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Computing Safe Anonymisations of
Quantified ABoxes w.r.t. EL Policies

(Extended Version)∗

Franz Baader, Francesco Kriegel,
Adrian Nuradiansyah, Rafael Peñaloza

Abstract

In recent work, we have shown how to compute compliant anonymi-
zations of quantified ABoxes w.r.t. EL policies. In this setting, quantified
ABoxes can be used to publish information about individuals, some of which
are anonymized. The policy is given by concepts of the Description Logic
(DL) EL, and compliance means that one cannot derive from the ABox
that some non-anonymized individual is an instance of a policy concept.
If one assumes that a possible attacker could have additional knowledge
about some of the involved non-anonymized individuals, then compliance
with a policy is not sufficient. One wants to ensure that the quantified
ABox is safe in the sense that none of the secret instance information is
revealed, even if the attacker has additional compliant knowledge. In the
present paper, we show that safety can be decided in polynomial time, and
that the unique optimal safe anonymization of a non-safe quantified ABox
can be computed in exponential time, provided that the policy consists of
a single EL concept.

1 Introduction

When making information about persons available online, one needs to ensure
that certain privacy constraints described by a privacy policy are taken into ac-
count. The policy may be formulated by the data provider, the individuals whose
data are to be published, or be due to some legal requirements. There is a large
body of work on this topic in different areas of computer science [11], but here
we restrict our attention to a setting where data about real-world individuals
are to be published, but certain information about these individuals needs to be
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1 INTRODUCTION 2

kept secret. This differs from the setting of statistical databases (e.g., for medical
research), where only anonymized and possibly aggregated data are published,
but there is still the danger that information on real-world individuals can be
extracted with a certain probability. Approaches for warding off this danger are,
for example, k-anonymity [15] and differential privacy [10], but this is not what
the current paper is about.

In the setting where the original data rather than statistical information about
it are to be published, we further restrict our attention to work related to ontolo-
gies and RDF. There are two approaches for achieving privacy that have been
investigated in that context. First, instead of making the data public, one can
provide only restricted access through queries, whose answers are monitored by a
“censor”, which may decide not to give an answer or even lie if needed to satisfy
the constraints [7, 6, 8]. Second, one can publish the data in an appropriately
anonymized form, while keeping as much information about individuals as is al-
lowed by the policy available [12, 13, 9, 2, 5, 3].

Here we follow the second approach. The works in this area differ from each
other in several aspects. The papers [2, 5, 3] and this one allow for arbitrary
modifications of the original data set, as long as the new data is logically implied
by the original one. In contrast, the work from [12, 13, 9] restricts modifications
to the application of certain anonymization operations. Another distinguishing
criterion is which formalisms are employed for representing the data and the pol-
icy. While in the work described in [12, 13, 9] RDF graphs are used to represent
the data and conjunctive queries to describe the policy, the papers [2, 5, 3] con-
sider the setting where DL ABoxes represent the data and concepts of the DL EL
describe the policy. More precisely, a restricted form of ABoxes, called instance
store, is considered in [2, 5], whereas in [3] and in the present paper so-called
quantified ABoxes are employed. Basically, quantified ABoxes extend traditional
DL ABoxes by allowing for anonymized individuals, which from a logical point of
view are represented as existentially quantified variables. Finally, one can distin-
guish approaches according to whether and which kind of attacker’s knowledge is
assumed to exist. Of the mentioned papers, only [3] does not allow for attacker’s
knowledge, i.e., restricts the attention purely to achieving compliance with the
policy. Here, we employ the same formal setup as [3] but addresses safety. The
only work where the formalisms for representing the attacker’s knowledge and
formalizing the data differ is [5].

Before diving into the technical details of our approach, let us illustrate the
problem it solves by a simple example. Assume that Ben goes to a new school in
fall, but does not want the people in the school to know that both of his parents
are comedians. This privacy constraint can be formalized by the EL concept
P := ∃mother.(Comedian u ∃spouse.Comedian). Ben needs to provide contact
details of one parent, and decides to give his father’s name since his mother never
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answers her mobile. This results in the quantified ABox

∃{x}.{mother(BEN, x),Comedian(x), spouse(x, JERRY),Comedian(JERRY)},

where Ben’s mother is represented by a variable since he did not disclose her
name. Since this ABox is not compliant with Ben’s policy P , he decides to hide
the information that his father is a comedian. This yields the quantified ABox

∃{x}.{mother(BEN, x),Comedian(x), spouse(x, JERRY)}, (1)

which is compliant with P . However, this ABox is not safe for P since an attacker
that knows Comedian(JERRY) (which on its own is compliant with P , and can
easily be found out since Jerry is famous) can combine this knowledge with the
given quantified ABox to derive that Ben is an instance of P . Had Ben instead
removed the information that his (anonymized) mother is a comedian, and kept
the information that Jerry is one, then the quantified ABox

∃{x}.{mother(BEN, x), spouse(x, JERRY),Comedian(JERRY)} (2)

obtained this way would again have been compliant with, but not safe for P . In
fact, while an attacker could not obtain information about the anonymized indi-
vidual x, and thus could not have learned Comedian(x), other sources might have
provided the information that Ben’s mother is a comedian that is married to Jerry.
The quantified ABox ∃{y}.{mother(BEN, y),Comedian(y), spouse(y, JERRY)}
representing this information is compliant, and adding it to the above ABox re-
veals that Ben is an instance of P . Thus, Ben needs to remove Comedian(JERRY)
as well, which finally results in a quantified ABox that is safe for P :

∃{x}.{mother(BEN, x), spouse(x, JERRY)}. (3)

We show in this paper that, whether or not a given quantified ABox is safe
for such a singleton policy, can be decided in polynomial time. In addition we
describe how to compute an optimal safe generalization of a non-safe ABox in
exponential time, where optimal means that the least amount of information is
lost. In our example, the finally obtained safe ABox is actually not optimal.

2 Preliminaries

As mentioned earlier, a specific instance of the safety problem is determined by
the available query language, which is used to formulate the safety policy, and the
formalism for representing the data to be published. Following [3], we employ EL
concepts as queries and represent the data as quantified ABoxes. The latter differ
from the ABoxes usually employed in DL [1] in that (i) concept assertions are
restricted to concept names, and (ii) existentially quantified variables can be used
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to represent anonymous individuals. While (ii) increases the expressive power
of the formalism, (i) is not a real restriction since concept assertions involving
complex concepts can be simulated based on the expressiveness provided by (ii).

More formally, we fix a signature Σ, which is the disjoint union of a set ΣO of object
names, a set ΣC of concept names, and a set ΣR of role names. A quantified ABox
∃X.A consists of a finite subset X of ΣO and a matrix A, which is a finite set
containing concept assertions A(u) and role assertions r(u, v) where u, v ∈ ΣO,
A ∈ ΣC, and r ∈ ΣR. The elements of X are called variables. An individual name
in ∃X.A is an object name that occurs in A and is not a variable. We denote
the set of these individual names as ΣI(∃X.A), or simply as ΣI if the quantified
ABox is clear from the context.1 A traditional ABox is a quantified ABox where
the quantifier prefix is empty. Instead of ∃∅.A we simply write A. The matrix
A of a quantified ABox ∃X.A is such a traditional ABox.

The semantics of quantified ABoxes is defined using interpretations, which are of
the form I = (∆I , ·I), where ∆I (the domain) is a non-empty set and ·I (the
interpretation function) maps each object name u from ΣO to an element uI of
∆I , each concept name A from ΣC to a subset AI of ∆I , and each role name
r from ΣR to a binary relation rI over ∆I . The interpretation I is a model of
∃X.A if there is an interpretation J with the same the domain as I such that
the interpretation functions ·J and ·I coincide on Σ \X, uJ ∈ AJ holds for each
A(u) ∈ A, and (uJ , vJ ) ∈ rJ holds for each r(u, v) ∈ A. The quantified ABox
∃X.A entails the quantified ABox ∃Y.B (∃X.A |= ∃Y.B) if each model of ∃X.A
is a model of ∃Y.B.

Following [3], when considering two quantified ABoxes ∃X.A and ∃Y.B, we
henceforth assume without loss of generality that they are renamed apart in the
sense that X is disjoint with Y ∪ΣI(∃Y.B) and Y is disjoint with X ∪ΣI(∃X.A).

As pointed out in [3], quantified ABoxes and conjunctive queries are essentially
the same. In particular, ABox entailment coincides with query containment. It
follows that the entailment problem for quantified ABoxes is NP-complete and
that ∃X.A entails ∃Y.B iff there is a homomorphism from ∃Y.B to ∃X.A. Such
a homomorphism is a mapping h : ΣI(∃Y.B) ∪ Y → ΣI(∃X.A) ∪ X such that
h(a) = a for each a ∈ ΣI(∃Y.B),2 and A(u) ∈ B implies A(h(u)) ∈ A, and
r(u, v) ∈ B implies r(h(u), h(v)) ∈ A.

