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Abstract. Concrete domains have been introduced in the area of Description Logic to
enable reference to concrete objects (such as numbers) and predefined predicates on these
objects (such as numerical comparisons) when defining concepts. Unfortunately, in the
presence of general concept inclusions (GCIs), which are supported by all modern DL
systems, adding concrete domains may easily lead to undecidability. One contribution
of this paper is to strengthen the existing undecidability results further by showing that
concrete domains even weaker than the ones considered in the previous proofs may cause
undecidability. To regain decidability in the presence of GCIs, quite strong restrictions,
in sum called ω-admissiblity, need to be imposed on the concrete domain. On the one
hand, we generalize the notion of ω-admissiblity from concrete domains with only binary
predicates to concrete domains with predicates of arbitrary arity. On the other hand, we
relate ω-admissiblity to well-known notions from model theory. In particular, we show
that finitely bounded, homogeneous structures yield ω-admissible concrete domains. This
allows us to show ω-admissibility of concrete domains using existing results from model
theory.

Keywords: Description logic · concrete domains · GCIs · ω-admissibility · homogeneity
· finite boundedness · decidability · constraint satisfaction.

1 Introduction

Description Logics (DLs) [3,7] are a well-investigated family of logic-based knowl-
edge representation languages, which are frequently used to formalize ontologies
for application domains such as the Semantic Web [22] or biology and medicine
[21]. To define the important notions of such an application domain as formal
concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties
required for the individual (expressed by concept names) or properties that refer
to relationships with other individuals and their properties (expressed as role
restrictions). For example, the concept of a father that has only daughters can be
formalized by the concept description

C := ¬Female u ∃child.Human u ∀child.Female,

which uses the concept names Female and Human and the role name child as well
as the concept constructors negation (¬), conjunction (u), existential restriction
(∃r.D), and value restriction (∀r.D). The GCIs

Human v ∀child.Human and ∃child.Human v Human
? Supported by DFG Graduiertenkolleg 1763 (QuantLA).
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say that humans have only human children, and they are the only ones that can
have human children.
DL systems provide their users with reasoning services that allow them to

derive implicit knowledge from the explicitly represented one. In our example,
the above GCIs imply that elements of our concept C also belong to the concept
D := Humanu∀child.Human, i.e., C is subsumed byD w.r.t. these GCIs. A specific
DL is determined by which kind of concept constructors are available. A major goal
of DL research was and still is to find a got compromise between expressiveness
and the complexity of reasoning, i.e., to locate DLs that are expressive enough
for interesting applications, but still have inference problems (like subsumption)
that are decidable and preferably of a low complexity. For the DL ALC, in which
all the concept descriptions used in the above example can be expressed, the
subsumption problem w.r.t. GCIs is ExpTime-complete [7].

Classical DLs like ALC cannot refer to concrete objects and predefined relations
over these objects when defining concepts. For example, a constraint stating
that parents are strictly older than their children cannot be expressed in ALC.
To overcome this deficit, a scheme for integrating certain well-behaved concrete
domains, called admissible, into ALC was introduced in [4], and it was shown
that this integration leaves the relevant inference problems (such as subsumption)
decidable. Basically, admissibility requires that the set of predicates of the concrete
domain is closed under negation and that the constraint satisfaction problem
(CSP) for the concrete domain is decidable. However, in this setting, GCIs were
not considered since they were not a standard feature of DLs then,1 though a
combination of concrete domains and GCIs would be useful in many applications.
For example, using the syntax employed in [28] and also in the present paper,
the above constraint regarding the age of parents and their children could be
expressed by the GCI Human u ∃child age, age.[>] v ⊥, which says that there
cannot be a human whose age is smaller than the age of one of his or her children.
Here ⊥ is the bottom concept, which is always interpreted as the empty set, age
is a concrete feature that maps from the abstract domain populating concepts
into the concrete domain of natural numbers, and > is the usual greater predicate
on the natural numbers.
A first indication that concrete domains might be harmful for decidability

was given in [6], where it was shown that adding transitive closure of roles to
ALC(R), the extension of ALC by an admissible concrete domain R based on
real arithmetics, renders the subsumption problem undecidable. The proof of this
result uses a reduction from the Post Correspondence Problem (PCP). It was
shown in [26] that this proof can be adapted to the case where transitive closure of
roles is replaced by GCIs, and it actually works for considerably weaker concrete
domain, such as the rational numbers Q or the natural number N with a unary
predicate =0 for equality with zero, a binary equality predicate =, and a unary
predicate +1 for incrementation. In [7] it is shown, by a reduction from the halting

1 Actually, they were introduced (with a different name) at about the same time as concrete domains
[2,33].
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problem of two-register machines, that undecidability even holds without binary
equality. In the present paper, we will improve on this result by showing that,
even if =0 is removed as well, undecidability still holds, and that the same is true
if we replace +1 with +.

To regain decidability, one can either impose syntactic restriction on how the DL
can interact with the concrete domain [17,31]. The main idea is here to disallow
paths (such as child age in our example), which has the effect that concrete domain
predicates cannot compare properties (such as the age) of different individuals.
The other option is to impose stronger restrictions than admissibility on the
concrete domain. After first positive results for specific concrete domains (e.g.,
a concrete domain over the rational numbers with order and equality [25,27]),
the notion of ω-admissible concrete domains was introduced in [28], and it was
shown (by designing a tableau-based decision procedure) that integrating such
a concrete domain into ALC leaves reasoning decidable also in the presence of
GCIs. In the present paper, we generalize the notion of ω-admissiblity and the
decidability result from concrete domains with only binary predicates as in [28] to
concrete domains with predicates of arbitrary arity. But the main contribution
of this paper is to show that there is a close relationship between ω-admissiblity
and well-known notions from model theory. In particular, we show that finitely
bounded, homogeneous structures yield ω-admissible concrete domains. This allows
us to locate new ω-admissible concrete domains using existing results from model
theory.

2 Preliminaries

We write [n] for the set {1, . . . , n}. Given a set A, the diagonal relation on A is
defined as the binary relation ∆A := {(a, a) | a ∈ A}. The kernel of a mapping
f : A→ B, denoted by ker f , is the equivalence relation {(a, a′) ∈ A×A | f(a) =
f(a′)}. For a ∈ A1×· · ·×Ak and i ∈ [k], we denote the ith component of the tuple
a by a[i]. By pri we denote the usual projection function pri : A1 × · · · × Ak → A
with pri(a) = a[i].

From a mathematical point of view, concrete domains are relational structures.
A (relational) signature τ is a set of predicate symbols, each with an associated
natural number called its arity. A relational τ -structure A consists of a set A (the
domain) together with relations RA ⊆ Ak for each k-ary symbol R ∈ τ . We often
describe structures by listing their domain and relations, e.g., we write Q = (Q;<)
for the relational structure whose domain is the set of rational numbers Q, and
which has the usual smaller relation < on Q as its only relation.2

The union of two τ -structures A1 and A2 is the τ -structure A1∪A2 with domain
A1 ∪ A2 satisfying RA1∪A2 = RA1 ∪ RA2 for every R ∈ τ . It is called disjoint
if A1 ∩ A2 = ∅. The definition of a union of two τ -structures has an obvious
extension to arbitrary families of τ -structures. An expansion of the τ -structure A

2 By a slight abuse of notation, we use < instead of <Q to denote also the interpretation of the
predicate symbol < in Q.
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is a σ-structure B with A = B, τ ⊆ σ, and RB = RA for each relation symbol
R ∈ τ . Conversely, we call A a reduct of B.
One possibility to obtain an expansion of a τ -structure is to use formulas of

first-order (fo) logic over the signature τ to define new predicates, where a formula
with k free variables defines a k-ary predicate in the obvious way. We assume
that equality = as well as the symbol false for falsity are always available when
building these formulas. Thus, atomic formulas are of the form false, xi = xj , and
R(x1, . . . , xk) for some k-ary R ∈ τ and variables x1, . . . , xk. The first-order theory
of a structure is the set of all first-order sentences that are true in the structure. In
addition to full first-order logic, we also use standard fragments of first-order logic
such as the existential positive (∃+), the quantifier-free (qf), and the primitive
positive (pp) fragment. The existential positive fragment consists of formulas
built using conjunction, disjunction, and existential quantification only. The
quantifier-free fragment consists of Boolean combinations of atomic formulas, and
the primitive positive fragment of existentially quantified conjunctions of atomic
formulas. Let Σ be a set of first-order formulas and D a structure. We say that a
relation over D has a Σ definition in D if it is of the form {t ∈ Dk | D |= φ(t)}
for some φ ∈ Σ. We refer to this relation by φD. For example, the formula
y < x ∨ x = y is an existential positive formula and, interpreted in the structure
Q, it clearly defines the binary relation ≥ on Q. This shows that ≥ is ∃+ definable
in Q. An example of a pp formula is the formula x = x, which defines the unary
relation interpreted as the whole domain Q.

A homomorphism h : A→ B for τ -structures A,B is a mapping h : A→ B that
preserves each relation of A, i.e., (a1, . . . , ak) ∈ RA for some k-ary relation symbol
R ∈ τ implies (h(a1), . . . , h(ak)) ∈ RB. We write A → B if A homomorphically
maps to B and A 6→ B otherwise. We say that A and B are homomorphically
equivalent if A→ B and B→ A. An endomorphism is a homomorphism from a
structure to itself. By an embedding we mean an injective homomorphism that
additionally satisfies the only if direction in the definition of a homomorphism,
i.e., it also preserves the complements of relations. We write A ↪→ B if A embeds
into B. A substructure of A is a structure B over B ⊆ A such that the natural
inclusion map i : A → B is an embedding. We call A an extension of B. An
isomorphism is a surjective embedding. We say that two structures A and B are
isomorphic and write A ∼= B if there exists an isomorphism from A to B. An
automorphism is an isomorphism from a structure into itself.

The definition of admissiblity of a concrete domain in [4] requires that the
constraint satisfaction problem for this structure is decidable. Let D be a structure
with a finite relational signature τ . The constraint satisfaction problem of D, short
CSP(D), is the following decision problem:

INPUT: A finite τ -structure A.
QUESTION: Does A homomorphically map to D?
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Formally, CSP(D) is the class of all finite τ -structures that homomorphically map
to D. We call D the template of CSP(D). A solution for an instance A of the CSP
is a homomorphism h : A→ D.
It is easy to see that deciding whether a CSP instance admits a solution

amounts to evaluating a pp sentences in the template and vice versa [9]. For
example, verifying whether the structure A = ({a1, a2, a3};<A) with <A :=
{(a1, a2), (a2, a3), (a3, a1)} homomorphically maps into Q is the same as checking
whether the pp sentence ∃x1.∃x2.∃x3.(x1 < x2 ∧ x2 < x3 ∧ x3 < x1) is true in Q.

The CSP for Q is in P since a structure A = (A,<A) can homomorphically be
mapped into Q iff it does not contain a <-cycle, i.e., there are is no n ≥ 1 and
elements a0, . . . , an−1 ∈ A such that a0 <

A . . . <A an−1 <
A a0. Testing whether

such a cycle exists can be done in logarithmic space since it requires solving the
reachability problem in a directed graph (digraph). In the example above, we
obviously have a cycle, and thus this instance of CSP(Q) has no solution.
The definition of admissiblity in [4] actually also requires that the predicates

are closed under negation and that there is a predicate for the whole domain. We
have already seen that the negation ≥ of < is ∃+ definable in Q and that the
predicate for the whole domain is pp definable. The negation of this predicate has
the pp definition x < x. The following lemma implies that the expansion of Q by
these predicates still has a decidable CSP.3

Lemma 1 ([9]). Let C,D be structures over the same domain with finite signa-
tures. If the relations of C have a pp (∃+) definition in D, then CSP(C) ≤PTime

CSP(D)
(
CSP(C) ≤NPTime CSP(D)

)
.

3 DLs with concrete domains

As in [4] and [28], we extend the well-known DL ALC with concrete domains. We
assume that the reader is familiar with the syntax and semantics of ALC (as, e.g.,
defined in [7]), and thus only show how both need to be extended to accommodate
a concrete domain D. In the general definition, we allow reference to Σ definable
predicates for a fragment Σ of FO rather than just the elements of τ . For technical
reasons, we must, however, restrict the arities of definable predicates by a fixed
upper bound d. Given a τ -structure D with finite relational signature τ , a set
Σ of FO formulas over the signature τ , and a bound d ≥ 1 on the arity of the
Σ-definable predicates, we obtain a DL ALCdΣ(D), which extends ALC as follows.

From a syntactic point of view, we assume that the set of role names NR contains
a set of functional roles NfR ⊆ NR, and that in addition we have a set of feature
names NF, which provide the connection between the abstract and the concrete
domain. A path is of the form r f or f where r ∈ NR and f ∈ NF. In our example in
the introduction, age is a feature name and child age is a path. The DL ALCdΣ(D)

3 The lemma actually only yields an NP decision procedure for this CSP, but it is easy to see that
the above polynomial-time cycle-checking algorithm can be adapted such that it also works for the
expanded structure.
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extends ALC with two new concept constructors:

∃p1, . . . , pk. [φ(x1, . . . , xk)] and ∀p1, . . . , pk. [φ(x1, . . . , xk)],

where k ≤ d, p1, . . . , pk are paths, and φ(x1, . . . , xk) is a formula in Σ with k free
variables, defining a k-ary predicate on D. As usual, a TBox is defined to be a
finite set of GCIs C v D, where C,D are ALCdΣ(D) concept descriptions.

Regarding the semantics, we consider interpretations I = (∆I , ·I), consisting of
a non-empty set ∆I and an interpretation function ·I , which interprets concept
names A as subsets AI of ∆I and role names r as binary relations rI on ∆I , with
the restriction that rI is functional for r ∈ NfR, i.e., (d, e) ∈ rI and (d, e′) ∈ rI
imply e = e′. In addition, features f ∈ NF are interpreted as functional binary
relations fI ⊆ ∆I × D. We extend the interpretation function to paths of the
form p = r f by setting

pI = {(d, d′) | there is d′′ ∈ ∆I such that (d, d′′) ∈ rI and (d′′, d′) ∈ fI}.

For the concept constructors of ALC, the extension of the interpretation function
to complex concepts is defined in the usual way. The new concrete domain
constructors are interpreted as follows:

(∃p1, . . . , pk. [φ(x1, . . . , xk)])I = {d ∈ ∆I | there exist d1, . . . , dk ∈ D such that
(d, di) ∈ pIi for all i ∈ [k] and D |= φ(d1, . . . , dk)},

(∀p1, . . . , pk. [φ(x1, . . . , xk)])I = {d ∈ ∆I | for all d1, . . . , dk ∈ D we have that
(d, di) ∈ pIi for all i ∈ [k] implies D |= φ(d1, . . . , dk)}.

