
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Answering Regular Path Queries Under Approximate
Semantics in Lightweight Description Logics

Oliver Fernández Gil Anni-Yasmin Turhan

LTCS-Report 20-05

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Answering Regular Path Queries Under Approximate
Semantics in Lightweight Description Logics

Oliver Fernández Gil∗1 and Anni-Yasmin Turhan1

1Theoretical Computer Science, TU Dresden, Germany

Abstract

Classical regular path queries (RPQs) can be too restrictive for some applications and
answering such queries under approximate semantics to relax the query is desirable. While
for answering regular path queries over graph databases under approximate semantics
algorithms are available, such algorithms are scarce for the ontology-mediated setting.
In this paper we extend an approach for answering RPQs over graph databases that uses
weighted transducers to approximate paths from the query in two ways. The first extension
is to answering approximate conjunctive 2-way regular path queries (C2RPQs) over graph
databases and the second is to answering C2RPQs over ELH and DL-LiteR ontologies.
We provide results on the computational complexity of the underlying reasoning problems
and devise approximate query answering algorithms.

∗Supported by DFG grant BA 1122/20-1.

1

Contents

1 Introduction 2

2 The Description Logics ELH and DL-LiteR 4

2.1 Syntax and semantics . 4

2.2 Canonical models . 5

3 Regular path queries 6

4 Approximate semantics for regular path queries 8

4.1 Approximate semantics for RPQs by transducers 8

4.2 Approximate semantics for C2RPQs over a graph database 9

4.3 Approximate semantics for C2RPQs over a DL KB 10

5 Answering approximate 2RPQs in ELH and DL-LiteR 11

5.1 A polynomial time algorithm . 13

6 Answering approximate C2RPQs in DL-LiteR and ELH 19

6.1 Proof of Lemma 16 . 20

7 Conclusion and future work 25

1 Introduction

Regular path queries (RPQs) is a well-investigated query language that dates back to the
early 90’s, where its capabilities to navigate graph-structured data attracted much attention
in research on semistructured data and graph databases [MW95, FLS98]. This interest was
revived in recent years, since in many application areas data is graph-structured and represented
in graph database models. Notable examples of applications of RPQs are querying biological
networks, the semantic web and social networks. Moreover, RPQs and its extensions are part
of SPARQL, which is the standard language recommended by the W3C to query RDF data.
Formally, a graph database consists of a labeled directed graph, where edge labels correspond
to binary predicates stating relations between data items. A RPQ consists of a regular language
over these labels, and retrieves pairs of data items (a, b) that are connected by paths complying
to the specified regular language. The extension of two-way RPQs (2RPQ) allows to traverse
edges backwards, and the more expressive language of conjunctive 2RPQs (C2RPQ) allows
conjunctions of 2RPQs that can share variables.

In scenarios where a RPQ yields no answers over a particular database, it can be fruitful to
relax the query to retrieve more than the classical answers, i.e., pairs that are connected by
paths that are “close enough” or that approximate the paths required by the query. This can be
useful to provide feasible alternatives in applications where data is gathered automatically from
heterogeneous data sources and exact semantics need not yield the expected results. Similarly,

2

in applications where the data is irregular and evolves in structure and content, it can be hard
for users to have full knowledge of its vocabulary and structure. In this situation, queries that
approximate/relax the set of answers may be helpful.

Several approaches have been considered to address this problem, as for instance, [JMM95,
KS01, GT06, PSW16]. In particular, [GT06] proposes an elegant and tractable solution that
uses a weighted finite-state transducers to define the approximation semantics. Roughly speak-
ing, such a transducer is a mechanism that transforms input words into corresponding output
words, and computes a weight quantifying the cost of the transformation. The idea is to
use a transducer as a means to specify which paths are allowed to be considered approxima-
tions/distortions of the “ideal” paths specified by the query, and to specify their distortion costs.
Approximate answers are then tuples (a, b, η), where η is the minimal cost of distorting a path
that is complying with the query into a path leading from a to b.

Path queries have also been investigated for ontology-mediated query answering (OMQA), in
which semantic knowledge provided in a background ontology is used to enrich the data. The
employed ontologies are then often formulated in a description logic (DL). Description logics are
a family of logic-based knowledge representation formalisms, which can be used to represent the
conceptual knowledge of an application domain in a structured and formally well-understood
way. Compared to query answering over a (graph) database, OMQA usually adopts the open
world assumption where all possible extensions of the ontology and the data are considered
when computing the answers. Answering C2RPQs has been studied for very expressive DLs
[CEO14], and for the families EL and DL-Lite of lightweight DLs [CDL+07, BOS15]. However,
approaches for query answering under approximate semantics in the OMQA setting are scarce.
There is prior work on the simple case of instance queries [EPT15] and on C2RPQs in the
restricted setting of acyclic ontologies using RDFs schema [PSW16] or non-gradual variants of
conjunctive queries [PTT18].

The goal of this paper is to define approximate semantics for answering C2RPQs in the DLs
ELH and DL-Liteand to devise computation algorithms for answering them. These two DLs
are of particular relevance, since they are computationally well-behaved which makes them the
languages of choice for OMQA and the core languages of two of the ontology language profiles
standardized by the W3C: OWL 2 EL and OWL 2 QL, respectively.

Our contributions are i) to extend the transducer-based approximate semantics from RPQs
to the more general case of C2RPQs in the graph database setting. To this end, we need to
take into account that, differently from RPQs, C2RPQs may contain more than one query
atom and quantified variables. Once this is defined, we move forward into the OMQA setting
and ii) define approximate semantics for answering C2RPQs over ontologies formulated in the
lightweight DLs ELH and DL-LiteR. We define the notion of certain approximate answers as
a generalization of the classical notion of certain answers. Last, iii) we investigate two related
computational problems: the decision problem that asks, given a threshold value τ and a tuple
ā, is ā a certain approximate answer with approximation cost at most τ?, and the computational
problem of computing the exact approximation cost of ā. For 2RPQs, we devise a polynomial
time algorithm that can be used to solve both problems. Regarding C2RPQs, we prove that a)
both problems can be solved in polynomial time in data complexity, b) the decision problem is
in NExptime in combined complexity, and c) provide a double exponential time algorithm (in
combined complexity) to compute the approximation cost.

This report is structured as follows. After introducing preliminary notions on DLs in Section
2 and on RPQs in Section 3, we start in to introduce the semantics for approximate answers
of RPQs and extend it to C2RPQs over graph databases and DL ontologies in Section 4. In
Sections 5 and 6 we study the mentioned computational problems for 2RPQs and C2RPQs,
respectively. We conclude the paper with a brief summary.

3

2 The Description Logics ELH and DL-LiteR

We start by introducing the syntax and semantics of the DLs ELH and DL-LiteR, as well as
some related technical notions that are needed in the rest of the paper. Afterwards, we recall
the definition of canonical model, which is used later to obtain our results.

2.1 Syntax and semantics

The logics ELH and DL-LiteR are members of the EL- and DL-Lite families of DLs, respectively.
In the following, we introduce the basic concept languages underlying EL and DL-Lite, and
identify the extensions corresponding to ELH and DL-LiteR.

Let NC and NR be countable sets of concept and role names. Let furthermore A ∈ NC, r ∈ NR

and C ∈ CEL. The set of EL concept descriptions CEL is inductively built from NC using the
concept constructors conjunction (C uD), existential restriction (∃r.C) and top (>), according
to the following syntactic rule:

C ::= > | A | C u C | ∃r.C.

Let A ∈ NC and r ∈ NR. As for DL-Lite, two additional constructors are available: inverse
roles (r−) and negation (¬). Complex concepts and roles are built according to the following
syntax:

B ::= A | ∃P P ::= r | r−

C ::= B | ¬B S ::= P | ¬P.
(1)

We call concepts (roles) of the form B (P) basic and those of the form C (S) general concepts
(roles). We use N−R to denote the set {r− | r ∈ NR} and N±R to denote NR ∪ N−R . In addition,
we sometimes write P− with the meaning that: P− = r if P = r− and P− = r− if P = r.

Knowledge about the domain of interest can be expressed in a description logic knowledge
base (KB). A DL KB is a pair K = (T ,A) consisting of a TBox T and an ABox A. The
ABox contains information about specific individuals (represented by a countably infinite set of
individual names NI). More precisely, an ABox A consists of a finite set of assertions. Assertions
can be of the form A(a) (concept assertion) and r(a, b) (role assertion), where A ∈ NC, r ∈ NR

and a, b ∈ NI. Observe that we are using simple ABoxes, i.e. all concept assertions use only
concept names. We denote as Ind(A) the set of individuals occurring in A. Regarding the TBox,
it consists of a finite set of inclusions, which state general knowledge about the application
domain. These inclusions can be of two types, namely general concept inclusions (GCIs) and
role inclusions (RIs), and their forms vary depending on the considered DL. More precisely,
in EL, inclusions are GCIs of the form C v D where C,D ∈ CEL. In DL-Lite inclusions have
the form B v C, where B and C are as described in (1). Further, permitting RIs in the TBox
yields the DLs ELH and DL-LiteR. More precisely, ELH and DL-LiteR are the extensions of
EL and DL-Lite allowing RIs of the form r v s and P v S in the TBox, respectively, where
r, s ∈ NR and P, S are as defined in (1).

The semantics for EL and DL-Lite is given by means of first-order logic interpretations. An
interpretation I = (∆I , .I) consists of a non-empty domain ∆I and an interpretation function
.I that assigns subsets of ∆I to concept names in NC, binary relations over ∆I to role names in
NR and domain elements aI to individual names a ∈ NI. The function .I is inductively extended

4

to arbitrary roles and concept descriptions in the following way:1

>I := ∆I , (C uD)I := CI ∩DI , (¬B)I := ∆I \B,
(¬P)I := (∆I×∆I)\P I , (r−)I := {(x, y) |(y, x) ∈ rI},
(∃r.C)I := {x ∈ ∆I | ∃y.((x, y) ∈ rI ∧ y ∈ CI)}.

We say that I satisfies an assertion A(a) iff aI ∈ AI , and r(a, b) iff (aI , bI) ∈ rI . In addition,
I satisfies an inclusion G v H iff GI ⊆ HI . Further, I is a model of an ABox A (in symbols
I |= A) iff it satisfies all the assertions in A, a model of a TBox T (written as I |= T) iff I
satisfies all inclusions in T , and a model of a KB K = (T ,A) (denoted as I |= K) iff I |= T and
I |= A. Then, a KB K is satisfiable iff it has at least one model. While ELH KBs are always
satisfiable, this is not the case for DL-Lite since, for instance, the KB ({A v ¬B}, {A(a), B(a)})
has clearly no model. Finally, let α be an inclusionG v H or an ABox assertion A(a) (or r(a, b)),
we say that K entails α (denoted as K |= α) iff I |= α for all models I of K.

We continue by introducing a normal form for ELH TBoxes. This is convenient later on to
simplify the presentation of technical notions and decision procedures. An ELH TBox is in
normal form if all its concept inclusions are of one of the following forms:

A v B A1 uA2 v B A v ∃r.B ∃r.A v B,

where A,B,A1, A2 ∈ NC ∪ {>}. As shown in [BBL05], by introducing new concept names, any
ELH TBox T can be transformed in linear time into a normalized ELH TBox T ′ that is a
model conservative extension of T , i.e., every model of T ′ is also a model of T , and every model
of T can be extended to a model of T ′ by appropriately interpreting the additional concept
names [LW10].

