the right of the figure the particular views of bob and
alice on submissions and reviews are shown.
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3 Representing Context-dependent Change

We define separate action descriptions for the object level and the meta level. Action de-
scriptions are complex expressions with constructs for describing conditional and simultaneous
execution. Semantically, actions update interpretations by changing the membership of named
individuals to concept names or of of pairs of named individuals to role names.

Definition 6. Let ψ be an m-KB and A ∈ MC, r ∈ MR and a, b ∈ MI meta level names. An
M-action description α (M-action for short) is built according to the following syntax rule:

α := 〈A⊕ a〉 | 〈A	 a〉 | 〈r⊕ (a, b)〉 | 〈r	 (a, b)〉 | (ψ . α) | (α ‖ α).

Let C be an m-concept and B ∈ OC, s ∈ OR and o, o′ ∈ OI object level names. An O-action
description β (O-action for short) is built according to the following syntax rule:

β := 〈B ⊕ o〉 | 〈B 	 o〉 | 〈s⊕ (o, o′)〉 | 〈s	 (o, o′)〉 | (C . β) | (β ‖ β).

We write just action if we do not distinguish between M-actions and O-actions. Actions of the
form 〈A ± a〉, 〈r ± (a, b)〉, 〈B ± o〉 or 〈s ± (o, o′)〉 are called atomic effects.

An atomic effect like 〈A⊕ a〉 over some signature N change an N-interpretation I by adding
aI to AI and 〈r	 (a, b)〉 deletes (aI , bI) from rI . M-actions have m-KBs as conditions and
O-actions have m-concepts as conditions. A conditional M-action (ψ . α1) takes effect in the
meta-level interpretation only if ψ is satisfied and a conditional O-action of the form C . β1
means that an O-interpretation Ic in a nested interpretation I is only updated with β1 if c
belongs to C in I. The construct (α1 ◦ α2) means that α1 and α2 are executed simultaneously.

For the first step of the definition of the execution semantics we define how a set of atomic
M-effects (or atomic O-effects) updates a non-nested M-interpretation (or O-interpretation).

Definition 7 (Update). Let N ∈ {M,O} denote either the meta-level or object-level signature,
and let I := (∆I , ·I) be an N-interpretation and E a set of atomic N-effects. The update of
I with E is an interpretation denoted by IE and is defined for all A ∈ NC, all r ∈ NR and all
a ∈ NI as follows

∆IE := ∆I ;

AI
E

:=
(
AI \ {aI | 〈A	 a〉 ∈ E}

)
∪ {bI | 〈A⊕ b〉 ∈ E}

rI
E

:=
(
rI \ {(aI , bI) | 〈r	 (a, b)〉 ∈ E}

)
∪ {(aI , bI) | 〈r⊕ (a, b)〉 ∈ E}

aI
E

:= aI .

Next, we define the atomic effects of the execution of a complex action in a (nested) interpre-
tation.

Definition 8 (Effects). Let I = (C, ·I,∆, {Ic}c∈C) be a nested interpretation and α an M-
action. The set of atomic M-effects for I and α, denoted by E(α, I), is defined by induction on
the structure of α as follows

E(〈A ± a〉, I) := {〈A ± a〉} and E(〈r ± (a, b)〉, I) := {〈r ± (a, b)〉}

E(ψ . α1, I) :=

{
E(α1, I) if I |= ψ,

∅ otherwise;

E(α1 ‖ α2, I) := E(α1, I) ∪ E(α2, I).
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Let β be an O-action and c ∈ C. The set of sets of atomic O-effects for I, c and β, denoted by
E(β, c, I), is defined by induction on the structure of β as follows

E(〈B ± o〉, c,I) := {〈B ± o〉} and E(〈s ± (o, o′)〉, c,I) := {〈s ± (o, o′)〉}

E(C . β1, c,I) :=

{
E(β1, c,I) if c ∈ CI,

∅ otherwise;

E(β1 ‖ β2, c,I) := E(β1, c,I) ∪ E(β2, c,I).

An M-action only updates the outer meta level interpretation of a nested interpretation and an
O-action leaves the meta level interpretation unchanged and updates all object level interpre-
tation simultaneously.

Definition 9 (Nested Update). Let I := (C, ·I,∆, {Ic}c∈C) be a nested interpretation, α an
M-action and β an O-action. The update of I with α is the nested interpretation

Iα := (C, ·Iα ,∆, {Ic}c∈C),

where (C, ·Iα) is the update of (C, ·I) with E(α, I) and all other components are unchanged.
The update of I with β is the nested interpretation

Iβ := (C, ·I,∆, {Jc}c∈C),

where for each c ∈ C the O-interpretation Jc := (∆, ·Jc) is the update of Ic with E(β, c, I).

Let σ be a sequence of M-actions and O-actions the update Iσ is defined in the obvious way by
induction on σ.

Note that it is possible to write an action that adds and deletes an object (or a pair of objects)
to and from a name simultaneously. The semantics of updates gives precedence to add effects
but we want to exclude those descriptions. In the following we assume that for any M-action
α, any O-action β and any nested interpretation I and meta level domain element c the sets
E(α,I) and E(β, c, I) are non-contradictory.

We are interested to check whether a certain consequence formulated as an m-KB holds after
executing a sequence of actions given an incomplete representation of the initial state in terms
of an m-KB.

Definition 10 (Projection Problem). Let ψ,ψ′ be m-KBs and σ a sequence of actions. We say
that ψ′ is a consequence of executing σ in ψ iff for all models I of ψ, we have that Iσ |= ψ′.
The projection problem is then to decide whether ψ′ is a consequence of executing σ in ψ.

We continue our example about the conference management system.

Example 11 (Example 5 continued). An M-action for adding Alice as a PC Member of DL is
given by

add-pc := 〈DL-PC ⊕ alice’s-account〉.

