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Abstract

In deductive module extraction, we determine a small subset of an ontology for a given

vocabulary that preserves all logical entailments that can be expressed in that vocabulary.

While in the literature stronger module notions have been discussed, we argue that for

applications in ontology analysis and ontology reuse, deductive modules, which are decid-

able and potentially smaller, are often su�cient. We present methods based on uniform

interpolation for extracting di�erent variants of deductive modules, satisfying properties

such as completeness, minimality and robustness under replacements, the latter being par-

ticularly relevant for ontology reuse. An evaluation of our implementation shows that the

modules computed by our method are often signi�cantly smaller than those computed by

existing methods.

1 Introduction

Module extraction in description logics (DLs) is to extract some subset of a given ontology,
usually for a given signature of names, that preserves certain properties w.r.t. that signature.
Originally motivated by ontology reuse, ontology modularity has been widely used in di�erent
areas, such as ontology matching [13] and debugging [23], forgetting [21], or to improve reason-
ing [28]. In this paper, we focus on applications in ontology analysis and ontology reuse, and
consider a module notion called deductive modules [18], also investigated under the name of
subsumption modules [4]: given an ontology and a signature Σ of names, a deductive module is
a subset of the ontology that preserves all entailments that can be expressed in the DL under
consideration using only names from Σ.

In ontology analysis, an ontology engineer wants exhibit what an ontology states about some
names of interest. For this, seeing as few axioms as possible helps getting the information needed
quickly. He might furthermore want to see all axioms that are relevant for entailments in the
selected signature. We cover this requirement under the notion of a complete deductive module,
which turns out to be a stronger notion than the similarly motivated notion of Σ-essential
axioms discussed in [10].

Usually, the module will use additional names than the ones speci�ed. The ontology engineer
might thus be interested to know why the axioms belong to a module, and how they contribute
to entailments in the signature. For standard reasoning services, the necessity of explaining
inferences has long been understood and implemented under the service of justi�cation [2, 12].
Our approach for computing deductive modules computes a so-called annotated interpolant,
which shows the entailments in the selected signature, parts of which are annotated with axioms
from the ontology that contribute to these entailments, and can thus be seen as an explanation
of that module.

Another application of ontology modules is in ontology reuse [14, 10]. Here the ontology engineer
wants to reuse a part of the ontology in another context in which only a subset of the signature is
relevant, and thus a module would be su�cient. Here, being complete and explainable might not
be as relevant, but robustness properties gain importance: speci�cally, it is not only important
that all entailments in the signature are covered by the module, but also that entailments are
preserved when further axioms are added: the module should be replaceable with the original
ontology and still preserve the same entailments.

While most module notions investigated in the literature cover the above properties, often they
concern much stronger notions of modules, which can make the problem of optimal module
extraction hard. For instance, for the notion of semantic modules, already for the light-weight
description logic EL it is undecidable whether a given subset is a module for a given signature,
[17]. As a consequence, existing algorithms for computing minimal semantic modules can only
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deal with acyclic EL [15] and DL-Lite [18]. Practical implementations, such as the syntactical
locality-based module extraction method implemented in the OWL API [10], AMEX [7] and
PriM [29], usually compute approximations of minimal modules that may contain more axioms
than necessary.

For deductive modules, the situation looks di�erent. Deciding deductive modules is ExpTime-
complete for EL-ontologies [25] and 2ExpTime-complete for ALC ontologies [8]. For acyclic
ELHr-ontologies, it was shown that deductive modules are substantially smaller than other
module types [6, 5]. However, we are not aware of any practical method for computing deductive
modules in more expressive DLs such as ALC.

In this paper, we present a method for computing deductive modules in ALC and ALCH, which
are often substantially smaller than modules computed by existing methods. This method is
based on a method for uniform interpolation for expressive DLs presented in [21]. Both uniform
interpolants and modules preserve entailments in a speci�ed signature. The di�erence is that,
while a module is always a subset of the ontology, and may use more names than speci�ed,
a uniform interpolant may only use names from the speci�ed set and will thus usually be of
a syntactical di�erent shape. This can lead to uniform interpolants that contain substantially
more complex axioms than the input ontology [26], which is why it is often preferable to use
modules rather than uniform interpolants.

Uniform interpolants cover exactly the entailments in the given signature. The main idea of
our technique is to track these entailments back to axioms in the original ontology. For this,
we label each axiom in the input ontology with a fresh concept name, and then compute a
uniform interpolant for an extended signature. The result is an annotated interpolant, which
links the entailments shown in the uniform interpolant to the axioms in the ontology, and can
be used to illustrate how the axioms in the ontology contribute to a module. Using the anno-
tated interpolant, we present methods for computing two types of deductive modules, complete
deductive modules and minimised deductive modules, which we de�ne in the corresponding sec-
tions 4 and 5. These modules consider the two contradicting requirements a user might have,
completeness in terms of covering every axiom relevant to an entailment on the one hand, and
minimality on the other hand.

To obtain modules that are robust under replacement, we cannot directly re-use the uniform
interpolation method that was presented in [21], but have to adapt it to support for univer-
sal roles. The adaptation has the nice side-e�ect that a computationally expensive rule for
eliminating role names is replaced by a simpler rule, so that uniform interpolants can be com-
puted in shorter time. The adapted method is presented in Section 3. Since robustness under
replacement might not always be a requirement, in Section 6, we show how the methods can
be modi�ed to compute potentially smaller ALC modules that do not follow this requirement.
Finally, in Section 7, we extend all methods to ALCH, for which, in contrast to the other
methods, we cannot use uniform interpolation as a black-box method.

We implemented a prototype of our approach which we evaluate and compare with existing
methods, both for computing random modules and atomic decompositions, a structure rep-
resenting all self-contained modules of an ontology. Since uniform interpolation can be an
expensive operation, we may not always be able to compute optimal modules in short time.
Furthermore, our algorithm might require reasoning capabilities that are not supported by
state-of-the-art DL reasoners. For those cases, our implementation allows for a �exible way to
approximate modules: the more time given, the smaller the modules, and we know when the
module is minimal. Our results indicate that in most cases, an approximation is not necessary,
and the modules computed by our method are signi�cantly smaller than those computed with
existing tools.
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2 Description Logics and Deductive Modules

We recall the DLs relevant in this paper [1], as well as the notions of deductive modules.