2.2 Canonical models

The canonical model of a KB K (sometimes also called a prime model) is a kind of model
that can be embedded into any other model of K by a homomorphism. Canonical models
have been widely studied for the EL and DL-Lite families, since they are essential in the
development of decision procedures for answering different types of queries in lightweight DLs
[CDL+07, KL07, BOS15]. As the decision procedures developed in this paper also use them,
we recall their definitions for the DLs ELH and DL-LiteR (as presented in [BOS15]).

Given an ELH or a satisfiable DL-LiteR knowledge base K = (T ,A), we denote the canon-
ical model of K as UK = (∆UK , .UK). The domain ∆UK consists of sequences e of the form
aP1C1 . . . PnCn (n ≥ 0), where a ∈ Ind(A), Pi ∈ N±R and Ci is a concept description. For ELH,
each role Pi is of the form ri ∈ NR and each concept Ci is just a concept name Ai ∈ NC. In
addition, e is required to satisfy:

• K |= ∃r1.A1(a), if n ≥ 1,

• T |= Ai v ∃ri+1.Ai+1, for all 1 ≤ i < n.

As for DL-LiteR, each Ci is of the form ∃P−i and e must fulfill the following conditions:

• K |= ∃P1(a), if n ≥ 1,

• T |= ∃P−i v ∃Pi+1, for all 1 ≤ i < n.
1The constructor ∃P is an abbreviation for ∃P.>.

5

It remains to fix the interpretation of concept, role and individual names for UK. Given e ∈ ∆UK ,
we denote as tail(e) the final concept Cn in e, i.e., either An or ∃P−n . Then, the interpretation
function .UK is defined as follows:

• AUK := {a ∈ Ind(A) | K |= A(a)} ∪
{e ∈ ∆UK \ Ind(A) | T |= tail(e) v A},

• rUK := {(a, b) | K |= r(a, b)} ∪ {(e, ePC) |
T |= P v r} ∪ {(ePC, e) | T |= P v r−},

• aUK := a, for all a ∈ Ind(A).

Notice that UK consists of a small graph representing A, and (possibly) infinite trees rooted
at each a ∈ Ind(A) containing anonymous individuals. Given e, e′ ∈ ∆UK , we denote as Te the
subtree in UK rooted at e and write e′ ∈ Te to say that e′ is an element in Te. An important
property of UK is that if e, e′ ∈ ∆UK\Ind(A) and tail(e) = tail(e′), then Te and Te′ are isomorphic.
Further, the depth d(e) of e in UK is defined as 0 if e ∈ Ind(A) and d(e′) + 1 if e = e′PC. Then,
we say that e′ ∈ Te has depth i in Te if d(e′) − d(e) = i. Last, we denote as T(UK) the set of
tails of UK. Notice that this set consists of elements A or ∃P− occurring in T .

3 Regular path queries

We introduce the syntax and semantics of conjunctive two-way regular path queries and some
of its sublanguages for which we define approximate semantics later on. Regular path queries
are defined using regular languages represented either by a non-deterministic finite automata
(NFA) or a regular expressions (r.e.). We assume the reader is familiar with these notions and
proceed right away to introduce the consider query languages.

A conjunctive 2-way regular path query (C2RPQ) is of the form q(x̄) = ∃ȳ.ϕ(x̄, ȳ), where x̄, ȳ
are disjoint tuples from a set of variables NV. The formula ϕ(x̄, ȳ) is a conjunction of atoms
of the form A(t) and R(t, t′) where t and t′ are variables in x̄, ȳ or individual names in NI,
A ∈ NC, and R is an NFA or a r.e. defining a regular language (denoted L(R)) over the
alphabet N±R ∪{A? | A ∈ NC}. Variables and individuals names in q are called terms. Variables
in x̄ are the answer variables and those in ȳ are the quantified variables of q. We denote the
set of terms as terms(q), the set of variables as vars(q) and the set of answer and quantified
variables of q as avars(q) and qvars(q), respectively. If avars(q) = ∅, then q is called a Boolean
query. We sometimes write at ∈ q to refer to an atom at of q. In this paper we consider the
following specializations of C2RPQs :

Conjunctive (one-way) regular path queries (CRPQs) are C2RPQs that do not use any symbol
from N−R .

Two-way regular path queries (2RPQs) are obtained by restricting C2RPQ to queries of the
form q(x, z) = R(x, z), where x, z ∈ avars(q).

Regular path queries (RPQs) are the special case of 2RPQs that do not use any symbol from
N−R .

Next we define the semantics of C2RPQs and thus of their specializations. Let I = (∆I , .I)
be an interpretation and d, d′ ∈ ∆I . A path π from d to d′ in I is a sequence of the form
d0u1d1u2d2 . . . umdm such that m ≥ 0, d0 = d, dm = d′ and for all 1 ≤ j ≤ m:

6

• dj ∈ ∆I and uj ∈ N±R ∪ {A? | A ∈ NC},

• uj = A? implies dj−1 = dj and dj ∈ AI , and

• uj ∈ N±R implies (dj−1, dj) ∈ (uj)
I .

The label of π is defined as `(π) := u1 . . . um and we write d I,u−−→ d′ to indicate that there is a
path from d to d′ with label u in I. Amatch for a C2RPQ q in I is a mapping h : terms(q) 7→ ∆I

such that:

• h(a) = aI for all a ∈ terms(q) ∩ NI,

• h(t) ∈ AI for all A(t) ∈ q, and

• for all R(t, t′) ∈ q: there exists u ∈ L(R) such that h(t) I,u−−→h(t′).

Given a knowledge base K = (T ,A) and a C2RPQ q with answer variables x1, . . . , xk, a tuple
of individuals (a1, . . . , ak) from Ind(A) is a certain answer of q w.r.t. K iff for each model I of
K there exists a match h for q in I such that h(xi) = aIi (1 ≤ i ≤ k). The set of certain answers
of q w.r.t. K is denoted as cert(q,K). If q is a Boolean query, cert(q,K) consists of the empty
tuple (), if q has a match in every model of K. The semantics tells us that, one can assume
without loss of generality that C2RPQs have only atoms of the form R(t, t′), since every atom
A(t) can be equivalently replaced with A?(t, t).

As shown in [BOS15], for DL-LiteR and ELH, the set cert(q,K) can be characterized by only
considering matches of q in the canonical model UK.

Lemma 1 (Lemma 3.2, [BOS15]). Let K = (T ,A) be an ELH or a satisfiable DL-LiteR KB,
q(x̄) a C2RPQ of arity k and ā a k-tuple of individuals from A. Then, ā ∈ cert(q,K) iff there
is a match h for q in UK such that h(x̄) = ā.

We have defined the semantics of C2RPQs over DL interpretations, but they were first intro-
duced and are often considered w.r.t. graph databases. DL interpretations and basic forms of
graph databases are actually very similar notions, since they both can be seen as relational
structures over predicates of arity at most 2. For the development of the next section, it is con-
venient to establish this correspondence more formally. Let Σ and Λ be disjoint alphabets. A
graph database is a tuple G = (V, E , `V), where (V, E) is a directed labeled graph: E ⊆ V×Σ×V
is a set of edges labeled with symbols from Σ and `V : V 7→ Λ assigns labels from Λ to vertices
in V [CM90]. Then, G can be translated into a finite interpretation IG over NI = V, NC = Λ,
and NR = Σ with domain ∆IG := V, where:2

• AIG := {d ∈ V | `V(d) = A} for all A ∈ Λ, and

• rIG := {(d, e) | (d, r, e) ∈ E} for all r ∈ Σ.

• aIG := a for all a ∈ V.

The semantics of a C2RPQ q over G is defined by considering only matches into IG . Using the
translation, the notions of a path in G and a match of q in G can now be formalized w.r.t. IG .
We denote as ans(q,G) the set of answers of q in G.

2The opposite translation is defined as expected by considering Σ = NR and Λ = 2NC .

7

s0 s1

s2

u1

v1 u1

u2

t0

t1

t2

t3

u1, u1, 0

u1,
v2,

3
ε, v

1 , 2

u
2 , ε, 1

v1 , v2 , 1 u1,
u1,

0

a b

c d

v2

v2 v1

u1

Figure 1: Approximate semantics.

4 Approximate semantics for regular path queries

Our notion of approximate semantics for regular path queries over DL ontologies is an extension
of such semantics of RPQs over graph databases proposed in [GT06]. Regular path queries are
specified by finite automata and for their approximate variants it is a natural idea to employ
finite transducers, which are essentially, finite automata with an output. In case of weighted
transducers, input words can be associated with output words together with a cost. For giving
regular path queries approximate semantics, the idea is now to accept also tuples as answers
that may not satisfy the query restrictions, but are connected by paths that approximate
those required by the query with a low cost. The transducer defines which paths represent
approximations and their approximation cost.

We recall the original transducer-based approach from [GT06] for RPQs over graph databases.
We extend this approach to answering conjunctive two-way regular path queries under approxi-
mate semantics over graph databases which are then in turn extended to define the approximate
semantics for answering C2RPQs over DL knowledge bases.

4.1 Approximate semantics for RPQs by transducers

We start by formally introducing the form of weighted finite-state transducer used in [GT06]. In
general, weighted transducers are defined over a semiring, which are weighted structures of the
form (K,⊕,⊗, 0, 1) where 0, 1 are two constant elements from the set K, and ⊕,⊗ are two binary
operations over K satisfying certain properties [Meh04]. The weighted transducer considered
in [GT06] are those defined over the tropical semiring (N ∪ {∞},min,+,∞, 0) [Sim78]. In this
paper, we refer to them as distortion transducers. They are defined as follows.

Definition 2. A distortion transducer (dT) is a tuple T = (Σ, Q, δ, I, F) where Q is a finite
state set, Σ is a finite input/output alphabet, I ⊆ Q the set of initial states, F ⊆ Q set of final
states, and δ ⊆ Q× Σ ∪ {ε} × Σ ∪ {ε} × N×Q is the transition relation.

Given a dT T = (Σ, Q, δ, I, F), a run of T on a word u ∈ Σ∗ is a sequence of tuples

ρ = (q1, u1, v1, w1, q2), . . . , (qn, un, vn, wn, qn+1)

such that u = u1 . . . un, q1 ∈ I, qn ∈ F and each (qi, ui, vi, wi, qi+1) ∈ δ (i < n). The weight of
a run ρ is defined as wt(ρ) := w1 + . . . + wn. A run ρ distorts u into v with cost wt(ρ). Let
R(T, u, v) be the set of all pairs (ρ, wt(ρ)) such that ρ is a run of T distorting u into v. The
cost of distorting u into v through T is defined as:

cT(u, v) :=

{
∞, if R(T, u, v) = ∅
min{wt(ρ) | (ρ, wt(ρ)) ∈ R(T, u, v)}, otherwise.

The idea proposed in [GT06] is to use a distortion transducer to declare what distortions of

8

the words required by a RPQ atom R(x, z) are allowed as “acceptable” and the cost of the
corresponding distortion. Let us illustrate this with the following example.