The set of EL concept descriptions over Σ is defined by induction: any concept
name A ∈ ΣC as well as > (top concept) belongs to this set, and if r ∈ ΣR is a
role name and C,D are known to belong to the set, then C u D (conjunction)
and ∃r.C (existential restriction) belong to it as well. Given an interpretation I,
we extend ·I to EL concept descriptions:

• (∃r.C)I := { δ | (δ, γ) ∈ rI and γ ∈ CI for some γ ∈ ∆I };
1We use a, b, c for individual names, u, v, w for object names, and x, y, z for variables.
2More specifically, we require h(a) = a and a ∈ ΣI(∃X.A) for each a ∈ ΣI(∃Y.B).
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• (C uD)I := CI ∩DI .

Given EL concept descriptions C and D, we say that C is subsumed by D (C v∅
D) if CI ⊆ DI holds for each interpretation I; C is equivalent to D (C ≡∅ D)
if C v∅ D and D v∅ C, and C is strictly subsumed by D (C @∅ D) if C v∅ D
and C 6≡∅ D. The subscript ∅ in v∅ indicates that no terminological axioms are
available, i.e., we consider subsumption w.r.t. the empty TBox. If furthermore
∃X.A is a quantified ABox and u is an object name, then we say that u is
an instance of C w.r.t. ∃X.A (∃X.A |= C(u)) if uI ∈ CI is satisfied for each
model I of ∃X.A. The subsumption and the instance problem are known to
be solvable in polynomial time [4, 3]. In particular, we have the following two
recursive characterizations.

Lemma 1. Let C,D be EL concept descriptions. Then C v∅ D holds iff the
following two statements are satisfied:

1. A ∈ Conj(D) implies A ∈ Conj(C) for each concept name A;

2. for each existential restriction ∃r.F ∈ Conj(D), there is an existential re-
striction ∃r.E ∈ Conj(C) such that E v∅ F .

Lemma 2. Let A be an ABox, C an EL concept description, and u ∈ ΣO. Then
A |= C(u) holds iff the following two statements are satisfied:

1. for each concept name A ∈ Conj(C), the ABox A contains A(u);

2. for each existential restriction ∃r.D ∈ Conj(C), the ABox A contains a role
assertion r(u, v) such that A |= D(v).

An EL atom is either a concept name A or an existential restriction ∃r.C. Clearly,
any EL concept description C is a conjunction of atoms. We call this the top-level
conjunction of C and denote the set of atoms occurring it as Conj(C). The set
of atoms occurring as subconcepts of C is defined as Atoms(C) := Conj(C) ∪⋃
{Atoms(D) | ∃r.D ∈ Conj(C) }. We will also employ the reduced forms Cr of
EL concept descriptions C [14], which are defined as follows: Ar := A for A ∈ ΣC;
(∃r.C)r := ∃r.Cr; and (C u D)r := Cr if C v∅ D, (C u D)r := Dr if D @∅ C,
and (C u D)r := Cr u Dr if C and D are incomparable w.r.t. subsumption. As
shown in [14], C ≡∅ Cr and C ≡∅ D implies that Cr and Dr are equal up to
associativity and commutativity of conjunction.

Finally, let us come back to the claim that concept assertions C(a) involving
complex concept descriptions C can be expressed by quantified ABoxes. To that
purpose, we view EL concept descriptions as trees and use paths in these trees
as variables. More formally, a path in an EL concept description C is a sequence
p = D0

r1−→ D1
r2−→ . . . rn−→ Dn such that D0 = C and ∃ri.Di ∈ Conj(Di−1) for

each index i ∈ {1, . . . , n}. We call target(p) := Dn the target of p. Note that
n = 0 is possible, i.e., C is always a path in C, called the root. The set of all
paths in C is denoted by Paths(C). By viewing the elements of Paths(C)\{C} as
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new object names, the ABox translation of C(a) can be defined as the quantified
ABox ∃(Paths(C) \ {C}).AC(a) where, for all paths p, q ∈ Paths(C), A(p) is in
AC(a) if A ∈ Conj(target(p)) and where r(p, q) is in AC(a) if q extends p with
one r-edge, i.e., if q = p r−→ D for some ∃r.D ∈ Conj(target(p)), and where we
finally replace each occurrence of C in position of an object name in AC(a) with
the individual name a. Note that this quantified ABox contains a as the only
individual name, whereas all paths in Paths(C) \ {C} are variables. It is clearly
equivalent to the assertion C(a).

Similarly, we define the ABox translation of an EL concept description C as the
quantified ABox ∃Paths(C).AC where A(p) is in AC if A ∈ Conj(target(p)) and
where r(p, q) is in AC if q = p r−→ D for some ∃r.D ∈ Conj(target(p)). Note that,
in the case where C is a concept name A, the symbol A would need to be both
a concept name and an object name, which is forbidden by the very definition
of a signature. Without loss of generality we assume that in such a case the
occurrences of the symbol A in place of an object name is suitably replaced by
another symbol.

3 A Characterization of Safety

We define the notions of compliance and safety, and then give a characterization
of safety for the case of singleton policies. This characterization provides us with
a polynomial time decision procedure for safety in this restricted setting. The
exact complexity of deciding safety in the general case is still open, though it is
easy to show an NP upper bound using ideas from [12, 13].

A policy P is a finite set of EL concept descriptions. A quantified ABox ∃X.A
is compliant with P if it does not contain an individual name that belongs to a
concept in P , i.e., there does not exist a policy concept P ∈ P and an individual
name a ∈ ΣI(∃X.A) such that ∃X.A |= P (a). Testing for compliance thus
boils down to solving the instance problem, and can consequently be realized in
polynomial time.

Safety is a stronger notion, which requires compliance to be preserved under
addition of any compliant data. More formally, ∃X.A is safe for the policy P if,
for each quantified ABox ∃Y.B that is compliant with P and renamed apart from
∃X.A, the union ∃X.A∪∃Y.B := ∃(X ∪Y ).(A ∪ B) is compliant with P . Since
the empty ABox is always compliant and renamed apart, safety for P implies
compliance with P , but the opposite implication need not hold, as illustrated by
our example in the introduction.

The goal of this section is to find necessary and sufficient conditions for safety
in the case where the policy is a singleton set, i.e., P = {P} for an EL concept
description P , where we assume w.l.o.g. that P is reduced. We also assume
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that P is not > and that the given quantified ABox ∃X.A contains at least one
individual name since otherwise safety is trivial to decide.

In [2], safety was investigated for data represented by EL instance stores, i.e., by
traditional ABoxes with complex concept assertions, but without role assertions.
The results proved in [2] can be used to derive the following characterization of
safety for general policies: a given instance store is safe for the policy P iff it is
compliant with Conj(P) :=

⋃
{Conj(P ) | P ∈ P }. This characterization reduces

safety in polynomial time to compliance.

In our setting, compliance with the top-level conjuncts of the policy concept is
still a necessary condition for safety, but it is no longer sufficient. In fact, it is
easy to see that each quantified ABox that is safe for {P} must also be compliant
with Conj(P ). Assume that C is a top-level conjunct of the policy concept P such
that ∃X.A entails C(a). We write P \ C for the concept obtained from P by
deleting C from the top-level conjunction. Now assume that ∃Y.B is the ABox
translation of (P \ C)(a). Since the policy concept P is assumed to be reduced,
we infer that (P \ C) 6v∅ C, which implies that ∃Y.B is compliant with {P}.
However, the union of ∃X.A and ∃Y.B clearly entails P (a).

Example 3. To illustrate the above observation, we consider the policy concept
P := A u B u ∃r.A. The ABox ∃∅.{A(a)} is compliant with {P}, but it entails
A(a) for the top-level conjunct A of P . This ABox is not safe for {P} since, on
the one hand, the ABox ∃{x}.{B(a), r(a, x), A(x)} complies with {P}, but, on
the other hand, its union with ∃∅.{A(a)} entails that a is an instance of P . Note
that the second ABox ∃{x}.{B(a), r(a, x), A(x)} is (equivalent to) the ABox
translation of (P \ A)(a) = (B u ∃r.A)(a).

Due to the presence of role assertions, safety enforces an even stronger condition.
Not only the atoms appearing in the top-level conjunction of P need to be con-
sidered, but all atoms occurring somewhere in P , i.e., all elements of Atoms(P ).
Such an atom is either a concept name or an existential restriction.

First, consider a concept name A that occurs in the policy concept P , i.e., A ∈
Atoms(P ). The case where A is a top-level conjunct has already been investigated
above. So assume that A is not in the top-level conjunction of P , i.e., there is
a path p in P with at least one edge such that A is in Conj(target(p)), and
assume that ∃X.A entails A(a). Construct the ABox ∃Y.B by taking the ABox
translation of P (b), for a fresh individual name b, but removing the concept
assertion A(p) and then replacing p with a. The remaining information on a
in ∃Y.B, which is the concept target(p) \ A, cannot be subsumed by the policy
concept description P (since the role depth3 of target(p) is strictly smaller than
the role depth of P ). Furthermore, b cannot be an instance of P (since P is
reduced and we have removed one occurrence of A). It follows that ∃Y.B is

3The role depth of an EL concept description is the maximal nesting of existential restrictions
in this description.



3 A CHARACTERIZATION OF SAFETY 8

b

a �Ap

p r−→ C
r

Figure 1: Constructing a counterexample against safety when the ABox does not
comply with an atom ∃r.C occurring in the policy concept description.

compliant with {P}, but its union with ∃X.A is not since it reveals the sensitive
information that b is an instance of P .

