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Abstract. We review our recent work on how to compute optimal re-
pairs, optimal compliant anonymizations, and optimal safe anonymiza-
tions of ABoxes containing possibly anonymized individuals. The results
can be used both to remove erroneous consequences from a knowledge
base and to hide secret information before publication of the knowledge
base, while keeping as much as possible of the original information.
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1 Introduction

In contrast to most of the work in description logic (DL), which is about how to
derive consequences of a DL knowledge base (KB) efficiently, this paper is about
how to get rid of consequences. The reason for this wish can, on the one hand, be
that a certain consequence is incorrect, and thus one wants to repair the KB to
get rid of this error. On the other hand, one may want to remove a consequence
since it is considered to be private information that is not supposed to be made
public. In both cases, the new KB should not introduce new consequences (i.e.,
it should be entailed by the original one), and it should be optimal in the sense
that a minimal amount of consequences is removed (i.e., it should be as close as
possible to the original one w.r.t. the entailment relation).

Though both scenarios share the wish to remove consequences, there are
some differences. On the technical side, in the context of repairs one usually
considers a single consequence or a finite set of consequences of the form C(a),
i.e., one wants to get rid of instance relationships for specific individuals [3].1 The
resulting KB is then called a repair of the original one. In the context of privacy,
1 We restrict the attention here to derived instance relationships, though repairs for

subsumption relationships have also been considered in the literature [6].
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one usually considers a policy P, consisting of one or a finite number of concepts,
and wants to get rid of all consequences of the form C(a) for C ∈ P and a a
named individual [7,8,16,17]. The resulting KB is then said to be a P-compliant
anonymization of the original one. Instead of changing the data before publishing
it, one could also provide only restricted access through queries, whose answers
are monitored by a “censor”, which may decide not to give an answer or even lie
if needed to satisfy the policy. There has been quite some work in this direction
in the database and the DL community [11, 13–15,22], but this approach is not
the topic of the present paper.

On the intentional side, achieving compliance is not always sufficient to guar-
antee privacy [8, 16, 17]. In fact, an attacker may already have some knowledge,
which does not imply the secret, but which together with a published compli-
ant anonymization may be used to derive the secret information. Thus, in the
context of privacy, one is interested in computing anonymization that are safe
in the sense that, even if extended with an arbitrary compliant KB, they do not
imply C(a) for C ∈ P and a a named individual.

In the general setting of a DL KB consisting of a TBox and an ABox, optimal
repairs (optimal compliant/safe anonymizations) need not exist [3,6]. There are
two ways to overcome this problem. On the one hand, one can weaken the notion
of optimality and restrict the attention to repairs (anonymizations) that can
be obtained from the original KB by applying certain repair (anonymization)
steps. This approach is, e.g., followed in [16, 17] in the setting of privacy and
in [6,18,21,29] for the repair scenario. Classical repair approaches that completely
remove axioms rather than just weakening them also fall under this category [10,
20,24,25,27,28].

On the other hand, one can stick with the quest for optimality, and restrict
the considered KBs such that optimality can be achieved. Our first work in this
direction [5,9] considered compliance and safety in the very restricted setting of
an EL instance store [19], i.e., where there is no TBox and the ABox does not
contain role assertions. In the first paper, the attacker’s knowledge is considered
to be a set of EL concept assertions (an EL instance store) whereas in the second
also other DLs are used to represent the attacker’s knowledge. In [7] we extended
the results of [5] to ABoxes with role assertions (and still no TBox), but restricted
the attention to compliance for EL policies. In [8] we investigated safety in the
same setting, but had to restrict the policies to ones consisting of a single EL
concept (singleton policies). Finally, in [3] we extended the results of [7] in two
directions, but formulate the new results in the (more general) context of repairs
rather than compliance. On the one hand, we add a TBox, which must however
be cycle-restricted. On the other hand, we develop a more practical algorithm
for computing optimal repairs.

This paper summarizes the results obtained in our previous publications [3,7,
8], but presents them uniformly in the setting of privacy. In addition, it extends
the results of [8] by developing a more practical algorithm for computing optimal
safe anonymizations in the setting without a TBox. Finally, we show that using
TBoxes one can reduce safety for general policies to safety for singleton policies.



Privacy-Preserving Ontology Publishing 3

Since characterizing safety for general policies is an open problem, this shows
that extending our results for safety to the case with TBox is a non-trivial
problem. Proofs of our new results can be found in the appendix.

2 Preliminaries

We use concepts of the lightweight DL EL both to define TBoxes and to for-
mulate which consequences are unwanted. The data are represented in the form
of quantified ABoxes, which are atomic ABoxes (i.e., ones not containing as-
sertions for complex concepts) in which some individual names are assumed to
be anonymized. While such anonymous individuals do not belong to the stan-
dard DL repertoire, they are actually available in OWL. Also, such ABoxes
have already been used in previous work on privacy-preserving ontology publish-
ing [16, 17]. Finally, note that concept and role assertions involving anonymous
individuals can be used to express concept assertions for complex concepts.

EL concepts and TBoxes. We assume basic knowledge about DLs [2]. Specif-
ically, we consider the DL EL, defined over a fixed signature Σ, which is the dis-
joint union of the countably infinite sets ΣO, ΣC, and ΣR of object names, concept
names, and role names. EL concepts are built using the concept constructors ⊤,
⊓ and ∃. We treat conjunctions as sets, that is, they do not contain duplicates
and the order is irrelevant. EL TBoxes, in the following just called TBoxes, are
defined as usual as sets of concept inclusions (CIs) C ⊑ D. We use the nota-
tion C ⊑T D (alternatively T |= C ⊑ D) to denote that C ⊑ D holds in all
models of T . A TBox is called cycle-restricted if there is no non-empty sequence
of role names r1, . . . , rk and no EL concept C such that C ⊑T ∃r1. · · · ∃rk.C.
Cycle-restrictedness of a given TBox can be decided in polynomial time [1].