Example 3. Figure 1 depicts an an NFA R with L(R) = {u1u∗2} ∪ {v1u1u∗2}, a dT T, and a
graph database G. One can see that, querying G through the RPQ q(x, z) defined by R yields
only one classical answer, i.e., ans(q,G) = {(c, d)}.

By using T inbetween R and G, the set ans(q,G) can be approximated. For instance, T states
that v2 is an allowed distortion of the word u1u2 and using this distortion is “penalized” with
cost 4. Then, since u1u2 ∈ L(R) and a path with label v2 connects a to b in G, instead of
dismissing (a, b) as an answer one can now see it as an approximate answer with cost 4. A
further example is the tuple (a, d) where two distortions are possible: v1u1 into v2u1 and u1
into v2v1 with costs 1 and 5, respectively. In this case, the smallest distortion cost gives the
distortion cost of (a, d). Finally, notice that T gives no way to distort a word in L(R) into v1.
Consequently, (b, d) is not an approximate answer (or with distortion cost ∞).

Based on this idea, the notion of approximate answers for RPQs is formalized as follows. Given
are a RPQ q(x, z) := R(x, z)3 and a graph database G = (V, E). The set of approximate answers
of q on G, through a distortion transducer T with Σ = NR, is defined as:

ãnsT(q,G) := {(a, b, η) | a, b ∈ V and η = min{cT(u, v) | u ∈ L(R) ∧ a IG ,v−−−→ b}}. (2)

We say that (a, b) is in the approximate answers with distortion cost η. The approximate
answers in the previous example with η <∞ are the tuples (c, d, 0), (a, d, 1), (a, b, 4) and (a, c, 4).

Some general observations about this approximation mechanism follow. On an abstract level,
the approach allows to relax and/or restrain the classical semantics of RPQs. Intuitively, a
relaxation would require that classical answers of q in G are preserved (with cost 0) in the
approximation. As pointed out in [GT06], to achieve this it suffices to add an initial and final
state t′0 to T with neutral transitions (t′0, u, u, 0, t

′
0) for all u ∈ Σ. At the approximation level,

one can define a variety of approximation schemas. For instance, as mentioned in [PSW16],
one can use transitions with ε to build transducers whose distortion costs corresponds to the
edit distance between two words. In addition, one can express that the cost of approximating
a symbol u by v differs depending on the context (i.e., the path) they occur in.

4.2 Approximate semantics for C2RPQs over a graph database

As for RPQs, we define the approximate answers of a C2RPQ q(x̄) = ∃ȳ.ϕ(x̄, ȳ) of arity k as
pairs of the form (ā, η), where ā = (a1, . . . , ak) is a tuple of nodes in G and η is the approximation
cost for ā. The idea is for η to express “how close” ā is to be an answer tuple of q in G. However,
in contrast to RPQs, a C2RPQ q may now contain quantified variables and more than one atom.
Both aspects require adaptations in the definition of η given in ãnsT(q,G) for RPQs in equation
(2).

First, to accommodate the quantified variables we proceed as usual for CQs and consider all
possible matches h for q in IG such that h(x̄) = ā. For each of such match we define an
approximation cost hc that measures how close h is to be a match for q in IG . The lowest such
cost hc of a match is then the cost value η in (ā, η). Second, the value hc is obtained by: i)
computing for each atom R(tj , t

′
j) ∈ q the distortion cost ηj of the pair (h(tj), h(t′j)) using (2),

and ii) combining all these values into hc using an appropriate function.

A function f : Np ∪ {∞} → N ∪ {∞} is a p-ary combining function if it is:
3Symbols of the form A? are not considered in [GT06].

9

• commutative, i.e., f(c1, . . . , cp) = f(cσ(1), . . . , cσ(p)), where σ is any permutation of the
indices 1 . . . p.

• monotonic, i.e., c1 ≤ d1, . . . , cp ≤ dp implies f(c1, . . . , cp) ≤ f(d1, . . . , dp), and

• zero closed, i.e., f(c1, . . . , cp) = 0 iff ci = 0 for all 1 ≤ i ≤ p.

Commutativity of f ensures that the order of atoms in q does not influence the value of hc,
whereas zero closedness implies hc = 0 if h is a match in the classical sense. In addition to these
properties, we restrict the attention to combining functions that can be computed in polynomial
time. Examples of such functions are the sum, average, minimum and maximum.

Using a combining function f, we can now define the notion of approximate match. An approx-
imate match hq,IGT,f for q in IG , through a distortion transducer T and combining function f, is
a pair hq,IGT,f = (h, hc) where:

• h : terms(q)→ ∆IG is a mapping such that h(a) = a for all a ∈ terms(q) ∩∆IG ; and

• the approximation cost hc ∈ N is defined as

hc := f
R(t,t′)∈q

min
{
cT(u, v) | u ∈ L(R) ∧ h(t) IG ,v−−−→h(t′)

}
. (3)

Approximate answers to a C2RPQ need to take into account all approximate matches. For an
arbitrary k-tuple ā of nodes in ∆IG , we denote by Hq,IG

T,f (ā) the set of approximate matches
satisfying h(x̄) = ā. We are now ready to extend the notion of approximate answer to C2RPQs.

Definition 4. Let q(x̄) = ∃ȳ.ϕ(x̄, ȳ) be a C2RPQ with p many atoms, G a graph database, T
a distortion transducer with Σ = N±R ∪ {A? | A ∈ NC} and f a p-ary combining function. Then,
the set of approximate answers of q on G, through T and f, is defined as:

ãnsT,f(q,G) :=
{

(ā, η) | ā ∈ V ∧ η = min{hc | (h, hc) ∈ Hq,IG
T,f (ā)}

}
.

We say that ā is in the approximate answers with approximation cost η. Notice that this
definition is an extension of the approximate semantics of RPQs, whenever the combining
function f is the identity function. For the rest of the paper, we will assume that this is the
case and in the presence of 2RPQs we will just write ãnsT. Moreover, requiring f to be zero
closed ensures that as for RPQs, we can relax the classical semantics of C2RPQs by modifying
T as explained above.

4.3 Approximate semantics for C2RPQs over a DL KB

While in graph database settings query answering adopts the closed world assumption and
regards one model, in OMQA it adopts the open world assumption and regards what holds in
all models of the ontology. Our approximate semantics that extends the classical one follows
this idea.

The notion of approximate match extends naturally from graph databases to DL interpretations.
More precisely, in an approximate match hq,IT,f = (h, hc) of a C2RPQ q in an interpretation I,
h is now a mapping into ∆I such that h(a) = aI for all terms a ∈ NI in q, and hc is defined in
terms of I,v−−→ (instead of IG ,v−−−→). For a k-tuple ā of individual names in A, Hq,I

T,f (ā) denotes the
set of approximate matches satisfying h(xi) = aIi . Now, in order to get the certain approximate
answers to the C2RPQ, the semantics uses an upper bound on the approximation costs in any

10

of the models. More precisely, an answer tuple ā of ABox individuals incurs in each model a
certain (minimal) cost for the combination of the distortions of the query atoms. The most
costly of these approximations supplies an upper bound on the approximation costs η for this
tuple over all models.

Definition 5. Let K = (T ,A) be a knowledge base and q(x̄) a C2RPQ with p many atoms.
The set of certain approximate answers of q w.r.t. K, through a distortion transducer T with
Σ = N±R ∪ {A? | A ∈ NC} and a p-ary combining function f, is defined as:

c̃ertT,f(q,K) :=
{

(ā, η) | ā ∈ Ind(A) and η = sup
I|=K

{
min {hc | (h, hc) ∈ Hq,I

T,f (ā)}
}}
.

To see that the supremum in this definition always exists, we show that similar to cert(q,K),
the set c̃ertT,f(q,K) can be characterized by looking only at approximate matches in the canon-
ical model UK. The following lemma generalizes the result in Lemma 1 to the approximate
semantics.

Lemma 6. Let K = (T ,A) be an ELH or a satisfiable DL-LiteR KB, q(x̄) a C2RPQ of arity
k with p atoms, T a dT and f a p-ary combining function. Then, (ā, η) ∈ c̃ertT,f(q,K) iff
η = min{hc | (h, hc) ∈ Hq,UK

T,f (ā)}.

Proof. Let (h, hc) ∈ Hq,UK
T,f (ā) and I be an arbitrary model of K. We show that there is an

approximate match in I with the cost at most hc. To this end, we consider a homomorphism
hom from UK into I and prove that (hom ◦ h, (hom ◦ h)c) is such a match.

First, it is clear that (hom ◦ h, (hom ◦ h)c) ∈ Hq,I
T,f (ā). Second, let v ∈ (N±R ∪ {A?})∗ such that

h(t) UK,v−−−→h(t′). The use of hom implies hom(h(t)) I,v−−→hom(h(t′)). This means that for all
R(t, t′) ∈ q, the minimum in (3) for R w.r.t. hom ◦h and I is not greater than w.r.t. h and UK.
Thus, since f is monotonic, it follows that (hom ◦ h)c ≤ hc.

Finally, we state the computational problems that we are interested in. We consider the com-
putational problem: given a tuple ā, compute the value η such that (ā, η) ∈ c̃ertT,f(q,K). In
addition, we investigate the associated decision problem (called τ -entailment) that asks: given
a tuple ā and a threshold value τ ∈ N, whether ā is a certain approximate answer of q w.r.t. K
with approximation cost η ≤ τ .

5 Answering approximate 2RPQs in ELH and DL-LiteR

In this section, we provide a polynomial time algorithm to compute the certain approximate
answers of 2RPQs over ELH and DL-LiteR ontologies. Our algorithm combines and extends
the approaches to answer approximate RPQs over graph databases from [GT06] and 2RPQs in
ELH and DL-LiteR under classical semantics from [BOS15].

[GT06] provide a polynomial time algorithm to answer RPQs under approximate semantics,
which amounts to finding the shortest path in a weighted directed graph. This graph is obtained
from the Cartesian product of the NFA defining the query, the distortion transducer, and the
queried database. We lift this approach to the OMQA setting. Applying this procedure directly
on the data in the ABox need not be complete, since models of K may contain anonymous
individuals induced by GCIs in the TBox. To deal with this, our first step is to consider UK
instead of just the data to build a suitable weighted graph.

A weighted graph is a pair G = (V,E), where V is a set of vertices and E is a set of edges
labeled with a numerical weight, which in our setting are of the form E ⊆ V × N× V . A path

11

π in G is a sequence v1w1v2 . . .vn−1wn−1vn where vi ∈ V , wi ∈ N and (vi, wi,vi+1) ∈ E. The
cost c(π) of π is the sum of all its weights.

Now, let R(x, z) be a 2RPQ with R = (QR,Σ, δR, IR, FR) and T = (QT,Σ, δT, IT, FT) a dT,
where Σ = N±R ∪ {A? | A ∈ NC}. In addition, let K be an ELH or DL-LiteR KB. Using R, T
and UK, the weighted graph GR×T×UK = (V,E) is defined as:

• V := {(s, t, e) ∈ QR ×QT ×∆UK}.

