
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Computing Optimal Repairs of Quantified ABoxes
w.r.t. Static EL TBoxes
(Extended Version)

Franz Baader, Patrick Koopmann,
Francesco Kriegel, Adrian Nuradiansyah

LTCS-Report 21-01

Updated on May 5, 2021. This is an extended version of an
article accepted at CADE 2021.

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Computing Optimal Repairs of
Quantified ABoxes w.r.t. Static EL TBoxes

(Extended Version)

Franz Baader, Patrick Koopmann,
Francesco Kriegel, Adrian Nuradiansyah

May 5, 2021

Abstract

The application of automated reasoning approaches to Description Logic
(DL) ontologies may produce certain consequences that either are deemed
to be wrong or should be hidden for privacy reasons. The question is
then how to repair the ontology such that the unwanted consequences can
no longer be deduced. An optimal repair is one where the least amount
of other consequences is removed. Most of the previous approaches to
ontology repair are of a syntactic nature in that they remove or weaken the
axioms explicitly present in the ontology, and thus cannot achieve semantic
optimality. In previous work, we have addressed the problem of computing
optimal repairs of (quantified) ABoxes, where the unwanted consequences
are described by concept assertions of the lightweight DL EL. In the present
paper, we improve on the results achieved so far in two ways. First, we allow
for the presence of terminological knowledge in the form of an EL TBox.
This TBox is assumed to be static in the sense that it cannot be changed
in the repair process. Second, the construction of optimal repairs described
in our previous work is best case exponential. We introduce an optimized
construction that is exponential only in the worst case. First experimental
results indicate that this reduces the size of the computed optimal repairs
considerably.

1 Introduction

Description Logics [3] are a well-investigated family of logic-based knowledge
representation languages, which are frequently used to formalize ontologies for
application domains such as biology and medicine [18]. As the size of ontologies

1

grows, the likelihood of them containing errors increases as well. This is partic-
ularly problematic if the data, stored in the ABox, are automatically extracted
from text or other sources using natural language processing or machine learn-
ing. The reasoning services of DL systems [23, 12, 34, 16], which derive implicit
consequences from the explicitly represented knowledge, are not only useful once
an ontology is deployed, but can also be employed for debugging purposes by
exhibiting consequences that are not supposed to hold in the application domain.
Another reason why one might want to remove a consequence is that it reveals
private information that is supposed to be hidden [14, 4]. Once such an unwanted
consequence is detected, it is often not easy to see how to repair the ontology in
order to get rid of this consequence. Classical repair approaches based on axiom
pinpointing [32, 30, 28, 33, 22, 8] compute maximal subsets of the ontology that
do not have the consequence. The obtained result thus strongly depends on the
syntactic form of the axioms. For example, it is well-known that, for expressive
DLs, a finite set of terminological axioms can be expressed by a single axiom.
If the given terminology (TBox) is of this shape, then the only possible classical
repair is the empty TBox. To alleviate this problem, repair approaches have been
developed that replace certain axioms by weaker ones (in the sense that they have
less consequences) instead of removing them completely [19, 25, 35, 6]. However,
these approaches usually do not produce optimal repairs. In fact, it was shown
in [6] that, even for the inexpressive DL EL, optimal repairs need not exist. The
abstract example given there can be rephrased as follows. Assume that the TBox
defines humans to be exactly those individuals that have a human parent, and
that the ABox says that Sam is a human. After we find out that Sam is in fact
not human [9], we want to get rid of the latter assertion, but keep the (correct)
consequences saying that Sam has an unbounded chain of ancestors (of undeter-
mined species). If the TBox is assumed to be fixed, then there is no optimal
repair of the ABox since we can add only a finite number of parent assertions.

To avoid such problems, our previous work on computing optimal repairs (for-
mulated in the guise of achieving compliance with privacy policies) restricted the
attention to the case without TBox. In [4] the ABox was additionally restricted
to be a so-called instance store [20], i.e., an ABox without role assertions. The
privacy policy (specifying which consequences are to be removed) was given as
EL instance queries. In this setting, optimal repairs always exist and can be
computed in exponential time, which is optimal since there may be exponentially
many optimal repairs of exponential size.

In [7] these results were extended to ABoxes with role assertions. More precisely,
we considered quantified ABoxes in which some individuals are anonymized by
viewing them as existentially quantified variables. For example, assume that the
ABox contains the information that Ben has a parent, Jerry, that is both rich and
famous, and we want to remove the consequence

E

parent .(RichuFamous)(BEN).
Classical repairs can be obtained by removing one of the assertions Rich(JERRY),
Famous(JERRY), and parent(BEN , JERRY). If instead we replace the first as-

2

sertion with Rich(x) and parent(BEN , x) for an existentially quantified variable x,
then we retain more consequences. Note that we could not have used an individ-
ual name (i.e., constant) ANNE instead of x since information like Rich(ANNE)
about Anne does not follow from the original ABox. We show in [7] that in
this setting all optimal repairs can be computed by an exponential-time algo-
rithm with access to an NP-oracle. The oracle is needed since our algorithm first
computes a superset of the set of optimal repairs, from which non-optimal ones
need to be removed using the (NP-complete) entailment test between (potentially
exponentially large) quantified ABoxes. We also consider a modified version of
entailment (called IQ-entailment) in [7], where quantified ABoxes are compared
w.r.t. which EL instance relationships they imply. Using this notion, no NP-oracle
is needed for computing the set of all IQ-optimal repairs since IQ-entailment can
be decided in polynomial time.

In the present paper, we improve on these results in two respects. On the one
hand, we allow for the presence of terminological knowledge in the form of an EL
TBox, which is assumed to be correct, and thus is not changed by the repair. To
deal with a TBox, the approach from [7] for computing optimal repairs must be ex-
tended in two ways. First, the ABox needs to be saturated w.r.t. the TBox before
applying our repair approach. The saturated ABox has the same consequences
as the original one has together with the TBox. In our Ben and Jerry example,
assume that the assertion Rich(JERRY) does not belong to the original ABox,
but the TBox contains the axiom Famous v Rich. Then the ABox on its own
does not have the unwanted consequence

E

parent .(Rich u Famous)(BEN), but
together with the TBox it does. Saturation adds the assertion Rich(JERRY) to
the ABox. For arbitrary TBoxes, saturation need not terminate. We consider two
ways to remedy this problem: either allow for arbitrary TBoxes, but consider IQ-
entailment, or use classical entailment, but consider cycle-restricted TBoxes [1].
In both cases, saturation always terminates; in the former in polynomial and
in the latter in exponential time. One might be tempted to assume that, after
saturation, one can simply apply the repair approach of [7] unchanged. This is
not true, however, since the TBox may re-add assertions that have been removed
or replaced by the repair. In our example, where Rich(JERRY) is replaced, but
Famous(JERRY) is left untouched in the repair, the repaired ABox together with
the TBox would still have the unwanted consequence. Thus, the repair approach
needs to be changed to take this possibility into account.

On the other hand, the construction of optimal repairs described in our previous
work [4, 7], and extended in this paper such that it can deal with TBoxes, is best
case exponential. The second contribution of this paper is the design of a new
construction, both for classical and IQ-entailment, that is exponential only in the
worst case. We also report on first experimental results, which indicate that this
reduces the size of the computed optimal repairs considerably.

3

2 Preliminaries

Throughout this paper, we assume that Σ is a signature, which is a disjoint union
of sets ΣO, ΣC, and ΣR of object names, concept names, and role names. We use
symbols t, u, v, w to denote object names, A,B to denote concept names, and r, s
to denote role names, all of them possibly with sub- or superscripts.

As in [7], a quantified ABox (qABox)

E

X.A over Σ consists of a finite subset
X of ΣO, the elements of which are called variables, and a matrix A, which is
a finite set of concept assertions A(u) where u ∈ ΣO and A ∈ ΣC, and of role
assertions r(u, v) where u, v ∈ ΣO and r ∈ ΣR. An non-variable object name in

E

X.A is called an individual name, and the set of all these names is denoted as
ΣI(

E

X.A). We further set ΣO(

E

X.A) := ΣI(

E

X.A)∪X. Traditional DL ABoxes
are qABoxes where X = ∅; we then write A instead of

E

∅.A. The matrix of a
qABox is such a traditional ABox.

An interpretation I of Σ is a pair (∆I , ·I), where the domain ∆I is a non-empty
set and the interpretation function ·I maps each u ∈ ΣO to an element uI of ∆I ,
each A ∈ ΣC to a set AI ⊆ ∆I , and each r ∈ ΣR to a binary relation rI over
∆I . The interpretation I of Σ is a model of a qABox

E

X.A over Σ if there is
an interpretation J such that ∆I = ∆J , the interpretation functions ·I and ·J
coincide on Σ \X, and uJ ∈ AJ for each A(u) ∈ A as well as (uJ , vJ) ∈ rJ for
each r(u, v) ∈ A.

Following [7], we define EL atoms and EL concept descriptions over Σ by simul-
taneous induction as follows. An EL atom is either a concept name A ∈ ΣC or
an existential restriction

E

r.C for some role name r ∈ ΣR and an EL concept
description C. An EL concept description is a conjunction

d
C where C is a

finite set of EL atoms. An EL concept inclusion is of the form C v D for EL
concept descriptions C and D, and an EL TBox is a finite set of such concept
inclusions. An EL concept assertion is an expression C(u), where C is an EL
concept description and u ∈ ΣO.

For each interpretation I of Σ, we extend the interpretation function ·I to EL
atoms and EL concept descriptions in the following manner:

• (

E

r.C)I := { δ | there exists some γ such that (δ, γ) ∈ rI and γ ∈ CI },
• (

d
C)I :=

⋂
{CI | C ∈ C } where

⋂
∅ = ∆I .

The interpretation I is a model of the concept inclusion C v D (the concept
assertion C(u)) if CI ⊆ DI (uI ∈ CI), and of the TBox T if it is a model of each
concept inclusion in T .

To make the syntax introduced above more akin to the one usually employed
for EL, we denote the empty conjunction

d
∅ as > (top concept), singleton con-

junctions
d
{C} as C, and conjunctions

d
C for |C| ≥ 2 as C1 u . . . u Cn, where

C1, . . . , Cn is an enumeration of the elements of C in an arbitrary order. Given

4

an EL concept description C =
d
C, we denote its set of atoms C as Conj(C).

Since we do not distinguish between the singleton conjunction
d
{C} and the

atom C, each atom is also a concept description. The set Sub(C) of subcon-
cepts of an EL concept description C is defined as follows: Sub(A) := {A},
Sub(

E

r.C) := {

E

r.C} ∪ Sub(C), and Sub(
d
C) := {

d
C} ∪

⋃
{ Sub(D) | D ∈ C }.

The set Atoms(C) consists of all atoms contained in Sub(C). These two notions
are extended to TBoxes and sets of concept assertions in the obvious way.

Let α, β be qABoxes, concept inclusions, or concept assertions (possibly not both
of the same kind), and T an EL TBox. Then we write I |= α if the interpretation
I is a model of α. We say that α entails β w.r.t. T (written α |=T β) if every
model of α and T is a model of β. Furthermore, α and β are equivalent w.r.t.
T (written α ≡T β), if α |=T β and β |=T α. In case T = ∅, we will sometimes
write |= instead of |=∅. If

E

∅.∅ |=T C v D, then we also write C vT D and
say that C is subsumed by D w.r.t. T ; in case T = ∅ we simply say that C is
subsumed by D. Two EL concept descriptions are equivalent w.r.t. T (written
C ≡T D) if they subsume each other w.r.t. T . We write C @T D to indicate
that C vT D, but C 6≡T D. If

E

X.A |=T C(a), then a is called an instance
of C w.r.t.

E

X.A and T . For EL, the subsumption and the instance problem
are decidable in polynomial time [2]. However, entailment between qABoxes is
NP-complete even w.r.t. the empty TBox [7].

The following two lemmas characterize subsumption and the instance problem,
which both follow from the homomorphism characterization of entailment [7].

Lemma I. Let C and D be two EL concept descriptions. C is subsumed by D
w.r.t. ∅ if and only if A ∈ Conj(D) implies A ∈ Conj(C) for each concept name
A and, for each existential restriction

E

r.F ∈ Conj(D), there is an existential
restriction

E

r.E ∈ Conj(C) such that E is subsumed by F w.r.t. ∅.

Lemma II. Let A be the matrix of a qABox (seen as a usual ABox) and let C(a)
be an EL concept assertion. A |= C(a) if and only if A(a) ∈ A for each concept
name A ∈ Conj(C) and, for each existential restriction

E

r.D ∈ Conj(C), there is
some role assertion r(a, b) ∈ A such that A |= D(b).

We also use the reduced form Cr of EL concept descriptions C [24], which in our
setting is defined inductively as follows:

• For atoms, we set Ar := A for A ∈ ΣC and (

E

r.C)r :=

E

r.Cr.

• To obtain the reduced form of
d
C, we first reduce the elements of C, i.e.,

construct the set Cr := {Cr | C ∈ C }. Then we build Min(Cr) by removing
all elements D that are not subsumption minimal, i.e., for which there is
an E in the set such that E @∅ D. We then set (

d
C)r :=

d
Min(Cr).

