
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Towards Extending the Description Logic FL0 with
Threshold Concepts Using Weighted Tree Automata

Oliver Fernández Gil Pavlos Marantidis

LTCS-Report 23-04

This is an extended version of an article accepted at the 36th
International Workshop on Description Logics (DL 2023).

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Towards Extending the Description Logic FL0 with
Threshold Concepts Using Weighted Tree Automata

Oliver Fernández Gil1,3 and Pavlos Marantidis2

1Theoretical Computer Science, TU Dresden, Germany
2Aristotle University of Thessaloniki, Thessaloniki, Greece

3Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)
Dresden/Leipzig, Germany

Abstract

We introduce an extension of the Description Logic FL0 that allows us to define con-
cepts in an approximate way. More precisely, we extend FL0 with a threshold concept
constructor of the form C./ t for ./ ∈ {≤, <,≥, >}, whose semantics is given by using a
membership distance function (mdf). A membership distance function m assigns to each
domain element and concept a distance value expressing how “close” is such element to
being an instance of the concept. Based on this, a threshold concept C./ t is interpreted as
the set of all domain elements that have a distance s from C such that s ./ t. We provide
a framework to obtain membership distance functions based on functions that compare
tuples of languages, and we show how weighted looping tree automata over a semiring can
be used to define membership distance functions for FL0 concepts.

1

Contents

1 Introduction 2

2 The Description Logic FL0 3

2.1 Syntax and semantics . 3

2.2 FL0 and formal languages . 4

3 Extending FL0 with threshold concepts 5

3.1 The family of logics FL0at(m) . 5

3.2 Membership distance functions and TBoxes . 6

4 Membership distance functions for FL0 7

4.1 Using tuples of languages to define membership distance functions 7

4.2 Examples of language containment distances . 8

5 Computability 9

5.1 From tuples of languages to trees . 9

5.2 Assigning values to trees . 12

6 Conclusion and Future Work 12

1 Introduction

Traditional Description Logics (DLs) [BHLS17, BCM+03] are based on the semantics of classical
first-order logic. This is very nice, since it allows us to formally represent conceptual knowledge
of an application domain in a well-understood way. However, it can also be seen as a limitation
in modeling certain application domains, whose relevant notions lack a precise definition or such
a definition is very difficult to determine. More precisely, the strict interpretation of concepts
(formulas) in traditional DLs only tells us whether an individual belongs to a concept or not.
In view of this, representing vague or imprecise knowledge within a particular DL may require
concepts of a very big size or may not be possible at all.

To alleviate this, a considerable amount of research has been directed towards extending DLs
with means that would allow us to model (and reason about) imprecise knowledge. Early
examples of this are fuzzy DLs [Yen91, Str01, Háj05], extensions of DLs with rough semantics
[SKP07, dFEL13, PZ13], and combinations of DLs with logics that can reason about metric
spaces [LWZ03, STWZ07]. More recently, three different new approaches have been proposed
that allow us to define concepts in an approximate way, namely, the extensions of the DL
ALC with automata-based prototype distance functions [BE16] and with weighted combinations
of concepts [GKP+19, PKR+19], and the family of logics τEL(m) which extend the DL EL
with threshold concepts [BBF15]. The approach proposed in [BBF15] consists of two main
components: a) a membership degree function m, which instead of giving a value in {0, 1} to
evaluate membership of an individual into a concept C, gives a value in [0, 1]; and b) a new

2

family of concept constructors that can, for example, be used to build a threshold concept C≥t
from an EL concept C and a value t ∈ [0, 1]. The semantics of C≥t is then defined as the set
of individuals d that belong to C with degree (obtained by applying m to d and C) at least t.
The two approaches introduced in [BE16, GKP+19, PKR+19] are conceptually similar, but use
different ways of defining and combining the two components described above.

In this paper, we extend the DL FL0[Baa96] with threshold concepts, by following the general
idea applied to EL in [BBF15]. The resulting family of logics is called FL0at(m), where the
parameter m now corresponds to a membership distance function. The main difference to
[BBF15] is that now we use the notion of distance instead of membership degrees, to measure
“how close” an element is to being an instance of a concept. Obviously, a key aspect of FL0at(m)
is which distance function m to choose. In this work, we provide a general framework to define
such distance functions for FL0, which reduces the definition of membership distance functions
to the definition of functions comparing tuples of formal languages. Moreover, we show that
such measures can be defined by using weighted tree automata, which not only offers a more
concrete (yet diverse) form of defining membership distance functions, but also provides a
machinery that allows in many cases to actually compute these functions. A distinctive feature
of this framework is that it allows us to define membership distance functions that can take into
account background knowledge stated by GCIs in an FL0 TBox. This is not the case for the
approaches proposed in [BE16, GKP+19], whereas the extension of EL with threshold concepts
has only been extended to compute membership degrees w.r.t. an acyclic EL TBox [BF16].

The paper is structured as follows. In the next section, we formally introduce the DL FL0, and
recall some related technical notions that are needed in the rest of the paper. In Section 3, we
introduce the family of threshold logics FL0at(m). We then continue in Section 4, by describing
our framework for defining membership distance functions for FL0. In Section 5, we explain
how weighted looping tree automata can be used to define and compute membership distance
functions. We finish the paper, by summarizing the contributions of the paper and giving some
ideas of how to move forward.

2 The Description Logic FL0

We start by formally introducing the DL FL0. Afterwards, we recall how subsumption (equiv-
alence) between FL0 concepts can be characterized using language inclusion, and show that
this idea can also be applied to characterize membership of an individual in an FL0 concept.