Alice gets assigned the submission sub for reviewing under the condition that she has no conflict
of interest with an author of this submission. It is defined as an O-action:

add-sub := ({alice’s-account} u ¬∃has-conflict.Jsub : Own-SubsK) .
〈Subs-To-Review ⊕ sub〉

Note that only the account of Alice is affected. The action only updates the object level inter-
pretation associated with alice’s-account by adding sub1 to the review set (Subs-To-Review).
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Let rev be the name for the review Alice has written for sub1. We define an O-action that enters
this review to the system and removes sub1 from the review list of Alice simultaneously.

finish := enter ‖ remove;

enter := (PC u ¬∃has-conflict.Jsub1 : Own-SubsK) . 〈has-review ⊕ (sub1, rev)〉;
remove := {alice’s-account} . 〈Subs-To-Review 	 s〉.

The review rev is only visible for PC members with no conflict of interest with someone that is
an author of sub1.

Assume initially we have axioms (1)-(5) from Example 5. After performing the sequence
add-pc; add-sub it holds that

alice’s-account : Jsub1 : Subs-To-ReviewK

is true and the constraint

¬JSubs-To-Review v ⊥K v PC

is preserved. Furthermore, after add-pc; add-sub; finish we have that

alice’s-account : J(sub1, rev) : has-reviewK

is true.

4 Deciding the Projection Problem in ALCOJALCOK

The approach of solving the projection problem in a DL-based action formalism by reducing
it to a standard consistency problem in the underlying DL has been applied already in several
settings (e.g. [4, 3, 11]). The overall idea we use here is similar to previous techniques extended
to nested structures in our case.

As a first step we introduce a normal form of action descriptions by conjoining conditions and
pushing them inside. We say that an N-action µ with N ∈ {M,O} is in normal form if it is of
the form

(ψ1 . e1) ‖ ... ‖ (ψn . en),

where each ei, for any i, 1 ≤ i ≤ n is an atomic N-effect and ψi is either an m-KB (in case of
an M-action) or an m-concept (in case of an O-action). We normalize an arbitrary N-action by
applying exhaustively the following rules:

ψ1 . (ψ2 . µ) (ψ1 ? ψ2) . µ ψ . (µ1 ‖ µ2) (ψ . µ1) ‖ (ψ . α2) ,

where ? ∈ {∧,u} stands for ∧ in case of an M-action and for u in case of an O-action. W.l.o.g.,
we assume from now on that any action is in the normal form. For convenience, we denote
a normal form of an N-action µ as a set of atomic N-effects with a single condition attached:
µ = {(ψ1 . e1), ..., (ψn . en)}.
Let an m-KB ψ (initial state), ψ′ (goal state) and a sequence of actions σ = µ1, ..., µn in normal
form be the input of the projection problem. Our goal is to construct a reduction m-KB that
is consistent iff ψ′ is a consequence of executing σ in ψ.

We say that concepts, roles, and individuals are relevant if they occur in the input of the
projection problem. For the reduction we use fresh concept names and role names of the
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corresponding sort. For each execution step 0 ≤ i ≤ n, we introduce fresh time-stamped
copies A(i) of all relevant concept names, r(i) of all relevant role names, and fresh time-stamped
concept names T (i)

C for every relevant complex subconcept C. A(0) refers to the initial content
of A and the further copies A(j), 1 ≤ j ≥ n refer only to the set of named individual names
of the corresponding sort that are instance of A after the jth execution step. This holds for
both concept and role names. The copies of the form T

(i)
C represent the content (both named

and unnamed) of the complex concept C after the ith execution step. The distinction between
named and unnamed is made because actions only affect named individuals.

Furthermore, for the set of all named individuals of sort object in the input (denoted by ObjO)
and for the set of all named meta level individuals in the input (ObjM) two fresh concept names
NO and NM, respectively, are introduced.

The meaning of the new names is now axiomatized using meta level axioms as follows. For NO

and NM we have

ψobj = (NM ≡
⊔

c∈ObjM

{c}) ∧ (> v JNO ≡
⊔

a∈ObjO

{a}K).

We use τ(C, i) to denote the concept definition we introduce to define the names of the form
T

(i)
C . It is defined by induction on the structure of C as follows:

> v JT (i)
A ≡ (NO uA(i)) t (¬NO uA(0))K;

> v JT (i)
{a} ≡ {a}K;

> v JT (i)
¬C ≡ ¬T (i)

C K;

> v JT (i)
C1uC2

≡ T (i)
C1
u T (i)

C2
K;

> v JT (i)
∃r.C ≡ (NO u ((∃r(0).(¬NO u T (i)

C )) t (∃r(i).(NO u T (i)
C )))) t

(¬NO u ∃r(0).T (i)
C )K.

Given an O-GCI γ = C v D and a timestamp 0 ≤ i ≤ n, we define the timestamped copy
γ(i) := T

(i)
C v T

(i)
D , and ϕ(i) as the result of replacing every O-GCI γ in ϕ by γ(i).

Similarly, we define ψ(i)
defM as a conjunction of m-concept definitions for every relevant m-concept

G, depends on the form of G.

T
(i)
E ≡ (NM u E(i)) t (¬NM u E(0));

T
(i)
{c} ≡ {c};

T
(i)
¬G ≡ ¬T (i)

G ;

T
(i)
G1uG2

≡ T (i)
G1
u T (i)

G2
;

T
(i)
∃s.G ≡ (NM u ((∃s(0).(¬NM u T (i)

G )) t (∃s(i).(NM u T (i)
G )))) t

(¬NM u ∃s(0).T (i)
G );

T
(i)
JϕK ≡ Jϕ(i)K.

Analogously, ζ(i) = T
(i)
G v T

(i)
H for an m-GCI ζ = G v H and a timestamp i, 0 ≤ i ≤ n.

Furthermore, given an m-KB ψ and an i, 0 ≤ i ≤ n, we denote by ψ(i) the result of replacing
every m-GCI ζ in ψ by ζ(i).
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We simply put timestamp zero for the initial knowledge base ψ, i.e., we include ψ(0) as a
conjunct of the reduction m-KB.