Adapting the results in [24], one can show that C ≡∅ Cr and that C ≡∅ D implies
Cr = Dr. In particular, this implies that, on reduced EL concept descriptions,
subsumption is a partial order and not just a pre-order.

5

3 A Tale of Two Entailments

DL-based ontologies are usually accessed through appropriate query languages,
where for the purpose of this paper it is sufficient to assume that a query lan-
guage is given by a fragment of first-order logic. Instead of comparing ontologies
w.r.t. the models they have, it thus makes sense to compare them w.r.t. the an-
swers to queries they entail [26]. Given such a query language QL and an EL
TBox T , we say that the qABox

E

X.A QL-entails the qABox

E

Y.B w.r.t. T
(written

E

X.A |=T
QL

E

Y.B) if for each query ϕ(x1, . . . , xk) ∈ QL and each tu-
ple of individuals (a1, . . . , ak) we have that T ∧

E

Y.B |= ϕ(a1, . . . , ak) implies
T ∧

E

X.A |= ϕ(a1, . . . , ak), where we view the TBox and the ABox as first-
order formulae and |= is classical first-order entailment (see [26] for more details).
We say that two qABox are QL-equivalent w.r.t. T if they QL-entail each other
w.r.t. T , and denote this equivalence relation as ≡T

QL.

For EL ontologies, one usually considers instance queries (IQ) or conjunctive
queries (CQ). The former are given by EL concept descriptions, viewed as first-
order formulae with one free variable. The latter are basically qABoxes of the form

E

X.A, but with the elements of ΣI(

E

X.A) viewed as free variables. Replacing
these free variables with a tuple of individuals thus yields a qABox in the sense
introduced above. In particular, this means that CQ-entailment corresponds to
entailment of the same qABoxes (see [7] for more details regarding the connection
between conjunctive queries and qABoxes).

3.1 Classical Entailment and CQ-Entailment

Due to the close connection between conjunctive queries and qABoxes mentioned
above, it is easy to see that the classical entailment relation |=T between qABoxes,
as introduced in the previous section, actually coincides with CQ-entailment
|=T

CQ. To keep the notation more uniform and to distinguish this kind of en-
tailment explicitly from IQ-entailment, we will usually talk about CQ-entailment
and write |=T

CQ.

Whenever we compare two qABoxes

E

X.A and

E

Y.B, we assume without loss
of generality that they are renamed apart, which means that X is disjoint with
ΣO(

E

Y.B) and Y is disjoint with ΣO(

E

X.A), and we further assume that the
two qABoxes speak about the same set of individual names ΣI := ΣI(

E

X.A) ∪
ΣI(

E

Y.B). For the case of an empty TBox, it was shown in [7] that

E

X.A |=∅
CQE

Y.B iff there is a homomorphism from

E

Y.B to

E

X.A. A homomorphism from

E

Y.B to

E

X.A is a mapping h : ΣO(

E

Y.B) → ΣO(

E

X.A) such that h(a) = a
for each a ∈ ΣI, A(h(u)) ∈ A for each A(u) ∈ B, and r(h(u), h(v)) ∈ A for each
r(u, v) ∈ B. In order to obtain a similar characterization of entailment for the
case of a non-empty TBox T , we need to saturate the given qABox w.r.t. T .

6

u-rule. If (C1 u · · · u Cn)(t) ∈ A, then remove this assertion from A, and add
the assertions C1(t), · · · , Cn(t) to A.

E

-rule. If (

E

r.C)(t) ∈ A, then remove this assertion from A, add the two asser-
tions r(t, x) and C(x) to A, and add x to X, where x is a fresh variable not
occurring in A or X.

v-rule. If t ∈ ΣO(

E

X.A), C v D ∈ T , A |= C(t), and A 6|= D(t), then add the
assertion D(t) to A.

The u-rule has highest priority and the v-rule has lowest priority.

Figure 1: The CQ-saturation rules.

Basically, this saturation performs what is called the chase in the database com-
munity [27, 21, 10]. Given an EL TBox T and a qABox

E

X.A, it extends the
ABox by new assertions that are implied by the TBox. The rules that realize
this are described in Fig. 1. Their rôle is two-fold: whereas the v-rule adds new
concept assertions that are implied by the ABox together with the TBox, the
other two rules break down the complex concept assertions added by this rule
into smaller parts.

In general, applying these rules need not terminate; e.g., if applied to the qABox
E

∅.{A(a)} for the TBox {A v
E

r.A}. There are various sufficient conditions
that guarantee termination of the chase [13]. Here, we use a condition introduced
in [1] in the context of unification in EL.

Definition 1. The EL TBox T is cycle-restricted if there is no non-empty se-
quence of role names r1, . . . , rk and EL concept description C such that C vT

E

r1. · · ·

E

rk.C.

As shown in [1], it can be decided in time polynomial whether a given EL TBox
is cycle-restricted or not. For cycle-restricted TBoxes, CQ-saturation always ter-
minates.

Theorem 2. Let T be a cycle-restricted EL TBox and

E

X.A a qABox. Then
exhaustive application of the CQ-saturation rules terminates in exponential time
in the size of

E

X.A and T , and yields a qABox satTCQ(

E

X.A) such that the
following statements are equivalent for all qABoxes

E

Y.B:

•

E

X.A |=T
CQ

E

Y.B,

• satTCQ(

E

X.A) |=∅
CQ

E

Y.B,

• there is a homomorphism from

E

Y.B to satTCQ(

E

X.A).

Proof. By examining the three rules, we see that applying them attaches a tree to
each object name occurring in the initial qABox. Each such tree is polynomially
branching, since each freshly introduced successor of an object name t must be

7

created by an application of the

E

-rule to an assertion

E

r.C(t) for some existential
restriction

E

r.C occurring in the TBox. As the TBox is cycle-restricted, each
such tree has polynomial depth for the following reason. If a path in such a tree
contained two object names created for the same existential restriction

E

r.C, then
the TBox would entail the concept inclusion C v

E

r1. · · ·

E

rk.C where r1, . . . , rk
is the non-empty sequence of role names connecting the two object names—a
contradiction. Finally, we conclude that each such tree has an exponential size,
i.e., rule application must terminate after exponentially many steps.

Given the close connection between conjunctive queries and qABoxes as well as
between the chase and the saturation, the equivalence of the first two statements
easily follows from a well-known result on conjunctive query answering, namely
Lemma 3.6 in [10]. The equivalence of the latter two statements is an immediate
consequence of Proposition 2 in [7].

Below we provide an example where the CQ-saturation of a qABox w.r.t. a cycle-
restricted TBox is of exponential size, and thus its computation must take ex-
ponential time. Nevertheless, the entailment relation |=T

CQ can still be decided
within NP by adapting results for conjunctive query answering in EL [31].

Example III. For each number n ∈ N, consider the following TBox Tn that is
defined over the signature consisting of the concept names A0, . . . , An and of the
role names r and s.

Tn := {Ai v

E

r.Ai+1 u

E

s.Ai+1 | 0 ≤ i < n }

The TBox obviously is cycle-restricted, and its size is polynomial in n.

Further consider the quantified ABox

E

X.A :=

E

∅.{A0(a)}. A graphical repre-
sentation of its CQ-saturation w.r.t. Tn is shown in Figure I. Essentially, it is a
finite, binary tree with depth n, i.e., it has a size that is exponential in n.

3.2 IQ-Entailment

Recall that the qABox

E

X.A IQ-entails the qABox

E

Y.B w.r.t. the EL TBox
T if every concept assertion C(a) entailed w.r.t. T by the latter is also entailed
w.r.t. T by the former. In the following we assume again that these two qABoxes
are renamed apart. For the case of an empty TBox, it was shown in [7] that

E

X.A |=∅
IQ

E

Y.B iff there is a simulation from

E

Y.B to

E

X.A. A simulation from

E

Y.B to

E

X.A is a relation S ⊆ ΣO(

E

Y.B) × ΣO(

E

X.A) such that (a, a) ∈ S
for each a ∈ ΣI and, for each (u, v) ∈ S, A(u) ∈ B implies A(v) ∈ A and
r(u, u′) ∈ B implies that there exists an object v′ ∈ ΣI ∪X such that (u′, v′) ∈ S
and r(v, v′) ∈ A. Since checking the existence of a simulation can be done in
polynomial time [17], we conclude that IQ-entailment between qABoxes can be
decided in polynomial time for the case of an empty TBox.

8

a A0

A1

A2

A3

......

r s

A3

......

r s

r s

A2

A3

...
...

r s

A3

......

r s

r s

r s

A1

A2

A3

......

r s

A3

......

r s

r s

A2

A3

...
...

r s

A3

...
...

r s

r s

r s

r s

Figure I: The CQ-saturation of

E

X.A w.r.t. Tn

To extend these results to the case of a non-empty TBox, we again need to
saturate the ABox w.r.t. the TBox. But now the saturation rules, given in Fig. 2,
are more parsimonious w.r.t. the introduction of new objects. To be more precise,
for each existential restriction

E

r.C ∈ Sub(T), we assume that xC is a fresh
variable not contained in the initial qABox

E

X.A. When applying the

E

-rule to
an assertion of the form (

E

r.C)(t), we always use this variable for the successor
object. Due to this restriction, IQ-saturation always terminates, i.e., it is not
necessary to impose any restrictions on the TBox. Also note that IQ-saturation
basically generates a qABox representation of what is called the canonical model
in [26, Section 5.2].

Theorem 3. Let T be an EL TBox and

E

X.A a qABox. Then exhaustive ap-
plication of the IQ-saturation rules terminates in polynomial time in the size of

E

X.A and T , and yields a qABox satTIQ(

E

X.A) such that the following statements
are equivalent for all qABoxes

E

Y.B:

•

E

X.A |=T
IQ

E

Y.B,
• satTIQ(

E

X.A) |=∅
IQ

E

Y.B,

• there is a simulation from

E

Y.B to satTIQ(

E

X.A).

Before we prove the above theorem, we introduce some additional notions and
prove some auxiliary results. Firstly, we define the interpretation I E

X.A induced
by a qABox

E

X.A as follows:

∆I E

X.A := ΣO(

E

X.A)

9

u-rule. If (C1u . . .uCn)(t) ∈ A, then remove this assertion from A and add the
assertions C1(t), . . . , Cn(t) to A.

E

-rule. If (

E

r.C)(t) ∈ A, then remove this assertion from A, add the two as-
sertions r(t, xC) and C(xC) to A, and add xC to X if it is not already
there.

v-rule. If t ∈ ΣO(

E

X.A), C v D ∈ T , A |= C(t), and A 6|= D(t), then add the
assertion D(t) to A.

The u-rule has higher precedence than the

E

-rule, and the latter has higher
precedence than the v-rule.

Figure 2: The IQ-saturation rules.

·I E

X.A :


u 7→ u for each object name u ∈ ΣO

A 7→ { t | A(t) ∈ A} for each concept name A ∈ ΣC

r 7→ { (t, u) | r(t, u) ∈ A} for each role name r ∈ ΣR

It is easy to verify that I E

X.A is a model of

E

X.A. Furthermore, it is a finger
exercise to show by induction on C that A |= C(t) if and only if t ∈ CI E

X.A for
each EL concept description C and for each object name t ∈ ΣO(

E

X.A).

Secondly, a simulation from an interpretation I to an interpretation J is a rela-
tion S ⊆ ∆I ×∆J that satisfies the following conditions:

1. if (δ, δ′) ∈ S and δ ∈ AI , then δ′ ∈ AJ ,

2. if (δ, δ′) ∈ S and (δ, γ) ∈ rI , then there is some γ′ such that (γ, γ′) ∈ S
and (δ′, γ′) ∈ rJ .

It is straight-forward to prove by induction on C that δ ∈ CI implies δ′ ∈ CJ for
each EL concept description C and for each simulation from I to J that contains
(δ, δ′), see e.g. [26].

Proposition IV. Let T be an EL TBox and consider a qABox

E

X.A. For
each EL concept assertion C(a), it holds true that

E

X.A |=T C(a) if and only if
satTIQ(

E

X.A) |=∅ C(a).

Proof. It is easy to see that the interpretation IsatTIQ(

E

X.A) is a model of both the
qABox

E

X.A and the TBox T . Thus, if

E

X.A |=T C(a), then IsatTIQ(

E

X.A) |=
C(a) and so satTIQ(

E

X.A) |=∅ C(a).

Now consider an interpretation I that is a model both of the qABox

E

X.A and
of the TBox T , and let

E

X0.A0 →

E

X1.A1 → · · · →

E

Xn.An

be the exhaustive sequence of rule applications starting with

E

X0.A0 :=

E

X.A
and ending with

E

Xn.An := satTIQ(

E

X.A), i.e., no further rule application to

10

E

Xn.An is possible. We show by induction on i that there is always a simulation
Si from I E

Xi.Ai
to I that contains (a, aI) for each individual name a occurring in

E

X.A. It then follows that there is a simulation from IsatTIQ(

E

X.A) to I containing
(a, aI) for each individual name a. Thus, if satTIQ(

E

X.A) |= C(a), then I |= C(a)

for each interpretation I that is a model of

E

X.A and T , i.e.,

E

X.A |=T C(a).