2.1 Syntax and semantics

Let NC and NR be finite disjoint sets of concept names and role names, respectively. The set
CFL0

(NC,NR) of FL0 concept descriptions over NC and NR is obtained by using the concept
constructors conjunction (u), universal restriction (∀r.C), and top (>) in the following way:

C ::= > | A | C u C | ∀r.C

where A ∈ NC, r ∈ NR and C is an FL0 concept description. We will often write CFL0 in place
of CFL0

(NC,NR), if the sets NC and NR are clear from the context or irrelevant.

The semantics of FL0 is defined in the usual way, by using standard first-order interpretations.
An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an interpretation
function ·I that assigns subsets AI ⊆ ∆I to concept names A ∈ NC and binary relations
rI ⊆ ∆I × ∆I to role names r ∈ NR. The function .I is inductively extended to all FL0

3

concepts in CFL0(NC,NR) as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∀r.C)I := {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI ⇒ e ∈ CI}.

Given two FL0 concepts C and D, we say that C is subsumed by D (written as C v D) if
CI ⊆ DI for all interpretations I. These two concepts are equivalent (written as C ≡ D) if
C v D and D v C. In addition, C is satisfiable if CI 6= ∅ for some interpretation I.

An FL0 TBox is a finite set of general concept inclusions (GCIs), which are expressions of the
form C v D where C,D ∈ CFL0

. We say that an interpretation I is a model of T (written
as I |= T) if it satisfies all the GCIs in T , meaning that CI ⊆ DI for all C v D in T . The
subsumption and equivalence relations are now defined modulo the set of models of T , and
denoted as vT and ≡T , respectively. The notion of satisfiable concept is also defined modulo
the set of models of T .

2.2 FL0 and formal languages

In FL0, subsumption and equivalence can be characterized via a transition to formal languages,
by utilizing a certain normal form. In particular, the semantics of FL0 implies that value
restrictions distribute over conjunction, i.e, for all FL0 concepts C,D and roles r it holds that
∀r.(CuD) ≡ ∀r.Cu∀r.D. Using this equivalence as a rewrite rule from left to right, every FL0

concept description can be written as a finite conjunction of terms of the form ∀r1.∀r2. . . .∀rm.A,
where m ≥ 0, {r1, . . . , rm} ⊆ NR, and A ∈ NC. We can further abbreviate such a term as ∀w.A,
where w represents the word r1 . . . rm over the alphabet NR. In casem = 0, w is the empty word
ε, and thus ∀ε.A corresponds to A. Finally, we can group together value restrictions with the
same concept name, i.e., abbreviate ∀w1.Au· · ·u∀w`.A by ∀{w1, . . . , w`}.A, where {w1, . . . , w`}
is a finite language over NR. In addition, we use the convention that ∀∅.A corresponds to >.
As a result, any two FL0 concept descriptions C,D over NC = {A1, . . . An} and NR can be
rewritten in the normal form:

C ≡ ∀L1.A1 u · · · u ∀Ln.An D ≡ ∀M1.A1 u · · · u ∀Mn.An,

where L1, . . . , Ln,M1, . . . ,Mn are finite subsets of NR
∗. Using this language normal form (LNF),

it was shown in [BN01] that C v D iff Mi ⊆ Li for all i = 1, . . . , n. Since C ≡ D iff C v D
and D v C, it follows that C ≡ D iff Li = Mi for all i = 1, . . . , n.

In [Pen15], this characterization of subsumption was extended to non-empty TBoxes, by using
the notion of value restriction sets. Given a concept C ∈ CFL0 , a concept name A ∈ NC, and
an FL0 TBox T , the value restriction set of C w.r.t. T and A is defined as the language:

LT (C,A) = {w ∈ NR
∗ | C vT ∀w.A}.

Using these sets, the above characterizations of subsumption and equivalence can be lifted to
take into account the GCIs in a TBox as follows (see [Pen15]):

C vT D ⇐⇒ LT (D,Ai) ⊆ LT (C,Ai) (i = 1, . . . , n),

C ≡T D ⇐⇒ LT (C,Ai) = LT (D,Ai) (i = 1, . . . , n).

Essentially, this means that every FL0 concept description C can be uniquely represented by
the tuple of languages

LT (C) = (LT (C,A1), . . . ,LT (C,An))

and every concept description equivalent to C has the same representation.

4

We will now demonstrate that a similar characterization can be used to describe when an indi-
vidual d is an instance of a concept description C in an interpretation I. Given an interpretation
I, d ∈ ∆I and A ∈ NC, we define the following language:

LI(d,A) = {w ∈ NR
∗ | d ∈ (∀w.A)I}.

Using these languages, an individual d can be represented as a tuple of languages (LI(d,A1), . . . ,LI(d,An)).
Moreover, membership in FL0 can be characterized as follows.

Theorem 1. Given an FL0 TBox T , a model I = (∆I , ·I) of T , an FL0 concept C, and an
element d ∈ ∆I we have that d ∈ CI ⇐⇒ LT (C,A) ⊆ LI(d,A) for every A ∈ NC .

Proof. Let C = ∀w1.A1 u · · · u ∀wn.An. For the if direction, if LT (C,A) ⊆ LI(d,A) for every
A ∈ NC , we have the following: initially, it is obvious that

wi ∈ LT (C,A) for every i = 1, . . . , n =⇒ wi ∈ LI(d,A) for every i = 1, . . . , n

=⇒ d ∈ (∀wi.Ai)I for every i = 1, . . . , n

=⇒ d ∈ (∀w1.A1 u · · · u ∀wn.An)I

For the only if direction, assume that d ∈ CI . Then

w ∈ LT (C,A) =⇒ C vT ∀w.A =⇒ CI ⊆ (∀w.A)I

=⇒ d ∈ (∀w.A)I =⇒ w ∈ LI(d,A)

3 Extending FL0 with threshold concepts

In this section, we introduce the family of threshold logics FL0at(m).

