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Abstract
We present an FCA-based axiomatization method that pro-
duces a complete EL TBox (the terminological part of an
OWL 2 EL ontology) from a graph dataset in at most expo-
nential time. We describe technical details that allow for effi-
cient implementation as well as variations that dispense with
the computation of extremely large axioms, thereby render-
ing the approach applicable albeit some completeness is lost.
Moreover, we evaluate the prototype on real-world datasets.

1 Introduction
Description Logics (DLs) (Baader, Horrocks, Lutz, Sattler,
2017) are formal languages used in knowledge-based sys-
tems that reason and make inferences about complex do-
mains, particularly where precision and explainability are
essential. By representing knowledge as ontologies built
with DLs, these systems can perform automated reasoning
to answer queries and thereby assist in making decisions
based on the encoded knowledge. DLs are fundamental to
the Semantic Web (Hitzler, Krötzsch, Rudolph, 2010) [1], a
vision of the World Wide Web where information is repre-
sented in a machine-readable format. They provide the log-
ical underpinning for the Web Ontology Language (OWL)
[2], which is widely used in the Semantic Web to enable bet-
ter interoperability across different applications, domains,
and natural languages.

In e-commerce, DL ontologies can be used to categorize
products into different classes and sub-classes based on their
attributes, features, and properties. This enables efficient
search and navigation for users on e-commerce platforms,
such as eBay and Alibaba (Shi, J. Chen, Dong, Khan, Liang,
Zhou, Wu, Horrocks, 2023). In finance, where accuracy and
explicability are crucial, the DL formalism enables clear and
unambiguous representation of financial concepts, such as
assets, liabilities, investments, and transactions. Two exam-
ples are the Financial Regulation Ontology (FRO) [3], and
the Financial Industry Business Ontology (FIBO) [4]. An-
other example is the Dow Jones Knowledge Graph (Hor-
rocks, Olivares, Cocchi, Motik, Roy, 2022), which does
not use DLs but similar Semantic Web technologies such
as SHACL (Bogaerts, Jakubowski, Van den Bussche, 2022).

Moreover, DLs and ontologies have found extensive ap-
plications in healthcare and life sciences. The Systematized
Nomenclature of Medicine – Clinical Terms (SNOMED CT,

or SCT) [5] is an ontology that represents medical terms
used in electronic health records, such as clinical findings,
symptoms, and diagnoses. It is employed in clinical decision
support systems to assist healthcare professionals in making
accurate diagnoses, suggesting appropriate treatments, and
predicting outcomes based on patient-specific information.
The Gene Ontology (GO) [6], the world’s largest source of
information on the functions of genes, is a foundation for
computational analysis of large-scale molecular biology and
genetics experiments in biomedical research.

Among the different DLs, the EL family (Baader, Brandt,
Lutz, 2005, 2008) stands out as a lightweight option. EL is
designed to strike a balance between expressivity and com-
putational complexity, making it an ideal choice for appli-
cations where scalability and latency are crucial. It offers a
more restricted set of constructs compared to other DLs, but
can thus handle large-scale ontologies efficiently. The Web
Ontology Language includes it as the profile OWL 2 EL [7].

Every DL ontology is subdivided into two parts. The
ABox consists of factual statements about specific individu-
als or objects in the domain, such as assignment of individ-
uals to concepts and linkage between individuals by roles.
The TBox defines concepts and their hierarchy, roles and
their characteristics, and constraints or rules that govern all
individuals in the domain. By separating ABox and TBox, a
DL ontology provides a clear distinction between instance-
level and schema-level knowledge. This separation enables
reusing the same TBox across different ABoxes, which in
turn promotes scalability and maintainability, as changes in
the TBox are propagated to all associated ABoxes.

SCT and GO are formulated in EL. For instance, SCT
contains the TBox statement
Common cold

⊑ Disease ⊓ ∃causative agent.Virus
⊓ ∃finding site.Upper respiratory tract structure
⊓ ∃pathological process.Infectious process

which is a concept inclusion (CI) and expresses that a com-
mon cold (the premise) is a disease that has as pathological
process an infectious process, is caused by a virus, and can
be found in the upper respiratory tract (the conclusion). We
could express that Alice is diagnosed with common cold by
the ABox statement alice : ∃has diagnose.Common cold.

Building and maintaining DL ontologies is a laborious
task, especially for large domains. Knowledge engineers



and domain experts work together to transfer their know-
ledge into an ontology. While the ABox is usually filled with
observed data, constructing the TBox is a more complex en-
deavour. Assistance by automated approaches or guidance
by interactive approaches is often valuable. For instance, a
selection of individuals in the data can be described by a
single concept (Funk, Jung, Lutz, 2022; Funk, Jung, Lutz,
Pulcini, Wolter, 2019; Zarrieß, Turhan, 2013) that the ex-
perts integrate into the conceptual hierarchy of the TBox.
They can also model the schema of an ontology as a di-
agram (similar to UML class diagrams) that is then auto-
matically translated into a TBox (Sarker, Krisnadhi, Hitzler,
2016). New ontologies can be constructed from existing
ones as well. Two or more ontologies can be integrated
by ontology alignment (J. Chen, Jiménez-Ruiz, Horrocks,
X. Chen, Myklebust, 2023; Jimeno-Yepes, Jiménez-Ruiz,
Llavori, Rebholz-Schuhmann, 2009). Conversely, a part of
an ontology representing a sub-domain can be extracted by
modularization (Cuenca Grau, Horrocks, Kazakov, Sattler,
2008), uniform interpolation or forgetting (Lutz, Wolter,
2011; Zhao, Schmidt, Wang, Zhang, Feng, 2020), or other
techniques (Alghamdi, Schmidt, Del-Pinto, Gao, 2021).