Then, we encode the effect of each action µi of σ. We define an m-KB ψ
(i)
act that encode M-

effects of action µi. We distinguish two cases, whether the action is an M-action or an O-action.
First, we consider the case of µi is an M-action αi. Intuitively, we make sure if the condition is
satisfied, then corresponding unconditional effects are applied to the next step.

ψ
(i)
actM :=

∧
ψ.〈E	c〉∈αi

(ψ(i−1) → (c : ¬E(i))) ∧

∧
ψ.〈E⊕c〉∈αi

(ψ(i−1) → (c : E(i))) ∧

∧
ψ.〈s	(c,d)〉∈αi

(ψ(i−1) → ((c, d) : ¬s(i))) ∧

∧
ψ.〈s⊕(c,d)〉∈αi

(ψ(i−1) → ((c, d) : s(i)))

We encode the O-effects similarly, with taking the context into account. Instead of having an
m-KB, we have a timestamped m-concept as the condition. The O-effects are propagated using
referring meta concept for those contexts.

ψ
(i)
actO :=

∧
G.〈A	a〉∈βi

(T
(i−1)
G v J(a : ¬A(i))K) ∧

∧
G.〈A⊕a〉∈βi

(T
(i−1)
G v J(a : A(i))K) ∧

∧
G.〈r	(a,b)〉∈βi

(T
(i−1)
G v J((a, b) : ¬r(i))K) ∧

∧
G.〈r⊕(a,b)〉∈βi

(T
(i−1)
G v J((a, b) : r(i))K)

In case of the other type of action happens at timestamp i, the corresponding ψ(i)
act is simply >.

For example, ψ(i)
actM = > if µi is an O-action.

Then, we make sure a change only happens if there is an effect that enforces it. The ψ(i)
minM

ensures a minimization of changes to the names individuals on the meta level. For every i,
1 ≤ i ≤ n, we define ψ(i)

minM
:

ψ
(i)
minM

:=
∧

c∈ObjM,E∈MC

(((c : E(i)) ∧
∧

ψ.〈E	c〉∈αi

¬ψ(i−1))→ (c : E(i))) ∧

∧
c∈ObjM,E∈MC

(((c : ¬E(i)) ∧
∧

ψ.〈E⊕c〉∈αi

¬ψ(i−1))→ (c : ¬E(i))) ∧

∧
c,d∈ObjM,s∈MR

(((c, d) : s(i)) ∧
∧

ψ.〈s	(c,d)〉∈αi

¬ψ(i−1))→ (c, d) : s(i))) ∧

∧
c,d∈ObjM,s∈MR

(((c, d) : ¬s(i)) ∧
∧

ψ.〈s⊕(c,d)〉∈αi

¬ψ(i−1))→ (c, d) : ¬s(i)).
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Similarly, we ensure a minimization of changes on the object level. For every i, 1 ≤ i ≤ n

ψ
(i)
minO

:=
∧

a∈ObjO,A∈OC

((J(a : A(i))K u
l

G.〈A	a〉∈βi

¬T (i−1)
G ) v J(a : A(i))K) ∧

∧
a∈ObjO,A∈OC

((J(a : ¬A(i))K u
l

G.〈A⊕a〉∈βi

¬T (i−1)
G ) v J(a : ¬A(i))K) ∧

∧
a,b∈ObjO,r∈OR

((J((a, b) : r(i))K u
l

G.〈r	(a,b)〉∈βi

¬T (i−1)
G ) v J((a, b) : r(i))K) ∧

∧
a,b∈ObjO,r∈OR

((J((a, b) : ¬r(i))K u
l

G.〈r⊕(a,b)〉∈βi

¬T (i−1)
G ) v J((a, b) : ¬r(i))K).

In case of the other type of action happens at timestamp i, the corresponding ψ(i)
act is simply >.

For example, ψ(i)
actM = > if µi is an O-action.

Finally, we define the complete reduction:

ψred := ψinit ∧ ψobj ∧
∧

0≤i≤n

ψ
(i)
defO ∧

∧
0≤i≤n

ψ
(i)
defM ∧

∧
1≤i≤n

ψ
(i)
actO ∧

∧
1≤i≤n

ψ
(i)
actM ∧

∧
1≤i≤n

ψ
(i)
minO

∧
∧

1≤i≤n

ψ
(i)
minM

Lemma 12. Let ψ be an m-KB, σ = µ1, ..., µn be a sequence of actions, and ψred be defined
as above. The following properties hold:

1. For every sequence of nested-interpretations I0, ...,In such that I0 |= ψ and Ii = Iαii−1 for
each i, 1 ≤ i ≤ n there exists an interpretation L |= ψred such that:

(a) for every i, 0 ≤ i ≤ n, and every relevant concept G, we have GIi = (T
(i)
G )L;

(b) for every i, 0 ≤ i ≤ n, and every relevant GCI β, we have Ii |= β iff L |= β(i); and
(c) for every i, 0 ≤ i ≤ n, and every relevant m-KB ψ, we have Ii |= ψ iff L |= ψ(i).

2. For every nested-interpretation L |= ψred, there exists a sequence of nested-interpretations
I0, ...,In such that I0 |= ψ and Ii = Iαii−1 for every i, 1 ≤ i ≤ n such that:

(a) for every i, 0 ≤ i ≤ n, and every relevant concept G, we have GIi = (T
(i)
G )L;

(b) for every i, 0 ≤ i ≤ n, and every relevant GCI β, we have Ii |= β iff L |= β(i); and
(c) for every i, 0 ≤ i ≤ n, and every relevant m-KB ψ, we have Ii |= ψ iff L |= ψ(i).

Proof. It is easy to see that ψred is of size polynomial in the size of σ, RM and RO. We
first prove Property (1). Let I0 = (CI0 , ·I0 ,∆I0 , {·Ic}I0

c∈C), ...,In = (CIn , ·In ,∆In , {·Ic}Inc∈C)
such that I0 |= ψ and Ii = Iαii−1 for each i, 1 ≤ i ≤ n. We define the interpretation L =

(CL, ·L,∆L, {·Ic}Lc∈C) as follows:

• CL := CI0 ;

• cL := cI0 for every c ∈ MI;

• NL
M := {cL | c ∈ ObjM}

• (E(i))L := EIi for every G ∈ RM ∩MC and every i, 0 ≤ i ≤ n;
• (s(i))L := sIi for every s ∈ RM ∩MR and every i, 0 ≤ i ≤ n;

10



• (T
(i)
G )L := GIi for every m-concept G ∈ RM and every i, 0 ≤ i ≤ n.