Example 4. Consider the policy concept P := B u ∃r.A, for which the concept
name A is an element of Atoms(P ). In particular, A is a top-level conjunct of the
target of the path P r−→ A. The ABox ∃∅.{A(a)} entails A(a) and it is not safe
for {P}. To see the latter, note that the ABox ∃∅.{B(b), r(b, a)} is compliant
with {P}, and that its union with ∃∅.{A(a)} entails P (b). The second ABox
∃∅.{B(b), r(b, a)} was exactly obtained by applying the general construction
sketched above to this specific example.

For an existential restriction ∃r.C instead of the concept name A, we proceed
in a similar way, except that during the construction of ∃Y.B we do not remove
A(p), but instead remove the assertion r(p, p r−→ C) as well as all assertions
involving a path with prefix p r−→ C. This corresponds to removing from the
ABox translation the part corresponding to the subconcept C. This construction
is depicted in Figure 1, where the gray area depicts the parts remaining in the
counterexample ABox ∃Y.B, while the blue area is removed.

Example 5. Take P := B u ∃s.∃r.> as the policy concept. Atoms(P ) contains
the existential restriction ∃r.>. More specifically, ∃r.> is in Conj(target(P s−→
∃r.>)). The quantified ABox ∃{x}.{r(a, x)} entails ∃r.>(a). The construction
sketched above yields the ABox ∃∅.{B(b), s(b, a)}. This ABox clearly com-
plies with {P}, but its union with ∃{x}.{r(a, x)} entails P (b). Consequently,
∃{x}.{r(a, x)} is not safe for {P}.

Summing up, we have seen that safety for {P} implies compliance with the ex-
tended policy Atoms(P ), which contains each atom C that is a top-level conjunct
of target(p) for some path p in the policy concept P . Distinguishing between the
two types of atoms and using the characterization of the instance problem given
by Lemma 6 in [3], this fact can be stated as follows.
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Lemma 6. If ∃X.A is safe for {P}, then ∃X.A is compliant with Atoms(P ),
i.e., the following two conditions are satisfied:

1. For each individual name a and for each concept name A ∈ Atoms(P ), the
concept assertion A(a) is not in A.

2. For each individual name a, for each role assertion r(a, u) in A, and for
each existential restriction ∃r.C in Atoms(P ), the matrix A does not entail
C(u).

It turns out, however, that compliance with Atoms(P ) is still not sufficient to
ensure safety for {P}. A counterexample is the following, which illustrates that
it is not necessary to find a whole element of Atoms(P ) in the ABox to lose safety.

Example 7. Consider ∃X.A := ∃{x}.{r(a, x), A(x), s(x, b)} and the policy
concept P := Au∃r.(Au∃s.A). Note that ∃X.A is compliant with Atoms(P ) =
{∃r.(A u ∃s.A), ∃s.A, A}. However, ∃X.A is not safe for {P}: for the ABox
∃Y.B := ∃∅.{A(a), A(b)}, which is compliant with {P}, the union ∃X.A∪∃Y.B
entails P (a). The reason is that, while we do not find the whole atom ∃r.(A u
∃s.A) in ∃X.A, we find the part ∃r.(A u ∃s.>). The concept name A missing
in the existential restriction ∃s.> is added by the assertion A(b) in the attacker
ABox ∃Y.B.

To formalize what it means to “find part of an atom” in a quantified ABox, we will
use the notion of a partial homomorphism. To motivate this notion, we first refor-
mulate the second condition in Lemma 6 using the following homomorphism char-
acterization of the instance problem, which is an easy consequence of Lemma 6
in [3]. For a quantified ABox ∃X.A, the matrix A entails C(u) iff there is a ho-
momorphism from C to ∃X.A at u, which is a mapping h : Paths(C)→ ΣI ∪X
satisfying the following conditions:

1. h(C) = u

2. For each p ∈ Paths(C), the following two conditions hold:

(a) A(j(p)) ∈ A for each concept name A ∈ Conj(target(p)),
(b) r(j(p), j(p r−→ D)) ∈ A for each existential restriction ∃r.D ∈

Conj(target(p)).

The second condition in Lemma 6 can now be reformulated as

2. For each individual name a, for each role assertion r(a, u) in A, and for
each existential restriction ∃r.C in Atoms(P ), there is no homomorphism
from C to ∃X.A at u.

The idea is now to replace “homomorphism” in this condition with “partial ho-
momorphism.” Intuitively, a partial homomorphism is almost a homomorphism
from the concept C to the quantified ABox ∃X.A at u, which can, however, omit
mapping some parts of C into the ABox in case the ABox has an individual at
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Figure 2: An ideal induced by a maximal antichain in a tree

the “cut-off points.” In order to give a more formal definition of partial homo-
morphisms, we first need to introduce some auxiliary notions. The set Paths(C)
of all paths in an EL concept description C is partially ordered by the prefix
relation ≤. The smallest path is C (the root) and the maximal paths are those
p ∈ Paths(C) where Conj(target(p)) does not contain any existential restriction,
which we call leaves. Each subset X ⊆ Paths(C) induces an ideal ↓X := { p |
p ≤ q for some q ∈ X }. Furthermore, an antichain is a subset A ⊆ Paths(C)
such that no two paths in A are comparable w.r.t. ≤. An antichain is maximal
if there is no strict superset that is an antichain as well. A maximal antichain
A corresponds to a cut through the syntax tree of C. Figure 2 gives an abstract
visualization of a maximal antichain and the ideal induced by it: the antichain
consists of the blue nodes and its induced ideal consists of all non-white nodes.
The white nodes are pruned away by the cut.

Definition 8. Let C be an EL concept description and ∃X.A be a quantified
ABox in which u is an object. A partial homomorphism from C to ∃X.A at u
is a pair (j,B) consisting of a maximal antichain B of (Paths(C),≤), called the
border, and a mapping j : ↓B → ΣI ∪ X such that the following conditions are
satisfied.

1. j(C) = u

2. If p ∈ ↓B \B (i.e., p is strictly below the border), then j(p) ∈ X.
3. If p ∈ B \Max≤(Paths(C)) (i.e., p is in the border but is not a leaf), then
j(p) ∈ ΣI.

4. If p ∈ ↓B (i.e., p is in the border or is below the border) and j(p) ∈ X,
then the following two conditions are satisfied:
(a) A(j(p)) ∈ A for each concept name A ∈ Conj(target(p)),
(b) r(j(p), j(p r−→ D)) ∈ A for each existential restriction ∃r.D ∈

Conj(target(p)).

Intuitively, a partial homomorphism only maps paths in C between the root
and the border to objects of the ABox ∃X.A. Cut-off points (paths p ∈ B \
Max≤(Paths(C))) are mapped to individuals.

Example 9. Consider the concept description

C := A u ∃r.(B u ∃s.(∃r.A u ∃r.B)) u ∃s.(A u ∃r.A u ∃r.B),
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Figure 3: A partial homomorphism (j,B)

which is depicted on the left-hand side of Figure 3. The three blue nodes form
a maximal antichain, where for instance the right-most blue node represents the
path C s−→ Au∃r.Au∃r.B r−→ B. Denote this antichain by B. The induced ideal
↓B contains all non-white nodes. Consider now the ABox ∃X.A shown on the
right-hand side of Figure 3, which contains the assertions r(a, x), A(x), among
others. The pair (j,B) is a partial homomorphism from C to ∃X.A at x, where
the mapping j is represented by the dashed lines in Figure 3.

Returning to Example 7, we see that the filler Au∃s.A of the existential restric-
tion ∃r.(Au∃s.A) ∈ Atoms(P ) can be partially homomorphically mapped to the
ABox ∃X.A at x via the partial homomorphism (j,B) where B = {Au∃s.A s−→
A} and j is defined by setting j(A u ∃s.A) := x and j(A u ∃s.A s−→ A) := b.
Moreover, A contains the role assertion r(a, x) where a is an individual. This
role assertion together with the partial homomorphism can be used to construct
a compliant quantified ABox ∃Y.B that successfully attacks ∃X.A. In fact, it
suffices to know the remaining parts of the policy concept A u ∃r.(A u ∃s.A)
that are not homomorphically mapped to ∃X.A, which is the top-level conjunct
A and the concept name A within the existential restriction ∃s.A. These two
parts are put into B through the assertions A(a) and A(b). As pointed out in
Example 7, the quantified ABox ∃Y.B obtained this way complies with {P}, but
its union with ∃X.A is no longer compliant.

We will show that the construction of an attacking quantified ABox is possible not
only in this concrete example, but in general whenever such a situation occurs.
To be more precise, assume that there is some existential restriction ∃r.C ∈
Atoms(P ) (which is a top-level conjunct of target(p) for some path p in the policy
concept P ) and some role assertion r(a, u) ∈ A for an individual a such that
there exists a partial homomorphism (j,B) from C to ∃X.A at u. Then it is
possible to construct an attacking quantified ABox in a way similar to the one
depicted in Figure 1. The only difference is that we do not cut out the whole
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Figure 4: Constructing a counterexample against safety for the case where the
ABox allows for a partial homomorphism

concept C but only those parts that are already present in the ABox due to the
partial homomorphism. This idea is depicted in Figure 4. Thus, we strengthen
the second condition in Lemma 6 as follows; in particular, the below lemma
supersedes Lemma 6.

