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Concise Justifications Versus Detailed Proofs
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Logical reasoning is often seen as explainable by design. However, exploiting this
explainability for working systems that are operated by humans still requires more
research on what form such explanations should take. We focus here on Description
Logics (DLs) [3], which is a popular family of knowledge representation formalisms
and the basis of the Web Ontology Language OWL 2 [14]. Description logic
ontologies contain axioms like

Cow v Mammal, (1)
Cow v = 4 hasPart.Leg, (2)

Mammal v Animal, (3)

Cow ≡ ∀eats.Grass, (4)
∃eats.> v Animal, (5)
Grass v ¬Animal, (6)

i.e. that cows are mammals with 4 legs, mammals are animals, cows are defined
as anything that eats only grass, something that eats anything (>) is an animal,
and grass is different from animals.

This ontology has the unintended consequence that Grass v Animal, i.e. every
grass is an animal. The most popular way to explain such a consequence are
so-called justifications, which are subset-minimal subsets of the ontology that
still entail the consequence [4, 7]. The idea is to isolate the possible cause(s) of
the error. In our example, Axioms (1), (3), (4), and (5) constitute a justification
for Grass v Animal, i.e. we can ignore the other two axioms. This technique is
very useful in real ontologies, which often have tens of thousands of axioms.

In this example, a careful reader may already be able to pinpoint the prob-
lematic axiom, but explaining precisely how the unintuitive consequence follows
can be more challenging. For this reason, more recent research has rediscov-
ered proofs as a means of providing more detailed explanations [1, 2, 5, 6, 9, 12].
Proofs can contain intermediate steps between a justification and the conclusion,
and can either be obtained from calculi of inference rules tailored for a specific
DL [10,17] or constructed in a black-box fashion using heuristics [7, 8], concept
interpolation [16], or forgetting [1]. In our example, a proof may look as follows:

Cow ≡ ∀eats.Grass (4)
Cow v Mammal (1) Mammal v Animal (3)

Cow v Animal
∀eats.Grass v Animal
¬∃eats.> v Animal ∃eats.> v Animal (5)

> v Animal
Grass v Animal

? This work is supported by the DFG grant 389792660 (TRR 248) (see https://
perspicuous-computing.science).
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This proof describes that, because of Axioms (1), (3), and (4), everything that
only eats grass is an animal. In particular, anything that does not eat (¬∃eat.>)
vacuously eats only grass, and therefore is an animal. Since by Axiom (5), also
everything that eats is an animal, everything that exists must be an animal
(> v Animal), which means in particular that grass is also an animal. Here, it is
easier to point out the problems in the chain of reasoning (e.g. ¬∃eats.> v Animal)
and to identify Axiom 4 as the root cause that needs to be repaired.

Both justifications and proofs can be used as explanations, but different
explanations can be easier or harder to understand than others. Therefore,
different measures have been proposed to quantify their understandability. As
the most basic, the size of a justification or proof, i.e. the number of involved
axioms,1 can indicate how easy it will be to understand [1,15], but does not reflect
the complexity inherent in the individual axioms. In [8], the authors developed
a (cognitive) justification complexity measure by assigning different weights to
features of the axioms and computing how similar the goal consequence is to the
axioms in the justification. The full definition of this measure is too long to repeat
here, but it includes features such as the number of different constructors (e.g.
¬, ∃, ∀), the number of axiom types (e.g. subsumption v or equivalence ≡), or
whether a “hidden” consequence > v A is implied by the justification, but is not
the goal consequence (e.g. > v Animal in the example). In [8], this approach was
validated by several user studies relating justification complexity to the number
of errors made by humans when working with the justifications.

In [1], justification complexity was extended to measure proof complexity by
viewing each inference step in a proof as a single “justification” of its inference. The
average step complexity of a proof is the average of the justification complexities
of each inference step in the proof, and similarly for the maximum step complexity.
We will also consider ratios between these measures, e.g. the ratio of the proof
size to the justification size, which reflects how many proof steps were needed per
axiom in the original justification, or the ratio of the aggregated step complexity
to the justification complexity. We consider both size and complexity, because
in our dataset these two measures were not correlated,2 so they reflect different
aspects of the justifications and proofs. The size says more about the time required
to read a proof than about the difficulty understanding the individual steps; e.g.
a small proof can still contain very complex axioms. In the example, the size
of the justification is 4 and the proof has size 9 (ratio 2.25). The justification’s
complexity is 400, the average step complexity of the proof is 236 (ratio 0.59),
and the maximum is 380 (ratio 0.95). This indicates that the proof steps are (on
average) easier to understand than the justification by itself, but there are still
some harder steps, e.g. inferring ¬∃eats.> v Animal from ∀eats.Grass v Animal.