3.1 The family of logics FL0at(m)

Threshold concepts for FL0 are expressions of the form C./ s where C is an FL0 concept,
./ ∈ {<,≤, >,≥}, and s is an element of a linearly ordered set (S,≤) with minimum m. The
purpose of these concept constructors is to define sets of individuals of an interpretation I that
may not belong to CI , but still satisfy some of the properties required by C. To quantify the
notion of partial satisfaction, we use a value from S that expresses “how far” an individual d is
from belonging to CI , where the m identifies crisp membership, i.e., that d ∈ CI . For instance,
if we consider (S,≤) as the interval [0, 1] with the usual order, one can use the threshold concept
C≤0.2 to capture all individuals that have distance at most 0.2 from belonging to CI .

To provide the semantics for threshold concepts, we introduce the notion of membership distance
function. Such a function operates as follows: given an interpretation I, it takes an individual
d ∈ ∆I and an FL0 concept C as input, and outputs a value in S expressing how far is d
from belonging to CI . Membership distance functions are required to satisfy two properties,
as stated in the following definition.

Definition 2. Given a linearly ordered set with minimum (S,≤,m), a membership distance
function (mdf) m is a family of functions containing for every interpretation I a function
mI : ∆I × CFL0

→ S, such that m satisfies the following (for all FL0 concepts C and D):

M1 : for all interpretations I and all d ∈ ∆I : d ∈ CI ⇔ mI(d,C) = m,

M2 : C ≡ D ⇔ mI(d,C) = mI(d,D) for all interpretations I and all d ∈ ∆I .

5

The first property expresses the intuition that membership distance functions generalize the
notion of classical membership. Regarding M2 , it requires equivalence invariance, which means
that m should behave the same for concepts that are equivalent, regardless of their syntac-
tic definition. We are now ready to define the syntax and semantics of our family of logics
FL0at(m). Given the sets NC and NR of concept and role names, the set of FL0at(m) concepts
is defined as follows:

Ĉ ::= > | A | Ĉ u Ĉ | ∀r.Ĉ | E./ s,

where A ∈ NC, r ∈ NR, ./ ∈ {<,≤, >,≥}, s ∈ S, E is an FL0 concept description, and Ĉ is a
FL0at(m) concept description. Concepts of the form E./ s are called threshold concepts.

The semantics of FL0at(m) concept descriptions is defined completely analogously to the se-
mantics of classical FL0 concepts, but additionally using the parameter distance function m to
interpret threshold concepts in the following way:

[E./ s]
I := {d ∈ ∆I | mI(d,E) ./ s}.

The following is a direct consequence of requiring property M1 .

Proposition 3. For every FL0 concept description C it holds that C≤m ≡ C and C>m ≡ ¬C,
where the semantics of negation is (¬C)I = ∆I \ CI .

Essentially, this tells us that the addition of threshold concepts allows for expressing the negation
of FL0 concept descriptions. Therefore, differently from FL0, there are unsatisfiable FL0at(m)
concept descriptions, e.g., A uA>m.

3.2 Membership distance functions and TBoxes

An important aspect when using DLs is to have the possibility to formulate (and take into
account) terminological knowledge, which in DLs is expressed by GCIs in a TBox. For the
family of logics FL0at(m), the most simple and natural form of such TBox is a plain FL0 TBox.
For instance, we can define the FL0at(m) concept descriptions ∀r.(∀s.A)<s and ∀r.(∀r.B)<s
w.r.t. the following TBox:

T := {∀s.A v ∀r.B, ∀r.B v ∀s.A}.

Note that, although ∀s.A 6≡ ∀r.B, they are actually equivalent modulo T . Therefore, it should
be the case that (∀s.A)<s ≡T (∀r.B)<s and ∀r.(∀s.A)<s ≡T ∀r.(∀r.B)<s hold in any particular
logic FL0at(m). However, this will not always be the case, since the semantics of (∀s.A)<s and
(∀r.B)<s depends on the distance function m, but m need not take into account the GCIs in
T . Hence, to properly define the semantics of FL0at(m) w.r.t. an FL0 TBox T , we need to
make m aware of the GCIs in T . To this end, we slightly extend the definition of membership
distance functions given in Definition 2 to a larger family of functions.

Definition 4. Given a linearly ordered set with minimum (S,≤,m), a membership distance
function (mdf) m is a family of functions containing for every FL0 TBox T and model I of T
a function mI,T : ∆I × CFL0 → S, such that m satisfies the following (for all TBoxes T and
FL0 concepts C and D):

M1 ′ : for all I |= T and all d ∈ ∆I : d ∈ CI ⇔ mI,T (d,C) = m,

M2 ′ : C ≡T D ⇔ mI,T (d,C) = mI,T (d,D) for all I |= T all d ∈ ∆I .

Hence, in the presence of an FL0 TBox T , the semantics of FL0at(m) concepts is defined by
using mI,T to interpret threshold concepts E./ s in any model I of T . In the next sections, we
will provide more concrete ways of defining distance functions w.r.t. FL0 TBoxes.

6

Finally, we would like to be able to state GCIs containing threshold concepts, e.g., ∀r.(∀s.A)≥ s v
∀r.B. However, as pointed out in [BF16] for the family of threshold logics τEL(m), obtaining
an appropriate semantics for TBoxes containing threshold concepts is not entirely trivial. We
will consider this in future work.

4 Membership distance functions for FL0

In this section, we introduce a general framework to define membership distance functions for
FL0. To this end, we exploit the connection between FL0 and formal languages to obtain a way
of defining distance functions in terms of language containment distances, which are functions
that compare tuples of languages. Finally, we describe a particular form that such containment
distances can have, and provide concrete examples that can be derived from it.

4.1 Using tuples of languages to define membership distance functions

The idea of using tuples of languages to approximate the semantics of FL0 is not new. In
[RS15, BMO16, BFM17], the authors exploit the fact that FL0 concepts can be represented as
tuples of languages, to use these tuples to define concept comparison measures (CCMs) between
FL0 concepts. Intuitively, a CCM generalizes classical equivalence (subsumption), by assigning
to a pair of concepts (C,D) a degree to which equivalence (subsumption) between C and D is
satisfied. Such measures are defined in [RS15, BMO16, BFM17] by using the following general
approach:1

1. Translate the concepts C and D into the tuples of languages LT (C) and LT (D).

2. Compare the tuples LT (C) and LT (D) by using a function c that assigns values from a
numerical domain to tuples of languages.

3. The value c(LT (C),LT (D)) is then used to define the value of the CCM on C and D.

Since crisp membership in FL0 can also be characterized by using tuples of languages (see
Theorem 1), we employ a similar approach to define membership distance functions for FL0.
More precisely, we define membership distance functions as functions that compare tuples of
languages, i.e., mI,T (d,C) is defined by comparing the tuples LT (C) and LI(d). Clearly, not
every function comparing tuples of languages yields a membership distance function, i.e., a
family of functions satisfying the properties M1 ′ and M2 ′. For this reason, we introduce the
notion of language containment distance (lcd), which is formally defined as follows.

Definition 5. Let l = (S,≤,m) be a linearly ordered set with minimum m. In addition, let
Σ be an alphabet and ` a positive integer. An `-language containment distance over Σ and l
(`-lcd) is a function c : (2Σ∗)` × (2Σ∗)` → S that satisfies the property

c((L1, . . . , L`), (M1, . . . ,M`)) = m ⇐⇒ Li ⊆Mi for all i, 1 ≤ i ≤ `. (1)

We can now define a mechanism that, given NC = {A1, . . . , An} and an n-lcd c over Σ = NR

and l = (S,≤,m), yields a distance function mc for FL0 concepts defined over NC and NR.

Definition 6. Let c be a n-lcd over NR and l = (S,≤,m). Then, for each FL0 TBox T and
interpretation I that is a model of T , the function mI,Tc : ∆I × CFL0

7→ S is defined as:

mI,Tc (d,C) = c
(
LT (C),LI(d)

)
.

1In [RS15, BMO16], CCMs are only defined w.r.t. the empty TBox, i.e., by using L∅(C) and L∅(D).

7

The following lemma shows that the family of functions mc = {mI,Tc | T is an FL0 TBox, I |=
T } induced by an lcd c satisfies the required properties, i.e., M1 ′ and M2 ′, and hence the above
framework can be used to define membership distance functions.

Lemma 7. Let c be an n-lcd over NR and l = (S,≤,m). Then, mc is a membership distance
function.

Proof. It suffices to prove that mc satisfies properties M1 ′ and M2 ′ from Definition 4.

• For M1 ′, let T be an FL0 TBox, I a model of T , d ∈ ∆I , C ∈ CFL0
. Then

d ∈ CI ⇐⇒ LT (C,Ai) ⊆ LI(d,Ai) for every Ai ∈ NC by Theorem 1 ⇐⇒ mI,Tc (d,C) =
c((LT (C,A1), . . . ,LT (C,An)), (LI(d,A1), . . . ,LI(d,An))) = m by the definition of lcd.

• For M2 ′, first assume that for a given FL0 TBox T and C,D ∈ CFL0
we have that

C ≡T D. Then LT (C) = LT (D) and thus for any model I of T and d ∈ ∆I we have
that mI,Tc (d,C) = c(LT (C),LI(d)) = c(LT (D),LI(d)) = mI,Tc (d,D).
For the opposite direction, assume that C 6≡T D. This means that there exists a model I0

s.t. CI0 6= DI0 , which w.l.o.g. means that there exists d ∈ ∆I0 s.t. d ∈ CI0 and d /∈ DI0 .
As a result, by M1 we have that mI0,Tc (d,C) = m but mI0,Tc (d,D) 6= m, hence the proof
is complete.

4.2 Examples of language containment distances

One way to define `-language containment distances is, given tuples (L1, . . . , L`) and (M1, . . . ,M`),
to use a 1-language containment distance to compare each pair of languages (Li,Mi), and
then apply an appropriate function that combines the obtained ` values into a single one
[BMO16]. A function f : S` → S is called an `-ary combining function if it is commuta-
tive: f(a1, . . . , a`) = f(aπ(1), . . . , aπ(`)) for all permutations π of indices 1, . . . , `, monotone:
a1 ≤ b1, . . . , a` ≤ b` =⇒ f(a1, . . . , a`) ≤ f(b1, . . . , b`), and m-closed: f(a1, . . . , a`) = m ⇐⇒
a1 = · · · = a` = m.

For instance, for the interval [0, 1] and the set of non-negative reals, with m = 0 and the usual
order, examples of combining functions are the maximum, average, and the sum function.2

The following is an easy consequence of the properties required for combining functions and
1-language containment distances.

Lemma 8. Let c1 be a 1-language containment distance over Σ and l, and f an `-ary combining
function over S. Further, let c : (2Σ∗)` × (2Σ∗)` → S be defined as:

c((L1, . . . , L`), (M1, . . . ,M`)) := f(c1(L1,M1), . . . , c1(L`,M`)).