Lemma 10. If ∃X.A is safe for {P}, then the following conditions are satisfied:

1. For each individual name a and for each concept name A ∈ Atoms(P ), the
concept assertion A(a) is not in A.

2. For each individual name a, for each role assertion r(a, u) in A, and for each
existential restriction ∃r.C in Atoms(P ), there is no partial homomorphism
from C to ∃X.A at u.

Proof. We prove the contraposition and we start with the more involved second
condition. Assume that there is some individual name a, some role assertion
r(a, u) in A, and an existential restriction ∃r.C in Atoms(P ) such that there is a
partial homomorphism (j,B) from C to ∃X.A at u. Since ∃r.C is in Atoms(P ),
there exists a path p ∈ Paths(P ) such that ∃r.C ∈ Conj(target(p)).

We have briefly described above how an ABox ∃Y.B can be constructed from the
partial homomorphism. Formally, the construction is as follows.

(I) Initialize ∃Y.B as the ABox translation ∃Paths(P ).AP , cf. Page 6.

(II) Recall that the role assertion r(a, u) is inA. So we remove the corresponding
role assertion r(p, p r−→ C) from ∃Y.B.
Since p r−→ C is a path in P and j−1(X)4 is a subset of Paths(C), also p r−→ q
is a path in P for each path q ∈ j−1(X). We now remove from ∃Y.B each

4Recall that, for a mapping f : P → Q between two sets P and Q, the pre-image is defined
as the mapping f−1 : ℘(Q)→ ℘(P ), X 7→ { p | f(p) ∈ X }.
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axiom involving a path p r−→ q for some q ∈ j−1(X), i.e., we remove the
following subset:

{A(p r−→ q) | A ∈ Conj(target(q)) for some q ∈ j−1(X) }
∪ { r(p r−→ q, p r−→ q s−→ D) | ∃s.D ∈ Conj(target(q)) for some q ∈ j−1(X) }.

Afterwards, we also remove all p r−→ q for q ∈ j−1(X) from the variable set
Y .

Note that the partial homomorphism (j,B) induces the following subset of
∃X.A, which corresponds to the above removed subset:

{A(j(q)) | A ∈ Conj(target(q)) for some q ∈ j−1(X) }
∪ { r(j(q), j(q s−→ D)) | ∃s.D ∈ Conj(target(q)) for some q ∈ j−1(X) }.

(III) Let q1, . . . , qn be those paths from B where j(qi) ∈ ΣI. Then remove each
p r−→ qi from Y and replace in B each p r−→ qi with the individual name j(qi).

Replace the variable p with a and remove p from Y . If p 6= P , then choose
some fresh individual name b such that b 6= a and b 6= j(qi) for each i,
replace the variable P by b, and remove P from Y .

This construction is depicted in Figure 4; the gray area indicates which part
remains in the counterexample ABox ∃Y.B while the blue area is removed.

First note that ∃Y.B is always acyclic—more specifically, it is a forest with roots
j(q1), . . . , j(qn), and b (if p 6= P ) or a (if p = P ). We need to show that ∃Y.B is
compliant with {P}. For each individual name c ∈ ΣI \ {a, b}, the most specific
concept of which c is an instance is

d
{ target(q) | j(q) = c }. Thus, c is an

instance of P if and only if
d
{ target(q) | j(q) = c } is subsumed by P . However,

the latter subsumption can never be satisfied, simply because the role depth of
each target(q) is strictly smaller than the role depth of P .

Analogously, (target(p) \ ∃r.C) u
d
{ target(q) | j(q) = a } is the most specific

concept of which a is an instance. Since P is reduced, we infer that target(p) \
∃r.C 6v∅ ∃r.C. Furthermore, we have that

d
{ target(q) | j(q) = a } 6v∅ ∃r.C,

since each q is a path in C, i.e., the role depth of each target(q) is strictly smaller
than rd(∃r.C). We conclude that a is no instance of ∃r.C.

If p 6= P , then the above most specific concept of a cannot be subsumed by
P since its role depth is too small, i.e., a is no instance of P . If p = P (i.e.,
target(p) = P ), then a cannot be an instance of P simply because ∃r.C is a
top-level conjunct of P of which a is already not an instance.

It remains to show that, in the case p 6= P , the individual b is no instance of
the policy concept P . Assume to the contrary that b is an instance of P , i.e.,
there exists a homomorphism h from (the ABox translation of) P to ∃Y.B at b.
We immediately conclude that h(P ) = b, and we will show in the following that
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h(p) = a. For this purpose we first show by induction that h(p′) = p′ holds true
for each strict prefix p′ of p except P (i.e., where P < p′ < p). W.l.o.g. let

p = P r1−→ C1
r2−→ . . . rn−→ Cn.

We define pi := P r1−→ C1
r2−→ . . . ri−→ Ci for each i ∈ {0, . . . , n}. The pi for i < n−1

are exactly the strict prefixes of p (where p0 equals P ) and pn equals p.

If we had h(pi
ri+1−−→ Ci+1) = pi

ri+1−−→ Di+1 for some ∃ri+1.Di+1 ∈ Conj(target(pi))\
{∃ri+1.Ci+1}, then the restriction of h to paths with prefix pi

ri+1−−→ Ci+1 would
essentially be a homomorphism from Ci+1 to Di+1, which would certify that Di+1

is subsumed by Ci+1—a contradiction, since the policy concept P is reduced.
In particular, note that during the construction of ∃Y.B we have not modified
any axiom involving a path with prefix pi

ri+1−−→ Di+1, i.e., the (maximal) sub-
ABox of ∃Y.B containing only objects that are paths with prefix pi

ri+1−−→ Di+1

is isomorphic to (the ABox translation of) Di+1. By induction, we infer that
h(pi) = pi for each index i ∈ {1, . . . , n− 1} and further that h(p) = a.

We conclude that b can only be an instance of P if a is an instance of ∃r.C,
which is not the case as we have already shown above.

By construction, the union of ∃X.A and ∃Y.B entails P (b) if P 6= p and en-
tails P (a) otherwise; a homomorphism h from P to ∃X.A ∪ ∃Y.B at b or at a,
respectively, is as follows:

h(P ) :=

{
b if P 6= p

a otherwise

h(p) := a

h(p′) := p′ for each p′ ∈ Paths(P ) \ {P, p} with p r−→ C 6≤ p′

h(p r−→ q) := j(q) for each q ∈ ↓B
h(p r−→ q′) := p r−→ q′ for each q′ with q < q′ for some q ∈ B

Thus, the ABox ∃X.A is not safe for {P}. Note that the homomorphism h can
be seen as an extension of the mapping j of the partial homomorphism (j,B)—it
maps each path p r−→ q where q ∈ ↓B into the ABox ∃X.A (using j), and maps
the remaining paths into ∃Y.B. To see that h is indeed a homomorphism, recall
that we have constructed ∃Y.B from the ABox translation of P by cutting out
the part of ∃r.C which is already homomorphically mapped to ∃X.A by means
of the partial homomorphism. Leaving individual names aside, h is just the
identical mapping into ∃Y.B with the exception that the part of ∃r.C is mapped
via j into ∃X.A. The identical portion of h clearly satisfies the conditions of a
homomorphism, cf. Page 9, and the j-portion of h satisfies those conditions since
j already does so, cf. Definition 8.

For the remaining case, let a be an individual name and A a concept name in
Atoms(P ) such that the matrix A contains the concept assertion A(a). Since A is
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in Atoms(P ), there exists a path p ∈ Paths(P ) such that A ∈ Conj(target(p)). We
construct an ABox ∃Y.B similarly as above, but we replace Steps (II) and (III)
with the following instructions:

(I) Initialize ∃Y.B as the ABox translation ∃Paths(P ).AP , cf. Page 6.

(II) Remove the concept assertion A(p) from B.
(III) Replace the variable p with a and remove p from Y . If p 6= P , then choose

some fresh individual name b such that b 6= a, replace the variable P by b,
and remove P from Y .

Similarly as above, we conclude that ∃Y.B is a counterexample against safety of
∃X.A.

First of all, ∃Y.B is acyclic; more specifically, it is a tree with root b (if p 6= P )
or root a (if p = P ). The most specific concept of which a is an instance is
target(p) \ A. In the case p 6= P , this concept cannot be subsumed by P simply
because its role depth is too small, which yields that a is no instance of P . If
p = P (i.e., target(p) = P ), then the root a cannot be an instance of A since
P \A 6v∅ A, which yields that a cannot be an instance of P since A is a top-level
conjunct of P .

It remains to show that, in the case p 6= P , the root b is no instance of P as
well. Assuming the contrary implies the existence of a homomorphism h from
(the ABox translation of) P to ∃Y.B at b. In exactly the same manner as above
for the case of an existential restriction, we can prove that h(p) = a must hold
true. This in turn would require that a is an instance of A—a contradiction, since
target(p) \A is not subsumed by A. Thus, b is not an instance of P if p 6= P .

The two conditions stated in Lemma 10 are not only necessary, but also sufficient
for safety for a singleton policy. Before we can prove this, we need the following
auxiliary lemma.