An atom is of the form A or ∃r.C, where A ∈ ΣC, r ∈ ΣR, and C is a concept.
Every EL concept C is a conjunction of atoms (with ⊤ as empty conjunction),
called the top-level conjunction of C. We denote the set of atoms occurring in
it as Conj(C). Given a TBox T and a set C of concepts, we use Sub(T , C) to
denote the set of concepts occurring in T and C (as elements or subconcepts),
Atoms(T , C) to denote the set of atoms occurring in T and C, and similarly for
Sub(C) and Atoms(C) for the concepts and atoms occurring in C. Given two sets
of EL concepts K and L, we say that K is covered by L (written K ≤ L) if, for
every C ∈ K, there is D ∈ L s.t. C ⊑∅ D.

Quantified ABoxes. We use a generalisation of ABoxes called quantified
ABoxes (qABoxes) to adequately represent anonymous individuals as in OWL
and nulls common in database systems, which play a central role in anonymiza-
tion [17]. To illustrate, consider the ABox {r(a, b), A(a), B(b)}, and assume we
want to hide the fact that b is an instance of B. Quantified ABoxes allow us
to achieve this in a better way than by just deleting the fact B(b), namely by
additionally adding an anonymous copy of b, resulting in the quantified ABox
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∃{x}.{r(a, b), A(a), r(a, x), B(x)}, for which a is still an instance of ∃r.B. In
fact, this qABox is equivalent to the ABox {r(a, b), (A ⊓ ∃r.B)(a)}, which uses
a concept assertion involving the complex concept A ⊓ ∃r.B.

Essentially, qABoxes are syntactic variants of conjunctive queries. Formally,
a qABox is of the form ∃X.A, where X is a finite subset of ΣO, the elements of
which are called variables, and A is the matrix, a finite set of concept assertions
A(u) where u ∈ ΣO and A ∈ ΣC, and of role assertions r(u, v) where u, v ∈
ΣO and r ∈ ΣR. Without loss of generality, we assume different qABoxes to
use disjoint sets of variables. A non-variable object name in ∃X.A is called an
individual name, and the set of all these names is denoted as ΣI(∃X.A). We
further set ΣO(∃X.A) := ΣI(∃X.A) ∪X. Traditional DL ABoxes are qABoxes
where X = ∅; we then write A instead of ∃∅.A. The matrix A of a qABox
∃X.A is such a traditional ABox. An interpretation I is a model of a qABox
∃X.A if there is an interpretation J such that ∆I = ∆J , the interpretation
functions ·I and ·J coincide on Σ \X, and uJ ∈ AJ for each A(u) ∈ A as well
as (uJ , vJ ) ∈ rJ for each r(u, v) ∈ A.

Let T be a TBox and ∃X.A, ∃Y.B two qABoxes. We write ∃X.A |=T ∃Y.B
to express that every model of T and ∃X.A is also a model of ∃Y.B, in which
case we say ∃Y.B is entailed by ∃X.A w.r.t. T . Entailment of traditional ABoxes
from a qABox can be decided in polynomial time, while entailment between
qABoxes is NP-complete.

3 Computing Optimal Compliant Anonymizations

A policy is a finite set of EL concepts. Intuitively, a policy says that one should
not be able to derive that any of the individuals of a qABox belongs to a concept
in the policy. To make a given qABox compliant to a policy, we compute an
anonymization of it, which is a compliant qABox entailed by it. Intuitively,
such an anonymization is optimal if it does not remove more information than
necessary.

Definition 1. Let T be a TBox, P be a policy, and ∃X.A, ∃Y.B be qABoxes.

1. ∃X.A is compliant with P w.r.t. T if, for each a ∈ ΣI(∃X.A) and C ∈ P,
∃X.A ̸|=T C(a),

2. ∃Y.B is a P-compliant anonymization of ∃X.A w.r.t. T if ∃X.A |=T ∃Y.B
and ∃Y.B is compliant with P w.r.t. T ;

3. ∃Y.B is an optimal P-compliant anonymization of ∃X.A w.r.t. T if ad-
ditionally ∃Z.C |=T ∃Y.B implies ∃Y.B |=T ∃Z.C for every P-compliant
anonymization ∃Z.C of ∃X.A w.r.t. T .

Since, in EL, entailment of concept assertions (viewed as singleton ABoxes) is in
P, we can decide compliance in polynomial time. More interesting is the question
of how to compute a (preferably optimal) anonymization for a given qABox. This
problem is investigated in [7] for the case without TBox, and in [3] for the case
with TBoxes. These works also consider a weaker version of entailment, called
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IQ-entailment, for the case where we are only interested in instance queries,
and [3] considers a generalisation of anonymizations called ABox repairs, where
instead of a policy, a set of assertions is given that should not be entailed. For
brevity, we focus here on the version of anonymizations defined above.

To guarantee existence of optimal anonymizations, we restrict ourselves to
cycle-restricted TBoxes. An example where the TBox is not cycle-restricted
and where no optimal repairs exist is as follows. Consider the traditional
ABox {A(a)}, the TBox {A ⊑ ∃r.A, ∃r.A ⊑ A}, and the policy {A}. Intu-
itively, an optimal anonymization would have to entail any qABox of the form
∃{x0, . . . , xn}.{r(a, x0), r(xi, xi+1) | 0 ≤ i ≤ n− 1} for n ≥ 0, which is not pos-
sible for a qABox entailed by {A(a)} w.r.t. T . A formal proof that there is no
optimal compliant anonymization in this case can be found in [6]. As shown
in [3], this problem can be avoided by considering IQ-entailment, which we do
not discuss here.

Next, we present a class of anonymizations called canonical anonymizations,
which cover all optimal anonymizations. They are given by a rather elegant
direct definition, but may be hard to compute in practice. We then present an
optimized approach that computes smaller representations of them.

3.1 Canonical Compliant Anonymizations

If the TBox T is cycle-restricted, it is possible to compute (in exponential time)
its saturation, i.e., a qABox satT (∃X.A) such that for every qABox ∃Y.B,
∃X.A |=T ∃Y.B iff satT (∃X.A) |=∅ ∃Y.B. The saturation integrates into the
qABox all relevant information that can be inferred using the TBox, so that
entailments can be decided without use of the TBox (see [3] for how to compute
satT (∃X.A)).

In our approach, we first compute the saturation, and then perform the
actual anonymization based on repair types and compliance seed functions. For
convenience, we fix in the following the TBox T , policy P and qABox ∃X.A
given as input, and abbreviate ΣI(∃X.A) as ΣI. A repair type specifies for a
given object which entailments are to be removed by the anonymization.

Definition 2. Let ∃Y.B := satT (∃X.A) and u ∈ ΣO(∃Y.B). A repair type for
u is a subset K of Atoms(P, T ) that satisfies the following:

1. B |=∅ C(u) for each atom C ∈ K,
2. if C,D are distinct atoms in K, then C ̸⊑∅ D,
3. K is premise-saturated w.r.t. T , i.e., for all C ∈ Sub(P, T ) s.t. B |=∅ C(u)

and C ⊑T D for some D ∈ K, there is E ∈ K such that C ⊑∅ E.

Condition 1 makes sure the concepts in the repair type are indeed entailed for
the given individual. Condition 2 avoids redundancies, and Condition 3 ensures
that removing the corresponding assertions is effective also in presence of the
TBox. The compliance seed function now assigns to every named individual a
repair type based on the given policy.
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Definition 3. A compliance seed function is a function s that maps each in-
dividual name b ∈ ΣI to a repair type s(b) for b such that, if C ∈ P and
satT (∃X.A) |=∅ C(b), then there is D ∈ s(b) such that C ⊑∅ D.

Each compliance seed function induces a compliant anonymization defined next.
Intuitively, for concept names A ∈ s(a), we simply remove the concept assertion
A(a) from A. For atoms of the form ∃r.C ∈ s(a), we need to modify the role
successors of a such that ∃r.C(a) is no longer entailed. To avoid losing more
information than necessary, we do not just remove assertions from the objects
in A, but also create copies of objects by introducing new variables, which are
based on the set of repair types for each object name.

Definition 4. Given a compliance seed function s, we define the canonical com-
pliant anonymization caT (∃X.A, s) induced by s as the qABox ∃Y.B where:

1. The set Y consists of the variables yu,K s.t. u is an object name in
satT (∃X.A) and K is a repair type for u, except for the case where u is
an individual name and K = s(u). In the latter case, we keep the individual
name u, but use yu,s(u) as a synonym for u in the definition of B below.

2. The matrix B consists of the following assertions:
(a) A(yu,K) if A(u) occurs in satT (∃X.A) and A ̸∈ K, and
(b) r(yu,K, yv,L) if r(u, v) occurs in satT (∃X.A) and for each ∃r.C ∈ K s.t.

the matrix of satT (∃X.A) entails C(v), there exists D ∈ L s.t. C ⊑∅ D.

Every qABox caT (∃X.A, s) induced by a seed function s is a compliant
anonymization of ∃X.A, but it need not be optimal. However, every optimal
compliant anonymization is induced (up to equivalence) by some seed function.
Thus, we can compute all optimal compliant anonymizations (modulo equiva-
lence) by computing all canonical compliant anonymizations and then removing
the non-optimal ones. The latter requires testing entailment between quantified
ABoxes.

Theorem 5 ([3]). There is a deterministic, exponential time algorithm with
access to an NP oracle that computes the set of all optimal compliant anonymiza-
tions of ∃X.A for P w.r.t. T .

3.2 Optimality Using Minimal Seed Functions

The NP oracle in Theorem 5 is needed for the NP-complete entailment test,
which is applied to exponentially large qABoxes. If it is sufficient to compute
some, rather than all, optimal compliant anonymizations, we can dispense with
the NP oracle and instead utilize a (polynomial time decidable) partial order on
seed functions [7]. For two compliance seed functions s and t, we say that s is
covered by t (written s ≤ t) if s(a) is covered by t(a) for every a ∈ ΣI, i.e., for
every C in s(a) there is D in t(a) s.t. C ⊑∅ D.

Proposition 6 ([7]). If caT (∃X.A, s) |=T caT (∃X.A, t) for two compliance
seed functions s and t, then s ≤ t.
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This was shown in [7] for the case without a TBox, but the proof can easily be
extended to the case considered here.

The proposition implies that each minimal seed function induces an optimal
anonymization. Since there is always at least one minimal seed function and since
≤ can be decided in polynomial time, we can draw the following conclusion.

Theorem 7 ([7]). A non-empty set of optimal compliant anonymizations of
∃X.A for P w.r.t. T can be computed in exponential time.

3.3 Smaller Optimal Compliant Anonymizations

Since the number of variables introduced in a canonical compliant anonymization
is always exponential in the size of the TBox and the policy,2 computing even
one of them in practice quickly becomes infeasible. The exponential blow-up is
in general not avoidable, already for the very limited case without TBox and
where the qABox corresponds to an EL instance store [5]. However, in many
practical cases, we can compute a compliant anonymization that is significantly
smaller than the canonical compliant anonymization, but logically equivalent to
it [3, 4]. The idea is to avoid introducing unnecessary variables by starting with
the individual names and unmodified single copies of all object names, and then
incrementally determining which variables of the canonical anonymization need
to be included, where in each step we only look at the immediate role-successors
of each object name and the requirements expressed in the associated repair type.