Then, c is an `-language containment distance over Σ and l.

We now provide some examples of `-lcds that are obtained by using 1-language containment
distances and `-ary combining functions. These are defined over the set of non-negative reals.

• c0(L,M) = 0 if L ⊆ M and 1 otherwise. This is the simplest form of a 1-lcd, since it
simply checks whether the first language is contained in the second one or not. It can be
extended to an `-lcd by using maximum, sum, or average:

2For the [0, 1] interval, sum should be modified to bounded sum, i.e., bs(a1, . . . , a`) := min(
∑`

i=1 ai, 1).

8

– c̄0
(
(L1, . . . , L`), (M1, . . . ,M`)

)
= max(c0(L1,M1), . . . , c0(L`,M`)),

– ĉ0
(
(L1, . . . , L`), (M1, . . . ,M`)

)
=
∑n
i=1 c0(Li,Mi),

– c̃0
(
(L1, . . . , L`), (M1, . . . ,M`)

)
= 1

n

∑`
i=1 c0(Li,Mi).

Intuitively, the first function checks whether containment is violated in any of the language
pairs, the second one counts in how many of them a violation occurs, while the last one
gives the percentage of pairs in which a violation of containment occurs.

• c1(L,M) = 2−m, where m = min{|w| | w ∈ L\M}. Obviously, if L ⊆M then L\M = ∅,
and hence m = +∞, meaning that c1(L,M) = 0. This function searches for the shortest
word w that occurs in L but not in M , and assigns a greater value to shorter ones than
longer ones. Once again, we can extend c1 to an `-lcd by using any of the functions
described for c0. If we use maximum, we are essentially looking for the shortest violation
overall, with summing we are aggregating the penalties for the violations in the different
pairs, while taking the average does not hold much intuitive meaning.

• c2(L,M) = µ(L \M), where µ(K) =
∑
w∈K(2|Σ|)−|w|. This function takes all violations

into account, but longer words are penalized less than shorter ones. Extending c2 to an
`-lcd by applying maximum yields a containment distance that searches for the “largest”
difference in any pair of languages, whereas summing over the different pairs of languages
corresponds to taking into account all the differences that occur. Finally, taking the
average has the obvious meaning.

It is easy to verify that, by construction, c0, c1, c2 are indeed 1-lcds, since they only output the
value m = 0 iff the language in their first argument is contained in the one in the second.

Finally, since the main reason we employ lcds is to define membership distance functions, let
us examine the meaning of these functions when applied to LT (C) and LI(d). It should be
clear that if w is a violation of containment, this means that C vT ∀w.A (for some A ∈ NC),
while d /∈ (∀w.A)I . As a result, c0 (extended with the max function) simply checks whether
d ∈ CI (see Theorem 1), outputting 0, or not, outputting 1. Furthermore, the idea behind c1
and c2 that longer violations should count less than shorter ones corresponds to the view that
differences “closer” to d are more important than ones further away.

5 Computability

In the previous section, we described how to reduce the definition of membership distance func-
tions to defining measures that compare tuples of languages: mI,T (d,C) corresponds to a value
that results from comparing the tuples LT (C) and LI(d). In this section, we first demonstrate
how to compute and (finitely) represent these tuples of (potentially) infinite languages, and
how to assign such a value by making use of tree automata with weights. To this end, after
establishing a correspondence between tuples of languages and infinite trees, we exhibit how
these tuples can be computed and encoded using looping tree automata (LTAs) accepting the
corresponding trees. Subsequently, we discuss how weighted looping tree automata perform the
function of assigning values to trees and how they can be combined with the aforementioned
LTAs. Overall, we obtain a concrete way to define membership distance functions that can be
computed.

5.1 From tuples of languages to trees

The idea of representing tuples of languages using infinite trees has appeared in [BN01, BO13,
Pen15, BFM17]. Initially, we provide the formal definition of infinite trees, before we discuss

9

how they can be used to represent tuples of languages.

Definition 9. Let Σ = {σ1, . . . , σk}be a non-empty, finite set of symbols. Given a finite set of
labels L, an L-labeled Σ-tree is a mapping t : Σ∗ → L that assigns a label t(w) ∈ L to every
node w ∈ Σ∗. The set of all L-labeled Σ-trees is denoted as TωΣ,L.

Intuitively, the nodes of a Σ-tree t correspond to finite words in Σ∗, where the empty word ε
is represented by the root of t and every node w has k children corresponding to the words
wσ1, . . . , wσk. Furthermore, if we label each node of the tree with either 0 or 1, we can define
a language over Σ by considering the words w ∈ Σ for which t(w) = 1. If the labels were pairs
of 0s and 1s, then two languages can be defined, one for each component, and so on.

More generally, the following mapping makes the connection between tuples of languages and
infinite trees explicit.

Definition 10. Let Σ be a finite set of symbols and ` ∈ N. We define the mapping γ` :(
2Σ∗
)` → TωΣ,{0,1}` as follows: given a tuple of languages L = (L1, . . . , L`) over Σ, we set

γ`(L) := tL where tL : Σ∗ → {0, 1}` is the Σ-tree such that

tL(w) := (x1, . . . , x`), where xi = 1 iff w ∈ Li (for all w ∈ Σ∗).

It is easy to see that γ` is a bijection between tuples of ` languages over the alphabet Σ and
{0, 1}`-labeled Σ-trees. Given t ∈ TωΣ,{0,1}` , the inverse function yields the tuple γ−1

` (t) =

(L1, . . . , L`) where Li consists of the words w for which the i-th component of t(w) is 1.