• E := {((s, t, e), w, (s′, t′, e′)) | (s, u, s′) ∈ δR, (t, u, v, w, t′) ∈ T,
v ∈ N±R ⇒ (e, e′) ∈ vUK , v = A?⇒ (e ∈ AUK ∧ e = e′)} ∪
{((s, t, e), w, (s, t′, e′)) | (t, ε, v, w, t′) ∈ T, v ∈ N±R ⇒ (e, e′) ∈ vUK ,
v = A?⇒ (e ∈ AUK ∧ e = e′)} ∪
{((s, t, e), w, (s′, t′, e)) | (s, u, s′) ∈ δR, (t, u, ε, w, t′) ∈ T}.

To simplify notation, we use GUK to refer to GR×T×UK , if R and T are clear from the context.
In addition, we assume that T does not have transitions with ε-labels. This does not affect our
results, but eases considerably their technical presentation. Notice that, the third set defining
GUK can be simulated by using a dummy concept B such that K |= B ≡ >, whereas edges in
the second set can be treated as the ones in the first set. The following lemma uses GUK to
characterize c̃ertT(q,K).

Lemma 7. Let K = (T ,A) be an ELH or a satisfiable DL-LiteR KB, q(x, z) := R(x, z) a
2RPQ, T a dT, and a, b ∈ Ind(A). Then, (a, b, η) ∈ c̃ertT(q,K) iff the minimal cost c∗ of a
path in GUK from a vertex (s0, t0, a) to a vertex (sf , tf , b) is equal to η, where s0 ∈ IR, t0 ∈ IT,
sf ∈ FR, and tf ∈ FT.

Proof. By Lemma 6, (a, b, η) ∈ c̃ertT(q,K) implies the following for 2RPQs:

η = inf{cT(u, v) | u ∈ L(R) ∧ a UK,v−−−→ b}.

In the following, we show that c∗ ≤ η and η ≤ c∗.

η ≤ c∗: if no path of the form (s0, t0, a) . . . (sf , tf , b) exists in GUK , then c∗ = ∞ and η ≤ c∗.
Otherwise, let π = (s0, t0, a) . . . (sf , tf , b) be a path in GUK . Following the definition of GUK ,
words u′, v′ ∈ Σ∗ can be obtained from π such that: u′ ∈ L(R), a UK,v

′
−−−→ b and there is a run ρ

of T that distorts u′ into v′ with wt(ρ) = c(π). This means that cT(u′, v′) ≤ c(π). Hence, since
π is arbitrarily chosen, it follows that η ≤ c∗.

c∗ ≤ η: if for all pair of words u′, v′ ∈ Σ∗ either u′ 6∈ L(R), R(T, u′, v′) = ∅ or a UK,v
′

−−−→ b
does not hold, then η = ∞. Hence, c∗ ≤ η. Otherwise, let u′ ∈ L(R) and v′ ∈ Σ∗ such that
R(T, u′, v′) 6= ∅ and a UK,v

′
−−−→ b. In addition, let (ρ, wt(ρ)) ∈ R(T, u′, v′). By definition of a run

of R and T, one can build a path π = (s0, t0, a) . . . (sf , tf , b) in GUK such that c(π) = wt(ρ).
By definition of cT it follows that c∗ ≤ cT(u′, v′). Thus, c∗ ≤ η.

Clearly, since in general UK can be infinite, running a shortest path algorithm directly on GUK
would not yield an algorithm to compute c̃ertT(q,K). To overcome this problem, we extend
the ideas used in [BOS15] to decide whether (a, b) ∈ cert(q,K), which consist on applying a
symbolic computation to solve a reachability problem in the possibly infinite graph GR×UK .
We continue by describing how to adapt these ideas to obtain algorithms for our more general
settings.

12

5.1 A polynomial time algorithm

Let GR×T×UA (abbreviated as GUA) be the sub-graph of GUK restricted to vertices (s, t, a) such
that a ∈ Ind(A). The idea is to reduce the search of paths of minimal cost in GUK to searching
in an extension of GUA that has polynomial size. In order to explain this, we first need to
introduce the notion of an e-path in GUK .

Definition 8. Let e ∈ ∆UK . An e-path in GUK is a path of the form (s, t, e) γ (s′, t′, e) such
that:

• γ ∈ N implies e ∈ ∆UK \ Ind(A), and

• γ only visits vertices (s′′, t′′, e′) such that e′ ∈ ∆UK \ Ind(A) and e′ ∈ Te.

Notice that an e-path may visit more than two vertices of the form (_,_, e) if e ∈ ∆UK \ Ind(A),
but not if e = a ∈ Ind(A).

Let now π be a path from (s, t, a) to (s′, t′, b) in GUK with a, b ∈ Ind(A). This path can be
decomposed as follows:

(s1, t1, a1) γ1 (s2, t2, a2) γ2 . . . γn−1 (sn, tn, an), (4)

where n ≥ 1, s1 = s, t1 = t, sn = s′, tn = t′, ai ∈ Ind(A), a1 = a, an = b, and for all γi either
i) γi ∈ N, or ii) ai = ai+1 and (si, ti, ai)γi(si+1, ti+1, ai) is an ai-path. One observation follows
for those γi 6∈ N:

• Let ci be the cost of (si, ti, ai)γi(si+1, ti+1, ai). If all edges ((si, ti, ai), ci, (si+1, ti+1, ai))
are added to GUA , then a path from (s, t, a) to (s′, t′, b) with the same cost as (4) can be
found in the augmented GUA .

This correspondence also extends to paths of minimal cost. More precisely,

Proposition 9. Let v1,v2 be vertices in GUA . Further, let G∗UA be the extension of GUA with
all the edges ((s, t, a), c∗, (s′, t′, a)) such that:

• c∗ is the minimal cost of an a-path from (s, t, a) to (s′, t′, a) in GUK .

Then, in GUK and G∗UA , the minimal cost of a path from v1 to v2 is the same .

Proof. ⇒: Let π be a path of minimal cost from (s, t, a) to (s′, t′, a) in GUK . As explained
before, it can be decomposed as shown in (4). If γi ∈ N, then (si, ti, a1) wi (si+1, ti+1, a2) is
an edge in G∗UA . Otherwise, (si, ti, a1) γi (si+1, ti+1, a2) is an a-path with cost c. Since c(π)
is minimal, c must also be minimal. This means that (si, ti, a1) c (si+1, ti+1, a1) is an edge in
G∗UA . Thus, there is a path π∗ from (s, t, a) to (s′, t′, a) in G∗UK such that c(π) = c(π∗).

⇐: Let π∗ be a path of minimal cost from (s, t, a) to (s′, t′, a) in G∗UK . In addition, consider an
arbitrary edge (_,_, a1)w (_,_, a2) in π∗. If such an edge is not in GUA , by definition of G∗UA
there is a path in GUK of the form (_,_, a1) . . . (_,_, a2) of cost w. This means that one can
successively replace such edges by the corresponding path to obtain a path π in GUK such that
c(π∗) = c(π).

Hence, to compute c̃ertT(q,K), one can restrict the attention to the fragment GUA of GUK ,
provided that all minimal costs c∗ can be computed. We exploit this in Algorithm 1 above

13

Algorithm 1 Answering 2RPQs under approximate semantics
Input: A 2RPQ R(x, z), a dT T and an ELH or DL-LiteR KB K = (T ,A).
Output: c̃ertT(q,K).
1: if K is unsatisfiable then return {(a, b, 0) | a, b ∈ Ind(A)};
2: Compute GUA and sp;
3: for all (p, q, a) ∈ (QR ×QT)2 × Ind(A) do
4: add edge (p, a) sp[p, q, a] (p, a) to GUA ;
5: end for
6: Let S = {(s0, t0, a) | s0 ∈ IR, t0 ∈ IT, a ∈ Ind(A)};
7: Let T = {(sf , tf , b) | sf ∈ FR, tf ∈ FT, b ∈ Ind(A)};
8: Run a shortest path algorithm on GUA with source and target sets S and T ;
9: return A := {(a, b, η) | η is the minimal cost of a path from (_,_, a) ∈ S to (_,_, b) ∈ T};

to obtain a corresponding algorithm. It uses a table sp containing all such minimal costs c∗
in entries of the form [(s, t), (s′, t′), a], where (s, t), (s′, t′) ∈ QR × QT and a ∈ Ind(A). Let us
continue by explaining how to compute sp.

By definition of UK and GUK , an a-path from (s, t, a) to (s′, t′, a) in GUK must be of the form:

(s, t, a) w1 (s1, t1, aPC) γ (s2, t2, aPC) w2 (s′, t′, a), (5)

where (s1, t1, aPC) γ (s2, t2, aPC) is an aPC-path. Hence, to compute sp, it is enough to
know the minimal cost of such an aPC-path. To this end, we use an additional table spa with
entries of the form [(s, t), (s′, t′), C] where C ∈ T(UK). The intention is for such an entry to
contain the minimal cost of an e-path from (s, t, e) to (s′, t′, e), where e ∈ ∆UK \ Ind(A) and
tail(e) = C. Recall that for different individuals e, e′ such that tail(e) = tail(e′), the trees Te
and Te′ are isomorphic. This means that a path π in Te has a corresponding one π′ in Te′ such
that `(π) = `(π′). From this, it is not hard to see that [(s, t), (s′, t′), C] is well-defined. Based
on these ideas, we now describe the computation of sp and spa.4

The form of an a-path given in (5) tells us that each value sp[(s, t), (s′, t′), a] corresponds to
the minimal value of an expression of the form w1 + spa[(s1, t1), (s2, t2), C] +w2, such that the
following conditions are satisfied, for ELH and DL-LiteR, respectively:

C1. C ∈ NC, K |= ∃r.C(a), T |= r v r′, T |= r− v r′′, (s, u, s1) ∈ δR, (t, u, r′, w1, t1) ∈ δT
(s2, u

′, s′) ∈ δR, and (t2, u
′, r′′, w2, t

′) ∈ δT.

C2. C = ∃P−, K |= ∃P (a), T |= P v P ′, T |= P− v P ′′, (s, u, s1) ∈ δR, (t, u, P ′, w1, t1) ∈ δT
(s2, u

′, s′) ∈ δR, and (t2, u
′, P ′′, w2, t

′) ∈ δT.

Conditions C1 and C2 take into account the definitions of UK and GUK to ensure that the edges
(s, t, a)w1(s1, t1, aPC) and (s2, t2, aPC)w2(s′, t′, a) really exist. As for spa, its computation is
described in procedure SPA5, which applies the four rules listed below. Their definitions use
expressions of the form c � d meaning that: c is updated with the value of d iff c < d. The
first two rules play the same role as the expressions use to define sp, i.e., they cover e-paths of
the form (5) for e ∈ ∆UK \ Ind(A).

S1 spa[(s, t), (s′, t′), C]� w1 + spa[(s1, t1), (s2, t2), A] + w2, if C1∗ holds.

S2 spa[(s, t), (s′, t′), C]� w1 + spa[(s1, t1), (s2, t2),∃P−] + w2, if C2∗ holds.
4These two tables can be seen as generalizations of the tables ALoopα and Loopα from [BOS15].
5This procedure is not meant to be efficient, but to illustrate that spa can be computed in polynomial time.

14

The conditions C1∗ and C2∗ are the variants of C1 and C2 where T |= C v ∃r.A and T |= C v
∃P are used instead of K |= ..., respectively. We say that S{1,2} is applicable if C{1,2}∗ holds.
The remaining two rules are:

S3 spa[(s, t), (s′, t′), C]� w, if T |= C v A, (s, u, s′) ∈ δR and (t, u,A?, w, t′) ∈ δT.

S4 spa[(s, t), (s′, t′), C]� spa[(s, t), (s′′, t′′), C] + spa[(s′′, t′′), (s′, t′), C].

The rule S3 is used to take into account paths in GUK of the form (s, t, e)w(s′, t′, e). As for S4,
it considers path that results from composing paths of the previous form and paths of the form
(5).

Procedure SPA
1: Initialize spa[p, p, C] = 0;
2: Initialize spa[p, q, C] =∞ (if p 6= q);
3: Apply rule S3 to all (p, q, C) ∈ (QR ×QT)2 × T(UK);
4: Apply S4 until spa does not change;
5: repeat
6: spa := f(spa);
7: until spa does not change
function f

Apply rule S1(2) to all (p, q, C) ∈ (QR ×QT)2 × T(UK);
Apply S4 until spa does not change;

end function

By looking at the rules, one can see that along a run of SPA an entry of spa can only have
values that are either 0, ∞ or a sum of weights from T. Hence, since there are finitely many
weights and the value of an entry in spa can only decrease, an exhaustive application of S4
always terminates. This means that a fixpoint of f can be reached in finite time, and therefore
SPA always terminates. To see that this fixpoint contains the intended values for spa, we now
prove two lemmas which depend on the following notion. The depth of a path π in GUK is the
maximal value d(e′)− d(e) such that e′ ∈ Te and (_,_, e′) occurs in π.

Lemma 10. Let (s, t), (s′, t′) ∈ QR × QT, e ∈ ∆UK \ Ind(A) and tail(e) = C. After SPA
executes line 4, spa[(s, t), (s′, t′), C] contains the minimal cost c∗ of an e-path of depth 0 from
(s, t, e) to (s′, t′, e).

Proof. ⇒: spa[(s, t), (s′, t′), C] ≤ c∗. An e-path π of depth 0 from (s, t, e) to (s′, t′, e) is of the
form:

(s1, t1, e)w1(s2, t2, e)w2 . . . wn−1(sn, tn, e),

where n > 1, {s, t}1 = {s, t} and {s, t}n = {s′, t′}. We use induction on the length n of the
path to show that

spa[(s1, t1), (sn, tn), C] ≤ c(π).

If n = 2, then (s1, t1, e)w1(s2, t2, e) is an edge in GUK . By definition of GUK , it must be
that (s1, u, s2) ∈ QR, (t1, u, v, w1, t2) ∈ QT, v = A? and e ∈ AUK . The latter must be
the case because in UK an anonymous individual has no single self-loops. In addition, by
definition of UK, e ∈ AUK implies that T |= C v A. Hence, rule S3 can be applied to
((s1, t1), (s2, t2), C) w.r.t. A and w1. This means that spa[(s1, t1), (s2, t2), C] ≤ c(π). As-
sume that n > 2 and let π1 be the sub-path (s1, t1, e) . . . (sn−1, tn−1, e) and π2 the sub-path
(sn−1, tn−1, e)wn−1(sn, tn, e). The application of induction yields spa[(s1, t1), (sn−1, tn−1), C] ≤
c(π1) and spa[(sn−1, tn−1), (sn, tn), C] ≤ c(π2). Hence, since S4 is applied exhaustively, it must

15

be that spa[(s1, t1), (sn, tn), C] ≤ c(π). Thus, since π is chosen arbitrarily, it follows that
spa[(s, t), (s′, t′), C] ≤ c∗.

⇐: c∗ ≤ spa[(s, t), (s′, t′), C]. Consider an execution of line 3, followed from an exhaustive
application of S4 in line 4. Let µ1, . . . , µk be the sequence of updates performed along this
execution. We assume the sequence is in order, i.e., µ1 is the first update and µk is the last one.
In addition, we denote as spa[(si, ti), (s′i, t′i), Ci] the entry corresponding to the update µi and
νi the updated value. Let now ei ∈ ∆UK \ Ind(A) such that tail(ei) = Ci. We show by induction
on i that there exists an ei-path of depth 0 in GUK of the form πi = (si, ti, ei) . . . (s′i, t′i, ei)
such that c(πi) ≤ νi. We consider two cases:

• µi corresponds to an application of S3. In this case, we have that T |= Ci v A, (si, u, s′i) ∈
Rδ and (ti, u, A?, w, t′i) ∈ δT. Since tail(ei) = Ci, by definition of UK we have that
ei ∈ AUK . Hence, the definition of GUK tells us that (si, ti, ei)w(s′i, t′i, ei) is an edge in
GUK . This means that we have an ei-path of cost w. Thus, since νi = w, our claim holds.

• µi corresponds to an application of S4. This means that νi = νj1 + νj2 , where j1, j2 < i.
In addition, the entries corresponding to updates νj1 and νj2 must be of the form:

spa[(si, ti), (s′′, t′′), Ci] and spa[(s′′, t′′), (s′i, t′i), Ci].

By induction, there are ei-paths π1 and π2 of depth 0 inGUK of the form (si, ti, ei) . . . (s′′, t′′, ei)
and (s′′, t′′, ei) . . . (s′i, t′i, ei), respectively, such that c(π1) ≤ νj1 and c(π2) ≤ νj2 . Combin-
ing these two paths we obtain an ei-path of depth 0 inGUK of the form (si, ti, ei) . . . (s′i, t′i, ei)
with cost c(π1) + c(π2) ≤ νj1 + νj2 = νi. Thus, our inductive claim is satisfied.

Overall, we have shown that after the execution of line 4, for each entry spa[(s, t), (s′, t′), C]
there exists an e-path π of depth 0 in GUK of the form (s, t, e) . . . (s′, t′, e) such that tail(e) = C
and c(π) ≤ spa[(s, t), (s′, t′), C]. Thus, it follows that c∗ ≤ spa[(s, t), (s′, t′), C].

This result extends to all depths d > 0 w.r.t. d applications of f .

Lemma 11. Let d ≥ 1, (s, t), (s′, t′) ∈ QR × QT, e ∈ ∆UK \ Ind(A) and tail(e) = C. After
d applications of f , spa[(s, t), (s′, t′), C] contains the minimal cost c∗ of an e-path of depth at
most d from (s, t, e) to (s′, t′, e).

Proof. Let us start by establishing a correspondence between applications of the rule S1 and
certain edges in GUK (the same correspondence can be obtain for S2 and DL-LiteR).

• If S1 is applicable to (s, t), (s′, t′) and C, then condition C1∗ is satisfied. This means that
T |= C v ∃r.A, T |= r v r′ and T |= r− v r′′. Hence, the definition of UK yields the
existence of e′ ∈ ∆UK such that e 6= e′, tail(e′) = A, (e, e′) ∈ r′

UK and (e′, e) ∈ r′′
UK .

Then, the remaining requirements of C1∗ and the definition of GUK yield two edges in
GUK of the form

(s, t, e) w1 (s1, t1, e
′) and (s2, t2, e

′) w2 (s′, t′, e). (6)

• Conversely, assume that (s, t, e) w1 (s1, t1, e
′) and (s2, t2, e

′) w2 (s′, t′, e) are two edges in
GUK such that e 6= e′. By definition of GUK , we have that there are:

– (s, u1, s1) ∈ Rδ and (t, u1, r
′, w1, t1) ∈ δT such that (e, e′) ∈ r′UK , and

– (s2, u2, s
′) ∈ Rδ and (t2, u2, r

′′, w2, t
′) ∈ δT such that (e′, e) ∈ r′′UK .

16

Let tail(e′) = A. By definition of UK, there must exists r ∈ NR such that T |= r v r′,
T |= r− v r′′ and T |= C v ∃r.A. Hence, one can see that condition C1∗ is satisfied
w.r.t. A, r′ and r′′ and S1 is applicable with right-hand side of the form:

w1 + spa[(s1, t1), (s2, t2), A] + w2. (7)

Next, we show by well-founded induction on the number of iterations d, that spa[(s, t)(s′, t′), C] =
c∗. Let us start by showing that spa[(s, t)(s′, t′), C] ≥ c∗. Trivial cases are when (s, t) = (s′, t′)
or spa[(s, t)(s′, t′), C] is never updated. Otherwise, suppose that spa[(s, t)(s′, t′), C] is updated
by an application of S1 or S4:

• S1. Then, there are two edges in GUK of the form (6) with weights w1 and w2. More-
over, the individual e′ is such that tail(e′) = A. By induction, spa[(s1, t1), (s2, t2), A]
is the minimal cost of an e′-path of depth at most d − 1 from (s1, t1, e

′) to (s2, t2, e
′).

Hence, there is an e-path of depth at most d in GUK of the form (s, t, e) . . . (s′, t′, e)
with cost w1 + spa[(s1, t1), (s2, t2), A] + w2. Since the latter is the number assigned to
spa[(s1, t1), (s2, t2), A] by the application of S1, it follows that spa[(s, t)(s′, t′), C] ≥ c∗.

• S4. The proof is the same as in Lemma 10 for paths of depth 0. In this case, we consider
an execution of the two lines in f at the d-th iteration of f .

We continue by showing that spa[(s, t)(s′, t′), C] ≤ c∗. An e-path π of depth at most d from
(s, t, e) to (s′, t′, e) can have two possible forms:

• (s, t, e) w1 (s1, t1, e
′) γ (s2, t2, e

′) w2 (s′, t′, e), where (s1, t1, e
′) γ (s2, t2, e

′) is an e′-path of
depth at most d− 1 with cost c′. Then, the cost of π is c = w1 + c′+w2. Let tail(e′) = A.
As explained above, S1 is applicable with right-hand side of the form (7). Moreover,
the application of induction yields that c′ ≥ spa[(s1, t1), (s2, t2), A]. Thus, it follows that
c ≥ spa[(s, t), (s′, t′), C].

• (s = s1, t = t1, e)γ1 (s2, t2, e)γ2 . . . γn−1 (s′ = sn, t
′ = t′n, e), where for all 1 ≤ i < n either

γi ∈ N or (si, ti, e) γi (si+1, ti+1, e) is an e-path of the previous form. Let ci be the cost of
each path (si, ti, e)γi(si+1, ti+1, e). Then, the cost c of the whole path is c1 + . . .+ cn−1.
We consider the following two cases:

– γi ∈ N. Then, (si, ti, e)γi(si+1, ti+1, e) has depth 0. Hence, the application of
Lemma 10 yields that ci ≥ spa[(si, ti), (si+1, ti+1), C].

– (si, ti, e) γi (si+1, ti+1, e) is an e-path with the form considered in the previous case.
Then, using the result shown for such paths, we obtain that ci ≥ spa[(si, ti), (si+1, ti+1), C].

Notice now, that an application of the rule S4 using the entries

spa[(s1, t1), (s2, t2), C] and spa[(s2, t2), (s3, t3), C]

implies that c1 + c2 ≥ spa[(s1, t1), (s3, t3), C]. Similarly, extending this to (s1, t1), (s3, t3)
and (s3, t3), (s4, t4) yields that c1 + c2 + c3 ≥ spa[(s1, t1), (s4, t4), C] Hence, it is not hard
to see that c1 + . . .+ cn+1 ≥ spa[(s1, t1), (sn, tn), C]. Thus, c ≥ spa[(s1, t1), (sn, tn), C].

Finally, since the e-path π is chosen arbitrarily, it follows that c∗ ≥ spa[(s, t), (s′, t′), C].

Using the previous two lemmas, it is not hard to show that spa and sp contain the intended
values.

17

Lemma 12. Let (s, t), (s′, t′) ∈ QR ×QT and C ∈ T(UK). For all e ∈ ∆UK \ Ind(A) such that
tail(e) = C, the value spa[(s, t), (s′, t′), C] is the minimal cost of an e-path in GUK of the form
(s, t, e) . . . (s′, t′, e).

Proof. Assume that f performs i + 1 iterations. By Lemmas 10 and 11, after i iterations of
f , the entry spa[(s, t), (s′, t′), C] contains the minimal cost of an e-path in GUK of the form
(s, t, e) . . . (s′, t′, e) of depth at most i. Suppose now that there is a path π in GUK of the same
form such that c(π) < spa[(s, t), (s′, t′), C] and π has depth j > i. We show, by well-founded
induction on j that this cannot be the case.

By definition of an e-path, π must contain a sub-path of the form

(s1, t1, e) w1 (s′1, t
′
1, ePC

′) γ (s′2, t
′
2, ePC

′) w2 (s2, t2, e),

where π′ = (s′1, t
′
1, ePC

′) γ (s′2, t
′
2, ePC

′) is an ePC ′-path of depth j′ ≥ i. By Lemmas 10
and 11 if j′ = i or induction if j′ > i, we obtain that [(s′1, t

′
1), (s′2, t

′
2), C ′] ≤ c(π′). Hence,

w1+[(s′1, t
′
1), (s′2, t

′
2), C ′]+w2 ≤ c(π) < spa[(s, t), (s′, t′), C]. Thus, it would have been possible to

update spa[(s, t), (s′, t′), C] by applying S1(2) at iteration i+1 of f , contradicting the assumption
that f performs i+ 1 iterations.

Hence, it follows that Algorithm 1 is correct.

Lemma 13. Algorithm 1 computes the set ãnsT(q,K).

Proof. Since sp and spa contain the right values, we know that after executing the for loop at
line 3 the augmented graph GUA is the same as G∗UA in Proposition 9. Now, (a, b, η) ∈ A iff the
minimal cost of a path from a node (s0, t0, a) to a node (sf , tf , b) in G∗UA is η. By Proposition 9,
the latter is true iff η is also the minimal cost of such a path in GUK . Thus, the application of
Lemma 7 concludes the proof.

Regarding the running time of Algorithm 1, deciding consistency of a KB and the entailment
checks needed to build G∗UA are polynomial time problems in ELH and DL-LiteR [BBL05,
CDL+07]. Further, since G∗UA is of size polynomial in the size of A, running a polynomial time
shortest path algorithm on G∗UA remains in polynomial time. As for the computation of spa,
it is only unclear whether a fixpoint of f can be reached in polynomial time. The following
lemma proves that this is the case, regardless of how the weights in T are encoded.

Lemma 14. Let (s, t), (s′, t′) ∈ QR ×QT and e0 ∈ ∆UK \ Ind(A) such that there is an e0-path
(s, t, e0) . . . (s′, t′, e0) in GUK . Then, there is one such path of minimal cost with depth at most
m = (|QR| × |QT|)2 × |T(UK)|.

Proof. Let π0 be an e0-path of the form (s, t, e0) . . . (s′, t′, e0) of minimal cost. If the depth of
π is ≤ m we are done. Otherwise, there exists em+1 ∈ Te0 such that d(em+1)− d(e0) = m+ 1
and π visits a vertex of the form (_,_, em+1). Since Te0 is a tree, there must exist individuals
e1, . . . , em ∈ ∆UK \ Ind(A) such that for all 1 ≤ i ≤ m+ 1:

• ei ∈ Tei−1 and ei has depth i in Te0 , and

• π0 visits at least one node of the form (si, ti, ei).

Consider a vertex vm+1 = (sm+1, tm+1, em+1) in π0. Since em+1 ∈ Tem , by construction of
GUK , vm must have a predecessor vm and a successor v′m in π0 of the form (sm, tm, em) and
(s′m, t

′
m, em), respectively. Let us assume that vm and v′m are the closest such vertices to vm+1 in

18

π0. This means that πm =vm γ1 vm+1 γ2 v′m is a sub-path of π0 such that: all vertices (_,_, e′)
occurring in γ1 or γ2 satisfy e′ ∈ Tem . Hence, πm is an em-path in GUK . Using the same
reasoning, one can find vertices vm−1 = (sm−1, tm−1, em−1) and v′m−1 = (s′m−1, t

′
m−1, em−1) in

π0, such that they are the closest predecessor and successor of vm and v′m, respectively. Further,
the path πm−1 =vm−1 . . .v′m−1 is an em−1-path containing πm. Repeating this process until we
reach e0 yields a sequence π0, . . . , πm of sub-paths in π0 such that:

• πi is an ei-path of the form vi . . . πi+1 . . .v′i (0 ≤ i < m).

Since there are m + 1 such paths, there must exist 0 ≤ i < j ≤ m such that (si, ti) =
(sj , tj), (s′i, t

′
i) = (s′j , t

′
j) and tail(ei) = tail(ej). The latter means that there is an isomor-

phism iso between Tei and Tej . Hence, since πj is an ej-path we can apply iso to trans-
form each vertex (s′′, t′′, e′′) in πj into the vertex (s′′, t′′, iso(e′′)). This yields an ei-path
π′i = (si, ti, ei) . . . (s

′
i, t
′
i, ei) in GUK with the same length and cost as πj . As πj is contained

in πi, replacing πi by π′i in π0 yields an e0-path (s, t, e0) . . . π′i . . . (s
′, t′, e0) with smaller length

and cost not greater than π0. Thus, by repeating this process, we either find a contradiction
(against π0 being of minimal cost) or a proper path of depth not greater than m.

This lemma implies that f performs at most m iterations, which is polynomial in the size of T
and T. Hence, Algorithm 1 runs in time polynomial in the size of R,T and K. Thus, we obtain
the following results.

Theorem 15. For 2RPQs, computing the cost η of a certain approximate answer and deciding
τ -entailment are in polynomial time for ELH and DL-LiteR.

As explained in [GT06], by using Dijkstra’s algorithm, Algorithm 1 can be adapted to compute
the top-k certain approximate answers.

6 Answering approximate C2RPQs in DL-LiteR and ELH

In [BOS15], a query rewriting procedure is developed to answer C2RPQs under classical se-
mantics in PSpace. One aspect of the rewriting is that the rewritten queries need not preserve
the regular languages required by the atoms in the original query. For this reason, it is not
clear how to reuse such a procedure to answer C2RPQs under approximate semantics.

Our solution is based on proving that we can restrict our attention to a finite fragment UK(q)
of UK to decide τ -entailment of C2RPQs. This is the fragment of UK restricted to individuals
e ∈ ∆UK of depth at most g ·m+ 1, where:

g := p+ 2 m := |T(UK)| ·
p∏
j=1

(|QRj
| · |QT|)2.

The following lemma represents the main technical result of this section.

Lemma 16. Let K = (T ,A) be an ELH or a satisfiable DL-LiteR KB, q(x̄) a C2RPQ with p
atoms, T a dT and f a p-ary combining function. Then, (ā, η) ∈ c̃ertT,f(q,K) iff η = min{hc |
(h, hc) ∈ HUK(q)T,f (ā)}.

Before proceeding with the proof of Lemma 16, we need to introduce some notation. For the
rest of this section, a C2RPQ with p atoms is a conjunction R1(t1, t

′
1) ∧ . . . ∧ Rp(tp, t

′
p). For

each of these atoms, the weighted graph GRj×T×UK is abbreviated as GjUK . Further, given an
approximate match (h, hc) in UK, we use πhj to denote a path in GjUK such that:

19

π2

π1

π3

a

e1
e2
em

[y]iso
([y

])·
[y3]

b

[y1]
[y2]

a

e1
e2
e′m

em

[y]is
o(
[y
])
·

is
o(
[y
3
])·

[y3]

π3

Figure 2: Intuition example.

• πhj is of the form (s0, t0, h(tj)) . . . (sf , tf , h(t′j)), and

• c(πhj) is minimal among paths of the previous form.

We will simply write πj when h is clear from the context. Notice that by (3), hc = f(π1, . . . , πp).
Finally, we denote as Πh the set of all selected paths πj ’s, and given a set Y ⊆ qvars(q) we
define Πh(Y) := {πj ∈ Πh | {tj , t′j} ∩ Y 6= ∅}.

6.1 Proof of Lemma 16

The main idea to prove Lemma 16 is that each approximate match not restricted to U ′K(q) can
be “made better” in the following sense.

Definition 17. Let K = (T ,A) be an ELH or DL-LiteR KB, q(x̄) be a C2RPQ of arity k, ā
a k-tuple of individuals in A, y ∈ qvars(q) and (h, hc) ∈ Hq,UK

T,f (ā). We say that (h, hc) can be
improved w.r.t. y iff there is (h′, h′c) ∈ H

q,UK
T,f (ā) such that h′c ≤ hc and

• d(h′(y)) < d(h(y)) and d(h′(z)) ≤ d(h(z)) for all z ∈ qvars(q).

The goal is then to show that every (h, hc) ∈ Hq,UK
T,f (ā), such that d(h(y)) > g ·m+ 1 for some

y ∈ qvars(q), can be improved w.r.t. y. We proceed in two steps. First, we identify two base
cases for which depth m+ 1 and 2m+ 1 suffices to improve (h, hc). Secondly, we show that all
other cases can be reduced to the basic ones. The following example illustrates the intuition
behind the two base cases.

Example 18. Let q(x̄) = R1(y1, y) ∧ R2(y, y2) and (h, hc) ∈ Hq,UK
T,f (ā). The left-hand side

of Figure 2 depicts a fragment of UK where a, b ∈ Ind(A). Symbols [y1], [y2] are the element
where h maps variables y1, y2 to. Further, the individuals e1 and e2 satisfy tail(e1) = tail(e2),
which means that there is an isomorphism iso between Te1 and Te2 . These sub-trees are
symbolized with the continuous arrows. The dotted arrows represent just paths in UK and
the dashed lines “symbolize” the paths π1 and π2 in G1

UK and G2
UK . These paths are of

the form (s0, t0, h(y)) . . . (sf , tf , h(y2)) and (s0, t0, h(y1)) . . . (sf , tf , h(y)), respectively, and they
visit nodes of the form (_,_, e1) and (_,_, e2).

The first base case appears if the following are satisfied:

• π1 visits a node of the form (sl, tl, e1) and the last visited node involving e2 is of the form
(sl, tl, e2).

• π2 visits a node of the form (sα, tα, e1) and the first visited node involving e2 is of the
form (sα, tα, e2).

20

One can see that the sub-paths (sl, tl, e2) . . . (sf , tf , h(y)) and (sf , tf , h(y)) . . . (sα, tα, e2) must
only visit vertices (_,_, e′) such that e′ ∈ Te2 . Since Te1 and Te2 are isomorphic and y ∈ Te2 ,
these sub-paths can be reproduced from/to e1 w.r.t. iso(h(y)). This would yield paths π′1 and
π′2 such that c(π′1,2) ≤ c(π1,2), which implies that (h, hc) can be improved by “moving up” h(y)
to iso(h(y)). Thus, to ensure that such elements e1, e2 exist one could, for example, require
d(em) = m+ 1.

Clearly, this is a very optimistic situation, since it leaves out many of the cases where h maps
a variables related to y into the same sub-tree Ta as h(y). The second base case consists of a
particular type of instances of such cases.

Continuation of Example 18. Assume that q contains an additional atom R3(y3, y) and
h(y3) = [y3]. Further, suppose that π3 visits a vertex (_,_, e′) such that e′ 6∈ Te2 but none
where e′ = e1. The latter means that π3 need not be reproducible w.r.t. iso(h(y)), whereas the
former implies that moving h(y3) up to iso(h(y3)) is also not enough. To avoid this more depth
is needed. For instance, suppose now that d(em) = 2m + 1 and d(e′m) = m + 1 as depicted in
the right-hand side of the figure. Then,

• elements e1, e2 can still be found between a and e′m, and

• π3 only visits vertices (_,_, e′) such that e′ ∈ Te2 .

Thus, (h, hc) can be improved by moving up h(y) and h(y3) to (iso(h(y))) and (iso(h(y3))).

We now move on to formally prove that the intuition described in the previous example is
correct. First, we introduce some needed technical notions.

Definition 19. Let e, e′ ∈ ∆UK such that e′ ∈ Te and π a path in GjUK .

• The segment [e, e′] in UK consists of all e′′ ∈ Te such that e′ ∈ Te′′ .

• We say that π covers [e, e′] iff π visits a node of the form (s, t, e′′) for all e′′ ∈ [e, e′].

A segment captures a finite sequence of consecutive elements e, eP1C1, eP1C1P2C2 . . . in UK.
In the example, the segment [e1, e2] is covered by the paths π1 and π2 but not by π3. The
following auxiliary lemma shows that shortening a set of paths simultaneously is possible when
they satisfy the conditions sketched for the first base case.

Lemma 20. Let e1, e2, e3 ∈ ∆UK \ Ind(A) such that e1 6= e2, tail(e1) = tail(e2), e2 ∈ Te1 ,
e3 ∈ Te2 and iso an isomorphism between Te1 and Te2 . In addition, let e4 ∈ ∆UK and π be a
path in GjUK from a node (s, t, e3) to a node (s′, t′, e4) (or vice versa) that covers [e1, e2]. Further,
let (seiα , t

ei
α , ei) and (seil , t

ei
l , ei) be the first and last node visited by π of the form (_,_, ei=1,2),

respectively.

Then, (se1α , t
e1
α) = (se2α , t

e2
α) and (se1l , t

e1
l) = (se2l , t

e2
l) imply the existence of a path π′ in GjUK

such that c(π′) ≤ c(π) and π′ is of the form:

• (s, t, iso(e3)) . . . (s′, t′, e4) (or vice versa), if e3 6= e4, or

• (s, t, iso(e3)) . . . (s′, t′, iso(e4)) (or vice versa), if e4 ∈ Te2 .

Proof. First, assume that e4 6∈ Te2 . We consider two cases.

21

• π goes from (s, t, e3) to (s′, t′, e4). Since e3 ∈ Te2 , e2 ∈ Te1 and π covers [e1, e2], π can be
decomposed as a path of the form:

(s, t, e3)γ(se2α , t
e2
α , e2) . . . (se1α , t

e1
α , e1) . . . (s′, t′, e4)

such that γ only visits nodes of the form (_,_, e′′) where e′′ ∈ Te2 . Now, let γ′ be the
result of replacing each (s′′, t′′, e′′) in γ by (s′′, t′′, iso(e′′)). Since all such e′′ are in Te2 and
iso is an isomorphism between Te1 and Te2 , we obtain a path (s, t, iso(e3)) γ′ (se2α , t

e2
α , e1)

in GjUK with the same cost as (s, t, e3) γ (se2α , t
e2
α , e2). Thus, since (se1α , t

e1
α) = (se2α , t

e2
α),

this means that π′ = (s, t, iso(e3)) γ′ (se1α , t
e1
α , e1) . . . (s′, t′, e4) is a path in GjUK such that

c(π′) ≤ c(π).

• π goes from (s′, t′, e4) to (s, t, e3). In this case, π can be decomposed as:

(s′, t′, e4) . . . (se1l , t
e1
l , e1) . . . (se2l , t

e2
l , e2) γ (s, t, e3)

such that γ only visits nodes of the form (_,_, e′′) where e′′ ∈ Te2 . Employing similar
arguments as above, we obtain a path (se2l , t

e2
l , e1) γ′ (s, t, iso(e3)) in GjUK with the same

cost as (se2l , t
e2
l , e2) γ (s, t, e3). Again, since (se1l , t

e1
l) = (se2l , t

e2
l), this means that:

π′ = (s′, t′, e4) . . . (se1l , t
e1
l , e1) γ′ (s, t, iso(e3))

is a path in GjUK such that c(π′) ≤ c(π).

It then remains to look at the case where e4 ∈ Te2 . The path π has the following form:

(s, t, e3)γ1(se2α , t
e2
α , e2) . . . (se1α , t

e1
α , e1) . . . (se1l , t

e1
l , e1) . . . (se2l , t

e2
l , e2)γ2(s′, t′, e4),

where γ1, γ2 only visit nodes of the form (s′′, t′′, e′′) such that e′′ ∈ Te2 . Applying the same argu-
ments as for e4 6∈ Te2 , we can obtain paths (s, t, iso(e3))γ′1(se2α , t

e2
α , e1) and (se2l , t

e2
l , e1)γ′2(s′, t′, iso(e4))

with the same cost as (s, t, e3)γ1(se2α , t
e2
α , e2) and (se2l , t

e2
l , e2)γ2(s′, t′, e4), respectively. Hence,

(se1l , t
e1
l) = (se2l , t

e2
l) and (se1α , t

e1
α) = (se2α , t

e2
α) yield a path

π′ = (s, t, iso(e3))γ′1(se1α , t
e1
α , e1) . . . (se1l , t

e1
l , e1)γ′2(s′, t′, iso(e4))

such that c(π′) ≤ c(π).

Using the previous lemma, we can now show that an approximate match can be improved for
any of the two described bases cases.

Lemma 21. Let K = (T ,A) be an ELH or a DL-LiteR KB, q(x̄) be a C2RPQ of arity k, ā a
k-tuple of individuals in A and (h, hc) ∈ Hq,UK

T,f (ā). In addition, let e0, em, e2m ∈ ∆UK \ Ind(A)
such that em ∈ Te0 , e2m ∈ Tem , d(em) − d(e0) = d(e2m) − d(em) = m, and Y ⊆ qvars(q) such
that y ∈ Y =⇒ h(y) ∈ Te2m . If each πj ∈ Πh(Y) satisfies that:

1) πj covers [e0, em], or

2) πj does not cover [em, e2m] and {tj , t′j} ⊆ Y,

then (h, hc) can be improved w.r.t. all y ∈ Y.

Proof. Notice that each path in Πh(Y) satisfies exactly one among conditions 1) and 2). As-
sume that all πj ∈ Πh(Y) satisfy either condition 1) or 2). Let Π1

h(Y) be the set of paths in
Πh(Y) satisfying condition 1) and Π2

h(Y) the set of those satisfying condition 2). We start by
considering the case where Π1

h(Y),Π2
h(Y) 6= ∅.

For each path πj ∈ Π1
h(Y) and e ∈ [e0, em], we denote as (se,jα , te,jα , e) and (se,jl , te,jl , e) the first

and last node of the form (_,_, e), respectively, visited by πj . Since [e0, em] contains m + 1
elements, there must exist e1, e2 ∈ [e0, em] such that:

22

• e1 6= e2, e2 ∈ Te1 , tail(e1) = tail(e2), and

• (se1,jα , te1,jα) = (se2,jα , te2,jα) and (se1,jl , te1,jl) = (se2,jl , te2,jl).

Let now iso be an isomorphism between Te1 and Te2 (recall that it exists because tail(e1) =
tail(e2)). Since y ∈ Y =⇒ h(y) ∈ Te2m , we have y ∈ Y =⇒ h(y) ∈ Te2 . Hence, we can
transform h into a new mapping h′ by setting h′(y) = iso(h(y)) for all y ∈ Y and h′(y′) = h(y′)
for the rest of the variables in vars(q). We show that (h, hc) is improved by (h′, h′c) w.r.t. all
y ∈ Y.

First, notice that e1, e2 ∈ [e0, em] and h(y) ∈ Te2 imply iso(h(y)) ∈ Te1 for all y ∈ Y. Secondly,
since e1 6= e2 and e2 ∈ Te1 , it follows that d(e1) < d(e2). Hence, d(h′(y)) < d(h(y)) for all y ∈ Y.
Last, by definition, h′(y′) = h(y′) for all remaining y′ ∈ vars(q). Consequently, it remains to
show that h′c ≤ hc. To this end, we prove that for each Rj(tj , t

′
j) ∈ q there is path π′j from

(s0, t0, h
′(tj)) to (sf , tf , h

′(t′j)) such that c(π′j) ≤ c(πj). We consider the following three cases.

• πj 6∈ Πh(Y). This is trivial, since h(tj) = h′(tj) and h(t′j) = h′(t′j).

• πj ∈ Π1
h(Y). This case follows from Lemma 20.

• πj ∈ Π2
h(Y). As tj , t′j ∈ Y we have that h(tj), h(t′j) ∈ Te2m . Therefore, since πj does not

cover [em, e2m] and em ∈ Te2 , πj must be of the form (s0, t0, h(tj))γ(sf , tf , h(t′j)) such
that every vertex (s, t, e′′) in γ satisfies e′′ ∈ Te2 . Hence, the fact that Te1 and Te2 are
isomorphic implies that a path π′j = (s0, t0, iso(h(tj))) . . . (sf , tf , iso(h(t′j))) exists in G

j
UK

such that c(π′j) ≤ c(πj).

Thus, since f is a monotonic function, it follows that h′c ≤ hc.

To conclude let us look at the two remaining cases. If Π2
h(Y) = ∅, we can just apply Lemma 20

to each πj ∈ Π1
h(Y) to prove our claim. Otherwise, suppose that Π1

h(Y) = ∅. Taking into
account the size of T(UK), it is clear that there are e1, e2 ∈ [e0, em] such that e1 6= e2, e2 ∈ Te1
and tail(e1) = tail(e2). The same arguments used in the third case above can be applied to
prove our claim.

We are now ready to show that, for the general case, an approximate match can always be
improved.

Lemma 22. Let K = (T ,A) be an ELH or DL-LiteR KB, q(x̄) be a C2RPQ of arity k, ā a
k-tuple of individuals in A, (h, hc) ∈ Hq,UK

T,f (ā), and y ∈ qvars(q) such that d(h(y)) > g ·m+ 1.
Then, (h, hc) can be improved w.r.t. y.

Proof. Since d(h(y)) > g ·m+ 1, there are elements e0, em, e2·m, . . . eg·m in ∆UK \ Ind(A) such
that:

• e`·m 6= ei·m and d(ei·m)− d(e(i−1)·m) = m, (0 ≤ ` < i ≤ g).

• ei·m ∈ Te(i−1)·m and h(y) ∈ Tg·m, (0 < i ≤ g).

For each 2 ≤ i ≤ g, we will now define a set Yi ⊆ qvars(q). Except for Yg, each Yi will be
defined in terms of Yi+1 with the help of two of the following sets of paths:

• Π1
h(Yi) contains all paths in Πh(Yi) that cover [e(i−2)·m, e(i−1)·m].

• Π2
h(Yi) contains all paths πj ∈ Πh(Yi) such that:

23

– πj does not cover [e(i−1)·m, ei·m] and {tj , t′j} ⊆ Yi.

• Π3
h(Yi) contains all paths πj ∈ Πh(Yi) such that:

– πj does not cover [e(i−1)·m, ei·m] and {tj , t′j} 6⊆ Yi.

Coming back to the sets Yi, we define Yg := {y} and Yi := Yi+1 ∪ {tj , t′j | πj ∈ Π3
h(Yi+1)} for

all 2 ≤ i < g. Notice that Π1
h(Yi), Π2

h(Yi) and Π3
h(Yi) are disjoint and their union is Πh(Yi).

Using these sets, we will now prove that for some 2 ≤ i ≤ g, the hypothesis in Lemma 21 are
satisfied w.r.t. Yi. To this end, we show three auxiliary claims.

1. h(z) ∈ Tei·m for all z ∈ Yi. We use induction on g− i. For i = g, we know by assumption
that h(y) ∈ Tg·m. Suppose now that i < g and let z ∈ Yi. By definition of Yi we have to
possibilities:

• z ∈ Yi+1. Applying induction to (g− (i+ 1)) we obtain that h(z) ∈ Te(i+1)·m . Thus,
since e(i+1)·m ∈ Tei·m , it follows that h(z) ∈ Tei·m .

• z = tj or z = t′j for some πj ∈ Π3
h(Yi+1). Without loss of generality let us assume

that z = tj . Since Π3
h(Yi+1) ⊆ Πh(Yi+1), it must be that t′j ∈ Yi+1. Then,

applying induction we obtain that h(t′j) ∈ Te(i+1)·m . Since πj is a path of the form
(s0, t0, h(z)) . . . (sf , tf , h(t′j)) and it does not covers [ei·m, e(i+1)·m], it must be that
h(z) ∈ Tei·m .

2. Π2
h(Yi) ⊆ Π2

h(Yi−1) for all 1 ≤ i ≤ g. Let πj ∈ Π2
h(Yi). By definition of Π2

h(Yi) we have
that tj , t′j ∈ Yi. In addition, from the previous result we also know that h(ti), h(t′i) ∈ Tei·m .
This means that, since πj does not cover [e(i−1)·m, ei·m], πj cannot visit nodes of the form
(s, t, f) such that d(f) ≤ d(e(i−1)·m). Thus, πj does not cover [e(i−2)·m, e(i−1)·m], which
means that πj ∈ Π2

h(Yi−1).

3. Π3
h(Yi) 6= ∅ =⇒ Π2

h(Yi) ⊂ Π2
h(Yi−1). Assume that Π3

h(Yi) 6= ∅ and let πj ∈ Π3
h(Yi).

Without loss of generality let us assume that tj ∈ Yi and t′j 6∈ Yi. From the first claim
above we know that h(tj) ∈ Tei·m . Hence, since πj does not cover [e(i−1)·m, ei·m], it
follows that it does not cover [e(i−2)·m, e(i−1)·m] Now, by definition of Yi−1 we have that
t′j ∈ Yi−1. Thus, πj ∈ Π2

h(Yi−1).

Since Π3
h(Yi) ∩ Π2

h(Yi) = ∅, q has p atoms and g = p + 2, claims 2. and 3. above imply that
there is 2 ≤ i ≤ g such that Π3

h(Yi) = ∅. By claim 1., we know that h(z) ∈ Tei·m for all z ∈ Yi.
Hence, one can see that the hypothesis of Lemma 21 are satisfied w.r.t. Yi, ei·m, e(i−1)·m and
e(i−2)·m. Thus, since y ∈ Yi, (h, hc) can be improved w.r.t. y.

Using this result one can see that Lemma 16 holds. More precisely, let (ā, η) ∈ c̃ertT,f(q,K)

and (h, hc) ∈ Hq,UK
T,f (ā) an approximate match such that hc = η. If d(h(y)) > g · m + 1 for

some variables y ∈ qvars(q), we can apply Lemma 22 finitely many times until we reach an
approximate match (h′, h′c) ∈ Hq,UK

T,f (ā) such that h′c ≤ hc and d(h(y)) ≤ p · m + 1 for all
variables y ∈ qvars(q). This is a match in UK(q) and minimality of hc implies that h′c = η.

Once we have Lemma 16, we can decide τ -entailment as follows. Given ā ∈ Ind(A) and τ ∈ N:

1. Build the fragment UK(q) of UK.

2. For all mappings h : vars(q) 7→ ∆UK(q) such that h(x̄) = ā:

(a) compute c(πhj) for each Rj(tj , t
′
j) ∈ q.

(b) compute hc = f(πh1 , . . . , π
h
p).

24

(c) return yes if hc ≤ τ

3. return no.

The number of elements in UK(q) is bounded by ν := |A| · |T |g·m+1, and hence the size of UK(q)
is polynomial in the size of A. The computation of c(πhj) is done by considering the whole UK(q)
as an ABox, and then running Algorithm 1 to find the distortion cost of (h(tj), h(t′j)). Thus,
since there are at most ν|q| different mappings h, the sketched procedure runs in polynomial
time in the size of the ABox. This means that τ -entailment is in PTime w.r.t. data complexity.
Notice that a simple modification of the procedure yields an algorithm to compute ãnsT,f(q,K).

Regarding combined complexity, the previous algorithm yields a double exponential time deci-
sion procedure for the τ -entailment problem. This upper bound can be improved as follows.
First, notice that once a mapping h of q in UK(q) is fixed, the whole UK(q) is not really needed
to compute hc. It suffices to run Algorithm 1 on a fragment UK(q, h) consisting of A together
with the paths from A to each element h(y) such that y ∈ qvars(q). Such a fragment is of
size at most |A| · |q| · (g ·m+ 1). Secondly, h can be represented as a list of pairs of the form
(x, a) or (y, e), where e can be an anonymous individual in UK(q). By definition of UK, e can
be represented as an unambiguous sequence of length at most g ·m+ 1. This means that a list
of such pairs can be guessed in exponential time. Hence, one can build UK(q, h) in exponential
time and use steps (a), (b) and (c) to check whether hc ≤ τ . This yields a non-deterministic
exponential time decision procedure.

Theorem 23. In ELH and DL-LiteR, τ -entailment of C2RPQs is in PTime and NExpTime,
respectively, in data and combined complexity. In addition, the approximation cost η of a
certain approximate answer can be computed in polynomial time (double exponential time) in
data (combined) complexity.

7 Conclusions

Approximate semantics are useful for applications requiring flexible query answering. In this
paper, we have introduced such semantics for answering C2RPQs over ELH and DL-LiteR
ontologies We have extended an approach proposed in [GT06], that uses weighted transducers
to define approximate semantics for RPQs in graph databases, to the more general query
language of C2RPQs posed over graph databases and, more importantly over DL ontologies.
Our approach is flexible to be adapted to different applications—as it can be parameterized
with a transducer and a combining function.

We have developed algorithms for computing the certain approximate answers for 2RPQs and
C2RPQs over ELH and DL-LiteRontologies. The algorithms for C2RPQs are, to the best of
our knowledge, the first for computing answers of such queries under approximate semantics in
the presence of DL ontologies.

References

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
364–369. Professional Book Center, 2005.

[BOS15] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path queries in
lightweight description logics: Complexity and algorithms. J. Artif. Intell. Res.,
53:315–374, 2015.

25

[CDL+07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[CEO14] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular path
queries in expressive description logics via alternating tree-automata. Inf. Comput.,
237:12–55, 2014.

[CM90] Mariano P. Consens and Alberto O. Mendelzon. Graphlog: a visual formalism for
real life recursion. In Proc. of the 9th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS’90), pages 404–416. ACM Press, 1990.

[EPT15] Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan. Similarity-based relaxed
instance queries. Journal of Applied Logic, 13(4, Part 1):480–508, 2015. Special
Issue for the Workshop on Weighted Logics for AI 2013.

[FLS98] Daniela Florescu, Alon Y. Levy, and Dan Suciu. Query containment for conjunc-
tive queries with regular expressions. In Alberto O. Mendelzon and Jan Paredaens,
editors, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, June 1-3, 1998, Seattle, Washington, USA,
pages 139–148. ACM Press, 1998.

[GT06] Gösta Grahne and Alex Thomo. Regular path queries under approximate semantics.
Ann. Math. Artif. Intell., 46(1-2):165–190, 2006.

[JMM95] H. V. Jagadish, Alberto O. Mendelzon, and Tova Milo. Similarity-based queries. In
Mihalis Yannakakis, editor, Proceedings of the Fourteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 22-25, 1995, San Jose,
California, USA, pages 36–45. ACM Press, 1995.

[KL07] Adila Krisnadhi and Carsten Lutz. Data complexity in the EL family of description
logics. In Proc. of the 14th Int. Conf. on Logic for Programming and Automated
Reasoning (LPAR 2007), volume 4790 of Lecture Notes in Computer Science, pages
333–347. Springer, 2007.

[KS01] Yaron Kanza and Yehoshua Sagiv. Flexible queries over semistructured data. In
PODS. ACM, 2001.

[LW10] Carsten Lutz and Frank Wolter. Deciding inseparability and conservative extensions
in the description logic EL. J. Symb. Comput., 45(2):194–228, 2010.

[Meh04] Mohri Mehryar. Weighted finite-state transducer algorithms. an overview. In Carlos
Martín-Vide, Victor Mitrana, and Gheorghe Păun, editors, Formal Languages and
Applications, pages 551–563. Springer Berlin Heidelberg, 2004.

[MW95] Alberto O. Mendelzon and Peter T. Wood. Finding regular simple paths in graph
databases. SIAM J. Comput., 24(6):1235–1258, 1995.

[PSW16] Alexandra Poulovassilis, Petra Selmer, and Peter T. Wood. Approximation and
relaxation of semantic web path queries. J. Web Semant., 40:1–21, 2016.

[PTT18] Rafael Peñaloza, Veronika Thost, and Anni-Yasmin Turhan. Query answering for
rough EL ontologies. In Michael Thielscher and Francesca Toni, editors, Proceed-
ings of 16. International Conference on Principles of Knowledge Representation and
Reasoning (KR 2018), AAAI, pages 399–408, 2018.

[Sim78] Imre Simon. Limited subsets of a free monoid. In 19th Annual Symposium on
Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-18 October 1978,
pages 143–150. IEEE Computer Society, 1978.

26

	Introduction
	The Description Logics ELH and DL-LiteR
	Syntax and semantics
	Canonical models

	Regular path queries
	Approximate semantics for regular path queries
	Approximate semantics for RPQs by transducers
	Approximate semantics for C2RPQs over a graph database
	Approximate semantics for C2RPQs over a DL KB

	Answering approximate 2RPQs in ELH and DL-LiteR
	A polynomial time algorithm

	Answering approximate C2RPQs in DL-LiteR and ELH
	Proof of Lemma 16

	Conclusion and future work