To be more precise, let s be a repair seed function and ∃Y.B := caT (∃X.A, s).
According to Definition 4, we have r(yt,K, yu,L) ∈ B iff satT (∃X.A) contains the
role assertion r(t, u) and the repair type L covers

Succ(K, r, u) := {C | ∃r.C ∈ K and the matrix of satT (∃X.A) entails C(u) }.

Our procedure produces a sequence Y0, Y1, . . . , Ym of subsets Yi of Y such that
∃Y.B is equivalent to ∃Ym.Bm, where Bm is the subset of B that uses only
objects from ΣI ∪ Ym. We start with the set

Y0 := { yt,∅ | t is an object name occurring in satT (∃X.A) }.

The subsequent sets are obtained by exhaustively applying the following rule:

Compliant Anonymization Rule.
If (i) yt,K, yu,L ∈ ΣI ∪ Yi, (ii) r(t, u) occurs in satT (∃X.A), (iii) L does
not cover Succ(K, r, u), (iv) there is a covering-minimal repair type M for
u that covers L ∪ Succ(K, r, u), and (v) yu,M ̸∈ ΣI ∪ Yi,
then set Yi+1 := Yi ∪ {yu,M}.

Since each rule application adds a variable, the exhaustive application of the
Compliant Anonymization Rule must terminate after finitely many steps with a
set Ym ⊆ Y of variables. We call ∃Ym.Bm the optimized compliant anonymization
of ∃X.A w.r.t. T induced by the seed function s.
2 However, canonical anonymizations can be computed in polynomial time w.r.t. data

complexity, i.e., if only the size of the qABox counts (TBox and policy fixed).
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ben

yben,∅

yx,∅

yx,{Comedian}

yx,{∃spouse.Comedian}

yx,{Comedian,∃spouse.Comedian}

jerry

yjerry,{Comedian}

relative spouse

Fig. 1: Canonical anonymization (all nodes) and the subset that is the optimized
anonymization (non-shadowed nodes). Gray nodes denote instances of Comedian.

Theorem 8 ([3]). For each compliance seed function s, the optimized compliant
anonymization induced by s is equivalent to caT (∃X.A, s).

To compute Bm we do not need to compute the larger matrix B first. Instead, we
directly apply the definition of the matrix (Definition 4) to the object names in
ΣI ∪ Ym. Experiments with an implementation3 of this procedure (for the more
general case of ABox repairs) indicate that applying this optimized procedure
reduces the size of the computed compliant anonymizations considerably [3, 4].

Example 9. To illustrate both kinds of anonymizations, consider an empty TBox,
policy P := {P} for P := ∃relative.(Comedian ⊓ ∃spouse.Comedian), and qABox
∃X.A := ∃{x}.{relative(ben, x),Comedian(x), spouse(x, jerry),Comedian(jerry)}.
As seed function, we select s s.t. s(ben) = {P} and s(jerry) = ∅. Fig. 1 depicts
both the canonical and the optimized compliant anonymization.

4 Safety of Quantified ABoxes, Mainly Without TBox

To guarantee privacy, policy compliance is not always sufficient since an attacker
may have additional knowledge that, by itself, does not reveal the secret, but
which, together with the to be published compliant information, would violate
the privacy policy. This is captured by the notion of safety : a qABox ∃X.A is safe
for a given policy P if for every P-compliant ∃Y.B, the union ∃(X ∪Y ).(A ∪ B)
is compliant with P as well.

This definition is based on the assumption that the additional knowledge
possessed by the attacker is also in the form of a qABox (the qABox ∃Y.B in
the formal definition). Since we do not know which additional knowledge the
attacker has, we need to consider all possible compliant qABoxes ∃Y.B. Non-
compliant qABoxes ∃Y.B need not be considered here: in fact, it is useless trying
to hide the secret information from such an attacker that already knows it.

For instance, the canonical compliant anonymization shown in Figure 1 is
not safe since one could add the compliant qABox

∃{y}.{relative(ben, y),Comedian(y), spouse(y, jerry)}.
3 https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox

https://github.com/de-tu-dresden-inf-lat/abox-repairs-wrt-static-tbox
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In the resulting qABox, Ben is an instance of the policy concept P .
In [8], we give a characterization for safety of qABoxes for singleton policies,4

which are of the form {P} for an EL concept P . Specifically, safety for {P} is
violated if (1) A(a) ∈ A for some individual name a and A ∈ Atoms(P ), or
(2) r(a, u) ∈ A and ∃r.D ∈ Atoms(P ) such that a part of the concept D can
be found in ∃X.A at the specific object u— in both cases we can construct
attacking compliant qABoxes as certificates for non-safety. The second condition
is captured by the notion of partial homomorphisms (cf. Definition 3.6 in [8]).
Intuitively, a partial homomorphism from a concept D to a qABox is “almost”
a homomorphism,5 but which only maps all those nodes of the syntax tree of D
that are between the root and a “cut.” Figure 2 shows an example: the “cut” is
depicted as the green line. These two conditions are not only necessary but also
sufficient for safety.

A

A

BA

r r
B

BA

r r

s

r s

a

A

x

A

y

A

b z

A,B

c

B

rr

s r

r

s

r

s

r

B

Fig. 2: A partial homomorphism from the concept on the left to the quantified
ABox on the right at variable x, depicted by the dashed arrows.