Let NC and NR be two disjoint, countably in�nite, sets of respectively concept names and role

names. A signature Σ ⊆ NC ∪ NR is a �nite set of concept names and role names. A role is an
element r ∈ NR ∪{∇}, where ∇ denotes the universal role. Concepts are built according to the
syntax rule C ::= A | ¬C | C t C | ∃r.C, where A ∈ NR and r is a role. Further concepts
are introduced as abbreviations: C u D = ¬(¬C t ¬D), ∀r.C = ¬∃r.¬C, > = A t ¬A and
⊥ = ¬>. A concept inclusion (CI) is an expression C v D, where C,D are concepts. A role

inclusion (RI) is an expression r v s, where r, s are roles. CIs and RIs are collectively called
axioms. The DL ALCH∇ uses all constructors introduced so far. Without RIs, we obtain the
DL ALC∇, and without the universal role, we obtain the DLs ALCH and ALC respectively.
Given a concept/axiom/ontology X, we denote by sig(X) the signature of X, i.e. the concept
and role names occurring in X.

The semantics of ALCH∇ is de�ned using interpretations I = (∆I , ·I), where the domain ∆I

is a non-empty set, and ·I is a function assigning each A ∈ NC to AI ⊆ ∆I , every r ∈ NR

to a binary relation rI ⊆ ∆I , that satis�es ∇I = ∆I × ∆I , and is extended to concepts by
(¬C)I := ∆I\CI , (C tD)I := CI ∪DI , and (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI : (x, y) ∈ rI}. An
interpretation I satis�es a CI C v D i� CI ⊆ DI , and an RI r v s if rI ⊆ sI . For an axiom
α, we write I |= α if I satis�es α. An interpretation I is a model of an ontology O if I |= α
for all α ∈ O. An axiom α is entailed by O, written O |= α, if for all models I of O, we have
that I |= α.

De�nition 1. Let L be a DL, O an ontology and Σ a signature. Then, a subset M ⊆ O is a

deductive 〈L,Σ〉-module of O i� for every L-axiom α with sig(α) ⊆ Σ, O |= α i�M |= α.

If the DL L is clear from the context, we may refer to an 〈L,Σ〉-module simply as Σ-module.
Note that deductive modules are related to conservative extensions: namely, ifM is a deductive
〈L,Σ〉-module of O, then O is a conservative extension ofM.

In this paper, we consider the input ontologies to be expressed in ALC and ALCH. Still, there
might be entailments using universal roles that we want to preserve by the module. This is
particularly the case for ALC/ALC∇, due to following result from [16].

Theorem 1. Let O be an ALC-ontology, Σ a signature, and M an 〈ALC∇,Σ〉-module of O.
Then, for every ALC-ontology O′ with (sig(O′) ∩ sig(O)) ⊆ Σ and every ALC-axiom α s.t.

sig(α) ⊆ Σ, we have (O ∪O′) |= α i� (M∪O′) |= α.

These 〈ALC∇,Σ〉-modules are called robust under replacements, as they can serve as a replace-
ment of the original ontology in a reusing context. Intuitively, if we want to use terms from
the signature Σ in a new ontology O′, we can replace O by its 〈ALC∇,Σ〉-module. We refer to
these modules as robust modules in the following.

3 Resolution-Based Uniform Interpolation

Uniform interpolants [26] cover exactly the entailments a deductive module should preserve.

De�nition 2. Let L be a DL, O an ontology and Σ a signature. Then, a uniform 〈L,Σ〉-
interpolant of O is an ontology OΣ s.t. sig(OΣ) ⊆ Σ and for every L-axiom α with sig(α) ⊆ Σ,
OΣ |= α i� O |= α.
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RA
C1 tA C2 t ¬A

C1 t C2
R∃ C1 t ∃r.D

C1 t ∃∇.D

RQ
C1 t Qr.D1 C2 t ∀r.D2

C1 t C2 t Qr.D12
Q ∈ {∃,∀}

Figure 1: Uniform interpolation calculus.

Our method for computing deductive modules uses uniform interpolation to track entailments
in the target signature back to the axioms in the original ontology. Our arguments are easier to
follow in perspective of the resolution-based method for computing uniform interpolants from
in [21]. To capture entailments of robust modules, we need to compute uniform 〈ALC∇,Σ〉-
interpolants. The method in [21] only supports ALCH, which is why we adapt the calculus
used by the method to support for universal roles. The rest of the method remains the same.
Due to space restrictions, we only give a brief overview of the important steps.

The method proceeds in three steps, which we discuss one after the other. Let ND ⊆ NC be a
special set of concept names not used in the input.

Step 1 transforms all axioms of the ontology into the following form:

> v C1 t . . . t Cn Ci := A | ¬A | Qr.D,

where A ∈ NC, Q ∈ {∀,∃}, r ∈ NR and D ∈ ND, and at most one literal of the form ¬D,
D ∈ ND, occurs in each axiom. Here, we treat disjunctions as sets, that is, duplicates are
silently removed and the order is not important. Furthermore, as it is the same for all axioms,
we discard the leading > v, and call the normalised axiom clause.

In Step 2, inferences on the names outside the target signature are performed using the rules
shown in Figure 1. Here, D12 refers to a possibly new de�ner representing D1 uD2, which we
introduce, if such a de�ner does not exist yet, by adding ¬D12 tD1, ¬D12 tD2 to the current
clause set. The di�erence to the calculus in [21] is the R∃-rule: since they compute uniform
interpolants for a DL without universal roles, instead a more expensive role resolution rule is
used that makes use of an external reasoner, which is not necessary in our case. Still, in order
to eliminate a role name r from a clause, we need to consider all inferences of the RQ-rule on
that role name before applying the R∃-rule.

Rules are only applied if the result contains at most one literals of the form ¬D, where D ∈ ND.
In order to perform all relevant inferences on the names outside the target signature, usually
further inferences on names inside the target signature are necessary. This is typically the case
for the RQ-rule: this rule might trigger the introduction of a new de�ner D12 with the clauses
¬D12 tD1, ¬D12 tD2. If we have also two clauses ¬D1 t C ′1 t A, ¬D2 t C ′2 t ¬A, and A is
a name we want to perform inferences on, new resolution steps on A become possible only due
to the new de�ners. How to determine which rules have to be used is described in more detail
in [19]. After all inferences on a name X outside of the signature are performed, we �lter out
all occurrences of that name.

Finally, in Step 3, the introduced de�ners are eliminated as follows.

1. For every de�ner D, the clauses ¬D t C1, . . ., ¬D t Cn are grouped into a single axiom
D v C1 u . . . u Cn.

2. We then repeat following steps as long as as possible:
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(a) Replace D v C[D], where C[D] is a concept in which D occurs positively, by D v
νX.C[X], where C[X] is obtained from C[D] by replacing D by X.

(b) For every CID v C whereD 6∈ sig(C), remove that axiom and replace all occurrences
of D by C.

νX.C[X] is a special concept constructor called the greatest �xpoint, which corresponds to
the limit of the in�nite sequence of concepts C[>], C[C[>]], C[C[C[>]], . . .. For the formal
semantics, we refer to [3]. There exist inputs for which no uniform interpolant without �xpoint
operators exists [26].

Lemma 1. Let O be an ALC-ontology and Σ a signature. The method always terminates and

computes a uniform 〈ALC∇,Σ〉-interpolant of O.

4 Complete Robust Deductive Modules

For ontology analysis, it might be desirable to see all axioms in an ontology that contribute to
entailments in a signature of interest. �Contributing to an entailment� is formally captured by
the notion of justi�cations [2]: given an ontology O and an axiom α s.t. O |= α, a justi�cation

for O |= α is a subset J ⊆ O s.t. J |= α and J is minimal w.r.t. (. If O 6|= α, there is no
justi�cation for O |= α.

De�nition 3. Let L be a DL, O an ontology and Σ a signature. An 〈L,Σ〉-moduleM of O is

complete i� for every L-axiom α s.t. sig(α) ⊆ Σ and every justi�cation J for O |= α, J ⊆M.

Complete modules contain all axioms that contribute to entailments in the signature of interest,
and are thus useful for ontology analysis tasks. Similarly motivated is the set of Σ-essential
axioms, as de�ned in [10]: Given a signature Σ, the set of Σ-essential axioms in O is the
intersection of all subset-minimal Σ-modules in O. However, in the presence of redundancy,
Σ-essential axiom sets may �miss� axioms, as already the following simple example illustrates.
Take the ontology O = {A v B u C,A v B} and the signature Σ = {A,B,C}. Clearly, both
axioms contribute to the entailment A v B, but only the �rst axiom occurs in a minimal module
for Σ. Thus, A v B u C is the only Σ-essential axiom, while the complete module would also
contain A v B. While this is a very simply example, we note that redundancy is a common
phenomenon in real-life ontologies [11].

To compute complete deductive modules, we track the axioms used during uniform interpola-
tion. For this, we use axiom annotation.

De�nition 4. Let O be an ontology. The annotation Oa of O is de�ned as

Oa = {ACvD u C v D | C v D ∈ O},

where each ACvD is fresh.

We call the concept names ACvD labels. The following result can be shown using the rule
applications used when computing the uniform interpolant as described in Section 3.

Theorem 2. Let O be an ontology, Σ a signature, and Oa the annotation of O. Additionally,
let OΣ

a be the uniform 〈ALC∇,Σ′〉-interpolant of Oa for Σ′ = Σ ∪ {Aα | α ∈ O}. Then, the
ontology

M = {α | Aα ∈ sig(OΣ
a )}

is a complete deductive 〈ALC∇,Σ〉-module of O for Σ.
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Algorithm 1 Computing minimal deductive modules

Input: ontology O, signature Σ, integer n
Output: a minimal deductive moduleM

1: LetM = O, Q = divide(O, n)
2: while L 6= ∅ do
3: B := head(Q), Q := tail(Q)
4: if (M\B)Σ |= OΣ then

5: M :=M\B
6: else

7: L := divideInHalf(B) :: Q
8: end if

9: end while

10: returnM

In the above de�nition, we call OΣ
a the annotated uniform 〈ALC∇,Σ〉-interpolant of O. In

addition in helping us �nd a complete module, the annotated uniform interpolant provides for
a link between the module and the uniform interpolant that allows us to better understand how

the axioms contribute to entailments in the target signature.

Example 1. Consider the following ontology O:

α1 = ∃r.> v A tB α2 = ∃r.A v B α3 = ∃r.B v A

The uniform interpolant of O for Σ = {A, r}, consisting of the following axioms, captures all

entailments of O over Σ:

∃r.∃r.A v A ∃r.(∃r.> u ¬A) v A

To understand which axioms contribute to these entailments, we �rst annotate O:

Aα1 u ∃r.> v A tB
Aα2 u ∃r.A v B Aα3 u ∃r.B v A

The annotated uniform interpolant of O for Σ is then the following:

Aα3
u ∃r.(Aα2

u ∃r.A) v A
Aα3
u ∃r.(Aα1

u ∃r.> u ¬A) v A

We can directly read o� the complete Σ-module for O, which is O itself. We can furthermore

understand how the axioms contribute to entailments over Σ: α3 is needed for every non-trivial

entailment over Σ, while α2 and α1 each contribute to what is under the di�erent existential

role restrictions.

5 Minimised Robust Deductive Modules

Both for ontology reuse or ontology understanding, if we are not interested in completeness, we
would prefer a module that does not contain more axioms than necessary.

De�nition 5. A deductive 〈L,Σ〉-moduleM of an ontology O is minimal if no subsetM′ ⊂M
is a deductive 〈L,Σ〉-module of O .
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We note that the number of minimal modules can be exponential in the size of the ontology.
We aim neither to compute the complete set of minimal modules, nor the module that con-
tains the smallest number of axioms, but just to compute any minimal module. Our method
for minimising modules guarantees minimality if the computed uniform interpolants does not
contain �xpoints. However, as our evaluation shows, it still often results in modules that are
much smaller than the complete module.

Minimal deductive modules can be seen as justi�cations for the corresponding uniform inter-
polant. Computing justi�cations has been studied in the literature under the name of axiom
pinpointing [2], and there exist implementations even as part of the OWL API [12]. However,
those methods are optimised for justifying smaller axioms, and generally do not perform well for
large entailments such as complex uniform interpolants. Our algorithm uses ideas from axiom
pinpointing, but is optimised for our particular use-case.

Algorithm 1 computes a minimal deductive module by removing all super�uous axioms from O.
Similar algorithms can be found in [18, 6]. Since entailment checks can be expensive, instead
of checking axioms one by one, we check entailment of a set of axioms, called bubble, in each
step. divide(O, n) partitions the axioms in O into a sequence Q of bubbles of size n plus the
remainder, while divideInHalf (B) splits a bubble into two equally sized bubbles to be attached
at the beginning of the current sequence Q.

Note that in Line 4, we could also test for M \ B |= OΣ, in which case our algorithm would
directly correspond to an algorithm for computing justi�cations. However, this test can be
computationally expensive, because OΣ can be large, or even impossible, if OΣ can contains
�xpoints which are not supported by DL reasoners. Note that in most cases, there will be
no syntactical overlap between OΣ and M, since OΣ has to be fully in Σ. In contrast, the
interpolants (M \ B)Σ and OΣ use the same signature, and thus can overlap syntactically, if
computed wisely. As we can decide (M\B)Σ |= OΣ by only testing entailment of the axioms in
OΣ \ (M\B)Σ, those syntactical overlaps can reduce reasoning times signi�cantly, and we may
not even have to consider all �xpoint expressions occurring in OΣ for reasoning. If greatest
�xpoints occur only in (M\B)Σ, these can be simulated using auxiliary names [21].

To compute interpolants of the di�erent subsets (M \ B) of the ontology fast, we use the
following lemma.

Lemma 2. Let O be an ALC-ontology, Σ a signature and OΣ
a an annotated uniform 〈ALC∇,Σ〉-

interpolant of O. Additionally, let O1 ⊆ O. Then, the ontology

OΣ
1 = OΣ

a [Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

is a uniform 〈ALC∇,Σ〉-interpolant of O1 for Σ.

Thus, before entering Algorithm 1, we compute the annotated uniform interpolant of the input
ontology, from which then all other required uniform interpolants are cheaply obtained by
replacing the labels with > and ⊥. We further use some syntactical simpli�cation rules to
replace tautological as well as contradictory subconcepts by > and ⊥, and to remove tautological
axioms. The interpolant OΣ is replaced by the logically equivalent MΣ when it turns out to
be smaller.

Example 2. Continuing on Example 1, we obtain for {α1, α2} after simpli�cation the uniform

interpolant

∃r.(∃r.> u ¬A) v A ∃r.(⊥ u ∃r.A) v A

of which the second axiom would be removed by simpli�cation. For {α2, α3}, we similarly obtain

∃r.∃r.A v A ∃r.(⊥ u ∃r.> u ¬A) v A
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of which the second axiom would be removed. For {α1, α2} we only obtain tautological axioms.

None of these interpolants entails the uniform interpolant of O, which is why O is also a

minimal module of itself.

6 Deductive Modules for Pure ALC

The previous sections considered uniform interpolants and deductive modules for ALC∇. For
applications in ontology analysis where robustness under replacements is not a requirement,
it might be su�cient to preserve entailments in pure ALC, for which the modules can be
smaller. Our method for uniform interpolation introduces universal roles only under existential
restrictions. This allows for a simple way of generating corresponding uniform interpolants for
ALC.

Lemma 3. Let O be an ALC∇ ontology in which the universal role only occurs in concepts of

the form ∃∇.C, and where every ∃∇.C occurs only positively. Additionally, let O′ the result

of replacing every ∃∇.C in O by ⊥ if O |= C v ⊥, and otherwise by >. Then, for every

ALC-axiom α, O |= α i� O′ |= α.

When we apply this lemma on an annotated uniform interpolant, we lose however all annotations
that occur in expressions of the form ∃∇.C. We thus have to extend our mechanism for tracking
inferences using annotations. Let O be an ontology, Σ a signature and Oa the annotation of O.
Then, the extended annotation of O for Σ is de�ned as

Oea = Oa ∪ {∃r.Aα v Aα | r ∈ sig(O), α ∈ O}.

Correspondingly, we obtain the annotated uniform 〈ALC,Σ〉-interpolant based on this extended
annotation, in the same way as we obtain the annotated uniform 〈ALC∇,Σ〉-interpolant from
the annotation.

The additional axioms make sure that the label information is preserved when eliminating
a role name r. Speci�cally, they make sure that for every justi�cation J of an entailment
O |= C v D, we also have Oea |=

d
α∈JAα u C v D. In Oa, there would be a corresponding

entailment Oa v C ′ v D′, in which however the labels can occur under role restrictions in C ′

and D′. Intuitively, the additional axioms in Oea allow to �pull� these labels out of the role
restrictions to make sure that Oea |=

d
α∈JAα u C v D.

With this adaptation, we can use the methods presented in Section 4 and 5 for computing
complete deductive modules as well as minimised deductive modules for entailments in ALC,
based on the following results.

Theorem 3. Let O be an ontology, Σ a signature, and Oea the extended annotation of O for Σ.
Additionally, let OΣ

ea be the uniform 〈ALC,Σ′〉-interpolant of Oea, where Σ′ = Σ∪{Aα | α ∈ O}.
Then,M = {α | Aα ∈ sig(OΣ

ea)} is a complete deductive 〈ALC,Σ〉-module of O for Σ.

Lemma 4. Let O be an ontology, Σ a signature and OΣ
ea an annotated uniform 〈ALC,Σ〉-

interpolant of O for Σ. Additionally, let O1 ⊆ O. Then, the ontology

OΣ
1 = OΣ

ea[Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

is a uniform 〈ALC,Σ〉-interpolant of O1 for Σ.
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R∃v C t ∃r.D r v s ∈ O
¬Arvs t C t ∃s.D

R∀v C t ∀r.D s v r ∈ O
¬Arvs t C t ∀s.D

Figure 2: Additional uniform interpolation rules for ALCH tracking role hierarchy axioms.

7 Handling Role Hierarchies

Though we presented one uniform interpolation method in this paper, in general, all methods
presented here can be combined with any uniform interpolation method for the respective DL.
This approach fails however for ALCH, because we cannot annotate RIs. Here, we have to
modify the uniform interpolation procedure so that it tracks usage of role axioms itself. The
rules shown in Figure 2 are based on rules from the original calculus in [21], and extend the
calculus presented in Section 3 by explicitly tracking used role inclusion axioms. Note that the
resulting method is not sound anymore for computing uniform interpolants, and can thus only
be used for computing annotated interpolants.

In our implementation, these rules are either used on their own, when the aim is to eliminate
a role name r, or in combination with the RQ-rule. In the latter case, we do not perform
the individual inferences of these rules explicitly, but determine in one step which additional
disjuncts have to be added to the newly derived clause, and which role is used in the role
restriction. For instance, if we have the clauses C1 t ∀r.D1 and C2 t ∃s.D2 and there exist a
justi�cation J for O |= s v r, we derive

C1 t C2 t ∃s.D12 t
⊔

r1vr2∈J

Ar1vr2 ,

in one step. The resulting method is applied on the (extended) annotation of an ontology as
before, resulting in the annotated uniform 〈L,Σ〉-interpolant for respectively L = ALCH∇ and
L = ALCH.