As usual, an interpretation I is a model a TBox T if it satisfies all the GCIs in
T , where I satisfies the GCI C v D if CI ⊆ DI holds. The ALCdΣ(D) concept
description C is satisfiable w.r.t. T if there is a model I of T such that CI 6= ∅.
Since all Boolean operators are available in ALCdΣ(D), the subsumption problem
mentioned in the introduction and the satisfiability problem are inter-reducible in
polynomial time [7].
As a convention, we write ALC(D) instead of ALCdΣ(D) if d is the maximal

arity of the predicates in τ and Σ consists of all atomic τ -formulas not using the
equality predicate.

3.1 Undecidable DLs with concrete domains

We show by a reduction from the halting problem of two-register machines that
concept satisfiability in ALC(D) is undecidable if D is a structure with domain
Q, Z, or N whose only predicate is the binary predicate +1, which is interpreted
as incrementation (i.e., it consists of the tuples (m,m+ 1) for numbers m in the
respective domain).
Our proof is an an adaptation of the undecidability proof in [7] to the case

where no zero test =0 is available. A two-register machine (2RM) is a pair (Q,P )
with states Q = {q0, . . . , q`} and instructions I0, . . . , I`−1. By definition, q0 is the
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initial state and q` the halting state. In state qi (i < `) the instruction Ii must
be applied. Instructions come in two varieties. An incrementation instruction is
of the form I = +(r, q) where r ∈ {1, 2} is the register number and q is a state.
This instruction increments (the content of) register r and then goes to state q.
A decrementation instruction is of the form I = −(r, q, q′) where r ∈ {1, 2} and
q, q′ are states. This instruction decrements register r and goes to state q if the
content of register r is not zero; otherwise, it leaves register r as it is and goes to
state q′. It is well-known that the problem of deciding whether a given 2RM halts
on input (0, 0) is undecidable [30].

Proposition 1. If D is (Q,+1), (Z,+1), or (N,+1), then concept satisfiability
in ALC(D) w.r.t. TBoxes is undecidable.

Proof. Let (Q,P ) be an arbitrary 2RM. We define a concept C and a TBox T
in such a way that every model of T in which C is non-empty represents the
computation of (Q,P ) on the input (0, 0). For every state qi we introduce a concept
name Qi. We also introduce two concept names Z1, Z2 to indicate a positive zero
test for the first and second register, respectively. In addition, we introduce a
functional role g ∈ NfR representing the transitions between configurations of the
2RM. For p ∈ {1, 2}, we have features rp ∈ NF representing the content of register
p. However, since our concrete domain does not have the predicate =0, we cannot
enforce that, in our representation of the initial configuration, r1 and r2 have value
zero. What we can ensure, though, is that their value is the same number, which
we can store in a concrete feature z ∈ NF. The idea is now that register p of the
machine actually contain the value of rp offset with the value of z. We also need
auxiliary concrete features s1, s2, s ∈ NF, which respectively refer to the successor
values of r1, r2, z. They are needed to express equality using +1.

The following GCI ensures that the elements of C represent the initial configu-
ration together with appropriate values for the auxiliary features:

C v Q0 u ∃r1, s1. [+1] u ∃r2, s2. [+1] u ∃z, s1. [+1] u ∃z, s2. [+1] u ∃z, s. [+1].

Next, the GCI > v ∃gz, s. [+1] u ∃gz, gs. [+1] guarantees that the value z of an
individual carries over to its g-successor. We denote the second value in {1, 2}
beside p by p̂, i.e., p̂ = 3− p. To enforce that the incrementation instructions are
executed correctly, for every instruction Ii = +(p, qj), we include in T the GCI

Qi v ∃rp, grp. [+1] u ∃grp̂, sp̂. [+1] u ∃sp, gsp. [+1] u ∃rp̂, gsp̂. [+1] u ∃g.Qj

The GCIs Zp v ∃z, sp. [+1], ∃z, sp. [+1] v Zp ensure that Zp represents a positive
zero test for register p. Note that, for individuals for which values for s, z, sp, rp
are defined, the negation of Zp is semantically equivalent to a negative zero test
for register p. To enforce that decrementation is executed correctly, for every
instruction Ii = −(p, qj, qk), we include in T the GCIs

Qi u Zp v ∃grp, sp. [+1] u ∃grp̂, sp̂. [+1] u ∃rp, gsp. [+1] u ∃rp̂, gsp̂. [+1] u ∃g.Qk,

Qi u ¬Zp v ∃grp, rp. [+1] u ∃grp̂, sp̂. [+1] u ∃gsp, sp. [+1] u ∃rp̂, gsp̂. [+1] u ∃g.Qj.
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Finally, we include the GCI Q` v ⊥, which states that the halting state is never
reached. It is now easy to see that the computation of (Q,P ) on (0, 0) does not
reach the halting state iff C is satisfiable w.r.t. T . ut

It turns out that undecidability also holds if we use the ternary predicate +
rather than the binary predicate +1. Intuitively, with + we can easily test for
0 since m is 0 iff m + m = m. Instead of incrementation by 1, we can then use
addition of a fixed non-zero number.

Proposition 2. If D is (Q,+), (Z,+), or (N,+), then concept satisfiability in
ALC(D) w.r.t. TBoxes is undecidable.

Proof. Similarly as in the proof of Proposition 1, we reduce the halting problem of
two-register machines to concept satisfiability in in ALC(D). This time we closely
follow the proof of Theorem 5.24 in [7]. For this reason, we only provide the GCIs
that encode the run of an arbitrary 2RM on the input (0, 0), the rest is obvious.
As before, g ∈ NfR represents the transition function, and r1, r2 ∈ NF represent the
contents of the two registers initialized with the value 0. Additionally, z ∈ NF is
an auxiliary feature that assumes the value 0, and u ∈ NF is an auxiliary feature
that assumes the value of some non-zero number. The initial configuration is
represented by the following GCI which, in particular, prevents u from assuming
the value 0:

C v Q0 u ∃z, z, z. [+] u ∃r1, r1, r1. [+] u ∃r2, r2, r2. [+] u ¬(∃u, u, u. [+])

The GCI
> v ∃z, z, z. [+] u ∃u, z, gu. [+]

ensures that z has the value 0 everywhere, and it simultaneously transfers the
value of u to g-successors. Consequently, u has a fixed non-zero value on the
g-paths starting with our initial element of C.
The incrementation instruction Ii = +(p, qj) is represented by the GCI

Qi v ∃g.Qj u ∃rp, u, grp. [+] u ∃rp̂, z, grp̂. [+],

and the decrementation instruction Ii = −(p, qj, qk) is represented by the GCIs

Qi u ∃rp, z, z. [+] v ∃g.Qk u ∃rp, z, grp. [+] u ∃rp̂, z, grp̂. [+]
Qi u ¬(∃rp, z, z. [+]) v ∃g.Qj u ∃grp, u, rp. [+] u ∃rp̂, z, grp̂. [+]

The non-termination is, again, represented by the GCI Q` v ⊥. ut

3.2 ω-admissible concrete domains

To regain decidability in the presence of GCIs and concrete domains, the notion of
ω-admissible concrete domains was introduced in [28]. We generalize this notion

8



and the decidability result from concrete domains with only binary predicates as
in [28] to concrete domains with predicates of arbitrary arity.
We say that a countable structure D has homomorphism compactness if, for

every countable structure B, it holds that B → D iff A → D for every finite
structure A with A ↪→ B. A relational τ -structure D satisfies

(JE) if, for some d ≥ 2, ⋃{RD
∣∣∣ R ∈ τ, RD ⊆ Dk

}
= Dk if k ≤ d and ∅ else;

(PD) if RD ∩R′D = ∅ for all pairwise distinct R,R′ ∈ τ ;
(JD) if ⋃{RD

∣∣∣ R ∈ τ, RD ⊆ 4D} = 4D.

Here JE stands for “jointly exhaustive,” PD for “pairwise disjoint,” and JD for
“jointly diagonal.” Note that JD was not considered in [28]. We include it here
since it makes the comparison with known notion from model theory easier. In
addition, all the ω-admissible concrete domains considered in [28] satisfy JD.
A relational τ -structure D is a patchwork if it is JDJEPD, and for all finite

JEPD τ -structures A,B1,B2 with e1 : A ↪→ B1, e2 : A ↪→ B2, B1 → D and
B2 → D, there exist f1 : B1 → D and f2 : B2 → D with f1 ◦ e1 = f2 ◦ e2.

Definition 1. The relational structure D is ω-admissible if CSP(D) is decidable,
D has homomorphism compactness, and D is a patchwork.

The idea is now that one can use disjunctions of atomic formulas of the same
arity within concrete domain restrictions. We refer to the set of all FO τ -formulas
of the form R1(x1, . . . , xk) ∨ · · · ∨Rm(x1, . . . , xk) for R1, . . . , Rm k-ary predicates
in τ by∨+. The following theorem is proved in the appendix by extending the
tableau-based decision procedure given in [28] to our more general definition of
ω-admissibility. Note that the proof of correctness of this procedure does not
depend on JD.

Theorem 1. Let D be an ω-admissible τ -structure with at most d-ary relations
for some d ≥ 2. Then concept satisfiability in ALCd∨+(D) w.r.t. TBoxes is decidable.

The main motivation for the definition of ω-admissible concrete domains in [28]
was that they can capture qualitative calculi of time and space. In particular, it
was shown in [28] that Allen’s interval logic [1] as well as the region connection
calculus RCC8 [32] can be represented as ω-admissible concrete domains. To
the best of our knowledge, no other ω-admissible concrete domains have been
exhibited in the literature since then.

4 A model-theoretic approach towards ω-admissibility

In this section, we introduce several model-theoretic properties of relational
structures and show their connection to ω-admissibility. This allows us to formulate
sufficient conditions for ω-admissibility using well-know notions from model theory,
and thus to use existing model-theoretic results to find new ω-admissible concrete
domains.
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ω-categoricity. We start with introducing ω-categoricity since it gives us ho-
momorphism compactness “for free.” A structure is ω-categorical if its first-order
theory has exactly one countable model up to isomorphism. For example, it is
well-known that Q is, up to isomorphism, the only countable dense linear or-
der without lower or upper bound. This result, which clearly implies that Q is
ω-categorical, is due to Cantor.
For every structure A, the set of all its automorphisms forms a permutation

group, which we denote by Aut(A) (see Theorem 1.2.1 in [20]). Every relation
with an first-order definition in A is easily seen to be preserved by Aut(A). For
ω-categorical structures, the other direction holds as well.
Theorem 2 (Engeler, Ryll-Nardzewski and Svenonius [20]). For a count-
ably infinite structure A with a countable signature, the following are equivalent:

1. A is ω-categorical.
2. For every k ≥ 1, only finitely many k-ary relations are first-order definable in

A.
3. Every relation over A preserved by Aut(A) is first-order definable in A.

The following corollary to this theorem establishes the first link between model
theory and ω-admissibility.
Corollary 1 (Lemma 3.1.5 in [9]). Every ω-categorical structure has homo-
morphism compactness.

In order to obtain JDJEPD, we replace the original relations of a given ω-
categorical τ -structure A with appropriate first-order definable ones, using the
results of Theorem 2. The orbit of a tuple (a1, . . . , ak) ∈ Ak under the natural
action of Aut(A) on Ak is the set

{(
g(a1), . . . , g(an)

)
| g ∈ Aut(A)

}
. By Theorem 2,

the set of all at most k-ary relations definable in A is finite for every k ∈ N. Since
every such set is closed under intersections, it contains finitely many minimal non-
empty relations. Since every relation over A that is preserved by all automorphisms
of A is first-order definable in A, these minimal elements are precisely the orbits
of tuples over A under the natural action of Aut(A).
Definition 2. For a given arity bound d ≥ 2, the d-reduct of the ω-categorical
τ -structure A, denoted by A6d, is the relational structure over A whose relations
are all orbits of at most d-ary tuples over A under Aut(A). We denote the signature
of A6d by τ6d.

It is easy to see that A6d is JDJEPD, and that every at most d-ary relation
over A first-order definable in A can be obtained as a disjunction of atomic
formulas built using the symbols in τ6d. As an example, consider the ω-categorical
structure Q. The orbits of k-tuples of elements of Q can be defined by quantifier-
free formulas that are conjunctions of atoms of the form xi = xj or xi < xj. For
example, the orbit of the tuple (2, 3, 2, 5) consists of all tuples (q1, q2, q3, q4) ∈ Q4

that satisfy the formula x1 < x2 ∧ x1 = x3 ∧ x2 < x4 if xi is replaced by qi for
i = 1, . . . , 4. The first-order definable k-ary relations in Q are obtained as unions
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of these orbits, where the defining formula is then the disjunction of the formulas
defining the respective orbits. Since these formulas are quantifier-free, this also
shows that Q admits quantifier elimination. Recall that a τ -structure admits
quantifier elimination if for every first-order τ -formula there exists a quantifier-free
(qf) τ -formula that defines the same relation over this structure.

Homogeneity. To obtain the patchwork property, we restrict the attention to
homogeneous structures. A structure A is homogeneous if every isomorphism
between finite substructures of A extends to an automorphism of A.

Theorem 3 ([20]). A countable relational structure with a finite signature is
homogeneous iff it is ω-categorical and admits quantifier elimination.

Since Q is ω-categorical and admits quantifier elimination, it is thus homoge-
neous. This can, however, also easily be shown directly without using the theorem.
In fact, given finite substructures B and C of Q and an isomorphism between
them, we know that B consists of finitely many elements p1, . . . , pn and C of the
same number of elements q1, . . . , qn such that p1 < . . . < pn, q1 < . . . < qn, and
the isomorphism maps pi to qi (for i = 1, . . . , n). It is now easy to see that < is
also a dense linear order without lower or upper bound on the sets {p | p < p1}
and {q | q < q1}, and thus there is an order isomorphism between these sets. The
same is true for the pairs of sets {p | pi < p < pi+1} and {q | qi < q < qi+1}, and
for the pair {p | pn < p} and {q | q < qn}. Using the isomorphisms between these
pairs, we can clearly put together an isomorphisms from Q to Q that that extends
the original isomorphism from B to C.

Countable homogeneous structures can be obtained as Fraïssé limits of amalga-
mation classes. A class K of relational τ -structures has the amalgamation property
(AP) if, for every A,B1,B2 ∈ K with e1 : A ↪→ B1 and e2 : A ↪→ B2 there exists
C ∈ K with f1 : B1 ↪→ C and f2 : B2 ↪→ C such that f1 ◦ e1 = f2 ◦ e2. A class K of
finite relational structures with a countable signature τ is called an amalgamation
class if it has AP, is closed under taking isomorphisms and substructures, and
contains only countably many structures up to isomorphism. We denote by Age(A)
the class of all finite structures that embed into the structure A.

Theorem 4 (Fraïssé [20]). Let K be an amalgamation class of τ -structures.
Then there exists a homogeneous countable τ -structure A with Age(A) = K. The
structure A is unique up to isomorphism and referred to as the Fraïssé limit of
K. Conversely, Age(A) for a countable homogeneous structure A with a countable
signature is an amalgamation class.

For our running example Q = (Q, <), we have that Age(Q) consists of all
finite linear orders, and thus by Fraïssé’s theorem this class of structures is an
amalgamation class. In addition, Q is the Fraïssé limit of this class. Proposition 3
below shows that there is a close connection between AP and the patchwork
property. Its proof uses the following lemma.
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Lemma 2. Let A,B be two JEPD τ -structures, such that B is JD, and f : A→ B
a homomorphism. Then f preserves the complements of all relations of A and
ker f = ⋃{RA | R ∈ τ and RB ⊆ ∆B}.

Proof. Since A is JEPD, for every R ∈ τ and every (x1, . . . , xk) /∈ RB, there exists
exactly one R′ ∈ τ \{R} with (x1, . . . , xk) ∈ R′A. As f is a homomorphism, we have
(f(x1), . . . , f(xk)) ∈ R′B. But then (f(x1), . . . , f(xk)) /∈ RB because B is JEPD as
well. For the second part, we clearly have ⋃{RA | R ∈ τ and RB ⊆ ∆B} ⊆ ker f .
On the other hand, if f(x) = f(y) for some x, y ∈ A, then (f(x), f(y)) ∈ RB for
some binary R ∈ τ with RB ⊆ ∆B. But then assuming that (x, y) /∈ RA would
yield a contradiction due to the first part of the lemma. Thus ker f ⊆ ⋃{RA | R ∈
τ and RB ⊆ ∆B}. ut

Proposition 3. Let D be a JDJEPD τ -structure. Then D is a patchwork iff
Age(D) has AP.

Proof. For simplification purposes, every statement indexed by i is suppose to
hold for both i ∈ {1, 2}. First, suppose that Age(D) has AP. Let A,B1,B2 be
finite JEPD τ -structures with ei : A ↪→ Bi and hi : Bi → D. We must show that
there exist fi : Bi → D with f1 ◦ e1 = f2 ◦ e2. Let Ã1 and Ã2 be the substructures
of D on (h1 ◦ e1)(A) and (h2 ◦ e2)(A), respectively. Clearly both Ã1 and Ã2 are
JDJEPD, because they are substructures of D. Due to Lemma 2, we have Ã1 ∼= Ã2,
because both h1 ◦ e1 and h2 ◦ e2 preserve the complements of all relations of A
and kerh1 ◦ e1 = ⋃{RA | R ∈ τ and RD ⊆ ∆D} = kerh2 ◦ e2.
However, what we want is an isomorphism that commutes with h1 ◦ e1 and

h2 ◦ e2. Consider the map g : Ã1 → Ã2 given by g
(
(h1 ◦ e1)(a)

)
:= (h2 ◦ e2)(a).

It is well defined, because kerh1 ◦ e1 = kerh2 ◦ e2. Now, for every R ∈ τ and
((h1 ◦ e1)(a1), . . . , (h1 ◦ e1)(ak)) ∈ RÃ1 , we have (a1, . . . , ak) ∈ RA, because h1 ◦ e1
preserves the complements of all relations of A due to Lemma 2. But this implies
((h2 ◦ e2)(a1), . . . , (h2 ◦ e2)(ak)) ∈ RÃ2 , because h2 ◦ e2 is a homomorphism. By
Lemma 2, g preserves the complements of all relations of Ã1 and

ker g =
⋃{

RÃ1
∣∣∣ R ∈ τ and RÃ2 ⊆ ∆Ã2

}
= ∆Ã1

.

Hence g is an isomorphism that additionally satisfies g ◦ h1 ◦ e1 = h2 ◦ e2 by
its definition. Let B̃1 and B̃2 be the substructures of D on h1(B1) and h2(B2),
respectively. Now consider the inclusions ẽi : Ãi ↪→ B̃i. Since Age(D) has AP,
there exists C ∈ Age(D) together with f̃i : B̃i ↪→ C and e : C ↪→ D such that
f̃1 ◦ ẽ1 = f̃2 ◦ ẽ2 ◦ g. We define the homomorphisms fi : Bi → D by fi := e ◦ f̃i ◦ hi.
Then, for every a ∈ A, we have

f1 ◦ e1(a) = e ◦ f̃1 ◦ h1 ◦ e1(a) = e ◦ f̃1 ◦ ẽ1 ◦ h1 ◦ e1(a)
= e ◦ f̃2 ◦ ẽ2 ◦ g ◦ h1 ◦ e1(a) = e ◦ f̃2 ◦ ẽ2 ◦ h2 ◦ e2(a)
= e ◦ f̃2 ◦ h2 ◦ e2(a) = f2 ◦ e2(a).
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Note that, as inclusions, the mappings ẽi are the identity on the elements for
which they are defined. The above identities show that D is a patchwork.

For the other direction, suppose that D is a patchwork. Let A,B1,B2 be finite
τ -structures with ei : A ↪→ Bi and hi : Bi ↪→ D. Since B1 and B2 are isomorphic
to substructures of D, they are clearly JEPD. Thus, as D is a patchwork, there
exist homomorphisms fi : Bi → D with f1 ◦ e1 = f2 ◦ e2. By Lemma 2, the fi
preserve the complements of all relations of Bi, and

ker fi =
⋃{

RBi

∣∣∣ R ∈ τ and RD ⊆ ∆D

}
= kerhi = ∆Bi

.

This means that fi are embeddings. We obtain AP for Age(D) by choosing C to
be the substructure of D on f2(B1) ∪ f1(B2). ut

Recall that, to obtain JDJEPD, we actually need to take the d-reduct of a given
ω-categorical structure, rather than the structure itself. Fortunately, homogeneity
transfers from D to D6d.

Lemma 3. Let D be a countable homogeneous structure with a finite relational
signature τ . Then D6d is homogeneous for every d that exceeds or is equal to the
maximal arity of a symbol from τ .

Proof. By Theorem 3, D has quantifier elimination. Note that the relations of
D6d and D are first-order interdefinable, which implies Aut(D6d) = Aut(D) by
Theorem 2. This shows in particular that D6d is ω-categorical. Every first-order
τ6d-formula φ defines a relation in D6d that has a first-order definition φ′ in D. We
can assume that φ′ is quantifier-free due to Theorem 3. We replace every atomic
formula ψ(x1, . . . , xk) in φ′ by ∨ni=1 Ri(x1, . . . , xk) with R1, . . . , Rn ∈ τ6d, where
RD6d

1 ∪ · · · ∪RD6d

n is the unique decomposition of ψD into orbits of k-tuples over
D under Aut(D). The resulting formula is a quantifier-free first-order definition
of φD6d in D6d. Thus D6d has quantifier elimination as well, which means that it
is homogeneous due to Theorem 3. ut

Finite boundedness. The only property of ω-admissible structures we have not
yet considered in this section is the decidability of the CSP. One possibility to
achieve this is to consider finitely bounded structures. For a class N of τ -structures
(called bounds), we denote by Forbe(N ) the class of all finite τ structures not
embedding any member of N . Following [14], we say that a structure A is finitely
bounded if its signature is finite and Age(A) = Forbe(N ) for a finite set of bounds
N .
Note that the structure A is finitely bounded iff there exists a universal first-

order sentence Φ(A) s.t. B ∈ Age(A) iff B |= Φ(A). In fact, for every bound
C ∈ N of A with domain {c1, c2, . . . } we can write down a quantifier-free formula
φC with free variables xc1 , xc2 , . . . that describes C up to isomorphism. Then we
set Φ(A) := ∧

C∈N ∀xc1 , xc2 · · · .¬φC(xc1 , xc2 . . . ). Conversely, assume that we have
a sentence Φ(A) that defines Age(A). If we define the set N to consist (up to
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Fig. 1. A set of four forbidden substructures for Q = (Q; <).

isomorphism) of all τ -structures of size at most equal to the number of variables
of Φ(A) that do not satisfy Φ(A), then N is a set of bounds for A.
The structure Q is finitely bounded. To show this, we can use the set N

consisting of the four structures depicted in Fig. 1: the self loop, the 2-cycle,
the 3-cycle, and two isolated vertices. We must show that Age(Q) = Forbe(N ).
Clearly, none of the structures in N embeds into a linear order, which shows
Age(Q) ⊆ Forbe(N ). Conversely, assume that A is an element of Forbe(N ). We
must show that <A is a linear order. Since N contains the self loop, we have
(a, a) 6∈ <A for all a ∈ A, which shows that <A is irreflexive. For distinct elements
a, b ∈ A, we must have a <A b or b <A a since otherwise the structure consisting of
two isolated vertices could be embedded into A. This shows that any two distinct
elements are comparable w.r.t. <A. To show that <A is transitive, assume that
a <A b and b <A c holds. Since the 2-cycle does not embed into A, a and c must
be distinct, and are thus comparable. We cannot have c <A a since then we could
embed the 3-cycle into A. Consequently, we must have a <A c, which proves
transitivity. This show that A is a linear order. As formula Φ(Q) we can take the
conjunction of the usual axioms defining linear orders.

Finitely bounded structures are interesting since their CSP and their first-order
theory are decidable. The first result can, e.g., be found in [13] (Theorem 4) and
the second result is stated in [23,24].

Proposition 4. Let D be a finitely bounded homogeneous structure with |D| > 1.
Then CSP(D) is in NP and the first-order theory of D is PSpace-complete.

Proof. We only prove the second part of the statement as a detailed proof of it
does not appear in the literature. Let τ be the signature of D. We first show
PSpace-hardness by a reduction from the quantified Boolean formula (QBF)
satisfiability problem. Let φ be a QBF of the form Q1X1. · · ·QkXk. ψ(X1, . . . , Xk)
such that ψ is quantifier-free. We introduce a fresh auxiliary first-order variable h.
Then, for every propositional variable Xi, we introduce a fresh first-order variable
xi and replace every occurrence of the variable Xi in ψ with the literal (xi = h) and
denote the resulting τ -formula by ψ′. Now we set φ′ to be the first-order sentence
∃h.Q1x1. · · ·Qkxk. ψ

′(h, x1, . . . , xk). Since D contains at least two elements, it is
easy to see that the following holds: φ is satisfiable as a QBF iff D |= φ′.

Next we describe a PSpace algorithm that decides the first-order theory of D.
It is based on the algorithm from the proof of Proposition 3.5 in [24], for which
an exponential time complexity is shown in [24]. Note that, since D is possibly
infinite, we cannot simply substitute all elements from D, one after the other,
for a particular quantified variable. First recall that, since D is finitely bounded,
there exists a universal first-order sentence Φ(D) that defines Age(D), i.e., a finite
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τ -structure can be embedded into D iff it satisfies Φ(D). Since the structure D is
fixed, this sentence is also fixed, which means that it has constant size.

Now, let b1, b2, . . . be a countably infinite sequence of pairwise distinct symbols.
For an first-order τ -formula φ with free variables x1, . . . , xn, let [φ]D denote the set
of all τ -structures B with domain {b1, . . . , bn} for which there exists an embedding
h : B ↪→ D such that D |= φ(h(b1), . . . , h(bn)). Every such embedding h : B ↪→ D
represents an injective4 substitution of elements from D for the variables x1, . . . , xn.
We claim that [φ]D does not depend on the choice of h. To see this, consider
two embeddings h1, h2 : B ↪→ D such that D |= φ(h1(b1), . . . , h1(bn)). For each
i ∈ [2], let Bi be the substructure of D on the image of {b1, . . . , bn} under hi.
Consider the map f̃ : B1 → B2 that sends, for every j ∈ [n], h1(bj) to h2(bj).
Using the definition of an embedding, it is easy to show that f̃ is an isomorphism
from B1 to B2. By homogeneity of D, there exists an automorphism f of D that
extends f̃ . Since φ is an first-order formula, φD is preserved by f , which shows
that D |= φ(h2(b1), . . . , h2(bn)) holds as well.
We show by induction on the structure of an first-order τ -formula φ with free

variables x1, . . . , xn that, given a τ -structure B with domain {b1, . . . , bn}, it can
be decided in PSpace in the size of φ whether B ∈ [φ]D. This proves the PSpace
upper bound claimed in the proposition because, if φ has no free variables, then
testing whether the empty structure is contained in [φ]D is equivalent to answering
D |= φ.
In the base case, we consider an atomic formula φ(x1, . . . , xn), that is, φ is

either a positive R-literal for some R ∈ τ , or the equality between two variables.
Suppose that B is a τ -structure with domain {b1, . . . , bn}. If B |= ¬φ(b1, . . . , bn),
then clearly B /∈ [φ(x1, . . . , xn)]D because embeddings preserve complements of
relations. If B |= φ(b1, . . . , bn), then D |= φ(h(b1), . . . , h(bn)) holds for every
embedding h : B→ D. Consequently, testing whether B ∈ [φ(x1, . . . , xn)]D boils
down to testing whether B ↪→ D, which is the case iff B |= Φ(D). This can be
done in PSpace in the size of φ because it is well-known that first-order model
checking with a fixed first-order sentence can be done in polynomial time in the
size of the input structure.

For the induction step, we can restrict the attention to formulas φ of the form
ψ1 ∨ ψ2, ¬ψ and ∃x. ψ. Suppose that φ is of the form ψ1 ∨ ψ2 such that the
induction hypothesis applies to both ψ1 and ψ2. For each i ∈ [2], let Bi be the
substructure of B on those bjs that correspond to the free variables of ψi. We
claim that B ∈ [φ]D iff B |= Φ(D) and Bi ∈ [ψi]D for i = 1 or i = 2. The forward
direction is trivial. Now suppose that Bi ∈ [ψi]D for i = 1 or i = 2 and B |= Φ(D).
Then we have an embedding hi : Bi ↪→ D witnessing Bi ∈ [ψi]D, and we also have
an embedding h : B ↪→ D. But then Bi ∈ [ψi]D is also witnessed by h|Bi

because
[ψi]D does not depend on the choice of the embedding. This shows that B ∈ [φ]D
is witnessed by h. Testing whether Bi ∈ [ψi]D can be done in PSpace in the size

4 In our proof we will ensure that injective substitutions are sufficient, by appropriately identifying
variables.
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of ψi by the induction hypothesis, and we have already seen in the base case that
testing whether B |= Φ(D) can be done in polynomial time in the size of φ.

Suppose that φ is of the form ¬ψ such that the induction hypothesis applies to
ψ. We claim that B ∈ [φ]D iff B /∈ [ψ]D. Suppose that there exists h : B ↪→ D such
that D |= ¬ψ(h(b1), . . . , h(bn)). Then there cannot be an embedding h′ : B ↪→ D
such that D |= ψ(h′(b1), . . . , h′(bn)) because containment in [φ]D does not depend
on the choice of the embedding. The backward direction is analogous. By the
induction hypothesis, testing whether B ∈ [ψ]D can be done in PSpace in the
size of ψ and thus also in the size of φ.

Now suppose that φ is of the form φ(x1, . . . , xn) = ∃xn+1. ψ(x1, . . . , xn+1) such
that the induction hypothesis applies to ψ. We claim that B ∈ [φ]D iff one of the
following is true

1. there exists an extension B′ of B by bn+1 such that B′ ∈ [ψ]D,
2. there exists i ∈ [n] such that B ∈ [ψi]D holds for the formula ψi obtained from
ψ by replacing each occurrence of the variable xn+1 in ψ by xi.

First, suppose that B ∈ [φ]D is witnessed by some embedding h : B ↪→ D. Then
there exists d ∈ D such that D |= ψ(h(b1), . . . , h(bn), d). If d is distinct from
h(b1), . . . , h(bn), then we are in the case (1) and consider the extension h′ of h that
maps bn+1 to d. We define B′ as the τ -structure with the domain {b1, . . . , bn+1}
such that, for every k-ary symbol R ∈ τ , we have t ∈ RB′ iff h′(t) ∈ RD. Clearly
h′ is an embedding that witnesses B′ ∈ [ψ]D. Otherwise we have d = h(bi) for
some i ∈ [n]. We consider the formula ψi from (2). Then h is an embedding that
witnesses B ∈ [ψi]D. Since the backward direction is obvious, it remains to show
that the tests required by (1) and (2) can be performed in PSpace.
In case (1), we generate all extensions B′ of B by bn+1 and test, using the

induction hypothesis, whether B′ ∈ [ψ]D for some such extension. This can clearly
be done in PSpace because τ is fixed and finite, and for each extension B′ we
can test B′ ∈ [ψ]D within PSpace due to the induction hypothesis. In case (2) we
guess any such i ∈ [n] and test, using the induction hypothesis, whether B ∈ [ψi]D.
This completes the proof. ut

The following proposition implies that Proposition 4 applies not only to a given
finitely bounded homogeneous structure D, but also to its d-reduct D6d.

Proposition 5. Let A be a finitely bounded homogeneous structure and B a
structure with the same domain and finitely many relations that are first-order
definable in A. Then B is a reduct of a finitely bounded homogeneous structure.

Proof. Let Ã be the expansion of A by the relations of B, where we assume that
the signatures of A and B are disjoint. By Theorem 3, each of the new relations
has a quantifier-free definition in A. Consequently, we can extend the sentence
Φ(A) with universal sentences defining the relations of B, which yields a universal
formula that shows finite boundedness of Ã. The structure Ã is homogeneous since
an isomorphism between two finite substructures of Ã induces an isomorphism
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between their reducts to the signature of A, which extends to an automorphism of
A by homogeneity of A. This is also an automorphism of Ã since automorphisms
preserve first-order definable relations. Now we are done as B is a reduct of Ã. ut

We are now ready to formulate our first sufficient condition for ω-admissibility.

Theorem 5. Let D be a finitely bounded homogeneous relational structure with
at most d-ary relations for some d ≥ 2. Then D6d is ω-admissible.

Proof. It follows directly from the definition of d-reducts that D6d is JDJEPD.
By Lemma 3, D6d is homogeneous. By Theorem 3, D6d is ω-categorical. Thus D
has homomorphism compactness by Corollary 1. By Theorem 4, Age(D6d) has
AP. Thus D6d is a patchwork by Proposition 3. By Proposition 5, Lemma 1, and
Proposition 4, CSP(D6d) is in NP. Hence D6d is ω-admissible. ut

This theorem, together with Theorem 1, immediately yields decidability for
ALCd∨+(D6d). The following corollary shows that we can even allow for arbitrary
first-order definable relations with arity bounded by d in the concrete domain.
The idea for proving this result is to reduce concept satisfiability in ALCdfo(D) to
concept satisfiability in ALCd∨+(D6d). We know that every at most d-ary relation
over D first-order definable in D can be obtained as a disjunction of atomic
formulas built using the signature of D6d. What still needs to be shown is that,
given a first-order formula in the signature of D with at most d free variables, this
disjunction can effectively be computed.

Corollary 2. Let D be a finitely bounded homogeneous relational structure with
at most d-ary relations for some d ≥ 2. Then concept satisfiability in ALCdfo(D)
w.r.t. TBoxes is decidable.

Proof. Let τ be the signature of D. We claim that satisfiability of ALCdfo(D)
concepts w.r.t. TBoxes can be reduced to satisfiability of ALCd∨+(D6d) concepts
w.r.t. TBoxes. For this purpose, we need to replace first-order τ -formulas φ in
concrete domain constructors ∀p1, . . . , pk. [φ] or ∃p1, . . . , pk. [φ] with disjunctions
ψ of atomic formulas in the signature τ6d of D6d. By Theorem 3 together with
Theorem 2, the (finitely many) relations in τ6d have quantifier-free definitions in
D. Since d and D are fixed, we can make a list consisting of the quantifier-free
definitions for each of them in constant time. Given an first-order τ -formulas φ with
k free variables, let ψ1, . . . , ψm be the quantifier-free definitions in D for all the
k-ary relations of τ6d that we have listed before. We test, for every i ∈ [m], whether
D |= ∃y1, . . . , yk. φ(y1, . . . , yk) ∧ ψi(y1, . . . , yk), which is possible in PSpace by
Proposition 4. By selecting those ψi1 , . . . , ψis that tested positively, we know for
all d1, . . . , dk ∈ D that D |= φ(d1, . . . , dk) iff D |= ∨s

r=1 ψir(d1, . . . , dk). Now we
replace each ψir(y1, . . . , yk) with R(y1, . . . , yk), where R is the unique k-ary relation
symbol from τ6d for which we have D |= ψir(d1, . . . , dk) iff D6d |= R(d1, . . . , dk).
This yields the desired formula ψ that replaces φ. Now the claim follows from
Theorem 5 and Theorem 1. ut
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Cores. Finally, we consider the situation where we have a homogeneous relational
structure D with finitely many at most d-ary relations that is not finitely bounded,
but which we know (by some other means) to have a decidable CSP. In this
situation, we can show decidability forALCd∃+(D) under one additional assumption.
A structure D is called a core if every endomorphism of D is an self-embedding of
D. It was shown in [8] that, if D is a homogeneous core, then the orbits of tuples
over D under Aut(D) are pp definable in D. As an easy consequence of this result,
we obtain our second sufficient condition for ω-admissibility.

Theorem 6. Let D be a homogeneous core with finitely many at most d-ary
relations for some d ≥ 2 and decidable CSP. Then C6d is ω-admissible.

Proof. It follows directly from the definition of d-reducts that D6d is JDJEPD.
By Lemma 3, D6d is homogeneous. By Theorem 3, D6d is ω-categorical. Thus D
has homomorphism compactness by Corollary 1. By Theorem 4, Age(D6d) has
AP. Thus D6d is a patchwork by Proposition 3. By the results of [8], D is model-
complete and orbits of tuples over D under Aut(D) are pp definable in D. Then
Lemma 1 implies CSP(D6d) ≤PTime CSP(D). Hence D6d is ω-admissible. ut

Let D be a structure as in the above theorem. By showing that concept
satisfiability in ALCd∃+(D) can be reduced to concept satisfiability in ALCd∨+(D6d),
we obtain the following decidability result.

Corollary 3. Let D be a homogeneous core with finitely many at most d-ary
relations for some d ≥ 2 and a decidable CSP. Then concept satisfiability in
ALCd∃+(D) w.r.t. TBoxes is decidable.

Proof. To show the corollary, it is thus sufficient to prove that concept satisfia-
bility w.r.t. TBoxes is decidable in ALCd∃+(D). We achieve this by reducing this
problem to satisfiability of ALCd∨+(D6d) concepts w.r.t. TBoxes. As in the proof of
Corollary 2, we do this by showing how existential positive formulas φ occurring
in concrete domain constructors can be replaced by disjunctions ψ of atomic
formulas in the signature of D6d.

By the results of [8], the relations of D6d have pp definitions in D. Since d and
D are fixed, we can make a list consisting of the pp definitions for each of them in
constant time. Given an existential positive τ -formula φ with k free variables, let
ψ1, . . . , ψm be the pp definitions in D for all the k-ary relations of D6d that we
have listed before. Since CSP(D) is decidable, we can decide for i ∈ [n] whether
D |= ∃y1, . . . , yk. ψi∧φ. In fact, deciding whether an existential positive sentence is
true in D only differs from solving CSP(D) in a non-deterministic step that deals
with disjunction. By selecting those ψi1 , . . . , ψis that tested positively, we know
that D |= φ(x1, . . . , xk) iff D |= ∨s

r=1 ψir(x1, . . . , xk) holds for all x1, . . . , xk ∈ D.
Now we replace each ψir(y1, . . . , yk) with R(y1, . . . , yk), where R is the unique
k-ary relation symbol from the signature of D6d that satisfies D |= ψir(x1, . . . , xk)
iff D6d |= R(x1, . . . , xk). This yields the desired formula ψ, which completes the
reduction. Now the claim follows from Theorem 6 and Theorem 1. ut
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5 Application and discussion

In this section, we discuss how our results can be used to obtain specific ω-
admissible concrete domains. But let us first start with a caveat.

5.1 Finiteness of signature matters.

In Corollary 2 and Corollary 3, the signature of the structure D is required to be
finite. This restriction is needed to obtain decidability. For instance, the expansion
of the structure (Z; +1) from Section 3.1 by all relations +k = {(m,n) ∈ Z2 |
m+ k = n} for k ∈ Z is homogeneous, and satisfiability of finite conjunctions of
constraints is decidable in this structure. However, we have seen in Proposition 1
that reasoning with (Z; +1) as a concrete domain w.r.t. TBoxes is undecidable.

5.2 (Un)decidability of the conditions.

If one intends to use Theorem 5 to obtain an ω-admissible concrete domain, one
could start with selecting a finite set N of bound, i.e., forbidden τ -substructures,
for a finite signature τ . The question is then whether N really induces a finitely
bounded structure, i.e., whether there is a τ -structure D such that Age(D) =
Forbe(N ). The bad news is that this question is in general undecidable. In fact, it
is shown in [16] that the joint embedding property (JEP) is undecidable for classes
of structures that are definable by finitely many bounds. In addition, it is known
that a class of structures definable by finitely many bounds has JEP iff this class
is the age of some structure [10].
However, if one restricts the attention to signatures containing only binary

relations, then it is decidable whether a class of the form Forbe(N ) has AP [12].
If this is the case, then the Fraïssé limit D of Forbe(N ) is a finitely bounded
homogeneous structure satisfying Age(D) = Forbe(N ) by Theorem 4.

5.3 Scope of the homogeneity condition

The decidability results given in Corollaries 2 and 3 presuppose that the given
concrete domain D is a homogeneous structure. One might ask whether this
restriction precludes some ω-admissible concrete domains to be covered by these
corollaries. We can show that every countable ω-admissible structure is equivalent
to an up to isomorphism unique homogeneous structure in the sense that one can
be embedded into each other (see Proposition 6), but in general it is not the case
that both structures satisfy the same first-order sentences (see Example 2). We
leave it as an open question whether such structures can lead to distinct extensions
of ALC by concrete domains.

Proposition 6. Let A be a countable ω-admissible structure. There exists an up
to isomorphism unique countable homogeneous core B with A ↪→ B and B ↪→ A.
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Proof. Let A be a countable ω-admissible structure. Then, by Proposition 3,
Age(A) has AP. Since the signature of A is finite, Age(A) is an amalgamation
class. By Theorem 4, there exists a countable homogeneous structure B with
Age(B) = Age(A). By Theorem 3, B is ω-categorical. Then, by Corollary 1,
B has homomorphism compactness. Since both A and B are countable, have
homomorphism compactness, and we have the same age, we conclude that A→ B
and B → A. It is known that ω-categorical structures satisfy an even stronger
property than homomorphism compactness, which we refer to as embedding
compactness (Lemma 3.1.5 in [9]). This property guarantees an embedding from
a given countable structure if there exists an embedding from all of its finite
substructures. This means that A ↪→ B because Age(A) ⊆ Age(B). Since B has
quantifier elimination and inherits JEPD from A, it is an ω-categorical model-
complete core by Theorem 3.6.11 in [9]. Now if we had two such ω-categorical
model-complete cores B and B′, then they would be homomorphically equivalent
by homomorphism compactness, which means that the have to be isomorphic
by a result in [8]. Let e : A ↪→ B and f : B → A be the embedding and the
homomorphism from above, respectively. We claim that f is an embedding as well.
Since B is a core and e ◦ f is an endomorphism of B, it is a self-embedding of B.
Suppose that f is not an embedding. Then there exists a tuple t /∈ RB such that
f(t) ∈ RA. Since e is a homomorphism, we have (e ◦ f)(t) ∈ RB. But then e ◦ f is
not an embedding, a contradiction. Thus f is an embedding. ut

5.4 Reproducing known results.

The examples for ω-admissible concrete domains given in [28] were RCC8 and
Allen’s interval algebra, for which the patchwork property is proved “by hand” in
[28]. Given our Theorem 5, we obtain these results as a consequence of known
results from model theory. It was shown in [15] that RCC8 has a representation
by a homogeneous structure R with a finite relational signature (see Theorem 2
in [15]). Since Age(R) has a finite universal axiomatization (see Definition 3 in
[15]), R is finitely bounded. For Allen’s interval algebra, it was shown in [19]
that it has a representation by a homogeneous structure A with a finite relational
signature (see the second example on page 270 in [19]). Since Age(A) has a finite
universal axiomatization (see the composition table from Figure 4 in [1]), A is
finitely bounded. The structure Q = (Q, <) we used as our running example also
satisfies the preconditions of Theorem 5, and thus Corollary 2 yields decidability
of ALCdfo(Q) with TBoxes. For Q extended just with >,≤,≥,=, 6=, decidability
was proved in [25], using an automata-based procedure. Our results show that
there is also a tableau-based decision procedure for this logic.

5.5 Expansions, disjoint unions, and products.

When modelling concepts in a DL with concrete domain D, it is often useful to
be able to refer to specific elements c of the domain, i.e., to have unary predicate
symbols =c that are interpreted as {c}. Adding finitely many such predicates
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is harmless since we can show that the class of reducts of finitely bounded
homogeneous structures is closed under expansion by finitely many predicates of
the form =c. This follows from the following result, which was stated (without
proof) in [13].

Proposition 7. Let A be a finitely bounded homogeneous structure. Any expansion
of A by a relation of the form {c} for c ∈ A is a reduct of a finitely bounded
homogeneous structure.

Proof. Let τ be the signature of A and τ ′ = τ ∪ {=c}. Consider the τ ′-expansion
A′ of A where =c is interpreted as {c}. By Theorem 2 and Theorem 3, there exists
a unary qf τ -formula φc that defines the orbit of c in A. Let Φ(A) be a universal
sentence that defines Age(A). We set

Φ(A′) := Φ(A) ∧
(
∀x.=c(x)⇒ φc(x)

)
∧
(
∀x, y.=c(x) ∧=c(y)⇒ x = y

)
.

It is easy to see that Φ(A′) is a universal sentence that defines Age(A′). This
shows that A′ is finitely bounded. Unfortunately, A′ need not be homogeneous.
To obtain homogeneity, we need to add further relations. For each k-ary symbol
R ∈ τ with k ≥ 1 and index set ∅ 6= X ⊆ [k], we introduce a (k− |X|)-ary symbol
RX→c. Then we consider the expansion A′′ of A′ to the signature τ ′′ that extends
τ ′ by these new symbols where, for each new symbol RX→c, its interpretation in
A′′ is defined as follows. If [k] \X = {i1, . . . , is} with i1 < . . . < is, then

(a1, . . . , as) ∈ RA′′

X→c iff (b1, . . . , bk) ∈ RA,

where bi = c if i ∈ X and bij = aj for j ∈ [s]. Since these new relations can be
defined in A′ by universal sentences, A′′ is still finitely bounded. We claim that it
is also homogeneous. Let f : B1 → B2 be a τ ′′-isomorphism between two finite
substructures of A′′. If c ∈ B1, then c ∈ B2 and f maps c to c. We know that f
extends to a τ -automorphism of A since A is homogeneous. Since f(c) = c, this
automorphism also respects =c and the new relation symbols RX→c, i.e., it is also
a τ ′′-automorphism of A′′.
Now, suppose that c /∈ B1. Then we also have c /∈ B2 since isomorphisms

preserve also the complements of relations. For i ∈ [2], let B′i is the substructure
of A′′ on B′i := Bi ∪{c}. We extend the isomorphism f to a function f ′ : B′1 → B′2
by mapping c to c, and claim that this is again a τ ′′-isomorphism. Clearly, it
preserves =c.
Now, let R ∈ τ be a relation symbol and consider a k-tuple of elements of B′1.

If none of the components of the tuple is c, then we have (a1, . . . , ak) ∈ RB′
1 iff

(a1, . . . , ak) ∈ RB1 iff (f(a1), . . . , f(ak)) ∈ RB2 iff (f ′(a1), . . . , f ′(ak)) ∈ RB′
2 .

Otherwise, let X := {i | ai = c} and assume that [k] \ X = {i1, . . . , is}
with i1 < . . . < is. Using the definition of the interpretation of RX→c in A′′

and the fact that f is a τ ′′-isomorphism, we then have (a1, . . . , ak) ∈ RB′
1 iff

(ai1 , . . . , ais) ∈ RB1
X→c iff (f(ai1), . . . , f(ais)) ∈ RB2

X→c iff (f ′(a1), . . . , f ′(ak)) ∈ RB′
2 .
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Summing up, we have shown that f ′ is a τ ′′-isomorphism between B′1 and B′2.
Clearly, f ′ is also a τ -isomorphism between these two structures that extends f and
satisfies f ′(c) = c. By homogeneity of A, f ′ can be extended to a τ -automorphism
of A. Since f(c) = c, this automorphism also respects =c and the new relation
symbols RX→c, i.e., it is also a τ ′′-automorphism of A′′. Thus, we have shown that
A′′ is homogeneous.
Now the statement of the proposition follows since the expansion A′ of A by
{c} is a reduct of A′′. ut

It would also be useful to be able to refer to predicates of different concrete
domains (say RCC8 and Allen) when defining concepts. In [5], it was shown
that admissible concrete domains are closed under disjoint union. We can show
the corresponding result for finitely bounded homogeneous structures. In the
proposition formulated below, we assume that the component structures A1, . . . ,Ak

have the same signature, but disjoint domains. In [5], the signatures of the
structures are assumed to be disjoint as well (see the example of combining RCC8
and Allen). The case of disjoint signatures can, however, be reduced to the case
of a common signature: we simply expand the structures to the union of their
signatures by interpreting relation symbols not belonging to their signature as the
empty set. Since empty relations can be defined by first-order formulas, such an
expansion by empty relations leaves homogeneity and finite boundedness intact
(see Proposition 5). The disjoint union of two structures was formally defined in
Section 2 for the case of two structures. The extension of this definition to n > 2
structures is done in the obvious way.

Proposition 8. Let A1, . . . ,Ak be finitely bounded homogeneous structures over a
common signature τ , but with disjoint domains. Then their disjoint union ⋃ki=1 Ai

is a reduct of a finitely bounded homogeneous structure.

Proof. For brevity we write A for the disjoint union ⋃ki=1 Ai. Let σ be the signature
τ extended by a unary symbol Di for each i ∈ [k]. Consider the σ-expansion A′ of
A where DA′

i = Ai for each i ∈ [k].
To show that A′ is homogeneous, we first observe the following. If, for each

i ∈ [k], fi is an automorphism of Ai, then the map f : A→ A satisfying f |Ai
:= fi

is an automorphism of A′ since it additionally preserves DA′
i for each i ∈ [k].

Conversely, if f is an automorphism of A′, then f |Ai
is an automorphism of Ai

for each i ∈ [k]. Now, let f : B1 → B2 be an isomorphism between two finite
substructures of A′. Since f preserves DB1

i = B1 ∩ Ai for each i ∈ [k], the
restrictions f |B1∩Ai

are isomorphisms, and thus extend to automorphism of Ai

for each i ∈ [k] by homogeneity of the structures Ai. By the observation about
automorphisms above, this implies that f itself extends to an automorphism of
A′.
Next we show that A′ is finitely bounded. For each i ∈ [k], let

Φ(Ai) = ∀xi1 , . . . , xini
. φi(xi1 , . . . , xini

) with φi quantifier-free
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be a universal sentence that defines Age(Ai). Now consider the universal sentence

Φ(A′) :=
(
∀x.

∧
i 6=j
¬
(
Di(x) ∧Dj(x)

))
∧
(
∀x.

k∨
i=1

Di(x)
)

∧
∧
i=1
∀xi1 , . . . , xini

.
( ni∧
j=1

Di(xij ) =⇒ φi(xi1 , . . . , xini
)
)
.

Let B be a finite σ-structure that satisfies Φ(A′). By the first line in Φ(A′), the
unary relations DB

i are pairwise disjoint and exhaustive. By the second line in
Φ(A′), the τ -reduct of the substructure of B on DB

i is contained in Age(Ai) for
each i ∈ [k]. Hence B is a substructure of A′. Conversely, every finite substructure
of A′ must satisfy Φ(A′). This completes the proof as A is the τ -reduct of A′. ut

Using disjoint union to refer to several concrete domain works well if the paths
employed in concrete domain constructors contain only functional roles, which is
the case considered in [5], but it is not appropriate if we allow for non-functional
roles in paths.

Example 1. For example, if we want to refer to time and space of an event, we
can use the disjoint union of RCC8 and Allen, employing two feature names time
and space. If succ is a functional role, then the concept description

Event u ∃succ.Event u ∃time, succ time.[Before] u ∃space, succ space.[EC]

describes an event e that has a unique successor event e′ that takes place after e
and in a region that is externally connected to e. However, if succ is not functional,
then the above concept description does not express that e has a successor event
e′ being temporally after and spatially externally connected. Instead, there could
be two successor events, one satisfying the temporal constraint and the other the
spatial one.

To overcome this problem, we propose to use the so-called full product [9].5 Let
A1, . . . ,Ak be finitely many structures with disjoint relational signatures τ1, . . . , τk.
Furthermore, let =1, . . . ,=d be fresh binary symbols such that, for every i ∈ [k],
=i interprets as 4Ai

over Ai. We assume in the following that the relation =i is
part of the signature of Ai. This assumption is without loss of generality since the
equality predicate is pp definable, and thus extending a homogeneous structure
with an explicit relation symbol for it leaves the structure homogeneous (see the
proof of Proposition 5).
The full product of A1, . . . ,Ak, denoted by A1 � · · · � Ak, has as its domain

the Cartesian product A := A1 × · · · × Ak and as its signature the union of the
signatures τi. Recall that, for a ∈ A1 × · · · × Ak and i ∈ [k], we denote the ith

5 We will show below that employing the usual direct product of the structures does not work since it
does not preserve homogeneity.
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component of the tuple a by a[i]. The relations of A1 � · · ·� Ak are defined as
follows:

RA := {(a1, . . . , an) ∈ An | (a1[i], . . . , an[i]) ∈ RAi}
for every i ∈ [k] and every n-ary relation R ∈ τi.
The product action of Aut(A1) × · · · × Aut(Ak) on A1 × · · · × Ak is given by

g(a) := (g[1](a[1]), . . . , g[k](a[k])). Beside giving us access to all of the original
relations through projections, full products have the following important property.

Proposition 9 ([9], Prop. 3.3.13). Let A1, . . . ,Ak be structures with disjoint
relational signatures τ1, . . . , τk such that, for i ∈ [k], τi contains the symbol =i,
which is defined in Ai as ∆Ai

. Then Aut(A1 � · · · � Ak) is equal to Aut(A1) ×
· · · × Aut(Ak) in its product action on A1 × · · · × Ak.

We can show that the full product preserves homogeneity and finite boundedness.
First, we we consider homogeneity.

Proposition 10. Let A1, . . . ,Ak be homogeneous structures with disjoint rela-
tional signatures τ1, . . . , τk such that, for i ∈ [k], τi contains the symbol =i, which
is defined in Ai as ∆Ai

. Then A1 � · · ·� Ak is a homogeneous structure.

Proof. For brevity we set A := A1 � · · ·� Ak and denote the signature of A by
τ . We must show that A is homogeneous. Let f : B1 → B2 be an isomorphism
between finite substructures of A. For every i ∈ [k], we define B1,i and B2,i as
the substructure of Ai on pri(B1) and pri(B2), respectively. For every i ∈ [k] and
R ∈ τi∪{=i}, the relation RB1 is preserved by f . Consider the map fi : B1,i → B2,i
given by fi(b[i]) := f(b)[i]. It is well defined, since for any b, b′ ∈ B1 with b[i] = b′[i],
we have (b, b′) ∈ =i

B1 , which implies f(b)[i] = f(b′)[i], because =i is preserved by
f . Since f is an isomorphism, the previous argument can also be read backwards,
which implies that fi is injective. It follows directly from the definition of fi that
it is surjective, because f is surjective. Finally, fi is an isomorphism since, for
every R ∈ τi ∪ {=i}, we have

(a1[i], . . . , ak[i]) ∈ RB1,i iff (a1[i], . . . , ak[i]) ∈ RAi ∩ pri(B1)k

iff (a1, . . . , ak) ∈ RA ∩Bk
1

iff (a1, . . . , ak) ∈ RB1

iff (f(a1), . . . , f(ak)) ∈ RB2

iff (f(a1), . . . , f(ak)) ∈ RA ∩Bk
2

iff (f(a1)[i], . . . , f(ak)[i]) ∈ RAi ∩ pri(B2)k

iff (f(a1)[i], . . . , f(ak)[i]) ∈ RB2,i

iff (fi(a1[i]), . . . , fi(ak[i])) ∈ RB2,i .

Each fi extends to an automorphism f ′i of Ai, because Ai is homogeneous. By
Proposition 9, the product action of (f ′1, . . . , f ′k) on A1 × · · · × Ak specifies an
automorphism f ′ of A1 � · · · � Ak. It follows from the definition of fi that f ′
extends f . ut
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Finite boundedness is also preserved under building the full product, and thus
the prerequisites for Theorem 5 and Corollary 2 are preserved under building the
full product.

Proposition 11. Let A1, . . . ,Ak be finitely bounded structures with disjoint rela-
tional signatures τ1, . . . , τk such that, for i ∈ [k], τi contains the symbol =i, which
is defined in Ai as ∆Ai

. Then A1 � · · ·� Ak is finitely bounded.

Proof. For each i ∈ [k], let Φ(Ai) be the universal sentence that defines Age(Ai).
Let Φ′(Ai) be the sentence obtained from Φ(Ai) by replacing each occurrence of a
literal of the form (x = y) in Φ′(Ai) by the literal (x =i y). Furthermore, for each
symbol R ∈ τi of arity n other than =i, let ψR be the sentence

∀x1, . . . , xn, y1, . . . , yn.
( n∧
j=1

xj =i yj

)
=⇒

(
R(x1, . . . , xn) ⇐⇒ R(y1, . . . , yn)

)
.

Now consider the τ -sentence

Φ(A) :=
k∧
i=1

(
∀x, y, z. (x =i x) ∧

(
x =i y ⇐⇒ y =i x

)
∧
(
x =i y ∧ y =i z =⇒ x =i z

))

∧
(
∀x, y. x = y ⇐⇒

k∧
i=1

x =i y
)
∧

k∧
i=1

Φ′(Ai) ∧
∧

R∈τ\{=1,...,=k}
ψR.

We claim that Φ(A) defines Age(A).
For the forward direction, let B be a finite substructure of A := A1 � · · ·� Ak.

By the definition of �, the relation =A
i is an equivalence relation for each i ∈ [k],

because =Ai
i is an equivalence relation. Since B is a substructure of A, =B

i is
an equivalence relation for each i ∈ [k] as well. Thus B satisfies the first line in
Φ(A). For all x, y ∈ B we have x = y iff x =B

i y for each i ∈ [k], because =B
i

stands for the equality in the i-th coordinate. Thus B satisfies the first clause
on the second line in Φ(A). Let Bi be the substructure of Ai on pri(B). As a
substructure of Ai, Bi satisfies Φ(Ai) because Φ(Ai) defines Age(Ai). But then
Bi must also satisfy Φ′(Ai) because =i interprets as the binary equality predicate
in Bi. We claim that B satisfies Φ′(Ai) for each i ∈ [k]. Let b1, . . . , bm ∈ B be
any tuples to be substituted for the universally quantified variables x1, . . . , xm of
Φ′(Ai). Let ψ′(x1, . . . , xm) be a formula in DNF equivalent to the quantifier-free
part of Φ′(Ai). Let ψ? be a disjunct in ψ′ such that Bi |= ψ?(b1[i], . . . , bm[i]). Recall
that Φ′(Ai) contains no =-literals. Also recall that, for every n-ary symbol R ∈ τi,
we have (bi1 , . . . , bin) ∈ RB iff (bi1 [i], . . . , bin [i]) ∈ RBi by the definition of �. This
means that, if ψ? contains a positive literal of the form R(xi1 , . . . , xin) for some
n-ary symbol R ∈ τi, then we have Bi |= R(bi1 [i], . . . , bin [i]) iff B |= R(bi1 , . . . , bin).
Likewise we have Bi |= ¬R(bi1 [i], . . . , bin [i]) iff B |= ¬R(bi1 , . . . , bin). Since B |=
ψ?(b1, . . . , bm) and b1, . . . , bn were chosen arbitrarily, we conclude that B |= Φ′(Ai).
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It follows directly from the argumentation above and the fact that =i interprets
as the binary equality predicate in Ai that B |= ψR for each R ∈ τ \ {=1, . . . ,=k}.
Hence B |= Φ(A).
For the backward direction, let B be a finite τ -structure that satisfies Φ(A).

Then =B
i is an equivalence relation for each i ∈ [k]. For each i ∈ [k], consider the

following τi-structure Bi. The domain of Bi consists of the equivalence classes
w.r.t. =B

i . Moreover, for each n-ary symbol R ∈ τi, we have (X1, . . . , Xn) ∈ RBi

iff (b1, . . . , bn) ∈ RB for some representatives bi ∈ Xi. The relations of Bi are well-
defined because B |= ψR for each R ∈ τ \{=1, . . . ,=k}. We claim that Bi |= Φ′(Ai)
for each i ∈ [k]. Recall that Φ′(Ai) contains no =-literals. Let X1, . . . , Xm be any
equivalence classes of elements from B w.r.t. =B

i to be substituted for the univer-
sally quantified variables x1, . . . , xm of Φ′(Ai), and b1, . . . , bm any representatives
of these equivalence classes, respectively. Let ψ′(x1, . . . , xm) be a formula in DNF
equivalent to the quantifier-free part of Φ′(Ai). Since B |= Φ′(Ai), we have that
B |= ψ′(b1, . . . , bm). Let ψ? be a disjunct in ψ′ such that B |= ψ?(b1, . . . , bm).
If ψ? contains a positive literal of the form (xi1 =i xi2), then we have B |=

(bi1 =i bi2). This means that bi1 and bi2 are contained in the same equivalence
class w.r.t. =B

i , that is, Xi1 = Xi2 . We conclude that Bi |= (Xi1 =i Xi2) because
the symbol =i interprets in Bi as the binary equality predicate. If ψ? contains a
negative literal of the form ¬(xi1 =i xi2), then we have B |= ¬(bi1 =i bi2) which
means that bi1 and bi2 are contained in distinct equivalence classes. Then clearly
Bi |= ¬(Xi1 =i Xi2).
If ψ? contains a positive literal of the form R(xi1 , . . . , xin) for some n-ary

symbol R ∈ τi \ {=i}, then we have B |= R(bi1 , . . . , bin). It follows directly
from the definition of Bi that Bi |= R(Xi1 , . . . , Xin). If ψ? contains a negative
literal of the form ¬R(xi1 , . . . , xin) for some n-ary symbol R ∈ τi, then we have
B |= ¬R(bi1 , . . . , bin). Suppose that (Xi1 , . . . , Xin) ∈ RBi . Then (b′i1 , . . . , b

′
in) ∈ RB

for some representatives b′i` of Xi` . But then (bi1 , . . . , bin) ∈ RB because B |= ψR,
a contradiction. Thus Bi |= ¬R(Xi1 , . . . , Xin).

SinceBi |= ψ′(X1, . . . , Xm) andX1, . . . , Xm were chosen arbitrarily, we conclude
that Bi |= Φ′(Ai). Since the symbol =i interprets in Bi as the binary equality
predicate, we have that Bi |= Φ(Ai). Thus Bi ∈ Age(Ai) for each i ∈ [k]. For
each i ∈ [k], let ei be an embedding from Bi into Ai. For each b ∈ B and
each i ∈ [k], we denote by [b]=B

i
the equivalence class of b ∈ B w.r.t. =B

i . Now
let e : B → A1 × · · · × Ak be defined by e(b) :=

(
e1([b]=B

1
), . . . , ek([b]=B

k
)
)
. This

function is well-defined because we map from elements to their equivalence classes
and not the other way around. By the first clause on the second line in Φ(A),
for all x, y ∈ B, we have x = y iff x =B

i y for each i ∈ [k]. This means that e is
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injective. For every i ∈ [k] and every n-ary symbol R ∈ τi, we have

(b1, . . . , bn) ∈ RB iff ([b1]=B
i
, . . . , [bn]=B

i
) ∈ RBi

iff
(
ei([b1]=B

i
), . . . , ei([bn]=B

i
)
)
∈ RAi

iff
(
e(b1)[i], . . . , e(bn)[i]

)
∈ RAi

iff
(
e(b1), . . . , e(bn)

)
∈ RA.

Hence e is an embedding from B into A. This completes the proof. ut

Coming back to Example 1, we can use a feature time&space that maps into
the full product of Allen and RCC8 to describe an event e that has at least one
successor event that that takes place after e and in a region that is externally
connected to e as follows:

Event u ∃succ.Event u ∃time&space, succ time&space.[Before(x, y) ∧ EC(x, y)].

The following example shows, on the one hand, that the direct product of two
homogeneous structures need not be homogeneous. On the other hand, it also
provides us with an example of an ω-admissible structure that is not homogeneous.

Example 2. The random graph is the unique countably infinite simple graph
G = (G;EG) such that Age(G) consists of all finite simple graphs [20]. It is
well-known that G is homogeneous and finitely bounded. It also has the so-called
extension property: if X and Y are disjoint finite subsets of G, then there exists
a vertex v ∈ G \ (X ∪ Y ) that has an edge in G to each vertex from X and to
none from Y . Consider the direct product H of G with itself. It is easy to see
that Age(G) = Age(H). This means that Age(H) has AP. Also, H is ω-categorical
because it has a two-dimensional first-order interpretation6 in G and first-order
interpretations preserve ω-categoricity by Theorem 6.3.5 in [20]. However, H does
not have the extension property. To see this, let a, b, c be any distinct vertices in
G, X := {(a, b), (b, c)}, and Y := {(a, c)}. Suppose that there exists (u, v) ∈ H
that has an edge in H to each vertex from X and to none from Y . By the
definition of H, there is an edge in G from u to a and from v to c. But then,
by the definition of H as the direct product of G with itself, there is an edge
from (u, v) to (a, c), a contradiction to our previous assumption. This means that
G and H are not isomorphic, otherwise any isomorphism would yield a witness
for the extension property for H. We conclude that H is not homogeneous since
homogeneous structures are uniquely determined up to isomorphism by their age
due to Theorem 4. Thus, we have shown that homogeneous structures are not
closed under building direct products.
Now consider the {R1, R2, R3, E}-expansion A of G where

– R1 interprets as the full unary relation,
6 See [20] for all necessary information about first-order interpretations.
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– R2 interprets as the the diagonal relation 4G, and
– R3 interprets as the complement relation G2 \ (4G ∪ EG).

Likewise we construct the {R1, R2, R3, E}-expansion B from H. Let C be a sub-
structure of A and C′ its {E}-reduct. Since Age(G) = Age(H), there exists an
isomorphism f from C′ to some substructure D′ of H. Let D be the substructure
of B on the domain D′ of D′. We claim that f is also an isomorphism from C to
D. We have x ∈ RC

1 iff f(x) ∈ RD
1 because RC

1 = C, RD
1 = D, and f is bijective.

For the same reason we have (x, y) ∈ RC
2 = 4C iff (f(x), f(y)) ∈ RD

2 = 4D.
Moreover, we have

(x, y) ∈ RC
3 iff (x, y) /∈ (EC′ ∪4C)
iff (f(x), f(y)) /∈ (ED′ ∪4D)
iff (f(x), f(y)) ∈ RD

3 .

We conclude that Age(A) ⊆ Age(B). Using an analogous argument, we can show
Age(A) ⊇ Age(B), and thus Age(A) = Age(B). Since every homomorphism from
a finite structure has a finite range, Age(A) = Age(B) implies CSP(A) = CSP(B).
Since the relations RA

1 , RA
2 and RA

3 are first-order definable in G, we have that:

– A is homogeneous since G is homogeneous and first-order definable relations
are preserved by automorphisms, thus Age(A) has AP by Theorem 4,

– A is finitely bounded by Proposition 5, and thus CSP(A) is in NP by Proposi-
tion 4.

By definition, B is JDJEPD. Since Age(B) has AP, we have that B is a patchwork
by Proposition 3. By Corollary 1, B has homomorphism compactness since it is
ω-categorical. This is the case since expansions by first-order definable relations
do not change the automorphism group. We conclude that B is a structure that
is ω-admissible but not homogeneous.

5.6 Henson digraphs.

A directed graph is a tournament if every two distinct vertices in it are connected by
exactly one directed edge. In [18], Henson proved that there are uncountably many
homogeneous directed graphs by showing that, for any set N of finite tournaments
(plus the loop and the 2-cycle) such that no member of N is embeddable into any
other member of N , Forbe(N ) is an amalgamation class whose Fraïssé limit is a
homogeneous directed graph. Furthermore, the Fraïssé limits for two distinct sets
of such tournaments are distinct as well. In the literature, such directed graphs
are often called Henson digraphs [29]. If G is a Henson digraph, then Age(G) =
CSP(G).7 Clearly, only countably many Henson digraphs can have a decidable
CSP. Beside the finitely bounded ones (see Proposition 4), there is an interesting

7 One direction is obvious, the other holds because homomorphisms between directed graphs cannot
contract any edges.
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example constructed using the infinite set of non-isomorphic tournaments from
Henson’s original proof of uncountability. Consider the tournaments T1,T2, . . .
with domains [2], [3], . . . such that the edge relation of Tn consists of the edges
(i, j) for every j = i + 1 with 0 ≤ i ≤ n, (0, n + 1), and (j, i) for every j >
i + 1 with (i, j) 6= (0, n + 1). It was shown in [11] that the CSP of the Henson
digraph corresponding to N := {T1,T2, . . . } is coNP-complete. This digraph is
homogeneous and ω-categorical by Theorem 4, and its CSP is decidable. Thus,
it satisfies the requirements of Corollary 3. However, it is clearly not finitely
bounded. This example demonstrates that Corollary 3 indeed covers a larger class
of structures than Corollary 2.

6 Conclusion

We have shown that ω-admissibility, which was introduced in the DL community
to obtain decidable extensions of DLs by concrete domains, is closely related
to well-known notions from model theory. This has allowed us to find sufficient
conditions for ω-admissibility of a concrete domain, and thus conditions under
which reasoning in DLs with concrete domains is decidable also in the presence of
TBoxes. Given the fact that a large number of homogeneous structures are known
from the literature [29] and that homogeneous and finitely bounded structures
play an important rôle in the CSP community, we believe that these condition
will turn out to be very useful for locating new ω-admissible concrete domains.
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A A proof of Theorem 1
Theorem 1. Let D be an ω-admissible τ -structure with at most d-ary relations
for some d≥2. Then concept satisfiability in ALCd∨+(D) w.r.t. TBoxes is decidable.

Proof. Using Lemma 4, we can reduce satisfiability of ALCd∨+(D) concepts w.r.t.
general TBoxes in PTime to satisfiability of ALCd∨+(D) concepts in NNF w.r.t.
TBoxes in NNF. The rules (1), (2) and (3) are standard, and the rules (4) and (5)
can be performed in constant time as there are only finitely many at most d-ary
formulas in∨+. Then the claim follows from Lemma 5, Lemma 6 and Lemma 7. ut

A.1 A negation normal form
Let D be an ω-admissible τ -structure with at most d-ary relations. Recall the
definition of∨+. For every k≤d and k-ary formula φ from∨+, we denote by φ¬
the unique k-ary formula from∨+ that defines Dk \ φD in D. Note that the binary
equality predicate = is also a valid∨+ formula, because D is JD.

An ALCd∨+(D) concept C0 is in negation normal form (NNF) if negation occurs
only in front of concept names. A path p of length m is a tuple (`1, . . . , `m) where
`i∈NR for each i<m and `m∈NF. For a path p=(`1, . . . , `m), we set def(p) :=
∃`1. · · · ∃`m−1.∃`m, `m. [=] and ud(p) :=∀`1. · · · ∀`m−1.∀`m, `m. [=¬]. An ALCd∨+(D)
TBox T is in NNF if it is a singleton of the form {>vCT } such that CT is in
NNF. We use Sub(C0) to denote the set of subconcepts of a concept C0 and, for a
TBox T in NNF, we set Sub(T ) :=Sub(CT ). We additionally define Sub(C0, T ) :=
Sub(C0) ∪ Sub(T ). The following lemma is a straightforward consequence of the
definitions.
Lemma 4. Let D be an ω-admissible τ -structure with at most d-ary relations.
For every ALCd∨+(D) TBox T there exists an equivalent one in NNF obtainable by
an exhaustive application of the following rules.
1. {C1vD1, . . . , CkvDk}ù{>v (¬C1 tD1) u · · · u (¬Ck tDk)}.
2. ¬¬CùC, ¬(C uD) ù¬C t ¬D, ¬(C tD) ù¬C u ¬D.
3. ¬∃r. Cù∀r.¬C, ¬∀r. Cù∃r.¬C.
4. ¬(∀p1, . . . , pk. [φ]) ù∃p1, . . . , pk. [φ¬] if φD 6=Dk and ⊥ else.
5. ¬(∃p1, . . . , pk. [φ]) ù∀p1, . . . , pk. [φ¬] if φD 6=Dk and ⊔ki=1 ud(pi) else.

A.2 Notation
LetD be an ω-admissible τ -structure with at most d-ary relations. Fix anALCd∨+(D)
concept C0 and a TBox T .
Definition 3 (Completion system). Let Oa and Oc be disjoint countably in-
finite sets of abstract nodes and concrete nodes. A completion tree for (C0, T )
is a pair (T,L) where T= (T ;E) is a finite directed tree (T ;E) with T ⊆Oa ∪Oc,
E⊆Oa × (Oa ∪ Oc), and L : (T ∩ Oa) ∪ E→Pow(Sub(C0, T )) ∪ NR ∪ NF is a
mapping such that

L(T∩Oa)⊆Pow(Sub(C0, T )), L(E∩(Oa×Oa))⊆NR, and L(E∩(Oa×Oc))⊆NF.
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We say that w∈T is an `-successor of v∈T if L(v, w) = `. This notion extends to
paths in an obvious way. A completion system for (C0, T ) is a triple (T,N,L),
where (T,L) is a completion tree for (C0, T ) and N is a τ -structure with domain
N =T ∩Oc. We call N the constraint system of (T,N,L). We say that S contains
a clash if there is a∈T ∩Oa and A∈NC such that {A,¬A}⊆L(a), or if N 6→D.
We call S complete if no tableau rule from Algorithm 2 is applicable. A completion
of N is any JEPD τ -structure Ncpl over N with N→Ncpl and Ncpl→D.

Definition 4 (⊕ Operation). Let S := (T,N,L) be a completion system for
(C0, T ). For a∈T ∩ Oa, and either b∈Oa \ T and `∈NR, or b∈Oc \ T and
`∈NF, we denote by S ⊕ `(a, b) the completion system (T′,N′,L′) obtained from
S as follows. If `∈NR \ NfR, or if `∈NfR ∪ NF and a has no `-successor, then
T ′ :=T ∪ {b}, E ′ :=E ∪ {(a, b)}, and L′ extends L by L′(a, b) := ` plus L′(b) :=∅ if
b∈Oa. If `∈NfR ∪NF and a has an `-successor c, then we simply rename c with b.
Let p= (`1, . . . , `m) be a path. With S ⊕ p(a, b) we denote the completion system((

· · ·
(
S ⊕ `1(a, b1)

)
⊕ · · ·

)
⊕ `m−1(bm−2, bm−1)

)
⊕ `m(bm−1, b),

where b1, . . . , bm−1, b∈Oa ∪Oc are all fresh w.r.t. T and pairwise distinct.

Definition 5 (Blocking). Let S := (T,N,L) be a completion system for (C0, T ).
We say that a∈T is an ancestor of b∈T if b is reachable from a in (T ;E). For
a∈T ∩Oa, we set

Feat(a) :={`∈NF |a has an `-successor}

and define N(a) as the substructure of N on the set of those x∈T ∩Oc which are
an `-successor of a for some `∈NF. We say that a is potentially blocked by b in
S if b is an ancestor of a, L(a)⊆L(b), and Feat(a)= Feat(b). We say that a is
blocked by b in S if a is potentially blocked by b, N(a) and N(b) are JEPD, and
N(a)∼=N(b). Finally, a is blocked in S if it or one of its ancestors is blocked.

A.3 A tableau algorithm

Let D be an ω-admissible τ -structure with at most d-ary relations. For a pair
(C0, T ) consisting of an ALCd(D) concept and an ALCd(D) TBox, we denote by
NC(C0, T ), NR(C0, T ) resp. NF(C0, T ) the sets of concepts, roles resp. features
which appear in C0 or CT . An initial completion system for (C0, T ) is a completion
system S= (T,N,L) where, for some a0∈Oa, T= ({a0}, ∅), N is the τ -structure
over {a0} with empty relations, and L sends a0 to {C0}.
Note that the N-rule from Algorithm 2 is always applied with the highest

precedence. As usual, all tableau rules in Algorithm 2 can be applied to an
arbitrary element of a completion tree.
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Algorithm 1: satisfiable(S).
Input: A completion system S= (T,N,L) for (T , C0).
Output: true or false

1 if S contains a clash then
2 return false;
3 else if the procedure N-rule from Algorithm 2 is applicable to S then
4 return satisfiable(N-rule(S));
5 else if any other procedure rule from Algorithm 2 is applicable to S

then
6 return satisfiable(rule(S));
7 else
8 return true;

Lemma 5 (Termination). Let D be an ω-admissible τ -structure with at most
d-ary relations. Furthermore, let C0 resp. T be an ALCd∨+(D) concept resp. TBox
in NNF. Then each run of Algorithm 1 starting with an initial completion system
for (C0, T ) terminates.

Proof. Let S0,S1, . . . be the sequence of completion systems generated during the
run of Algorithm 1, where, for every i≥0, Si= (Ti,Ni,Li). We set n := |C0|+ |T |.
Clearly |Sub(C0, T )|≤n. We show that for every i≥0,

a. the out degree of Ti is bounded by n, and
b. the depth of Ti is bounded by ` := 22n · |τ |d·nd + 2.

We start with (a). Note that nodes from Ti ∩ Oc have no successors and
successors of each a∈Ti ∩Oa are created solely by application of ∃-rule or ∃c-rule.
The ∃-rule creates at most one successor b∈Ti ∩ Oa and the ∃c-rule generates
at most d successors b1, . . . , bd∈Ti ∩ Oa of a for every ∃r.C ∈Sub(C0, T ) and
∃p1, . . . , pk.[R1 ∨ · · · ∨Rm]∈Sub(C0, T ). Furthermore, the ∃c-rule generates at most
one successor for every feature from NF(C0, T ). Hence, the number of concrete
successors is bounded by n.
For (b), suppose that there is an i≥0 such that the depth of Ti exceeds `.

Without loss of generality, , we may assume that i is the smallest index with
this property. Then Si has been obtained from Si−1 by applying the ∃-rule or the
∃c-rule to a node on level `, or the ∃c-rule to a node on level ` − 1. Since the
Ni−1-rule is applied with highest precedence, it is not applicable to Si−1. Hence,
for every a, b∈Ti−1 ∩ Oa such that b is potentially blocked by a, Ni−1(a) and
Ni−1(b) are both JEPD. For each pair a, b∈Ti−1 ∩Oa, we write a∼ b if and only
if Li−1(a) =Li−1(b), Feat(a) = Feat(b), and Ni−1(a)∼=Ni−1(b). Obviously, ∼ is an
equivalence relation on Ti−1 ∩ Oa. Note that if a is an ancestor of b and a∼ b,
then b is blocked by a in Si−1. Let Ti ∩Oa/∼ be the set of all equivalence classes
w.r.t. ∼ and ε := |NF(C0, T )|. We have L(a)⊂Sub(C0, T ), Ni−1(a) is JEPD, and
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Algorithm 2: The tableau rules.
Input: A completion system S=(T,N,L) for (T , C0).
Output: A completion system for (T , C0).

1 N-rule(S)
2 if 1. a is potentially blocked by some b∈T ∩Oa or vice versa
3 2. N(a) is not JEPD then
4 guess a completion Ncpl(a) of N(a) and extend the relations of N by the new
5 tuples from Ncpl(a);

6 T -rule(S)
7 if CT /∈L(a) then
8 L(a)←−L(a) ∪ {CT };

9 u-rule(S)
10 if 1. C1 u C2∈L(a),
11 2. a is not blocked, and
12 3. {C1, C2}*L(a) then
13 L(a)←−L(a) ∪ {C1, C2};

14 t-rule(S)
15 if 1. C1 t C2∈L(a),
16 2. a is not blocked, and
17 3.{C1, C2} ∩ L(a)=∅ then
18 L(a)←−L(a) ∪ {C} for some C ∈{C1, C2};

19 ∃-rule(S)
20 if 1. ∃r. C ∈L(a),
21 2. a is not blocked, and
22 3. there is no r-successor b of a such that C ∈L(b) then
23 L←−L⊕ r(a, b) for some fresh b∈Oa;
24 L(b)←−L(b) ∪ {C};

25 ∀-rule(S)
26 if 1. ∀r. C ∈L(a),
27 2. a is not blocked, and
28 3. b is an r-successor of a such that C /∈L(b) then
29 L(b)←−L(b) ∪ {C};

30 ∃c-rule(S)
31 if 1. ∃p1, . . . , pk.[R1 ∨ · · · ∨Rm]∈L(a),
32 2. a is not blocked, and
33 3. there are no x1, . . . , xk ∈Oc such that (x1, . . . , xk)∈Rj for some j∈ [m]
34 and xi is a pi-successor of a for every i∈ [k] then
35 S←−S ⊕ p1(a, x1)⊕ · · ·⊕ pm(a, xm) for some fresh x1, . . . , xk ∈Oc;
36 RN

j ←−RN
j ∪ {(x1, . . . , xk)} for some j∈ [m];

37 ∀c-rule(S)
38 if 1. ∀p1, . . . , pk. [R1 ∨ · · · ∨Rm]∈L(a),
39 2. a is not blocked, and
40 3. there are x1, . . . , xk ∈Oc such that xi is a pi-successor of a for every i∈ [k]
41 and (x1, . . . , xk) /∈Rj for all j∈ [m] then
42 RN

j ←−RN
j ∪ {(x1, . . . , xk)} for some j∈ [m];
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|Ni−1(a)|≤ ε. Then

|Ti−1 ∩Oa/∼|≤2|Sub(C0,T )| ·
m∑
i=0

(
m

i

)
|τ |
∑d

j=0 i
j

.

Since m≤n, we obtain |Ti−1 ∩Oa/∼|≤2n · 2n · |τ6d|d·nd . Let a∈Ti−1 ∩Oa be the
node to which a rule is applied in Si−1 in order to obtain Si. As noted before,
the level k of a in Ti−1 is at least `− 1≥|Ti−1 ∩Oa/∼|+ 1. Let a0, . . . , ak be the
path in Ti−1 leading from the root to a. Since k> |Ti−1 ∩Oa/∼|, we have aj∼ai
for some 0≤ i<j≤k. But then a is blocked, which contradicts that a rule was
applied to a.
Thus the statement of Lemma 5 holds due to to the following reasons:

– Algorithm 1 constructs a completion system S= (T,N,L) whose underlying
completion tree T has bounded out-degree and depth. No nodes, concepts or
tuples of relations are removed from S in the process.

– Every tableau rule from Algorithm 2 adds a new node or a concept to S or a
new tuple to a relation of N.

– The cardinality of node labels is bounded by |Sub(C0, T )| and the number of
relations in the constraint system of S is bounded by |τ | ·∑d

j=0 |T ∩Oc|j. ut

Lemma 6 (Soundness). Let D be an ω-admissible τ -structure with at most
d-ary relations. Furthermore, let C0 resp. T be an ALCd∨+(D) concept resp. TBox
in NNF. If there is a run of Algorithm 1 starting with an initial completion system
for (C0, T ) that returns true, then C0 is satisfiable w.r.t. T .

Proof. By the assumption, there exists a complete and clash-free completion
system S for (C0, T ). We use it to construct a model I= (∆I , ·I) of (C0, T ). Let
root be the root of T, and Blocks : T ∩ Oa→T ∩ Oa a function that, for every
blocked b, returns an unblocked a that blocks b in S.
A path in S is a (possibly empty) sequence ((ai, bi))ni=1 of pairs of nodes from

T ∩Oa such that for each 1≤ i<n, one of the following holds:

– ai+1 = bi+1 is an unblocked successor of ai in T, or
– ai+1 = Blocks(bi+1) and bi+1 is a blocked successor of ai in T.

Intuitively, the first components in a path represent a sequence of individuals and
the second components provide justification for the existence of this sequence in
case of blocking situations. Observe that bi+1 is always a successor of ai+1. We use
Paths to denote the set of all paths in S. For p, q, q′∈Paths we say that p extends
q by q′ and write p= q · q′ (or p= qq′ if clear from context), if

p= ((ai, bi))i∈[n], q= ((ai, bi))i∈[m] and q′= ((ai, bi))i∈[n]\[m],

such that n>m. For p∈Paths, the tail of p, denoted by Tail(p), is the last pair
of p. We first define the abstract part of I. The domain of I is

∆I :={p∈Paths |p is non-empty with first pair being (root, root)}.
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For every C ∈NC(C0, T ), we set

CI :={p∈∆I |Tail(p) = (a, b) with C ∈L(a)},

and for every r∈NR(C0, T ), we set

rI :={(p, p′)∈ (∆I)2 |p′ extends p with Tail(p) = (a, b) by one pair
Tail(p′) = (a′, b′) such that b′ is an r-successor of a in T}.

Note that ∆I is non-empty, since (root, root)∈∆I . Also note that fI is a function
for every f ∈NfR(C0, T ), which is ensured by⊕ generating at most one f -successor
per abstract node, and by the definition of Paths in which we choose only a single
blocking node to be put into a path.

A path p is called a hook if p= (root, root), or Tail(p) = (a, b) with a 6= b, that is,
b is blocked by a. We denote the set of all hooks by Hooks. For every q∈Hooks
we define

Patched(q) :={p∈∆I | ∃q′∈Paths such that p= qq′ and all pairs (a′, b′)
in q′ satisfy a′= b′ with the possible exception of Tail(q′)}

For a pair p, q∈Hooks, we call p a successor of q and write p� q, if p∈Patched(q)
and p 6= q.

Since S is clash-free, we have N→D. Let Ncpl be any completion of N. Now we
rename every concrete node x that is an g-successor of an abstract node a to the
pair (a, g). This renaming procedure is well-defined since, by the definition of ⊕,
every abstract node has at most one g-successor. We now define the τ -structure
Ñ that represents the τ -constraints put on the concrete part of I. For every
q∈Hooks with p∈Patched(q) and Tail(p) = (a, b), we set

Repq(p) :=
{
b if p 6= q and a 6= b,
a otherwise.

Let Unf(N) be the structure over ∆I ×NF(C0, T ) such that, for every k-ary R∈ τ ,

RUnf(N) ={((p1, g1), . . . , (pk, gk))∈ (∆I × NF(C0, T ))k | ∃q∈Hooks such that
p1, . . . , pk∈Patched(q) and ((Repq(p1), g1), . . . , (Repq(pk), gk))∈RNcpl}.

We define Ñ as the substructure of Unf(N) on the set of all elements from N
which are contained in a tuple from a relation of Unf(N). Our goal now is to
show Ñ→D. For every p∈Hooks, we set Ñ(p) to be the substructure of Ñ on
Ñ(p) :={(q, g)∈ Ñ | q∈Patched(p)}.

Claim 1

a. Ñ=⋃
p∈Hooks Ñ(p).

b. If p, q∈Hooks, p 6= q, and neither q�p, nor p� q, then Ñ(p) ∩ Ñ(q) =∅.
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Proof. For (a), let ((p1, g1), . . . , (pk, gk))∈RÑ for some k-ary R∈ τ . Then there
is q∈Hooks such that p1, . . . , pk∈Patched(q) and the statement follows directly
from the definition of Ñ(p).

We prove (b) by contradiction. Let (q′′′, g)∈ Ñ(p)∩Ñ(q). Then q′′′∈Patched(p)∩
Patched(q), that is, there are q′, q′′∈Paths such that
i. q′′′=pq′ and q′′′= qq′′, and
ii. every pair (a, b) in q′ or q′′ satisfies a= b with the possible exception of Tail(q′)

and Tail(q′′).
Due to (i), either p= q, or q properly extends p, or vice versa. In the first case,
we are done. In the second case, since q∈Hooks, we have Tail(q) = (a, b) for some
a 6= b. Because (i) and (ii) hold and q properly extends p, we have q= q′′′. Thus
q=pq′. A subsequent application of (ii) shows that q is a successor of p. The third
case is analogous to the second. ut

The properties P1 and P2 presented in the following claim are essential for the
rest of the proof.

Claim 2
(P1): If q, q′∈Hooks are such that q′�q, then Patched(q) ∩ Patched(q′)={q′}.
(P2): If ((q1, g1), . . . , (qk, gk))∈RÑ(p), then (Repp(q1), g1), . . . , (Repp(qk), gk))∈RNcpl

.