• for each c ∈ C:

– ∆I
L
c := ∆I

I0
c ;

– aI
L
c := aI

I0
c for every a ∈ OI;

– N
ILc
O := {aIIic | a ∈ ObjO};

– (A(i))I
L
c := AI

Ii
c for every A ∈ RO ∩ OC and every i, 0 ≤ i ≤ n;

– (r(i))I
L
c := rI

Ii
c for every r ∈ RO ∩ OR and every i, 0 ≤ i ≤ n;

– (T
(i)
C )I

L
c := CI

Ii
c for every O-concept C ∈ RO and every i, 0 ≤ i ≤ n.

Property (a) follows from the definition of L, and consequently Property (b) and (c). It remains
for us to show that L |= ψred.

It is easy to see that L |= ψobj follows directly from the definition of both NL
M and (N

ILc
O )

(of each c ∈ C). Furthermore, L |= ψinit follows immediately from the Property (c) due to
ψinit = ψ(0) and I0 |= ψ.

First, we show a claim that unnamed individual membership of concepts and roles can be found
in the initial state:

Claim 13. For every c ∈ C, and every i, 0 ≤ i ≤ n:

1. for every A ∈ OC, we have AI
I0
c \ N

ILc
O = AI

Ii
c \ N

ILc
O ;

2. for every r ∈ OR, we have rI
I0
c \ (N

ILc
O × N

ILc
O ) = rI

Ii
c \ (N

ILc
O × N

ILc
O ).

First, we show point 1 by induction on i. Take arbitrary c ∈ C and A ∈ OC. For the base case
i = 0, the claim is trivially satisfied. Assume that the claim holds for i, i.e., (A

II0
c ) \ (N

ILc
O ) =

(AI
Ii
c ) \ (N

ILc
O ). Then, we show (AI

Ii
c ) \ (N

ILc
O ) = (AI

Ii+1
c ) \ (N

ILc
O ). Since Ii+1 = I

αi+1

i , we have

that AI
Ii+1
c \ N

ILc
O = (AI

Ii
c \ {aI | 〈A	 a〉 ∈ E} ∪ {bI | 〈A⊕ b〉 ∈ E}) \ N

ILc
O where E = {e |

C . e ∈ β, c ∈ CI}. We know that {aI | 〈A	 a〉 ∈ E} ⊆ N
ILc
O and {bI | 〈A⊕ b〉 ∈ E} ⊆ N

ILc
O

by the definition of N
ILc
O . Thus, we have (AI

Ii+1
c ) \ (N

ILc
O ) = (AI

Ii
c ) \ (N

ILc
O ). Property 2 of the

claim for O-role can be shown analogously.

We have a similar claim for the meta level:

Claim 14. For every c ∈ C, and every i, 0 ≤ i ≤ n:

1. for every E ∈ MC, we have EI0 \ NL
M = EIi \ NL

M;

2. for every S ∈ MR, we have sI0 \ (NL
M × NL

M) = sIi \ (NL
M × NL

M).

We show point 1 by induction on i. Take any E ∈ MC. For the base case i = 0, the claim
is trivially satisfied. Assume that the claim holds for i, i.e. EI0 \ NL

M = EIi \ NL
M. Then,

we show EIi \ NL
M = E

Ii+1 \ NL
M. Since Ii+1 = Iαi , we have that EIi+1 \ NL

M = (EIi \ {cI |
〈E 	 c〉 ∈ E} ∪ {dI | 〈E ⊕ d〉 ∈ E}) \ NL

M where E = {e | (ϕ . e) ∈ E , I |= ϕ}. We know that
{cI | 〈E 	 c〉 ∈ E} ⊆ NL

M and {dI | 〈E ⊕ d〉 ∈ E}) ⊆ NL
M. Thus, we have E

Ii+1 \NL
M = EIi \NL

M.
Again, Property 2 of the claim can be shown analogously.

Now, we show that L |= ψdefO , for every concept C ∈ RO and every i, 0 ≤ i ≤ n. We prove by
case distinction of the form of C:
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• > v JT (i)
A ≡ (NO uA(i))t (¬NO uA(0))K. Then, it is enough to show that for any context

c ∈ C, (T
(i)
A )I

L
c = ((NO uA(i)) t (¬NO uA(0)))I

L
c holds. We have:

(T
(i)
A )I

L
c = AI

Ii
c by definition

= (N
ILc
O ∩AI

Ii
c ) ∪ (¬NI

L
c

O ∩AI
Ii
c ) by the semantics

= (N
ILc
O ∩AI

Ii
c ) ∪ (¬NI

L
c

O ∩AII0
c ) by Claim 13

= (N
ILc
O ∩ (A(i))I

L
c ) ∪ (¬NI

L
c

O ∩ (A(0))I
L
c ) by definition

= (NO u (A(i))) t (¬NO u (A(0)))I
L
c by the semantics

• > v JT (i)
{a} ≡ {a}K. Then, it is enough to show that for any context c ∈ C and any

a ∈ ObjO, we have that (T
(i)
{a})

ILc = {a}ILc holds. By definition, in any context c ∈ C, we

have (T
(i)
{a})

ILc = {a}IIic = {aIIic } = {aILc } = {a}ILc .

• > v JT (i)
¬C ≡ ¬T

(i)
C K. Then, it is enough to show that for any context c ∈ C, we have

that (T
(i)
¬C)I

L
c = (¬T (i)

C )I
L
c holds. By definition, in any context c ∈ C, we have that

(T
(i)
¬C)I

L
c = (¬C)I

Ii
c = ∆I

Ii
c \ CIIic = ∆I

L
c \ (T

(i)
C )I

L
c = (¬T (i)

C )I
L
c .

