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Abstract. Unification in the Description Logic (DL) FL0 is known to be ExpTime-
complete, and of unification type zero. We investigate in this paper whether a lower
complexity of the unification problem can be achieved by either syntactically restricting
the role depth of concepts or semantically restricting the length of role paths in inter-
pretations. We show that the answer to this question depends on whether the number
formulating such a restriction is encoded in unary or binary: for unary coding, the com-
plexity drops from ExpTime to PSpace. As an auxiliary result, which is however also of
interest in its own right, we prove a PSpace-completeness result for a depth-restricted
version of the intersection emptiness problem for deterministic root-to-frontier tree au-
tomata. Finally, we show that the unification type of FL0 improves from type zero to
unitary (finitary) for unification without (with) constants in the restricted setting.

1 Introduction

Unification of concept patterns has been proposed as an inference service in Description Logics
that can, for example, be used to detect redundancies in ontologies. For the DL FL0, which has
the concept constructors conjunction (u), value restriction (∀r.C), and top concept (>), unifi-
cation was investigated in detail in [5]. It was shown there that unification in FL0 corresponds
to unification modulo the equational theory ACUIh since (modulo equivalence) conjunction is
associative (A), commutative (C), idempotent (I) and has top as a unit (U), and value restric-
tions behave like homomorphisms for conjunction and top (h). For this equational theory, it had
already been shown in [1] that it has unification type zero, which means that a solvable unifica-
tion problem need not have a minimal complete set of unifiers, and thus in particular not a finite
one. From the DL point of view, the decision problem is, however, more interesting than the
unification type. Since ACUIh is a commutative/monoidal theory [1,14], solvability of ACUIh
unification problems (and thus of unification problems in FL0) can be reduced to solvability of
systems of linear equations in a certain semiring, which for the case of ACUIh consists of finite
languages over a finite alphabet, with union as semiring addition and concatenation as semiring
multiplication [5]. By a reduction to the emptiness problem for root-to-frontier tree automata
(RFAs), it was then shown in [5] that solvability of the language equations corresponding to an
FL0 unification problem can be decided in exponential time. In addition, ExpTime-hardness
of this problem is proved in [5] by a reduction from the intersection emptiness problem for
deterministic RFAs (DRFAs) [16].

In the present paper, we investigate two kinds of restrictions on unification in FL0. On the one
hand, we syntactically restrict the role depth (i.e., the maximal nesting of value restrictions) in
the concepts obtained by applying a unifier to be bounded by a natural number k ≥ 1. This
restriction was motivated by a similar restriction used in research on least common subsumers
(lcs) [15], where imposing a bound on the role depth guarantees existence of the lcs also in
the presence of a (possibly cyclic) terminology. Also note that such a restriction was used
in [11] for the theory ACh, for which unification is known to be undecidable [13]. It is shown



in [11] that the problem becomes decidable if a bound on the maximal nesting of applications
of homomorphisms is imposed. On the other hand, we consider a semantic restriction where,
when defining the semantics of concepts, only interpretations for which the length of role paths
is bounded by a given number k are considered. A similar restriction (for k = 1) was employed
in [8] to improve the unification type for the modal logic K from type zero [10] to unitary or
finitary for K + ��⊥.

In the present paper we show that both the syntactic and the semantic restriction ensures that
the unification type of FL0 (and equivalently, of the theory ACUIh) improves from type zero to
unitary for unification without constants and finitary for unification with constants. Regarding
the decision problem, we can show that the complexity depends on whether the bound k is
assumed to be encoded in unary or binary. For binary encoding of k, the complexity stays
ExpTime, whereas for unary coding it drops from ExpTime to PSpace. This is again the case
both for the syntactic and the semantic restriction. As an auxiliary result we prove that a
depth-restricted variant of the intersection emptiness for DRFAs is PSpace-complete. Showing
these results requires combining methods and results from knowledge representation, unification
theory, and automata theory.

2 The DL FL0 and Restrictions

Starting with mutually disjoint countably infinite sets NC and NR of concept and role names,
respectively, the set of FL0 concepts is inductively defined as follows:

– > (top concept) and every concept name A ∈ NC is an FL0 concept,
– if C, D are FL0 concepts and r ∈ NR is a role name, then C uD (conjunction) and ∀r.C

(value restriction) are FL0 concepts.

The semantics of FL0 concepts is defined using first-order interpretations I = (domI , ·I)
consisting of a non-empty domain domI and an interpretation function ·I that assigns a set
AI ⊆ domI to each concept name A, and a binary relation rI ⊆ domI × domI to each role
name r. This function is extended to FL0 concepts as follows:

>I = domI and (C uD)I = CI ∩DI ,
(∀r.C)I = {x ∈ domI | ∀y ∈ domI : (x, y) ∈ rI ⇒ y ∈ CI}.

Given two FL0 concepts C and D, we say that C is subsumed by D (written C v D) if
CI ⊆ DI holds for all interpretations I, and that C is equivalent to D (written C ≡ D) if
C v D and D v C. It is well known that subsumption (and thus also equivalence) of FL0

concepts can be decided in polynomial time [12].

Note that, up to equivalence, conjunction is associative, commutative, and idempotent, and
has the unit element >. In addition, the following equivalences hold for value restrictions:
∀r.> ≡ > and ∀r.(C u D) ≡ ∀r.C u ∀r.D. As an easy consequence we obtain that all FL0

concepts C 6≡ > are equivalent to an FL0 concept C ′ not containing any occurrences of >.
Thus, we can assume without loss of generality that FL0 concepts different from > do not
contain any occurrences of >. We will do this in the rest of the paper.

Due to the above equivalences, one can transform FL0 concepts into a normal form that uses
formal languages over the alphabet of role names to represent value restrictions that end with
the same concept name. In fact, using these equivalences as rewrite rules from left to right,
every FL0 concept can be transformed into an equivalent one that is either > or a conjunction
of concepts of the form ∀r1. · · · ∀rn.A, where r1, . . . , rn are role names and A is a concept name.
Such a concept can be abbreviated as ∀w.A, where w = r1 . . . rn is a word over the alphabet



NR. Note that n = 0 means that w is the empty word ε, and thus ∀ε.A corresponds to A.
Furthermore, a conjunction of the form ∀w1.A u . . . u ∀wm.A can be written as ∀L.A where
L ⊆ N∗R is the finite language {w1, . . . , wm}. We use the convention that ∀∅.A corresponds
to the top concept >. Thus, any two FL0 concepts C,D containing only the concept names
A1, . . . , A` can be represented as

C ≡ ∀K1.A1 u . . . u ∀K`.A` and D ≡ ∀L1.A1 u . . . u ∀L`.A`, (1)

where K1, L1, . . . ,K`, L` are finite languages over the alphabet of role names NR. We call this
representation the language normal form (LNF) of C,D. If C,D have the LNF shown in (1),
then C ≡ D holds iff L1 = K1, . . . , L` = K` (see Lemma 4.2 of [5]).

2.1 Syntactically Restricting the Role Depth

The role depth of an FL0 concept is the maximal nesting of value restrictions in this concept.
To be more precise, we define the role depth rd(C) of an FL0 concept C by induction:

– rd(>) = rd(A) = 0 for all A ∈ NC ,
– rd(C uD) = max(rd(C), rd(D)) and rd(∀r.C) = 1 + rd(C).

The role depth of FL0 concepts is preserved under equivalence.

Lemma 1. Let C,D be FL0 concepts equal > or not containing any occurrences of >. Then
C ≡ D implies rd(C) = rd(D).

This is an immediate consequence of the LNF-based characterization of equivalence for FL0

concepts.

We are now ready to define our first restricted version of subsumption and equivalence in FL0.
For an integer k ≥ 1 and FL0 concepts C and D (satisfying the restrictions formulated in
Lemma 1), we define subsumption and equivalence restricted to concepts of role depth ≤ k as
follows:

– C vksyn D if C v D and rd(C) ≤ k as well as rd(D) ≤ k,
– C ≡ksyn D if C vksyn D and D vksyn C.

The effect of this definition is that subsumption and equivalence can only hold for concepts that
satisfy the restriction of the role depth by k. For concepts satisfying this syntactic restriction,
the relations vksyn and ≡ksyn coincide with the classical subsumption and equivalence relations
on FL0 concepts. Using the language normal form of FL0 concepts, the equivalence ≡ksyn can
be characterized as follows: if C,D have the LNF shown in (1), then

C ≡ksyn D iff L1 = K1 ⊆ N≤kR , . . . , L` = K` ⊆ N≤kR ,

where N≤kR denotes the set of words over NR of length at most k.