Proof. The property P1 follows directly from the definition of hooks and suc-
cessors. For P2, let ((q1, g1), . . . , (qk, gk))∈RÑ(p). Then q1, . . . , qk∈Patched(p)
and there exists p′∈Hooks such that (Repp(q1), g1), . . . , (Repp(qk), gk))∈RNcpl

and q1, . . . , qk∈Patched(p′). If p=p′, then we are done. Suppose that p 6=p′. By
(b) of Claim 1 and P1, q1, . . . , qk∈Patched(p) ∩ Patched(p′) implies that either
q1 = · · ·= qk =p and p�p′, or q1 = · · ·= qk =p′ and p′�p. Without loss of general-
ity, we assume that the former is the case. Let Tail(p) = (a, b). Since q1 = · · ·= qk =p
and p is a hook, we have a 6= b and that b is blocked by a in S. Thus, for every
i∈ [k], Repp′(qi)= b and Repp(qi)=a. Then (Repp(q1), g1), . . . , (Repp(qk), gk))∈
RNcpl yields (b, g1), . . . , (b, gk))∈RNcpl . Since b is blocked by a, this means that
((a, g1), . . . , (a, gk))∈RNcpl . ut

Claim 3 For every p∈Hooks, Ñ(p) is finite, JEPD, and Ñ(p)→D.

Proof. Let p∈Hooks. Since T is finite and acyclic, it follows from the definition of
blocking that Patched(p) is finite, which implies the finiteness of Ñ(p). We show
that Ñ is JEPD. Let (q1, g1), . . . , (qk, gk)∈ Ñ(p) for some k≤d. From the definitions
of Unf(N), Ñ and Ñ(p), it follows directly that (Repp(q1), g1), . . . , (Repp(qk), gk)∈
N cpl. We have ((Repp(q1), g1), . . . , (Repp(qk), gk))∈RNcpl for some R∈ τ because
Ncpl is JE, which implies ((q1, g1), . . . , (qk, gk))∈RÑ(p) by the definition of Ñ(p).
Now if ((q1, g1), . . . , (qk, gk))∈RÑ(p) ∩ R′Ñ(p) for some R,R′∈ τ , then, by P2, we
have (Repp(q1), g1), . . . , (Repp(qk), gk))∈RNcpl∩R′Ncpl . But then R=R′, since Ncpl

is PD. Since Ñ(p) is JEPD, we get Ñ(p)→D due to P2, because Ncpl→D. ut

37



Claim 4 Ñ→D.

Proof. First consider the case where there are no blocked nodes in S. Then
Hooks ={(root, root)}. By (a) of Claim 1, we have Ñ= Ñ(root, root). Then the
statement follow directly from Claim 3. Now suppose that S contains some blocked
nodes. Since T ∩Oa is finite (see the proof of Lemma 5), Hooks is countably infinite.
Moreover, the successor relation on Hooks describes an infinite tree whose out-
degree is bounded by |T ∩ Oa|. Fix any enumeration of {p0, p1, . . . } of Hooks
such that p0 = (root, root), and, if pi�pj, then i>j. By (a) of Claim 1, we have
Ñ=⋃i∈N Ñ(pi). We show by induction on k that for every k∈N we have Ñk→D,
where Ñk :=⋃

0≤i≤k Ñ(pi). The base case k= 0 follows directly from Claim 3. For
the induction step, suppose that Ñk−1→D. Let Ñcpl

k−1 be any completion of Ñk−1.
There exists a unique pn∈Hooks with k>n such that pk�pn. By (b) of Claim 1,
we have Ñ cpl

k−1 ∩ Ñ(pk)= Ñ(pn) ∩ Ñ(pk). Let Mcpl
k−1,M(pn), and M(pk) be the

substructures of Ñcpl
k−1, Ñ(pn) and Ñ(pk) on Ñk−1∩Ñ(pk), respectively. By Claim 3,

Ñ(pn) is JEPD, and thus Mcpl
k−1 =M(pn). We also clearly have M(pn)=M(pk)

by the definition of Ñ(pn) and Ñ(pk). By Claim 3, Ñ(pk) is finite, JEPD, and
Ñ(pk)→D. Since D is a patchwork, we have Ñk = Ñcpl

k−1 ∪ Ñ(pk)→D by choosing
A :=Mcpl

k−1, B1 := Ñcpl
k−1 and B2 := Ñ(pk) in the definition of a patchwork. Now let

A be any finite structure that embeds to Ñ. Then there exists k∈N such that
A ↪→ Ñk→D. Since D has homomorphism compactness, we have Ñ→D. ut

We now define the concrete part of I. Let h : Ñ→D be any homomorphism. For
every g∈NF(C0, T ),

gI :={(p, h(p, g))∈∆I ×D |Tail(p) = (a, b) and g∈Feat(a)}.

By definition, gI is functional for every g∈NF. We need one additional claim to
show that I is a model of (C0, T ).

Claim 5 For every s∈∆I and C ∈Sub(C0, T ), if Tail(s)=(a, b) and C ∈L(a),
then s∈CI.

Proof. We proceed using induction on the subconcepts of C. Let s∈∆I be arbi-
trary such that Tail(s) = (a, b), and C ∈L(a). Suppose that the statements holds
for every proper subconcept of C. By definition of Paths, a is not blocked in S.
We make case distinction w.r.t. the topmost operator in C.

If C is a concept name, then by definition of I we have s∈CI .
Suppose that C=¬D. Since C is in NNF, D must be a concept name. Since
S is clash-free, D /∈L(a). Then by definition of I we have s /∈DI , which yields
s∈CI .
Suppose that C=D u E. Since S is complete, {D,E}⊆L(a). Then by the

induction hypothesis we have s∈DI and s∈DI . Thus s∈ (D u E)I .
Suppose that C=D t E. Since S is complete, {D,E} ∩ L(a) 6=∅. Then by the

induction hypothesis we have s∈DI or s∈DI . Thus a∈ (D t E)I .
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Suppose that C=∃r.D. Since S is complete, the ∃-rule is not applicable. Thus
a has an r-successor c such that D∈L(c). By definition of I, there is a path
t= s(d, c)∈∆I such that either c=d or c is blocked by d in S. Since L(c)⊆L(d)
in both cases, we have D∈L(d). By the induction hypothesis, we have t∈DI . By
definition of I, we have (s, t)∈ rI , which implies s∈CI .
Suppose that C=∀r.D. Consider any (s, t)∈ rI . By definition of I, we have

t= s · (d, c) such that c is an r-successor of a. Since S is complete, the ∀-rule is
not applicable. Thus we have D∈L(c). Since L(c)⊆L(d) as in the previous case,
we have D∈L(d). By the induction hypothesis, we have t∈DI . Since this holds
independently of the choice of t, we get s∈CI .
Suppose that C=∃p1, . . . , pk. [R1 ∨ · · · ∨Rm] for k-ary symbols R1, . . . , Rm∈ τ .

Since C is in NNF, each pi is either a feature or a path of length two. We consider
only the case where pi= (ri, gi) for each i∈ [k]. The argumentation for the remaining
cases is similar but easier. Since S is complete, the ∃c-rule cannot be applied.
Thus there exists an ri-successor ci of a and a gi-successor xi of ci for each i∈ [k]
such that (x1, . . . , xk)∈RN

j for some j∈ [m]. Then ((c1, g1), . . . , (ck, gk))∈RNcpl

j .
Moreover, for each i∈ [k] there is a ti= s · (di, ci)∈∆I such that ci=di or ci is
blocked by di. By definition of rIi , we have (s, ti)∈ rIi for every i∈ [k]. Since a
is not blocked and c1, . . . , ck are its successors, there exists p∈Hooks such that
t1, . . . , tk∈P (p) and Repp(ti) = ci for every i∈ [k]. Thus, by the definition of Ñ we
have ((t1, g1), . . . , (tk, gk))∈RÑ

j , which implies (g(t1, g1), . . . , g(tk, gk))∈RD
j . Since

gIi (ti) =g(ti, gi) for every i∈ [k], we get s∈CI .
Suppose that C=∀p1, . . . , pk. [R1 ∨ · · · ∨Rm] for k-ary symbols R1, . . . , Rm∈ τ .

As in the previous case, we assume that each pi is of the form (ri, gi). For every
i∈ [k], let ti be such that (s, ti)∈ rIi and gIi (ti) is defined. By the definition of I,
we have ti= s · (di, ci)∈∆I such that ci is an ri-successor of a for every i∈ [k].
Moreover, there is exists a gi-successor yi of ci for every i∈ [k]. Since the ∃-rule is
not applicable, ∀p1, . . . , pk.[R1∨ · · · ∨Rm]∈L(a) implies that (y1, . . . , yk)∈RN

j for
some j∈ [m]. Thus, ((c1, g1), . . . , (ck, gk))∈RNcpl

j . Moreover, since a is not blocked,
there is a p∈Hooks such that t1, . . . , tk∈P (p) and Repp(ti)= ci for every i∈ [k].
Thus, by the definition of Ñ, we have ((t1, g1), . . . , (tk, gk))∈RÑ

j , which implies
(g(t1, g1), . . . , g(tk, gk))∈RD

j . Thus s∈CI . ut

Since C0∈L(root) and (root, root)∈∆I , Claim 5 implies that I is a model of
C0. Finally, let us show that I is a model of the input TBox T ={>vCT }.
Choose an s∈∆I and let Tail(s)=(a, b). Since S is complete, the T -rule is not
applicable, and thus CT ∈L(a). By Claim 5 we have that s∈CIT . Since this holds
independently of the choice of s, we have CI=∆I . ut

Lemma 7 (Completeness). Let D be an ω-admissible τ -structure with at most
d-ary relations. Furthermore, let C0 resp. T be an ALCd∨+(D) concept resp. TBox
in NNF. If C0 is satisfiable w.r.t. T , then there is a run of Algorithm 1 starting
with an initial completion system for (C0, T ) that returns true.
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Proof. Suppose that C0 is satisfiable w.r.t. T , I is a model for (C0, T ), and a0∈∆I
such that a0∈CI0 . We say that an completion system S is I-compatible if there
exist mappings π : T ∩Oa→∆I and τ : T ∩Oc→D such that

a. if C ∈L(a), then π(a)∈CI ,
b. if b is an r-successor of a, then (π(a), π(b))∈ rI ,
c. if x is a g-successor of a, then gI(π(a)) = τ(x), and
d. if (x1, . . . , xk)∈RN, then (τ(x1), . . . , τ(xk))∈RD.

Claim 6 If S is I-compatible and a rule is applicable to S, then this rule can be
applied so that the resulting completion system S ′ is I-compatible as well.

Proof. We make a case distinction according to the choice of a rule from Algo-
rithm 2.

The u-rule is applied to a concept C1uC2∈L(a). By (a), C1uC2∈L(a) implies
π(a)∈ (C1 u C2)I and hence π(a)∈CI1 and π(a)∈CI2 . Since the rule adds C1 and
C2 to L(a), it yields a completion system that is I-compatible via π and τ .
The t-rule is applied to a concept C1 t C2∈L(a). This implies π(a)∈CI1 or

π(a)∈CI2 . Since the rule adds either C1 or C2 to L(a), it can be applied such that
it yields as completion system that is I-compatible via π and τ .

The ∃-rule is applied to ∃r.C ∈L(a). By (a), we have π(a)∈ (∃r.C)I and hence
there exists a d∈∆I such that (π(a), d)∈ rI . By the definition of the ∃-rule and
⊕, the rule application either adds a new r-successor b of a and sets L(b) ={C},
or reuses an existing r-successor, renames it to b in S and sets L(b) =L(b) ∪ {C}.
Extend π by setting π(b) :=d. The resulting completion system is I-compatible
via the extension of π and the original τ .

The ∀-rule is applied to ∀r.C ∈L(a) and it adds C to the label L(b) of every
existing r-successor of a. By (a), π(a)∈ (∀r.C)I and by (b), (π(a), π(b))∈RI .
Therefore, π(b)∈CI and the resulting completion system in I-compatible via π
and τ .

The ∃c-rule is applied to a concept ∃p1, . . . , pk. [R1 ∨ · · · ∨Rm]∈L(a). We assume
that pi=(ri, gi) for every i∈ [k]. The argumentation for the case where some
paths are of length one is similar. The rule application generates new abstract
nodes b1, . . . , bk and concrete nodes x1, . . . , xk (or reuses existing ones while
renaming them) such that for every i∈ [k], bi is an ri-successor of a and xi is
a gi-successor of bi. By (a), we have π(a)∈ (∃p1, . . . , pk. [R1 ∨ · · · ∨Rm])I . Thus,
there exist d1, . . . , dk∈∆I , v1, . . . , vk∈D and a j∈ [m] such that for every i∈ [k]:
(π(a), di)∈ rIi , gIj (dj)=vi, and (v1, . . . , vk)∈RD

j . Thus, the rule can be guided
such that it adds (x1, . . . , xk) to RN

j . We extend π by setting π(bi) :=di, and τ by
setting τ(xi) :=vi for every i∈ [k]. It is easy to see that the resulting completion
system is I-compatible via the extensions of π and τ .

The ∀c-rule is applied to an abstract node a with ∀p1, . . . , pk.[R1∨· · ·∨Rm]∈L(a)
such that there are x1, . . . , xk∈T∩Oc with xi a pi-successor of a for every i∈ [k]. By
(a), π(a)∈ (∀p1, . . . , pk. [R1 ∨ · · · ∨Rm])I . By (b) and (c), we have (π(a), τ(xi))∈pIi
for every i∈ [k]. It follows that there exists j∈ [m] such that (τ(x1), . . . , τ (xk))∈RD

j .
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Thus the application of the rule can be guided such that it adds (x1, . . . , xk) to
RN
j . Thus the resulting completion system is I-compatible via π and τ .
The N-rule is applied to an abstract node a which is potentially blocked by an

abstract node b and N(a) is not JEPD (the other case is analogous). The rule
application guesses a completion Ncpl(a) of N(a) and extends the relations of N
by the new tuples from Ncpl(a). We define Ncpl(a) to be the τ -structure over N(a)
such that for every R∈ τ ,

RNcpl(a) :={(x1, . . . , xk)∈N(a)k |xi is a gi-successor of a
for every i∈ [k] and (τ(x1), . . . , τ(xk))∈RD

j }

By (d), we have RN(a)⊆RNcpl(a) for every R∈ τ . Since D is JEPD, N′(a) is JEPD
as well. Finally, τ |N(a) : Ncpl(a)→D, which means that Ncpl(a) is a completion of
N(a). We apply the N-rule so that Ncpl(a) is guessed. Then the resulting system
is I-compatible via π and τ .
The T -rule adds CT to L(a) for some a∈T ∩Oa. Since I is a model of T , we

have π(a)∈CIT . Thus, the resulting completion system is I-compatible via π and
τ . ut

Claim 7 Every I-compatible completion system is clash-free.

Proof. Let S be an I-compatible completion system. Consider the two kinds
of clashes. If {A,¬A}∈L(a), we get a contradiction to (a). If N 6→D, we get a
contradiction to (d). ut

We can now describe the guidance of the rules from Algorithm 1 by the model I.
We ensure that, at all times, the considered completion systems are I-compatible.
This clearly holds for the initial system. By Claim 6, we can guide the rule
applications such that a I-compatible completion system is obtained in each step.
By Lemma 5, Algorithm 1 terminates on the input of an initial completion system
for (C0, T ). Since it does not find a clash by Claim 7, it returns true. ut
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