• > v JT (i)
C1uC2

≡ T
(i)
C1
u T (i)

C2
K. Then, it is enough to show that for any context c ∈ C, we

have that (T
(i)
C1uC2

)I
L
c = (T

(i)
C1
uT (i)

C2
)I

L
c . By definition, in any context c ∈ C, we have that

(T
(i)
C1uC2

)I
L
c = (C1 u C2)I

Ii
c = CI

Ii
c

1 ∩ CI
Ii
c

2 = (T
(i)
C1

)I
L
c ∩ (T

(i)
C1

)I
L
c = (T

(i)
C1
u T (i)

C2
)I

L
c

• > v JT (i)
∃r.C ≡ (NO u (∃r(0).(¬NO uT (i)

C )t∃r(i).(NO uT (i)
C )))t (¬NO u∃r(0).T (i)

C )K. Then,
it is enough to show that for any context c ∈ C, we have that (T

(i)
∃r.C)I

L
c = ((NO u

(∃r(0).(¬NO u T (i)
C ) t ∃r(i).(NO u T (i)

C ))) t (¬NO u ∃r(0).T (i)
C ))I

L
c . By definition, in any

context c ∈ C, we have that

(T
(i)
∃r.C)I

L
c

= (∃r.C)I
Ii
c

= {a ∈ ∆I
Ii
c | ∃b, b ∈ ∆I

Ii
c with (a, b) ∈ rI

Ii
c and b ∈ CI

Ii
c }

= {a ∈ NI
Ii
c

O | ∃b, b ∈ ∆I
Ii
c with (a, b) ∈ rI

Ii
c and b ∈ CI

Ii
c } ∪

{a ∈ ∆I
Ii
c \NI

L
c

O | ∃b.b ∈ ∆I
Ii
c with (a, b) ∈ rI

Ii
c and b ∈ CI

Ii
c

= {a ∈ NI
Ii
c

O | ∃b, b ∈ ∆I
Ii
c \NILc with (a, b) ∈ rI

Ii
c and b ∈ CI

Ii
c } ∪

{a ∈ NI
Ii
c

O | ∃b, b ∈ NILc with (a, b) ∈ rI
Ii
c and b ∈ CI

Ii
c } ∪

{a ∈ ∆I
Ii
c \NI

L
c

O | ∃b.b ∈ ∆I
Ii
c with (a, b) ∈ rI

Ii
c and b ∈ CI

Ii
c }

= {a ∈ NI
Ii
c

O | ∃b, b ∈ ∆I
Ii
c \NILc with (a, b) ∈ rII0

c and b ∈ CI
Ii
c } ∪

{a ∈ NI
Ii
c

O | ∃b, b ∈ NILc with (a, b) ∈ rI
Ii
c and b ∈ CI

Ii
c } ∪

{a ∈ ∆I
Ii
c \NI

L
c

O | ∃b.b ∈ ∆I
Ii
c with (a, b) ∈ rII0

c and b ∈ CI
Ii
c }

= (N
ILc
O ∩

({a ∈ ∆
ILc | ∃b, b ∈ ∆I

Ii
c with (a, b) ∈ (r(0))I

L
c and b ∈ (¬NO u T (i)

C )I
L
c } ∪

12



{a ∈ ∆
ILc | ∃b, b ∈ NILc with (a, b) ∈ (r(i))I

L
c and b ∈ (NO u T (i)

C )I
L
c })) ∪

((¬NO)I
L
c ∩

{a ∈ ∆
ILc | ∃b, b ∈ ∆I

Ii
c with (a, b) ∈ (r(0))I

L
c and b ∈ (T

(i)
C )I

L
c })

= ((NO u (∃r(0).(¬NO u T (i)
C ) t ∃r(i).(NO u T (i)

C ))) t (¬NO u ∃r(0).T (i)
C ))I

L
c .

This ends the proof that L |= ψ
(i)
defO , for every concept C ∈ RO and for any i, 0 ≤ i ≤ n.

Analogously, we can use a similar proof for the meta level, i.e., to show that L |= ψdefM for every
G ∈ RM and every i, 0 ≤ i ≤ n. However, we show the proof of extension for referring meta
concept. First we show a claim, for any c ∈ C we have IIic |= (C v D) iff ILc |= (T

(i)
C v T

(i)
D ).

We have that

IIic |= (C v D) iff CI
I
c ⊆ DIIc

iff (T
(i)
C )I

L
c ⊆ (T

(i)
D )I

L
c

iff ILc |= (T
(i)
C v T

(i)
D ).

We have to show that for any referring meta concept JαK ∈ RM, L |= T
(i)
JαK ≡ Jα(i)K. By

definition, we have that (T
(i)
JαK)

L = JαKIi .
= Jα(i)KL, where .

= follows from the previous claim.

This finishes the proof that L |= ∧1≤i≤n ψ
(i)
defM .

Now we show that L |= ψ
(i)
actO for any i, 1 ≤ i ≤ n. We prove by a case distinction of

each conjunction. Assume it is of the form T
(i−1)
G v J(a : ¬A(i))K. It is enough to show

that if c ∈ (T
(i−1)
G )L then c ∈ J(a : A(i))KL. Assume that c ∈ (T

(i−1)
G )L, and consequently

c ∈ GIi−1 . Due to the construction definition, there exists G . 〈A	 a〉 ∈ βi. Then, we have
〈A	 a〉 ∈ E(Ii−1) due to the semantics. Since IIic = (IIi−1

c )αi , we have a 6∈ AI
Ii
c . Then,

we have a ∈ ∆ \ AIIic . Then we have {aIIic } ⊆ ∆ \ AIic . Then, we have {aIIic } ⊆ ∆ \ AIIic .
Then, we have {a}IIic ⊆ ∆ \ AIIic . Then, we have {a}ILc ⊆ ∆ \ (A(i))I

L
c . Finally, we have

({a} v A(i))L. Thus, we show that c ∈ J{a} v A(i)KL. All other three cases can be proven
analogously. Furthermore, in case of αi is an M-action, we have a trivial case where ψ(i)

actO = >.