For the induction base where i = 0, observe that I is a model of

E

X.A =

E

X0.A0.
It follows that there exists a model J of the matrix A0 such that ∆I = ∆J and
where the interpretation functions ·I and ·J coincide on Σ \ X0. It is easy to
check that the following relation S0 is a simulation from I E

X0.A0
to I.

S0 := { (t, tJ) | t ∈ ΣO(

E

X.A)) }

Furthermore, S0 contains the pair (a, aI) for each individual name a occurring
in

E

X.A, since aI = aJ holds true for each individual name a.

For the induction step, we first define an invariant that we prove to be true for
each ABox

E

Xi.Ai, namely:

Invariant. If C(t) ∈ Ai and (t, δ) ∈ Si, then δ ∈ CI .

Of course, the invariant is already satisfied for the cases where C is a concept
name, cf. the definition of a simulation. Since the first ABox

E

X0.A0 does not
contain concept assertions with complex concept descriptions, the invariant is
thus satisfied for i = 0.

Now assume that the invariant is true for i and that Si is a simulation from
I E

Xi.Ai
to I. We make a case distinction on the rule that is applied to

E

Xi.Ai
and yields

E

Xi+1.Ai+1.

u-rule. Assume that the u-rule is applied for the concept assertion (C1 u
· · · u Cn)(t) in Ai, which removes that assertion and adds the assertions
C1(t), . . . , Cn(t). Since the invariant is true for i, we conclude that, for each
(t, δ) ∈ Si, we have δ ∈ (C1 u · · · u Cn)I , i.e., δ ∈ CI

1 , . . . , and δ ∈ CI
n .

Thus, we can simply define Si+1 := Si to get a simulation from I E

Xi+1.Ai+1

to I and the invariant is satisfied for i+ 1.

E

-rule. Let the

E

-rule be applied for the concept assertion

E

r.C(t) in Ai, which
removes that assertion and adds the assertions r(t, xC) and C(xC). For each
(t, δ) ∈ Si, it holds true that δ ∈ (

E

r.C)I , i.e., there is some γδ such that
(δ, γδ) ∈ rI and γδ ∈ CI . Now define the relation

Si+1 := Si ∪ { (xC , γδ) | (t, δ) ∈ Si }.

By construction, it is a simulation from I E

Xi+1.Ai+1
to I and the invariant

is satisfied for i+ 1.

v-rule. Finally, assume that the v-rule is applied for the object name t and the
concept inclusion C v D in T where Ai |= C(t) and Ai 6|= D(t), which

11

adds the concept assertion D(t) to the matrix. As Si is a simulation from
I E

Xi.Ai
to I and Ai |= C(t) implies that I E

Xi.Ai
|= C(t), we know that

δ ∈ CI for each (t, δ) ∈ Si. Since I is a model of T , we infer that δ ∈ DI .
Thus, we define Si+1 := Si to obtain a simulation from I E

Xi+1.Ai+1
to I

and the invariant is also true for i+ 1.

Lemma V. Consider an EL TBox T , a qABox

E

X.A, and an EL concept as-
sertion C(a). It holds true that

E

X.A |=T C(a) if and only if there exists some
EL concept description D such that

E

X.A |=∅ D(a) and D vT C.

Proof Sketch. The statement was already proved as Lemma 22 in [26], but with
classical ABoxes instead of qABoxes. That proof can be easily adapted. Alter-
natively, the statement can be proved as follows.

The if direction is straightforward. We can prove the only-if direction by utilizing
compactness of first-order logic [15] and tree unravelings. Firstly,

E

X.A entails
the concept assertion C(a) w.r.t. T if and only if the pair of the tree unraveling of
the ABox

E

X.A at a and of the TBox T entails C(a). Secondly, this unraveling
of the ABox, the TBox, and the negation of the concept assertion are translated
into an infinite set of first-order sentences (using the standard translation from
EL into first-order logic), which is unsatisfiable. Compactness now essentially
yields a finite subtree of the unraveling of the ABox that together with the TBox
and the negation of C(a) is still unsatisfiable. Translating this back to EL shows
the claim.

We are now ready to prove Theorem 3.
Proof of Theorem 3. We know that, in the rule-based construction of the IQ-
saturation, each new variable xC corresponds to some atom

E

r.C occurring in the
TBox T . Thus, there are always polynomially many object names in the qABox.
The v-rule can be applied at most once to some object name and some concept
inclusion, i.e., there are at most polynomially many applications of v-rule. Since
each complex concept in a concept assertion is a subconcept occurring in the
TBox, and the TBox contains only polynomially many such subconcepts, also the
u-rule and the

E

-rule are applicable at most polynomially many times. With the
results in [2] it follows that one application of the v-rule needs polynomial time
only, and it is further obvious that both the u-rule and the

E

-rule are applicable
in polynomial time.

We continue with proving the equivalence of the first two statements of the the-
orem.

• For the only-if direction, let

E

X.A |=T
IQ

E

Y.B and consider a concept as-
sertion C(a) such that

E

Y.B |=∅ C(a). It follows that

E

Y.B |=T C(a),
and so the assumption implies that

E

X.A |=T C(a). An application of
Proposition IV yields satTIQ(

E

X.A) |=∅ C(a) and we are done.

12

• Regarding the if direction, assume that satTIQ(

E

X.A) |=∅
IQ

E

Y.B and let C(a)

be a concept assertion such that

E

Y.B |=T C(a). By means of Lemma V it
follows that there is some concept description D such that

E

Y.B |=∅ D(a)
and D vT C. Now the assumption yields that satTIQ(

E

X.A) |=∅ D(a), and
thus we infer with Proposition IV that

E

X.A |=T D(a). Since D vT C, we
conclude that

E

X.A |=T C(a).

The last two statements of the theorem are equivalent according to Proposition 23
in [7].

Since satTIQ(

E

X.A) can be computed in polynomial time and the existence of a
simulation can be decided in polynomial time, this shows that the entailment
relation |=T

IQ can be decided in polynomial time.

4 Canonical Repairs

We specify what is to be repaired by a finite set of EL concept assertions, which
we call a repair request. A repair is a qABox that does not have any of these
assertions as a consequence. This generalizes previous repair approaches [6] in
that more than one consequence specified as unwanted is removed in one step.
It also encompasses the notion of a privacy policy, as introduced in [7], which
specifies forbidden concepts, with the meaning that one should not be able to
derive that any of the individuals occurring in the qABox is an instance of such
a concept. We assume that the TBox is static (i.e., may not be changed by the
repair) and consider both CQ- and IQ-entailment for comparing qABoxes.

Definition 4. Let T be an EL TBox and QL ∈ {CQ, IQ}.

• An EL repair request is a finite set of EL concept assertions.
• Given a qABox

E

X.A and an EL repair request R, a QL-repair of

E

X.A
for R w.r.t. T is a qABox

E

Y.B such that

E

X.A |=T
QL

E

Y.B and

E

Y.B 6|=T C(a) for all C(a) ∈ R.
• Such a repair

E

Y.B is optimal if there is no QL-repair

E

Z.C of

E

X.A for
R w.r.t. T such that

E

Z.C |=T
QL

E

Y.B and

E

Z.C 6≡T
QL

E

Y.B.

Intuitively, a repair is a qABox that has no new consequences of the specified
type (instance relationships or answers to conjunctive queries), and no longer
has the consequences forbidden by the repair request. In an optimal repair, a
minimal amount of consequences of the specified type is lost. Since there are
different options for what to change when repairing a qABox, there may exist
several non-equivalent optimal repairs.

Recall that, in our setting where the TBox is fixed, classical entailment |= co-
incides with CQ-entailment |=CQ. Thus, we do not need to dinguish between

13

both, but we will mostly use |=CQ to emphasize that not the IQ-entailment |=IQ

is meant.

In addition, let R be a repair request and

E

X.A be the qABox to be QL-repaired
for R w.r.t. T . We assume that R does not contain an assertion of the form C(a)
such that > vT C since the presence of such an assertions would preclude the
existence of a repair. If R satisfies this restriction, then the empty qABox

E

∅.∅ is
always a repair. However, as mentioned in the introduction, this does not imply
that there is an optimal repair.

Proposition VI. Optimal repairs need not exist. More specifically, for the qABox

E

∅.{A(a)}, the TBox {A v

E

r.A,

E

r.A v A}, and the repair request A(a) that
are all defined over the signature Σ := {a,A, r}, there is no optimal CQ-repair,
but there exists an optimal IQ-repair.

Proof. Denote the above qABox by

E

X.A and the TBox by T .

(|=CQ) Let

E

Y.B be a CQ-repair of

E

X.A for R w.r.t. T . In particular,

E

X.A
CQ-entails

E

Y.B w.r.t. T and so Theorem 2 yields that there exists a homo-
morphism from

E

Y.B to the saturation satTCQ(

E

X.A). That saturation has the
following graphical representation.

satTCQ(

E

X.A) : a

A
x1

A
x2

A
x3

A
. . .r r r r

It follows that the set of all object names in

E

Y.B that are connected to a form
a directed tree with root a in which all edges point away from a, and no object
name in this tree is an instance of A.

Let y ∈ Y be an object name that is reachable from a and has longest distance to
a, choose some z not occurring in

E

Y.B, and define the qABox

E

(Y ∪ {z}).(B ∪
{r(y, z)}). Clearly, it is a repair that CQ-entails

E

Y.B w.r.t. T .
It remains to show that, in the converse direction,

E

Y.B does not CQ-entail

E

(Y ∪
{z}).(B ∪ {r(y, z)}) w.r.t. T , i.e., that there is no homomorphism from

E

(Y ∪
{z}).(B ∪ {r(y, z)}) to satTCQ(

E

Y.B). Since no object name in

E

Y.B reachable
from a is an instance of A, the concept inclusions in T do not induce any new
successors of nodes in the tree with root a when constructing the saturation
satTCQ(

E

Y.B). Thus, there cannot exist a homomorphism of the tree rooted at a
in

E

(Y ∪ {z}).(B ∪ {r(y, z)}) to the tree rooted at a in satTCQ(

E

Y.B), and so no
homomorphism from

E

(Y ∪ {z}).(B ∪ {r(y, z)}) to satTCQ(

E

Y.B) can exist. We
conclude that

E

Y.B is not optimal.

(|=IQ) Now consider an IQ-repair

E

Y.B of

E

X.A w.r.t. T , i.e., there is a simula-
tion from

E

Y.B to the saturation satTIQ(

E

X.A), which equals

E

{x}.{A(a), r(a, x),
A(x), r(x, x)} and is depicted below.

14

satTIQ(

E

X.A) : a

A

x

A
r

r

We conclude that all object names in

E

Y.B connected to a form a tree with root
a, in which the nodes can have loops (except a), and where all edges that are
no loop point away from a. Furthermore, no object name in this tree can be an
instance of A, since otherwise the concept inclusion

E

r.A v A in T would allow
to infer that the root a is an instance of A, which would violate the assumption
that

E

Y.B is a repair.

Consider the qABox

E

{x}.{r(a, x), r(x, x)}. Of course, it is a repair too. It
further holds true that its IQ-saturation equals the qABox

E

{x}.{r(a, x), r(x, x)}.
We conclude that there is a simulation from

E

Y.B to that saturation, namely
which contains the pair (a, a) and the pair (y, x) for each object name y in the
tree rooted at a. Note that we can ignore all object names not connected to a,
since these are not connected to any individual name and so the definition of a
simulation does not require that they occur in some pair of the simulation.

As a consequence we obtain that the qABox

E

{x}.{r(a, x), r(x, x)} is, up to
IQ-equivalence, the unique optimal IQ-repair of

E

X.A.

We will show that, for the case of IQ-entailment, optimal repairs always exist.
For CQ-entailment, this is the case if the TBox T is cycle-restricted. In both
cases, the set of optimal repairs covers all repairs in the sense that each repair is
entailed by some optimal repair.

As mentioned in the introduction, to deal with TBoxes, the approach for comput-
ing so-called canonical repairs from [7] needs to be adapted in two ways. First, one
needs to QL-saturate the given qABox w.r.t. the TBox. Second, when computing
canonical repairs from satTQL(

E

X.A), the construction needs to ensure that the
TBox does not reintroduce consequences that have been removed by the repair.
The main idea underlying the construction of canonical repairs is to introduce
variables as copies of the objects occurring in satTQL(

E

X.A). Such a variable is of
the form yu,K, where the first component of the subscript says that this is a copy
of the object u. The second component K is a set of atoms, with the intuitive
meaning that yu,K must not be an instance of any element of K. To avoid intro-
ducing unnecessary copies, certain restrictions were imposed in [7] on the sets K.
We add a further restriction that takes care of the TBox.

To be more precise, let Sub(R, T) be the set of subconcepts of concept descrip-
tions occurring in R or T , and let Atoms(R, T) be the set of atoms occurring in
Sub(R, T). The set K in a variable yu,K must be a repair type for u.

Definition 5. Let

E

Y.B := satTQL(

E

X.A) and let u be an object name occurring
in B. A repair type for u is a subset K of Atoms(R, T) that satisfies the following:

15

1. B |=∅ C(u) for each atom C ∈ K,
2. if C,D are distinct atoms in K, then C 6v∅ D,

3. K is premise-saturated w.r.t. T , i.e., for all C ∈ Sub(R, T) with B |=∅ C(u)
and C vT D for some D ∈ K, there is E ∈ K such that C v∅ E.

