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Abstract. Reasoners can be used to derive implicit consequences from
an ontology. Sometimes unwanted consequences are revealed, indicating
errors or privacy-sensitive information, and the ontology needs to be ap-
propriately repaired. The classical approach is to remove just enough
axioms such that the unwanted consequences vanish. However, this is
often too rough since mere axiom deletion also erases many other con-
sequences that might actually be desired. The goal should not be to
remove a minimal number of axioms but to modify the ontology such
that only a minimal number of consequences is removed, including the
unwanted ones. Specifically, a repair should rather be logically entailed
by the input ontology, instead of being a subset. To this end, we intro-
duce a framework for computing fixed-premise repairs of EL TBoxes. In
the first variant the conclusions must be generalizations of those in the
input TBox, while in the second variant no such restriction is imposed.
In both variants, every repair is entailed by an optimal one and, up to
equivalence, the set of all optimal repairs can be computed in exponential
time. A prototypical implementation is provided. In addition, we show
new complexity results regarding gentle repairs.

Keywords: Description logic · Optimal repair · TBox repair ·
Generalized-conclusion repair · Fixed-premise repair

1 Introduction

Description Logics (DLs) [4] are logic-based languages with model-theoretic se-
mantics that are designed for knowledge representation and reasoning. Several
DLs are fragments of first-order logic, but with restricted expressivity such that
reasoning problems usually remain decidable. Knowledge represented as a DL
ontology consists of a terminological part (the schema, TBox) and an assertional
part (the data, ABox). The TBox expresses global knowledge on the underly-
ing domain of interest, such as implicative rules and integrity constraints, and
the ABox expresses local knowledge, such as assignment of objects to classes or
relations between objects. DLs differ in their expressivity and there is always a
trade-off to complexity of reasoning. Many reasoning tasks in lightweight DLs
such as EL [3] and DL-Lite [13] are in P and thus tractable, but are N2EXP-
complete in the very expressive DL SROIQ [17,19], which is the logical founda-
tion of the OWL 2 Web Ontology Language.1 However, the latter is a worst-case
complexity, and efficient reasoning techniques [36] can often avoid reaching it.
1 https://www.w3.org/TR/owl2-primer/
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Reasoners can be used to derive implicit consequences from an ontology.
Sometimes unwanted consequences are revealed, indicating errors or privacy-
sensitive information, and the ontology needs to be appropriately repaired. The
classical approach is to remove just enough axioms such that the unwanted con-
sequences vanish [15,31]. In particular, optimal classical repairs can be obtained
by means of axiom pinpointing [11,12,33,34]: firstly, one determines all minimal
subsets of the given ontology that entail the unwanted consequences (so-called
justifications), secondly, one constructs a minimal set that contains at least one
axiom from each justification (a so-called hitting set) and, thirdly, one removes
from the erroneous ontology all axioms in the hitting set. In a similar way, incon-
sistency or incoherence of ontologies can be resolved — a task also called ontology
debugging [18, 24, 32, 35]. Proof visualizations can be used to guide the process
of ontology repair [1], and it can be distributed and parallelized by means of
decomposition [28]. Furthermore, there are connections to belief revision [14].

The classical repair approach is often too rough since mere axiom deletion
also erases too many other consequences that might actually be desired. The
goal should not be to remove a minimal number of axioms but to modify the
ontology such that only a minimal number of consequences is removed, including
the unwanted ones. Alternative repair techniques that are less dependent on the
syntax should therefore be designed. To this end, a repair need not be a subset
of the input ontology anymore, but must only be logically entailed by it.

A framework for constructing gentle repairs based on axiom weakening was
developed [8]. The main difference to the classical repair approach is that, instead
of being removed completely, one axiom from each justification is replaced by
a logically weaker one such that the unwanted consequences cannot be derived
anymore. The framework can be applied to every monotonic logic, and one only
needs to devise a suitable weakening relation on axioms.2 In terms of belief
revision, gentle repairs correspond to pseudo-contractions [29].

In the DL EL [3], concept descriptions are built from concept names and
role names by conjunction and existential restriction, and a TBox is a finite
set of concept inclusions (CIs), which are axioms of the form C ⊑ D where
the premise C and the conclusion D are concept descriptions. For instance,
the CI MountainBike ⊑ ∃hasPart.SuspensionFork ⊓ ∃ isSuitableFor.OffRoadCycling
expresses that every mountain bike has a suspension fork and is suitable for
off-road cycling. Such axioms can be weakened by specializing the premise or by
generalizing the conclusion. Two weakening relations ≻syn and ≻sub for EL CIs
were devised [8], which instantiate the gentle repair framework for EL TBoxes.

Repairs of EL TBoxes can also be obtained by axiomatizing the logical in-
tersection of the input TBox and the theory of a countermodel to the unwanted
consequences [16], e.g., by means of the framework for axiomatizing EL closure
operators [20]. Such a countermodel can either be manually specified by the
knowledge engineer or be automatically obtained by transforming a canonical
model of the TBox, e.g., with the methods for repairing quantified ABoxes [9].

2 There is always the trivial weakening relation that replaces each axiom with a tau-
tology, for which each gentle repair is a classical repair.
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The axiomatization method is very precise since it can introduce new
premises in the resulting repair if necessary [16, Example 18]. From a theoretical
perspective, this is a clear advantage simply because thereby a large amount of
knowledge can be retained in the repair. From a practical perspective, however,
this can be seen as a disadvantage as the resulting repairs might get consider-
ably larger than the input TBox. In order to prevent such an increase in size, I
have further proposed to construct a repair from a countermodel J in a slightly
different manner [16]: namely one keeps all premises unchanged and only gen-
eralizes the conclusions by means of J , which yields an approach very close to
the gentle repairs for the weakening relation ≻sub.

The goal of this article is to elaborate the latter idea in detail. We introduce
a framework for computing generalized-conclusion repairs of EL TBoxes, where
the premises must not be changed and the conclusions can be generalized. We
first devise a canonical construction of such repairs from polynomial-size seeds,
and then show that each generalized-conclusion repair is entailed by an optimal
one and that, up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time.

As an example, consider the TBox consisting of the single concept inclusion
Bike ⊑ ∃hasPart.SuspensionFork ⊓ ∃ isSuitableFor.OffRoadCycling, which differs
from the above in that the premise is replaced by Bike. It entails the false CIs
Bike ⊑ ∃hasPart.SuspensionFork and Bike ⊑ ∃ isSuitableFor.OffRoadCycling. The
(unique) optimal generalized-conclusion repair consists of the single CI Bike ⊑
∃hasPart.⊤⊓ ∃ isSuitableFor.⊤. In contrast, the classical repair approach deletes
the single CI completely, yielding an empty repair, which only entails tautologies
but does not entail that every bike has a part and is suitable for something.

In addition to developing the framework of generalized-conclusion repairs,
we introduce fixed-premise repairs. The difference to the generalized-conclusion
repairs is that the conclusions of CIs need not be generalizations anymore; only
the premises must remain the same and the input TBox must entail each CI
in the repair. Thereby even more consequences can be retained. Employing the
same seeds as before, we show that every fixed-premise repair is entailed by an
optimal one and that the set of all optimal fixed-premise repairs can be computed
in exponential time.

Clearly, the above generalized-conclusion repair is not satisfactory if
additional knowledge would be expressed in the given TBox, such as
SuspensionFork ⊑ Fork and OffRoadCycling ⊑ Cycling. Both additional CIs are
obviously true in real world and should thus be retained in an optimal repair.
Taking this into account, the (unique) optimal fixed-premise repair additionally
contains the CI Bike ⊑ ∃hasPart.Fork ⊓ ∃ isSuitableFor.Cycling, and it preserves
more consequences than the above generalized-conclusion repair, e.g., that every
bike is suitable for cycling.

An experimental implementation is available.3 In addition, we provide new
complexity results regarding gentle repairs w.r.t. the weakening relation ≻sub.

3 https://github.com/francesco-kriegel/right-repairs-of-el-tboxes

https://github.com/francesco-kriegel/right-repairs-of-el-tboxes


Optimal Fixed-Premise Repairs of EL TBoxes (Extended Version) 5

2 Preliminaries

Fix a signature Σ, which is a disjoint union of a set ΣC of concept names and a
set ΣR of role names. In EL, concept descriptions are inductively constructed by
means of the grammar rule C ::= ⊤ | A | C ⊓ C | ∃r.C where A ranges over ΣC

and r over ΣR. A concept inclusion (CI) is of the form C ⊑ D for concept
descriptions C and D, where we call C the premise and D the conclusion. A
terminological box (TBox) T is a finite set of concept inclusions. The set of all
premises in T is denoted by Prem(T ).

The semantics is defined via models. An interpretation I consists of a domain
Dom(I), which is a non-empty set, and an interpretation function ·I that maps
each concept name A to a subset AI of Dom(I) and that maps each role name r
to a binary relation rI over Dom(I). The interpretation function is extended
to all concept descriptions in the following recursive manner: ⊤I := Dom(I),
(C ⊓ D)I := CI ∩ DI , and (∃r.C)I := { x | (x, y) ∈ rI for some y ∈ CI }.
Furthermore, I satisfies a CI C ⊑ D if CI ⊆ DI , written I |= C ⊑ D, and
I is a model of a TBox T if it satisfies all CIs in T , written I |= T . We say
that T entails C ⊑ D if C ⊑ D is satisfied in every model of T , denoted
as T |= C ⊑ D. We then also say that C is subsumed by D w.r.t. T and
write C ⊑T D. Subsumption in EL can be decided in polynomial time [3]. With
C ⊏T D we abbreviate C ⊑T D and D ̸⊑T C. Given sets K and L of EL concept
descriptions, we say that K is covered by L w.r.t. T and write K ≤T L if, for
each K ∈ K, there is some L ∈ L such that K ⊑T L.