2.2 Semantically Restricting the Length of Role Paths

For an integer n ≥ 1 and a given interpretation I = (domI , ·I), a role path of length n is a
sequence d0, r1, d1, . . . , dn−1, rn, dn, where d0, . . . , dn are elements of domI , r1, . . . , rn are role



names, and (di−1, di) ∈ rIi holds for all i = 1, . . . , n. The interpretation I is called k-restricted
if it does not admit any role paths of length > k.

For an integer k ≥ 1 and FL0 concepts C and D, we define subsumption and equivalence
restricted to interpretations with role paths of length ≤ k as follows:

– C vksem D if CI ⊆ DI holds for all k-restricted interpretations I,
– C ≡ksem D if C vksem D and D vksem C.

The effect of this notion of equivalence is that all concepts occurring at a role depth > k can
be replaced by >. To be more precise, we define the restriction of a concept C to role depth
n ≥ 0 by induction on n as follows:

– A|n = A for A ∈ NC ∪ {>} and (C uD)|n = C|n uD|n for all n ≥ 0;
– (∀r.C)|0 = > and (∀r.C)|n = ∀r.(C|n−1) for all n ≥ 1.

For example, (∀r.∀r.∀r.A)|4 = ∀r.∀r.∀r.A = (∀r.∀r.∀r.A)|3 and (∀r.∀r.∀r.A)|2 = ∀r.∀r.> ≡ >.
In the language normal form, restricting to role depth n means that all words that are longer
than n can simply be removed.

The following lemma is an easy consequence of the definition of k-restricted interpretations, the
semantics of value restrictions, and bisimulation-invariance of FL0 concepts [3].

Lemma 2. Let C,D be FL0 concept. Then

1. C ≡ksem C|k and D ≡ksem D|k;
2. C|k ≡ksem D|k iff C|k ≡ D|k;
3. C ≡ksem D iff C|k ≡ D|k.

The third statement in this lemma yields the following characterization of the equivalence ≡ksem :
if C,D have the LNF shown in (1), then

C ≡ksem D iff L1 ∩N≤kR = K1 ∩N≤kR , . . . , L` ∩N≤kR = K` ∩N≤kR .

The corresponding equational theory It was shown in [5] that equivalence of FL0 concepts
can be axiomatized by the equational theory

ACUIh := { (x ∧ y) ∧ z = x ∧ (y ∧ z), x ∧ y = y ∧ x, x ∧ x = x, x ∧ 1 = x }
∪ { hr(x ∧ y) = hr(x) ∧ hr(y), hr(1) = 1 | r ∈ NR },

where ∧, hr, and 1 in the terms respectively correspond to u, ∀r., and > in the concepts. These
identities say that ∧ is associative (A), commutative (C), and idempotent (I) with unit 1 (U),
and that the unary function symbols behave like homomorphisms (h) for ∧ and 1.

The equivalence ≡ksem can be axiomatized by adding identities that say that nesting of homo-
morphisms of depth > k produces the unit. Given a word u = r1r2 . . . rn ∈ N∗R, we denote a
term of the form hr1(hr2(· · ·hrn(t) · · · )) as hu(t). It is now easy to see that ≡ksem is axiomatized
by

ACUIhk := ACUIh ∪ {hu(x) = 1 | u ∈ N∗R with |u| = k + 1}.

Note that, due to the identity hr(1) = 1 in ACUIh, we have hu(x) =ACUIhk 1 also for all u ∈ N∗R
with |u| > k + 1.



3 Unification in FL0

In unification, we consider concepts that may contain variables, which can be replaced by
concepts. More formally, we introduce a countably infinite set NV of concept variables, which is
disjoint with NC and NR. An FL0 concept pattern is an FL0 concept that is constructed using
NC ∪NV as concept names. The semantics of concept patterns is defined as for concepts, i.e.,
concept variables are treated like concept names when defining the semantics. This way, the
notions of subsumption and equivalence (both in the restricted and in the unrestricted setting)
transfer from concepts to concept patterns in the obvious way.

A substitution σ is a mapping from NX into the set of all FL0 concept patterns such that
dom(σ) := {X ∈ NV | σ(X) 6= X} is finite. This mapping is extended to concept patterns in
the obvious ways:

– σ(A) := A for all A ∈ NC ∪ {>},
– σ(C uD) := σ(C) u σ(D) and σ(∀r.C) := ∀r.σ(C).

An FL0 unification problem is an equation of the form C ?≡ D where C,D are FL0 concept
patterns. A unifier of this equation is a substitution σ such that σ(C) ≡ σ(D).

Obviously, when looking for unifiers of a given equation C ?≡D, we can restrict the attention
to substitutions whose domain contains only variables occurring in C or D. In addition, it is
well-known in unification theory [7] that a unification problem has a unifier iff it has a ground
unifier, i.e., a unifier σ such that σ(X) does not contain concept variables for all X ∈ dom(σ).
More precisely, if one is interested only in whether a unifier exists or not, then one can restrict
the attention to substitutions σ such that, for all X ∈ dom(σ), we have that σ(X) is a concept
built using only the concept names and role names occurring in C,D (possibly extended with
a new concept name A in case C,D do not contain any concept names).

It was shown in [5] that the question of whether a given FL0 unification problem has a unifier
or not can be reduced to solving linear language equations, i.e., equations of the form

S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn = T0 ∪ T1·X1 ∪ · · · ∪ Tn·Xn, (2)

where S0, . . . , Sn, T0, . . . , Tn are finite languages of words over an alphabet ∆ = {1, . . . , ρ}3 and
X1, . . . , Xn are variables that can be replaced by finite languages over ∆. A solution of the
equation (2) is an assignment θ of finite languages θ(Xi) to the variables Xi (for i = 1, . . . , n)
such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn), (3)

where ∪ is interpreted as union and · as concatenation of languages. Strictly speaking, a given
FL0 unification problem yields one such language equation for every concept name occurring
in the problem. But since these equations do not share variables, they can be solved separately.
Also note that solvability of language equations of the form (2) can in turn be reduced in
polynomial time to FL0 unification.

A word w = i1 . . . i` occurring in a solution of the form (3) of the equation (2) corresponds to
a conjunct ∀ri1 . · · · ∀ri` .A in the unified concept σ(C) ≡ σ(D). Thus, the length of the word w
is equal to the role depth of the corresponding sequence of value restrictions.

Example 1. Consider the FL0 unification problem ∀r1.∀r1.Au∀r1.∀r1.X ?≡X u∀r1.∀r1.∀r1.Y .
The substitution σ with σ(X) = ∀r1.∀r1.A and σ(Y ) = ∀r1.A is one of the unifiers of this
3 Intuitively, ρ is the number of different role names occurring in the unification problem and each
letter i, 1 ≤ i ≤ ρ, stands for a role name ri.



problem. The language equation induced by this unification problem is {11}∪{11}·X = {ε}·X∪
{111}·Y . The unifier σ corresponds to the following solution θ of this problem: θ(X) = {11}
and θ(Y ) = {1}.

Using the corresponding equational theory In [5] the reduction of FL0 unification to
solving linear language equations is shown both by a direct reduction and by using the fact
that ACUIh is a commutative/monoidal theory [1,14,6]. It was shown in [1,14] that unification
in such theories can be reduced to solving linear equations over a corresponding semiring. In the
case of ACUIh, this semiring consists of finite languages over the alphabet∆ = {1, . . . , ρ}, where
ρ is the number of different role names occurring in the unification problem under consideration.
The semiring operations are union (as addition) and concatenation (as multiplication), with ∅
as additive unit and {ε} as multiplicative unit. Linear equations over this semiring are then
exactly the language equations of the form (2).

3.1 Syntactically Restricted Unification in FL0

For an integer k ≥ 1, a syntactically k-restricted unification problem is an equation of the
form C ?≡ksyn D, where C,D are FL0 concept patterns (satisfying the restrictions formulated
in Lemma 1). A unifier of this equation is a substitution σ such that σ(C) ≡ksyn σ(D).

Due to the LNF-based characterization of ≡ksyn and the correspondence between role depth
and word length mentioned above, the question of whether a given syntactically k-restricted
unification problem has a unifier or not can be reduced to checking whether language equations
of the form (2) have solutions θ such that

S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn) = T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn) ⊆ ∆≤k. (4)

where ∆≤k denotes the set of words over ∆ of length at most k.

The unifier σ of the FL0 unification problem in Example 1 is not a syntactically 3-restricted
unifier of this problem since the unified concept σ(∀r1.∀r1.A u ∀r1.∀r1.X) = ∀r1.∀r1.A u
∀r1.∀r1.∀r1.∀r1.A = σ(X u ∀r1.∀r1.∀r1.Y ) has role depth 4. This is reflected on the language
equation side by the fact that {11} ∪ {11}·{11} = {11, 1111} = {ε}·{11} ∪ {111}·{1} 6⊆ ∆≤3.
In fact, it is easy to see that this problem does not have a syntactically 3-restricted unifier.

3.2 Semantically Restricted Unification in FL0

For an integer k ≥ 1, a semantically k-restricted unification problem is an equation of the form
C ?≡ksem D, where C,D are FL0 concept patterns. A unifier of this equation is a substitution σ
such that σ(C) ≡ksem σ(D).

Whereas in the syntactically restricted case a sequence of value restrictions of depth > k (a word
of length > k) destroys the property of being a unifier (solution), in the semantically restricted
case one can simply ignore such sequences (words). Thus, one can reduce the question of whether
a given semantically k-restricted unification problem has a unifier or not to checking whether,
for language equations of the form (2), there is an assignment θ such that

(S0 ∪ S1·θ(X1) ∪ · · · ∪ Sn·θ(Xn)) ∩∆≤k =

(T0 ∪ T1·θ(X1) ∪ · · · ∪ Tn·θ(Xn)) ∩∆≤k.
(5)

Note that, in general, such an assignment need not satisfy (3), but clearly any solution θ of (2)
satisfying (3) also satisfies (5).



Example 2. The FL0 unification problem ∀r1.Au∀r1.∀r1.X ?≡X induces the language equation
{1} ∪ {11}·X = {ε}·X. This language equation does not have a solution in the classical sense,
but it has a semantically 3-restricted solution. In fact, for the assignment θ with θ(X) = {1, 111}
we have {1}∪{11}·θ(X) = {1, 111, 11111} and {ε}·θ(X) = {1, 111}. Intersecting these two sets
with ∆≤3 yields the same set {1, 111}. Thus, the above unification problem does not have a
unifier, but it has a semantically 3-restricted unifier.

Using the corresponding equational theory Again, the reduction of unification to finding
assignments θ satisfying (5) can also be obtained by considering the corresponding equational
theory, i.e., the theory ACUIhk. It is easy to see that ACUIhk satisfies the definition of a
monoidal theory in [14], and thus is also commutative [6]. In addition, the corresponding semir-
ing consists of all finite languages over ∆ containing only words of length ≤ k. The addition
operation of this semiring is again union of languages, but its multiplication operation is the
following restricted form of concatenation: for finite sets of words L1, L2 ⊆ ∆≤k we define

L1·kL2 = (L1·L2) ∩∆≤k.

Linear equations of this semiring are thus also of the form (2), but a solution is now an assign-
ment θ satisfying (5).

4 Root-to-Frontier Tree Automata

It was shown in [5] that checking solvability of linear language equations can be reduced to
testing emptiness of tree automata. More precisely, the tree automata employed in [5] work
on finite node-labelled trees, going from the root to the leaves. Such automata are called root-
to-frontier tree automata (RFAs) in [5]. Basically, given a linear language equation, one can
construct an RFA whose size is exponential in the size of the language equation, and which
accepts some tree iff the language equation has a solution. Since the emptiness problem for
RFAs is polynomial, this yields an ExpTime upper bound for solvability of linear language
equations. The matching ExpTime lower bound was proved in [5] by a reduction from the
intersection emptiness problem for deterministic RFAs (DRFAs). In this section, we formally
introduce (D)RFAs and the trees they accept, and recall the ExpTime-completeness result for
the intersection emptiness problem for DRFAs from [16]. We will then show that a restricted
version of this problem is PSpace-complete.

We consider trees with labels in the ranked alphabet Σ, where the number of successors of a
node is determined by the rank of its label. Obviously, such trees are simply representations of
terms over the signature Σ.

Definition 1. Let Σ be a finite alphabet, where each f ∈ Σ is associated with a rank rank(f) ≥
0, and let ρ be the maximal rank of the elements of Σ. A (finite) Σ-tree is a mapping t :
dom(t)→ Σ such that dom(t) is a finite subset of {1, . . . , ρ}∗ such that

– the empty word ε belongs to dom(t);
– for all u ∈ {1, . . . , ρ}∗ and i ∈ {1, . . . , ρ}, we have ui ∈ dom(t) iff u ∈ dom(t) and i ≤

rank(t(u)).

The elements of dom(t) are the nodes of the tree t, and t(u) is called the label of node u.
The empty word ε is the root of t, and the nodes u such that ui 6∈ dom(t) for all i = 1, . . . , ρ
are the leaves of t. By the above definition, the leaves are the nodes labeled with a symbol of



rank zero, i.e., rank(t(u)) = 0 iff u is a leaf of t. We denote the set of symbols of rank 0 by
Σ0 := {f ∈ Σ | rank(f) = 0}. We always assume Σ0 6= ∅ since otherwise there is no finite
Σ-tree. The set of all leaves of the tree t is called the frontier of t. Nodes of t that are not in
the frontier are called inner nodes. If ui ∈ dom(t) then it is called the ith son of u in t. The
depth of a node u ∈ dom(t) is just the length of the word u. The depth depth(t) of the tree t is
the maximal depth of a node in dom(t).

Definition 2. A (non-deterministic) root-to-frontier tree automaton (RFA) that works on Σ-
trees is a 5-tuple A = (Σ,Q, I, T, F ) where

– Σ is a finite, ranked alphabet,
– Q is a finite set of states,
– I ⊆ Q is the set of initial states,
– T assigns to each f ∈ Σ \Σ0 of rank n a transition relation T (f) ⊆ Q×Qn,
– F : Σ0 → 2Q assigns to each c ∈ Σ0 a set of final states F (c) ⊆ Q.

A run of A on the tree t is a mapping r : dom(t)→ Q such that

– (r(u), r(u1), . . . , r(un)) ∈ T (t(u)) for all inner nodes u of rank n.

The run r is called successful if

– r(ε) ∈ I (root condition),
– r(u) ∈ F (t(u)) for all leaves u (leaf condition).

The tree language accepted by A is defined as

L(A) := {t | there exists a successful run of A on t}.

The emptiness problem for A is the question whether L(A) = ∅.

It is well-known that the emptiness problem for RFAs is decidable in polynomial time (see, e.g.,
[17]). It is also known that, if an RFA A accepts a tree, then it also accepts one of depth at
most q, where q is the number of states of A.

In contrast to the emptiness problem, the intersection emptiness problem is ExpTime-complete
even for deterministic RFAs [16], which are known to be weaker than general RFAs.

Definition 3. The RFA A = (Σ,Q, I, T, F ) is a deterministic root-to-frontier automaton
(DRFA) if

– the set I of initial states consists of a single initial state q0,
– for all states q ∈ Q and all symbols f of rank n > 0 there exists exactly one n-tuple

(q1, . . . , qn) such that (q, q1, . . . , qn) ∈ T (f).

For deterministic automata it is often more convenient to use a transition function δ in place
of the (functional) transition relations. This function is defined as δ(q, f) := (q1, . . . , qn), where
(q1, . . . , qn) is the unique tuple satisfying (q, q1, . . . , qn) ∈ T (f).

Given a collection A1, . . . ,An of DRFAs, the intersection emptiness problem asks whether
L(A1) ∩ . . . ∩ L(An) = ∅. For a natural number k, the k-restricted intersection emptiness
problem asks, for given DFRAs A1, . . . ,An, whether there is a tree t with depth(t) ≤ k such
that t ∈ L(A1) ∩ . . . ∩ L(An).



The complexity of the k-restricted intersection emptiness problem depends on the encoding of
the number k.

Theorem 1. The k-restricted intersection emptiness problem for DRFAs is ExpTime-complete
if the number k is encoded in binary, and PSpace-complete if the number k is encoded in unary.

Proof. First, consider the case of binary coding of k. To show that the problem is in ExpTime,
we first build the product automaton A of the automata A1, . . . ,An. This automaton accepts
the intersection language L(A1) ∩ . . . ∩ L(An). It has as set of states the direct product Q :=
Q1 × . . . × Qn of the state sets Q1, . . . , Qn of the automata A1, . . . ,An, whose cardinality is
thus exponentially bounded by the combined size of the input automata. To check whether A
accepts a tree of depth at most k, we add a counter to the states of A, i.e., consider the set of
states Q′ := Q×{0, . . . , k}. The transitions of the extended automaton A′ are basically the ones
of A, but in each transition, the counter values associated with the states are decremented. No
transitions are possible from states whose counter has value 0. The initial state of A′ is q′0 :=
(q0, k) where q0 is the initial state of A, and the final assignment is F ′(c) := F (c)× {0, . . . , k}
where F is the final assignment of A. It is easy to see that A′ accepts exactly the trees in
L(A) that have a depth ≤ k. Thus, to solve the k-restricted intersection emptiness problem
for A1, . . . ,An, it is sufficient to solve the emptiness problem for A′. Since the size of A′ is
exponential in the combined size of A1, . . . ,An and the size of the binary representation of k,
this yields the desired ExpTime upper bound.