Now we show that L |= ψ
(i)
actM for any i, 1 ≤ i ≤ n. We prove by a case distinction of each

conjunction. Assume it is of the form ϕ(i−1) → {c} v ¬E(i). Assume that L |= ϕ(i−1). Due
to the construction definition, there exists ϕ . 〈E 	 c〉 ∈ EffM(αi). Then, we have 〈E 	 c〉 ∈
E(Ii−1) due to the semantics. Since Ii = (Ii−1)αi , we have c 6∈ EIi . Then, we have e ∈
C \ EIi . Then, we have {cIi} ⊆ C \ EIi . Then, we have {c}Ii ⊆ C \ EIi . Then, we have
{c}L ⊆ C \ EL. Thus, we show that L |= {c} v ¬E. All other three cases can be proven
analogously. Furthermore, in case of αi is an O-action, we have a trivial case where ψ(i)

actM = >.

We now prove that L |= ψ
(i)
minO

for any i, 1 ≤ i ≤ n. We prove by a case distinction of each
conjunction. Assume it is of the form ((J(a : A(i−1))K u d

G.〈A	a〉∈βi ¬T
(i)
G ) v J(a : A(i))K for

some a ∈ IndO and A ∈ OC. Then, we have to show for any c ∈ C such that c ∈ J(a : A(i−1))KL

and c ∈ (¬T (i)
G )L for any G . 〈A	 a〉 ∈ βi, we have that c ∈ J(a : A(i))KL. We use a proof by

contradiction. For arbitrary c ∈ C, assume that:

1. c ∈ Ja : A(i−1)KL;

2. c ∈ (
d
G.〈A	a〉∈EffO(αi)

¬T (i−1)
G )L; and
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3. c 6∈ (J(a : A(i))KL.

It is easy to see that a ∈ (A(i−1))I
L
c follows from (1). Then, a ∈ AI

Ii−1
c . Since IIic = (IIi−1

c )αi ,
we have that AI

Ii
c := AI

Ii−1
c \ {aI

Ii−1
c | 〈A	 a〉 ∈ E} ∪ {bI

Ii−1
c | 〈A⊕ b〉 ∈ E}. Since we have

(3), then a 6∈ (A(i))I
L
c and consequently, a 6∈ AIIic . Then, there exists some 〈A	 a〉 ∈ E . By

definition, there exists some G . 〈A	 a〉 ∈ βi such that c ∈ GIi−1 . By definition of L, we have
that c ∈ (T

(i−1)
G )L for some G . 〈A	 a〉 ∈ βi. This contradicts (2).

All other three cases can be proven analogously. This ends the proof of L |= ∧1≤i≤n ψ
(i)
minO

.

We now prove that L |= ψ
(i)
minM

for any i, 1 ≤ i ≤ n. We prove again by a case distinction of each
conjunction. Assume it is of the form ((c : E(i−1))∧∧ϕ.〈E	c〉∈αi ¬ϕ(i))→ ({c} v E(i)) for some
c ∈ IndM and E ∈ MC. Then, we show that if L |= ({c} v E(i−1)) and L |= ∧

ϕ.〈E	c〉∈αi ¬ϕ(i)

then (c : E(i)). We use a proof by contradiction. Assume that:

1. L |= {c} v E(i−1);

2. L |= ∧ϕ.〈E	c〉∈EffM(αi)
¬ϕ(i); and

3. L |= {c} v E(i).

It is easy to see that cL ∈ (E(i−1))L follows from (1). Then, c ∈ (EIi−1). Since Ii = (I(i−1))αi ,
we have that EIi := EIi−1 \ {cIi−1 | 〈E 	 e〉 ∈ E} ∪ {dIi−1 | 〈E ⊕ c〉 ∈ E}. Since we have
(3), then c 6∈ (E(i))L and consequently, c 6∈ EIi . Then, there exists some 〈E 	 c〉 ∈ E . By
definition, there exists some ϕ . 〈E 	 c〉 such that Ii−1 |= ϕ. By definition of L, we have that
L |= ϕ(i) for some ϕ . 〈E 	 c〉 ∈ EffM(αi). This contradicts (2).

All other three cases can be proven analogously. This ends the proof of L |= ∧1≤i≤n ψ
(i)
minO

.

This finishes the proof that L |= ψred. Thus, we have shown Property (1) of Lemma 12.

Now we show Property (2) of Lemma 12. Let L = (CL, ·L,∆L, {·Ic}Lc∈C) be an interpretation
such that L |= ψred. We define the interpretations I0 = (CI0 , ·I0 ,∆I0 , {·Ic}I0

c∈C), ...,In =

(CIn , ·In ,∆In , {·Ic}Inc∈C) as follows:

• CIi := CL for every i, 0 ≤ i ≤ n;
• cIi := cL for every c ∈ MI and every i, 0 ≤ i ≤ n;

• EIi := (T
(i)
E )L for every E ∈ RM ∩MC and every i, 0 ≤ i ≤ n; and

• sIi := ((s(i))L ∩ (NL
M × NL

M)) ∪ ((s(0))L ∩ ((CL × (¬NM)L) ∪ ((¬NM)L × CL))) for every
s ∈ RM ∩MR and every i, 0 ≤ i ≤ n.

• for each c ∈ CIi for every i, 0 ≤ i ≤ n:

– ∆I
Ii
c := ∆I

L
c ;

– aI
Ii
c := aI

L
c for every a ∈ OI and every i, 0 ≤ i ≤ n;

– AI
Ii
c := (T

(i)
A )I

L
c for every A ∈ RO ∩ OC and every i, 0 ≤ i ≤ n; and

– rI
Ii
c := ((r(i))I

L
c ∩(N

ILc
O ×N

ILc
O ))∪((r(0))I

L
c ∩((∆I

L
c ×(¬NO)I

L
c )∪((¬NO)I

L
c ×∆I

L
c )))

for every r ∈ RO ∩ OR and every i, 0 ≤ i ≤ n.
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Now, we show Property (a). Take any i, 0 ≤ i ≤ n. However, we prove a similar claim for the
object level first.