Entailments of RIs cannot be handled in this way, but are not hard to obtain from the set of
RIs. For a set R of RIs, the uniform Σ-interpolant RΣ = {r v s | r, s ∈ Σ,O |= r v s} can be
easily computed by following the RIs in R. We thus compute the uniform interpolant of the
RIs directly.

Theorem 4. Let L ∈ {ALCH,ALCH∇}, O be an ALCH-ontology with RIs R, Σ a signature

and OΣ
a an annotated uniform 〈L,Σ〉-interpolant of O for Σ. Additionally, let RΣ be a uniform

Σ-interpolant of R. Then, the ontology

M = {α ∈ O | Aα ∈ sig(OΣ
a )} ∪

⋃
β∈RΣ

J(R |= β)},

where J(R |= β) is the union of all justi�cations for R |= β, is a complete deductive 〈L,Σ〉-
module of O.

Lemma 5. Let L ∈ {ALCH,ALCH∇}, O be an ALCH-ontology with RIs R, Σ a signature

and OΣ
a an annotated uniform 〈L,Σ〉-interpolant of O for Σ. Additionally, let O1 ⊆ O. Then,

the ontology

OΣ
1 =OΣ

a [Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

∪ (R∩O1)Σ

10
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is a uniform 〈L,Σ〉-interpolant of O1.

We use this approach for computing minimised deductive modules with Algorithm 1. For the
complete deductive module, we just need to additionally collect the justi�cations of the entailed
RIs.

8 Proof of Concept Evaluation

We implemented our technique for extracting complete and minimal ALCH∇-modules in Java
and evaluated it on a varied corpus of ontologies. For this, we implemented the calculus con-
sisting of the rules in Figures 1 and 2 as extension to the uniform interpolation tool Lethe [19].
To keep the modules small, we used the redundancy elimination rules presented in [21], and
applied a set of syntactic, equivalence-preserving simpli�cation rules on the computed uniform
interpolants. Uniform interpolation is an expensive operation, which becomes more challenging
in the presence of labels. However, we observed that even for the hardest cases, the majority of
names could usually be eliminated fast. To acknowledge this, we implemented a timeout within
the uniform interpolation procedure: once the timeout is reached, we output and simplify the
annotated uniform interpolant computed so far. For checking entailments, we used the reasoner
HermiT [9].

We evaluated our method on ontologies in the DL Classi�cation track of the OWL Reasoner
Evaluation (ORE) 2015 [27]. This corpus contains a balanced and varied mix of ontologies
in expressive DLs, which have been taken from the corpora MOWLCorp, BioPortal and the
Oxford Ontology Repository, and thus contains many real-life ontologies. From each ontology,
we removed axioms that could not be equivalently expressed in ALCH, and removed from the
resulting set ontologies that had less than 100 names or more than 100,000 axioms, resulting
in a set of 227 ontologies. The sizes of the ontologies, measured in number of axioms, can be
seen in Figure 3.

All experiments were performed on an Intel Core i5-4590 CPU with 3.30GHz and 32 GB RAM.

8.1 Complete and Minimised Deductive Modules

To evaluate the performance of our method for small modules, we randomly generated 60
signatures per ontology of 100 names each, including both concept and role names, where each
name was selected with a probability proportional to its number of occurrences in the ontology.
For each ontology-signature pair, we computed the >⊥∗-module as implemented in the OWL-
API [10], the AMEX-module [7], as well as the complete and minimised deductive module using
our implementation. We used a timeout of 5 minutes for the uniform interpolation procedure,
and a timeout of 10 minutes in complete.

In 90.9% of cases, uniform interpolation did not cause a timeout, and in 96.4% of cases, we could
generate a (possibly approximated) module. When the uniform interpolation step was stopped

11



Category 1 Category 2

>⊥∗ 0 / 65,566 / 1,022 / 196 0 /1,109 / 232 / 236
AMEX 0 / 2,333 / 258 / 142 N/A
CompMod. 0 / 1,272 / 241 / 139 0 / 948 / 156 / 190
MinMod. 0 / 1,179 / 179 / 119 0 / 630 / 122 / 148

Table 1: Size of di�erent modules (min. / max. / avg. / med.)

due to the timeout, an average of 2 names was not eliminated. In 83.4% of cases, we were
able to also minimise the module within the time limit. As was to be expected, our method
was more expensive than the other methods for module extraction. On average, computing
the complete and minimised module took respectively 22 and 44 seconds, while computing
>⊥∗-modules can be �nished within 5 seconds. Computing the AMEX-module based on the
precomputed >⊥∗-modules always took less than a second.

Statistics on the sizes of modules are shown in Table 1. As AMEX only supports acyclic ALC
ontologies and cannot handle role hierarchies, 143 ontologies could not be processed by AMEX.
Category 1 regards the cases that were supported by AMEX, and Category 2 the remaining
cases. As we can see in Table 1, the size of minimised modules is signi�cantly smaller than >⊥∗-
modules and, on average, considerably smaller than AMEX-modules and complete modules.

8.2 Self-Contained Modules and Atomic Decompositions

A self-contained module M for a signature Σ is a module that is also a module for its own
signature, i.e. Σ∪ sig(M). Our method of computing complete modules can be easily extended
to compute self-contained modules, where after the computation of the module, we update the
signature with the signature of the computed module, and repeat the procedure until the size
of modules does not change anymore. While in Section 8.1, we had to use random samples of
signatures of a speci�ed, it is possible to construct a structure that represents all complete self-
contained modules, thus allowing for more signi�cant insights on how module sizes behave in
general. Speci�cally, we use the atomic decomposition (AD) [30], a structure initially developed
for locality-based modules such as >⊥∗-modules, and represents all possible modules. The AD
of an ontology partitions the ontology into a set of atoms, so that every module is the union
of atoms. Here, an atom a of an ontology O is a set of axioms such that for every moduleM
of O, a ⊆ M or a ∩M = ∅ w.r.t. any signature. Larger atoms can lead to larger modules, as
a module with one axiom from an atom always contains all other axioms in that atom. Thus,
the smaller the atoms, the more �ne-grained is the structure of the atomic decomposition, and
the smaller are modules in general.