The ExpTime lower bound can be shown by a reduction from the unrestricted intersection
emptiness problem for DRFAs. Given DRFAs A1, . . . ,An, we know that L(A1)∩. . .∩L(An) 6= ∅
iff the product automaton A constructed from these automata accepts some tree, which is the
case iff A accepts a tree of depth at most k := |Q1 × . . . × Qn|. This yields a reduction from
the unrestricted intersection emptiness to the k-restricted intersection emptiness problem. This
reduction is polynomial since the size of the binary representation of k is polynomial in the
combined size of A1, . . . ,An.

To show the PSpace upper bound for the case of unary coding of k, we consider the automaton
A′ constructed in our proof of the ExpTime upper bound for the case of binary coding. But
now this automaton is not constructed completely before running the emptiness test. Instead,
we construct the relevant parts of it on-the-fly while non-deterministically trying to construct
a successful run, starting from the root. Since the depth of the run is linearly bounded by
the size of the unary representation of k, and each state of A′ can be represented using only
polynomial space, this needs only polynomial space because only one branch of the run (plus
some backtracking information) needs to be represented at each point in time. The NPSpace
algorithm obtained this way yields the desired PSpace upper bound since, due to Savitch’s
theorem, it can be turned into a PSpace algorithm.

PSpace-hardness can be shown by a reduction from QBF (see Proposition 1 below). ut

To prove the PSpace lower bound, we show how to reduce QBF to the k-restricted intersection
emptiness problem. Thus, let

Q1 p1. · · ·Qm pm.φ for Q1, . . . , Qm ∈ {∀,∃}

be a quantified Boolean formula, where we assume without loss of generality that φ contains only
the propositional variables p1, . . . , pm and is in conjunctive normal form, i.e., φ = ψ1 ∧ . . .∧ψn
for clauses ψj . The problem QBF asks whether such a formula is valid.

It is easy to see that validity of the above formula corresponds to the existence of a certain
tree, whose branching depends on the quantifier prefix. Basically, such a tree describes a set
of propositional assignments that need to satisfy the formula φ. For a universally quantified



t : ε : f0

1 : g0

11 : f1

111 : c0 112 : c1

2 : g1

21 : f0

211 : c0 212 : c1

r : q3{0,1}

q2{0}

q1{0,1}

q0{0} q0{1}

q2{1}

q1{0,1}

q0{0} q0{1}

Fig. 1. A Σ-tree t conforming with the prefix P = ∀p1.∃p2.∀p3, and a successful run of AP on t.

variable, the corresponding node has two successors since both values must lead to satisfaction
of φ, whereas for an existentially quantified variable one successor node is sufficient.

To represent such trees in the way introduced in Definition 1, we consider the alphabet Σ =
{f0, f1, g0, g1, c0, c1} where f0, f1 are binary, g0, g1 are unary, and c0, c1 are nullary. We now de-
fine what it means that a Σ-tree conforms with a quantifier-prefix Q1 p1. · · ·Qm pm by induction
on the length of the prefix:

– Assume that m = 1, i.e., the prefix is Q1 p1.
• If Q1 = ∀, then any tree t with dom(t) = {ε, 1, 2}, root label t(ε) ∈ {f0, f1} and leaf

labels t(1) ∈ {c0} and t(2) ∈ {c1} conforms with ∀p1.
• If Q = ∃, then any tree t with dom(t) = {ε, 1}, root label t(ε) ∈ {g0, g1} and leaf label
t(1) ∈ {c0, c1} conforms with ∃p1.

– Assume that m > 1, i.e., the prefix is Q1 p1.Q2 p2. · · ·Qm pm.
• If Q1 = ∀, then any tree t with root label t(ε) ∈ {f0, f1} for which
∗ the node 1 has label t(1) ∈ {f0, g0} and is the root of a subtree that conforms with
Q2 p2. · · ·Qm pm,

∗ the node 2 has label t(2) ∈ {f1, g1} and is the root of a subtree that conforms with
Q2 p2. · · ·Qm pm,

conforms with Q1 p1.Q2 p2. · · ·Qm pm.
• If Q1 = ∃, then any tree t with root label t(ε) ∈ {g0, g1} for which
∗ the node 1 has label t(1) ∈ {f0, g0, f1, g1} and is the root of a subtree that conforms

with Q2 p2. · · ·Qm pm,
conforms with Q1 p1.Q2 p2. · · ·Qm pm.

Note that any tree t conforming with Q1 p1. · · ·Qm pm has depth m since all leaves of such
a tree have depth m. Every leaf of t determines a propositional valuation. For any symbol
h ∈ Σ we define its value val(h) to be its index; e.g., val(c0) = 0 and val(f1) = 1. A leaf
u = i1 . . . im ∈ {1, 2}m of t determines the following valuation vu:

vu(pj) := val(t(i1 . . . ij)) for j = 1, . . . ,m.

Example 3. The left-hand side of Figure 1 depicts a Σ-tree t conforming with the prefix
∀p1.∃p2.∀p3. The leaves 111, 112, 211, 212 of t determine the following propositional valuations:

v111(p1) = 0, v111(p2) = 1, v111(p3) = 0,

v112(p1) = 0, v112(p2) = 1, v112(p3) = 1,

v211(p1) = 1, v211(p2) = 0, v211(p3) = 0,

v212(p1) = 1, v212(p2) = 0, v212(p3) = 1.

For example, the valuation v111 is determined by the indices 0, 1, and 0 of t(1) = g0, t(11) = f1,
and t(111) = c0, respectively. The valuation v112 only differs from v111 in that the value of p3
is determined by t(112). Since t(112) = c1, this yields v112(p3) = 1.



The following is an easy consequence of the semantics of quantified Boolean formulae.

Lemma 3. Let Q1 p1. · · ·Qm pm.φ be a quantified Boolean formula. Then this formula is valid
iff there exists a Σ-tree conforming with Q1 p1. · · ·Qm pm such that vu satisfies φ for every leaf
u of t.

The set of Σ-trees conforming with a given quantifier prefix can be accepted by a DRFA.

Lemma 4. Given a quantifier-prefix P = Q1 p1. · · ·Qm pm, we can construct in polynomial
time a DRFA AP that accepts exactly the Σ-trees that conform with P , and has a set of states
whose cardinality is linear in m.

Proof. We define AP = (Σ,QP , q
m
{0,1}, δP , FP ) where

– QP := {qjI | ∅ ⊂ I ⊆ {0, 1} and j = 0, 1, . . . ,m} ∪ {q⊥},
– for j = 1, . . . ,m and ∅ ⊂ I ⊆ {0, 1}, the transitions issuing from qjI depend on the quantifier
Q(m−j)+1:
• if Q(m−j)+1 = ∀, then
∗ δP (qjI , fi) := (qj−1{0} , q

j−1
{1} ) if i ∈ I,

∗ δP (qjI , fi) := (q⊥, q⊥) if i 6∈ I,
∗ δP (qjI , h) := q⊥ for h ∈ {g0, g1},

• if Q(m−j)+1 = ∃, then
∗ δP (qjI , gi) := qj−1{0,1} if i ∈ I,
∗ δP (qjI , gi) := q⊥ if i 6∈ I,
∗ δP (qjI , h) := (q⊥, q⊥) for h ∈ {f0, f1},

– the states q0I with exponent 0 have only transitions to the state q⊥, i.e., δP (q0I , h) := (q⊥, q⊥)
for h ∈ {f0, f1} and δP (q0I , h) := q⊥ for h ∈ {g0, g1},

– the state q⊥ reproduces itself, i.e., δP (q⊥, h) := (q⊥, q⊥) for h ∈ {f0, f1} and δP (q⊥, h) := q⊥
for h ∈ {g0, g1},

– the final assignment is defined as follows: FP (ci) := {q0I | i ∈ I}.

It is easy to see that L(AP ) indeed consists of exactly the Σ-trees that conform with P =
Q1 p1. · · ·Qm pm. ut

For example, the tree r on the right-hand side of Figure 1 shows an accepting run of AP on the
Σ-tree t depicted on the left-hand side.

Due to Lemma 3, we are interested in those Σ-trees t conforming with P = Q1 p1. · · ·Qm pm for
which the propositional valuations vu for the leaves u of t all satisfy φ = ψ1 ∧ . . .∧ψn. It would
not be hard to construct a DRFA that accept exactly these trees, but this automaton would be
of size exponential in the number of clauses n. Instead, we construct n automata Aψ1

P , . . . ,Aψn

P ,
each ensuring that one of the clauses ψi is satisfied by the assignments vu.

Lemma 5. Let P = Q1 p1. · · ·Qm pm be a quantifier-prefix and ψ a clause containing only
literals built using the variables p1, . . . , pm. Then we can construct in polynomial time a DRFA
AψP that accepts exactly the Σ-trees t such that t conforms with P and vu satisfies ψ for every
leaf u of t.

Proof. The automaton AψP is constructed from the DRFA AP by extending the states qjI with
a second component, which is 0 or 1. Intuitively, if the partial assignment for the variables



r1 : (q3{0,1}, 0)

(q2{0}, 0)

(q1{0,1}, 1)

(q0{0}, 1) (q0{1}, 1)

(q2{1}, 0)

(q1{0,1}, 0)

(q0{0}, 1) (q0{1}, 1)

r2 : (q3{0,1}, 0)

(q2{0}, 0)

(q1{0,1}, 0)

(q0{0}, 0) (q0{1}, 0)

(q2{1}, 0)

(q1{0,1}, 0)

(q0{0}, 0) (q0{1}, 0)

Fig. 2. Successful runs of the automata Aψ1
P and Aψ2

P .

p1, . . . , pm−j−1 seen so far on the path satisfies ψ, this second component is 1; and otherwise
it is 0. Since for the states of the form qmI and qm−1I no assignment for a propositional variable
has been determined yet, they receive the additional component 0. Only for states of the form
qjI with 0 ≤ j ≤ m− 2 is there the option to obtain a 1 as second component.

To be more precise, assume that the unique run of AP on a tree t is successful. The value for
the variable p1 in a path of the tree leading to the leaf u is decided at the node u1 at depth
1 in this path, which is labeled in the run with a state of the form qm−1I . If val(t(u1)) = 0
and ¬p1 occurs in ψ or val(t(u1)) = 1 and p1 occurs in ψ, then the valuation vu will satisfy
ψ, independently of what symbols are encountered further down in the path. In this case, the
successor states of qm−1I , which are of the form qm−2I′ in the run of AP , receive the additional
label 1 in the corresponding run of AψP . Otherwise, the additional label is 0. From then on, the
successors states receive label 1 if the current state already has label 1, or if the value of the
variable decided on this level makes ψ true (as described above for p1); otherwise, the label 0
is kept.

The value of the variable pm is decided at the leaf u. If ψ has already been satisfied by the
assignment to the variables p1, . . . , pm−1, then this value is irrelevant. Otherwise, it determines
whether the assignment vu satisfies ψ. Thus, the final assignment is modified as follows:

F (ci) := {(q0I , 1) | i ∈ I} ∪ {(q0I , 0) | i ∈ I and setting pm = i makes ψ true}.

It is easy to see that this way the automaton AP can indeed be transformed in polynomial time
into a DRFA AψP satisfying the requirements stated in the formulation of the lemma. ut

Example 4. Consider the clauses ψ1 = ¬p1∨¬p2 and ψ2 = p3∨¬p3. The trees r1 and r2 shown
in Figure 2 correspond, respectively, to successful runs of the automata Aψ1

P and Aψ2

P on the
tree t depicted on the left-hand side of Figure 1.

Both runs extend the run r of AP on t from Figure 1. For ψ1, for instance, the valuation v111
satisfies ψ1 since val(t(1)) = 0 and ¬p1 occurs in ψ1. The run r1 detects this at node 1, and the
state q1{0,1} labeling node 11 in r receives the additional label 1 to define r1(11) = (q1{0,1}, 1).
The label 1 is then transferred to the leaves. In contrast, in the paths leading to the leaves 211
and 212, the node 21 receives the additional label 0, i.e., r1(21) = (q1{0,1}, 0), since these paths
yield value 1 for the variable p1. But since the variable p2 receives value 0, the states at the
leaves have again 1 as additional label.

Regarding ψ2, since only the assignment to p3 can lead to satisfaction of ψ2, all states q1I and
q0I labeling nodes in r receive the additional label 0 in r2. Hence, the satisfaction of ψ2 is always
decided at the leaves of t, which in Aψ2

P is determined by the final assignment F . As both
assignments to p3 satisfy ψ2, one can easily verify that r2(u) ∈ F (t(u)) for all leaves u.

The following proposition is an easy consequence of Lemma 5.



Proposition 1. Let Q1 p1. · · ·Qm pm.φ be a quantified Boolean formula where φ = ψ1 ∧ . . . ∧
ψn for clauses ψj. Then we can construct in polynomial time DRFAs Aψ1

P , . . . ,Aψn

P such that
Q1 p1. · · ·Qm pm.φ is valid iff there is a tree t ∈ L(Aψ1

1 )∩ . . .∩L(Aψn
n ) such that depth(t) ≤ m.

Since validity of quantified Boolean formulae is PSpace-complete [9], this proposition implies
that the k-restricted intersection emptiness problem for DRFAs is PSpace-hard. This holds even
for unary coding of k since, in the above proposition, the size of the unary representation of m
is linearly bounded by the length of the quantifier-prefix.

5 Solving Linear Language Equations Using RFAs

As mentioned in Section 3, checking solvability of linear language equations was reduced in [5] to
testing emptiness of RFAs. However, this approach cannot directly treat equations of the form
(2). It needs equations where the variables Xi are in front of the coefficients Si. Fortunately,
such equations can easily be obtained from the ones of the form (2) by considering the mirror
images of the involved languages. For a word w = i1 . . . i` ∈ ∆∗, its mirror image is defined
as wmi := i` . . . i1, and for a finite set of words L = {w1, . . . , wm}, its mirror image is Lmi :=
{wmi

1 , . . . , wmi
m }. Obviously, the assignment θ with θ(X1) = L1, . . . , θ(Xn) = Ln is a solution of

(2) iff θmi with θmi(X1) = Lmi
1 , . . . , θmi(Xn) = Lmi

n is a solution of the corresponding mirrored
equation

Smi
0 ∪X1·Smi

1 ∪ · · · ∪Xn·Smi
n = Tmi

0 ∪X1·Tmi
1 ∪ · · · ∪Xn·Tmi

n . (6)

Finite languages over the alphabet ∆ = {1, . . . , ρ} can be represented by Σ-trees for the ranked
alphabet Σ = {f0, f1, c0, c1}, where f0, f1 are ρ-ary and c0, c1 nullary symbols. A given Σ-tree
t represents the finite language

Lt = {u ∈ dom(t) | t(u) ∈ {c1, f1}}.

Given an equation of the form (6), it is shown in [5] how to construct an RFA A = (Σ,Q, I, T, F )
of size exponential in the size of the equation that satisfies the following property.

Lemma 6 (Lemma 6.3 in [5]). For a Σ-tree t the following are equivalent:

1. The tree t is accepted by A.
2. There are finite sets of words θ(X1), . . . , θ(Xn) such that

Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n = Lt = Tmi

0 ∪ θ(X1)·Tmi
1 ∪ · · · ∪ θ(Xn)·Tmi

n .

Consequently, we have that (2) has a solution iff (6) has a solution iff the RFA A constructed
from (6) accepts some tree. Since the size of A = (Σ,Q, I, T, F ) is exponential in the size of (2),
and the emptiness problem for RFAs is decidable in polynomial time, this yields an ExpTime
decision procedure for solvability of language equations of the form (2), and thus for unifiability
in FL0. As already mentioned in Section 4, it is also shown in [5], by a reduction from the
intersection emptiness problem for DRFAs, that these problems are actually ExpTime-hard.

Theorem 2 ([5]). Unifiability in FL0 as well as solvability of language equations of the forms
(2) and (6) are ExpTime-complete problems.



6 Solving Restricted Linear Language Equations Using RFAs

In the restricted setting, we consider equations of the form (2) and are looking for solutions
θ satisfying (4) for the syntactically restricted setting or satisfying (5) for the semantically
restricted setting. Since clearly (∆≤k)mi = ∆≤k, the respective restrictions apply unchanged to
the mirrored equation (6).

6.1 The Syntactically Restricted Case

In this case we are thus looking for solutions θ of (6) satisfying

Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n =

Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n ⊆ ∆≤k.

(7)

Intuitively, for the trees accepted by the automaton A this means that we want to check whether
A accepts a tree of depth ≤ k. Similarly to what we have done in the proof of Theorem 1, this
can be achieved by adding a counter that is decremented whenever we go from a node in the
tree to a successor node. As soon as the counter reaches 0, no more transitions are possible.

To be more precise, let A = (Σ,Q, I, T, F ) be the RFA constructed from (6), as described in [5].
For an integer k ≥ 1, we define the automaton Aksyn = (Σ,Qksyn , I

k
syn , T

k
syn , F

k
syn) as follows:

– Qksyn = Q× {0, 1, . . . , k},
– Iksyn = I × {k},
– T ksyn(f) = {((q, i), (q1, i− 1), . . . , (qρ, i− 1)) | (q, q1, . . . , qρ) ∈ T (f) and i ≥ 1}

for f ∈ {f0, f1},
– F ksyn(c) = F (c)× {0, 1, . . . , k} for c ∈ {c0, c1}.

Basically, Aksyn works like A, but once it has reached a node at depth k in the tree, it cannot
make any transition. Thus, it accepts exactly the trees that have depth at most k and are
accepted by A. Since nodes at a depth i correspond to words of this length i, we obtain the
following lemma.

Lemma 7. The automaton Aksyn accepts a tree t iff (6) has a solution θ that satisfies (7).

Proof. If (6) has a solution θ that satisfies (7), then there is a tree t of depth at most k that
represents this solution in the sense that it satisfies 2. of Lemma 6. The tree t then also satisfies
1. of Lemma 6, i.e., it is accepted by A. Since t has depth at most k, it is then also accepted
by Aksyn .

Conversely, if the tree t is accepted by Aksyn , then it is also accepted by A and has depth at
most k. The former implies, by Lemma 6, that 2. of Lemma 6 holds, and the latter yields that
L(t) ⊆ ∆≤k. Thus, the sets θ(X1), . . . , θ(Xn) provided by 2. of Lemma 6 satisfy (7). ut

As an easy consequence of this lemma, and the connection between syntactically k-restricted
unification and the problem of finding solutions of (6) that satisfy (7), we obtain the following
complexity results. Note that, as in the unrestricted case, solvability of language equations in
the syntactically restricted sense of (6) can obviously be reduced to syntactically k-restricted
unification.



Theorem 3. Given an integer k ≥ 1 and FL0 concepts C,D as input, the problem of deciding
whether the syntactically k-restricted unification problem C ?≡ksyn D has a unifier or not is
ExpTime-complete if the number k is assumed to be encoded in binary, and PSpace-complete if
k is assumed to be encoded in unary.

Proof. Let us first consider the case where the number k is encoded in binary. To show the
complexity upper bound, first note that we can assume that the numbers i ∈ {0, . . . , k} used
within the automaton Aksyn are also encoded in binary. For this reason, a single state (q, i) ∈
Qksyn requires only polynomial space for its representation since this is also the case for the
states q of A. However, in the size of the binary representation of k, the set {0, . . . , k} has an
exponential cardinality. Nevertheless, since the cardinality of the set of states Q is exponential
in the size of the concepts C,D, the overall cardinality of Qksyn , and thus of the automaton
Aksyn , is still at most exponential in the size of the input. Since the emptiness problem for
RFAs can be decided in polynomial time, this yields the desired ExpTime upper bound for the
k-restricted unification problem.

We show the ExpTime lower bound by reducing the problem of testing whether an equation
of the form (6) has a solution (which is known to be ExpTime-hard by Theorem 2) to the
problem of whether this equation has a k-restricted solution for an appropriate number k.
Given an equation of the form (6), we can compute the cardinality of the set of states of the
corresponding automaton A without actually computing the automaton itself. Let k be the
cardinality of this set. Then the binary representation of k has a size that is polynomial in the
size of (6). We claim that (6) has a solution iff it has a k-restricted solution, i.e., one satisfying
(7). In fact, we know that (6) has a solution iff A accepts some tree t. Since it is well-known
that an RFA with set of states Q accepts a tree iff it accepts a tree of depth at most |Q|, the
latter is equivalent to Aksyn accepting a tree, which in turn is equivalent to (6) having a solution
that satisfies (7).

For the case where the number k is represented in unary, the reduction described in the previous
paragraph would no longer be polynomial. Similarly to the approach used to prove the PSpace
upper bound in Theorem 1, we can show that there is a PSpace upper bound for checking
whether Aksyn accepts some tree. Again, the main idea is that we can generate and explore
a polynomially branching tree of polynomial depth using only polynomial space. To be more
precise, we can guess (in NPSpace) a tree of depth at most k and a successful run of Aksyn
on this tree. For this, we can, of course, not construct the whole automaton Aksyn beforehand
(since its representation would need exponential space), but we can generate transitions of the
automaton on-the-fly using only polynomial space. One way of making this more formal would
be to transfer the results in [2] for automata that have a PSpace on-the-fly construction from
looping tree automata on infinite trees to root-to-frontier tree automata working on finite trees.

PSpace-hardness can be shown by a reduction of the k-restricted intersection emptiness prob-
lem for DRFAs. As shown in [5], the unrestricted version of this problem can be reduced in
polynomial time to (unrestricted) solvability of language equations of the form (2). A close look
at this reduction reveals that the length of the words in a solution of the language equation
is linearly bounded by the depth of the tree contained in the intersection. To be more precise,
if the depth of the tree in the intersection is bounded by `, then the equation has a solution
satisfying (4) for k = 2`+ 2.

To be more precise, given a tree t of depth `, the approach used in Section 7 of [5] constructs a
finite set of words S(t) such that the length of the words in S(t) is bounded by 2`+ 1. If t is a
tree accepted by all automata in the given sequence of DRFAs, then there are solutions of the
constructed language equations (i) of the form (7.1) in [5] such that the longest words occurring
in these solutions belongs to S(t) (see Lemma 7.4 and the proof of Theorem 7.6 in [5]). This
yields a bound of 2` + 1 for the length of words in the solutions, but since the equations (i)



for the single automata are encoded into a single equation (0) (following the approach sketched
below Theorem 4 below), another 1 needs to be added.

For this reason, the reduction in [5] also is a reduction of the `-restricted intersection emptiness
problem for DRFAs to the question of whether a language equation of the form (2) has a
syntactically k-restricted solution, i.e., a solution satisfying (4), where k = 2`+2. By Theorem 1,
the `-restricted intersection emptiness problem is PSpace-hard for unary coding of numbers. ut

6.2 The Semantically Restricted Case

In this case, to solve the mirrored equation (6), we are looking for assignments θ satisfying

(Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n ) ∩∆≤k =

(Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n ) ∩∆≤k.

(8)

We cannot directly apply Lemma 6 here since the assignment θ need not be a solution of (6).
However, it is easy to see that a result similar to this lemma also holds for partial runs of the
automaton A = (Σ,Q, I, T, F ) constructed from (6). Given a Σ-tree t, we define domn(t) :=
dom(t) ∩∆≤n. A partial run of depth k of A on t is a mapping p : domk+1(t) → Q such that
p(ε) ∈ I and the following holds for all u ∈ domk(t):

– if u is a leaf, then p(u) ∈ F (t(u)),
– if u is not a leaf, them (p(u), p(u0), p(u1)) ∈ T (t(u)).

It is easy to see that the following generalization of Lemma 6 also holds.

Lemma 8. Let A be the RFA constructed in [5] from (6). For a Σ-tree t and an integer k ≥ 1
the following are equivalent:

1. There is a partial run of depth k of A on t.
2. There are finite sets of words θ(X1), . . . , θ(Xn) such that

(Smi
0 ∪ θ(X1)·Smi

1 ∪ · · · ∪ θ(Xn)·Smi
n ) ∩∆≤k = Lt ∩∆≤k =

(Tmi
0 ∪ θ(X1)·Tmi

1 ∪ · · · ∪ θ(Xn)·Tmi
n ) ∩∆≤k.

Note that Lemma 6 is in fact a special case of this lemma, which is obtained by considering the
setting where dom(t) ⊆ ∆≤k.

To check whether there is a partial run of depth k of A on t, we again add a counter to the
states of the automaton A, but now basically accept as soon as the counter goes below the value
0. To be more precise, let A = (Σ,Q, I, T, F ) be the RFA constructed from (6), as described
in [5]. For an integer k ≥ 1, we define the automaton Aksem = (Σ,Qksem , I

k
sem , T

k
sem , F

k
sem) as

follows:

– Qksem = Q× {−1, 0, 1, . . . , k},
– Iksem = I × {k},
– T ksem(f) = {((q, i), (q1, i− 1), . . . , (qρ, i− 1)) | (q, q1, . . . , qρ) ∈ T (f) and i ≥ 0}

for f ∈ {f0, f1},
– F ksem(c) = (F (c)× {0, 1, . . . , k}) ∪ {(q,−1) | q ∈ Q} for c ∈ {c0, c1}.

Lemma 9. The automaton Aksem accepts a tree t iff there is an assignment θ that satisfies (8).



Proof. Assume that the automaton Aksem accepts the tree t with a successful run r : dom(t)→
Qksem . It is easy to see that we obtain a partial run p of depth k of A on t by forgetting about
the counter values, i.e., by setting p(u) = q if r(u) = (q, i) for all u ∈ dom(t).4 By Lemma 8,
this implies that there is an assignment θ that satisfies (8).

Conversely, assume that θ is an assignment satisfying (8). It is easy to see that there is a tree
t with dom(t) ⊆ ∆≤k+1 such that Lt ∩∆≤k = (Smi

0 ∪ θ(X1)·Smi
1 ∪ · · · ∪ θ(Xn)·Smi

n )∩∆≤k. By
Lemma 8, this implies that there is a partial run p of depth k of A on t. This partial run can
be turned into a successful run r of Aksem on t by adding the appropriate counter values, i.e., if
p(u) = q for u ∈ dom(t), then set r(u) = (q, k − |u|). ut

Based on this lemma, the following theorem can be shown analogously to the proof of the
complexity upper bounds in Theorem 3.

Theorem 4. Given an integer k ≥ 1 and FL0 concepts C,D as input, the problem of deciding
whether the semantically k-restricted unification problem C ?≡ksem D has a unifier or not is in
ExpTime if the number k is assumed to be encoded in binary, and in PSpace if k is assumed to
be encoded in unary.

For the case of unary coding of k, we can show a matching PSpace lower bound. This lower
bound cannot be shown in the same way as for the syntactically restricted case since in the
semantically restricted case we may have a solution although there is no unrestricted solution.
Instead, we reduce the syntactically restricted case to the semantically restricted one. The main
idea is that we can express inclusion of a solution in ∆≤k using additional language equations.
Until now, we have considered only single language equations. It is sometimes more convenient
to consider a system of such equations. An assignment solves such a system if it is a solution of
all the equations occurring in such a system. Solvability of finite systems of language equations
can be reduced to solvability of a single language equation. In fact, the solutions of {L1 =
R1, . . . , L` = R`} coincide with the solutions of {1}·L1 ∪ . . . ∪ {`}·L` = {1}·R1 ∪ . . . ∪ {`}·R`.
Since this reduction increases the length of the words in the solved equations only by the
constant 1, this reduction also works for the restricted setting since one only needs to increase
the bound k by 1.

First, note that we can be express the language ∆≤k by the following system of language
equations:

– Zj+1 = {ε} ∪ {1, . . . , ρ}·Zj for j ∈ {0, . . . , k − 1},
– Z0 = {ε} and Z = Zk.

It is easy to see that any assignment θ that solves this system satisfies θ(Z) = ∆≤k. Now,
assume that θ solves this system in the semantically k′-restricted sense for some bound k′ ≥ k.
Then θ(Z) may contain words that are longer than k. But then these words must also be longer
than k′.

Lemma 10. Let θ be an assignment such that

– θ(Zj+1) ∩∆≤k′ = ({ε} ∪ {1, . . . , ρ}·θ(Zj)) ∩∆≤k
′

for j ∈ {0, . . . , k − 1},
– θ(Z0) ∩∆≤k′ = {ε} ∩∆≤k′ and θ(Z) ∩∆≤k′ = θ(Zk) ∩∆≤k′ .

If w ∈ θ(Z) is such that |w| > k, then |w| > k′.
4 Note that the definition of Aksem implies that dom(t) ⊆ ∆≤k+1.



Proof. First, we show by induction on j that the following holds: if w ∈ θ(Zj) is such that
|w| > j, then |w| > k′. For j = 0, this is trivially satisfied.

For the induction step (j → j + 1), assume that w ∈ θ(Zj+1) is such that |w| > j + 1. If
w 6∈ {1, . . . , ρ}·θ(Zj), then this clearly implies |w| > k′. Otherwise, there is an i, 1 ≤ i ≤ ρ, and
a word w′ ∈ θ(Zj) such that w = iw′. But then |w′| > j, and thus induction yields |w′| > k′,
which implies |w| > k′.

Now assume that w ∈ θ(Z) with |w| > k. If w 6∈ θ(Zk), then this clearly implies |w| > k′.
Otherwise, w ∈ θ(Zk) implies |w| > k′ by what we have shown above. ut

Now, let L = R be a linear language equation, where L = S0 ∪ S1·X1 ∪ · · · ∪ Sn·Xn and
R = T0 ∪T1·X1 ∪ · · · ∪Tn·Xn. We want to reduce syntactically k-restricted solvability of L = R
to semantically k′-restricted solvability of an extended system of equations E. Since we are
interested in syntactically k-restricted solvability of L = R, we can assume without loss of
generality that S0 ∪ T0 ⊆ ∆≤k since otherwise the equation would be trivially unsolvable. The
extended system E of equations consists of

– Zj+1 = {ε} ∪ {1, . . . , ρ}·Zj for j ∈ {0, . . . , k − 1},
– Z0 = {ε} and Z = Zk,
– L = R and L ∪ Z = Z.

Let `min and `max respectively be the minimal and the maximal length of a word in
⋃n
i=1 Si∪Ti.

We define k′ := `max + max(0, k − `min). Note that k′ ≥ k since `min ≤ `max .

Lemma 11. The language equation L = R has a syntactically k-restricted solution iff the
system of language equations E has a semantically k′-restricted solution.

Proof. If L = R has a syntactically k-restricted solution, then it is easy to see that E has an
unrestricted solution. Obviously, this solution is also a semantically k′-restricted solution of E.

Conversely, assume that θ is a semantically k′-restricted solution of E. Additionally, we can
assume without loss of generality that this is a solution for which |θ(X1)| + . . . + |θ(Xn)| is
minimal, where | · | denotes set cardinality. If

⋃n
i=1(Si·θ(Xi) ∪ Ti·θ(Xi)) ⊆ ∆≤k, then k ≤ k′

and S0 ∪T0 ⊆ ∆≤k imply that θ is a solution of L = R in the unrestricted sense, and thus (due
to the assumed inclusions in ∆≤k) also in the syntactically k-restricted sense.

Now, assume that there is an i and a word w ∈ Si·θ(Xi)∪Ti·θ(Xi) such that |w| > k. Then, due
to the presence of the equation L ∪ Z = Z in E, we have |w| > k′ or w ∈ θ(Z). By Lemma 10,
the latter also implies |w| > k′. Since w ∈ Si·θ(Xi) ∪ Ti·θ(Xi), there are words u ∈ Si ∪ Ti and
v ∈ θ(Xi) such that w = uv. Now, |uv| > k′ and |u| ≤ `max yield |v| > max(0, k − `min). This
implies that |u′v| > k for all u′ ∈ Si ∪ Ti. By employing the same argument used above for w,
we can show that this actually implies |u′v| > k′. But then it is clear that removing v from
θ(Xi) yields a semantically k′ restricted solution θ′ of E. This contradicts our assumption that
θ is a solution for which |θ(X1)| + . . . + |θ(Xn)| is minimal. Thus, the case where there is an
i and a word w ∈ Si·θ(Xi) ∪ Ti·θ(Xi) such that |w| > k cannot occur. This shows that θ is a
solution of L = R in the syntactically k-restricted sense. ut

If k is encoded in unary, then the system E and the number k′ can be constructed from
L = R and k in polynomial time. Since syntactically k-restricted solvability is PSpace-hard by
Theorem 3, Lemma 11 together with Theorem 4 yields the following complexity result.

Corollary 1. Given an integer k ≥ 1 and FL0 concepts C,D as input, the problem of deciding
whether the semantically k-restricted unification problem C ?≡ksem D has a unifier or not is
PSpace-complete if k is assumed to be encoded in unary.



If k is encoded in binary, then the reduction described above is no longer polynomial since
the system E contains k + 1 variables, and the value k is exponential in the size of the binary
representation of k. It is an open problem whether, for the case of binary coding, the ExpTime
upper bound in Theorem 4 is tight.

7 The Unification Type

Until now, we were mainly interested in the complexity of deciding solvability of unification
problems. For this, it is sufficient to consider ground unifiers. Now, we want to investigate the
question of whether all unifiers of a given unification problem can be represented as instances
of a finite set of (non-ground) unifiers.

In the unrestricted setting, the instance relation between FL0 unifiers is defined as follows. Let
C ?≡D be an FL0 unification problem, V the set of concept variables occurring in C and D,
and σ, θ two unifiers of this problem. We define

σ ≤• θ if there is a substitution λ such that θ(X) ≡ λ(σ(X)) for all X ∈ V.

If σ ≤• θ, then we say that θ is an instance of σ.

Definition 4. Let C ?≡D be an FL0 unification problem. The set of substitutions M is called
a complete set of unifiers for C ?≡D if it satisfies

1. every element of M is a unifier of C ?≡D;
2. if θ is a unifier of C ?≡D, then there exists a unifier σ ∈M such that σ ≤• θ.