Formal Concept Analysis (FCA) (Ganter, Wille, 1999) is
a mathematical theory that represents data as formal con-
texts in which objects are described by their attributes.
These attributes are similar to atomic statements in propo-
sitional logic and unary predicates in first-order logic. FCA
has two main applications: the concept lattice reveals the
conceptual hierarchy in the data (Wille, 1982), and the
canonical implication base is a complete set of implications,
i.e. it entails all implications valid in the data (Guigues,
Duquenne, 1986; Stumme, 1996). No complete set with
fewer implications exists (Distel, 2011; Wild, 1994). If the
data is not explicitly available but is only known by an ex-
pert, attribute exploration (Ganter, 1984) enables interactive
construction of the implication base.

The data analysis capabilities of FCA have been success-
fully employed in DLs, especially for the construction and
extension of DL ontologies. Given a finite set of concepts,
the hierarchy of all their conjunctions can efficiently be com-
puted (Baader, 1995). In order to support a bottom-up con-
struction of DL ontologies, one can first compute most spe-
cific concepts for all individuals and then efficiently build
the hierarchy of their least common subsumers (Baader,
Molitor, 2000; Baader, Sertkaya, 2004). An ontology should
be extended when it is incomplete since missing statements
have been identified that should be entailed. Interactively
completing the ontology using FCA is possible when atten-
tion is restricted to CIs over conjunctions from a fixed set of
concepts (Baader, Ganter, Sertkaya, Sattler, 2007). More-
over, it can be extended with new statements that are guessed
by machine-learning approaches based on knowledge-graph
embeddings (Jackermeier, J. Chen, Horrocks, 2023; Shi,
J. Chen, Dong, Khan, Liang, Zhou, Wu, Horrocks, 2023).
However, some of these embeddings fail to capture the se-
mantics (Jain, Kalo, Balke, Krestel, 2021) and, in effect, a
large amount of useless, false predictions might be gener-
ated. This major issue can possibly be remedied by novel
embedding approaches (Abboud, Ceylan, Lukasiewicz, Sal-

vatori, 2020; Asaadi, Giesbrecht, Rudolph, 2023).
Axiomatization is another approach to constructing on-

tologies. In general, axiomatization is the task of describing
a dataset (or any other formal object) by means of logical
statements or axioms, viz. such that a logical formula (in the
underlying logic) holds in the data iff. that formula is en-
tailed by these axioms. In addition, axiomatization enables
data analysis by transferring the given data into meaningful
logical statements. By a suitable choice of the logical for-
malism, interesting and condensed insights into the analyzed
data can be obtained.

In FCA, the canonical implication base axiomatizes data
in form of a formal context by means of implications in
propositional logic. By exploiting the similarity between
EL CIs and FCA implications, a complete EL TBox can
be axiomatized from observed graph data (Baader, Distel,
2008). If the data is deemed incomplete, the latter approach
can interact with the experts to ask for additional data when
the validity of a TBox statement cannot be determined yet
(Baader, Distel, 2009). Both the unsupervised and the in-
teractive approach terminate with a TBox that is sound and
complete for the provided data, i.e. it entails a TBox state-
ment if and only if that statement holds in the data. More-
over, the FCA-based axiomatization method was extended
towards more expressive DLs (Kriegel, 2017, 2019b). Con-
fident CI bases axiomatize all CIs that are valid already for
a sufficiently large portion of all objects (Borchmann, 2013,
2015). There are also other interactive approaches (Klar-
man, Britz, 2015; Konev, Lutz, Ozaki, Wolter, 2017) but
which seem to have only limited practical value since the
experts are required to terminate the process manually when
they believe that the target TBox has been found (i.e. com-
pleteness of the constructed TBox is not guaranteed by the
approach, but must be detected by the experts).

Our contributions are as follows. We reconsider the FCA-
based approach to completely axiomatizing EL CIs from
graph data (Baader, Distel, 2008, 2009) and
1. thoroughly revise and simplify its technical description

including proofs,
2. equip it with support for already known CIs valid in the

data (thus enabling it for ontology completion),
3. analyze its computational complexity,
4. explain how further types of TBox statements supported

by the EL family that are not just syntactic sugar can be
completely axiomatized, viz. range restrictions and role
inclusions,

5. describe how it can be implemented efficiently,
6. introduce variations that dispense with the computation

of disjointness axioms or extremely large CIs without
practical relevance, thereby rendering the approach ap-
plicable in practise, albeit some completeness is lost,

7. and evaluate the implementation on real-world datasets.
This extended version contains all technical details and proofs
not included in the conference article for space restrictions.



2 Preliminaries
2.1 The EL Family of DLs and OWL 2 EL
Fix a signature consisting of individual names (INs), concept
names (CNs), and role names (RNs). Concept descriptions
(CDs) are built by C ::= ