
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Deciding the Word Problem for Ground Identities with
Commutative and Extensional Symbols

Franz Baader Deepak Kapur

LTCS-Report 20-02

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Deciding the Word Problem for Ground Identities with
Commutative and Extensional Symbols

Franz Baader1 and Deepak Kapur2

1 Theoretical Computer Science, TU Dresden, Germany
franz.baader@tu-dresden.de

2 Dept. of Computer Science, University of New Mexico, USA
kapur@cs.unm.edu

Abstract. The word problem for a finite set of ground identities is known to be decidable
in polynomial time using congruence closure, and this is also the case if some of the
function symbols are assumed to be commutative. We show that decidability in P is
preserved if we add the assumption that certain function symbols f are extensional in
the sense that f(s1, . . . , sn) ≈ f(t1, . . . , tn) implies s1 ≈ t1, . . . , sn ≈ tn. In addition, we
investigate a variant of extensionality that is more appropriate for commutative function
symbols, but which raises the complexity of the word problem to coNP.

1 Introduction

One motivation for this work stems from Description Logic (DL) [1], where constant symbols
(called individual names) are used within knowledge bases to denote objects or individuals in an
application domain. If such objects are composed of other objects, it makes sense to represent
them as (ground) terms rather than constants. For example, the couple consisting of individual a
in the first component and individual b in the second component is more reasonably represented
by the term f(a, b) (where f is a binary function symbol denoting the couple constructor) than
by a third constant c that is unrelated to a and b. In fact, if we have two couples, one consisting
of a and b and the other of a′ and b′, and we learn (by DL reasoning or from external sources)
that a is equal to a′ and b is equal to b′, then this automatically implies that f(a, b) is equal
to f(a′, b′), i.e., that this is one and the same couple, whereas we would not obtain such a
consequence if we had introduced constants c and c′ for the two couples.

If we use terms to represent objects, and can learn (e.g., by DL reasoning) that two terms are
supposed to be equal, we need to be able to decide which other identities between terms can
be derived from the given ones. Fortunately, this problem (usually called the word problem for
ground identities) is decidable in polynomial time. The standard approach for deciding this word
problem is congruence closure [8,4,10,2]. Basically, congruence closure starts with the given set of
ground identities E, and then extends it using closure under reflexivity, symmetry, transitivity,
and congruence. The set CC (E) obtained this way is usually infinite, and the main observation
that yields decidability in polynomial time is that one can restrict it to the subterms of E and the
subterms of the terms for which one wants to decide the word problem. An alternative approach
for deciding the word problem for ground identities is based on term rewriting. Basically, in
this approach one generates an appropriate canonical term rewriting system from E, and then
decides whether two terms are equal modulo the theory E by computing their canonical forms
and checking whether they are syntactically equal. This was implicit in [12], and made explicit
in [6] (see also [5,14] for other rewriting-based approaches).

In the motivating example from DL, but also in other settings where congruence closure is
employed (such as SMT [15,11]), it sometimes makes sense to assume that certain function

symbols satisfy additional properties that are not expressible by ground identities. For example,
one may want to considered couples where the order of the components is irrelevant, which
means that the couple constructor function is commutative. Another interesting property for
(ordered) couples is extensionality: if two couples are equal then they must have the same
first and second components, i.e., the couple constructor f must satisfy the extensionality rule
f(x, y) ≈ f(x′, y′) ⇒ x ≈ x′ ∧ y ≈ y′. While it is well-known that adding commutativity does
not increase the complexity (see, e.g., [4,7]), extensionality has, to the best of our knowledge,
not been considered in this context before. The problem with extensionality is that it allows us
to derive “small” identities from larger ones. Consequently, it is conceivable that one first needs
to generate such large identities using congruence and applying other rules, before one can get
back to a smaller one through the application of extensionality. Thus, it is not obvious that
also with extensionality one can restrict congruence closure to a finite set of terms determined
by the input. Here, we will tackle this problem using a rewriting-based approach. Our proofs
imply that, also with extensional symbols, proofs of identities that detour through “large” terms
can be replaced by proofs using only “small” terms, but it is not clear how this could be shown
directly without the rewriting-based approach.

In the next section, we show how the rewriting-based approach of [6] can be extended such that
it can also handle commutative symbols. In contrast to approaches that deal with associative-
commutative (AC) symbols [9,3] using rewriting modulo AC, we treat commutativity by in-
troducing an additional rewrite system consisting of appropriately ordered ground instances of
commutativity. This sets the stage for our rewriting-based approach that works in the presence
of commutative symbols and extensional symbols presented in Section 3. In this section, we
do not consider symbols that are both commutative and extensional since extensionality as
defined until now is not appropriate for commutative symbols: if f(a, b) is equal to f(a′, b′) for
an extensional and commutative symbol, then this implies that all four constants a, b, a′, b′ are
actually equal. In Section 4, we introduce the notion of d-extensionality, which is more appro-
priate for commutative symbols. Whereas the approaches developed in Sections 2 and 3 yield
polynomial time decision procedures for the word problem, d-extensionality makes the word
problem coNP-complete.

We assume that the reader is familiar with basic notions and results regarding equational
theories, universal algebra, and term rewriting, as they can, e.g., be found in [2]. We will keep
as close as possible to the notation introduced in [2]. In particular, we use ≈ to denote identities
between terms and = to denote syntactic equality.

2 Commutative congruence closure based on rewriting

Let Σ be a finite set of function symbols of arity ≥ 1 and C0 a finite set of constant symbols.
We denote the set of ground terms built using symbols from Σ and C0 with G(Σ,C0). In
the following, let E be a finite set of identities s ≈ t between terms s, t ∈ G(Σ,C0), and ≈E
the equational theory induced by E on G(Σ,C0), defined either semantically using algebras or
(equivalently) syntactically through rewriting [2].

It is well know that ≈E (viewed as a subset of G(Σ,C0) × G(Σ,C0)) can be generated using
congruence closure, i.e., by exhaustively applying reflexivity, transitivity, symmetry, and con-
gruence to E. To be more precise, CC (E) is the smallest subset of G(Σ,C0) × G(Σ,C0) that
contains E and is closed under the following rules:

– if s ∈ G(Σ,C0), then s ≈ s ∈ CC (E) (reflexivity);
– if s1 ≈ s2, s2 ≈ s3 ∈ CC (E), then s1 ≈ s3 ∈ CC (E) (transitivity);
– if s1 ≈ s2 ∈ CC (E), then s2 ≈ s1 ∈ CC (E) (symmetry);

2

– if f ∈ Σ is an n-ary function symbol and s1 ≈ t1, . . . , sn ≈ tn ∈ CC (E), then f(s1, . . . , sn) ≈
f(t1, . . . , tn) ∈ CC (E) (congruence).

The set CC (E) is usually infinite. To obtain a decision procedure, one can show that it is
sufficient to restrict the application of the above rules to a finite subset of G(Σ,C0), which
consists of the subterms of terms occurring in E and of the subterms of the terms s0, t0 for
which one wants to decide whether s0 ≈E t0 holds or not (see, e.g., [2], Section 4.3).

This actually also works if one adds commutativity of some binary function symbols to the
theory. To be more precise, we assume that some of the binary function symbols in Σ are
commutative, i.e., there is a set of binary function symbols Σc ⊆ Σ whose elements we call
commutative symbols. In addition to the identities in E, we assume that the identities f(x, y) ≈
f(y, x) are satisfied for all function symbols f ∈ Σc. From a semantic point of view, this means
that we consider algebras A that satisfy not only the identities in E, but also commutativity for
the symbols in Σc, i.e., for all f ∈ Σc, and all elements a, b of A we have that fA(a, b) = fA(b, a).
Given s, t ∈ G(Σ,C0), we say that s ≈ t follows from E w.r.t. the commutative symbols in
Σc (written s ≈ΣcE t) if sA = tA holds in all algebras that satisfy the identities in E and
commutativity for the symbols in Σc. The relation ≈ΣcE ⊆ G(Σ,C0) × G(Σ,C0) can also be
generated by extending congruence closure by a commutativity rule.

To be more precise, CCΣc(E) is the smallest subset of G(Σ,C0)×G(Σ,C0) that contains E and
is closed under reflexivity, transitivity, symmetry, congruence, and the following commutativity
rule:

– if f ∈ Σc and s, t ∈ G(Σ,C0), then f(s, t) ≈ f(t, s) ∈ CCΣc(E) (commutativity).

We call CCΣc(E) the commutative congruence closure of E. Using Birkhoff’s theorem, it is
easy to show that CCΣc(E) coincides with ≈ΣcE in the sense that s ≈ t ∈ CCΣc(E) iff s ≈ΣcE t
(see Lemma 3.5.13 and Theorem 3.5.14 in [2]). Again, it is not hard to show that the restriction
of the commutative congruence closure to a polynomially large set of terms determined by the
input E, s0, t0 is complete, which yields decidability of ≈ΣcE [4].

Here, we follow a different approach, which is based on rewriting [6,7]. Let S(E) denote the
set of subterms of the terms occurring in E. In a first step, we introduce a new constant cs for
every term s ∈ S(E) \ C0. To simplify notation, for a constant a ∈ C0 we sometimes use ca to
denote a. Let C1 be the set of new constants introduced this way and C := C0 ∪ C1. Given a
term u ∈ G(Σ,C), we denote with û the term in G(Σ,C0) obtained from u by replacing the
occurrences of the constants cs ∈ C1 in u with the corresponding terms s ∈ S(E).