Since constructing proofs for consequences of large ontologies is challenging,
in [1] proofs were obtained by first computing justifications for the consequences
and then constructing proofs from these much smaller sets of axioms. Since the
goal of that paper was to find small proofs, an implicit assumption was that

1 Axioms that are used in several inference steps are only counted once.
2 Except for a weak negative correlation of proof size and average step complexity.
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small justifications would also yield small proofs. In this paper, we investigate
this connection between justification complexity and proof complexity in more
detail. We identify cases where small justifications do not lead to small proofs,
and compare the justification complexity with the step complexity of a proof.

Dataset

The analysis is based on the dataset used in [1] to compare different methods of
generating proofs. It consists of a series of 1.573 tasks that were extracted from the
OWL 2 EL classification track of the 2015 OWL Reasoner Evaluation (ORE) [13].
Each task consists of a justification and a consequence. For example, for a single
consequence A v B there could be 100 justifications in a given ontology, and
each of those justifications was converted into 1 task for the dataset. Tasks that
were the same up to renaming were merged and it was recorded how many of
the original justifications are represented by each task in the final dataset. In
total, this dataset covers 2.308.562 justifications from the ORE 2015 ontologies.

Three proof generators were used to construct proofs for each of the tasks. The
first generator used the consequence-based reasoner Elk [10]. Since Elk returns
all inference steps that can be used to derive a consequence, a post-processing step
extracted a proof of minimal size. The other two proof generators used a formal
technique called forgetting to generate proofs by eliminating predicates from the
justification one-by-one, until only the predicates of the target consequence, e.g.
A v B, remained (for details, see [1]). Two forgetting tools were used for that
purpose, Lethe [11] and Fame 1.0 [18]. The latter failed to generate proofs in
some cases, and thus there are only 917 proofs in that part of the dataset. For
some examples of actual proofs from the dataset, see the appendix or [1, 2].

Analysis

Figure 1 shows the relationship between justification size and proof size. The
first diagram depicts the overall distribution of the 1573 tasks in the dataset.
Individual data points are represented by semi-transparent shapes, i.e. stronger
colors indicate more tasks with the same values. The second diagram is a histogram
of all occurring ratios of proof size

justification size . The last is the same histogram adjusted
by the number of times each task occurred in the original ORE 2015 dataset.

We can see that proofs are around twice the size of the given justification, with
Lethe sometimes producing slightly smaller proofs and a small number of proofs
being 3–5 times larger. On the dataset of 1573 tasks, the average ratio is 2.53
(standard deviation (SD) 0.87) for Elk, and slightly smaller for Lethe and Fame.
In the adjusted histogram, the average is 1.97 (SD 0.33) for Elk and very similar
for the other two. This indicates that, on average, one inference step is necessary
to incorporate each justification axiom into a proof and sometimes additional
steps are needed. The correlation between proof size and justification size is very
strong, i.e. r > 0.8 for all proof generators, and even r > 0.95 after adjustment.
This means that small justifications do indeed generally induce small proofs, with
only few exceptions. The most extreme outliers come from justifications similar to
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Fig. 1. Comparing justification size and proof size. 3 outliers have ratio > 10.
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Fig. 2. Justification complexity vs. average step complexity. 2 outliers have ratio > 2.

{A ≡ D u ∃r.C u ∃s.E u ∃t.F, B ≡ D u ∃r.C u ∃s.E}. Elk needs multiple steps to
decompose the conjunction (u) into statements like A v ∃r.C, before composing
it again to A v D u ∃r.C u ∃s.E v B. The forgetting-based proof generators show
a similar behavior, but this strongly depends on the order in which the predicates
were eliminated. In the above example, forgetting D and E first yields the two
axioms A u ∃r.C v B and A v ∃r.C, which gives A v B in one step by forgetting C.

There is only a moderate correlation between justification complexity and
average step complexity (see Figure 2), with r < 0.65 (r < 0.5 after adjustment).
Generally, the average step complexity is around half the justification complexity
(average 0.52, SD 0.15 for Elk after adjustment), which illustrates that proofs
break down the justifications into more comprehensible steps. But a sizable
number of proofs has the same average step complexity as the justification,
or an even higher one. Examples with a high ratio are similar to the ones
mentioned above. In particular, if an equivalence axiom A ≡ B is derived only
from equivalence axioms in the justification, then the justification complexity is
smaller than the step complexity of inferences involving both ≡ and v (because
they involve more than one axiom type), which increases the ratio. On the other
end of the spectrum, there are proofs with an average step complexity of 20% of
the justification complexity. This mainly happens when the justification contains
many axioms, but they can be combined into a proof using very simple steps.
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Fig. 3. Justification complexity vs. max. step complexity. 3 outliers have ratio > 2.5.

In Figure 3, the justification complexity and the maximum step complexity
are strongly correlated, up to between r = 0.66 (Elk) and r = 0.75 (Fame) after
adjustment. A large majority of the proofs for the ORE 2015 ontologies have a
maximum step complexity that is roughly the same as the associated justification
complexity (average 0.99, SD 0.12 for Elk after adjustment). The examples with
extremely high or low ratios are again similar to the previous cases.