In particular, if we fix Σ = NR and a linear order between the concept names in NC =
(A1, . . . , An), the tuple of languages LT (C) (likewise for LI(d)) can be represented by the
NR-tree tLT (C) with labels from {0, 1}n defined as:

tLT (C)(w) := (x1, . . . , xn), where xi = 1 iff w ∈ LT (C,Ai) (for all w ∈ Σ∗).

Note that LT (C) and LI(d) can be put together in a single tree, by using labels of length 2n.

So far, we have seen how concept descriptions and individuals in an interpretation can be
represented as tuples of languages, which in turn correspond to (infinite) trees. Next, we need
to represent said trees in a finite way. Obviously, this is not always possible for infinite trees.
However, for the needs of our work, the relevant trees are regular (see [BFM17, Pen15] for
LT (C) and the proof of Prop. 13 for LI(d) when the interpretation I is finite). There are
different ways to represent regular trees in a finite way [Tho90]. Here, we use looping tree
automata for this purpose.

Definition 11 (Looping tree automaton (LTA)). A looping tree automaton is a tuple A =
(Σ, Q, L,∆, I) where Σ = {σ1, . . . , σk} is a finite set of symbols, Q is a finite set of states, L
is a finite set of labels, ∆ ⊆ Q× L×Qk is the transition relation and I ⊆ Q is a set of initial
states. A run of this automaton on a tree t ∈ TωΣ,L is a Q-labeled Σ-tree ρ : Σ∗ → Q such that:
ρ(ε) ∈ I and (ρ(w), t(w), ρ(wσ1), . . . , ρ(wσk)) ∈ ∆ for all w ∈ Σ∗. The tree language L(A)
recognized by A is the set of all trees t ∈ TωΣ,L such that A accepts t, i.e., A has a run on t. If
L(A) = {t0}, then we say that A is representing the tree t0.

Essentially, if an LTA is representing a single tree, it is a finite representation of this tree. In
[BFM17] it was proved that regular trees can always be represented by an LTA. In particular,
for the case of LT (C), the following result was shown in [Pen15].

Proposition 12 ([Pen15]). Let C be an FL0 concept description and T an FL0 TBox. Then,
one can construct an LTA that represents tLT (C) in time exponential in the size of C and T .

10

For LI(d), however, one has to be more careful. For infinite interpretations, the languages
LI(d,A) need not be regular (and hence also the tree tLI(d)). Still, for finite interpretations
these languages are always regular (as Prop. 13 below shows), and hence can be represented
by deterministic finite automata. Intuitively, we can view a finite interpretation as a finite
automaton, where the individuals are states and role connections correspond to transitions. It
is then not difficult to verify that for an individual d and a concept name A one can recursively
follow the paths in the graph to check whether d ∈ (∀w.A)I or not. The language LI(d,A) will
be the solution of a set of language equations. Overall, we have the following result.

Proposition 13. Let NC = {A1, . . . , An}. Given a finite interpretation I = (∆I , ·I) and
d ∈ ∆I one can construct DFAs that recognize the languages LI(d,A1), . . . ,LI(d,An) and a
looping tree automaton that is representing the tree tLI(d) in time exponential in the size of I
and NC.

Proof. Let I = (∆I , ·I) be a finite interpretation with ∆I = {d1, . . . , dn}. Denote r(d) =
{e ∈ ∆I | (d, e) ∈ rI} for every r ∈ NR and d ∈ ∆I and `(d) = {A ∈ NC | d ∈ AI}. The
characteristic function δx,X is defined

δx,X =

{
{ε} if x ∈ X
∅ otherwise

Recall that
LI(d,A) = {w ∈ NR | d ∈ (∀w.A)I}.

It is easy to verify that

LI(d,A) = δA,`(d) ∪
⋃
r∈NR

r
⋂

d′∈r(d)

LI(d′, A).

Note that, in case r(d) = ∅, the empty intersection corresponds to NR
∗.

This observation allows us to compute the languages LI(d,A), given the following claim.

Claim. The tuple L = (LI(d1, A), . . . ,LI(dn, A)) is the least solution of the system of language
equations

Xi = δA,`(di) ∪
⋃
r∈NR

r
⋂

dj∈r(di)

Xj (2)

Proof of the Claim. By the previous observation, L is a solution of the system of equations (2).
Assume that the tuple (M1, . . . ,Mn) is another solution. By induction on the length of the
words, we will show that w ∈ LI(di, A) =⇒ w ∈Mi, and thus L is the least solution.

• If w = ε, we get that

ε ∈ LI(di, A) =⇒ di ∈ AI =⇒ A ∈ `(di)
=⇒ δA,`(di) = {ε} =⇒ ε ∈Mi.

• If w = rv we get that for all r-successors dj of di, dj ∈ (∀v.A)I , and thus v ∈ LI(dj , A).
By the induction hypothesis, v ∈ Mj for all r-successors dj of di. Hence, rv ∈ Mi, and
the proof of the Claim is complete.

To effectively construct automata that recognize the languages of the least solution, one can
use the results of [BO13] to build deterministic finite automata (DFAs) in ExpTime.

The DFAs for the languages LI(d,A) for A ∈ NC can then be combined into a single LTA
representing the tuple of languages, reversing the technique that is used in [Pen15] to extract
DFAs for each language LT (C,A), A ∈ NC from the LTA representing tLT (C).