We fix an arbitrary linear order > on C, which will be used to orient identities between constants
into rewrite rules. Note that this order does not take into account which terms the constants
correspond to, and thus we may well have cs > cf(s).

The initial rewrite system R(E) induced by E consists of the following rules:

– If s ∈ S(E) \ C0, then s is of the form f(s1, . . . , sn) for an n-ary function symbol f and
terms s1, . . . , sn for some n ≥ 1. For every such s we add the rule

f(cs1 , . . . , csn)→ cs

to R(E).
– For every identity s ≈ t ∈ E we add cs → ct to R(E) if cs > ct, and ct → cs if ct > cs.

Obviously, the cardinality of C1 is linear in the size of E, and R(E) can be constructed in time
linear in the size of E. From the above construction, it follows that R(E) has two types of rules:
constant rules of the form c→ d for c > d and function rules of the form f(c1, . . . , cn)→ d.

3

Example 1. Consider E = {f(a, g(a)) ≈ c, g(b) ≈ h(a), a ≈ b} with Σc = {f}. It is easy to see
that we have f(h(a), b) ≈ΣcE c. Using our construction, we first introduce the new constants
C1 = {cf(a,g(a)), cg(a), cg(b), ch(a)}. If we fix the linear order on C as cf(a,g(a)) > cg(a) > cg(b) >
ch(a) > a > b > c, then we obtain the following rewrite system: R(E) = {f(a, cg(a)) →
cf(a,g(a)), g(a)→ cg(a), g(b)→ cg(b), h(a)→ ch(a), cf(a,g(a)) → c, cg(b) → ch(a), a→ b}.

The following lemma is an easy consequence of the definition of R(E). The first part can be
shown by a simple induction on the structure of s.

Lemma 1. For all terms s ∈ S(E) we have s ≈R(E) cs. Consequently, u ≈R(E) û and thus also
u ≈ΣcR(E) û for all terms u ∈ G(Σ,C).

Using this lemma, we can show that the construction of R(E) is correct for consequence w.r.t.
commutative symbols in the following sense:

Lemma 2. Viewed as a set of identities, R(E) is a conservative extension of E w.r.t. the
commutative symbols in Σc, i.e., for all terms s0, t0 ∈ G(Σ,C0) we have s0 ≈ΣcE t0 iff s0 ≈ΣcR(E)
t0.

Proof. To show the only-if-direction, it is sufficient to prove that E ⊆ ≈R(E). Thus, consider
s ≈ t ∈ E. Then we have s ≈R(E) cs, t ≈R(E) ct, and cs ≈R(E) ct. The former two identities
hold due to Lemma 1, and the latter identity holds since cs → ct or ct → cs belongs to R(E).
Clearly, put together the three identities imply s ≈R(E) t.

To show the if-direction, it is sufficient to prove that the following holds for all terms u, v ∈
G(Σ,C):

u ≈ΣcR(E) v implies û ≈ΣcE v̂. (1)

In fact, (1) immediately yields the if-direction of the lemma since, for terms s0, t0 ∈ G(Σ,C0),
we have ŝ0 ≈ s0 and t̂0 ≈ t0.

Since ≈ΣcE is transitive and symmetric, it is sufficient to prove (1) for the case where v is obtained
from u by applying one of the rules of R(E) or commutativity to u.

First, assume that the function rule f(cs1 , . . . , csn) → cs ∈ R(E) is applied. Since this rule
belongs to R(E) only if s = f(s1, . . . , sn), we actually have the syntactic equality û = v̂, and
thus û ≈ΣcE v̂ since ≈ΣcE is reflexive.

Second, assume that the constant rule cs → ct ∈ R(E) is applied. Since this rule belongs to
R(E) only if s ≈ t ∈ E, the replacement of cs with ct when going from u to v can be mirrored
by replacing s with t when going from û to v̂, which shows û ≈ΣcE v̂.

Third, assume that commutativity for a function symbol in Σc is applied. Since commutativity
of this symbol is available both in ≈ΣcE and in ≈ΣcR(E), its application when going from u to v can
be mirrored by an application of commutativity that transforms û into v̂. To be more precise,
assume that f ∈ Σc and that u is transformed into v by replacing a subterm of the form f(g, h)

with f(h, g). Then û contains the subterm f(ĝ, ĥ), which can be replaced by an application of
commutativity with f(ĥ, ĝ), thus yielding v̂. ut

In this lemma, we use commutativity of the elements of Σc as additional identities. Our goal
is, however, to deal both with the ground identities in E and with commutativity by rewriting.

4

For this reason, we consider the rewrite system

R(Σc) := {f(s, t)→ f(t, s) | s, t ∈ G(Σ,C) and s >lpo t}, 3 (2)

where >lpo denotes the lexicographic path order (see Section 5.4.2 in [2]) induced by a linear
order on Σ ∪ C that extends > on C, makes each function symbol in Σ greater than each
constant symbol in C, and linearly orders the function symbols in an arbitrary way. Note that
>lpo is then a linear order on G(Σ,C) (see Exercise 5.20 in [2]). Consequently, for every pair of
distinct terms s, t ∈ G(Σ,C), we have f(s, t)→ f(t, s) ∈ R(Σc) or f(t, s)→ f(s, t) ∈ R(Σc).

The term rewriting system R(E) ∪ R(Σc) can easily be shown to terminate using this order.
In fact, >lpo is a reduction order, and we have ` >lpo r for all rules `→ r ∈ R(E) ∪ R(Σc).
However, in general R(E)∪R(Σc) need not be confluent. We turn R(E)∪R(Σc) into a confluent
and terminating system by modifying R(E) appropriately. We start with RΣc0 (E) := R(E) and
i := 0:

(a) Let RΣci (E)|con consist of the constant rules in RΣci (E). For every constant c ∈ C, consider

[c]i := {d ∈ C | c ≈RΣci (E)|con d},

and let e be the least element in [c]i w.r.t. the order >. We call e the representative of c
w.r.t. RΣci (E) and >. If c 6= e, then add c→ e to RΣci+1(E).

(b) In all function rules in RΣci (E), replace each constant by its representative w.r.t. RΣci (E)

and >, and call the resulting set of function rules FΣci (E). Then, we distinguish two cases,
depending on whether the function symbol occurring in the rule is commutative or not.

(b1) Let f be an n-ary function symbol not belonging to Σc. For every term f(c1, . . . , cn)
occurring as the left-hand side of a rule in FΣci (E), consider all the rules f(c1, . . . , cn)→
d1, . . . , f(c1, . . . , cn)→ dk in FΣci (E) with this left-hand side. Let d be the least element
w.r.t. > in {d1, . . . , dk}. Add f(c1, . . . , cn) → d and dj → d for all j with dj 6= d to
RΣci+1(E).

(b2) Let f be a binary function symbol belonging to Σc. For all pairs of constant symbols
c1, c2 such that f(c1, c2) or f(c2, c1) is the left-hand side of a rule in FΣci (E), consider
the set of constant symbols {d1, . . . , dk} occurring as right-hand sides of such rules, and
let d be the least element w.r.t. > in this set. Add dj → d for all j with dj 6= d to
RΣci+1(E). In addition, if c2 >lpo c1, then add f(c1, c2) → d to RΣci+1(E), and otherwise
add f(c2, c1)→ d.

If at least one constant rule has been added in this step, then set i := i + 1 and continue
with step (a). Otherwise, terminate with output R̂Σc(E) := RΣci+1(E).

Let us illustrate the construction of R̂Σc(E) using Example 1. In step (a), the non-trivial
equivalence classes are [a]0 = {a, b} with representative b, [cf(a,g(a))] = {cf(a,g(a)), c} with
representative c, and [cg(b)] = {cg(b), ch(a)} with representative ch(a). Thus, a → b, cf(a,g(a)) →
c, cg(b) → ch(a) are the constant rule added to RΣc1 (E). The function rules in FΣc0 (E) are then
f(b, cg(a)) → c, g(b) → cg(a), g(b) → ch(a), h(b) → ch(a). For the two rules with left-hand side
g(b), we add cg(a) → ch(a) and g(b)→ ch(a) to RΣc1 (E). The rules with left-hand sides different
from g(b) are moved unchanged from FΣc0 (E) to RΣc1 (E) since their left-hand sides are unique.
Thus, RΣc1 (E) = {a → b, cf(a,g(a)) → c, cg(b) → ch(a), cg(a) → ch(a), f(b, cg(a)) → c, g(b) →
ch(a), h(b)→ ch(a)}.

In the second iteration step, we now have the new non-trivial equivalence class [cg(b)]1 =
{cg(b), ch(a), cg(a)} with representative ch(a). The net effect of step (a) is, however, that the
3 Since this system is in general infinite, we do not generate it explicitly. But we can nevertheless apply
the appropriate rule when encountering a commutative symbol during rewriting by just ordering its
arguments according to >lpo .

5

constant rules are moved unchanged from RΣc1 (E) to RΣc2 (E). The function rules in FΣc1 (E)
are then f(b, ch(a))→ c, g(b)→ ch(a), h(b)→ ch(a). Consequently, no constant rules are added in
step (b), and the construction terminates with output R̂Σc(E) = {a→ b, cf(a,g(a)) → c, cg(b) →
ch(a), cg(a) → ch(a), f(b, ch(a))→ c, g(b)→ ch(a), h(b)→ ch(a)}.