Discussion

In this existing dataset of proofs focused on the OWL 2 EL profile, we observed
a relatively strong correlation between justification size/complexity and proof
size/complexity. This means that the assumption that small justifications yield
small proofs is generally justified. The main cause of outliers seems to be the
handling of equivalence axioms, for which the proof generators are not optimized.
Introducing tailored inference rules into Elk could improve the readability of
proofs in these cases. For the forgetting-based proof generators, one can perhaps
find a heuristic for choosing which predicates to forget first in order to reduce
the complexity for such cases as well. In general, identifying outliers like this can
help to fine-tune or debug proof generators.

What one cannot determine from this dataset is whether there is an ORE 2015
ontology that contains a single consequence with multiple justifications of different
sizes or complexities, but where the easier justifications yield more difficult proofs.
This is because the dataset aggregates isomorphic justifications into single tasks
and does not track from which original consequences they were generated. To
answer such more fine-grained questions, one would have to go back to the original
ORE 2015 ontology corpus.

It is also still unclear which measures best describe the comprehensibility of
proofs. In contrast to justifications, not just the complexity of single inference
steps plays a role, but also the size and overall structure of the proof. Moreover,
individual users may have different “inference rules” in their head than the ones
produced by a proof generator (and different from other users), and this mismatch
may increase the complexity of understanding a proof.
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A Examples

Figures 4–6 show some of the examples discussed above. Proofs are shown as
directed acyclic hypergraphs, with hyperedges indicated by blue boxes. The
justification is given by the nodes with an incoming hyperedge that has no
premises and that is labeled by “asserted” or “Asserted Conclusion”.

Class
Hierarchy

A v B

Intersection
Composition

A v (D u ∃r.C u ∃s.E)

Class
Hierarchy

A v D

Equivalent
Classes

Decomposition

A v (D u ∃r.C u ∃s.E u ∃t.F)

Class
Hierarchy

Class
Hierarchy

A v ∃r.C A v ∃s.E

Asserted
Conclusion

A ≡ (D u ∃r.C u ∃s.E u ∃t.F)

Intersection
Decomposition

(D u ∃r.C u ∃s.E u ∃t.F) v D

Intersection
Decomposition

(D u ∃r.C u ∃s.E u ∃t.F) v ∃r.C

Intersection
Decomposition

(D u ∃r.C u ∃s.E u ∃t.F) v ∃s.E

Equivalent
Classes

Decomposition

(D u ∃r.C u ∃s.E) v B

Asserted
Conclusion

B ≡ (D u ∃r.C u ∃s.E)

forgetting
C

A v B

forgetting
D

A v ∃r.C

asserted

A ≡ (D u ∃r.C u ∃s.E u ∃t.F)

forgetting
D,
E

(A u ∃r.C) v B

asserted

B ≡ (D u ∃r.C u ∃s.E)

Fig. 4. A task with small justification size of 2, but a large proof generated by Elk
of size 12 (shown at the top), i.e. a ratio of 6. The justification complexity is 340,
the average step complexity is 363 (ratio 1.07), and the maximum step complexity
is 620 (ratio 1.82). The corresponding proof generated by Lethe (bottom) has size 5
(ratio 2.5), average step complexity 320 (ratio 0.94), and maximum step complexity 340
(ratio 1). Many larger examples with more conjuncts exist in the dataset.
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C ≡ E
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E v C
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B v C
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E v F
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E ≡ F
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Classes

Decomposition

F v E
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B v E
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F v D

Asserted
Conclusion

D ≡ F

Equivalent
Classes
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D v F
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B v F
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Classes

Decomposition

D v B
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B ≡ D

Equivalent
Classes
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Fig. 5. Another example of an unnecessarily large proof generated by Elk. The jus-
tification contains 5 axioms and the proof is of size 24 (ratio 4.8). The justification
complexity is 150 and the proof has an average step complexity of 197 (ratio 1.31) and
a maximum step complexity of 260 (ratio 1.73).
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E v F
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F v G
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Asserted
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(G u J u O) v K

Class
Hierarchy

C v L

Asserted
Conclusion

C v ∃r.H

Asserted
Conclusion

∃r.H v L

Asserted
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Conclusion
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Fig. 6. From the other end of the spectrum, here is a task with a large justification
size (14) and justification complexity (900). The Elk proof has size 29 (ratio 2.07),
average step complexity 196 (ratio 0.22), and maximum step complexity 280 (ratio 0.32).
The proof is a little too detailed, but the justification alone does not provide enough
information for easy comprehension.
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Fig. 7. The proof generated by Lethe for the same task as in Figure 6. It uses more
complex intermediate expressions, but a different forgetting order could have produced
a similar proof as the one generated by Elk. The proof has size 27 (ratio 1.93), average
step complexity 275 (ratio 0.31), and maximum step complexity 400 (ratio 0.44).
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