We computed atomic decompositions for the 171 ontologies in our corpus that contained less
than 10,000 axioms, using both >⊥∗-modules and complete self-contained modules computed
by our method, where this time, we used a timeout of 30 seconds for uniform interpolation, so
that the AD was approximated in some cases. Our method produced much less large atoms,
indicating a �ner granularity of self-contained complete axioms compared to >⊥∗-modules. In
the following, we call atoms generated by our method complete-atoms, and atoms generated
using >⊥∗-modules star-atoms. For 70.1% of the ontologies, each complete-atom contained at
most 4 axioms, which was only the case for 39.8% of the ontologies regarding star-atoms. The
90% quantile for the maximal atom size per ontology was 9 for complete-atoms, and 118 for
star-atoms. This shows that self-contained modules computed by our method can be much
smaller than >⊥∗-modules in general.
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9 Conclusion and Future Work

We presented a practical method for computing deductive modules in ALC and ALCH ontolo-
gies based on uniform interpolation. Our evaluation showed that deductive modules are often
considerably smaller than other types of modules. In the future, we would like to investigate
the impact timeouts in the uniform interpolation method have on the module size, and whether
precomputed atomic decompositions can be used to speed up the computation. Furthermore,
we want to investigate whether uniform interpolation methods for more expressive DLs, such as
the approaches in [31, 22], can be used. While for some more expressive DLs, deductive modules
are undecidable, it could still be possible that approximations result in smaller modules than
for existing module types.
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A Resolution-Based Uniform Interpolation

Lemma 1. Let O be an ALC-ontology and Σ a signature. The method always terminates and

computes a uniform 〈ALC∇,Σ〉-interpolant of O.

Proof. Our calculus is based on the calculus in [21] which is complete for uniform interpolation
of ALCH-ontologies, while our calculus concerns ALC∇-ontologies. The di�erences between the
two calculi are as follows: we have a rule regarding the universal role that is not present in their
calculus, and they have two rules that have no corresponding rule in our calculus. To show that
our method still computes all relevant entailments in ALC, we have to show that any inference
in their calculus has a correponding inference in ours. To show that also all entailments in
ALC∇ are covered, we show that our additional rule is su�cient for this.

Disregarding role hierarchies, which are not present in ALC∇, [21] have two additional rules in
their calculus, which are both used for eliminating role names. The �rst one is the Existential
Role Elimination rule:

C t ∃r.D ¬D
C

,

which is used when forgetting r, and the second one is the Role Restriction Resolution rule:

C0 t ∀r.D0 . . . Cn t ∀r.Dn C t ∃r.D
C0 t . . . Cn t C

which is applied whenever N |= D0 u . . . u Dn u D v ⊥ for the current clause set N, which
is determined by an external reasoner. We show that by omitting these rules, we loose no
inferences in the target signature.

Regarding the Existential Role Elimination rule, our calculus infers from C t ∃r.D the clause
C t ∃∇.D. If ¬D ∈ N, we still have {C t ∃∇.D,¬D} |= C. Therefore, if the entailment of C
is relevant for the uniform interpolant, this is captured by our calculus as well.

For the Role Restriction Resolution rule, we can apply a similar argument. If r ∈ Σ, then
the inference is not needed. If r 6∈ Σ, by repeated application of the RQ-rule, followed by an
application of the R∃-rule and resolution on de�ner names, we would infer the following clauses
from the premises of the Role Restriction Resolution rule:

C0 t . . . t Cn t C t ∃∇.D∗
¬D∗ tD0

...

¬D∗ tDn

¬D∗ tD.

If D0 u . . .uDn uD is unsatis�able, then so is D∗, and thus these clauses entail the conclusion
of the Role Restriction Resolution rule. It follows that our method preserves all entailments of
the original method, and therefore, that the ontology computed by our method preserves all
ALC-entailments in Σ.

To show that our method also preserves allALC∇-entailments in Σ, we �rst make an observation
based on the fact that our input contains no universal roles. For an ALC ontology O and
concepts C, D, we show that 1) O |= C v ∀∇.D only if O |= > v D or O |= C v ⊥, and
2) O |= C v ∃∇.D only if in every I model of O, there is a chain of role-successors for every
d ∈ C leading to some domain element e ∈ D, or d ∈ D.

For 1), assume O |= C v ∀∇.D and O 6|= C v ⊥. In every model of O s.t. CI 6= ∅, we must
also have I |= > v D. In every model I of O s.t. CI = ∅, we can take a model I ′ of O s.t.
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CI
′ 6= ∅ and I ′ is disjoint from I. Since ALC is closed under disjoint unions [24], the union

I ′′ of I and I ′ is still a model of O. We have CI
′′ 6= ∅, and by the previous argument, thus

I ′′ |= > v D and also I |= > v D. This concludes the proof for Point 1.

For 2), take a model of O such that there exists a domain element d ∈ CI from which there is no
chain of role-successors linking C to some element e ∈ DI . We transform I to an interpretation
I ′ by removing all domain elements of I to which there is no path of role-successors from C.
By checking the possible axioms in O, it is easy to verify that I is still a model of O, and
consequently, O 6|= C v ∃∇.D. This concludes the proof for Point 2.

From these observations, it follows that the only use of universal roles that is relevant in the
result is in existential role restrictions, which can be completely reconstructed by following the
existential role restrictions in the input ontology. As a consequence, it can be argued based on
the completeness of the original calculus from [21] that the R∃-rule is a su�cient addition to
the calculus to preserve all entailments in ALC∇.

B Complete Robust Deductive Modules

Theorem 2. Let O be an ontology, Σ a signature, and Oa the annotation of O. Additionally,
let OΣ

a be the uniform 〈ALC∇,Σ′〉-interpolant of Oa for Σ′ = Σ ∪ {Aα | α ∈ O}. Then, the
ontology

M = {α | Aα ∈ sig(OΣ
a )}

is a complete deductive 〈ALC∇,Σ〉-module of O for Σ.

Proof. Let O, Σ, Oa, OΣ
a andM be as in the lemma. We need to show that for every ALC∇

axiom α with sig(α) ⊆ Σ, and every justi�cation J of O |= α, we have J ⊆ M. Let α be an
ALC∇ axiom s.t. sig(α) ⊆ Σ and O |= α, and let J be a justi�cation of O |= α. Let JΣ be a
uniform 〈ALC∇,Σ〉-interpolant of J as computed by the method described in Section 3. Since
J |= α and sig(α) ⊆ Σ, also JΣ |= α. Furthermore, since J is a justi�cation for O |= α, there
can exist not subset I ⊂ J s.t. for its 〈ALC∇,Σ〉-interpolant IΣ, IΣ |= α, so that for every such
subset I, IΣ 6|= JΣ. It follows that every axiom in J was involved in the computation of JΣ.

Let Ja be the annotation of J. We analyse the steps used when computing the annotated
uniform 〈ALC∇,Σ〉-interpolant JΣ

a of J. When we translate Ja into clausal form by �attening,
we observe that every clause either contains a disjunct ¬Aα linking to an axiom α ∈ J, or a
negative de�ner literal ¬D. This property is preserved by the rule applications. For a clause
C, we denote by L(C) the set of those annotation disjuncts ¬Aα linking to some axiom α.
Every rule has the property that, when applied on 2 clauses C1 and C2 to infer C3, then
L(C3) = L(C1) ∪ L(C2), that is, L(C3) relates C3 to all clauses with a disjunct ¬Aα that
is involved in the deduction of C3. This property is kept for the axioms that obtained by
eliminating the de�ners. We obtain that for every axiom α that was necessary to compute JΣ,
Aα will occur in some axiom in JΣ

a . As we already observed, every axiom in J was required
for inferring JΣ, so that {α | Aα ∈ sig(JΣ

a )} = J. Note that this also has to hold for every
ontology that is logically equivalent to JΣ

a . Assume for contradiction there is some ontology
O1 equivalent to JΣ

a s.t. O{α | Aα ∈ sig(O1)} ⊆ J. It follows that we could have computed
an ontology equivalent to JΣ just using axioms in O, and that O |= α, which would contradict
that J is a justi�cation for α.

Since Ja ⊆ Oa, and OΣ
a and JΣ

a are both uniform interpolants for the same signature, we obtain
OΣ
a |= JΣ

a . Since for no axiom α ∈ J, we can �nd an ontology O1 equivalent to JΣ
a for which

Aα 6∈ sig(JΣ
a ), Aα must occur in sig(OΣ

a ) for every α ∈ J. We obtain that J ⊆M.

As a consequence,M is a complete deductive 〈ALC∇,Σ〉-module of O.

17



C Minimised Robust Deductive Modules

Lemma 2. Let O be an ALC-ontology, Σ a signature and OΣ
a an annotated uniform 〈ALC∇,Σ〉-

interpolant of O. Additionally, let O1 ⊆ O. Then, the ontology

OΣ
1 = OΣ

a [Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

is a uniform 〈ALC∇,Σ〉-interpolant of O1 for Σ.

Proof. Let O, Σ be as in the lemma, Oa the annotation of O, and O1 ⊆ O be some subset of
O. We de�ne the ontology O+

a as

O+
a = Oa ∪ {> v Aα | α ∈ O1} ∪ {Aα v ⊥ | α ∈ O \ O1}.

We �rst show that O1 is the uniform 〈ALC∇, sig(O)〉-interpolant of O+
a by showing that every

model of O+
a is a model of O1, and every model of O1 can be extended to a model of O+

a by
adapting the interpretation of the names in sig(O+

a ) \ sig(O).

For a model I of O+
a , we have for every C v D ∈ O1, both I |= ACvDuC v D and ∆I = AICvD.

Consequently, for for every d ∈ ∆I , d ∈ CI implies d ∈ DI , and I |= C v D. It follows that
I is a model of O1. For the other direction, given a model I of O1, we just set AIα = ∆I

for every α ∈ O1, and AIα = ∅ for every α ∈ O \ O1 to obtain a model of O+
a . It follows

that for every axiom α s.t. sig(α) ∈ sig(O), O1 |= α i� O+
a |= α, and that O1 is the uniform

〈ALC∇, sig(O)〉-interpolant of O+
a .

For the uniform 〈ALC∇,Σ′〉-interpolant (O+
a )Σ′

of O+
a , where Σ′ = Σ ∪ {Aα | α ∈ O}, we can

use Theorem 1 and obtain

(O+
a )Σ′

= OΣ
a ∪ {> v Aα | α ∈ O1}
∪ {Aα v ⊥ | α ∈ O \ O1}.

Computing the uniform 〈Σ,ALC∇〉-interpolant of this ontology, which is also the uniform
〈Σ,ALC∇〉-interpolant of O+

a , means eliminating the remaining names Aα, α ∈ O. It is not
hard to see that this results in the following ontology:

(O+
a )Σ = OΣ

a [Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1].

Since O1 is the uniform 〈ALC∇, sig(O)〉-interpolant of O+
a and Σ ⊆ sig(O), we obtain that

OΣ
1 = (O+

a )Σ

= OΣ
a [Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1].

This concludes the proof.

D Deductive Modules for Pure ALC

Theorem 3. Let O be an ontology, Σ a signature, and Oea the extended annotation of O for Σ.
Additionally, let OΣ

ea be the uniform 〈ALC,Σ′〉-interpolant of Oea, where Σ′ = Σ∪{Aα | α ∈ O}.
Then,M = {α | Aα ∈ sig(OΣ

ea)} is a complete deductive 〈ALC,Σ〉-module of O for Σ.

Proof. The argument goes similar as for Theorem 2, only that now, due Lemma 3, special care
has to be taken for existential role restrictions. Let O be an ontology, Σ a signature and OΣ

ALC∇
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its uniform 〈ALC∇,Σ〉-interpolant computed with the method in Section 3. Let N be the set
of clauses obtained by clausifying O and exhaustively applying the rules in Figure 1. For every
concept ∃∇.C occuring in OΣ

ALC∇ , where O |= C v ⊥, N must contain a clause C ′ t ∃r.D,
where D is a de�ner representing C. That is, ¬D t C⊥ ∈ N, where eliminating the de�ners in
C⊥ would result in a concept equivalent to ⊥.

Now consider the clause set Nea that is the result of clausifying Oea, the extended annotation of
O, and exhaustively applying the rules in Figure 1. Similar as in the proof for Theorem 2, every
rule application used for computing N has a corresponding rule application used for computing
Nea, where the clauses additionally contain disjuncts ¬Aα are used to track the axioms in the
original ontology. This means that if C ′ t ∃r.D ∈ N and ¬D t C⊥ ∈ N, Nea will contain two
clauses

¬Aα1
t . . . t ¬Aαn

t C ′ t ∃r.D
¬Aβ1

t . . . t ¬Aβm
t ¬D t C⊥,

where the axioms α1, . . ., αn where used to infer the �rst clause, and the axiom β1, . . ., βm
where used to infer the second clause.