Lemma 11. Consider two ABoxes ∃X.A and ∃Y.B. If A∪B |= C(u) for some
object u ∈ ΣI ∪ Y , but B does not entail C(u), then there exists some path p ∈
Paths(C) and some individual name a ∈ ΣI such that ∃X.A∪∃Y.B |= target(p)(a)
and ∃Y.B 6|= target(p)(a).

Proof. We prove the claim by induction on the role depth of C.

If u is an individual name, then the proof is already finished: set p := C and
a := u. Otherwise, u is a variable of the ABox ∃Y.B. Since B does not entail
C(u), there must be some top-level conjunct D ∈ Conj(C) such that the concept
assertion D(u) is not entailed by B. Furthermore, the precondition A∪B |= C(u)
implies that D(u) is entailed by A ∪ B.

If D = A is a concept name, then Lemma 2 implies that the concept assertion
A(u) is no element of B but is an element of A ∪ B. It follows that A contains
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A(u)—a contradiction, since u ∈ Y and (ΣI∪X)∩Y = ∅. For the induction base,
we infer that u cannot be a variable; otherwise the top-level conjunct D must be
an existential restriction ∃r.E and we proceed as follows.

From A ∪ B |= ∃r.E(u) we infer by an application of Lemma 2 that A ∪ B
contains some role assertion r(u, v) such that A ∪ B entails E(v). Note that v
is an object in ΣI ∪ Y . An application of the induction hypothesis yields some
path q ∈ Paths(E) and some individual name a ∈ ΣI such that ∃X.A ∪ ∃Y.B |=
target(q)(a) and ∃Y.B 6|= target(q)(a). Since p := C r−→ q is a path in C such that
target(p) = target(q), we are done.

Theorem 12. ∃X.A is safe for {P} iff the following two conditions are satisfied:

1. For each individual name a and for each concept name A ∈ Atoms(P ), the
concept assertion A(a) is not in A.

2. For each individual name a, for each role assertion r(a, u) in A, and for each
existential restriction ∃r.C in Atoms(P ), there is no partial homomorphism
from C to ∃X.A at u.

Proof. The only-if direction has been shown in Lemma 10. We now turn our
attention to proving the if direction.

Consider some ABox ∃X.A that is not safe for {P}. Non-safety implies that
there exists an ABox ∃Y.B that is compliant with {P}, but for which the union
with ∃X.A does not comply with {P}. We infer that there is some individual
name a ∈ ΣI such that ∃X.A ∪ ∃Y.B |= P (a).

We now construct a sequence ((p0, a0), (p1, a1), . . . ) with the following properties.

• pn ∈ Paths(P ), and an ∈ ΣI

• ∃X.A ∪ ∃Y.B |= target(pn)(an)

• ∃Y.B 6|= target(pn)(an)

• rd(target(pn)) > rd(target(pn+1))

The sequence starts with (p0, a0) := (P, a) where P and a are from the last
paragraph. The sequence is extended in the following way.

Let (pn, an) be the last triple that has been defined. There must be some top-
level conjunct C ∈ Conj(target(pn)) such that ∃Y.B 6|= C(an), since ∃Y.B 6|=
target(pn)(an) holds true. Note that C is an element of Atoms(P ). Further note
that ∃X.A ∪ ∃Y.B |= target(pn)(an) implies ∃X.A ∪ ∃Y.B |= C(an).

1. If C = A is a concept name, then two applications of Lemma 2 yield that the
concept assertion A(an) cannot be in B but must be in the union A∪B—we
conclude that A contains A(an) and the proof is finished.

2. In the remaining case C must be an existential restriction ∃r.D. Recall
that the union ∃X.A ∪ ∃Y.B entails ∃r.D(an). According to Lemma 2,
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there exists a role assertion r(an, u) in A∪B such that D(u) is entailed by
A ∪ B. We proceed with a case distinction.

(a) If this role assertion r(an, u) is in A, then u is an object in ΣI ∪ X.
Since A ∪ B |= D(u), there is a homomorphism h from (the ABox
translation of) D to the union ∃X.A∪∃Y.B at u. We now define the
partial homomorphism (j,B) from D to ∃X.A at u where

B :=

{
q

∣∣∣∣∣ q ∈ Paths(D) where h(q) ∈ ΣI

and h(q′) ∈ X for each prefix q′ � q

}

∪

{
q

∣∣∣∣∣ q ∈ Max≤(Paths(D)) where h(q) ∈ X
and h(q′) ∈ X for each prefix q′ � q

}

and where j := h�↓B is the restriction of the homomorphism h to
the ideal ↓B. It is easy to see that B is a maximal antichain in
(Paths(D),≤). The proof is finished.

(b) Otherwise, the role assertion r(an, u) must be in B, and u is an object in
ΣI∪Y . First note that B cannot entailD(u), since ∃Y.B does not entail
∃r.D(an). We further know that A∪B entails D(u). Lemma 11 shows
that there is some path q ∈ Paths(D) and some individual name a′ ∈ ΣI

such that the union ∃X.A ∪ ∃Y.B entails target(q)(a′) but the ABox
∃Y.B alone does not entail target(q)(a′). Note that pn ∈ Paths(P ),
∃r.D ∈ Conj(target(pn)), and q ∈ Paths(D) implies that pn

r−→ q is a
path in P as well and it holds true that target(pn

r−→ q) = target(q).
Now extend the sequence with (pn+1, an+1) := (pn

r−→ q, a′).

By construction of the sequence, the condition rd(target(pn)) > rd(target(pn+1))
is obviously satisfied for each index n except the last one. We conclude that
the sequence must be finite, i.e., it cannot be extended after a finite number of
elements. Of course, this can only be true if Case 1 or Case 2a above is satisfied
after a finite number of iterations.

Before using this characterization of safety to show that safety for singleton poli-
cies can be decided in polynomial time, let us apply it to the quantified ABoxes
considered in the introduction. The quantified ABox in (2) clearly violates the
first condition of the theorem since it contains the assertion Comedian(JERRY).
The quantified ABox in (1) violates the second condition of the theorem since
there is a partial homomorphism from Comedianu∃spouse.Comedian to the ABox
at x. This can, for example, be seen by using the condition for the existence of a
partial homomorphism given in Lemma 13 below. The existence of such a partial
homomorphism crucially depends on the presence of the assertion Comedian(x).
Since this assertion is missing in the quantified ABox in (3), this ABox satisfies
both conditions of the theorem, and thus is safe.
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Computational Complexity of Deciding Safety

First, we present a recursive characterization of existence of a partial homomor-
phism, and then show that this yields a polynomial time decision procedure for
the existence problem.

Lemma 13. There is a partial homomorphism from C to ∃X.A at u iff one of
the following two statements is satisfied:

1. u is an individual name.

2. u is a variable and the following two statements are true:

(a) For each concept name A ∈ Conj(C), the matrix A contains the concept
assertion A(u).

(b) For each existential restriction ∃r.D ∈ Conj(C), the matrix A contains
a role assertion r(u, v) such that there is a partial homomorphism from
D to ∃X.A at v.

Proof. We begin with a proof of the only if direction. Let (j,B) be a partial
homomorphism from C to ∃X.A at u. If u is an individual name, we are done.

Otherwise, consider the case where u is a variable. Then Definition 8 shows thatA
contains A(u) for each concept name A ∈ Conj(C), since j(C) = u. Furthermore,
Definition 8 implies that, for each existential restriction ∃r.D ∈ Conj(C), the
matrix A contains the role assertion r(u, j(C r−→ D)). It further follows that the
restriction (j�D,B�D) where

B�D := { p | p ∈ Paths(D) and C r−→ p ∈ B }

and j�D(q) := j(C r−→ q) for each q ∈ ↓B�D is a partial homomorphism from D
to ∃X.A at j(C r−→ D).

It remains to show the if direction. If u is an individual name, then the pair (j,B)
is a partial homomorphism where the maximal antichain is defined as B := {C}
and where the mapping j : ↓B→ ΣI ∪X is defined by j(C) := u.

Otherwise, we have the case where u is a variable and the above Statements 2a
and 2b are true. It then follows that the matrix A contains a subset

{A(u) | A ∈ Conj(C) } ∪ { r(u, v∃r.D) | ∃r.D ∈ Conj(C) }

such that, for each ∃r.D ∈ Conj(C), there is a partial homomorphism
(j∃r.D,B∃r.D) from D to ∃X.A at v∃r.D.

We construct a partial homomorphism (j,B) from C to ∃X.A at u as a union of
the partial homomorphisms (j∃r.D,B∃r.D): the maximal antichain is defined as

B := {C r−→ p | ∃r.D ∈ Conj(C) and p ∈ B∃r.D }
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and the mapping j : ↓B→ ΣI ∪X is defined by j(C) := u and further

j(C r−→ p) := j∃r.D(p)

for each ∃r.D ∈ Conj(C) and for each p ∈ ↓B∃r.D. The induced ideal of the
border B equals

↓B = {C} ∪ {C r−→ p | ∃r.D ∈ Conj(C) and p ∈ ↓B∃r.D }.

We will now verify that the four conditions in Definition 8 are satisfied.

1. j(C) = u is true by definition, see above.