The first two conditions coincide with the ones in [7]. Basically, 1. says that
we only need to remove instance relationships explicitly if they are really there.
Condition 2. corresponds to the fact that preventing D(yu,K) as a consequence
also prevents C(yu,K) if D subsumes C, and thus C ∈ K would be redundant if
D ∈ K. Condition 3. ensures that instance relationships that are removed due to
K cannot be re-introduced by the TBox. It is easy to see that the set of repair
types for u can be computed in exponential time.

Note that no repair type can contain>, as> is no atom. The empty set is always a
repair type. Obviously, not every subset of Atoms(R, T) is a repair type. We can,
however, try to enlarge such a subset to a repair type by exhaustively applying
the following non-deterministic rule. This will not always be possible, because
such a subset of Atoms(R, T) could contain an atom that subsumes > w.r.t. T
and so Condition 3 in Definition 5 cannot be fulfilled.

Consider a subset K ⊆ Atoms(R, T) and some object name u occurring in the
saturation satTQL(

E
X.A). Without loss of generality assume that K is a repair

pre-type for u, i.e., the matrix of satTQL(

E

X.A) entails C(u) for each atom C ∈ K
and K does not contain v∅-comparable atoms—if this is not the case, then we
can simply replace K with the set

Maxv∅({C | C ∈ K and the matrix of satTQL(

E

X.A) entails C(u) }).

Premise-saturation rule. If C ∈ Sub(R, T), the matrix of satTQL(

E

X.A) en-
tails C(u), D ∈ K, C vT D, and K does not contain an atom subsuming
C, then choose some atom E in Atoms(R, T) that subsumes C (i.e., where
C v∅ E) and return Maxv∅(K ∪ {E}).

Note that the above rule is non-deterministic: given a repair pre-type K, the rule
constructs, for each atom E subsuming C, a successor pre-type Maxv∅(K∪{E}).
Further note that the rule cannot return a pre-type if K contains an atom sub-
suming > w.r.t. T , since there is no atom that subsumes > w.r.t. ∅.

If L is constructed from K by one application of the premise-saturation rule, then
each atom in K is subsumed by some atom in L, which we denote by K ≤ L and
say that K is covered by L. As a special case, the proof of the below proposition
shows that, starting with some set of atoms, the premise-saturation rule produces
all relevant repair types.

Proposition VII. Let S be a subset of Sub(R, T) and let u be an object name
occurring in satTQL(

E

X.A) such that the matrix of satTQL(

E

X.A) entails C(u) for

16

each C ∈ S. The set of all ≤-minimal repair types for u that cover S can be
computed in exponential time.

Proof. Since the set Atoms(R, T) has polynomial size, we can enumerate in ex-
ponential time all its subsets and filter out those that do not satisfy the three
conditions in Definition 5 or which do not cover S. Each check whether such
a subset is to be filtered needs polynomial time. Afterwards, we need to com-
pare the resulting repair types pairwise w.r.t. ≤ and keep those for which there
is no smaller one w.r.t. ≤. Each such comparison can be done in polynomial
time. Summing up, the set of all ≤-minimal repair types for u covering S can be
computed in exponential time.

A more efficient way to compute all ≤-minimal repair types for u covering S is
as follows. Initially, compute all sets of atoms that can be obtained from S by
exhaustively applying the following non-deterministic rule, starting with K := S.

Initialization rule. If K contains a concept description C that is no atom, then
choose some atom D ∈ Atoms(R, T) that subsumes C w.r.t. ∅ and return
Maxv∅((K \ {C}) ∪ {D}).

By construction, all resulting sets are repair pre-types for u that cover S. After-
wards, exhaustively apply the premise-saturation rule to all these repair pre-types.
That way, we produce a superset of all ≤-minimal repair types for u covering S,
which we will prove in the following.

First of all, if the premise-saturation rule is not applicable to some repair pre-type,
then it must already be a repair type. Furthermore, we have already recognized
that one application of the premise-saturation rule produces a repair pre-type that
covers the given one. By induction, we conclude that, if L is constructed from
some repair pre-type K for u by exhaustively applying the premise-saturation
rule, then L is a repair type for u such that K is covered by L, and consequently
L covers S as well.

Vice versa, if L is a ≤-minimal repair type for u that covers S, then L can
be constructed from S by first exhaustively applying the initialization rule and
then exhaustively applying the premise-saturation rule where we always choose
an atom from L. We will need to add all atoms from L since there is no repair
type L′ for u such that S ≤ L′ < L.

We conclude that we can produce a superset of all ≤-minimal repair types that
cover S—in the end, we just need to filter out the non-minimal ones.

The computation tree of first applying the initialization rule and then applying
the premise-saturation rule is polynomially branching and has polynomial depth,
both since Atoms(R, T) has polynomial size. It follows that the computation tree
has exponential size, and thus contains exponentially many leafs (which are the
repair types). Since one edge in this tree can be computed in polynomial time,
the whole tree can be constructed in exponential time. Eventually, filtering out

17

the non-optimal repair types can be done in exponential time, since each repair
type has polynomial size and thus comparing two repair types w.r.t. ≤ (the covers
relation) needs polynomial time. That is, computing all ≤-minimal repair types
that cover S can be done in exponential time.

To illustrate that this exponential upper bound can indeed be reached, we provide
the following example.

Example VIII. Consider the quantified ABox

E

Xn.An :=

E

∅.{Ai(a), Pi(a), Qi(a) | i ∈ {1, . . . , n} }

and the TBox

Tn := {Pi uQi v Ai | i ∈ {1, . . . , n} }.

The set Kn := {A1, . . . , An} is a repair pre-type for a. Clearly, the sizes of

E

Xn.An, of Tn, and of Kn are all polynomial in n. Each ≤-minimal repair type
covering Kn is of the form Kn ∪{X1, . . . , Xn} where Xi ∈ {Pi, Qi} for each index
i, which can all be constructed by means of the premise-saturation rule, and their
number is exponential in n.

As already noticed, the premise-saturation rule cannot be applied to some pre-
type K if > is a subconcept occurring in R or in T and there is some atom
D ∈ K such that > vT D. Then there simply does not exist an atom subsuming
>, which could be added to K. Thus, there can be repair pre-types for u that
are not covered by a repair type for u. The following lemma characterizes when
a pre-type is covered by some repair type.

Lemma IX. Assume that u is an object name occurring in satTQL(

E

X.A). If K
is a repair pre-type for u and > 6vT D for each D ∈ K, then there is a repair type
for u that covers K.

Proof. Assume that there is no repair type for u covering K. It follows that,
when exhaustively applying the above premise-saturation rule, we always reach a
situation where C = >, i.e., where no atom subsuming C exists. In particular, we
will also always encounter a situation where C = > if, instead of choosing some
atom in Atoms(R, T) that subsumes C and adding it to K, we simply add some
top-level conjunct of C to K. The following picture shows the non-deterministic
choice to be made in this variant of the premise-saturation rule.

K

Maxv∅(K ∪ {C1}) . . . Maxv∅(K ∪ {Cn})
where C ∈ Sub(R, T), the ma-
trix of satTQL(

E

X.A) does not
entail C(u), D ∈ K, C vT D,
K does not contain an atom
subsuming C, and Conj(C) =
{C1, . . . , Cn}

18

Now consider the full tree of choices induced by exhaustive application of the
premise-saturation rule starting with K. By assumption, each leaf L in this tree
contains some atom D ∈ L such that > vT D (and > ∈ Sub(R, T)). We will now
show by induction on the tree that each node M contains some atom D ∈ M
such that > vT D. Finally, this property will be satisfied also for the root node
K and we are done.

We call a nodeM unprocessed if we have not yet shown that it contains an atom
D where > vT D, and processed otherwise. Initially, all leafs are processed,
which is the induction base. For the induction step, consider an unprocessed
node M such that each successor is processed. By construction of the tree,
the successors are of the form Maxv∅(M ∪ {Ci}) where C ∈ Sub(R, T), E ∈
M, C vT E, and Conj(C) = {C1, . . . , Cn}. Since each Maxv∅(M ∪ {Ci}) is
processed, each contains some atom Di where > vT Di. If one of the Di is
already in M, then M is processed. Otherwise, we can only have Ci = Di

(because Di ∈ Maxv∅(M ∪ {Ci}) ⊆ M ∪ {Ci}) and thus > vT Ci for each
index i ∈ {1, . . . , n}—we conclude that > vT C and thus > vT E, i.e., M is
processed.

Similarly to the approach in [7], canonical repairs are induced by seed func-
tions. Such a function determines, for each individual, which instance relation-
ships should be prevented in order to obtain a repair.

Definition 6. A repair seed function is a function s that maps each individual
name b ∈ ΣI(

E

X.A) to a repair type s(b) for b that satisfies the following:

• if C(b) ∈ R and satTQL(

E

X.A) |= C(b), then s(b) contains an atom D such
that C v∅ D.

Together with our initial assumption that the repair request R does not contain
a concept assertion C(a) such that > vT C, Lemma IX implies that a repair seed
function exists.

Proposition X. There is at least one repair seed function.

Proof. Consider an individual name a. By assumption, > 6vT C for each C(a) ∈
R, i.e., there always exists some atom DC ∈ Conj(C) such that > 6vT DC . Now
Ka := Maxv∅({DC | C(a) ∈ R and satTQL(

E

X.A) |= C(a) }) is a repair pre-type
for a which does not contain an atom subsuming > w.r.t. T and which contains an
atom subsuming C for each C(a) ∈ R where satTQL(

E

X.A) |= C(a). Lemma IX
guarantees the existence of a repair type La for a that covers Ka and we can
simply define s(a) := La. The mapping s is a repair seed function.

Each repair seed function induces a repair as follows.

Definition 7. Given a repair seed function s, we define the canonical QL-repair
repTQL(

E

X.A, s) induced by s as the qABox

E

Y.B where

19

1. the set Y consists of the variables yu,K for all object names u occurring in
satTQL(

E

X.A) and all repair types K for u, except for the case where u is an
individual name and K = s(u), and

2. the matrix B consists of the following assertions, where we use yb,s(b) as a
synonym for the individual name b:

• A(yu,K) ∈ B for each concept assertion A(u) in satTQL(

E

X.A) such
that A 6∈ K,

• r(yu,K, yv,L) ∈ B for each role assertion r(u, v) in satTQL(

E

X.A) such
that the following holds for each

E

r.C ∈ K: if the matrix of
satTQL(

E

X.A) entails C(v), then the set L contains an atom that sub-
sumes C.

Before we can prove that canonical repairs are in fact repairs and further that
each optimal repair is equivalent to a canonical one, we need the following three
lemmas.

Lemma XI. Let u be an object name occurring in the saturation satTQL(

E

X.A).
If C ∈ Sub(R, T) and K is a repair pre-type for u where C 6vT D for each D ∈ K,
then there is a repair type for u that covers K and that does not contain an atom
subsuming C.

Proof. Let C ∈ Sub(R, T), let K be a repair pre-type for u, and assume that
each repair type for u covering K contains some atom subsuming C. Consider
the full tree of choices that is generated by exhaustively applying the variant of
the premise-saturation rule, just like in the proof of Lemma IX. By assumption,
each leaf in this tree contains some atom D such that C vT D. We can show by
induction on the tree that each node contains some atom D such that C vT D.
Finally, this property is satisfied also for the root node K and we are done.

Lemma XII. Assume that s is a repair seed function. For each subconcept
C ∈ Sub(R, T), it holds true that the matrix of repTQL(

E

X.A, s) entails C(yu,K) if
and only if the matrix of satTQL(

E

X.A) entails C(u) and K does not contain an
atom that subsumes C.

Proof. Denote by B the matrix of the canonical repair repTQL(

E

X.A, s). We start
with the only-if direction. Thus assume that B entails C(yu,K) for some C ∈
Sub(R, T). Since the mapping yu,K 7→ u is a homomorphism from

E

Y.B to
satTQL(

E

X.A), it follows that the matrix of satTQL(

E

X.A) entails C(u). We now
show the following claim by induction on the role depth of D, from which it easily
follows that K cannot contain an atom subsuming C.

Claim. If D ∈ K, then B 6|= D(yu,K).

The base case where D is a concept name is true by the very definition of B. Now
let D be an existential restriction

E

r.E, and consider a role assertion r(yu,K, yv,L)

20

in B. If the matrix of satTQL(

E

X.A) does not entail E(v), then B does not entail
E(yv,L). Otherwise, by definition of B, the set L must contain an atom F such
that E v∅ F . Specifically, the role depth of F is bounded by the role depth of E,
and so we can apply the induction hypothesis to infer that B 6|= F (yv,L). Due to
E v∅ F , we conclude that B 6|= E(yv,L). Using Lemma II, it follows that B does
not entail

E

r.E(yu,K).

It remains to prove the if direction. We do this by induction on C. Let the
matrix of satTQL(

E

X.A) entail C(u) and assume that K does not contain an atom
subsuming C.