Our goal is now to show that R̂Σc(E) ∪ R(Σc) provides us with a polynomial-time decision
procedure for the commutative word problem in E. First, we prove that the construction of this
system takes only polynomial time.

Lemma 3. The system R̂Σc(E) can be computed from R(E) in polynomial time.

Proof. First, note that step (a) can clearly be performed in polynomial time since deciding
≈RΣci (E)|con amounts to performing reachability tests in an undirected graph (more efficiently,

one can maintain the equivalence classes [c]i and the representatives w.r.t. RΣci (E) and > by
building and updating a union-find data structure, as e.g. described in Section 4.4 of [2]).
Producing the rules in FΣci (E) and grouping them according to their left-hand sides in step (b)
is clearly also possible in polynomial time, as is adding the new rules to RΣci+1(E). In case
the procedure does not terminate in this step, the number of different equivalence classes of
constants decreases by at least one. Thus, the iteration must terminate after at most |C| steps.

ut

Next, we show that the construction of R̂Σc(E) is correct in the following sense:

Lemma 4. Viewed as a set of identities, R̂Σc(E) ∪R(Σc) is equivalent to R(E) with commu-
tativity, i.e., for all terms s, t ∈ G(Σ,C) we have s ≈ΣcR(E) t iff s ≈R̂Σc (E)∪R(Σc)

t.

Proof. First, note that ≈ΣcR(E) = ≈Σc
RΣc0 (E)

= ≈RΣc0 (E)∪R(Σc)
since R(E) = RΣc0 (E) and R(Σc)

realizes commutativity of the symbols in Σc. It is thus sufficient to show that the modifications
performed when going from RΣci (E) to RΣci+1(E) do not change the induced equational theory,
i.e., ≈RΣci (E)∪R(Σc)

= ≈RΣci+1(E)∪R(Σc)
for all i ≥ 0 for which RΣci+1(E) is defined.

To show the inclusion from left to right, first consider step (a). If RΣci (E) contains the constant
rule c1 → c2, then c1 and c2 belong to the same equivalence class w.r.t. RΣci (E)|con and c1 > c2.
In case c2 is the least element in this class, then RΣci+1(E) still contains the rule c1 → c2.
Otherwise, since we know that c1 > c2, the least element e in the class is different from these
two constants, and thus RΣci+1(E) contains the rules c1 → e, c2 → e, which shows c1 ≈RΣci+1(E) c2,
and thus c1 ≈RΣci+1(E)∪R(Σc)

c2.

Regarding step (b1), note that the replacements performed in the construction of FΣci (E)
replace constants c occurring in function rules by constants e that are equivalent to c both
w.r.t. RΣci (E) and w.r.t. RΣci+1(E). Thus, these replacements do not change the overall equational
theory. Now, consider a function rule f(c1, . . . , cn)→ dj in FΣci (E). Either this rule also belongs
to RΣci+1(E), or RΣci+1(E) contains rules f(c1, . . . , cn) → d, dj → d. In both cases, we have
f(c1, . . . , cn) ≈RΣci+1(E) dj , and thus f(c1, . . . , cn) ≈RΣci+1(E)∪R(Σc)

dj .

In step (b2), a function rule of the form f(c1, c2) → dj for f ∈ Σc may be removed from
RΣci (E), but then dj → d and either f(c1, c2)→ d or f(c2, c1)→ d belong to RΣci+1(E). Clearly,
this implies f(c1, c2) ≈RΣci+1(E)∪R(Σc)

dj since f(c1, c2) ≈R(Σc) f(c2, c1).

The inclusion from right to left can be shown similarly to the one from left to right. ut

6

Lemma 5. Viewed as a term rewriting system, R̂Σc(E)∪R(Σc) is canonical, i.e., terminating
and confluent.

Proof. Termination of the term rewriting system R̂Σc(E) ∪R(Σc) can be shown as for R(E) ∪
R(Σc), by using the reduction order >lpo introduced in the definition of R(Σc).

Regarding confluence, first note that there are no non-trivial critical pairs (see Section 6.2 in [2])
between the rules in R̂Σc(E). To see this, first note that two function rules from R̂Σc(E) cannot
overlap due to the fact that in step (b) no more constants are identified, and thus all left-hand
sides of function rules in R̂Σc(E) are unique. In addition, any constant can occur as left-hand
side of at most one rule due to step (a). A rule of the form f(c1, . . . , cn) → d cannot overlap
with a rule of the form e→ e′ since the ci are representatives, whereas e is not a representative.

Second, consider an overlap of a rule f(s, t)→ f(t, s) in R(Σc) with a rule in R̂Σc(E)∪R(Σc).
If this overlap occurs at the root position, then the other rule is a rule of the form f(c1, c2)→ d

in R̂Σc(E). But then we must have s = c1 and t = c2. This cannot be the case since we know
that s >lpo t by the definition of R(Σc), but also c2 >lpo c1 or c1 = c2 by the construction of
R̂Σc(E).

Finally, assume that the rule from R̂Σc(E) ∪R(Σc) is applied within s or t. In the latter case,
we have f(s, t)→R(Σc) f(t, s) and f(s, t)→R̂Σc (E)∪R(Σc)

f(s, t′). Since s >lpo t >lpo t
′, we can

close this fork by the following rewrite steps: f(s, t′)→R(Σc) f(t
′, s) and f(t, s)→R̂Σc (E)∪R(Σc)

f(t′, s).

Now, assume that the rewriting is performed within s. Then we have the fork f(s, t) →R(Σc)

f(t, s) and f(s, t)→R̂Σc (E)∪R(Σc)
f(s′, t).

– If s′ >lpo t, then we can close this fork by the following rewrite steps: f(s′, t)→R(Σc) f(t, s
′)

and f(t, s)→R̂Σc (E)∪R(Σc)
f(t, s′).

– If s′ = t, then we have f(s′, t) = f(t, t) = f(t, s′) and f(t, s)→R̂Σc (E)∪R(Σc)
f(t, s′).

– If t >lpo s
′, then we can close the fork by leaving f(s′, t) as it is, and rewriting

f(t, s)→R̂Σc (E)∪R(Σc)
f(t, s′)→R(Σc) f(s

′, t).

This shows that all non-trivial critical pairs of R̂Σc(E) ∪ R(Σc) can be joined, which proves
confluence of R̂Σc(E) ∪R(Σc). ut

Since R̂Σc(E) ∪ R(Σc) is canonical, each term s ∈ G(Σ,C) has a unique normal form (i.e.,
irreducible term reachable from s) w.r.t. R̂Σc(E) ∪R(Σc), which we call the canonical form of
s. We can thus use the system R̂Σc(E)∪R(Σc) to decide whether terms s, t are equivalent w.r.t.
E and commutativity of the symbols in Σc, i.e., whether s ≈ t ∈ CCΣc(E), by computing the
canonical forms of the terms s and t.

Theorem 1. Let s0, t0 ∈ G(Σ,C0). Then we have s0 ≈ t0 ∈ CCΣc(E) iff s0 and t0 have the
same canonical form w.r.t. R̂Σc(E) ∪R(Σc).

Proof. If s0 ≈ t0 ∈ CCΣc(E), then s0 ≈ΣcE t0, and thus s0 ≈R̂Σc (E)∪R(Σc)
t0 by Lemma 2

and Lemma 4. Since R̂Σc(E) ∪ R(Σc) is canonical, this implies that s0 and t0 have the same
canonical form w.r.t. R̂Σc(E) ∪R(Σc).

Conversely, if s0 and t0 have the same canonical form w.r.t. R̂Σc(E) ∪ R(Σc), then we have
s0 ≈R̂Σc (E)∪R(Σc)

t0. Lemma 4 yields s0 ≈ΣcR(E) t0. Since s0, t0 ∈ G(Σ,C0), we can now apply
Lemma 2 to obtain s0 ≈ΣcE t0, which is equivalent to s0 ≈ t0 ∈ CCΣc(E). ut

7

Consider the rewrite system R̂Σc(E) that we have computed (above Lemma 3) from the set
of ground identities E in Example 1, and recall that f(h(a), b) ≈ΣcE c. The canonical form of
c is clearly c, and the canonical form of f(h(a), b) can be computed by the following rewrite
sequence: f(h(a), b)→R(Σc) f(b, h(a))→R̂Σc (E) f(b, h(b))→R̂Σc (E) f(b, ch(a))→R̂Σc (E) c.

Note that the construction of R̂Σc(E) is actually independent of the terms s0, t0 for which
we want to decide the word problem in E. This is in contrast to approaches that restrict the
construction of the congruence closure to the subterms of E and the subterms of the terms
s0, t0 for which one wants to decide the word problem. This fact will turn out to be useful in
the next section.

In this section, it remains to show that the decision procedure obtained by applying Theorem 1
requires only polynomial time.

Corollary 1. The commutative word problem for finite sets of ground identities is decidable
in polynomial time, i.e., given a finite set of ground identities E ⊆ G(Σ,C0) × G(Σ,C0), a
set Σc ⊆ Σ of commutative symbols, and terms s0, t0 ∈ G(Σ,C0), we can decide in polynomial
time whether s0 ≈ΣcE t0 holds or not.

Proof. Since we already know that R̂Σc(E) can be constructed in time polynomial in the size of
E, and thus also has polynomial size, it is sufficient to show that the canonical form of a term
s0 ∈ G(Σ,C0) can be computed in time polynomial in the size of s0 and R̂Σc(E). This is clearly
the case if only a polynomial number of rewrite steps are needed to produce the canonical form
of s0.