11

5.2 Assigning values to trees

We now want to assign values from a proper (numerical) domain to trees (that correspond to
tuples of languages). This is exactly the operation of infinitary tree series, for which the assigned
values are usually elements of a semiring, i.e., a domain S equipped with two operations, the one
traditionally called “addition” and the other “multiplication”, that satisfy certain mathematical
properties. Formally, an infinitary tree series h over the alphabet L and semiring S is a mapping
h : TωΣ,L → S. The class of all infinitary tree series over L and S is denoted by S〈〈TωΣ,L〉〉.

One way to (finitely) define such series, is using a weighted looping tree automaton (wLTA)
([BFM17]). Intuitively, a wLTA M attributes a weight, i.e., a value from a semiring to every
transition, and “multiplies” all the weights accumulated during a certain run on a tree. Finally,
it “sums” the weights of all the runs to determine the value that will be assigned to the input
tree. For this purpose, it is clear that the underlying semiring should admit suitable infinite
sums and products. In totally complete commutative semirings, addition and multiplication can
be suitably extended to infinite sums and countably infinite products (see [Rah07] for formal
definitions).

Furthermore, since we want the output values to be used for membership distance functions,
we require that the domain of S is also equipped with a linear order and has a minimum
element m. This is not a heavy restriction, since most numeric semirings are already equipped
with such an order. Examples are the semiring of natural numbers (N ∪ {+∞},+, ·, 0, 1),
the tropical semiring Trop = (N ∪ {+∞},min,+,+∞, 0), and its real counterpart Rinf =
(R≥0∪{+∞}, inf,+,+∞, 0), all equipped with the usual order and 0 as the minimum element.

The infinitary tree series ||M|| ∈ S〈〈TωΣ,L〉〉 defined by the wLTA M is called the behavior of
the wLTAM. It assigns to every tree t ∈ TωΣ,L a value (||M||, t). As demonstrated in [BFM17],
wLTAs can be used to define functions over tuples of languages, viewed as infinite trees. In
fact, the language containment distances described in Section 4 are variations of the functions
defined in [BFM17], and they can also be defined by a wLTA by using similar constructions.

It is also shown in [BFM17] that, for certain semirings, a wLTAM can be combined with an LTA
A representing a tree t in order to compute the value (||M||, t) in time polynomial in the size of
M and A. As a result, given a wLTAM defining a language containment distance c, the LTAs
obtained from LT (C) and LI(d) can be combined with M in order to compute mI,Tc (d,C),
i.e., the value (||M||, tC,I) where tC,I is the single tree representing LT (C) and LI(C). This
“computable” family of wLTAs includes the wLTAs defining the language containment distances
described in Section 4. Overall we obtain the following result.

Theorem 14. Given a wLTA M that computes a language containment distance c, an FL0

TBox T , a finite model I of T , d ∈ ∆I , and C ∈ CFL0
, the value mI,Tc (d,C) is computable.

In particular, this holds for all concrete containment distances c defined in Section 4.

6 Conclusion and Future Work

We have introduced a family of DLs FL0at(m) that extends the DL FL0 with threshold con-
cepts, whose semantics is defined by using a membership distance function m. We have demon-
strated how membership of an indvidual in an FL0 concept can be characterized using formal
languages, similarly to existing characterizations of subsumption and equivalence between FL0

concepts. Utilizing this characterization, we derived a framework for obtaining membership
distance functions by employing functions that compare tuples of formal languages, namely
language containment distances. Finally, we exhibited how weighted looping tree automata can
be exploited to derive concrete and computable functions through our framework.

12

The natural continuation in this line of work is to study reasoning problems in FL0at(m) for
particular membership distance functions. A powerful tool when reasoning in FL0 is the notion
of a functional model of a concept description C [Pen15], i.e., an interpretation that has the
shape of an infinite tree, where every node has exactly one r successor for every r ∈ NR, and the
root of which belongs to (the interpretation of) C. Among others, subsumption ([Pen15]) and
instance checking ([BMP18]) can be decided using said models, since every FL0 concept has
a functional model. One could reasonably assume that a similar technique could be employed
for FL0at(m). For example, in order to investigate satisfiability of a concept description, the
search space could potentially be reduced to the set of functional models. However, this is
not possible in FL0at(m), as a result of Proposition 3. More precisely, the concept description
Ĉ := ∀r.(AuA>m) is satisfiable but it requires that any individual d in the extension of Ĉ has no
r successors. As a result, this concept description has no functional model for any membership
distance function. It would be interesting to investigate if a such an approach can be used in
order to reason in this threshold setting.

References

[Baa96] Franz Baader. Using automata theory for characterizing the semantics of termino-
logical cycles. Ann. Math. Artif. Intell., 18(2-4):175–219, 1996.

[BBF15] Franz Baader, Gerhard Brewka, and Oliver Fernández Gil. Adding threshold con-
cepts to the description logic EL. In Proc. of the 10th Int. Symp. on Frontiers
of Combining Systems (FroCoS 2015), volume 9322 of Lecture Notes in Computer
Science, pages 33–48. Springer, 2015.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, 2003.

[BE16] Franz Baader and Andreas Ecke. Reasoning with prototypes in the description
logic ALC using weighted tree automata. In Language and Automata Theory and
Applications - 10th International Conference, LATA 2016, Prague, Czech Republic,
March 14-18, 2016, Proceedings, volume 9618 of Lecture Notes in Computer Science,
pages 63–75. Springer, 2016.

[BF16] Franz Baader and Oliver Fernández Gil. Extending the description logic τEL(deg)
with acyclic TBoxes. In Proc. of the 22nd Eur. Conf. on Artificial Intelligence
(ECAI 2016), volume 285 of Frontiers in Artificial Intelligence and Applications,
pages 1096–1104. IOS Press, 2016.

[BFM17] Franz Baader, Oliver Fernández Gil, and Pavlos Marantidis. Approximation in
description logics: How weighted tree automata can help to define the required
concept comparison measures in FL0. In Proceedings of the 11th International
Conference on Language and Automata Theory and Applications (LATA 2017),
volume 10168 of Lecture Notes in Computer Science, pages 3–26. Springer, 2017.

[BHLS17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction to
Description Logic. Cambridge University Press, 2017.

[BMO16] Franz Baader, Pavlos Marantidis, and Alexander Okhotin. Approximate unification
in the description logic FL0. In Proc. of the 15th Eur. Conf. on Logics in Artificial
Intelligence (JELIA’2016), volume 10021 of Lecture Notes in Computer Science,
pages 49–63. Springer, 2016.

13

[BMP18] Franz Baader, Pavlos Marantidis, and Maximilian Pensel. The data complexity of
answering instance queries in FL0. In Pierre-Antoine Champin, Fabien Gandon,
Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, Companion of the The Web
Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April
23-27, 2018, pages 1603–1607. ACM, 2018.

[BN01] Franz Baader and Paliath Narendran. Unification of concept terms in description
logics. J. of Symbolic Computation, 31(3):277–305, 2001.

[BO13] Franz Baader and Alexander Okhotin. On language equations with one-sided con-
catenation. Fundamenta Informaticae, 126(1):1–35, 2013.

[dFEL13] Claudia d’Amato, Nicola Fanizzi, Floriana Esposito, and Thomas Lukasiewicz. Rep-
resenting uncertain concepts in rough description logics via contextual indiscerni-
bility relations. In Uncertainty Reasoning for the Semantic Web II, International
Workshops URSW 2008-2010 Held at ISWC and UniDL 2010 Held at FLoC, Re-
vised Selected Papers, volume 7123 of Lecture Notes in Computer Science, pages
300–314. Springer, 2013.

[GKP+19] Pietro Galliani, Oliver Kutz, Daniele Porello, Guendalina Righetti, and Nicolas
Troquard. On knowledge dependence in weighted description logic. In GCAI 2019.
Proceedings of the 5th Global Conference on Artificial Intelligence, Bozen/Bolzano,
Italy, 17-19 September 2019, volume 65 of EPiC Series in Computing, pages 68–80.
EasyChair, 2019.

[Háj05] Petr Hájek. Making fuzzy description logic more general. Fuzzy Sets and Systems,
154(1):1–15, 2005.

[LWZ03] Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. A tableau algorithm
for reasoning about concepts and similarity. In Automated Reasoning with Analytic
Tableaux and Related Methods, International Conference, TABLEAUX 2003, Rome,
Italy, September 9-12, 2003. Proceedings, volume 2796 of Lecture Notes in Computer
Science, pages 134–149. Springer, 2003.

[Pen15] Maximilian Pensel. An automata based approach for subsumption w.r.t. general
concept inclusions in the description logic FL0. Master’s thesis, Chair for Automata
Theory, TU Dresden, Germany. See http://lat.inf.tu-dresden.de/research/mas.,
2015.

[PKR+19] Daniele Porello, Oliver Kutz, Guendalina Righetti, Nicolas Troquard, Pietro Gal-
liani, and Claudio Masolo. A toothful of concepts: Towards a theory of weighted
concept combination. In Proceedings of the 32nd International Workshop on De-
scription Logics, Oslo, Norway, June 18-21, 2019, volume 2373 of CEUR Workshop
Proceedings. CEUR-WS.org, 2019.

[PZ13] Rafael Peñaloza and Tingting Zou. Roughening the envelope. In Frontiers of
Combining Systems - 9th International Symposium, FroCoS 2013, Nancy, France,
September 18-20, 2013. Proceedings, volume 8152 of Lecture Notes in Computer
Science, pages 71–86. Springer, 2013.

[Rah07] George Rahonis. Weighted muller tree automata and weighted logics. J. Autom.
Lang. Comb., 12(4):455–483, 2007.

[RS15] T. Racharak and B. Suntisrivaraporn. Similarity measures for FL0 concept descrip-
tions from an automata-theoretic point of view. In 6th International Conference of
Information and Communication Technology for Embedded Systems (IC-ICTES),
pages 1–6, 2015.

14

[SKP07] Stefan Schlobach, Michel C. A. Klein, and Linda Peelen. Description logics with
approximate definitions - precise modeling of vague concepts. In IJCAI 2007, Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence, Hy-
derabad, India, January 6-12, 2007, pages 557–562, 2007.

[Str01] Umberto Straccia. Reasoning within fuzzy description logics. J. of Artificial Intel-
ligence Research, 14:137–166, 2001.

[STWZ07] Mikhail Sheremet, Dmitry Tishkovsky, Frank Wolter, and Michael Zakharyaschev.
A logic for concepts and similarity. J. of Logic and Computation, 17(3):415–452,
2007.

[Tho90] Wolfgang Thomas. Automata on infinite objects. In Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), pages 133–192. The
MIT Press, 1990.

[Yen91] John Yen. Generalizing term subsumption languages to fuzzy logic. In John My-
lopoulos and Raymond Reiter, editors, Proceedings of the 12th International Joint
Conference on Artificial Intelligence, 1991, pages 472–477. Morgan Kaufmann,
1991.

15

	Introduction
	The Description Logic FL0
	Syntax and semantics
	FL0 and formal languages

	Extending FL0 with threshold concepts
	The family of logics FL0at(m)
	Membership distance functions and TBoxes

	Membership distance functions for FL0
	Using tuples of languages to define membership distance functions
	Examples of language containment distances

	Computability
	From tuples of languages to trees
	Assigning values to trees

	Conclusion and Future Work