• The case where C = > is trivial.
• Assume that C = A for a concept name A. Then A 6∈ K and so it follows

from the very definition of B that the concept assertion A(yu,K) is contained
in B, i.e., B |= A(yu,K).

• Let C = C1 u · · · u Cn be a conjunction of atoms C1, . . . , Cn where n ≥ 2.
Note that, by definition of Sub(R, T), each conjunct Ci is an element of
Sub(R, T). The preconditions immediately imply that, for each index i,
the matrix of satTQL(

E

X.A) entails Ci(u) and K does not contain an atom
subsuming Ci. The induction hypothesis yields that B |= Ci(yu,K) for each
i, and thus it follows that B |= C(yu,K).

• Consider the last case where C =
E
r.D is an existential restriction. Of

course, we have D ∈ Sub(R, T). According to Lemma II, it follows from
the preconditions that there exists some object name v such that the ma-
trix of satTQL(

E

X.A) contains r(u, v) and entails D(v). Since

E

r.D is not
subsumed by an atom in K, it follows that

E

r.D is no element of K. We
further conclude that D 6vT E for each

E

r.E ∈ K (otherwise C =

E

r.D
would be in K, a contradiction). Thus for each

E

r.E ∈ K, there is some
atom FE ∈ Conj(E) such that D 6vT FE. According to Lemma XI there
exists a repair type L for v that covers the repair pre-type Maxv∅({ FE |E

r.E ∈ K and the matrix of satTQL(

E

X.A) entails E(v) }) and that does
not contain an atom subsuming D. Applying the induction hypothesis
then yields that B |= D(yv,L). By the very construction of L, it follows that
the matrix B contains the role assertion r(yu,K, yv,L). Thus, we conclude
that B |= C(yu,K).

Lemma XIII. For each repair seed function s, the canonical repair induced by s
equals its saturation, i.e., repTQL(

E

X.A, s) = satTQL(repTQL(

E

X.A, s)).

Proof. Let

E

Y.B := repTQL(

E

X.A, s) be the canonical repair induced by s. Since,
for both query languages IQ and CQ, the v-rule employed for constructing the
saturations is the same, the following argumentation applies to both choices.

We show that the v-rule is not applicable to

E

Y.B. It is trivial that none of
the other two rules is applicable, since the matrix B can never contain a concept
assertion involving a complex concept description.

21

Consider an object name yu,K ∈ ΣO(

E

Y.B) and a concept inclusion C v D ∈ T .
We know that the v-rule is not applicable to the QL-saturation satTQL(

E

X.A),
which means that the matrix of satTQL(

E

X.A) either does not entail C(u) or entails
D(u). We proceed with a case distinction.

• Assume that the matrix of satTQL(

E

X.A) does not entail C(u). Lemma XII
shows that the matrix B does not entail C(yu,K), and so we conclude that
the v-rule is not applicable to yu,K for C v D.

• Otherwise, the matrix of satTQL(

E

X.A) entails D(u). We make a further
case distinction.

– Assume that K contains an atom subsuming D. Since K is a repair
type and C v D ∈ T , we conclude that K must contain some atom
subsuming C. Lemma XII yields that the matrix B does not entail
C(yu,K), which implies that the v-rule is not applicable to yu,K for
C v D.

– In the remaining case there is no atom in K that subsumes D. An
application of Lemma XII shows that the matrix B entails D(yu,K),
i.e., the v-rule is not applicable to yu,K for C v D.

Our construction of canonical repairs based on seed functions is sound and com-
plete in the following sense.

Proposition 8. For each repair seed function s, the induced canonical repair
repTQL(

E

X.A, s) is a QL-repair of

E

X.A for R w.r.t. T . Conversely, if

E

Y.B is
a QL-repair of

E

X.A for R w.r.t. T , then there is a repair seed function s such
that repTQL(

E

X.A, s) |=T
QL

E

Y.B.

Proof. We begin with proving the first statement, namely, that repTQL(

E

X.A, s)
is a QL-repair. We first consider the case where QL = IQ. Denote by

E

Y.B
the canonical repair repTIQ(

E

X.A, s). Let C(a) ∈ R. Either the IQ-saturation
satTIQ(

E

X.A) does not entail C(a), or the repair type s(a) contains an atom that
subsumes C. For both cases Lemma XII yields that B 6|=∅ C(a). It follows that

E

Y.B 6|=∅ C(a), and with Lemma XIII we conclude that satTQL(

E

Y.B) 6|=∅ C(a).
Proposition IV immediately yields that

E

Y.B 6|=T C(a).

It remains to show that

E

X.A IQ-entails

E

Y.B w.r.t. T . Theorem 3 shows that
it suffices to find a simulation from

E

Y.B to satTIQ(

E

X.A). It is easy to verify
that { (yt,K, t) | yt,K ∈ ΣO(

E

Y.B) } is such a simulation.

Now, we treat the case QL = CQ. Denote by

E

Y.B the canonical repair
repTCQ(

E

X.A, s). Let C(a) ∈ R. Either the CQ-saturation satTCQ(

E

X.A) does
not entail C(a), or the repair type s(a) contains an atom that subsumes C. For
both cases Lemma XII yields that B 6|=∅ C(a). It follows that

E

Y.B 6|=∅ C(a),
and with Lemma XIII we conclude that satTCQ(

E

Y.B) 6|=∅ C(a).

22

It is easy to see that there is a qABox which is equivalent to the concept assertion
C(a). For instance, such a qABox can be constructed by exhaustively applying
the u-rule and the

E

-rule to

E

∅.{C(a)}, or alternatively using the construction
described in [5]. Note that the qABox translation contains only the individual
name a and all other object names occurring in it are variables. In the following,
we will identify C(a) with its translation to an equivalent qABox.

Since classical entailment |=T (|=∅) and CQ-entailment |=T
CQ (|=∅

CQ) coincide, we
infer by an application of Theorem 2 that

E

Y.B 6|=T C(a).

It remains to show that

E

X.A CQ-entails

E

Y.B w.r.t. T . Theorem 2 shows that
it suffices to find a homomorphism from

E

Y.B to satTCQ(

E

X.A). It is easy to
verify that the mapping { yt,K 7→ t | yt,K ∈ ΣO(

E

Y.B) } is such a homomorphism.

In the following, we will prove the second statement. We first deal with the
case where QL = IQ. Consider an IQ-repair

E

Y.B of

E

X.A for R w.r.t. T ,
i.e.,

E

X.A |=T
IQ

E

Y.B and

E

Y.B 6|=T C(a) for each C(a) ∈ R. According to
Theorem 3 there exists a simulation S from

E

Y.B to satTIQ(

E

X.A).

We define the mapping f : ΣO(

E

Y.B)×ΣO(satTIQ(

E

X.A))→ ℘(Atoms(R, T)) by

f(t, v) := Maxv∅

({
D

∣∣∣∣∣ D ∈ Atoms(R, T), B 6|=T D(t),

and the matrix of satTIQ(

E

X.A) entails D(v)

})

for each object name t ∈ ΣO(

E

Y.B) and each object name v ∈ ΣO(satTIQ(

E

X.A)).
We show that each f(t, v) is a repair type for v. Assume that C ∈ Sub(R, T),
the matrix of satTIQ(

E

X.A) entails C(v), D ∈ f(t, v), and C vT D. It follows
that B 6|=T C(t), i.e., there is some atom E ∈ Conj(C) ⊆ Atoms(R, T) such that
B 6|=T E(t). Of course, the matrix of satTIQ(

E

X.A) entails E(v) as well. Thus,
f(t, v) contains either E or some atom subsuming E.

The function s where s(a) := f(a, a) for each individual name a ∈ ΣI(

E

Y.B)
clearly is a repair seed function. We now show that the relation

T := { (t, yv,f(t,v)) | (t, v) ∈ S }

is a simulation from

E

Y.B to repTIQ(

E

X.A, s).

1. Consider an individual name a. Since (a, a) ∈ S, we conclude that
(a, ya,f(a,a)) = (a, ya,s(a)) = (a, a) is in T.

2. Assume that A(t) ∈ B and consider (t, yv,f(t,v)) ∈ T. It follows that
(t, v) ∈ S, which implies that the matrix of satTIQ(

E

X.A) contains A(v).
Furthermore, A(t) ∈ B implies that B |=T A(t), and thus A 6∈ f(t, v). We
conclude that the matrix of repTIQ(

E

X.A, s) contains A(yv,f(t,v)).

3. Consider a role assertion r(t, u) ∈ B and let the pair (t, yv,f(t,v)) be in
the simulation T. It follows that the simulation S contains (t, v), and so

23

there is some w such that the matrix of satTIQ(

E

X.A) contains the role
assertion r(v, w) and the pair (u,w) is in S. Note that (u, yw,f(u,w)) ∈ T.
We show that the matrix of the canonical repair repTIQ(

E

X.A, s) contains
r(yv,f(t,v), yw,f(u,w)).

Assume that the existential restriction

E

r.C is in f(t, v) and the matrix
of satTIQ(

E

X.A) entails C(w). According to Definition 7 we need to find
an atom in f(u,w) that subsumes C. Since

E

r.C ∈ f(t, v), it follows that
B 6|=T E

r.C(t). We conclude that, in particular, the matrix of satTIQ(

E

Y.B)

does not entail

E

r.C(t) (by Proposition IV) but it contains r(t, u) (by con-
struction, cf. Page 9), which yields that satTIQ(

E

Y.B) cannot entail C(u),
i.e., B 6|=T C(u) (by Proposition IV).

It follows that there is an atom D ∈ Conj(C) such that B 6|=T D(u). Of
course, the matrix of satTIQ(

E

X.A) also entails D(w). We conclude that
either D or some atom subsuming D must be contained in the repair type
f(u,w) and we are done.

Finally, we conclude by means of Theorem 3 and Lemma XIII that repTIQ(

E

X.A, s)
IQ-entails

E

Y.B w.r.t. T .

For the remaining case where QL = CQ, we can prove the claim very similarly—
we only need to replace simulations by homomorphisms. Assume that

E
Y.B is a

CQ-repair of

E

X.A for R w.r.t. T . So there is a homomorphism h from

E

Y.B to
the CQ-saturation satTCQ(

E

X.A). Instead of the previous mapping f we now use
the mapping f : ΣO(

E

Y.B)→ ℘(Atoms(R, T)) defined by

f(t) := Maxv∅

({
D

∣∣∣∣∣ D ∈ Atoms(R, T), B 6|=T D(t),

and the matrix of satTCQ(

E

X.A) entails D(h(t))

})

for each object name t occurring in

E

Y.B. As before, we can easily show that
each such set f(t) is a repair type, and thus the function s that is the restriction
of f to the set ΣI of all individual names is a repair seed function. Similarly as
we have proven that the relation T is a simulation, we can now demonstrate that
the mapping k where k(t) := yh(t),f(t) for each t ∈ ΣO(

E

Y.B) is a homomorphism
from

E

Y.B to repTCQ(

E

X.A, s). With Theorem 2 and Lemma XIII we infer that
repTCQ(

E

X.A, s) CQ-entails

E

Y.B w.r.t. T .

We define the set of all canonical QL-repairs of

E

X.A for R w.r.t. T as

RepairsTQL(

E

X.A,R) := { repTQL(

E

X.A, s) | s is a repair seed function }.

As an easy consequence of Proposition 8 we obtain that RepairsTQL(

E

X.A,R)
contains all optimal repairs (up to equivalence). However, as in the case with-
out a TBox, it may also contain non-optimal repairs [7]. To compute the set

24

of optimal repairs, one thus needs to remove such non-optimal elements from
RepairsTQL(

E

X.A,R). Since the entailment test required for this is NP-complete
for QL = CQ and polynomial for QL = IQ, we obtain the following theorem.

Theorem 9. There is a (deterministic) algorithm that computes the set of all
optimal QL-repairs of

E

X.A for R w.r.t. T and runs in exponential time. If
QL = CQ, then this algorithm needs access to an NP oracle, whereas no such
oracle is required for QL = IQ.

Proof. Proposition 8 shows that RepairsTQL(

E

X.A,R) contains only QL-repairs
and further that it contains all optimal QL-repairs (up to QL-equivalence). Next,
we show that it can be computed in exponential time.

The size of Atoms(R, T) is polynomial. Since each repair type is a subset of
Atoms(R, T), there are exponentially many repair types for each object name
that occurs in the saturation. Of course, we can compute in exponential time
all repair types of a particular object name in the saturation by enumerating
all subsets of Atoms(R, T) and then filtering out those not satisfying the three
conditions in Definition 5.

According to Theorem 2 the CQ-saturation can be computed in exponential time,
while Theorem 3 shows that IQ-saturations can always be computed in polynomial
time. We conclude that the QL-saturation of

E
X.A w.r.t. T contains at most

exponentially many object names. As shown above, there are exponentially many
repair types for each such object name. Since each object name in a canonical
repair has the form yt,K where t is an object name occurring in the saturation
and where K is a repair type for t, we infer that each canonical repair contains
at most exponentially many object names, and the set of these can be computed
in exponential time.

Finally, the matrix of the canonical repair can be constructed in exponential time
as follows.