The set M is a minimal complete set of unifiers for C ?≡D if it additionally satisfies

3. if σ, θ ∈M , then σ ≤• θ implies σ = θ.

The unification type of a given unification problem is determined by the existence and cardi-
nality of such a minimal complete set.

Definition 5. Let C ?≡ D be an FL0 unification problem. This problem has type unitary
(finitary, infinitary) if it has a minimal complete set of unifiers of cardinality 1 (finite car-
dinality, infinite cardinality). If C ?≡D does not have a minimal complete set of unifiers, then
it is of type zero.

The unification types can be ordered as follows:

unitary < finitary < infinitary < type zero.

Basically, the unification type of FL0 is the maximal type of an FL0 unification problem.
However, in unification theory, one usually distinguishes between unification with and without
constants [7]. In an FL0 unification problem with constants, no restrictions are put on the
concepts C and D to be unified. In an FL0 unification problem without constants, C and
D must not contain concept names from NC . The unification type of FL0 for unification
with (without) constants is the maximal type of an FL0 unification problem with (without)
constants.

The unification type of an equational theory is defined analogously (see [7] for details). It
was shown in [1] that the unification type of the theory ACUIh (called AIMH in [1]) is zero,



even if one has only one homomorphism h and considers unification without constants. Thus,
unification in FL0 is also of type zero for unification without constants, and thus also for
unification with constants. We will show in this section that this is no longer the case if we
consider restricted unification. For the semantically restricted case, this is an easy consequence
of general results about commutative/monoidal theories [1,14].

7.1 The Semantically Restricted Case

In this case, the instance relation between unifiers, (minimal) complete sets of unifiers, and the
unification type are defined as for the unrestricted case, but now using ≡ksem instead of ≡ in
these definitions.

According to [14], unification without constants in a monoidal theory E is unitary if the semiring
SE corresponding to E is finite. In [1], the same result is shown for commutative theories E under
the assumption that the finitely generated E-free algebras are finite. It is easy to see that these
two conditions actually coincide for commutative theories [6]. In addition to unification without
constants, also unification with constants is considered in [1], and it is shown that, if the finitely
generated E-free algebras are finite, then unification with constants in the commutative theory
E is at most finitary (i.e., unitary or finitary). The following theorem is an easy consequence of
these results.

Theorem 5. Unification in ACUIhk, and thus also semantically k-restricted unification in
FL0, is unitary for unification without constants and finitary for unification with constants.

Proof. It is easy to see that the semiring corresponding to ACUIhk is finite since its elements are
all the subsets of the finite set ∆≤k. Thus, the results in [1,14] yield that ACUIhk is unitary for
unification without constants and at most finitary for unification with constants. The following
example shows that the theory is not unitary for unification with constants: if x is a variable
and a a constant, then the terms x∧a and a have (restricted to x) exactly two ACUIhk unifiers
{x 7→ 1} and {x 7→ a}, which are not in any instance relationship. ut

7.2 The Syntactically Restricted Case

For the syntactically restricted case, we can actually use equivalence ≡ rather than ≡ksyn when
defining the instance relation between unifiers, (minimal) complete sets of unifiers, and the
unification type. But of course the set of unifiers is usually smaller than in the unrestricted
case.

To deal with the syntactically restricted case, the results on the unification type for commuta-
tive/monoidal theories cannot be applied directly, but we can show the same results as for the
semantically restricted case, using the ideas underlying the proofs in [1,14]. We will formulate
our proof using the syntax of FL0 rather than the equational theory variant.

Let C,D be FL0 concepts and σ a syntactically k-restricted unifier of C and D. Let X1, . . . , Xn

be the concept variables occurring in C,D and A1, . . . , A` the concept constants. First, note
that we can assume that σ does not introduce new concept constants since otherwise one could
get a more general unifier by replacing such a constant by a new variable. Let Y1, . . . , Ym be
the concept variables in the range of σ, where we assume without loss of generality that they
are different from the variables X1, . . . , Xn. For i = 1, . . . , n, the LNF of the concept σ(Xi) is
of the form

σ(Xi) = Ki u ∀Li,1.Y1 u . . . u ∀Li,m.Ym, (9)



where Ki is a concept of role depth ≤ k not containing concept variables and only concept
constants in {A1, . . . , A`} and the Li,j are subsets of ∆≤k. Recall that ∀Li,j .Yj abbreviates the
conjunction of the value restrictions ∀w.Yj for w ∈ Li,j , which in turn is an abbreviation for
∀r1. · · · ∀rν .Yj if w = r1 . . . rν .

Now, consider for every variable Yj , 1 ≤ j ≤ m, the tuple of languages L(Yj) = (L1,j , . . . , Ln,j),
and assume that there are indices j 6= j′ such that L(Yj) = L(Yj′). Let θj′ be the substitution
that replaces Yj′ with > and leaves all other variable Yµ unchanged. Then σj′ = σθj′ is an
instance of σ, which is still a syntactically k-restricted unifier of C and D, but introduces one
variable less. Conversely, using the substitution λj,j′ = {Yj 7→ Yj u Yj′}, we obtain σ as an
instance of σj′ since σ = σj′λj,j′ .

Let c denote the (finite) cardinality of ∆≤k. Then there are at most 2c·n different n-tuples of
subsets of ∆≤k. Thus, if a syntactically k-restricted unifier of C and D introduces more than
2c·n variables, it is an instance of a syntactically k-restricted unifier of C and D that introduces
at least one variable less. This observation can be used to show the following lemma.

Lemma 12. There is a complete set of syntactically k-restricted unifiers of C and D that
consists of unifiers whose range contains at most the variables Y1, . . . , Ym for m = 2c·n.

Turning the argument around again, once we have restricted the unifiers in the complete set to
ones using only finitely many variables, we know that there can be only finitely many unifiers
in this set. In fact, if we consider (9), then we see that the Ki and Li,j range over finite sets.
This proves the following theorem.

Theorem 6. Syntactically k-restricted unification with constants in FL0 is finitary.

To show that unification with constants is not unitary, we can use the same example as in the
semantically restricted case. Unification without constants is again unitary.

Corollary 2. Syntactically k-restricted unification without constants in FL0 is unitary.

Proof. By the previous theorem, there is a finite complete set {σ1, . . . , σκ} of syntactically k-
restricted unifiers of C,D. Without loss of generality, we can assume that the variables occurring
in the ranges of these unifiers are disjoint and that no concept constant occurs in the range.
The latter assumption can be made since the unification problem itself does not contain such
constants. Under these assumptions, the substitution σ defined as

σ(Xi) = σ1(Xi) u . . . u σκ(Xi) for i = 1, . . . , n

is also a syntactically k-restricted unifier of C,D, and it has the substitutions σ1, . . . , σκ as
instances. Thus, {σ} is a complete set of unifiers.

To make this more precise, the first claim can be shown by proving by induction that σ(E) ≡
σ1(E)u . . .u σκ(E) holds for all FL0 concepts E. This then implies that σ(C) ≡ σ1(C)u . . .u
σκ(C) ≡ σ1(D) u . . . u σκ(D) ≡ σ(D). These equivalences also imply that the role depth of
σ(C) is equal to the maximum of the role depths of the σi(C) for i = 1, . . . , κ, and the same
holds for D. Thus, σ is indeed a syntactically k-restricted unifier of C,D.

Regarding the second claim, it is easy to see that σi can be obtained as an instance of σ using
the substitution λi that replaces all variables in the range of σ not occurring in the range of σi
with >. Note that this only holds since we have assumed that the ranges of the substitutions
σj do not contain concept constants and use disjoint sets of variables. ut



8 Conclusion

We have investigated both a semantically and a syntactically restricted variant of unification
in FL0, where either the role depth of concepts or the length of role paths in interpretations is
restricted by a natural number k ≥ 1. These restrictions lead to a considerable improvement of
the unification type from the worst possible type to unitary/finitary for unification without/with
constants. For the complexity of the decision problem, we only obtain an improvement if k is
assumed to be encoded in unary.

As future work, we will investigate whether the ExpTime upper bound in Theorem 4 for the
case of binary coding of k is tight. In addition, we will consider similar restrictions for other
DLs. For example, the unification type of the DL EL is also known to be zero, and the decision
problem is NP-complete [4]. We conjecture that, for this DL, the restricted variants will not
lead to an improvement of unification type or complexity.

In [11], a syntactically restricted version of unification in the theory ACh was shown to be
decidable, but neither the unification type nor the complexity of the decision problem was de-
termined. It would be interesting to investigate these problems and also consider a semantically
restricted variant.
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