Proposition 10 ([8]). ∃X.A is safe for {P} iff, for each individual name a,
the following holds: (1) if A ∈ Atoms({P}), then A(a) ̸∈ A and (2) if r(a, u) ∈ A
and ∃r.D ∈ Atoms({P}), then there is no partial homomorphism from D to
∃X.A at u.

Since the existence of a partial homomorphism can be decided in polynomial
time [8], we obtain the following complexity result.

Theorem 11. Safety of qABox w.r.t. singleton EL policies is in P.

4.1 Canonical Safe Anonymizations

If a qABox turns out not to be safe, we again want to compute an anonymization
that is safe and that preserves as much information from the original qABox as
possible. We say that a qABox ∃Y.B is a {P}-safe anonymization of ∃X.A if
4 Characterizing safety for general policies is an open problem.
5 Homomorphisms come into play since they characterize the instance problem in EL.
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∃X.A |= ∃Y.B and ∃Y.B is safe for {P}. Such an anonymization is optimal
if there is no {P}-safe anonymization ∃Z.C of ∃X.A that lies strictly between
∃X.A and ∃Y.B w.r.t. the entailment order. In [8], we presented an approach
for computing a unique optimal safe anonymization in exponential time. The
approach computes a qABox called canonical safe anonymization that entails
each {P}-safe anonymization of ∃X.A.

Definition 12. The canonical safe anonymization sa(∃X.A, {P}) of ∃X.A
w.r.t. {P} is defined as the qABox ∃Y.B such that

1. the set Y consists of the variables yt,K where t is an object name occurring in
∃X.A and K is a subset of Atoms({P}) that does not contain ⊑∅-comparable
atoms, and

2. the matrix B consists of the following assertions:
(a) A(yt,K) if A(t) occurs in A and A ̸∈ K,
(b) r(yt,K, yu,L) provided r(t, u) ∈ A and, for each ∃r.C ∈ K, there is D ∈ L

with C ⊑∅ D,
(c) r(yt,K, b) if r(t, b) occurs in A and there is no ∃r.C ∈ K.
In these conditions, the first object name yt,K may also stand for an individ-
ual name a, which is then treated like the variable ya,Max(Atoms({P})), where
Max(K) collects the subsumption-maximal elements of K modulo equivalence.

As in the case of compliance, the canonical safe anonymizations introduce an
exponential number of copies for each object in the input, which may make a
computation infeasible in practice.

4.2 Making It Smaller Again

Similar to the case of compliant anonymizations, we can reduce the number
of variables in the safe anonymization by creating copies only when needed.
According to Definition 12, r(yt,K, yu,L) ∈ B iff r(t, u) ∈ A and L covers
Succ(K, r) := {C | ∃r.C ∈ K}. To compute the optimized safe anonymization,
we again produce a sequence Y0, . . . , Ym of subsets of Y . Starting with the set
Y0 := {yt,∅ | t ∈ ΣO(∃X.A)}, and applying the following two rules exhaustively.

Safe Anonymization Rule 1.
If (i) yt,K, yu,L ∈ Yi, (ii) r(t, u) ∈ A, (iii) L does not cover Succ(K, r), (iv)
M is a cover-minimal set of atoms covering L∪Succ(K, r), but (v) yu,M ̸∈ Yi,
then set Yi+1 := Yi ∪ {yu,M}

Safe Anonymization Rule 2.
If (i) a ∈ ΣI and yu,L ∈ Yi, (ii) r(a, u) ∈ A, (iii) L does not cover
Succ(Max(Atoms({P})), r), (iv) M is a cover-minimal set of atoms covering
L ∪ Succ(Max(Atoms({P})), r), but (v) yu,M ̸∈ Yi,
then set Yi+1 := Yi ∪ {yu,M}

After generating the set of variables, we construct the matrix of the optimized
safe anonymization based on Definition 12.
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ben

yben,∅

yx,∅

yx,{Comedian}

yx,{∃spouse.Comedian}

jerry

yjerry,∅

yjerry,{Comedian}

relative
spouse

Fig. 3: Optimized safe anonymization of the example ABox. Gray nodes denote
instances of Comedian.

Definition 13. Let Ym ⊆ Y be the set of all variables obtained by exhaustive
applications of Safe Anonymization Rule 1 and Rule 2. The optimized {P}-safe
anonymization of ∃X.A is the qABox ∃Ym.Bm, where Bm contains all assertions
in the matrix of sa(∃X.A, {P}) involving only object names in ΣI ∪ Ym.

Example 14. For the policy and qABox in Example 9, the canonical safe
anonymization would contain 24 variables, while the optimized safe anonymiza-
tion is much smaller.6 Applying the Safe Anonymization Rule 2 to the pair b
and yx,∅ exhaustively, we obtain the variables yx,{C} and yx,{∃s.C}, and then ap-
plying the Safe Anonymization Rule 1 to the pair yx,{C,∃s.C} and yj,∅ generates
yj,{C}. On the resulting set of objects, no rule is applicable, and our procedure
terminates. Thus, the optimized safe anonymization contains only 8 objects in
total. Using the matrix construction in Definition 12, we obtain the optimal safe
anonymization ∃Ym.Bm whose matrix is depicted in Figure 3.

Bm is a subset of the matrix of sa(∃X.A, {P}), which implies that the former
is entailed by the latter. It immediately follows that ∃Ym.Bm is a {P}-safe
anonymization of ∃X.A. We can also show the other direction.

Proposition 15. The optimized {P}-safe anonymization of ∃X.A entails
sa(∃X.A, {P}).

We thus obtain the following theorem, which shows that we can work with the
smaller anonymization.

Theorem 16. Given a qABox ∃X.A and a singleton policy {P}, the optimized
{P}-safe anonymization ∃Ym.Bm and sa(∃X.A, {P}) are equivalent.

4.3 Static EL TBoxes and General Policies

So far, our methods for testing for and achieving safety can only deal with
singleton policies without a TBox. Safety w.r.t. a TBox is defined as follows:
the qABox ∃X.A is safe for P w.r.t. T if for each quantified ABox ∃Y.B that
is compliant with P w.r.t. T , the union ∃X.A ∪ ∃Y.B is also compliant with
P w.r.t. T . Interestingly, TBoxes can be used to express general policies by
singleton policies.
6 To save space and increase legibility, we abbreviate names by their first letters.
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Proposition 17. Consider a quantified ABox ∃X.A, an EL TBox T , and a
policy P. Further let A be a fresh concept name not occurring in ∃X.A, in T ,
or in P, and define the extended TBox TP := T ∪ { P ⊑ A | P ∈ P }. Then
∃X.A is safe for P w.r.t. T iff ∃X.A is safe for {A} w.r.t. TP .

By setting T := ∅ in this proposition, we see that safety for an arbitrary policy P
(but without TBox) can be reduced to safety for the singleton policy {A} w.r.t.
to a non-empty cycle-restricted TBox. As shown in [8], such a reduction cannot
exist without a TBox. Until now, we do not have a characterization of safety
akin to Proposition 10 for non-singleton policies without TBox. The proposition
shows that dealing with (cycle-restricted) TBoxes, even for singleton policies, is
at least as hard as dealing with general policies.

Nevertheless, by using ideas from [16, 17], we can find a coNP decision pro-
cedure for safety for a general policy w.r.t. an EL TBox. This complexity result
extends the one given in [8] (Proposition 3.16) for the case without a TBox, and
at the same time corrects a typo in the formulation of that proposition.

Proposition 18. The safety problem for general policies w.r.t. static EL
TBoxes is in coNP.

5 Conclusions

The work reviewed in this paper shows that, under some restrictions, optimality
can indeed be achieved when computing repairs as well as compliant and safe
anonymizations. What remains open is the question of how to deal with gen-
eral policies and/or cycle-restricted TBoxes in the context of safety. For general
TBoxes, optimality is not always achievable, but one can of course ask whether
the existence of an optimal repair or an optimal compliant/safe anonymization is
decidable, and whether one can then compute such an optimal ABox if it exists.
Using conjunctive queries rather then EL concepts is also an interesting topic
for future research.

Classical repairs (which are based on removing axioms) have been used to
define inconsistency-tolerant semantics. Basically, instead of replacing an incon-
sistent ABox by one of its repairs, one reasons w.r.t. all optimal classical repairs
in a certain well-defined way [12, 26]. It would be interesting to see what hap-
pens if optimal classical repairs are replaced with optimal repairs (in the sense
introduced in the present paper) in such inconsistency-tolerant semantics.
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A Proofs

Proof of Proposition 6

Proof. The proof is similar to the one of Proposition 19 in [7], but uses
Lemma XII in [4]. ⊓⊔

Proof of Theorem 7

Proof. The statement can be proved analogously to Theorem 20 in [7]. ⊓⊔

Proof of Proposition 17

As in the preconditions of Proposition 17, consider a quantified ABox ∃X.A,
let T be an EL TBox, and assume that P is a policy. Further let A be a fresh
concept name not occurring in ∃X.A, in T , or in P, and define the extended
TBox

TP := T ∪ {P ⊑ A | P ∈ P }.

Before we can prove Proposition 17, we need two auxiliary lemmas.

Lemma 19. Let C be an EL concept description where ∅ ̸|= C ⊑ A, i.e., in
which A does not occur in the top-level conjunction. If TP |= C ⊑ A, then there
is some P ∈ P such that T |= C ⊑ P .

Proof. The proof is by contraposition and thus assume that T ̸|= C ⊑ P for
each P ∈ P. We are going to contruct a model I of TP in which the concept
inclusion C ⊑ A is not valid. We initialize the model I as the canonical model of
C w.r.t. T (according to Definition 11 in [23]), where we denote the root by xC .
Then, we have that xC ∈ CI , but I might not be a model of TP (in particular,
not of the concept inclusions in TP \T ). To resolve the latter, we simply add x to
AI for each element x ∈ ∆I where x ∈ P I . Since xC ∈ CI and T ̸|= C ⊑ P for
each P ∈ P, we infer with Lemma 13 in [23] that xC ̸∈ P I . Since furthermore A
does not occur in the top-level conjunction of C, we conclude that xC ̸∈ AI . ⊓⊔

Lemma 20. ∃X.A is compliant with P w.r.t. T if and only if ∃X.A is com-
pliant with {A} w.r.t. TP .

Proof. For showing the if direction, let ∃X.A |=T P (a) for some P ∈ P and
a ∈ ΣI. Since TP contains P ⊑ A, it follows that ∃X.A |=TP A(a).

Regarding the only-if direction, assume that ∃X.A |=TP A(a) for some
a ∈ ΣI. According to Lemma 22 in [23], there is some EL concept description C
such that ∃X.A |= C(a) and TP |= C ⊑ A. Note that, since A does not occur in
∃X.A, it cannot occur in C either. The above Lemma 19 yields a policy concept
P ∈ P such that T |= C ⊑ P , and thus we conclude that ∃X.A |=T P (a). ⊓⊔
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Proof (of Proposition 17). We start with the if direction and therefore assume
that ∃Y.B is a qABox which is compliant with P w.r.t. T and such that ∃X.A∪
∃Y.B |=T P (a) for some P ∈ P and some a ∈ ΣI. By means of Lemma 20 we
infer that ∃Y.B must be compliant with {A} w.r.t. TP . It is furthermore easy
to see that ∃X.A ∪ ∃Y.B |=TP A(a).