2. Let p ∈ ↓B \B, i.e., p is a path strictly below the border B. If p = C,
then j(p) = j(C) = u ∈ X. Otherwise, p = C r−→ q for some q ∈ Paths(D)
and ∃r.D ∈ Conj(C) such that q ∈ ↓B∃r.D \ B∃r.D. We conclude that
j(p) = j(C r−→ q) = j∃r.D(q) ∈ X.

3. Consider some p ∈ B\Max≤(Paths(C)), i.e., p is in the borderB but is not a
leaf. Then p is of the form C r−→ q for some q ∈ B∃r.D and ∃r.D ∈ Conj(C).
Since p is no leaf (of C), it follows that q is not a leaf (of D) as well. We
conclude that j(p) = j(C r−→ q) = j∃r.D(q) ∈ ΣI.

4. Assume that p ∈ ↓B, i.e., p is in or below the border B, and let j(p) ∈ X.

(a) Consider a concept name A ∈ Conj(target(p)). We show that A(j(p)) ∈
A. In the case p = C we have j(p) = u and A ∈ Conj(C), and we have
already concluded above that A(u) is contained in A.
Otherwise, p must be of the form C r−→ q where q ∈ ↓B∃r.D and
∃r.D ∈ Conj(C). It then follows that j(p) = j(C r−→ q) = j∃r.D(q),
which yields j∃r.D(q) ∈ X and thus A(j∃r.D(q)) ∈ A, i.e., A(j(p)) ∈ A.

(b) Let ∃s.E ∈ Conj(target(p)). We will show that s(j(p), j(p s−→ E)) ∈ A.
If p = C, then j(p) = u and ∃s.E ∈ Conj(C). We already know that A
contains a role assertion s(u, v∃s.E) where v∃s.E = j∃s.E(E) = j(C s−→
E).
In the remaining case we have p = C r−→ q where q ∈ ↓B∃r.D
and ∃r.D ∈ Conj(C). Note that target(q) = target(p). Then
j(p) = j(C r−→ q) = j∃r.D(q). It follows that j∃r.D(q) ∈ X, and so
we have s(j∃r.D(q), j∃r.D(q s−→ E)) ∈ A, which implies s(j(p), j(p s−→
E)) ∈ A.

Proposition 14. It can be decided in polynomial time whether there exists a
partial homomorphism from C to ∃X.A at u.

Proof. We show the claim by induction on the role depth of C. It takes linear
time to check whether u is an individual. If so, we can immediately return an
affirmative answer. Otherwise, if u is a variable, we need to check whether the
matrix A contains the concept assertion A(u) for each concept name A in the
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top-level conjunction of C, which can clearly be done in polynomial time. For the
base case, where C only contains concept names, we are already done, and just
answer affirmatively if all the aforementioned tests succeed, and answer negatively
otherwise.

For the step case, Lemma 13 tells us that we further need to check if, for each
existential restriction ∃r.D in Conj(C), there is a role assertion r(u, v) in the
matrix A such that there is a partial homomorphism from D to ∃X.A at v.
Of course, there are at most polynomially many r-successors v of u and, for each
of them, the induction hypothesis implies that we can decide existence of a partial
homomorphism from D to ∃X.A at v in polynomial time. Thus, all required tests
can be conducted in polynomial time.

The following result is now an immediate consequence of this proposition and
Theorem 12.

Corollary 15. It can be decided in polynomial time if a quantified ABox is safe
for a singleton policy.

How to Deal with Non-Singleton Policies

To start with, let us ask whether general policies are indeed more expressive than
singleton policies. The following example answers this question in the affirmative,
by showing that not every policy is safety-equivalent to a singleton policy. Here
safety-equivalent means that the same ABoxes are safe for the two policies.

Example 16. Consider the policy P := {A, ∃r.(AuB)}, and assume that there
is a singleton policy {P} such that P is safety-equivalent to {P}.

It is easy to see that the quantified ABox ∃∅.{r(a, b), B(b)} is P-safe. Thus, it
must be {P}-safe as well. According to Theorem 12, this implies that Atoms(P )
cannot contain an existential restriction of the form ∃r.C.

We claim that this implies that the quantified ABox ∃{x}.{r(a, x), A(x), B(x)}
is safe for {P}. This yields a contradiction to our assumption that P is safety-
equivalent to {P} since this quantified ABox is not even compliant with P .

To prove the claim, we use again Theorem 12. Since the quantified ABox does
not contain a concept assertion for an individual name, the first condition of the
theorem is satified. The second condition is satisfied as well since Atoms(P ) does
not contain an existential restriction for the role r.

Our characterization of safety for the case of singleton policies cannot be extended
in a straightforward way to general policies P . The main problem appears to
be that the constructions of counterexample ABoxes employed above need not
yield compliant ABoxes. The next example shows that non-compliance with
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Atoms(P) :=
⋃
{ Atoms(P ) | P ∈ P } does not necessarily lead to a violation of

safety.

Example 17. Consider the policy P := {B u ∃r.(A1 u A2), A1}. The ABox
∃∅.{A2(a)} is easily seen to be safe for P , although it is not compliant with
Atoms(P) since A2 ∈ Atoms(P). If we had the singleton policy {B u ∃r.(A1 u
A2)}, then our construction would yield the ABox ∃∅.{B(b), r(b, a), A1(a)} as
counterexample to safety. However, since A1 ∈ P , this ABox is not compliant
with P .

A possible approach for preventing this problem is to restrict attention to the
subset SafetyAtoms(P) of Atoms(P) consisting of all atoms C that are a top-
level conjunct of target(p) for some path p in a policy concept P ∈ P , but for
which target(p) 6v∅ Q for each Q ∈ P \ {P}. If we replace Atoms(P) with
SafetyAtoms(P), then Lemma 6 also holds for non-singleton policies.

Even with this modification, Lemma 10 needs no longer hold. To see this, con-
sider Figure 4. The small gray triangles in this figure remain in the constructed
ABox, with an individual name at the root. Thus, the corresponding subconcepts
target(p r−→ qj) should not be subsumed by any policy concept since otherwise
the constructed ABox cannot be compliant. The following example shows that,
even if we impose this restriction in the definition of a partial homomorphism,
Lemma 10 still does not hold.

Example 18. Consider the policy P := {∃r.(∃r.A u ∃r.B), A u B} and the
ABox ∃X.A := ∃{x}.{r(a, x), r(x, b)}, which can easily be seen to be safe.
There is a partial homomorphism from ∃r.A u ∃r.B to the ABox at x, namely
(j, {∃r.A u ∃r.B r−→ A, ∃r.A u ∃r.B r−→ B}) where j(∃r.A u ∃r.B) := x and
j(∃r.A u ∃r.B r−→ A) := b and j(∃r.A u ∃r.B r−→ B) := b. Neither target(∃r.A u
∃r.B r−→ A) nor target(∃r.A u ∃r.B r−→ B) is subsumed by a policy concept,
but their conjunction is subsumed by A u B, i.e., the constructed ABox cannot
be compliant. In particular, ∃Y.B looks as follows: ∃∅.{A(a), A(b), B(b)}. It
entails (A uB)(b).

At the moment, we do not have a characterization of safety for the case of non-
singleton policies that is in the spirit of Theorem 12. Nevertheless, using ideas
from [12, 13] it is easy to see that safety for general policies is in NP.

Proposition 19. Safety for general policies can be decided in nondeterministic
polynomial time.

Proof Sketch. The main idea underlying the proof is that, whenever ∃X.A is not
safe for P , then there exists a small ABox ∃Y.B that is compliant with P and
such that ∃X.A ∪ ∃Y.B is not compliant with P , where small means that the
number of object names occurring in B is polynomially bounded by the maximal
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size of the concepts in P . Such an ABox can then be guessed in nondeterministic
polynomial time.

The reason for the existence of such a small counterexample to safety is the
following. If ∃X.A is not safe for P , then there exists a compliant quantified
ABox ∃Z.C such that ∃X.A ∪ ∃Z.C |= P (a) for an individual a and a policy
concept P ∈ P . Thus, there is a homomorphism from the ABox translation of
P (a) to ∃X.A ∪ ∃Z.C. Let ∃Y.B be the quantified ABox obtained from ∃Z.C
by removing all objects that are not in the image of this homomorphism. This
provides us with the small ABox we are looking for.

4 The Optimal Safe Anonymization

If a given quantified ABox turns out not to be safe, we want to modify it in
a minimal way to make it safe before publishing it. Given a quantified ABox
∃X.A and a policy P , we say that ∃Y.B is a P-compliant anonymization (P-
safe anonymization) of ∃X.A if ∃X.A |= ∃Y.B and ∃Y.B is compliant with P
(safe for P). Such an anonymization ∃Y.B is optimal if there is no P-compliant
anonymization (P-safe anonymization) of ∃X.A that lies strictly between ∃X.A
and ∃Y.B w.r.t. the entailment relation. Thus, optimality means that we mini-
mize the amount of entailments lost by the anonymization.

The problem of computing optimal P-compliant anonymizations of quantified
ABoxes for EL policies was investigated in detail in [3], where it is shown that
a quantified ABox may in the worst case have exponentially many P-compliant
anonymizations of exponential size. We show below that, for safety w.r.t. single-
ton policies, there always exists an (up to equivalence) unique optimal anonymiza-
tion, which may, however, still be of exponential size.