Claim 15. For every c ∈ C and every i, 0 ≤ i ≤ n, and every relevant O-concept C, we have
CI

Ii
c = (T

(i)
C )L, and consequently ILc |= T

(i)
C v T

(i)
D iff IIic |= C v D

Take any c ∈ C, and any i, 0 ≤ i ≤ n. We prove it by the induction on the structure of C.

• C = A ∈ OC.
Follows from the definition.

• C = {a}, where a ∈ ObjO.
Then {a}IIic = {aIIic } = {aILc } = {a}ILc = (T

(i)
{a})

ILc .

• C = ¬C1

Then (¬C1)I
Ii
c = ∆I

Ii
c \ CI

Ii
c

1 = ∆I
L
c \ (T

(i)
C1

)I
L
c = (¬T (i)

C1
)I

L
c = (T

(i)
¬C1

)I
L
c .

• C = C1 u C2

Then (C1 u C2)I
Ii
c = CI

Ii
c

1 ∩ CI
Ii
c

2 = (T
(i)
C1

)I
L
c ∩ (T

(i)
C2

)I
L
c = (T

(i)
C1
u T (i)

C2
)I

L
c = (T

(i)
C1uC2

)I
L
c .

• C = ∃r.C1

a ∈ (∃r.C1)I
Ii
c

iff a ∈ ∆I
Ii
c and there exists b ∈ ∆I

Ii
c such that (a, b) ∈ rIIic and b ∈ CIIic

iff a ∈ NI
L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ rIIic and b ∈ CI

Ii
c

1 OR

a ∈ ∆I
L
c \NI

L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ rIIic and e ∈ CI

Ii
c

1

iff a ∈ NI
L
c

O and there exists b ∈ ∆I
L
c \NI

L
c

O such that (a, b) ∈ rIIic and b ∈ CI
Ii
c

1 OR

a ∈ NI
L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ rIIic and b ∈ CI

Ii
c

1 OR

a ∈ ∆I
I
c \NI

L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ rIIic and b ∈ CI

II
c

1

iff a ∈ NI
L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ (r(0))I

L
c and b ∈ (T

(i)
C1

)I
L
c OR

a ∈ ∆I
L
c \NI

L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ (r(i))I

L
c and b ∈ (T

(i)
C1

)I
L
c OR

a ∈ ∆I
I
c \NI

L
c

O and there exists b ∈ ∆I
L
c such that (a, b) ∈ (r(0))I

L
c and b ∈ (T

(i)
C1

)I
L
c

iff a ∈ (NO u ((∃r(0).(¬NO u T (i)
C )) t (∃r(i).(NO u T (i)

C )))) t (¬NO u ∃r(0).T (i)
C )I

L
c

iff a ∈ (T
(i)
∃r.C1

)I
L
c (due to L |= ψ

(i)
defO for case concept ∃r.C1).

This ends the proof of the claim.

Analogously, we can use a similar proof for the meta level to finally show Property (a) holds.
However, we show the extension for the referring meta concept. We show that JψKIi = (T

(i)
JψK)

L.

We have JψKIi = Jψ(i)KL .
= (T

(i)
JψK)

L, where .
= holds due to L |= T

(i)
JψK ≡ Jψ(i)K. Thus, we have

shown Property (a) holds. Obviously, Property (b) is an easy consequence of Property (a) and
Property (c) follows from Property (b) inductively.

Now we show that I0 |= ψ, and for every i, 0 ≤ i ≤ n we have that Ii = Iαii−1. It is easy to see
that I0 |= ψ due to ψinit = ψ(0) and L |= ψinit. Next, we show that Ii = Iαii−1, i.e., the conditions
in Definition 8 are satisfied. First, we show the second condition: for any c ∈ C, IIic = (IIi−1

c )αi .
By definition, we have (IIi−1

c )αi = (IIi−1
c )E , where E = {e | C . e ∈ βi, c ∈ CI

i−1}. Now, for
every i, 1 ≤ i ≤ n we have
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• ∆I
Ii−1
c = ∆I

L
c = ∆I

Ii
c ;

• Let A ∈ RO ∩ OC, we show that aI
Ii
c ∈ AIIic iff a(I

Ii−1
c )E ∈ A(I

Ii−1
c )E .

⇐ Assume a(I
Ii−1
c )E ∈ A(I

Ii−1
c )E . We consider two cases:

– 〈A⊕ a〉 ∈ E . Then, there exists G . 〈A⊕ a〉 ∈ βi such that cIi−1 ∈ GIi−1 . By
definition, we have L |= T

(i−1)
G v J(a : A(i))K and c ∈ (T

(i−1)
G )L. Then, c ∈ J(a :

A(i))KL. Then, {a}ILc ⊆ (A(i))I
L
c . Then, {aILc } ⊆ (AI

Ii
c ). Finally, aI

Ii
c ∈ AIIic .

– 〈A⊕ a〉 6∈ E . Then, aI
Ii−1
c ∈ AI

Ii−1
c and there does not exist G . 〈A	 a〉 ∈ βi such

that cIi−1 ∈ GIi−1 . Notice that

L |= (J(a : A(i))K u
l

G.〈A	a〉∈βi

¬T (i−1)
G ) v J(a : Ai)K (6)

We have aI
Ii−1
c ∈ AI

Ii−1
c iff {aI

Ii−1
c } ⊆ AI

Ii−1
c iff {aILc } ⊆ (A(i))I

L
c iff {a}ILc ⊆

(A(i))I
L
c iff c ∈ J(a : A(i))KL (2). Assume c 6∈ d

G.〈A	a〉∈βi ¬T
(i−1)
G . Then, there

exists some G . 〈A	 a〉 ∈ βi such that cL 6∈ (T
(i−1)
G )L iff cL ∈ (T

(i−1)
G )L iff cIi−1 ∈

GIi−1 , which contradicts cIi−1 ∈ GIi−1 . Thus, we have cL ∈ (
d
G.〈A	a〉∈βi ¬T

(i−1)
G )L

(3). It is easy to see from (1), (2), and (3), we have cL ∈ (J(a : A(i))KL. Then, ({a} v
A(i))I

L
c . Then, {a}ILc ⊆ (A(i))I

L
c . Then, {aILc } ⊆ (A(i))I

L
c . Then, {aIIic } ⊆ AI

Ii
c .