For the only-if direction let ∃Y.B be a qABox that is compliant with {A}
w.r.t. TP and such that ∃X.A ∪ ∃Y.B |=TP A(a) for some individual name a.
According to Lemma 20, ∃Y.B is compliant with P w.r.t. T . From ∃X.A ∪
∃Y.B |=TP A(a) we infer by means of Lemma 22 in [23] that there exists some
EL concept description C where ∃X.A ∪ ∃Y.B |= C(a) and TP |= C ⊑ A.
Now note that C cannot contain A in its top-level conjunction since A does not
occur in ∃X.A and, due to compliance, ∃Y.B cannot contain A(a). The above
Lemma 19 yields that there is some policy concept P ∈ P such that T |= C ⊑ P .
We conclude that ∃X.A ∪ ∃Y.B |=T P (a). ⊓⊔

Proof of Proposition 15

Proof. The proof is basically similar to the one used in Proposition 13 of [4].
We create a sequence of mappings h0, h1, . . . , hn, where each hi : ΣO(∃Y.B) →
ΣO(∃Ym.Bm) and it will be shown later that the last mapping hn is a homomor-
phism from ∃Y.B to ∃Ym.Bm. We first define the mapping h0, where h0(a) := a
for all a ∈ ΣI and h0(yt,K) := yt,∅ for all yt,K ∈ Y .

The following invariants are satisfied by each mapping hi:

Invariant 1 if hi(a) = y, then y = a

Invariant 2 if hi(yt,K) = yu,K′ , then t = u and K′ ≤ K
Invariant 3 if hi(yt,K) = yt,Ki and hi+1(yt,K) = yt,Ki+1 , then Ki ≤ Ki+1

The mapping h0 obviously satisfies the first and the second invariant.
Given a mapping hi, we call a role assertion r(y, yu,L) in B a defect if its

image r(hi(y), hi(yu,L)) over hi does not exist in B. In other words, it is a defect

– if y = a ∈ ΣI, hi(yu,L) = yu,Li
, hi(a) = a, and Li does not cover

Succ(Max(Atoms({P})), r) or
– if y = yt,K, hi(yu,L) = yu,Li , hi(yt,K) = yt,Ki , and Li does not cover

Succ(Ki, r).

Intuitively, such role assertions are defects because their image over hi violates
one of the six conditions written in Definition 12, in particular Conditions 2b
and 2b. One might ask why there are no defects of the form r(a, b) or r(yt,K, b).
This can be answered as follows.

– If there is an assertion of the first form in B and assume that it is a defect such
that r(hi(a), hi(b)) ̸∈ B because ∃r.C ∈ Atoms({P}), then this is obviously a
contradiction since hi(a) = a, hi(b) = b, and by Definition 12, the occurrence
of r(a, b) ∈ B means that r(a, b) ∈ A and there is no ∃r.C ∈ Atoms({P}).
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– Furthermore, suppose that there is an assertion of the second form and as-
sume that it is a defect such that r(hi(yt,K), hi(b)) ̸∈ B because hi(yt,K) =
yt,Ki and ∃r.C ∈ Ki. However, this assumption cannot be true since
r(yt,K, b) ∈ B means that there is no ∃r.C ∈ K, and due to Invariant 2,
we have Ki ≤ K, which implies that ∃r.C cannot also be in Ki.

In the following, we show how the occurrence of a defect triggers a creation
of a mapping hi+1 that extends hi. In particular, we assume that hi is the
mapping we have created so far and there is a defect r(yt,K, yu,L) in B such that
hi(yu,L) = yu,Li

, hi(yt,K) = yt,Ki
, but Li does not cover Succ(Ki, r).

– First of all, we need to show that L covers Succ(Ki, r). Suppose that there is
an existential restriction ∃r.C ∈ Ki and we further have C ∈ Succ(Ki, r). Due
to Invariant 2, we have Ki ≤ K, and thus there is an atom ∃r.D ∈ K such that
D subsumes C. Since r(yt,K, yu,L) occurs in the matrix B of the canonical
safe anonymization, by Definition 12, we know that L covers Succ(K, r).
Then, it implies that L contains some atom that subsumes D, and this atom
consequently also subsumes C. We conclude that L covers Succ(Ki, r).

– Due to Invariant 2, we can further infer that Li ≤ L, which implies that
Li ∪ Succ(Ki, r) ≤ L.

– Since Li does not cover Succ(Ki, r), we have Li < Li ∪ Succ(Ki, r).
– By applying Safe Anonymization Rule 2, we take a ≤-minimal set Li+1

such that Li ∪ Succ(Ki, r) ≤ Li+1 ≤ L. We define hi+1 := hi, except
hi+1(yu,L) := yu,Li+1 . Note that Li < Li+1, which means that hi and hi+1

are not equal. It is obvious to see that the three invariants are satisfied.
– Furthermore, both Safe Anonymization Rule 1 and Safe Anonymiza-

tion Rule 2 are never applicable to Ym, and thus we have yu,Li+1
∈ Ym ⊆

ΣO(∃Ym.Bm). This consequently justifies that the mapping hi+1 has its
range in ΣO(∃Ym.Bm).

What we have shown in the last two paragraphs actually is for the case where
a defect is of the form of a role assertion r(yt,K, yu,L) such that its image over
hi does not exist in ∃Y.B. For the other defects that are of the form r(a, yu,L),
we can treat them analogously using arguments similar as above, except now we
replace yt,K with individual a and Succ(K, r)with Succ(Max(Atoms({P})), r).