• Iterate through all concept assertions in the saturation and, for each such
A(u) and for each copy yu,K, check whether A ∈ K and, if this is not the
case, then add A(yu,K) to the matrix. There are exponentially many concept
assertions A(u) and exponentially many copies yu,K. Checking A ∈ K needs
polynomial time, since each repair type has polynomial size. Adding a
concept assertion to the matrix needs constant time. We conclude that all
concept assertions can be generated in exponential time.

• Iterate through all role assertions in the saturation, and for each such r(u, v)
and for all copies yu,K and yv,L, check whether L contains an atom subsum-
ing C for each existential restriction

E

r.C ∈ K where the matrix of the
saturation entails C(v) and, if this is the case, then add r(yu,K, yv,L) to the
matrix. There are exponentially many role assertions r(u, v) and exponen-
tially many copies yu,K and yv,L. Checking the condition needs exponential

25

time, since each repair type has polynomial size, deciding subsumption can
be done in polynomial time for EL, and checking whether the saturation
entails a concept assertion needs exponential time (since the saturation has
exponential size). Adding a role assertion to the matrix needs constant
time. We conclude that all role assertions can be generated in exponential
time.

We can compute the subset of all optimal QL-repairs by filtering out non-optimal
ones. In particular, we remove each canonical QL-repair that is QL-entailed by
another canonical QL-repair. For the query language IQ, each such entailment
text needs polynomial time in the size of the repairs, i.e., needs exponential time.
For the query language CQ, we use an NP oracle that decides CQ-entailment.
Of course, we need to conduct at most exponentially many such entailment tests
and so we infer that the subset of all optimal QL-repairs can be computed in
exponential time, using an NP oracle only for the case QL = CQ.

5 Optimized Repairs

The construction of the canonical repair induced by a seed function described in
the previous section usually introduces an exponential number of copies for the
objects occurring in the saturated qABox. The following example demonstrates
that this is not always necessary to obtain an optimal repair.

Example 10. Let T := ∅ and consider the repair request {(

E

r.(A1 u . . . u
An))(a)} for the qABox

E

{x}.{r(a, x), A1(x), . . . , An(x)}. There is only one re-
pair seed function s, which assigns {

E

r.(A1 u . . . u An)} to a. Both for the CQ
and the IQ case, the canonical repair induced by s contains 2n copies of x, namely
all the variables yx,K for K ⊆ {A1, . . . , An}. However, most of these copies are
redundant. In fact, we will see below that there are optimal repairs equivalent
to the canonical one that contain only linearly many variables in n, both for the
CQ and the IQ case.

The idea is now to construct, for a given seed function, a set of variables that
is a (hopefully small) subset of the set Y introduced in Definition 7, which is
nevertheless sufficient to obtain a repair equivalent to the canonical one. Note,
however, that in general an exponential blow-up cannot be avoided, as already
shown in [4] for the case of EL instance stores. Throughout this section, we
assume that QL, T , R, and

E

X.A satisfy the properties assumed in the previous
section. In addition, we assume that the repair request R is reduced, i.e., every
concept occurring in a concept assertion in R is reduced, and if R contains C(a)
and D(a) for distinct concept descriptions C,D, then C 6v∅ D, and we further
assume that each concept occurring in the TBox T is reduced. Before we can
describe our construction of the set of relevant variables, we must introduce some
notation and show an auxiliary result.

26

Recall that, given two sets of concept descriptions K and L, we say that L covers
K (written K ≤ L) if each concept in K is subsumed by some concept in L, cf.
Page 16. We already pointed out in [7] that, restricted to sets that contain only
reduced concept descriptions and that do not contain v∅-comparable concept
descriptions, the cover relation ≤ is a partial order.

Now, let s be a repair seed function and set

E

Y.B := repTQL(

E

X.A, s). Recall
that, according to Definition 7, a role assertion r(yt,K, yu,L) belongs to the matrix
B iff the saturation satTQL(

E

X.A) contains the role assertion r(t, u) and the repair
type L covers the set

Succ(K, r, u) := {C |

E

r.C ∈ K and the matrix of satTQL(

E

X.A) entails C(u) }.

If L does not satisfy this requirement, there might be another repair type L′

such that the canonical repair contains the assertion r(yt,K, yu,L′), and thus our
optimized repair needs to contain an appropriate variable to which yu,L′ can be
mapped by a homomorphism or simulation. We generate such variables by looking
for repair typesM that cover both L and Succ(K, r, u). The set of all such repair
types can effectively be computed, though it might be empty. For our purposes,
it is sufficient to use only the ones that are minimal w.r.t. the cover relation ≤.

Lemma 11. The set of all ≤-minimal repair types for u that cover L ∪
Succ(K, r, u) can be computed in exponential time.

Proof. The statement is a special case of Proposition VII, namely for C := L ∪
Succ(K, r, u).

In general, this computation may produce exponentially many repair types, but
this is not always the case. For instance, consider a = ya,s(a) and yx,∅ in Exam-
ple 10. We have Succ(s(a), r, x) = {A1u . . .uAn} and thus the assertion r(a, yx,∅)
is not in B since ∅ clearly does not cover Succ(s(a), r, x). The ≤-minimal repair
types covering Succ(s(a), r, x) are exactly the sets {Ai} for i = 1, . . . , n.

In the following, we construct a sequence Y0, Y1, . . . , Ym of subsets Yi of Y such
that

E

Y.B is QL-equivalent to its sub-qABox

E

Ym.Bm where Bm contains only
those assertions in B involving object names in ΣI∪Ym. Recall that we use ya,s(a)
as synonyms for the individuals a ∈ ΣI.

We start with the set Y0 defined as follows:

Y0 :=

{
{ yt,∅ | t is an object name occurring in satTCQ(

E

X.A) } if QL = CQ
∅ if QL = IQ.

The subsequent sets are obtained by exhaustively applying one of the following
rules, depending on whether QL = CQ or QL = IQ.

27

CQ-construction rule. If yt,K and yu,L are elements of ΣI ∪ Yi, the saturation
satTCQ(

E

X.A) contains the role assertion r(t, u), the repair type L does
not cover Succ(K, r, u), and M is a ≤-minimal repair type for u that
covers L ∪ Succ(K, r, u), but yu,M is not contained in ΣI ∪ Yi, then set
Yi+1 := Yi ∪ {yu,M}.

IQ-construction rule. If yt,K is an element of ΣI∪Yi, the saturation satTIQ(

E

X.A)
contains the role assertion r(t, u), and M is a ≤-minimal repair type for
u that covers Succ(K, r, u), but yu,M is not contained in ΣI ∪ Yi, then set
Yi+1 := Yi ∪ {yu,M}.

The sets Yi are all subsets of the set Y of variables in the canonical repair. Since
each rule application adds a variable, the exhaustive application of rules must
terminate after finitely many steps with a set of variables Ym ⊆ Y .

Let us illustrate this construction using Example 10, first for the IQ case. We
have a = ya,s(a) ∈ ΣI and the assertion r(a, x) belongs to the saturation, which
is equal to the original qABox. As mentioned above, the ≤-minimal repair types
covering Succ(s(a), r, x) are exactly the sets {Ai} for i = 1, . . . , n. Thus, re-
peated applications of the IQ-construction rule add the variables yx,{Ai}, and the
construction ends with Y IQ

m = { yx,{Ai} | i = 1, . . . , n }. In the CQ case, the initial
set of variables is Y CQ

0 = {ya,∅, yx,∅}. In this example, the CQ-construction rule
then generates the same variables as the IQ rule, though this need not be the case
in general. We end up with the final set Y IQ

m ∪ Y CQ
0 .

Definition 12. Let s be a repair seed function and Ym ⊆ Y be the set of variables
obtained by an exhaustive application of the QL-construction rule. The optimized
QL-repair of

E

X.A for R w.r.t. T induced by s, denoted by orepTQL(

E

X.A, s), is
the qABox

E

Ym.Bm where the matrix Bm contains all assertions in B involving
only object names in ΣI ∪ Ym.

Note that, to compute Bm, we need not compute the larger matrix B first. Instead,
we just apply the definition of the matrix in Definition 7 to the object names in
ΣI ∪ Ym.

In our example, the optimized IQ-repair is the qABox

E

Y IQ
m .Bm with

Bm = { r(a, yx,{Ai}) | 1 ≤ i ≤ n } ∪ {Aj(yx,{Ai}) | j 6= i and 1 ≤ i, j ≤ n }.

In the optimized CQ-repair, the quantifier prefix additionally contains the vari-
ables ya,∅ and yx,∅, and the matrix additionally contains the assertions r(ya,∅, yx,∅)
and Ai(yx,∅) for i = 1, . . . , n. Note that, without these assertions, the positive
answer to the Boolean conjunctive query

E

y, z.(r(y, z)∧A1(z)∧. . .∧An(z)) would
be lost.

Coming back to the general case, we first observe that the canonical QL-repair
induced by s QL-entails the optimized QL-repair induced by s due to the inclusion

28

relationship between these two qABoxes. The entailment in the other direction
also holds, but this is harder to show, in particular for QL = CQ.

Proposition 13. For each repair seed function s, the optimized QL-repair induced
by s QL-entails the canonical QL-repair induced by s.

Proof. We start with the easier case where the query language QL is IQ. Specifi-
cally, we show that the following relationS is a simulation from

E

Y.B to

E

Ym.Bm.

S := { (yt,K, yt,K′) | yt,K ∈ ΣO(

E

Y.B), yt,K′ ∈ ΣO(

E

Ym.Bm), and K′ ≤ K}

1. By construction, each individual name a that occurs in

E

Y.B is also an
individual name in

E

Ym.Bm. Recall that we use ya,s(a) as a synonym for a.
It follows that the pair (a, a), which equals (ya,s(a), ya,s(a)), is contained in
S for each individual name a.

2. Let the pair (yt,K, yt,K′) be in S and consider a concept assertion A(yt,K)
in B. It follows that the saturation contains A(t) and further that A 6∈ K.
Since K covers K′, we infer that A 6∈ K′. Consequently, A(yt,K′) is in Bm.

3. Assume that (yt,K, yt,K′) is in S and consider a role assertion r(yt,K, yu,L)
in B. So the saturation contains r(t, u) and we have Succ(K, r, u) ≤ L.
Since K′ ≤ K, we infer that Succ(K′, r, u) ≤ Succ(K, r, u), and thus
Succ(K′, r, u) ≤ L. It follows that there is a ≤-minimal repair type L′

such that Succ(K′, r, u) ≤ L′ ≤ L. Since the IQ-Construction rule is not
applicable to Ym, it follows that yu,L′ is an object name that occurs in

E

Ym.Bm. Since L′ covers Succ(K′, r, u), the role assertion r(yt,K′ , yu,L′) is
contained in Bm. Since L covers L′, the pair (yu,L, yu,L′) is contained in S.

Since

E

Ym.Bm is a subset of the saturation satTIQ(

E

Ym.Bm), the above relation
S is a simulation from

E

Y.B to satTIQ(

E

Ym.Bm). An application of Theorem 3
shows that

E

Ym.Bm IQ-entails

E

Y.B w.r.t. T .

It remains to consider the case where the query language QL is CQ. We will
construct a sequence (h0, h1, . . . , hn) of mappings hi : ΣO(

E

Y.B)→ ΣO(

E

Ym.Bm)
that ends with a homomorphism hn from

E

Y.B to

E

Ym.Bm. Initialize the first
mapping

h0 : ΣO(

E

Y.B)→ ΣO(

E

Ym.Bm)

yt,K 7→

{
yt,s(t) if t ∈ ΣI and s(t) ≤ K
yt,∅ otherwise

The following invariants will be satisfied for all mappings in the sequence.

Invariant 1. If hi(yt,K) = yu,L, then u = t and L ≤ K.
Invariant 2. If hi(yt,K) = yt,Ki

and hi+1(yt,K) = yt,Ki+1
, then Ki ≤ Ki+1.

29

Of course, the first mapping h0 satisfies Invariant 1 and has its range in ΣI ∪ Y0,
which is a subset of ΣO(

E

Ym.Bm).

A defect of a mapping hi is a role assertion r(yt,K, yu,L) in B such that its image
r(hi(yt,K), hi(yu,L)) is not in B. In the following, we will show how a successor
mapping hi+1 can be constructed if hi has a defect. Let hi be the last mapping
constructed so far, and assume that it has a defect, which is a role assertion
r(yt,K, yu,L) in B such that Succ(Ki, r, u) 6≤ Li for yt,Ki

:= hi(yt,K) and yu,Li
:=

hi(yu,L).

• We first show that Succ(Ki, r, u) ≤ L. Consider an existential restriction

E

r.C ∈ Ki where the matrix of satTCQ(

E

X.A) entails C(u). According to
Invariant 1, K coversKi. Thus, there exists an existential restriction

E

r.D ∈
K such that D subsumes C. It follows that the matrix of satTCQ(

E

X.A)
entailsD(u) as well, and soD ∈ Succ(K, r, u). According to Definition 7 and
since the canonical repair contains the role assertion r(yt,K, yu,L), we infer
that L covers Succ(K, r, u). Consequently, L contains some atom subsuming
D and thus also subsuming C.

• Due to Invariant 1, L covers Li. We have just seen that L also covers
Succ(Ki, r, u). In summary, it follows that Li ∪ Succ(Ki, r, u) ≤ L.

• Since Li does not cover Succ(Ki, r, u), we infer that Li < Li∪Succ(Ki, r, u).
• Now choose a ≤-minimal repair type Li+1 for u such that Li ∪
Succ(Ki, r, u) ≤ Li+1 ≤ L and define hi+1 := hi except that hi+1(yu,L) :=
yu,Li+1

. Note that Li < Li+1, and so hi 6= hi+1. Clearly, both invariants are
satisfied.

• Since the CQ-Construction rule is not applicable to Ym, it follows that yu,Li+1

is contained in ΣI∪Ym = ΣO(

E

Ym.Bm), i.e., the mapping hi+1 has its range
in ΣO(

E

Ym.Bm).

Next, we show that the sequence must be finite. For this purpose, we define a
partial order ≤ on the mappings as follows: hi ≤ hj if, for each yt,K ∈ ΣO(

E

Y.B),
we have Ki ≤ Kj where yt,Ki

:= hi(yt,K) and yt,Kj
:= hj(yt,K). Note that ≤

is indeed a partial order, since the covers relation is a partial order on repair
types. According to the above construction, hi < hi+1 is always satisfied, i.e.,
the sequence is strictly increasing. Since ΣO(

E

Y.B) and its subset ΣO(

E

Ym.Bm)
are both finite, there are only finitely many mappings of type ΣO(

E

Y.B) →
ΣO(

E

Ym.Bm). We infer that after finitely many iterations the sequence cannot
be extended by means of the above construction, i.e., it must end with a mapping
hn that is free of defects.

Claim. The last mapping hn is a homomorphism from

E

Y.B to

E

Ym.Bm.

1. Consider an individual name a, which has the synonym ya,s(a) in B. Let
ya,Ki

:= hi(ya,s(a)) for each index i. Due to the invariants, we have

s(a) = K0 ≤ K1 ≤ · · · ≤ Kn ≤ s(a)

30

and so we conclude that Ki = s(a) for each index i. We conclude that
hi(ya,s(a)) = ya,s(a) for each i, i.e., and thus in particular that hn(a) = a.

2. Consider a concept assertion A(yt,K) in B and its image A(yt,Kn) where
yt,Kn

:= hn(yt,K). We will show that A(yt,Kn) is in Bm. By assumption
and according to Definition 7, A(t) is a concept assertion in the saturation
satTCQ(

E

X.A) and A 6∈ K. Since hn satisfies Invariant 1, K covers Kn. It
follows that A 6∈ Kn, and so we conclude that A(yt,Kn) is indeed in Bm, cf.
Definitions 7 and 12.

3. Consider a role assertion r(yt,K, yu,L) in B and its image r(yt,Kn , yu,Ln) where
yt,Kn

:= hn(yt,K) as well as yu,Ln
:= hn(yu,L). By assumption and according

to Definition 7, r(t, u) is a role assertion in the saturation satTCQ(

E

X.A).
Since hn is free of defects, it follows that Succ(Kn, r, u) ≤ Ln and thus the
role assertion r(yt,Kn , yu,Ln) is in Bm, cf. Definitions 7 and 12.

Since

E

Ym.Bm is a sub-qABox of its saturation satTCQ(

E

Ym.Bm), it follows that
hn is also a homomorphism from

E

Y.B to satTCQ(

E

Ym.Bm). Theorem 2 implies
that

E

Ym.Bm CQ-entails

E

Y.B w.r.t. T .

Summing up, we have thus shown the following theorem, which implies that the
optimized repairs also satisfy the properties stated in Proposition 8.

Theorem 14. For each repair seed function s, the canonical QL-repair induced
by s and the optimized QL-repair induced by s are QL-equivalent.

We have explicitly shown this theorem for QL-equivalence without a TBox, but
this trivially implies that the equivalence also holds w.r.t. the TBox T .

6 Evaluation

To find out whether the repair approaches introduced in this paper are in principle
viable for non-trivial ontologies, we made experiments for both IQ and CQ-repairs
with a first, rather unoptimized implementation. In addition to checking how of-
ten the implementation was able to compute a repair within a certain timeout,
we also compared the sizes of optimized repairs with those of canonical repairs.
We considered two different repair scenarios: repairing a single unwanted conse-
quence for a single individual (S1), and repairing a single unwanted consequence
for 10% of the individuals occurring in the ABox (S2).

As corpus for our evaluation, we chose the ontologies used in the 2015 OWL
Reasoner Competition for the track OWL EL Realisation [29], since they contain
a substantial amount of ABox assertions. These 109 ontologies were converted
into pure EL by applying standard transformations and afterwards filtering out

31

102 103 104 105

102

103

104

105

#ABox axioms

#
T
B
ox

ax
io
m
s

Input Ontologies

Figure II: Number of TBox and ABox axioms in the input ontologies.

unsupported axioms. From these ontologies, we kept those that had at most
100,000 axioms in total. The resulting corpus contained 80 ontologies.

In Fig. II we show how the numbers of TBox and ABox axioms in the resulting
ontologies distribute. Specifically, each point in the graph corresponds to an
ontology in the corpus after restricting to EL and flattening of the ABox, where
the x-axis shows its number of ABox assertions, and the y-axis its number of
TBox axioms. Note that in this graph, as well as in the plots that follow, we
use logarithmic scale. We can see that the corpus used is not only balanced in
terms of overall size, but also in terms of ratio between TBox and ABox axioms,
including both ontologies where the TBox is small compared to the ABox, and
where it is large compared to the ABox. Note however that by flattening of the
ABox, we often increased the TBox size significantly depending on the ABox.

We implemented our methods in Java, using the OWL-API1 for parsing OWL
ontologies, and ELK [23] for precomputing any subsumption relationships entailed
with and without the TBox potentially relevant for our repair approach. The code
is available online.2 All experiments were performed on an Intel(R) Core(TM) i5-
4590 CPU with 4 cores and 32 GB RAM, of which we assigned 16 GB as maximal
heap space to the Java VM.

We first discuss the results of the IQ-repairs in Section 6.1, and then discuss our
results for the CQ-repairs in Section 6.2.

32

102 103 104 105

103

104

105

before saturation

af
te
r
sa
tu
ra
tio

n

Saturations

Figure III: Number of assertions before and after IQ-saturation.

6.1 IQ-Repairs

Since it is a precondition of our repair approach, we first saturated the ontologies
using the IQ-saturation rules of Figure 2. We used a timeout of 60 minutes for
every saturation. This way, we successfully computed IQ-saturations of every
ontology. The size of the saturated ABox was usually not much larger than that
of the original one, and always less than two orders of magnitude larger. In
Figure III, we compare the sizes of the ABoxes before and after the saturation.

Scenario S1 was about repairing a single faulty entailment A |=T C(a). Since
we did not have information about whether any entailments from the considered
ontologies are faulty, we generated such assertions randomly. For this, we looked
at entailments of the form A |=T C(a), where C ∈ Sub(T). To make the repair
requests more interesting, we furthermore required that C is not of the form A
or

E

r.>, where A is a concept name. This requirement already ruled out 54 of
the IQ-saturated ontologies, as they did not have any complex entailments of the
required form.

For Scenario S2, we randomly selected some concept C ∈ Sub(T) which had at
least one instance, together with a random selection of 10% of the individuals
in A, and built the repair request consisting of all assertions C(a) where a ranges
over the selected individuals. Surprisingly, although C was not required to be
complex, this ruled out 12 ontologies for which (in the version restricted to pure
EL) no concept with at least one instance could be found.

For both scenarios, we selected a random seed function for the obtained repair
request.

1http://owlapi.sourceforge.net
2https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox

33

http://owlapi.sourceforge.net
https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox

For each ontology and each scenario, we attempted to compute optimised IQ-
repairs for 50 different repair requests. We also tried to compute the set of
objects that would be included in the canonical repairs, to get an idea of the
impact of our optimisation. For each such repair computation, we used a timeout
of 10 minutes. Since all repair requests used only concept descriptions that were
already in the input ontology, the number of objects in the canonical repair was
independent of the repair request. We thus performed the latter computation
only once for each ontology. The success rates were as follows:

• The objects included in the canonical IQ-repair could be computed within
the timeout and without memory exceptions for only 52.9 % of the ontolo-
gies.

• For S1, we could compute the optimized IQ-repair in 99.9 % of all attempts.

• For S2, 98.9 % of IQ-repairs were successful.

This shows that the optimizations introduced in Section 5 have a very positive
impact on the viability of our repair approach.

Fig. IV gives more information on the number of objects and assertions in the
computed repairs. On the left, we consider scenario S1, and on the right, we
consider scenario S2. On the top, we show how the numbers of object names oc-
curring in the canonical and the optimised repairs changed: The purple triangles
indicate the number of object names occurring in the canonical repairs minus the
number of objects in the saturated input ABox (for the ontologies for which this
computation succeeded). The red dots show the difference between the number
of objects in the optimized repairs and in the saturated input ABoxes. This dif-
ference can become negative since objects without assertions in the repairs are
not counted. On the bottom of Fig. IV, we look at the number of assertions:
the blue crosses indicate the difference between the number of assertions in the
optimized repairs and in the saturated input ABoxes for the scenarios S1 and S2,
respectively. It should not be surprising that, in S2, where the repair requests are
larger, more assertions may be removed than are added by the copying of objects
and assertions.

6.2 CQ-Repairs

We ran the same experiments for CQ-repairs. The CQ-saturation was computed
using the rule engine VLog [11] through the Java facade Rulewerk.3 Note that
the CQ-saturation only terminates for cycle-restricted TBoxes. We thus excluded
from our experiment all ontologies for which the IQ-saturation contained a cy-
cle between introduced variables, as those would clearly not be cycle-restricted.
This excluded 16 ontologies. For the remaining 64 ontologies, we computed CQ-

3https://github.com/knowsys/rulewerk

34

https://github.com/knowsys/rulewerk

102 103 104 105

105

103

101

0

−101

−103

Scenario S1
Canonical vs. optimised repair:

102 103 104 105

105

103

101

0

−101

−103

Scenario S2
Canonical vs. optimised repair:

102 103 104 105

105

103

101

0

−101

−103

Difference in number of assertions:

102 103 104 105

105

103

101

0

−101

−103

Difference in number of assertions:

Figure IV: Evaluation results for IQ-repairs. On the top, we show the difference
of the number of object names in the canonical repairs (purple triangle) with the
same difference, but restricted to objects occurring in assertions, for the optimised
repairs (red circle). Below, we look at the difference in the number of assertions.
In each graph, the x-axis shows the number of assertions in the saturated input
ontology, and the y-axis the observed difference.

35

102 103 104 105

103

104

105

before saturation

af
te
r
sa
tu
ra
tio

n

Saturations

CQ
IQ

Figure V: Number of assertions before and after the CQ-saturation, with corre-
sponding results for the IQ-saturation added for comparison.

saturations with a timeout of 60 minutes. This was successful for 62 ontologies.

In Figure V, we show the size of the CQ-saturations, where the x-axis again shows
the ABox size before the saturation. For comparison, we also included the sizes
of the IQ-saturations for those ontologies for which we could compute the CQ-
saturation. Surprisingly, even though, in theory, the CQ-saturation can be of size
exponential in the TBox size, whereas the IQ-saturations are polynomial, the CQ-
saturations that could be computed without timeout were often of similar size
to the IQ-saturations. In fact, in a lot of cases, they had the same size, because
no variables were added during the saturation. Indeed sometimes even neither
of the saturations added any assertions, since the ABox was already saturated.
There were even cases where the CQ-saturation was smaller: this was due to
the non-determinism of the order in which the v-rules are applied: Note that
a concept assertion of the form (

E

r.C)(t) is not added if we first add C(u) for
an r-successor u of t. It seems that VLog does a good job at determining which
order of rule-applications leads to fewer variables added, while we did not add
any optimisation for this for the IQ-saturation.

For the 62 ontologies for which we could compute a saturation, 4 had no non-
trivial entailment of the form C(a), and 44 had no such entailment where C is not
of the form A(a) or

E

r.>(a) with A a concept name. Consequently, 18 ontologies
could be used for scenario S1, and 58 ontologies could be used for scenario S2.

For the actual repairs performed on the CQ-saturations, we used a timeout of 10
minutes as for the IQ-repairs. The number of variables required for the canonical
CQ-repairs could be computed in 62.1 % of cases. We were able to compute all
optimised CQ-repairs for scenario S1, and in 99.9 % of cases, we could compute
the optimised CQ-repairs for scenario S2 (in fact, only one of the experimental
runs caused a timeout). The results of our experiments can be seen in Figure VI,

36

102 103 104 105

105

104

103

102

101

100

Scenario S1
Canonical vs. optimised repair:

102 103 104 105

105

104

103

102

101

100

Scenario S2
Canonical vs. optimised repair:

102 103 104 105

105

103

101

100

Difference in number of assertions:

102 103 104 105

105

103

101

100

Difference in number of assertions:

Figure VI: Evaluation results for the CQ-repairs. On the top, we show the dif-
ference of the number of object names in the canonical repairs (purple triangle)
with the same difference, but restricted to objects occurring in assertions, for the
optimised repairs (red circle). Below, we look at the difference in the number
of assertions. In each graph, the x-axis shows the numer of assertions in the
saturated input ontology, and the y-axis the observed difference.