Our construction of this unique safe anonymization is inspired by the ap-
proach employed in [3] for the case of compliance. The main idea under-
lying that approach is that one needs to generate copies of objects, rather
than just remove assertions. For example, consider the quantified ABox
∃{x}.{r(a, x), A1(x), A2(x), A3(x)} and the policy concept P := ∃r.(A1uA2uA3).
Compliance can, e.g., be achieved by removing A1(x), but the resulting ABox is
not optimal. In fact, one can obtain an optimal compliant anonymization by intro-
ducing three copies y1, y2, y3 of x, making all of them variables and r-successors
of a, and adding for all i, 1 ≤ i ≤ 3, the assertions Ak(yi) and A`(yi) where
{k, `} = {1, 2, 3} \ {i}. In the general construction, the copies of an object name
u occurring in ∃X.A are basically of the form yu,K where K ⊆ Atoms(P). The
variables yi in our example would actually be denoted by yx,{Ai} in this construc-
tion. The quantified ABox ∃Y.B containing these copies is then defined in a way
which ensures that
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• ∃Y.B does not entail C(yu,K) if C ∈ K.

A so-called compliance seed function determines which copy of an individual a is
employed to represent this individual. It is defined in a way that ensures compli-
ance (see [3] for details). In our example, the seed function uses ya,{∃r.(A1uA2uA3)}
to represent a.

Inspired by this idea, we also employ such copies yu,K in our construction of the
optimal safe anonymization ∃Y.B. However, we view all such copies as variables,
and explicitly keep the individual names from ∃X.A to denote individuals. The
intuition underlying the sets K also differs from the one in the case of compliance.
In fact, the ABox ∃Y.B is constructed such that the following holds:

• if yu,K is a variable in ∃Y.B and C ∈ K, then there is no partial homomor-
phism from C to ∃Y.B at yu,K.

Given the close connection between the entailment of concept assertions and the
existence of homomorphisms, this condition actually modifies the one used in the
case of compliance by replacing “homomorphism” with “partial homomorphism.”

Before defining the optimal safe anonymization of ∃X.A formally, we introduce
an optimization (also employed in [3]) that allows us to reduce the number of
copies yu,K that must be introduced. This optimization is based on the following
lemma.

Lemma 20. Let C,D be EL concept descriptions and ∃X.A a quantified ABox.
If there is a partial homomorphism from C to ∃X.A at u and C v∅ D, then there
also is a partial homomorphism from D to ∃X.A at u.

Proof. Assume that there is a partial homomorphism from C to ∃X.A at u and
further that C is subsumed by D. According to Lemma 13, the first assumption
implies that we need to distinguish two cases.

1. In the first case, u is an individual name. Lemma 13 immediately yields
that there exists a partial homomorphism from D to ∃X.A at u as well.

2. In the second case, u is a variable and further the two Statements 2a and 2b
in Lemma 13 are satisfied for C. To justify the existence of a partial homo-
morphism from D to ∃X.A at u we shall show that the two Statements 2a
and 2b are also true for D.

(a) Let A ∈ Conj(D). Due to C v∅ D, we also have that A ∈ Conj(C), cf.
Lemma 1. Since Statement 2a is true for C, it follows that A contains
the concept assertion A(u). Thus, Statement 2a is satisfied for D as
well.

(b) Let ∃r.F ∈ Conj(D). Since C v∅ D, Lemma 1 yields some ∃r.E ∈
Conj(C) such that E v∅ F . As Statement 2b holds true for C, we
infer that A contains some role assertion r(u, v) such that there is a
partial homomorphism from E to ∃X.A at v. Induction yields that
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there is a partial homomorphism from F to ∃X.A at v, which shows
that Statement 2b holds for D as well.

Consequently, if C v∅ D and D ∈ K prevents the existence of a partial homo-
morphism from D to ∃Y.B at yu,K, then this also prevents the the existence of
a partial homomorphism from C to ∃Y.B at yu,K. Thus, it is sufficient to have
only the subsumer D in K. This insight allows us to restrict the sets K to ones
not containing any v∅-comparable elements.

Definition 21. The canonical safe anonymization sa(∃X.A, {P}) of ∃X.A w.r.t.
some singleton policy {P} is the ABox ∃Y.B consisting of the following compo-
nents. As set of variables, we use

Y :=

{
yu,K

∣∣∣∣∣ u ∈ ΣI ∪X, K ⊆ Atoms(P ), and
K does not contain v∅-comparable atoms

}
.

The matrix B is then constructed as follows:

1. Add the concept assertion A(a) to B if A(a) is in A and A 6∈ Atoms(P ).

2. Add the concept assertion A(yu,K) to B if A(u) is in A and A 6∈ K.
3. Add the role assertion r(a, b) to B if r(a, b) is in A and there is no existential

restriction ∃r.C ∈ Atoms(P ).

4. Add the role assertion r(a, yv,L) to B if r(a, v) is inA and, for each existential
restriction ∃r.C ∈ Atoms(P ), the set L contains some atom subsuming C,
i.e., there is some D ∈ L such that C v∅ D.

5. Add the role assertion r(yu,K, yv,L) to B if r(u, v) is in A and, for each
existential restriction ∃r.C ∈ K, the set L contains some atom subsuming
C, i.e., there is some D ∈ L such that C v∅ D.

6. Add the role assertion r(yu,K, b) to B if r(u, b) is in A and there is no
existential restriction ∃r.C ∈ K.

Note that no role assertion is added to the matrix B for the case C = > in the
above Statements 4 and 5, as there are no atoms subsuming >.

In the remainder of this section, we show that sa(∃X.A, {P}) is indeed the opti-
mal {P}-safe anonymization of ∃X.A, and that it can be computed in exponential
time.

First, note that (2), (5), and (6) of the construction together with Lemma 13
ensure that the intuition underlying the variables yu,K mentioned above is really
satisfied by sa(∃X.A, {P}).

Lemma 22. If C is a concept description and yu,K is a variable such that K
contains some atom D with C v∅ D, then there is no partial homomorphism
from C to sa(∃X.A, {P}) at yu,K.
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Proof. We show the claim by induction on the role depth of C. If the atom D
is a concept name A, then A ∈ Conj(C) and A(yv,L) is not in sa(∃X.A, {P}).
Lemma 13 yields the claim.

Otherwise, D is an existential restriction ∃s.E, i.e., there is some ∃s.E ′ ∈
Conj(C) such that E ′ v∅ E. For each individual name b that is an s-successor of
yv,L, Statement 6 tells us that there does not exist an existential restriction ∃s.E ′′
in L. We conclude that yv,L does not have individual names as s-successors.

Consider a variable yw,M that is an s-successor of yv,L. Statement 5 implies that
M contains some atom F such that E v∅ F . Now the induction hypothesis
immediately yields that there cannot exist a partial homomorphism from E to
sa(∃X.A, {P}) at yw,M.

As there is no partial homomorphism from E to sa(∃X.A, {P}) at any s-successor
of yv,L, there cannot exist a compliant partial homomorphism from E ′ at any s-
successor of yv,L either, cf. Lemma 20. Finally, an application of Lemma 13 shows
the claim.

This lemma, together with the characterization of safety given in Theorem 12 and
(1), (3), and (4) of the construction, then yields that sa(∃X.A, {P}) is indeed
safe for {P}.

Proposition 23. The quantified ABox sa(∃X.A, {P}) is entailed by ∃X.A and
safe for {P}.

Proof. As an easy consequence of Definition 21 we obtain that the mapping h
where h(a) := a for each individual name a and where h(yu,K) := u for each
variable yu,K is a homomorphism from sa(∃X.A, {P}) to ∃X.A. This shows that
∃X.A entails sa(∃X.A, {P}).

We make use of Theorem 12 for justifying safety. Consider an individual name a
and a concept name A ∈ Atoms(P ). By the very definition of sa(∃X.A, {P}), its
matrix B does not contain the concept assertion A(a).

It remains to prove that, for each individual name a, for each role assertion
r(a, u) in the matrix of sa(∃X.A, {P}), and for each existential restriction ∃r.C in
Atoms(P ), there does not exist a partial homomorphism from C to sa(∃X.A, {P})
at u. Note that Lemma 20 tells us that it suffices to consider existential restric-
tions ∃r.C in Max(Atoms(P )).

If u is an individual name, then by (3) of Definition 21 there is no existential
restriction ∃r.C in Max(Atoms(P )). Thus, there is nothing to show. Now assume
that u is a variable yv,L. Since r(a, yv,L) is a role assertion in sa(∃X.A, {P}),
(4) of Definition 21 implies that A contains r(a, v) and that C v∅ D for some
atom D ∈ L. Lemma 22 yields that there is no partial homomorphism from C
to sa(∃X.A, {P}) at yv,L.
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The following proposition implies optimality of sa(∃X.A, {P}).

Proposition 24. Each {P}-safe anonymization of ∃X.A is entailed by
sa(∃X.A, {P}).

Proof. Let ∃Z.C be a {P}-safe anonymization of ∃X.A. Then there is a homo-
morphism h from ∃Z.C to ∃X.A. Define the mapping k by setting k(a) := a for
each individual name a and k(x) := yh(x),f(x) for each variable x where

f(x) := {A | A ∈ Atoms(P ) and A(x) 6∈ C }

∪Max

∃r.C
∣∣∣∣∣∣∣
∃r.C ∈ Atoms(P ) and for each r(x, u) ∈ C,
there is no partial homomorphism
from C to ∃Z.C at u

 .