For every constant c ∈ C, we define its rank to be the cardinality of the set {d ∈ C | c > d}.
Since the cardinality of C is linearly bounded by the size of E and C0, this is also true for the
rank of each constant. In fact, the rank of a constant in C is at most |C| − 1. We define the
rank of a function symbol in Σ to be |C|. Given a term s ∈ G(Σ,C), its rank is the sum of the
ranks of the symbols occurring in s. Clearly, this rank is polynomial in the size of s and E.

We claim that the rank of terms is decreased by an application of a rule in R̂Σc(E). In fact, if a
rule of the form f(c1, . . . , cn)→ d is applied, then at least |C[is subtracted from the rank due
to the removal of f , and at most |C| − 1 is added due to the addition of d. If a rule of the form
d→ d′ is applied, then we know that d > d′, and thus the rank of d is larger than the rank of
d′. Application of a rule from R(Σc) does not change the rank of a term. In addition, if we use
innermost rewriting to compute the canonical form, the rules from R(Σc) are applied at most
once to every occurrence of a commutative function symbol. ut

3 Commutative congruence closure with extensionality

Here, we additionally assume that some of the non-commutative4 function symbols are exten-
sional, i.e., there is a set of function symbols Σe ⊆ Σ \ Σc whose elements we call extensional
symbols. In addition to the identities in E and commutativity for the symbols in Σc, we now as-
sume that also the following conditional identities are satisfied for every n-ary function symbol
f ∈ Σe:

f(x1, . . . , xn) ≈ f(y1, . . . , yn)⇒ xi ≈ yi for all i, 1 ≤ i ≤ n. (3)

From a semantic point of view, this means that we now consider algebras A that satisfy not
only the identities in E and commutativity for the symbols in Σc, but also extensionality for the
4 We will explain in the next section why the notion of extensionality introduced in (3) below is not
appropriate for commutative symbols.

8

symbols in Σe, i.e., for all f ∈ Σe, all i, 1 ≤ i ≤ n, and all elements a1, . . . , an, b1, . . . , bn of A we
have that fA(a1, . . . , an) = fA(b1, . . . , bn) implies ai = bi for all i, 1 ≤ i ≤ n. Let Σe

c = (Σc, Σ
e)

and s, t ∈ G(Σ,C0). We say that s ≈ t follows from E w.r.t. the commutative symbols in Σc
and the extensional symbols in Σe (written s ≈Σ

e
c

E t) if sA = tA holds in all algebras that satisfy
the identities in E, commutativity for the symbols in Σc, and extensionality for the symbols in
Σe.

The relation ≈Σ
e
c

E ⊆ G(Σ,C0) × G(Σ,C0) can also be generated using the following extension
of congruence closure by an extensionality rule. To be more precise, CCΣec (E) is the smallest
subset of G(Σ,C0) × G(Σ,C0) that contains E and is closed under reflexivity, transitivity,
symmetry, congruence, commutativity, and the following extensionality rule:

– if f ∈ Σe is an n-ary function symbol, 1 ≤ i ≤ n, and f(s1, . . . , sn) ≈ f(t1, . . . , tn) ∈
CCΣec (E), then si ≈ ti ∈ CCΣec (E) (extensionality).

Proposition 1. For all terms s, t ∈ G(Σ,C0) we have s ≈Σ
e
c

E t iff s ≈ t ∈ CCΣec (E).

Proof. This proposition is an easy consequence of Theorem 54 in [16], which (adapted to our
setting) says that ≈Σ

e
c

E is the least congruence containing E that is invariant under applying
commutativity and extensionality. Clearly, this is exactly CCΣec (E). ut

To obtain a decision procedure for ≈Σ
e
c

E , we extend the rewriting-based approach from the
previous section. Let the term rewriting system R(E) be defined as in Section 2.

Example 2. Consider E′ = {f(a, g(a)) ≈ c, g(b) ≈ h(a), g(a) ≈ g(b)} with Σc = {f} and
Σe = {g}. It is easy to see that we have f(h(a), b) ≈Σ

e
c

E′ c. Let the set C1 of new constants and
the linear order on all constants be defined as in Example 1. Now, we obtain the following rewrite
system: R(E′) = {f(a, cg(a)) → cf(a,g(a)), g(a) → cg(a), g(b) → cg(b), h(a) → ch(a), cf(a,g(a)) →
c, cg(b) → ch(a), cg(a) → cg(b)}.

Lemma 6. The system R(E) is a conservative extension of E also w.r.t. the commutative
symbols in Σc and the extensional symbols in Σe, i.e., for all terms s0, t0 ∈ G(Σ,C0) we have
s0 ≈

Σec
E t0 iff s0 ≈

Σec
R(E) t0.

Proof. The only-if-direction is an easy consequence of the fact that E ⊆ ≈R(E) (see the proof
of Lemma 2). In fact, s0 ≈

Σec
E t0 implies s0 ≈ t0 ∈ CCΣec (E) by Proposition 1, and thus there

is a sequence of identities s1 ≈ t1, s2 ≈ t2, . . . , sk ≈ tk such that sk = s0, tk = t0, and for all
i, 1 ≤ i ≤ k, the identity si ≈ ti belongs to E or can be derived from some of the identities
sj ≈ tj with j < i by apply reflexivity, transitivity, symmetry, congruence, commutativity, or
extensionality. Using the fact that E ⊆ ≈R(E), we can replace identities si ≈ ti ∈ E in this
sequence by a derivation of si ≈ ti using identities in R(E) as well as applications of reflexivity,
transitivity, symmetry, and congruence. This shows that we have s0 ≈ t0 ∈ CCΣec (R(E)), and
thus s0 ≈

Σec
R(E) t0.

To show the if-direction, it is again sufficient to prove that the following holds for all terms
u, v ∈ G(Σ,C):

u ≈Σ
e
c

R(E) v implies û ≈Σ
e
c

E v̂. (4)

Again, (4) immediately yields the if-direction of the lemma since, for terms s0, t0 ∈ G(Σ,C0),
we have ŝ0 = s0 and t̂0 = t0.

9

To show that (4) holds, assume that u ≈Σ
e
c

R(E) v. Then u ≈ v ∈ CCΣec (R(E)), and thus there
is a sequence of identities u1 ≈ v1, u2 ≈ v2, . . . , uk ≈ vk such that uk = u, vk = v, and for all
i, 1 ≤ i ≤ k, the identity ui ≈ vi belongs to R(E) or can be derived from some of the identities
uj ≈ vj with j < i by apply reflexivity, transitivity, symmetry, congruence, commutativity, or
extensionality.

Now, consider the corresponding sequence û1 ≈ v̂1, û2 ≈ v̂2, . . . , ûk ≈ v̂k, and note that
ûk = û, v̂k = v̂. Using (1) we can replace identities ûi ≈ v̂i for ui ≈ vi ∈ R(E) with their
derivation from E. Application of reflexivity, transitivity, symmetry, commutativity, and con-
gruence in the original sequence can clearly be mimicked in the new sequence. The same is true
for extensionality: in fact, if ui ≈ vi is obtained by applying extensionality, then there is an iden-
tity uj ≈ vj , where j < i, uj = f(g1, . . . , gn), vj = f(h1, . . . , hn) for f ∈ Σe, and ui = g`, vi = h`
for some `, 1 ≤ ` ≤ n. Since we have ûj = f(ĝ1, . . . , ĝn) and v̂j = f(ĥ1, . . . , ĥn), extensionality
can be used to derive ûi ≈ v̂i from ûj ≈ v̂j . Thus, we have shown that û ≈ v̂ ∈ CCΣec (E), which
completes the proof of (4), and thus of the lemma. ut

We extend the construction of the confluent and terminating rewrite system corresponding to
R(E) by adding a third step that takes care of extensionality. To be more precise, R̂Σ

e
c (E) is

constructed by performing the following steps, starting with RΣ
e
c

0 (E) := R(E) and i := 0:

(a) Let RΣ
e
c

i (E)|con consist of the constant rules in RΣ
e
c

i (E). For every constant c ∈ C, consider

[c]i := {d ∈ C | c ≈RΣeci (E)|con
d},

and let e be the least element in [c]i w.r.t. the order >. We call e the representative of c
w.r.t. RΣ

e
c

i (E) and >. If c 6= e, then add c→ e to RΣ
e
c

i+1(E).
(b) In all function rules in RΣ

e
c

i (E), replace each constant by its representative w.r.t. RΣ
e
c

i (E)

and >, and call the resulting set of function rules FΣ
e
c

i (E). Then, we distinguish two cases,
depending on whether the function symbol occurring in the rule is commutative or not.

(b1) Let f be an n-ary function symbol not belonging to Σc. For every term f(c1, . . . , cn)

occurring as the left-hand side of a rule in FΣ
e
c

i (E), consider all the rules f(c1, . . . , cn)→
d1, . . . , f(c1, . . . , cn)→ dk in F

Σec
i (E) with this left-hand side. Let d be the least element

w.r.t. > in {d1, . . . , dk}. Add f(c1, . . . , cn) → d and dj → d for all j with dj 6= d to
R
Σec
i+1(E).

(b2) Let f be a binary function symbol belonging to Σc. For all pairs of constant symbols
c1, c2 such that f(c1, c2) or f(c2, c1) is the left-hand side of a rule in FΣ

e
c

i (E), consider
the set of constant symbols {d1, . . . , dk} occurring as right-hand sides of such rules, and
let d be the least element w.r.t. > in this set. Add dj → d for all j with dj 6= d to
R
Σec
i+1(E). In addition, if c2 >lpo c1, then add f(c1, c2) → d to RΣ

e
c

i+1(E), and otherwise
add f(c2, c1)→ d.