We show that the construction of this mapping indeed terminates. We de-
fine an ordering relation ≤h on the mappings as follows: hi ≤h hj if for each
yt,K ∈ ΣO(∃Y.B), we have Ki ≤ Kj , where hi(yt,K) = yt,Ki

and hj(yt,K) = yt,Kj
.

It is easy to see that this relation ≤h is a partial order since the covers relation ≤
is also a partial order on sets of EL concepts. We further see from the construc-
tion above that for each two consecutive mappings hi, hi+1, both of them are not
equal, which implies that hi <h hi+1, and thus the sequence of these mappings
is strictly increasing until it ends up with a mapping hn that is free of defects.
Furthermore, both ∃Y.B and ∃Ym.Bm are finite, which implies that there are
only finitely many types of mappings that map elements of ∃Y.B to some ele-
ment in ∃Ym.Bm. These arguments finally conclude that the construction of this
mapping always terminates.
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Last but not least, we show that the last mapping hn is indeed a ho-
momorphism from ∃Y.B to ∃Ym.Bm. Due to Invariant 1, we can easily in-
fer that hn(a) = a. For the concept assertions A(a) ∈ B, we know that
hn(a) = a,A(a) ∈ A, and there is no A ∈ Atoms({P}). Using the matrix con-
struction in Definition 12, this implies that A(a) stays in Bm. Now, consider a
concept assertion A(yt,K) ∈ B and hn(yt,K) = yt,Kn

. By Definition 12, there is
no A in K. Due to Invariant 2, we have Kn ≤ K, and thus A ̸∈ Kn. We finally
infer that A(yt,Kn) ∈ Bm.

Now, consider role assertions occurring in B. Since role assertions of the form
r(a, b) and r(yt,K, b) can never be a defect, we can restrict our attention only to
role assertions of the form r(yt,K, yu,L) and r(a, yu,L).

– Consider role assertions of the form r(yt,K, yu,L) ∈ B. We further assume
that hn(yt,K) = yt,Kn

and hn(yu,L) = yu,Ln
. By Definition 12, we know that

r(t, u) ∈ A. Since hn is already free of defects, we can infer that Ln covers
Succ(Kn, r). By Definition 12 and 13, it implies that r(yt,Kn , yu,Ln) ∈ Bm.

– Consider role assertions of the form r(a, yu,L) ∈ B. We further assume that
hn(yu,L) = yu,Ln

. By Definition 12, we know that r(t, u) ∈ A. Since hn is al-
ready free of defects, we can infer that Ln covers Succ(Max(Atoms({P})), r).
By Definition 12 and 13, it implies that r(a, yu,Ln

) ∈ Bm.

The last three paragraphs above finally conclude that the optimized {P}-safe
anonymization of ∃X.A entails the canonical safe anonymization of ∃X.A w.r.t.
{P}. ⊓⊔

Proof of Proposition 18

Recall that the safety problem for general policies w.r.t. static EL TBoxes asks if
a given qABox ∃X.A is safe for a policy P = {P1, . . . , Pn}, where n ≥ 1, w.r.t.
some TBox T . To have a decision procedure for this problem, we first need the
notion of IQ- saturation, which is a weaker version of chase and is based on the
IQ-entailment relation described in Section 3.2 of [3]. Formally, a qABox ∃X.A1

IQ-entails a qABox ∃Y.A2 w.r.t. a TBox T ′ if every concept assertion C(a)
entailed w.r.t. T ′ by the latter is also entailed w.r.t. T ′ by the former.

In contrast to chase, IQ-saturation always terminates w.r.t. arbitrary EL
TBoxes. In other words, we do not need to impose any restriction to the TBox.
The IQ-saturation rules are given in Figure 2 of [3] and the exhaustive applica-
tion of them terminates in polynomial time in the size of the given qABox and
TBox, which then yields a qABox satTIQ(∃X.A).

In addition to IQ-saturation, we need a characterization of the instance prob-
lem w.r.t. EL TBoxes that is based on a homomorphism function adjusted from
[8]. Let C(a) be an EL concept assertion. As written in the last paragraph of the
section of preliminaries in [8], we can express C(a) as a quantified ABox called the
ABox translation of C(a). As stated in Proposition IV of [4], ∃X.A |=T C(a) iff
satTIQ(∃X.A) |=∅ C(a). This means that the instance problem w.r.t. EL TBoxes
can be reduced to the problem of instance checking w.r.t. quantified ABoxes and
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no TBoxes whose procedure can be found below Example 3.5 of [8]. In particular,
satTIQ(∃X.A) |=∅ C(a) iff there is a homomorphsim from the ABox translation of
C(a) to satTIQ(∃X.A). Note that finding such a homomorphism for this instance
problem can be done in polynomial time as shown in [7].

Proof (of Proposition 18). If a qABox ∃X.A is not safe for a general policy P
w.r.t. some TBox T , then there is a qABox ∃Z.C that is compliant with P w.r.t.
T , but the union ∃X.A ∪ ∃Z.C entails P (a) for some P ∈ P and some a ∈ ΣI.
This implies that there is a homomorphism from the ABox translation of P (a)
to the IQ-saturation satTIQ(∃X.A∪∃Z.C) w.r.t. T . This homomorphism basically
does not only map each element of the ABox translation of P (a) to objects of
∃X.A ∪ ∃Z.C, but also to objects that are introduced during the exhaustive
application of the IQ-saturation rules. Now, let ∃Y.B be the qABox obtained
from ∃Z.C by removing objects that are not in the image of the homomorphsim.
This implies that the number of object names in B is polynomially bounded by
the maximal size of the concepts in P. Since ∃Y.B is a subset of ∃Z.C, we know
that ∃Y.B is also compliant with P w.r.t. T . This finally concludes that such a
qABox ∃Y.B can basically be guessed in nondeterministic polynomial time. ⊓⊔
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