We prove that k is a homomorphism from ∃Z.C to sa(∃X.A, {P}).

1. Let A(a) ∈ C, which implies A(a) ∈ A. Since ∃Z.C is safe for P , Lemma 10
implies that A cannot be contained in Atoms(P ), and so (1) of Definition 21
ensures that the concept assertion A(a) is contained in sa(∃X.A, {P}).

2. Let A(x) ∈ C, which implies A(h(x)) ∈ A. It follows that A 6∈ f(x) and so
we conclude by (2) of Definition 21 that A(k(x)) is in sa(∃X.A, {P}).

3. Consider a role assertion r(a, b) ∈ C, which then also belongs to A. Since
∃Z.C is safe for P , Lemma 10 implies that, for each ∃r.C ∈ Max(Atoms(P )),
there is no partial homomorphism from C to ∃Z.C at b. Since b is an in-
dividual name, Lemma 13 implies that, for each ∃r.C ∈ Max(Atoms(P )),
there always exists a partial homomorphism from C to ∃Z.C at b. We con-
clude that Max(Atoms(P )) cannot contain an existential restriction ∃r.C.
Thus (3) of Definition 21 yields that sa(∃X.A, {P}) contains r(a, b).

4. Let r(a, y) be a role assertion in C, and thus r(a, h(y)) ∈ A, and let
∃r.C ∈ Max(Atoms(P )). According to Lemma 10, there does not exist
a partial homomorphism from C to ∃Z.C at y. Since y is a variable,
Lemma 13 implies that either there is a concept name A ∈ Conj(C) such
that the concept assertion A(y) is not in C, or there is an existential re-
striction ∃s.D ∈ Conj(C) such that, for each s(y, v) ∈ C, there is no partial
homomorphism from D to ∃Z.C at v. In the first case, A is in f(y). In
the second case, Lemma 20 yields that f(y) contains some atom subsuming
∃s.D. In both cases, we have that some atom in f(y) subsumes C, and thus
(4) ensures that the role assertion r(a, k(y)) is indeed in sa(∃X.A, {P}).

5. Let r(x, y) in C, which yields r(h(x), h(y)) ∈ A. In addition, consider some
existential restriction ∃r.C in f(x), i.e., there does not exist any partial ho-
momorphism from C to ∃Z.C at y. Since y is a variable, Lemma 13 implies
that either there is a concept name A ∈ Conj(C) such that the concept as-
sertion A(y) is not in C, or there is an existential restriction ∃s.D ∈ Conj(C)
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such that, for each s(y, v) ∈ C, there is no partial homomorphism from D
to ∃Z.C at v. In the first case, A is in f(y). In the second case, Lemma 20
yields that f(y) contains some atom subsuming ∃s.D. In both cases, we
have that some atom in f(y) subsumes C, and thus (4) yields that the role
assertion r(k(x), k(y)) is indeed in sa(∃X.A, {P}).

6. Finally, let r(x, b) ∈ C, and thus r(h(x), b) is inA. By definition of f we have
that, for each ∃r.C ∈ f(x), there does not exist any partial homomorphism
from C to ∃Z.C at b. Since b is an individual name, Lemma 13 yields that,
for each ∃r.C ∈ f(x), there is always a partial homomorphism from C to
∃Z.C at b. We conclude that f(x) cannot contain any existential restriction
∃r.C. Now (6) ensures that sa(∃X.A, {P}) contains r(k(x), b).

Putting the results of Propositions 23 and 24 together, we obtain:

Theorem 25. The quantified ABox sa(∃X.A, {P}) is the (up to equivalence)
unique optimal {P}-safe anonymization of ∃X.A.

The cardinality of the set Atoms(P ) is linear in the size of P , and thus we need to
create at most exponentially many copies of each object in ∃X.A. In addition,
the conditions for whether to include an assertion in the constructed ABox ∃Y.B
can be tested in polynomial time. Thus, the above theorem yields the following
complexity results.

Corollary 26. The optimal {P}-safe anonymization sa(∃X.A, {P}) of ∃X.A
can be computed in exponential time for combined complexity and in polynomial
time for data complexity.

A slight modification of Example 2 in [2] can be used to show that the exponential
upper bound stated in the corollary is tight.

Example 27. Consider the ABox ∃X.A with variable x and matrix

{r(a, x), A1(x), B1(x), . . . , An(x), Bn(x)},

and the policy concept P := ∃r.(A1 u B1) u . . . u ∃r.(An u Bn). The set
Atoms(P ) contains the concept names Ai and Bi as well as the existential re-
striction ∃r.(Ai u Bi) for each index i. It is easy to see that the optimal safe
anonymization sa(∃X.A, {P}) must contain exponentially many r-successors of
the individual a, namely the variables yx,K for each set K that contains either Ai

or Bi for each index i.

Assume that there were a quantified ABox ∃Z.C that is equivalent to
sa(∃X.A, {P}) but which does not have an exponential size. It would fol-
low that, in ∃Z.C, there must be an r-successor z of a such that at least two of
the variables yx,K in sa(∃X.A, {P}) are mapped to z (for a fixed homomorphism
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h from sa(∃X.A, {P}) to ∃Z.C). We could conclude that z must be an instance
of both Ai and Bi for some index i, which would imply that a is an instance of
the atom ∃r.(Ai uBi)—a contradiction to the second condition of Lemma 6.

In order to compute a safe anonymization of some quantified ABox ∃X.A w.r.t.
a non-singleton policy {P1, . . . , Pk}, we could of course employ the above con-
struction iteratively by considering the policy concepts Pi one after another, i.e.,
first compute the canonical safe anonymization of ∃X.A w.r.t. {P1}, then com-
pute the canonical safe anonymization of the result w.r.t. {P2}, etc. While this
iterated computation always yields a quantified ABox that is safe for the whole
policy {P1, . . . , Pk}, it need not produce an optimal safe anonymization. A coun-
terexample is as follows.

Example 28. Consider the quantified ABox ∃∅.{r(a, b)} and the policy {A,
∃r.A}. It is obvious that the ABox is safe, i.e., it is its own optimal safe
anonymization. However, it is not safe for the singleton policy {∃r.A}. Thus,
the iterated approach would make the ABox safe for that singleton policy and so
removes the assertion r(a, b), destroying optimality.

Finally, let us come back to the Ben and Jerry example from the introduction.
Figure 5 depicts the canonical safe anonymization of Ben’s original ABox, where
we use obvious abbreviations for concept, role, and individual names. This shows
that the safe anonymization (3) we came up with in the introduction is not op-
timal. In fact, the canonical safe anonymization implies that Ben is an instance
of the concept ∃mother.∃spouse.Comedian, whereas (3) does not have this con-
sequence.

5 Conclusion

We have shown that deciding safety of a quantified ABox w.r.t. a policy defined
by a single EL concept can be decided in polynomial time, and that the unique
optimal safe anonymization of a non-safe quantified ABox can be computed in
exponential time. Both complexity results are w.r.t. combined complexity, where
both the data and the policy are view to be part of the input. For data complexity
(where the policy is assumed to be fixed), the complexity of the latter problem
also drops to polynomial time. In the worst case, the exponential complexity for
computing the optimal safe anonymization cannot be avoided, as demonstrated
by Example 27.

Compared to the findings in [12, 13], our results show that the restriction from
conjunctive queries to EL concepts as formalism for representing the policy pays
off complexity-wise: in the setting considered in [12, 13], the complexity of de-
ciding safety lies on the second level of the polynomial hierarchy. It would be
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Original ABox: ∃{x}.{m(b, x), C(x), s(x, j), C(j)}
Policy: {∃m.(C u ∃s.C)}

Abbreviations: P := ∃m.(C u ∃s.C) and D := ∃s.C

Figure 5: The canonical safe anonymization for the introductory example

interesting to see whether the lower complexity obtained in our setting is pre-
served when going from EL concepts to ELI concepts or to acyclic conjunctive
queries.

In this paper we have restricted the attention to singleton policies, i.e., ones con-
sisting of a single concept. With such a policy, Ben can for instance prevent
people from finding out who are the famous comedians, using the policy con-
cept Comedian u Famous. But he cannot prevent them from finding out who
is famous or a comedian, since this would require using the non-singleton pol-
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icy {Comedian,Famous}. It is currently not clear whether and how our results
can be extended from singleton policies to general ones consisting of a finite
set of EL concepts. The papers [2, 5] investigate both compliance and safety
for such general policies, but they restrict the data to EL instance stores. The
work in [3] considers general quantified ABoxes and policies, but presents results
for compliance only. It would be interesting to find out whether the NP upper
bound for deciding safety in this general cases has a matching NP lower bound,
and whether our approach for computing optimal safe anonymizations can be ex-
tended to this setting. Given a non-singleton policy {P1, . . . , Pk} and a quantified
ABox ∃X.A, one could, of course, first apply our method for computing an opti-
mal safe anonymization for the case of singleton policies to ∃X.A and {P1}, then
to the resulting quantified ABox and {P2}, etc. While this would indeed yield a
quantified ABox that is safe for {P1, . . . , Pk}, this ABox need not be optimal.
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