If at least one constant rule has been added in this step, then set i := i + 1 and continue
with step (a). Otherwise, continue with step (c).

(c) For all f ∈ Σe, all pairs of distinct rules f(c1, . . . , cn) → d, f(c′1, . . . , c
′
n) → d in FΣ

e
c

i (E),
and all i, 1 ≤ i ≤ n such that ci 6= c′i, add ci → c′i to R

Σec
i+1(E) if ci > c′i and otherwise

add c′i → ci to R
Σec
i+1(E). If at least one constant rule has been added in this step, then set

i := i+1 and continue with step (a). Otherwise, terminate with output R̂Σ
e
c (E) := R

Σec
i+1(E).

We illustrate the above construction using Example 2. In step (a), the non-trivial equivalence
classes are [cf(a,g(a))] = {cf(a,g(a)), c} with representative c and [cg(b)] = {cg(a), cg(b), ch(a)} with
representative ch(a). Thus, cf(a,g(a)) → c, cg(a) → ch(a), cg(b) → ch(a) are the constant rules

10

added to RΣ
e
c

1 (E′). The function rules in FΣ
e
c

0 (E′) are then f(a, ch(a))→ c, g(a)→ ch(a), g(b)→
ch(a), h(a) → ch(a). Since these rules have unique left-hand sides, no constant rule is added
in step (b). Consequently, we proceed with step (c). Since g ∈ Σe, the presence of the rules
g(a)→ ch(a) and g(b)→ ch(a) triggers the addition of a→ b to RΣ

e
c

1 (E′).

In the second iteration step, we now have the new non-trivial equivalence class [a]1 = {a, b} with
representative b. The net effect of step (a) is, again, that the constant rules are moved unchanged
from R

Σec
1 (E′) to R

Σec
2 (E′). The function rules in F

Σec
1 (E′) are then f(b, ch(a)) → c, g(b) →

ch(a), h(b)→ ch(a). Consequently, no new constant rules are added in steps (b) and (c), and the
construction terminates with output R̂Σ

e
c (E′) = {a → b, cf(a,g(a)) → c, cg(a) → ch(a), cg(b) →

ch(a)f(b, ch(a)) → c, g(b) → ch(a), h(b) → ch(a)}, which is identical to the system R̂Σc(E)
computed for the set of identities E of Example 1.

Our goal is now to show that R̂Σ
e
c (E) provides us with a polynomial-time decision procedure

for the extensional word problem in E, i.e., it allows us to decide the relation ≈Σ
e
c

E . To this
purposes, we first show a sequence of lemmas whose proofs are very similar to the proofs of the
corresponding lemmas in the previous section.

Lemma 7. The system R̂Σ
e
c (E) can be computed from R(E) in polynomial time.

Proof. The proof of this lemma is basically identical to the proof of Lemma 3. The only addi-
tional observations to be made are that a single step (c) can be performed in polynomial time,
and that also in step (c) the number of different equivalence classes of constants decreases by
at least one if the procedure does not terminate in this step. ut

Let R(Σc) and >lpo be defined as in (2).

Lemma 8. Viewed as a set of identities, R̂Σ
e
c (E) ∪R(Σc) is

– sound for commutative and extensional reasoning, i.e., for all rules s→ t in R̂Σ
e
c (E)∪R(Σc)

we have s ≈Σ
e
c

R(E) t, and
– complete for commutative reasoning, i.e., for all terms s, t ∈ G(Σ,C) we have that s ≈ΣcR(E) t

implies s ≈R̂Σec (E)∪R(Σc)
t.

Proof. Regarding soundness for commutative and extensional reasoning, it is easy to show by
induction on the number of applied steps that all rules s→ t generated in steps (a), (b), and (c)
satisfy s ≈Σ

e
c

E t. For step (a) and step (b), this can be shown as in the proof of Lemma 4.

Thus, consider step (c). If f(c1, . . . , cn)→ d and f(c′1, . . . , c′n)→ d belong to RΣ
e
c

i (E), then by
induction we obtain f(c1, . . . , cn) ≈

Σec
E d and f(c′1, . . . , c′n) ≈

Σec
E d, and thus f(c1, . . . , cn) ≈

Σec
E

f(c′1, . . . , c
′
n). Finally, extensionality yields ci ≈

Σec
E c′i for i = 1, . . . , n.

Regarding completeness for commutative reasoning, step (a) and step (b) can be treated as in
the proof of Lemma 4. Since, in step (c), none of the existing rules are deleted or changed, it
trivially preserves completeness. ut

Lemma 9. Viewed as a term rewriting system, R̂Σ
e
c (E)∪R(Σc) is canonical, i.e., terminating

and confluent.

Proof. Termination and confluence of the term rewriting system R̂Σ
e
c (E)∪R(Σc) can be shown

as in the proof of Lemma 3. ut

11

Intuitively, R̂Σ
e
c (E) extends R̂Σc(E) by additional rules relating constants that are equated due

to extensionality. However, to keep the system confluent, we need to re-apply the other steps
once two constants have been equated. The canonical forms generated by R̂Σ

e
c (E)∪R(Σc) and

R̂Σc(E) ∪ R(Σc) need not coincide, but due to the fact that R̂Σ
e
c (E) extends R̂Σc(E) in the

way just described, they are related as follows.

Lemma 10. If s, t ∈ G(Σ,C) have the same canonical forms w.r.t. R̂Σc(E)∪R(Σc), then they
also have the same canonical forms w.r.t. R̂Σ

e
c (E) ∪R(Σc).

Proof. If the terms s, t have the same canonical forms w.r.t. the rewrite system R̂Σc(E)∪R(Σc),
then we have s ≈R̂Σc (E)∪R(Σc)

t, and thus s ≈ΣcR(E) t by Lemma 4. Completeness of R̂Σ
e
c (E) ∪

R(Σc) for commutative reasoning then yields s ≈R̂Σec (E)∪R(Σc)
t, and hence s, t have the same

canonical forms w.r.t. R̂Σ
e
c (E) ∪R(Σc) since this rewrite system is canonical. ut

We are now ready to prove our main technical result, from which decidability of the commutative
and extensional word problem immediately follows.

Theorem 2. Let s, t ∈ G(Σ,C0). Then we have s ≈ t ∈ CCΣec (E) iff s and t have the same
canonical form w.r.t. R̂Σ

e
c (E) ∪R(Σc).

Proof. To show the if-direction, assume that s and t have the same canonical form w.r.t.
R̂Σ

e
c (E)∪R(Σc). Then, s ≈R̂Σec (E)∪R(Σc)

t, and thus soundness of R̂Σ
e
c (E)∪R(Σc) for commu-

tative and extensional reasoning (Lemma 8) yields s ≈Σ
e
c

R(E) t. Since s, t ∈ G(Σ,C0), this implies

s ≈Σ
e
c

E t by Lemma 6, and thus s ≈ t ∈ CCΣec (E).

To prove the only-if-direction, assume that s, t ∈ G(Σ,C0) are such that s ≈ t ∈ CCΣec (E).
Then there is a sequence of identities s1 ≈ t1, s2 ≈ t2, . . . , sk ≈ tk such that sk = s, tk = t, and
for all i, 1 ≤ i ≤ k, the identity si ≈ ti belongs to E or can be derived from some of the identities
sj ≈ tj with j < i by apply reflexivity, transitivity, symmetry, congruence, commutativity, or
extensionality. We prove that s and t have the same canonical form w.r.t. R̂Σ

e
c (E) ∪ R(Σc)

by induction on the number of applications of the extensionality rule used when creating this
sequence.

In the base case, no extensionality rule is used, and thus s ≈ t ∈ CCΣc(E). By Theorem 1, s
and t have the same canonical form w.r.t. R̂Σc(E) ∪ R(Σc), and thus Lemma 10 yields that
they also have the same canonical form w.r.t. R̂Σ

e
c (E) ∪R(Σc).

In the step case, we consider the last application of the extensionality rule at s` ≈ t`. Then,
by induction, we know that, for each i, 1 ≤ i ≤ `, the terms si and ti have the same canonical
form w.r.t. R̂Σ

e
c (E) ∪R(Σc).

Now, consider the application of extensionality to s` ≈ t`. We have s` = f(g1, . . . , gn) and
t` = f(h1, . . . , hn) for some n-ary function symbol f ∈ Σe, and extensionality generates the
new identity gi ≈ hi, i.e., s`+1 = gi and t`+1 = hi. For j = 1, . . . , n, let g′j be the canonical form
of gj w.r.t. R̂Σ

e
c (E)∪R(Σc), and h′j the canonical form of hj w.r.t. R̂Σ

e
c (E)∪R(Σc). We know

that the canonical forms of s` and t` w.r.t. R̂Σ
e
c (E) ∪R(Σc) are identical, and these canonical

forms can be obtained by normalizing f(g′1, . . . , g′n) and f(h′1, . . . , h′n). Since the rules of R(Σc)
are not applicable to these terms due to the fact that f 6∈ Σc, there are two possible cases for
how the canonical forms of s` and t` can look like:

1. s` and t` respectively have the canonical forms f(g′1, . . . , g′n) and f(h′1, . . . , h′n), and thus
the corresponding arguments are syntactically equal, i.e., g′j = h′j for j = 1, . . . , n. In this

12

case, the identity s`+1 ≈ t`+1 added by the application of the extensionality rule satisfies
s`+1 ≈R̂Σec (E)∪R(Σc)

t`+1 since we have s`+1 = gi ≈R̂Σec (E)∪R(Σc)
g′i = h′i ≈R̂Σec (E)∪R(Σc)

hi = t`+1.
2. s` and t` reduce to the same constant d. Then R̂Σ

e
c (E) must contain rules f(g′1, . . . , g′n)→ d

and f(h′1, . . . , h′n) → d. By the construction of R̂Σ
e
c (E), we again have that g′i = h′i, i.e.,

the two terms are syntactically equal. In fact, otherwise a new constant rule g′i → h′i or
h′i → g′i would have been added, and the construction would not have terminated yet. We
thus have again s`+1 = gi ≈R̂Σec (E)∪R(Σc)

g′i = h′i ≈R̂Σec (E)∪R(Σc)
hi = t`+1.