For every βi, 1 ≤ i ≤ m, the extended annotation contains an axiom Aβi v ∀r.Aβi , which
would translate to clauses

¬Aβi
t ∀r.Dβi

¬Dβi
t Aβi

.

Using those clauses with the above two clauses and the RQ-rule, followed by resolution on
de�ners, we derive

¬Aα1 t . . . t ¬Aαn t ¬Aβ1 t . . . t ¬Aβm t C ′ t ∃r.D∗

¬D∗ t ¬Aβ1 t . . . t ¬Aβm t C⊥
¬D∗ t Aβ1

...

¬D∗ t Aβn

Using further applications on the RA-rule on the concepts Aβi
, we obtain

¬Aα1
t . . . t ¬Aαn

t ¬Aβ1
t . . . t ¬Aβm

t C ′ t ∃r.D∗

¬D∗ t C⊥.

Finally, the R∃-rule gives us

¬Aα1 t . . . t ¬Aαn t ¬Aβ1 t . . . t ¬Aβm t C ′ t ∃∇.D∗.

We can safely replace the unsatis�able existential restriction ∃∇.D∗ by ⊥, and all required
annotation disjuncts are kept in the clause. From here, the argument is the same as in the
proof for Theorem 2

Lemma 4. Let O be an ontology, Σ a signature and OΣ
ea an annotated uniform 〈ALC,Σ〉-

interpolant of O for Σ. Additionally, let O1 ⊆ O. Then, the ontology

OΣ
1 = OΣ

ea[Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

is a uniform 〈ALC,Σ〉-interpolant of O1 for Σ.

Proof. As we are now considering ALC without universal roles, we cannot apply Theorem 1 as
in the proof for Lemma 2.
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We �rst show that for every subset O1 ⊆ O, and every ALC concepts C, D s.t. sig(C v D) ⊆
sig(O) O1 |= C v D i� Oea |=

d
α∈O1

Aα u C v D (Observation 1). Assume O 6|= C v D

and I is a witness, that is, I |= O, d ∈ CI and d 6∈ CI . We extend I to a model of
Oea with d ∈ (

d
α∈O1

Aα u C)I by setting AIα = ∆I if α ∈ O1 and AIα = ∅ otherwise,
and thus obtain a witness for Oea 6|=

d
α∈O1

Aα u C v D. For the other direction, assume

Oea 6|=
d
α∈O1

Aα u C v D, and consider a model I of Oea s.t. d ∈ (
d
α∈O1

Aα u C)I and

d 6∈ DI . Due to the additional axioms in Oea, every domain element reachable from d via
a chain of role successors satis�es every Aα s.t. α ∈ O1. Since furthermore for every axiom
C ′ v D′ ∈ O1, we have Aα u C ′ v D′ ∈ Oea, we obtain that I can be transformed in a model
of O1 by simply discarding all domain elements that are not reachable from d. It follows that
O1 |= C v D i� Oea |=

d
α∈O1

Aα u C v D.

Now consider the ontology O+
ea de�ned as follows:

O+
ea = Oea ∪ {> v Aα | α ∈ O1}

∪ {Aα v ⊥ | α ∈ O \ O1}.

By Observation 1 and because Oea ⊆ O+
ea, we have for every ALC concepts C, D, s.t. sig(C v

D) ⊆ sig(O), O1 |= C v D i� O+
ea |= C v D. This includes ALC concepts C, D for which

sig(C v D) ⊆ Σ. We obtain for every C, D s.t. sig(C v D) ⊆ Σ, O1 |= C v D i�
(O+

ea)Σ |= C v D. That is, (O+
ea)Σ ≡ OΣ

1 .

The uniform 〈ALC,Σ〉-interpolant of O+
ea can be obtained by �rst computing the 〈ALC,Σ′〉

interpolant (O+
ea)Σ′

, where Σ′ = Σ∪ {Aα | α ∈ O}, and then eliminating the labels. Inspection
of the uniform interpolation method presented in this paper shows that, in order to compute
the uniform 〈ALC,Σ〉-interpolant of (O+

ea)Σ′
, we are e�ectively replacing occurences of Aα with

> v Aα ∈ O+
ea by > (by resolution of negative occurrences of Aα with the unary clause Aα)

and occurrences of Aα with Aα v ⊥ ∈ O+
ea by ⊥ (by resolution of the positive occurrences of

Aα with the unary clause ¬Aα). It follows that

OΣ
1 = (O+

ea)Σ

= OΣ
ea[Aα 7→ > | α ∈ O1][Aα 7→ ⊥ | α ∈ O \ O1]

is the uniform 〈ALC,Σ〉-interpolant of O1.

E Role Hierarchies

The arguments for Theorem 4 and Lemma 5 can be shown similar as for Theorem 2 and
Lemma 2, and based on the observation that the modi�ed saturation rules e�ectively make RIs
work like annotated axioms.

F Evaluation

F.1 Simpli�cation Rules Used

In addition to redundancy elimination based on the notion of subsumption on clauses as de�ned
in [21], which we use for both forward and backward subsumption deletion, we apply the fol-
lowing simpli�cations, which apply to uniform interpolants to reduce the number of unecessary
annotation symbols, �xpoint expressions and overall complexity of expressions.

On concepts, we apply the following simpli�cations:
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• nested conjunctions and disjunctions are �attened;

• the following concepts are replaced by >:

� empty conjunctions,

� C t >,
� ∀r.>,
� ∃∇.> and

� νX.C[X], given that simplifying C[>] with these rules results in >;

• the following expressions are replaced by ⊥:

� empty disjunctions,

� C u ⊥, and
� ∃r.⊥;

• νX.C[X] gets replaced by C if after simpli�cation, C contains no occurrences of X any-
more.

We furthermore remove all axioms of the following form:

• C v >,

• ⊥ v C,

• C uD v C,

• C v C tD,

• C uD v D t E

In each case, we treat disjunctions and conjunctions like sets: that is, the order of disjuncts
and conjuncts is not important and no element occurs twice.

It is not hard to see that all these simpli�cations are equivalence-preserving, yet may reduce
the number of �xpoint expressions (which we cannot eliminate with Algorithm 1) as well as the
number of annotation symbols (which reduces the size of the complete modules). Furthermore,
they simplify reasoning times in the minimisation step, which is why we also apply them each
time we compute a uniform interpolant using Lemma 2.
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