Finally, aI
Ii
c ∈ AIIic .

⇒ Proof by contraposition. Assume a(I
Ii−1
c )E 6∈ A(I

Ii−1
c )E . We show that aI

Ii
c 6∈ (AI

Ii
c ).

We consider two cases:

– 〈A	 a〉 ∈ E . Then, there exists G . 〈A	 a〉 ∈ βi such that cIi−1 ∈ GIi−1 . By
definition, we have L |= T

(i−1)
G v J(a : ¬A(i))K and c ∈ (T

(i−1)
G )L. Then, c ∈ J(a :

¬A(i))KL. Then, {a}ILc v (¬A(i))I
L
c . Then, {aILc } v (¬AIIic ). Finally, aI

Ii
c 6∈ AIIic .

– 〈A	 a〉 6∈ E . Then, aI
Ii−1
c 6∈ AI

Ii−1
c and there does not exist G . 〈A⊕ a〉 ∈ βi such

that cIi−1 ∈ GIi−1 . Notice that

L |= (J(a : ¬A(i))K u
l

G.〈A⊕a〉∈EffO(αi)

¬T (i−1)
G ) v J(a : ¬A(i))K (7)

We have aI
Ii−1
c 6∈ AI

Ii−1
c iff {aI

Ii−1
c } ⊆ AI

Ii−1
c \∆I

Ii−1
c iff {aI

Ii−1
c } ⊆ ¬AI

Ii−1
c iff

{aILc } ⊆ (¬A(i))I
L
c iff {a}ILc ⊆ (¬A(i))I

L
c iff c ∈ J{a} v ¬A(i−1)KL (2). Assume

c 6∈ d
G.〈A⊕a〉∈EffO(αi)

¬T (i−1)
G . Then, there exists some G . 〈A⊕ a〉 ∈ βi such that

cL 6∈ (T
(i−1)
G )L iff cL ∈ (T

(i−1)
G )L iff cIi−1 ∈ GIi−1 , which contradicts cIi−1 ∈ GIi−1 .

Thus, we have cL ∈ (
d
G.〈A⊕a〉∈EffO(αi)

¬T (i−1)
G )L (3). It is easy to see from (1), (2),

and (3), we have cL ∈ (J(a : ¬A(i))K)L. Then, ({a} v ¬A(i))I
L
c . Then, {a}ILc ⊆

(A(i))I
L
c \∆ILc . Then, {aILc } ⊆ (A(i))I

L
c \∆ILc . Then, {aIIic } ⊆ AIIic \∆IIic . Finally,

aI
Ii
c 6∈ AIIic .

• Let r ∈ RO ∩ OR, we can show that rI
Ii
c ∈ rIIic iff r(I

Ii−1
c )E ∈ r(I

Ii−1
c )E with a similar

proof as for concepts.

This ends the proof of Lemma 12.
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Lemma 12 shows the correspondence between the models of encoding and the original CKB.
Now, we encode the consequence to be checked with a similar translation. Given a consequence
ψ′ and the length of σ, denoted by n, we encode them in ψ′(n) by replacing any concept C
in ψ′ with a timestamped counterpart T (n)

C . Then, we can solve the projection problem using
consistency problem in ALCOJALCOK.

Lemma 16. Let ψ,ψ′ be CKBs, and σ be a sequence of actions. ψ′ is a consequence of executing
σ to ψ iff ψred ∧ ¬(ψ′(n)) is inconsistent.

Proof. ⇒ We use a proof by contradiction. Assume that ψred ∧ ¬(ψ′(n)) is consistent. Then,
there is a model L such that L |= ψred and L |= ¬(ψ′(n)). However, since all In |= ψ′ then we
have L |= ψ′(n) from Lemma 12.2, hence a contradiction.

⇐ We use a proof by contradiction. Assume there exists an interpretation I0 |= ψ such that
Iσ0 = In 6|= ψ′, and consequently In |= ¬ψ′. By Lemma 12.1, we have that L |= ψred and
L |= ψ′(n), hence a contradiction.

This gives us a complexity result for the projection problem.

Theorem 17. The projection problem in ALCOJALCOK is ExpTime-complete.

Proof. We have shown that ψred is polynomial in the size of the input, and obviously ¬(ψ′(n))
as well. Since the consistency problem in ALCOJALCOK is ExpTime-complete, we can use
a following procedure: build ψred ∧ ¬(ψ′(n)) as defined, and check using an ALCOJALCOK
consistency checker that runs in exponential time. Hence, we get an ExpTime procedure.

For the hardness, we can reduce the inconsistency problem in ALCOJALCOK to the projection
problem. It is easy to see that an m-KB ψ is inconsistent iff {a} v ⊥ is a consequence of
executing 〈〉 in ψ.

5 Conclusion

We have introduced an action formalism for reasoning about context and object level change in
the ConDL ALCOJALCOK. The formalism is well-behaved in sense that the projection problem
has the same complexity as standard reasoning in ALCO.
From a practical point of view choosing ALCOJALCOK has the advantage that an efficient
reasoning tool for checking consistency already exists [6]. The reasoner even supports the more
expressive combination SHOIQJSHOIQK.

For future work we plan to investigate whether our action formalism offers sufficient expres-
siveness for capturing also the dynamic features of the role-based modelling language in [9].

Furthermore, we would like to study the complexity of reasoning in several extensions of the
action formalism. This for example includes operators for non-determinism in the action di-
mension and temporal specifications for possibly infinite action sequences.
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