Summing up, we have seen that we have si ≈R̂Σec (E)∪R(Σc)
ti for all i, 1 ≤ i ≤ ` + 1. Since

the identities sj ≈ tj for ` + 1 < j ≤ k are generated from the identities si ≈ ti for i =
1, . . . , `+1 and E using only reflexivity, transitivity, symmetry, commutativity, and congruence,
this implies that also these identities satisfy sj ≈R̂Σec (E)∪R(Σc)

tj . In particular, we thus have

sk ≈R̂Σec (E)∪R(Σc)
tk. Since R̂Σ

e
c (E) ∪ R(Σc) is canonical, this implies that sk = s and tk = t

have the same canonical form w.r.t. R̂Σ
e
c (E) ∪R(Σc). ut

Recall that we have f(h(a), b) ≈Σ
e
c

E′ c for the set of identities E′ of Example 2. We have already
seen that these two terms rewrite to the same canonical form w.r.t. R̂Σc(E)∪R(Σc) = R̂Σ

e
c (E′)∪

R(Σc).

Again, it remains to show that the decision procedure obtained by applying Theorem 2 requires
only polynomial time.

Corollary 2. The commutative and extensional word problem for finite sets of ground identities
is decidable in polynomial time, i.e., given a finite set of ground identities E ⊆ G(Σ,C0) ×
G(Σ,C0), finite sets Σc ⊆ Σ of commutative and Σe ⊆ Σ \Σc of non-commutative extensional
symbols, and terms s0, t0 ∈ G(Σ,C0), we can decide in polynomial time whether s0 ≈

Σec
E t0

holds or not.

Proof. Again, it is sufficient to show that computing canonical forms w.r.t. R̂Σ
e
c (E) ∪ R(Σc)

can be done in polynomial time. Since the rules of R̂Σ
e
c (E)∪R(Σc) have the same shape as the

rules of R̂Σc(E) ∪R(Σc), the proof of this fact is analogous to the proof of Corollary 1. ut

We have mentioned in the introduction that it is unclear how this polynomiality result could
be obtained by a simple adaptation of the usual approach that restricts congruence closure to a
polynomially large set of subterms determined by the input (informally called “small” terms in
the following). The main problem is that one might have to generate identities between “large”
terms before one can get back to a desired identity between “small” terms using extensionality.
The question is now where our rewriting-based approach actually deals with this problem.
The answer is: in Case 1 of the case distinction in the proof of Theorem 2. In fact, there
we consider a derived identity s` ≈ t` such that the (syntactically identical) canonical forms
of s` = f(g1, . . . , gn) and t` = f(h1, . . . , hn) are not a constant from C, but of the form
f(g′1, . . . , g

′
n) = f(h′1, . . . , h

′
n). Basically, this means that s` and t` are terms that are not

equivalent modulo E to subterms of terms occurring in E, since the latter terms have a constant
representing them. Thus, s`, t` are “large” terms that potentially could cause a problem: an
identity between them has been derived, and now extensionality applied to this identity yields
a new identity gi ≈ hi between smaller terms. Our induction proof shows that this identity can
nevertheless be derived from R̂Σ

e
c (E) ∪R(Σc), and thus does not cause a problem.

13

4 Symbols that are commutativity and extensional

In the previous section, we have made the assumption that the sets Σc and Σe are disjoint, i.e.,
we did not consider extensionality for commutative symbols. While our approach could easily
be extended to deal with symbols that are both commutative and extensional, we have not done
so since, for such symbols, we would obtain more consequences than we bargained for.

For example, if f(a, b) is assumed to name the couple consisting of the individuals a, b, then it is
reasonable to assume that such a couple-building operator is commutative, i.e., it is irrelevant
in which order the elements building the couple are written. In addition, in this setting one
also wants a form of extensionality: if two couples are supposed to be the same, then they
must consist of the same two individuals. However, requiring the extensionality rule (3) for
the symbol f is too strong here since, together with commutativity, it would imply that all
individuals participating in two couples that are equal are identical. In fact, assume that the
ground identity f(a, b) ≈ f(c, d) has been derived. Then extensionality yields the identities
a ≈ c and b ≈ d. Additionally, commutativity can be used to derive the identity f(a, b) ≈ f(d, c),
which in turn yields the identities a ≈ d and b ≈ c by extensionality. Consequently, the four
constants are identified.

Thus, it is more reasonable to require the following variant of extensionality for commutative
function symbols f , which we call d-extensionality (where “d” stands for “disjunctive”):

f(x1, x2) ≈ f(y1, y2)⇒ (x1 ≈ y1 ∧ x2 ≈ y2) ∨ (x1 ≈ y2 ∧ x2 ≈ y1). (5)

Unfortunately, adding such a rule makes the word problem coNP-hard, which can be shown by
a reduction from validity of propositional formulae.

Proposition 2. In the presence of at least one commutative and d-extensional symbol, the word
problem for finite sets of ground identities is coNP-hard.

We prove this proposition by a reduction from validity of propositional formulae. Thus, consider
a propositional formula φ, and let p1, . . . , pn be the propositional variables occurring in φ. We
take the constants 0 and 1, and for every i, 1 ≤ i ≤ n, we view pi as a constant symbol, and
add a second constant symbol pi. In addition, we consider the function symbols f∨, f∧, f¬, f ,
and assume that f is commutative and satisfies (5). We then consider ground identities that
axiomatize the truth tables for ∨,∧,¬, i.e.,

f∨(0, 0) ≈ 0, f∨(1, 0) ≈ 1, f∨(0, 1) ≈ 1, f∨(1, 1) ≈ 1,

f∧(0, 0) ≈ 0, f∧(1, 0) ≈ 0, f∧(0, 1) ≈ 0, f∧(1, 1) ≈ 1,

f¬(0) ≈ 1, f¬(1) ≈ 0.

(6)

In addition, we consider, for every i, 1 ≤ i ≤ n, the identity

f(pi, pi) ≈ f(0, 1).

Let Eφ be the set of these ground identities, and let tφ be the term obtained from φ by
replacing the Boolean operations ∨,∧, and ¬ by the corresponding function symbols f∨, f∧,
and f¬. Proposition 2 is now an immediate consequence of the following lemma.

Lemma 11. The identity tφ ≈ 1 holds in every algebra satisfying Eφ together with (5) and
commutativity of f iff φ is valid.

14

Proof. First assume that φ is valid, and let A be an algebra satisfying Eφ together with (5)
and commutativity of f . Using the fact that A satisfies the identities f(pi, pi) ≈ f(0, 1) for
i = 1, . . . , n, as well as (5), we can deduce that, for all i = 1, . . . , n, we have pAi ∈ {0A, 1A}. Let
v be the propositional valuation that satisfies v(pi) = 1 iff pAi = 1A. Since φ is valid, we know
that v(φ) = 1. Using this fact and the identities axiomatizing the truth tables for ∨,∧,¬, we
obtain that tAφ = 1A. Thus, the identity tφ ≈ 1 holds in A.

Conversely, assume that φ is not valid, and let v be a propositional valuation such that v(φ) = 0.
Let C be the free commutative algebra with generators 0, 1 and the binary function symbol f as
binary operation. Thus, the domain C of C consists of the equivalence classes if ground terms
in G({f}, {0, 1}) modulo commutativity. We expand C to an algebra A that also interprets the
symbols p1, . . . , pn, p1, . . . , pn, f∨, f∧, f¬ as follows:

– the domain of A is C;
– pAi = v(pi) and pAi = 1− v(pi) for i = 1, . . . , n;
– on {0, 1}, fA∨ is disjunction, fA∧ is conjunction, and fA¬ is negation, and on tuples not in
{0, 1} × {0, 1} they yield an arbitrary value, say 0;

– fA is fC .

It is easy to see that A satisfies the identities in Eφ. In addition, commutativity of f and (5)
are satisfied since these properties hold in the free commutative algebra [13]. It is now easy to
see that tAφ = v(φ) = 0 = 0A, and thus A does not satisfy the identity tφ ≈ 1 since in C the
class of the generator 0 is different from the class of the generator 1. ut

To prove a complexity upper bound that matches the lower bound stated in Proposition 2, we
consider a finite signature Σ, a finite set of ground identities E ⊆ G(Σ,C0)×G(Σ,C0) as well
as sets Σc ⊆ Σ and Σe ⊆ Σ of commutative and extensional symbols, respectively, and assume
that the non-commutative extensional symbols in Σe \ Σc satisfy extensionality (3), whereas
the commutative extensional symbols in Σe ∩Σc satisfy d-extensionality (5). We want to show
that, in this setting, the problem of deciding, for given terms s0, t0 ∈ G(Σ,C0), whether s0 is
not equivalent to t0 is in NP.