37

which is similar to Figure IV, but shows the corresponding results for the CQ case.
Note that the patterns of the triangles representing sizes of canonical repairs do
not differ much between Figure IV and Figure VI, because the saturations, on
which their computation is based, do not differ much in size, cf. Figure V. Further
note that for scenario S1, the graph captures fewer ontologies than Figure IV. In
contrast to the IQ-repairs, the number of assertions, and also the number of object
names occurring in any assertion, always increased by at least 1. This is a direct
consequence of our method, but in most cases indeed unavoidable irrespective
of the approach. Note that, in order to repair an assertion C(u), where u is
an individual, the matrix of the repair would have to entail at least C(x) for
some fresh variable x. Still, we see that, in each case, the optimised repairs were
significantly smaller than the canonical repairs. What is surprising is that, for
scenario S1, often fewer variables and assertions were added by the repair as for
IQ-repairs. This has to do with the different shape of the saturations, which we
are going to explain in the following.

a0 a1 . . . ak . . . an

xB

r r r r

(a) Local structure in an IQ-saturation

a0 a1 . . . ak . . . an

yxB ,∅ yxB ,{B}

r r rr r r r

(b) Resulting structure in the IQ-repair

a0 a1 . . . ak . . . an

x0 x1 . . . xk . . . xn

r r r r

(c) Local structure in a CQ-saturation

a0 a1 . . . ak . . . an

yx0,∅ yx1,∅ . . . yxk,∅ yxk,{B} . . . yxn,∅

r r r r

(d) Resulting structure in the CQ-repair

Figure VII: Explanation for large differences in number of role assertions between
IQ-saturation and IQ-repair, which could not be observed for CQ-entailment

For instance, computing the IQ-saturation could introduce a fresh variable xB that
is an r-successor of several individual names a1, . . . , an, since each ai is an instance
of A and the TBox contains the concept inclusion A v

E

r.B, cf. Figure VII (a).
Further assume that only one of the individual names, say ak, needs to be repaired
in a way such that the single successor xB is split up into multiple copies, e.g.,
because the seed function maps ak to the repair type {A,

E

r.B} and maps the
others to the empty repair type. The resulting IQ-repair would contain two copies
of xB, namely one for the empty repair type and one for the repair type {B}, and
both will be r-successors of each individual name ai except ak, cf. Figure VII (b).
Consequently, n−1 role assertions in the IQ-saturation get duplicated during the
construction of the IQ-repair.

38

In contrast, the CQ-saturation for the same setting would contain a separate r-
successor for each of the individual names a1, . . . , an, cf. Figure VII (c). During
the construction of the CQ-repair only the successor of ak is split into two copies,
of which one remains a successor of ak, cf. Figure VII (d). Here, the number of
role assertions would remain unchanged.

a0 a1 . . . ak . . . an

yxB ,∅ yxB ,{B}

r r r r

Figure VIII: Resulting structure in the modified IQ-repair

In order to keep the number of role assertions in an IQ-repair small, we could apply
the following modification to our construction of the optimized IQ-repair: for each
role assertion r(t, u) in the saturation and for all copies yt,K, yu,L ∈ ΣI ∪ Ym, add
the role assertion r(yt,K, yu,L) to the matrix of the repair only if L is ≤-minimal.4
In our example, this would produce a repair as depicted in Figure VIII where,
as for the CQ-repair, the number of role assertions would not change compared
to the saturation. Correctness of this optimization can be shown by a simple
modification of the proof of Proposition 13.

7 Conclusion

This paper presents approaches for repairing DL-based ontologies, in the sense
that they allow to get rid of unwanted consequences. In contrast to most of the
other work on ontology repair, our goal is to compute optimal repairs, i.e., ones
that lose the least amount of other consequences. As relevant consequences to be
preserved, we consider both answers to conjunctive queries (CQ) and answers to
EL instance queries (IQ). The presented results improve on our previous work in
this direction in two respects. First, we allow for the presence of a TBox, which
is assumed to be static (i.e., cannot be changed by the repair), whereas before we
assumed that the TBox is empty. Second, we develop a more efficient construction
of optimal repairs, which is exponential only in the worst case. Our experimental
results show that this optimization makes our repair approach viable also for
fairly large ontologies, at least for the IQ case.

One question for future research is how to lift the restriction to cycle-restricted
TBoxes in the CQ case. Since optimal repairs need not longer exist then, one

4That is, add r(yt,K, yu,L) to the matrix if L covers Succ(K, r, u) and there is no yu,M ∈
ΣI ∪ Ym such thatM < L and Succ(K, r, u) ≤M.

39

can ask whether the existence question is decidable, and how to compute optimal
repairs if they exist. We have already noticed in our first attempts to tackle this
problem that optimal repairs may then become larger than single-exponential.

In this and in our previous work, we have assumed that unwanted consequences
are specified as EL instance relationships. Another interesting open question is
whether our results can be generalized to a setting where unwanted consequences
are specified as answers to conjunctive queries, as e.g. in [14].5

References

[1] F. Baader, S. Borgwardt, and B. Morawska. Extending unification in EL
towards general TBoxes. In Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2012), pages 568–572. AAAI
Press/The MIT Press, 2012.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In L. P. Kael-
bling and A. Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth In-
ternational Joint Conference on Artificial Intelligence, Edinburgh, Scotland,
UK, July 30 - August 5, 2005, pages 364–369. Professional Book Center,
2005.

[3] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Descrip-
tion Logic. Cambridge University Press, 2017.

[4] F. Baader, F. Kriegel, and A. Nuradiansyah. Privacy-preserving ontology
publishing for EL instance stores. In F. Calimeri, N. Leone, and M. Manna,
editors, Logics in Artificial Intelligence - 16th European Conference, JELIA
2019, Rende, Italy, May 7-11, 2019, Proceedings, volume 11468 of Lecture
Notes in Computer Science, pages 323–338. Springer, 2019.

[5] F. Baader, F. Kriegel, A. Nuradiansyah, and R. Peñaloza. Computing
safe anonymisations of quantified aboxes w.r.t. EL policies (extended ver-
sion). LTCS-Report 20-09, Chair of Automata Theory, Institute of Theoret-
ical Computer Science, Technische Universität Dresden, Dresden, Germany,
2020.

[6] F. Baader, F. Kriegel, A. Nuradiansyah, and R. Peñaloza. Making repairs
in description logics more gentle. In M. Thielscher, F. Toni, and F. Wolter,
editors, Principles of Knowledge Representation and Reasoning: Proceedings
of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30
October - 2 November 2018, pages 319–328. AAAI Press, 2018.

5Note that no TBox is considered in [14], and the notion of optimality used there is different
from ours (see the introduction of [7] for a discussion of the differences).

40

[7] F. Baader, F. Kriegel, A. Nuradiansyah, and R. Peñaloza. Computing com-
pliant anonymisations of quantified aboxes w.r.t. EL policies. In J. Z. Pan,
V. A. M. Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. Senevi-
ratne, and L. Kagal, editors, The Semantic Web - ISWC 2020 - 19th In-
ternational Semantic Web Conference, Athens, Greece, November 2-6, 2020,
Proceedings, Part I, volume 12506 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2020.

[8] F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT using axiom
pinpointing in the description logic EL+. In Proceedings of the International
Conference on Representing and Sharing Knowledge Using SNOMED (KR-
MED’08), Phoenix, Arizona, 2008.

[9] T. C. Boyle. Talk to Me. Bloomsbury Publishing, 2021. To appear.

[10] A. Calì, D. Lembo, and R. Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In F. Neven,
C. Beeri, and T. Milo, editors, Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 9-12, 2003, San Diego, CA, USA, pages 260–271. ACM, 2003.

[11] D. Carral, I. Dragoste, L. González, C. J. H. Jacobs, M. Krötzsch, and J. Ur-
bani. Vlog: A rule engine for knowledge graphs. In C. Ghidini, O. Hartig,
M. Maleshkova, V. Svátek, I. F. Cruz, A. Hogan, J. Song, M. Lefrançois, and
F. Gandon, editors, The Semantic Web - ISWC 2019 - 18th International
Semantic Web Conference, volume 11779 of Lecture Notes in Computer Sci-
ence, pages 19–35. Springer, 2019.

[12] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. Hermit: An
OWL 2 reasoner. J. Autom. Reason., 53(3):245–269, 2014.

[13] B. C. Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik, and
Z. Wang. Acyclicity notions for existential rules and their application to
query answering in ontologies. J. Artif. Intell. Res., 47:741–808, 2013.

[14] B. C. Grau and E. V. Kostylev. Logical foundations of linked data anonymi-
sation. J. Artif. Intell. Res., 64:253–314, 2019.

[15] K. Gödel. Über die Vollständigkeit des Logikkalküls. Doctoral thesis, Univer-
sität Wien, Wien, Austria, 1929.

[16] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro knowledge
representation and reasoning system. Semantic Web, 3(3):267–277, 2012.

[17] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations
on finite and infinite graphs. In 36th Annual Symposium on Foundations of
Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages
453–462. IEEE Computer Society, 1995.

41

[18] R. Hoehndorf, P. N. Schofield, and G. V. Gkoutos. The role of ontologies in
biological and biomedical research: A functional perspective. Brief. Bioin-
form., 16(6):1069–1080, 2015.

[19] M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in
OWL. In A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W.
Finin, and K. Thirunarayan, editors, The Semantic Web - ISWC 2008, 7th
International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26-30, 2008. Proceedings, volume 5318 of Lecture Notes in Computer
Science, pages 323–338. Springer, 2008.

[20] I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: DL rea-
soning with large numbers of individuals. In V. Haarslev and R. Möller,
editors, Proceedings of the 2004 International Workshop on Description Log-
ics (DL2004), Whistler, British Columbia, Canada, June 6-8, 2004, volume
104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[21] D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries
under functional and inclusion dependencies. In J. D. Ullman and A. V.
Aho, editors, Proceedings of the ACM Symposium on Principles of Database
Systems, March 29-31, 1982, Los Angeles, California, USA, pages 164–169.
ACM, 1982.

[22] A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications
of OWL DL entailments. In Proc. of ISWC’07, volume 4825 of Lecture Notes
in Computer Science, pages 267–280. Springer-Verlag, 2007.

[23] Y. Kazakov, M. Krötzsch, and F. Simancik. The incredible ELK - from
polynomial procedures to efficient reasoning with EL ontologies. Journal of
Automed Reasoning, 53(1):1–61, 2014.

[24] R. Küsters. Non-standard Inferences in Description Logics, volume 2100 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

[25] J. S. C. Lam, D. H. Sleeman, J. Z. Pan, and W. W. Vasconcelos. A fine-
grained approach to resolving unsatisfiable ontologies. J. Data Semant.,
10:62–95, 2008.

[26] C. Lutz and F. Wolter. Deciding inseparability and conservative extensions
in the description logic EL. J. Symb. Comput., 45(2):194–228, 2010.

[27] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data
dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[28] T. Meyer, K. Lee, R. Booth, and J. Z. Pan. Finding maximally satisfiable
terminologies for the description logic ALC. In Proc. of the 21st Nat. Conf.
on Artificial Intelligence (AAAI 2006). AAAI Press/The MIT Press, 2006.

42

[29] B. Parsia, N. Matentzoglu, R. S. Gonçalves, B. Glimm, and A. Steigmiller.
The OWL Reasoner Evaluation (ORE) 2015 competition report. Journal of
Automed Reasoning, 59(4):455–482, 2017.

[30] B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In
A. Ellis and T. Hagino, editors, Proc. of the 14th International Conference
on World Wide Web (WWW’05), pages 633–640. ACM, 2005.

[31] R. Rosati. On conjunctive query answering in EL. In D. Calvanese, E. Fran-
coni, V. Haarslev, D. Lembo, B. Motik, A. Turhan, and S. Tessaris, edi-
tors, Proceedings of the 2007 International Workshop on Description Logics
(DL2007), Brixen-Bressanone, near Bozen-Bolzano, Italy, 8-10 June, 2007,
volume 250 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[32] S. Schlobach and R. Cornet. Non-standard reasoning services for the debug-
ging of description logic terminologies. In G. Gottlob and T. Walsh, editors,
Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pages 355–362, Acapulco, Mexico, 2003. Morgan Kaufmann, Los Altos.

[33] S. Schlobach, Z. Huang, R. Cornet, and F. Harmelen. Debugging incoherent
terminologies. J. Automated Reasoning, 39(3):317–349, 2007.

[34] A. Steigmiller, T. Liebig, and B. Glimm. Konclude: System description. J.
Web Semant., 27-28:78–85, 2014.

[35] N. Troquard, R. Confalonieri, P. Galliani, R. Peñaloza, D. Porello, and
O. Kutz. Repairing ontologies via axiom weakening. In S. A. McIlraith
and K. Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on
Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 1981–1988. AAAI Press, 2018.

43

	Introduction
	Preliminaries
	A Tale of Two Entailments
	Classical Entailment and CQ-Entailment
	IQ-Entailment

	Canonical Repairs
	Optimized Repairs
	Evaluation
	IQ-Repairs
	CQ-Repairs

	Conclusion