An atom is either a concept name or an existential restriction ∃r.C. Order
and repetitions of atoms in conjunctions as well as nestings of conjunctions are
irrelevant. In this sense, each concept description C is a conjunction of atoms,
which we call the top-level conjuncts of C, and the set of these is denoted by
Conj(C). Furthermore, we sometimes write

d{C1, . . . , Cn} for C1⊓· · ·⊓Cn. The
(unique) reduced form Cr of a concept description C is obtained by exhaustively
removing occurrences of atoms that subsume (w.r.t. ∅) another atom in the same
conjunction. C is equivalent to Cr, and two concept descriptions are equivalent
iff they have the same reduced form [23]. The subsumption order ⊑∅ restricted
to reduced concept descriptions is a partial order and not just a pre-order [9].

Subsumption w.r.t. the empty TBox ∅ can be recursively characterized as
follows [10, Corollary 3.2]. C ⊑∅ D iff the following two conditions are satisfied:

1. For each concept name A, if A ∈ Conj(D), then A ∈ Conj(C).
2. For each existential restriction ∃r.F , if ∃r.F ∈ Conj(D), then there is an

existential restriction ∃r.E such that ∃r.E ∈ Conj(C) and E ⊑∅ F .

We denote by Sub(α) the set of all concept descriptions that occur as sub-
concepts in α, and Atoms(α) is the set of atoms occurring in α. Given a set K
of atoms, Max(K) denotes the subset consisting of all ⊑∅-maximal atoms, i.e.,
Max(K) := { K | K ∈ K and there is no K ′ ∈ K such that K ⊏∅ K ′ }. If all
atoms in K are reduced, then Max(K) does not contain ⊑∅-comparable atoms.

Let I be an interpretation and X a subset of Dom(I). A most specific concept
description (MSC) of X w.r.t. I is a concept description C that satisfies X ⊆ CI
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and, for each concept description D, X ⊆ DI implies C ⊑∅ D. The MSC of X
w.r.t. I is unique up to equivalence and is denoted as XI . Due to cycles in the
interpretation, MSCs might not be expressible in EL, but MSCs always exist in
an extension of EL with greatest fixed-points, e.g., in ELsi [25]. The latter DL
extends EL with simulation quantifiers ∃sim(I, x) where the semantics of such
concept descriptions is defined by: y ∈ (∃sim(I, x))J if there is a simulation
from I to J that contains (x, y). A simulation from I to J is a relation S ⊆
Dom(I)× Dom(J ) that satisfies the following conditions:

1. If (x, y) ∈ S and x ∈ AI , then y ∈ AJ .
2. If (x, y) ∈ S and (x, x′) ∈ rI , then there exists some y′ such that (x′, y′) ∈ S

and (y, y′) ∈ rJ .

As shown in [20, Proposition 4.1.6], the MSC XI is equivalent to ∃sim(℘(I), X),
where the powering P(I) has domain Dom(℘(I)) := ℘(Dom(I)), and A℘(I)

consists of all subsets X such that X ⊆ AI , and r℘(I) consists of all pairs
(X,Y ) such that Y is a minimal hitting set of { { y | (x, y) ∈ rI } | x ∈ X }. A
CI C ⊑ D is satisfied in I iff CII ⊑∅ D, and X ⊆ CI is equivalent to XI ⊑∅ C
for each subset X ⊆ Dom(I) and for each ELsi concept description C.

A least common subsumer (LCS) of concept descriptions C and D is a concept
description E such that C ⊑∅ E as well as D ⊑∅ E and, for each concept
description F , C ⊑∅ F and D ⊑∅ F implies E ⊑∅ F . The LCS of C and D is
unique up to equivalence and we denote it by C ∨ D. It can be computed as
the product of the graphs representing C and D. In particular, the LCS of an
EL concept description C and an ELsi concept description ∃sim(I, x) is always
expressible in EL and the following recursion allows us to construct it:

C ∨ ∃sim(I, x) ≡∅
l

{A | A ∈ Conj(C) and x ∈ AI }

⊓
l

{ ∃r.(D ∨ ∃sim(I, y)) | ∃r.D ∈ Conj(C) and (x, y) ∈ rI }.

Furthermore, the MSC XI is equivalent to the LCS of all ∃sim(I, x) where x ∈ X.

3 Generalized-Conclusion Repairs of EL TBoxes

In this section we develop the framework for computing generalized-conclusion
repairs of EL TBoxes. We begin with defining basic notions.

Definition 1. Let T and U be EL TBoxes. We say that U is a generalized-
conclusion weakening (GC-weakening) of T , written T ⪰GC U if, for each CI
C ⊑ D in U , there is a CI E ⊑ F in T such that C = E and F ⊑∅ D.

GC-weakening is strictly stronger than entailment, i.e., T ⪰GC U implies
T |= U but the converse need not hold. For instance, {A ⊓ B ⊑ ∃r.(A ⊓ B),
C ⊑ A ⊓ ∃r.A} has the GC-weakening {A ⊓B ⊑ ∃r.A ⊓ ∃r.B, C ⊑ ∃r.A}, and
it entails {A ⊓B ⊑ ∃r.(A ⊓ ∃r.A)}, which is not a GC-weakening.
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Definition 2. A repair request P is a finite set of EL concept inclusions. A
TBox T complies with P if it does not entail any CI in P, i.e., it holds that
T ̸|= C ⊑ D for each C ⊑ D ∈ P. A countermodel to P is an interpretation in
which none of the CIs in P is satisfied.

Definition 3. Given an EL TBox T and a repair request P, a generalized-
conclusion repair (GC-repair) of T for P is an EL TBox U that is a GC-
weakening of T and complies with P. We further call U optimal if there is no
other GC-repair V such that V ⪰GC U but U ̸⪰GC V.

Throughout the whole section we assume that T is an EL TBox and that P
is a repair request, and the goal is to construct a generalized-conclusion repair
(preferably an optimal one). Of course, if P contains a tautology, then no repair
exists. We therefore assume that this is not the case. Without loss of generality,
all concept descriptions in T and P must be reduced.

3.1 Induced Countermodels

In the first step, we transform a canonical model of the input TBox T into
countermodels to P, which are used in the next section to devise a canonical
construction of generalized-conclusion repairs. The construction of each coun-
termodel is guided by a repair seed.

Definition 4. A repair seed is a TBox S that complies with P and consists
of CIs of the form C ⊑ F for a premise C ∈ Prem(T ) and an atom F ∈
Atoms(P, T ) where C ⊑T F .

The completion algorithm for EL is a decision procedure for the subsumption
problem (and also for the instance problem). In the correctness proof a canoni-
cal model of the TBox is constructed that involves all subconcepts occurring in
the TBox [3]. While this algorithm works in a rule-based manner, thus implic-
itly constructing the canonical model step by step, there is also a closed-form
representation [27]. Resembling the latter we define the canonical model I with
domain Dom(I) := { xC | C ∈ Sub(P, T ) } and its interpretation function is
given by AI := { xC | C ⊑T A } for each A ∈ ΣC and rI := { (xC , xD) |
C ⊑T ∃r.D } for each r ∈ ΣR.4 We will now prove several technical statements
involving the model I.

Lemma I. xC ∈ CI for each C ∈ Sub(P, T ).

Proof. We show the claim by induction on the role depth of C.

– For each concept name A ∈ Conj(C), it holds that C ⊑T A and thus
xC ∈ AI .

4 In principle, this interpretation I is the union of the canonical models IC,T [27] for
all subconcepts C occurring in P or T .
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– For each existential restriction ∃r.D ∈ Conj(C), we have C ⊑T ∃r.D. Since
D ∈ Sub(P, T ), it follows that (xC , xD) ∈ rI . The induction hypothesis
yields xD ∈ DI , and we conclude that xC ∈ (∃r.D)I . ⊓⊔

Lemma II. If J is a model of T and y ∈ CJ for some C ∈ Sub(P, T ), then
there is a simulation from I to J that contains (xC , y).

Proof. We show that the relation S := { (xD, z) | z ∈ DJ }, which contains
(xC , y), is a simulation from I to J .

– Assume (xD, z) ∈ S and xD ∈ AI . The latter yields D ⊑T A, cf. the
definition of the interpretation function, and the former yields z ∈ DJ by
definition of S. Since J is a model of T , we infer that z ∈ AJ .

– Suppose that (xD, z) ∈ S and (xD, xE) ∈ rI , i.e., we have z ∈ DJ and
D ⊑T ∃r.E. With J being a model of T , it follows that z ∈ (∃r.E)J ,
i.e., there is some w such that (z, w) ∈ rJ and w ∈ EJ . The latter yields
(xE , w) ∈ S and we are done. ⊓⊔

Lemma III. I is a model of T .

Proof. Consider a concept inclusion C ⊑ D in T , and let xE ∈ CI . We first show
that E ⊑T D holds. For this purpose, let J be a model of T where y ∈ EJ .
According to Lemma II there is a simulation from I to J that contains (xE , y).
Thus xE ∈ CI implies y ∈ CJ . Since J is a model of T and C ⊑ D is in T , it
follows that y ∈ DJ .

It remains show that xE ∈ DI holds.

– For each concept name A in the top-level conjunction of D, we have E ⊑T A
and thus xE ∈ AI .

– For each existential restriction ∃r.F in Conj(D), it holds that E ⊑T ∃r.F .
Since D is a subconcept of T , also F must be in Sub(P, T ). It follows that
(xE , xF ) ∈ rI . Since xF ∈ F I , we conclude that xE ∈ (∃r.F )I . ⊓⊔

Lemma IV. For each subconcept C ∈ Sub(P, T ) and for each EL concept de-
scription E, it holds that xC ∈ EI iff C ⊑T E.

Proof. We have already seen in the last proof that xC ∈ EI implies C ⊑T E.
The converse direction follows from Lemmas I and III. ⊓⊔

The transformation of the canonical model I is based on modification types.
These describe how copies of objects in the domain of I are modified in order
to create objects of a countermodel.

Definition 5. Let xC ∈ Dom(I). A modification type for xC is a subset K of
Atoms(P, T ) where xC ∈ KI for each K ∈ K, and K1 ̸⊑∅ K2 for each two
K1,K2 ∈ K. Given a repair seed S, we say that K respects S if additionally
{D} ≤S K implies {D} ≤∅ K for each D ∈ Sub(P, T ) where xC ∈ DI .

Every modification type not covering a concept D w.r.t. a repair seed S can
be enlarged to an S-respecting modification that also does not cover D w.r.t. S.
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Lemma V. Let K be a modification type for xC such that {D} ̸≤S K. Then
there is a modification type L that respects S such that K ≤∅ L and {D} ̸≤S L.

Proof. We will construct a finite sequence of modification types L0,L1, . . . ,Ln

for xC each of which satisfies K ≤∅ Li, Li−1 ≤∅ Li if i > 0, and {D} ̸≤S Li. To
do so, we define L0 := K and then construct the subsequent modification types
in the following inductive manner.

– If Li respects S, then no next modification type Li+1 is constructed.
– Otherwise, there is a subconcept E ∈ Sub(P, T ) such that xC ∈ EI and

{E} ≤S Li but {E} ̸≤∅ Li. So there is an atom L ∈ Li such that E ⊑S L.
Since {D} ̸≤S Li we have D ̸⊑S L. It follows that D ̸⊑S E, i.e., there is an
atom Li+1 ∈ Conj(E) where D ̸⊑S Li+1. Now define the next modification
type Li+1 := Max(Li ∪ {Li+1}).

We show that Li+1 satisfies the two invariants.

– Consider an atom K ∈ K. As K ≤∅ Li, there is some L ∈ Li such that
K ⊑∅ L. If L ∈ Li+1, we are done. Otherwise, it must hold that L ⊑∅ Li+1,
cf. the above definition of Li+1. It follows that K ⊑∅ Li+1. In either case K
is subsumed by an atom in Li+1. We conclude that K ≤∅ Li+1.

– From {D} ̸≤S Li and D ̸⊑S Li+1 we infer that {D} ̸≤S Li+1.

As each Li is a subset of the finite set Atoms(P, T ), the above rule can only be
applicable finitely often. So there is a last modification type Ln, which respects S.
Due to the invariants, K ≤∅ Ln and {D} ̸≤S Ln. ⊓⊔

Note that, in the above lemma, the enlarged modification type L also satisfies
that {D} ̸≤∅ L since this follows if {D} ̸≤S L.

Each repair seed S induces a countermodel to P. Its domain consists of
all copies of objects in the canonical model I that are annotated with an S-
respecting modification type. The definition of the interpretation function guar-
antees that each such copy does not satisfy any atom in the modification type.

Definition 6. Let S be a repair seed. The induced countermodel JS has the
domain Dom(JS) consisting of all objects xC,K where xC ∈ Dom(I) and K is a
modification type for xC that respects S, and its interpretation function is defined
by AJS := { xC,K | xC ∈ AI and A ̸∈ K } for each concept name A ∈ ΣC and
rJS := { (xC,K, xD,L) | (xC , xD) ∈ rI and Succ(K, r, xD) ≤∅ L } for each role
name r ∈ ΣR, where Succ(K, r, xD) := {E | ∃r.E ∈ K and xD ∈ EI }.

The next lemma shows structural properties of the induced countermodel JS .

Lemma VI. Consider an object xC,K ∈ Dom(JS) and an EL concept descrip-
tion E.

1. If xC,K ∈ EJS , then xC ∈ EI and {E} ̸≤∅ K.
2. If xC ∈ EI and {E} ̸≤S K, then xC,K ∈ EJS .
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Proof. We start with proving the first statement. It is easy to verify that the
relation { (xC,K, xC) | xC,K ∈ Dom(JS) } is a simulation from the induced
countermodel JS to the canonical model I. Thus xC,K ∈ EJS implies xC ∈ EI .

Next, we show by contraposition that xC,K ∈ EJS implies {E} ̸≤∅ K. From
the precondition {E} ≤∅ K it follows that there is some atom K ∈ K such that
E ⊑∅ K. We proceed with an induction on K.

– The case where K is a concept name A is obvious: then xC,K ̸∈ AJS by
Definition 8, and so E ⊑∅ A implies xC,K ̸∈ EJS .

– Now assume that K is an existential restriction ∃r.F . Further let xD,L be an
r-successor of xC,K, i.e., Succ(K, r, xD) ≤∅ L. If xD ̸∈ F I , then the existence
of the above simulation implies xD,K ̸∈ FJS . Otherwise we have {F} ≤∅ L
and so there is an atom L ∈ L such that F ⊑∅ L. Since the role depth of L
is smaller than the role depth of K, it follows by induction hypothesis that
xD,L ̸∈ FJS . We conclude that xC,K ̸∈ (∃r.F )JS , and so E ⊑∅ ∃r.F yields
xC,K ̸∈ EJS .

Last, we show the second statement. Therefore assume that xC ∈ EI and
{E} ̸≤S K. We continue with an induction on E.

– The case where E is the top concept ⊤ is trivial.
– Assume that E is a concept name A. Since {A} ̸≤S K implies {A} ̸≤∅ K, it

follows that A ̸∈ K and thus xC,K ∈ AJS by Definition 6.
– If E is a conjunction E1 ⊓E2, then {E1 ⊓E2} ̸≤S K implies {E1} ̸≤S K and

{E2} ̸≤S K. The induction hypothesis yields xC,K ∈ EJS
1 and xC,K ∈ EJS

2 ,
and thus xC,K ∈ (E1 ⊓ E2)

JS .
– Now consider the case where E is an existential restriction ∃r.F . Since

xC ∈ (∃r.F )I , there is some xD such that (xC , xD) ∈ rI and xD ∈ F I .
We must find a modification type L for xD that respects S and such
that Succ(K, r, xD) ≤∅ L and {F} ̸≤S L. Then (xC,K, xD,L) ∈ rJS and
the induction hypothesis yields xD,L ∈ FJS , which together implies that
xC,K ∈ (∃r.F )JS .
Since {∃r.F} ̸≤S K, we specifically have {F} ̸≤S Succ(K, r, xD). This means
that, for each ∃r.G ∈ K where xD ∈ GI , there is a top-level conjunct L∃r.G ∈
Conj(G) such that F ̸⊑S L∃r.G. Now consider the following modification type
for xD:

L0 := Max{L∃r.G | ∃r.G ∈ K and xD ∈ GI }.

It holds that Succ(K, r, xD) ≤∅ L0 and {F} ̸≤S L0. According to Lemma V
there is a modification type L for xD that respects S and satisfies L0 ≤∅ L
as well as {F} ̸≤S L. The former implies that Succ(K, r, xD) ≤∅ L as needed.

⊓⊔

Since S complies with P, we can show by means of the last two lemmas that
JS is indeed a countermodel to P.

Proposition 7. For each repair seed S, the induced countermodel JS is a coun-
termodel to P.
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Proof. Let C ⊑ D be a concept inclusion in the repair request P. It follows that
the canonical model I contains the object xC . Since S does not entail C ⊑ D,
there is a top-level conjunct E ∈ Conj(D) such that C ̸⊑S E. Since T entails
C ⊑ D, it follows by Lemma IV that xC ∈ EI and so {E} is a modification
type for xC . By Lemma V there is a modification type K for xC that respects S
and fulfills {E} ≤∅ K and {C} ̸≤S K. Of course, the former implies {D} ≤∅ K.
Now the object xC,K is in the domain of the induced countermodel JS . With
Lemma VI we infer that xC,K ∈ CJS and xC,K ̸∈ DJS , i.e., JS does not satisfy
C ⊑ D. ⊓⊔

3.2 Canonical Generalized-Conclusion Repairs

Next, we show how each repair seed S induces a GC-repair. We obtain it by
generalizing each conclusion according to countermodel JS , namely we take each
concept inclusion C ⊑ D in the given TBox T and replace D with the least
common subsumer of D and the most specific concept description E for which
the CI C ⊑ E is satisfied in JS .

Definition 8. Each repair seed S induces the TBox

repGC(T ,S) := {C ⊑ D ∨ CJSJS | C ⊑ D ∈ T }.
The following lemma shows that repGC(T ,S) has exactly those TBoxes as

GC-weakenings that are GC-weakenings of T and of which JS is a model.

Lemma 9. repGC(T ,S) ⪰GC U iff T ⪰GC U and JS |= U
Proof. We first prove the only-if direction, so let repGC(T ,S) ⪰GC U . Consider
a concept inclusion C ⊑ D in U . So there is a concept inclusion E ⊑ F in
repGC(T ,S) such that C = E and F ⊑∅ D. By Definition 8, F must be of the form
F ′∨EJSJS where T contains E ⊑ F ′. It follows that F ′ ⊑∅ F and thus F ′ ⊑∅ D.
We further conclude that EJSJS ⊑∅ F , which means that JS |= E ⊑ F . From
C = E and F ⊑∅ D we thus infer that JS |= C ⊑ D.

Next, we show the if direction. Assume T ⪰GC U and JS |= U , and consider a
concept inclusion C ⊑ D in U . Since T ⪰GC U , there is a concept inclusion E ⊑ F
in T where C = E and F ⊑∅ D. From JS |= U we obtain that JS |= C ⊑ D
and thus EJSJS ≡∅ CJSJS ⊑∅ D. It follows that F ∨ EJSJS ⊑∅ D. According
to Definition 8, repGC(T ,S) contains the CI E ⊑ F ∨ EJSJS . ⊓⊔

As repGC(T ,S) is a GC-weakening of itself, we infer that JS is a model of
repGC(T ,S). According to Proposition 7, JS is a countermodel to P, and so
repGC(T ,S) complies with P. It is further easy to see that repGC(T ,S) is a GC-
weakening of T . We have thus shown that the following holds.

Proposition 10. If S is a repair seed, then repGC(T ,S) is a GC-repair.

If the repair request P does not contain a tautological CI, then the empty set
is already a repair seed, i.e., repGC(T , ∅) is a GC-repair of T for P. Furthermore,
the induced GC-repairs are complete in the sense that every GC-repair is a
GC-weakening of repGC(T ,S) for some repair seed S.
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Proposition 11. If U is a GC-repair of T for P, then there is a repair seed S
such that repGC(T ,S) ⪰GC U .

Proof. Suppose that U is a GC-repair of T for P. Let S0
U := ∅ and

Sn+1
U := {C ⊑ F | C ⊑ D′ ∈ U , F ∈ Atoms(P, T ), and D′ ⊑Sn

U F }

for each number n ≥ 0. It is easy to see that Sn
U ⊆ Sn+1

U always holds. Since the
TBox U as well as the set Atoms(P, T ) are finite, there must be an index n such
that the subset inclusion is actually an equality —then define S∗

U := Sn
U . This

fixed point satisfies the equation S∗
U = {C ⊑ F | C ⊑ D′ ∈ U , F ∈ Atoms(P, T ),

and D′ ⊑S∗
U F }. It has the important property that D′ ⊑S∗

U F implies C ⊑S∗
U F

for each concept inclusion C ⊑ D′ ∈ U and each atom F ∈ Atoms(P, T ). Thus,
{D′} ≤S∗

U K implies {C} ≤S∗
U K for each modification type K— we will use this

property later.
We show that U entails S∗

U , namely by induction. U trivially entails S0
U . Now

assume that U entails Sn
U , and consider a concept inclusion C ⊑ F in Sn+1

U , i.e.,
C ⊑ D′ ∈ U , F ∈ Atoms(P, T ), and D′ ⊑Sn

U F . From the latter we infer that
D′ ⊑U F , which together with C ⊑ D′ ∈ U implies that C ⊑U F as needed.

Since U does not entail any concept inclusion in the repair request P, also
S∗
U complies with P. From the precondition T ⪰GC U it follows that T |= U and

thus T |= S∗
U . We conclude that S∗

U is a repair seed.
Next, we show that repGC(T ,S∗

U ) ⪰GC U . Since U is a GC-weakening of T , it
suffices to show that the induced countermodel JS∗

U
is a model of U , cf. Lemma 9.

Consider a concept inclusion C ⊑ D′ in U . Then there is a concept inclusion
C ⊑ D in T such that D ⊑∅ D′. Further assume xE,K ∈ C

JS∗
U . Lemma VI

implies E ⊑T C and {C} ̸≤∅ K. We must show that xE,K ∈ (D′)
JS∗

U holds as
well, which according to Lemma VI is implied by E ⊑T D′ and {D′} ̸≤S∗

U K. The
former follows from E ⊑T C, C ⊑ D ∈ T , and D ⊑∅ D′. Since C ∈ Sub(P, T )
and K respects S∗

U , we conclude from {C} ̸≤∅ K that {C} ̸≤S∗
U K. As already

shown above, it follows that {D′} ̸≤S∗
U K. ⊓⊔

Each repair seed is of polynomial size, and there are at most exponentially
many seeds. Even with a naïve approach, we can compute all seeds in exponential
time and thus also all induced GC-repairs. Then we must filter out the non-
optimal ones, e.g., by comparing each two repairs w.r.t. ⪰GC. Each comparison
needs polynomial time [3], and we obtain the following main result.

Theorem 12. The set of all optimal GC-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each GC-repair is a GC-
weakening of an optimal one.

In the below example, an optimal GC-repair is not polynomial-time computable.

Example 13. For the repair request {∃r.A ⊑ ∃r.B}, the TBox {∃r.A ⊑ ∃r.(P1⊓
Q1 ⊓ · · · ⊓ Pn ⊓ Qn), P1 ⊓ Q1 ⊑ B, . . . , Pn ⊓ Qn ⊑ B} has the optimal GC-
repair {∃r.A ⊑ d{ ∃r.(X1 ⊓ · · · ⊓Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} },
P1 ⊓Q1 ⊑ B, . . . , Pn ⊓Qn ⊑ B}. It has exponential size.
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3.3 Computing a Canonical Generalized-Conclusion Repair

In the last step, we are concerned with the question how the GC-repair induced
by a seed S can efficiently be computed. Recall that, as explained in the pre-
liminaries, each conclusion D ∨ CJSJS can be obtained as the product of the
EL concept description D and the ELsi concept description ∃sim(℘(JS), C

JS ),
or alternatively as the product of D and all ∃sim(JS , xE,K) where xE,K ∈ CJS .
However, computing the induced GC-repair repGC(T ,S) in this way is very in-
efficient since JS has exponential size.

The first important observation is that the concept description CJSJS is
already equivalent to ∃sim(JS , xC,S[C]) where S[C] is the largest modification
type for xC that respects S and does not contain an atom subsuming C. This
follows from the fact that there is a simulation on JS that contains the pair
(xC,S[C], xE,K) for each object xE,K in the extension CJS . We verify this obser-
vation in Lemmas VII–IX.

Lemma VII. CJSJS ≡∅ ∨{ ∃sim(JS , xE,K) | E ⊑T C and {C} ̸≤S K}

Proof. Since C ∈ Sub(P, T ), Lemma VI yields CJS = { xE,K | E ⊑T C and
{C} ̸≤S K}. As already mentioned in Section 2, the MSC XJS is equivalent to
the LCS of all ∃sim(JS , x) where x ∈ X. The claim follows for X := CJS . ⊓⊔

Recall from Lemma IV that, for each subconcept C ∈ Sub(P, T ) and for each
EL concept description E, it holds that xC ∈ EI iff C ⊑T E. We will implicitly
use this equivalence in the following. We specifically have Succ(K, r, xD) = {E |
∃r.E ∈ K and D ⊑T E }, and we will sometimes write Succ(K, r,D) for this set.

Lemma VIII. The relation S := { (xE,K, xF,L) | F ⊑T E and L↾E ≤∅ K } is
a simulation on JS , where L↾E := {L | L ∈ L and E ⊑T L }.

Proof. Let xE,K ∈ AJS , i.e., E ⊑T A and A ̸∈ K. It follows that F ⊑T A and
A ̸∈ L↾E . We further obtain that A ̸∈ L and thus xF,L ∈ AJS .

Assume (xE,K, xG,M) ∈ rJS , i.e., E ⊑T ∃r.G and Succ(K, r,G) ≤∅ M. Then
we infer that also F ⊑T ∃r.G and Succ(L↾E , r,G) ≤∅ M.

Let ∃r.H ∈ L where E ̸⊑T ∃r.H. Then G ̸⊑T H, and thus H ̸∈
Succ(L, r,G). We thus obtain that Succ(L↾E , r,G) = Succ(L, r,G), which yields
that Succ(L, r,G) ≤∅ M. We conclude that (xF,L, xG,M) ∈ rJS . Clearly, S con-
tains the pair (xG,M, xG,M). ⊓⊔

Lemma IX. CJSJS ≡∅ ∃sim(JS , xC,S[C]) where

S[C] := Max{K | K ∈ Atoms(P, T ), C ̸⊑S K, and C ⊑T K }.

Proof. S[C] clearly is a modification type for xC . In order to verify that S[C]
respects S, consider a subconcept F ∈ Sub(P, T ) such that C ⊑T F and {F} ≤S

S[C]. So there is an atom K in S[C] where F ⊑S K. It follows that C ̸⊑S F ,
and so either F itself is in S[C] or F is subsumed by an atom in S[C], i.e.,
{F} ≤∅ S[C].
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Next, we show that ∃sim(JS , xE,K) ⊑∅ ∃sim(JS , xC,S[C]) holds for each xE,K ∈
CJS , namely by proving that the simulation S in Lemma VIII contains the pair
(xC,S[C], xE,K) [20, Proposition 3.4.2]. So consider an object xE,K ∈ CJS . We
already know from the proof of Lemma VII that E ⊑T C and {C} ̸≤S K. It
remains to verify that K↾C ≤∅ S[C]. Suppose that K is an atom in K where
C ⊑T K. Since {C} ̸≤S K, we further have C ̸⊑S K. We conclude that S[C]
must contain either K itself or an atom subsuming K. ⊓⊔

Secondly, in order to compute the LCS D∨∃sim(JS , xC,S[C]) it is not necessary
to start from xC,S[C] in the product construction, but it suffices to start from
xD,S[C⊑D] where S[C ⊑ D] is the largest modification type for xD that respects
S and does not contain an atom subsuming C. We show this in Lemmas XI–XIV.

Definition X. We say that L is tolerated by xC,K if each atom L in L satisfies
C ̸⊑T L or {L} ≤∅ K.

Lemma XI. If M is covered by L and L is tolerated by xC,K, then M is toler-
ated by xC,K.

Proof. Consider an atom M ∈ M. Since M ≤∅ L, there is an atom L ∈ L such
that M ⊑∅ L. As L is tolerated by xC,K, we have C ̸⊑T L or {L} ≤∅ K. In the
latter case we immediately infer that {M} ≤∅ K. Otherwise, C ⊑T M cannot
hold as it would yield, using M ⊑∅ L, a contradiction to C ̸⊑T L. ⊓⊔

Lemma XII. If N is a modification type for xF that is tolerated by xE,M, then
there is a modification type N ′ for xF that respects S, is tolerated by xE,M, and
satisfies N ≤∅ N ′.

Proof. We initialize N ′ := N and then exhaustively apply the following rule.
The invariant is that N ′ is always tolerated by xE,M.

Extension Rule. If there is a subconcept G ∈ Sub(P, T ) where F ⊑T G and
{G} ≤S N ′ but {G} ̸≤∅ N ′, then extend N ′ as follows; otherwise this rule
is not applicable. We first infer that there is an atom N ∈ N ′ such that
G ⊑S N .
– If E ⊑T G, then N must be subsumed by an atom in M. (This follows

from the invariant: if {N} was not covered by M, then it would hold
that E ̸⊑T N , but from E ⊑T G ⊑S N we could infer the contradiction
that E ⊑T N .) This means that {G} ≤S M. Since M respects S, there
is an atom M ∈ M such that G ⊑∅ M . Replace N ′ with Max(N ′∪{M}).

– If E ̸⊑T G, then there is an atom G′ ∈ Conj(G) such that E ̸⊑T G′.
Replace N ′ with Max(N ′ ∪ {G′}).

Since there are only finitely many atoms in Atoms(P, T ), rule application must
terminate after finitely many steps. It is easy to verify that the final set N ′ is a
modification type for xF , respects S (since the Extension Rule is not applicable),
is tolerated by xE,M (due to the invariant), and covers N . ⊓⊔

Lemma XIII. If xC,K and xD,L are elements of Dom(JS) such that L is tol-
erated by xC,K, then D ∨ ∃sim(JS , xD,L) is subsumed by D ∨ ∃sim(JS , xC,K).
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Proof. We show the claim by induction on D.
Consider a concept name A in the top-level conjunction of D∨∃sim(JS , xC,K),

i.e., A ∈ Conj(D), and C ⊑T A, and A ̸∈ K. Since L is tolerated by xC,K, it
follows that A ̸∈ L. Clearly, A ∈ Conj(D) implies D ⊑T A. We conclude that
xD,L ∈ AJS , i.e., A is a top-level conjunct of D ∨ ∃sim(JS , xD,L).

Next, let ∃r.(F ∨ ∃sim(JS , xE,M)) be a top-level conjunct of D ∨
∃sim(JS , xC,K), i.e., ∃r.F ∈ Conj(D), C ⊑T ∃r.E, and Succ(K, r, E) ≤∅ M.

Since ∃r.F is a top-level conjunct of D, we also have D ⊑T ∃r.F . We
will construct a modification type N for xF that is tolerated by xE,M and
such that (xD,L, xF,N ) ∈ rJS . Then the induction hypothesis yields that
F ∨ ∃sim(JS , xE,M) subsumes F ∨ ∃sim(JS , xF,N ). It then further follows that
D ∨ ∃sim(JS , xD,L) contains the top-level conjunct ∃r.(F ∨ ∃sim(JS , xF,N )) and
the latter subsumes ∃r.(F ∨ ∃sim(JS , xE,M)).

Initialize N := ∅. We first add enough atoms to N such that it covers
Succ(L, r, F ). Suppose that H ∈ Succ(L, r, F ), i.e., ∃r.H ∈ L where F ⊑T H.
Since L is tolerated by xC,K, we have C ̸⊑T ∃r.H or {∃r.H} ≤∅ K. We proceed
with a case distinction.

– Assume that E ⊑T H. Since C ⊑T ∃r.E, it follows that C ⊑T ∃r.H, which
further implies {∃r.H} ≤∅ K, i.e., there is an atom ∃r.H ′ ∈ K such that
H ⊑∅ H ′. We infer that H ′ ∈ Succ(K, r, E) and, since the latter is covered
by M, there is an atom M ∈ M such that H ′ ⊑∅ M , i.e., it also holds that
H ⊑∅ M . Replace N with Max(N ∪ {M}).

– In the remaining case we have E ̸⊑T H. So there is an atom H ′ ∈ Conj(H)
such that E ̸⊑T H ′. Replace N with Max(N ∪ {H ′}).

The resulting set N is a modification type for xF , is tolerated by xE,M, but
it need not respect S. According to Lemma XII, we can extend N to an S-
respecting modification type and we are done. ⊓⊔

Lemma XIV. D ∨ ∃sim(JS , xC,S[C]) ≡∅ D ∨ ∃sim(JS , xD,S[C⊑D]) where

S[C ⊑ D] := S[C]↾D = Max{K | K ∈ Atoms(P, T ), C ̸⊑S K, and D ⊑T K }.

Proof. It is easy to see that S[C]↾D is a modification type for xD. It remains to
show that it respects S. Suppose a subconcept E ∈ Sub(P, T ) such that D ⊑T E
and {E} ≤S S[C]↾D. Since S[C] respects S, it follows that {E} ≤∅ S[C], i.e.,
there is an atom K ∈ S[C] where E ⊑∅ K. Then D ⊑T K holds and thus K is
in S[C]↾D.

Now since T contains C ⊑ D, the pair (xD,S[C]↾D , xC,S[C]) is contained
in the simulation S in Lemma VIII. It follows that ∃sim(JS , xC,S[C]) ⊑∅

∃sim(JS , xD,S[C]↾D ) [20, Proposition 3.4.2], which implies the subsumption ⊑∅

in the claimed equivalence. Since S[C]↾D is tolerated by xC,S[C], the converse
subsumption follows from Lemma XIII. ⊓⊔

Thirdly, when computing the product of D and ∃sim(JS , xD,S[C⊑D]) we do
not need to consider all objects xE,K that are reachable from xD,S[C⊑D] in JS ,
but only those where E is a filler of an existential restriction that occurs in D.
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Definition 14. Given a subconcept E ∈ Sub(P, T ) and a modification type K
for xE that respects S, we define the restriction E↾K by the following recursion.

E↾K :=
l

{A | A ∈ Conj(E) and A ̸∈ K }

⊓
l

{
∃r.F ↾L

∣∣∣∣∣ ∃r.F ∈ Conj(E), and L is a ≤∅-minimal mod. type

for xF that respects S and where Succ(K, r, xF ) ≤∅ L

}
Lemma XV. E ∨ ∃sim(JS , xE,K) ≡∅ E↾K

Proof. We show the claim by induction on E.
Suppose a concept name A in Conj(E↾K), i.e., we have A ∈ Conj(E) and

A ̸∈ K. Since the former implies E ⊑T A, we infer that xE,K ∈ AJS and thus
that A is a top-level conjunct of E ∨ ∃sim(JS , xE,K).

Conversely, let A be a concept name in the top-level conjunction of E ∨
∃sim(JS , xE,K), i.e., A ∈ Conj(E), E ⊑T A, and A ̸∈ K. It follows that A is also
a top-level conjunct of E↾K.

Next, we are concerned with the existential restrictions. Let ∃r.F ↾L be a top-
level conjunct of E↾K, which means that ∃r.F ∈ Conj(E), and L is a ≤∅-minimal
modification type for xF that respects S and satisfies Succ(K, r, F ) ≤∅ L.
It follows that (xE,K, xF,L) ∈ rJS and so the existential restriction ∃r.(F ∨
∃sim(JS , xF,L)) is a top-level conjunct in E ∨ ∃sim(JS , xE,K). The induction hy-
pothesis yields that the filler F∨∃sim(JS , xF,L) is equivalent to F ↾L. We conclude
that E ∨ ∃sim(JS , xE,K) is subsumed by ∃r.F ↾L.

Last, assume that ∃r.(F ∨ ∃sim(JS , xG,M)) is a top-level conjunct of
E ∨ ∃sim(JS , xE,K), i.e., it holds that ∃r.F ∈ Conj(E), E ⊑T ∃r.G, and
Succ(K, r,G) ≤∅ M.

We will construct a modification type L′ for xF that respects S, is tol-
erated by xG,M, and satisfies Succ(K, r, F ) ≤∅ L′. Then there must be a
≤∅-minimal S-respecting modification type L for xF such that L ≤∅ L′ and
Succ(K, r, F ) ≤∅ L. Lemma XI yields that L is tolerated by xG,M as well. Then
Lemma XIII together with the induction hypothesis yields that F ↾L is sub-
sumed by F ∨∃sim(JS , xG,M). Furthermore, E↾K contains the top-level conjunct
∃r.F ↾L, which implies that E↾K is subsumed by ∃r.(F ∨ ∃sim(JS , xG,M)).

Initialize L′ := ∅. We first add enough atoms to L′ such that it covers
Succ(K, r, F ). Suppose that H ∈ Succ(K, r, F ), i.e., ∃r.H ∈ K and F ⊑T H.
– If G ⊑T H, then H ∈ Succ(K, r,G). Since the latter is covered by M, there

is an atom M in M such that H ⊑∅ M . Replace L′ by Max(L′ ∪ {M}).
– In the remaining case it holds that G ̸⊑T H. Then there must be an atom

H ′ ∈ Conj(H) such that G ̸⊑T H ′. Replace L′ by Max(L′ ∪ {H ′}).
The so obtained set L′ is already a modification type for xF that is tolerated by
xG,M, but it might not respect S. As shown in Lemma XII, we can extend L′

by means of the Extension Rule to an S-respecting modification type. ⊓⊔
The following characterization of the conclusions in the induced GC-repair

repGC(T ,S) follows from Lemmas VII, IX, XIV, and XV, and it is the main
result of this section.
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Proposition 15. Given a repair seed S, it holds that D ∨CJSJS ≡∅ D↾S[C⊑D]

for each CI C ⊑ D in T , and thus the induced GC-repair repGC(T ,S) is equiva-
lent to the TBox {C ⊑ D↾S[C⊑D] | C ⊑ D ∈ T }.

It remains an open question whether it is tractable to decide if repGC(T ,S1) is
a GC-weakening of repGC(T ,S2), i.e., whether this can be decided in polynomial
time w.r.t. the size of the input TBox T and the repair request P. However, under
the assumption that T does not contain multiple CIs with the same premise,
we can recursively decide if repGC(T ,S1) ⪰GC repGC(T ,S2) holds without always
constructing the whole induced GC-repairs. By the above proposition it suffices
to check if D↾S1[C⊑D] ⊑∅ D↾S2[C⊑D] for each C ⊑ D in T . Using the recursive
characterization of subsumption in EL (w.r.t. an empty TBox), the two involved
concepts need to be constructed only up to the first clash.

3.4 Two Observations

The below example illustrates that entailment between repair seeds need not
imply entailment between the induced GC-repairs.

Example 16. For the TBox T := {A ⊑ B, C ⊑ ∃r.(A ⊓ B)} and the repair
request P := {C ⊑ ∃r.B}, there are two optimal GC-repairs: U1 := {A ⊑ B,
C ⊑ ∃r.⊤}, induced by the seed S1 := {A ⊑ B}, and U2 := {A ⊑ ⊤, C ⊑ ∃r.A},
induced by S2 := ∅. Now, U1 does not entail U2, although S1 entails S2.

The next example shows that, possibly contradicting intuition, it does not
suffice that a repair seed consists only of CIs C ⊑ F where C ⊑ D ∈ T and
F ∈ Atoms(P, T ) such that D ⊑∅ F . We definitely sometimes need CIs C ⊑ F
where C ⊑T F , as per Definition 4. Notably, the only optimal repair in the
following example can be described by the latter CIs.

Example 17. Consider the TBox T := {A ⊑ ∃r.∃r.(B ⊓ C), ∃r.B ⊑ B} and
the repair request P := {A ⊑ ∃r.∃r.C}. The unique optimal GC-repair is {A ⊑
∃r.∃r.B, ∃r.B ⊑ B}. It is induced only by the seeds {A ⊑ ∃r.B, ∃r.B ⊑ B}
and {A ⊑ B, A ⊑ ∃r.B, ∃r.B ⊑ B}. Specifically the seed CI A ⊑ ∃r.B would
not be allowed if we simplified the definition of a seed as explained above.

Another GC-repair is {A ⊑ ∃r.∃r.B, ∃r.B ⊑ ⊤}, which is induced by the
empty seed ∅, but also by {A ⊑ B}, {A ⊑ ∃r.B}, and {A ⊑ B, A ⊑ ∃r.B}.

The above example also shows that a repair need not entail its seed, and
that a repair can be induced by multiple seeds. Conducted experiments support
the claim that each GC-repair might be induced by a unique seed with minimal
cardinality and such that every CI in the seed is also entailed by the repair.

4 Fixed-Premise Repairs of EL TBoxes

We have seen in the introduction that simply generalizing the conclusions of
the input TBox T might not yield satisfactory repairs. Therefore, we will now
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construct repairs that can retain more consequences. It is still required that each
premise in the repair is also a premise in T , but apart from that we do not impose
further conditions except that the repair must, of course, be entailed by T .

Definition 18. Consider TBoxes T and U . We say that T fixed-premise entails
(FP-entails) U , written T |=FP U , if Prem(T ) = Prem(U) and T |= U .

T ⪰GC U implies T |=FP U and the latter implies T |= U , but the converse
implications need not hold. This means that the relation |=FP is between ⪰GC and
|=. Thus, repairs based on this new relation are, usually, better than GC-repairs.

Definition 19. Let T be an EL TBox and P a repair request. A fixed-premise
repair (FP-repair) of T for P is an EL TBox U that is FP-entailed by T and
complies with P. We further call U optimal if there is no other FP-repair V such
that V |=FP U and U ̸|=FP V.

Obviously, each GC-repair is an FP-repair but the converse does not hold.
By reusing the notion of a repair seed as well as the results on GC-repairs

in Section 3, we obtain the following characterization of (optimal) FP-repairs.
First of all, each repair seed S induces an FP-repair: we take each CI C ⊑ D in
the input TBox T and replace the conclusion D with the most specific concept
description E for which the CI C ⊑ E is satisfied in the induced countermodel
JS . Note that now D is not generalized anymore by computing an LCS.

Definition 20. Each repair seed S induces the TBox

repFP(T ,S) := {C ⊑ CJSJS | C ∈ Prem(T ) }.

Recall that each conclusion CJSJS is equivalent to the ELsi concept descrip-
tion ∃sim(JS , xC,S[C]), where S[C] is the largest modification type for xC that
respects S and does not cover {C}, i.e., S[C] := Max{K | K ∈ Atoms(P, T ),
C ̸⊑S K, and C ⊑T K }. Analogously to the GC-repairs, every TBox
repFP(T ,S) is an FP-repair and each FP-repair is FP-entailed by repFP(T ,S)
for some repair seed S.

Proposition 21. For each repair seed S, the TBox repFP(T ,S) is an FP-repair.

Proof. Recall from Section 2 that a CI C ⊑ D is satisfied in JS iff CJSJS ⊑∅ D.
It follows that the induced countermodel JS is a model of repFP(T ,S). According
to Proposition 7, JS does not satisfy any CI in P. It follows that repFP(T ,S)
complies with P.

It remains to show that repFP(T ,S) is FP-entailed by T . Definition 20 implies
that each premise in repFP(T ,S) is a premise in T too. Now consider a CI
C ⊑ CJSJS in repFP(T ,S). We must prove that it is entailed by T . Recall from
Lemma IX that CJSJS ≡∅ ∃sim(JS , xC,S[C]). Let J be a model of T such that
y ∈ CJ . Lemma II yields that there is a simulation from I to J containing
(xC , y). Furthermore, it is easy to see that the relation { (xD,K, xD) | xD,K ∈
Dom(JS) } is a simulation from JS to I that contains (xC,S[C], xC). Composing
these two simulations yields one from JS to J that contains (xC,S[C], y), i.e.,
y ∈ (∃sim(JS , xC,S[C]))

J and we are done. ⊓⊔
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Proposition 22. For each FP-repair U of T for P, there is a repair seed S
such that repFP(T ,S) |=FP U .

Proof. Consider an FP-repair U of T for P, i.e., every premise in U is also a
premise in T . As in the proof of Proposition 11, we can construct a repair seed
S∗
U such that its induced countermodel JS∗

U
is a model of U . It follows that

C
JS∗

U
JS∗

U ⊑∅ D for each CI C ⊑ D ∈ U , and furthermore repFP(T ,S) contains
the CI C ⊑ C

JS∗
U
JS∗

U . We conclude that repFP(T ,S) entails each CI in U . ⊓⊔

We obtain the following main result of this section. Its proof is analogous to
Theorem 12, but uses the argument that entailment between ELsi TBoxes can
be decided in polynomial time [25].

Theorem 23. The set of all optimal FP-repairs of an EL TBox T for a repair
request P can be computed in exponential time, and each FP-repair is FP-entailed
by an optimal one.

We have seen in Example 17 that a repair seed might not be entailed by its
induced GC-repair. This is not the case for its induced FP-repair. We need the
following lemma to prove this.

Lemma XVI. Let S be a repair seed. The induced countermodel JS is a model
of S.

Proof. Consider a concept inclusion C ⊑ F in the seed S, which specifically
means that C ∈ Prem(T ), F ∈ Atoms(P, T ) and C ⊑T F , cf. Definition 4.
Further let xE,K ∈ CJS . By Lemma VI it follows that xE ∈ CI and {C} ̸≤∅ K.

We show that {F} ̸≤S K. Assume that this was not the case. Then {C} ≤S K
would hold. Since K respects S, it would follow that {C} ≤∅ K— a contradiction.

Since I is a model of T by Lemma III, we infer that xE ∈ F I . An application
of Lemma VI yields that xE,K ∈ FJS . ⊓⊔

Lemma 24. Each repair seed S is entailed by its induced FP-repair repFP(T ,S).

Proof. Consider a concept inclusion C ⊑ F in the seed S. Recall from Defini-
tion 4 that C is a premise in T . According to Lemma XVI, the induced coun-
termodel JS is a model of S, which implies CJSJS ⊑∅ F . Since the FP-repair
repFP(T ,S) contains the CI C ⊑ CJSJS , we conclude that repFP(T ,S) entails
C ⊑ F . ⊓⊔

Contrary to the GC-repairs, not every FP-repair is an EL TBox but might
require cyclic ELsi concept descriptions [25] as conclusions to be optimal. For
instance, consider the TBox {A ⊑ ∃r.A} that is also the repair request. The
unique optimal FP-repair consists of the single CI

A ⊑ ∃sim(
A Ar r r ).
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If a standard EL TBox is required as result, one might rewrite the repair by
introducing fresh concept names (used as quantified monadic second-order vari-
ables). For the above optimal repair this yields the TBox ∃{X,Y, Z}.{A ⊑ X,
X ⊑ A ⊓ ∃r.Y, Y ⊑ ∃r.Z, Z ⊑ A ⊓ ∃r.Z}. One could also try to compute
a uniform interpolant [26, 30] of the latter in order to get rid of the additional
symbols and so obtain a usual EL TBox. Alternatively, one could unfold the
cyclic conclusions into EL concept descriptions up to a certain role-depth bound.

If the TBox T is cycle-restricted [2], then the canonical model I is acyclic
and so is the induced countermodel JS for each repair seed S. The FP-repair
repFP(T ,S) then only has acyclic ELsi concept descriptions as conclusions and
these can be rewritten into EL concept descriptions.

Prototypical Implementation

The two repair approaches from the previous sections have been imple-
mented in a prototype, available at https://github.com/francesco-kriegel/
right-repairs-of-el-tboxes. The needed repair seed is obtained by interac-
tion with the user, who must specify which of the polynomially many CIs of
the form C ⊑ F as per Definition 4 are valid —all confirmed CIs constitute
the repair seed. However, the user need not check each such CI. Firstly, there
is no need to ask whether a tautology is valid. Secondly, if a CI follows from
previously confirmed CIs, then it must not be rejected and so there is no need
to ask for it. Thirdly, since the goal is to build a repair seed, a CI must be re-
jected if it together with all previously accepted CIs entails one of the unwanted
consequences in P. Only the remaining CIs need to be decided by the user.

Currently, the CIs are presented to the user in the following order: C1 ⊑ F1

comes before C2 ⊑ F2 if C1 subsumes a subconcept C2 (since then the former
could potentially be used to entail the latter). Other orders could also be suitable.
For instance, the implementation could be changed such that the user decides
C1 ⊑ F1 before C2 ⊑ F2 if the latter does not follow from all previously accepted
CIs but it would follow if also the former would be accepted.

5 Complexity of Maximally Strong ≻sub-Weakenings

As mentioned in the introduction, a framework for computing gentle repairs
based on axiom weakening was developed, and two weakening relations that
operate on EL CIs were introduced [8]. We briefly recall the modified gentle
repair algorithm. As input, fix an ontology O that is partitioned into a static
part Os and a refutable part Or as well as an axiom α, the unwanted consequence,
that follows from O but not already from Os. A repair is an ontology O′ such
that O |= O′ but Os ∪ O′ ̸|= α. In order to obtain such a repair, we repeatedly
compute a justification J for α and replace one axiom β ∈ J by a weaker one.5

5 We say that γ is weaker than β if β entails γ but γ does not entail β.

https://github.com/francesco-kriegel/right-repairs-of-el-tboxes
https://github.com/francesco-kriegel/right-repairs-of-el-tboxes
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Specifically, a justification for α is a minimal subset J ⊆ Or such that Os∪J |= α.
After at most exponentially many iterations a repair has been obtained.

A weakening relation is a pre-order ≻ on axioms such that β ≻ γ implies
that γ is weaker than β. Such relations are used to guide the selection of a
weaker axiom in the above iteration. Specifically, when processing a justification
J for α and a selected axiom β ∈ J , we should replace β by a maximally strong
weakening, which is an axiom γ such that β ≻ γ and Os ∪ (J \ {β}) ∪ {γ} ̸|= α,
but Os ∪ (J \ {β}) ∪ {δ} |= α for all δ where β ≻ δ ≻ γ. This prevents the
loss of too many other consequences (apart from α). However, maximally strong
weakenings need not exist for every weakening relation.

The syntactic weakening relation ≻syn on EL CIs removes subconcepts from
the conclusions. Maximally strong ≻syn-weakenings always exist in all direc-
tions,6 all of them can be computed in exponential time, one can be computed
in polynomial time, and recognizing them is coNP-complete.

The semantic weakening relation ≻sub replaces conclusions of EL CIs by more
general concepts, i.e., C ⊑ D ≻sub C ′ ⊑ D′ if C = C ′, D ⊏∅ D′, and C ′ ⊑ D′

̸|= C ⊑ D. It has only been known that maximally strong ≻sub-weakenings always
exist in all directions,6 all of them can effectively be computed, and recognizing
them is coNP-hard. As a side result from Section 3, we obtain that the former
can actually be done in exponential time if the unwanted consequence α is a
CI. We further show that the latter is also an upper bound, and that a single
maximally strong ≻sub-weakening cannot be computed in polynomial time.

Proposition 25. If the unwanted consequence α is a CI, then all maximally
strong ≻sub-weakenings of an axiom β in a justification J for α can be computed
in exponential time.

Proof. Fix a justification J for the unwanted consequence α and let β ∈ J . Recall
that then α follows from Os ∪J but, due to minimality, not from Os ∪ (J \ {β}).
Since in EL a CI follows from an ontology iff it already follows from the CIs
in the ontology, J consists of CIs only. Let the TBox T consist of all concept
inclusions in the static part Os or in the justification J , and further define the
repair request as P := {α}. We then have that T |= α but T \ {β} ̸|= α. First of
all, if γ is a maximally strong ≻sub-weakening of β in J , then (T \ {β})∪ {γ} is
a GC-repair of T for P. It must be an optimal one, since otherwise γ would not
be maximally strong. We conclude that each maximally strong ≻sub-weakening
of β in J corresponds to an optimal GC-repair.

The repair seeds that induce these optimal GC-repairs have a specific form.
Assume that U := (T \{β})∪{γ} where γ is a maximally strong ≻sub-weakening
of β in J . According to the inductive construction of the repair seed S∗

U in the
proof of Proposition 11, the initial set S1

U ⊆ S∗
U contains the concept inclusions

C ⊑ F for all C ⊑ D ∈ T \ {β} and all F ∈ Conj(D), possibly among others. It
follows that the final seed S∗

U entails T \ {β}. In addition, S∗
U does not entail α.

6 That is, each weakening of an axiom β in a justification J is weaker than a maximally
strong weakening of β in J —where a weakening of β in J is an axiom γ such that
β ≻ γ and Os ∪ (J \ {β}) ∪ {γ} ̸|= α.
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We conclude that, in order to compute the maximally strong ≻sub-weakenings
of β in J , it suffices to consider only those repair seeds S that entail T \{β} but
do not entail α. It is easy to see that then the modification type S[C ⊑ D] is
empty for each C ⊑ D ∈ T \ {β}, and thus the induced repair repGC(T ,S) still
contains, possibly up to equivalence, all CIs in T \ {β}, cf. Proposition 15. It
further contains one additional CI with premise Cβ where β =: Cβ ⊑ Dβ , which
is a ≻sub-weakening of β and which we denote by γS . Due to the above cor-
respondence between maximally strong ≻sub-weakenings and the special repair
seeds, we can finally find every maximally strong ≻sub-weakening of β among
these CIs γS . Since there are at most exponentially many such seeds S, there at
most exponentially many such ≻sub-weakenings γS . Since entailment in EL can
be decided in polynomial time [3], we can identify the maximally strong ones
among them in exponential time, and so the claim follows. ⊓⊔

The following modification of [8, Example 30] shows that a single maximally
strong ≻sub-weakening cannot always be computed in polynomial time.

Example 26. Take the ontology O with Os := { Pi ⊓ Qi ⊑ B | i ∈ {1, . . . , n} }
and Or := {β} for β := ∃r.A ⊑ ∃r.(P1 ⊓ Q1 ⊓ · · · ⊓ Pn ⊓ Qn), and the un-
wanted consequence α := ∃r.A ⊑ ∃r.B. Then J := {β} is a justification
for α. There is exactly one maximally strong ≻sub-weakening of β in J , namely
∃r.A ⊑ d{ ∃r.(X1 ⊓ · · · ⊓ Xn) | Xi ∈ {Pi, Qi} for each i ∈ {1, . . . , n} }. Since
this weakening has exponential size, it cannot be computed in polynomial time.

Finally, recognizing maximally strong ≻sub-weakenings is also in coNP.

Proposition 27. The problem of deciding whether an EL CI γ is a maximally
strong ≻sub-weakening of an EL CI β in a justification J for α is coNP-complete.

Proof. Hardness was already shown [8]. We now turn our attention to proving
containment. We first cite a special case of the definition of a most specific con-
sequence [21, Definition 3]: given an EL TBox T and an EL concept description
C, an ELsi concept description D is called most specific consequence of C w.r.t.
T if, firstly, C ⊑T D and, secondly, C ⊑T E implies D ⊑∅ E for each ELsi con-
cept description E. Furthermore, the most specific consequence of C w.r.t. T
always exists and is equivalent to the ELsi concept description ∃sim(IC,T , xC)
[21, Proposition 6].7 Up to equivalence, we will denote it as CT .

Assume that J is a justification for α, i.e., Os ∪ J |= α but no proper subset
of J satisfies this, and let β := C ⊑ D be a CI in J . Further consider a CI
γ := C ⊑ E. It is easy to check in polynomial time [3] whether C ⊑ E is a
≻sub-weakening of C ⊑ D: one only needs to check if D ⊑∅ E and if Os ∪
(J \ {C ⊑ D})∪ {C ⊑ E} ̸|= α. Assume in the following that this test succeeds.
It then remains to check if C ⊑ E is maximally strong.

7 IC,T is the canonical model of C and T [27], which can alternatively be defined like
the canonical model I in Section 3.1 but using the domain {xD | D ∈ Sub(C, T ) }.
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Next, we define a normal form of C ⊑ E. Therefore, consider the EL concept
description E↓ := D∨C{C⊑E}. Recall from Section 2 that E↓ must be an EL con-
cept description since D is one and the most specific consequence C{C⊑E} is an
ELsi concept description. This concept description E↓ can be computed in poly-
nomial time for the following reasons. The most specific consequence C{C⊑E} is
equivalent to the ELsi concept description ∃sim(IC,{C⊑E}, xC), which can be com-
puted in polynomial time since the canonical model IC,{C⊑E} can be computed
in polynomial time. The least common subsumer of D and ∃sim(IC,{C⊑E}, xC)
can be obtained as the product of the syntax tree of D and the interpretation
IC,{C⊑E}, rooted at xC . This product can clearly be computed in polynomial
time.

We show the following three claims.

1. D ⊑∅ E↓ ⊑∅ E

By definition, we have D ⊑∅ E↓. Since C ⊑ E is a ≻sub-weakening of C ⊑ D,
we have D ⊑∅ E. It is further easy to see that C{C⊑E} ⊑∅ E. It follows that
the least common subsumer of D and C{C⊑E}, which is E↓, is subsumed
by E.

2. C ⊑ E↓ and C ⊑ E are equivalent.
Clearly, E↓ ⊑∅ E implies that C ⊑ E↓ entails C ⊑ E. Again by defini-
tion, it holds that C{C⊑E} ⊑∅ E↓, and thus C ⊑ C{C⊑E} entails C ⊑ E↓.
Furthermore, the TBoxes {C ⊑ E} and {C ⊑ C{C⊑E}} are equivalent [21,
Lemma 20]. We infer that also C ⊑ E entails C ⊑ E↓.

3. E↓ is most specific, i.e., for each EL concept description E′, if D ⊑∅ E′ ⊑∅ E,
and C ⊑ E′ and C ⊑ E are equivalent, then E↓ ⊑∅ E′.
Assume that D ⊑∅ E′ ⊑∅ E and that C ⊑ E′ and C ⊑ E are equivalent.
We obtain E↓ = D ∨ C{C⊑E} ≡∅ D ∨ C{C⊑E′} ⊑∅ D ∨ E′ ≡∅ E′.

Thus, C ⊑ E↓ is also a ≻sub-weakening of C ⊑ D that is equivalent to C ⊑ E.
Before we continue with the proof, we cite a further definition. Given EL

concept descriptions G and L, we call L a lower neighbor of G, written L ≺∅ G,
if L ⊏∅ G and there is no EL concept description M with L ⊏∅ M ⊏∅ G [22]. Up
to equivalence, each lower neighbor has polynomial size. If H ⊏∅ G, then there
is a lower neighbor L of G such that H ⊑∅ L.

Last, we show the following claim: γ = C ⊑ E is no maximally strong ≻sub-
weakening of β = C ⊑ D in J iff there is a concept description L such that
D ⊑∅ L ≺∅ E↓ and Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ L} ̸|= α.

Regarding the if direction, let L be an EL concept description such that
D ⊑∅ L ≺∅ E↓ and Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ L} ̸|= α. The latter together
with D ⊑∅ L implies that C ⊑ L is a ≻sub-weakening of C ⊑ D in J . Since L
is a lower neighbor of E↓, we have L ⊏∅ E↓. Claim 3 implies that C ⊑ E and
C ⊑ L are not equivalent, and thus C ⊑ L is stronger than C ⊑ E w.r.t. ≻sub.
We conclude that C ⊑ E is no maximally strong ≻sub-weakening of C ⊑ D in J .

The only-if direction remains. For this purpose, consider a ≻sub-weakening
C ⊑ F of C ⊑ D in J that is ≻sub-stronger than C ⊑ E. Then D ⊑∅ F ⊑∅ E, and
C ⊑ F entails C ⊑ E but they are not equivalent. Since C ⊑ F entails C ⊑ E and
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C ⊑ E is equivalent to C ⊑ E↓, it follows that C{C⊑F} ⊑∅ E↓ [21, Definition 3].
Since also D ⊑∅ E↓ by Claim 1, we infer that E↓ is a common subsumer of D
and C{C⊑F}. Defining F ↓ as the least common subsumer D∨C{C⊑F} like above
yields F ↓ ⊑∅ E↓.

Claim 2 yields that C ⊑ F and C ⊑ F ↓ are equivalent, as are C ⊑ E and
C ⊑ E↓. Now F ↓ ⊑∅ E↓ implies that C ⊑ F ↓ entails C ⊑ E↓. If E↓ ⊑∅ F ↓, then
C ⊑ E↓ would entail C ⊑ F ↓ and thus C ⊑ F and C ⊑ E would be equivalent,
a contradiction. We conclude that F ↓ ⊏∅ E↓. So there exists a lower neighbor L
where F ↓ ⊑∅ L ≺∅ E↓ [22]. Recall that C ⊑ F is a ≻sub-weakening of C ⊑ D
in J and that C ⊑ F and C ⊑ F ↓ are equivalent by Claim 2, i.e., we have
Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ F ↓} ̸|= α. Since C ⊑ F ↓ entails the CI C ⊑ L, it
follows that Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ L} ̸|= α.

Consequently, to check if C ⊑ E is maximally strong we only need to de-
termine whether there is some lower neighbor L of E↓ such that D ⊑∅ L and
Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ L} ̸|= α. If so, then L is a certificate for C ⊑ E
being not maximally strong. Otherwise, if there is no such L, then C ⊑ E
is maximally strong. Recall that, up to equivalence, each lower neighbor has
polynomial size [22]. This means that we can guess a concept L of polynomial
size and then check if it subsumes D, is a lower neighbor of E↓, and satisfies
Os ∪ (J \ {C ⊑ D}) ∪ {C ⊑ L} ̸|= α. So the containment in coNP follows. ⊓⊔

6 Conclusion

We have introduced a framework for computing generalized-conclusion repairs
of EL TBoxes, where the premises must not be changed and the conclusions can
be generalized. Up to equivalence, the set of all optimal generalized-conclusion
repairs can be computed in exponential time. Each generalized-conclusion re-
pair is entailed by an optimal one and, furthermore, each optimal generalized-
conclusion repair can be described by a repair seed that has polynomial size. In
addition, we have extended the framework to the fixed-premise repairs, with the
difference that the conclusions need not be generalizations anymore. This usu-
ally leads to better repairs, but with the disadvantage that the conclusions in an
optimal repair might be cyclic and can thus only be expressed in an extension of
EL with greatest fixed-point semantics or by introducing fresh concept names.
Not affected by the latter, all optimal fixed-premise repairs can be computed in
exponential time too, and each fixed-premise repair is entailed by an optimal
one, which is induced by a polynomial-size repair seed. An experimental imple-
mentation is available, which interacts with the user to construct the seed from
which the repair is built.

An interesting task for future research is to combine this approach to repair-
ing TBoxes with the approach to repairing quantified ABoxes [5]. This should be
possible by, firstly, adapting the notion of a repair seed such that it can addition-
ally contain concept assertions and role assertions and, secondly, suitably adapt-
ing the transformation of the saturation/canonical model into a countermodel
from which the final repair is constructed. Another interesting question is how the
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approach can be extended to more expressive DLs, such as EL with the bottom
concept ⊥, nominals {a}, inverse roles r−, and role inclusions R1 ◦ · · · ◦Rn ⊑ S.
Ideas from the latest extension of quantified ABox repairs to the DL ELROI(⊥)
might be helpful [6,7]. An extension with nominals would immediately add sup-
port for ABox axioms, since each concept assertion C(a) is equivalent to the CI
{a} ⊑ C and each role assertion is equivalent to {a} ⊑ ∃r.{b}. Furthermore, it
should not be hard to add support for a partitioning of the TBox into a static
and a refutable part, or for a set of wanted consequences that must still be en-
tailed by the repair. Also, it would be interesting to find a suitable partial order
on repair seeds such that minimality of the seed is equivalent to optimality of
the induced repair, similar to the qABox repairs [9]. Last, it would be interesting
to investigate whether and how the quality of the repairs can be improved if also
new premises can be introduced by the repair process. Currently, this can be
done by manually extending the input TBox to be repaired.
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