For this purpose, we employ a nondeterministic variant of our construction of R̂Σ
e
c (E). In

steps (a) and (b), this procedure works as described in the previous section. For extensional
symbols f ∈ Σe \ Σc, step (c) is also performed as in the previous section. For an extensional
symbol f ∈ Σe ∩ Σc, step (c) is modified as follows: for all pairs of distinct rules f(c1, c2) →
d, f(c′1, c

′
2)→ d in FΣ

e
c

i (E), nondeterministically choose whether

– c1 and c′1 as well as c2 and c′2 are to be identified, or
– c1 and c′2 as well as c2 and c′1 are to be identified,

and then add the corresponding constant rules to RΣ
e
c

i+1(E) unless the respective constants are
already syntactically equal.

This nondeterministic algorithm has different runs, depending on the choices made in the non-
deterministic part of step (c). But each run r produces a rewrite system R̂

Σec
r (E).

Example 3. We illustrate the nondeterministic construction using the identities Eφ for φ =
p ∨ ¬p from our coNP-hardness proof. Then Eφ consists of the identities in (6) together with
the identity f(p, p) ≈ f(0, 1). Assuming an appropriate order on the constants, the system
R(Eφ) contains, among others, the rules

f∨(1, 0)→ cf∨(1,0), cf∨(1,0) → 1, f∨(0, 1)→ cf∨(0,1), cf∨(0,1) → 1,

f¬(0)→ cf¬(0), cf¬(0) → 1, f¬(1)→ cf¬(1), cf¬(1) → 0,

f(p, p)→ cf(p,p), f(1, 0)→ cf(1,0), cf(p,p) → cf(1,0).

15

In step (a) and (b) of the construction, these rules are transformed into the form

f∨(1, 0)→ 1, cf∨(1,0) → 1, f∨(0, 1)→ 1, cf∨(0,1) → 1,

f¬(0)→ 1, cf¬(0) → 1, f¬(1)→ 0, cf¬(1) → 0,

f(p, p)→ cf(1,0), f(1, 0)→ cf(1,0), cf(p,p) → cf(1,0).

(7)

Since no new constant rule is added, the construction proceeds with step (c). Due to the presence
of the rules f(p, p)→ cf(1,0) and f(1, 0)→ cf(1,0) for f ∈ Σc ∩Σe, it now nondeterministically
chooses between identifying p with 1 or with 0. In the first case, the constant rules p→ 1, p→ 0
are added, and in the second p → 0, p → 1 are added. In the next iteration, no new constant
rules are added, and thus the construction terminates. It has two runs r1 and r2. The generated
rewrite systems R̂Σ

e
c

r1 (E) and R̂Σ
e
c

r2 (E) share the rules in (7), but the first contains p→ 1 whereas
the second contains p→ 0.

Coming back to the general case, as in the proofs of Lemma 7 and Lemma 9, we can show the
following for the rewrite systems R̂Σ

e
c

r (E).

Lemma 12. For every run r, the term rewriting system R̂
Σec
r (E) is produced in polynomial

time, and the system R̂
Σec
r (E) ∪R(Σc) is canonical.

Using the canonical rewrite systems R̂Σ
e
c

r (E)∪R(Σc), we can now characterize when an identity
follows from E w.r.t. commutativity of the symbols in Σc, extensionality of the symbols in
Σe \Σc, an d-extensionality of the symbols in Σe ∩Σc as follows.

Theorem 3. Let s0, t0 ∈ G(Σ,C0). The identity s0 ≈ t0 holds in every algebra that satisfies
E, commutativity for every f ∈ Σc, extensionality for every f ∈ Σe \Σc, and d-extensionality
for every f ∈ Σe ∩Σc iff s0, t0 have the same canonical forms w.r.t. R̂Σ

e
c

r (E)∪R(Σc) for every
run r of the nondeterministic construction.

Proof. First, we show the if-direction of the theorem by contraposition. Thus, assume that A is
an algebra that satisfies E, commutativity for every f ∈ Σc, extensionality for every f ∈ Σe\Σc,
and d-extensionality for every f ∈ Σe∩Σc, but in which s0 and t0 are not identified, i.e., sA0 6= tA0
holds. We expand A to the new constants in C1 by setting cAs := sA, and call the expansion
obtained this way still A. Since A is a model of E, it is easy to see that it is also a model of
R(E). In addition, it satisfies the rewrite rules (viewed as identities) added in steps (a) and (b)
of the construction. The same is true for the rules added in step (c) when treating symbols in
Σe \Σc. For symbols f ∈ Σe∩Σc, we let A decide which option to take. To be more precise, for
all pairs of distinct rules f(c1, c2) → d, f(c′1, c

′
2) → d in FΣ

e
c

i (E), we can assume by induction
that f(c1, c2)A = fA(cA1 , c

A
2) = dA = fA(c′A1 , c′A2) = f(c′1, c

′
2)

A holds. Since A satisfies d-
extensionality for f , this implies that we have cA1 = c′A1 , cA2 = c′A2 or cA1 = c′A2 , cA2 = c′A1 . If the
former is the case, then we take the first option in the nondeterministic choice, and otherwise
we take the second option. Overall, this yields a run r of the nondeterministic construction such
that A is a model of R̂Σ

e
c

r (E). Since A satisfies commutativity for every symbol in Σc, it is also
a model of R(Σc).

Now, assume that s0, t0 have the same canonical forms w.r.t. R̂Σ
e
c

r (E) ∪ R(Σc). This implies
that s0 ≈R̂Σecr (E)∪R(Σc)

t0. Since A is a model of R̂Σ
e
c

r (E) ∪ R(Σc), we thus obtain sA0 = tA0 ,

which contradicts our assumption that sA0 6= tA0 holds. Thus, s0, t0 must have different canonical
forms w.r.t. R̂Σ

e
c

r (E) ∪R(Σc).

16

Second, we show the only-if-direction, again by contraposition. Thus, assume that there is a run
r of the algorithm such that s0, t0 have different canonical forms w.r.t. R̂Σ

e
c

r (E) ∪R(Σc). Since
R̂
Σec
r (E)∪R(Σc) is canonical, this implies that s0 6≈R̂Σecr (E)∪R(Σc)

t0. Let A be the initial algebra

(i.e., the free algebra over the empty set of generators) for R̂Σ
e
c

r (E) ∪R(Σc) viewed as a set of
identities over the signature Σ∪C. Recall that this algebra has the equivalence classes of terms
in G(Σ,C) w.r.t. ≈

R̂
Σec
r (E)∪R(Σc)

as its elements, and any term s ∈ G(Σ,C) is interpreted in A
as the class of s. Consequently, s0 6≈R̂Σecr (E)∪R(Σc)

t0 implies sA0 6= tA0 . Thus, it is sufficient to
show that A satisfies E, commutativity for every f ∈ Σc, extensionality for every f ∈ Σe \Σc,
and d-extensionality for every f ∈ Σe ∩Σc.

If s ≈ t ∈ E, then s ≈R(E) t by Lemma 2, and thus s ≈
R̂
Σec
r (E)∪R(Σc)

t (see the proof of
Lemma 4). Consequently, these two terms are evaluated to the same element of A, which shows
that A satisfies the identities in E.

Let f ∈ Σc, and consider terms s, t ∈ G(Σ,C). Then f(s, t) ≈R(Σc) f(t, s) according to the
definition of R(Σc), which implies that f(s, t) and f(t, s) are evaluated to the same element of
A. This shows that A interprets the elements of Σc as commutative functions.

Let f ∈ Σe \ Σc be an n-ary function symbol and s1, t1, . . . , sn, tn ∈ G(Σ,C) be terms
such that the terms f(s1, . . . , sn) and f(t1, . . . , tn) evaluate to the same element of A. Then
f(s1, . . . , sn) ≈R̂Σecr (E)∪R(Σc)

f(t1, . . . , tn), and thus these terms have the same canonical forms

w.r.t. R̂Σ
e
c

r (E)∪R(Σc). Let s′1, t′1, . . . , s′n, t′n be the canonical forms of the terms s1, t1, . . . , sn, tn,
respectively. As in the proof of Theorem 2, there are two cases:

– The terms f(s1, . . . , sn) and f(t1, . . . , tn) respectively have the canonical forms f(s′1, . . . ,
s′n) and f(t′1, . . . , t′n), and the corresponding arguments are syntactically equal, i.e., s′j = t′j
for j = 1, . . . , n. In this case, we have sj ≈R̂Σecr (E)∪R(Σc)

s′j = t′j ≈R̂Σecr (E)∪R(Σc)
tj for

j = 1, . . . , n, and thus, for j = 1, . . . , n, the terms sj and tj evaluate to the same element
of A.

– The terms f(s1, . . . , sn) and f(t1, . . . , tn) reduce to the same constant d. Then R̂
Σec
r (E)

must contain the rules f(s′1, . . . , s′n) → d and f(t′1, . . . , t
′
n) → d. By the construction of

R̂
Σec
r (E), we thus have s′j = t′j for all j = 1, . . . , n since otherwise new constant rules

would have been added and the construction would not yet have terminated. This yields
sj ≈R̂Σecr (E)∪R(Σc)

s′j = t′j ≈R̂Σecr (E)∪R(Σc)
tj for j = 1, . . . , n, and thus, for j = 1, . . . , n, the

terms sj and tj evaluate to the same element of A.

Summing up, we have thus shown that A satisfies extensionality for the symbols in Σe \Σc.

Finally, let f ∈ Σe∩Σc be a commutative and d-extensional function symbol and s1, t1, s2, t2 ∈
G(Σ,C) be terms such that the terms f(s1, s2) and f(t1, t2) evaluate to the same element of
A. Again, this implies that these terms have the same canonical forms w.r.t. R̂Σ

e
c

r (E) ∪R(Σc).
Let s′1, t′1, s′2, t′2 be the canonical forms of the terms s1, t1, s2, t2, respectively. As before, we
distinguish several cases, but since f is commutative we now also need to take the rules in
R(Σc) into account:

– First, assume that the canonical forms of f(s1, s2) and f(t1, t2) still have root symbol f .
We distinguish several subcases, depending on how the rules in R(Σc) have been applied:
• The terms f(s1, s2) and f(t1, t2) have the canonical forms f(s′1, s′2) and f(t′1, t

′
2), re-

spectively, and the corresponding arguments are syntactically equal, i.e., s′1 = t′1 and
s′2 = t′2. As above, this implies that s1 and t1 as well as s2 and t2 respectively evaluate
to the same elements of A.

17

• The case where the terms f(s1, s2) and f(t1, t2) have the canonical forms f(s′2, s′1) and
f(t′2, t

′
1), respectively, can be handled in the same way since then again s′1 = t′1 and

s′2 = t′2.
• The terms f(s1, s2) and f(t1, t2) have the canonical forms f(s′2, s′1) and f(t′1, t

′
2), re-

spectively, and the corresponding arguments are syntactically equal, i.e., s′2 = t′1 and
s′1 = t′2. In this case we can derive that s2 and t1 as well as s1 and t2 respectively
evaluate to the same elements of A.
• The case where the terms f(s1, s2) and f(t1, t2) have the canonical forms f(s′1, s′2) and
f(t′2, t

′
1), respectively, can be handled in the same way since then again s′2 = t′1 and

s′1 = t′2.
– Second, assume that the canonical forms of f(s1, s2) and f(t1, t2) are the same constant
d. Again, we distinguish several subcases, depending on how the rules in R(Σc) have been
applied before the reduction to the constant d:
• The term rewriting system R̂

Σec
r (E) contains the rules f(s′1, s′2)→ d and f(t′1, t′2)→ d.

By the construction of R̂Σ
e
c

r (E), we thus have s′1 = t′1 and s′2 = t′2, or s′1 = t′2 and s′2 = t′1
since no new constant rules have been added. This implies that s1 and t1 as well as s2
and t2 respectively evaluate to the same elements of A, or s1 and t2 as well as s2 and
t1 respectively evaluate to the same elements of A.
• The cases where the function rules reducing to d contain the arguments of f in other

permutations can be treated in the same way.

Summing up, we have thus shown that A satisfies d-extensionality for the symbols in Σe ∩Σc,
which completes the proof of the theorem. ut

Coming back to Example 3, we note that φ = p ∨ ¬p is valid, and thus (by Lemma 11), the
identity f∨(p, f¬(p)) ≈ 1 holds in all algebras that satisfy Eφ and interpret f as a commutative
and d-extensional symbol. Using the rewrite system generated by the run r1, we obtain the
following rewrite sequence: f∨(p, f¬(p))→ f∨(1, f¬(p))→ f∨(1, f¬(1))→ f∨(1, 0)→ 1. For the
run r2, we obtain the sequence f∨(p, f¬(p)) → f∨(0, f¬(p)) → f∨(0, f¬(0)) → f∨(0, 1) → 1.
Thus, for both runs the terms f∨(p, f¬(p)) and 1 have the same canonical form 1.

Together with Proposition 2, Theorem 3 yields the following complexity result.

Corollary 3. Consider a finite set of ground identities E ⊆ G(Σ,C0) × G(Σ,C0) as well as
sets Σc ⊆ Σ and Σe ⊆ Σ of commutative and extensional symbols, respectively, and two terms
s0, t0 ∈ G(Σ,C0). The problem of deciding whether the identity s0 ≈ t0 holds in every algebra
that satisfies E, commutativity for every f ∈ Σc, extensionality for every f ∈ Σe \ Σc, and
d-extensionality for every f ∈ Σe ∩Σc is coNP-complete.

Proof. Since Proposition 2 yields coNP-hardness, it is sufficient to show that the complement
problem is in NP. This is an easy consequence of Theorem 3. In fact, to show that s0 ≈ t0
does not hold in all such algebras, it is sufficient to generate one run r of our nondeterministic
construction, and then test whether s0 and t0 have different canonical forms w.r.t. R̂Σ

e
c

r (E) ∪
R(Σc). The system R̂

Σec
r (E) can be generated in nondeterministic polynomial time, and the

canonical forms can be computed in polynomial time. ut

5 Conclusion

We have shown, using a rewriting-based approach, that adding commutativity and extension-
ality of certain function symbols to a finite set of ground identities leaves the complexity of the

18

word problem in P. In contrast, adding d-extensionality for commutative function symbols raises
the complexity to coNP. For classical congruence closure, it is well-known that it can actually
be computed in O(n log n) [10,11]. Since this complexity upper bound can also be achieved
using a rewriting-based approach [14,7], we believe that the approach developed here can also
be used to obtain an O(n log n) upper bound for the word problem for ground identities in the
presence of commutativity and extensionality, as considered in Section 3, but this question was
not in the focus of the present paper.

The rules specifying extensionality are Horn rules whose atoms are (non-ground) identities,
and where the consequence is an identity between variables occurring in the precondition. The
question arises which other such Horn rules can be added without increasing the complexity of
the word problem. Note that our proof for the case of extensionality (see the proof of Theorem 2,
Case 1 in the case distinction) uses the fact that the variables to be identified occur in the same
argument position of the symbol f . It is not clear how to deal with this case if this is not
satisfied (as e.g., in the rule f(x, y) ≈ f(x′, y′) → x ≈ y′). Note, however, that Case 1 cannot
even occur if the root function symbols of the identity in the precondition are not the same,
and thus a Horn rule for which this is the case (like f(x, y) ≈ g(x′, y′) → x ≈ y′) should be
harmless.

Regarding the application motivation from DL, it should be easy to extend tableau-based
algorithms for DLs to deal with individuals named by ground terms and identities between these
terms. Basically, the tableau algorithm then works with the canonical forms of such terms, and
if it identifies two terms (e.g., when applying a tableau-rule dealing with number restrictions),
then the rewrite system and the canonical forms need to be updated. More challenging would
be a setting where rules are added to the knowledge base that generate new terms if they find a
certain constellation in the knowledge base (e.g., a married couple, for which the rule introduces
a ground term denoting the couple and assertions that link the couple with its components).

References

1. Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

2. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

3. Leo Bachmair, I.V. Ramakrishnan, Ashish Tiwari, and Laurent Vigneron. Congruence closure
modulo associativity and commutativity. In Hélène Kirchner and Christophe Ringeissen, editors,
Proc. of the Third International Workshop on Frontiers of Combining Systems (FroCoS 2000),
volume 1794 of Lecture Notes in Computer Science, pages 245–259. Springer, 2000.

4. Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpression
problem. J. ACM, 27(4):758–771, 1980.

5. Jean H. Gallier, Paliath Narendran, David A. Plaisted, Stan Raatz, and Wayne Snyder. An algo-
rithm for finding canonical sets of ground rewrite rules in polynomial time. J. ACM, 40(1):1–16,
1993.

6. Deepak Kapur. Shostak’s congruence closure as completion. In Proc. of the 8th Int. Conf. on
Rewriting Techniques and Applications (RTA 1997), volume 1232 of Lecture Notes in Computer
Science, pages 23–37. Springer, 1997.

7. Deepak Kapur. Conditional congruence closure over uninterpreted and interpreted symbols. J.
Systems Science & Complexity, 32(1):317–355, 2019.

8. Dexter Kozen. Complexity of finitely presented algebras. In Proc. of the 9th ACM Symposium on
Theory of Computing, pages 164–177. ACM, 1977.

9. Paliath Narendran and Michaël Rusinowitch. Any ground associative-commutative theory has a
finite canonical system. J. Autom. Reasoning, 17(1):131–143, 1996.

10. Greg Nelson and Derek Oppen. Fast decision procedures based on congruence closure. J. of the
ACM, 27(2):356–364, 1980.

11. Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Inf. Comput.,
205(4):557–580, 2007.

19

12. Robert E. Shostak. An algorithm for reasoning about equality. Commun. ACM, 21(7):583–585,
1978.

13. J. H. Siekmann. Unification of commutative terms. In Proceedings of the International Symposium
on Symbolic and Algebraic Manipulation, EUROSAM’79, volume 72 of Lecture Notes in Computer
Science, pages 531–545, Marseille, France, 1979. Springer.

14. Wayne Snyder. A fast algorithm for generating reduced ground rewriting systems from a set of
ground equations. J. Symb. Comput., 15(4):415–450, 1993.

15. Aaron Stump, Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision procedure for
an extensional theory of arrays. In Proc. of 16th Annual IEEE Symposium on Logic in Computer
Science (LICS 2001), pages 29–37. IEEE Computer Society, 2001.

16. Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of EATCS Monographs
on Theoretical Computer Science. Springer, 1992.

20

	Deciding the Word Problem for Ground Identities with Commutative and Extensional Symbols

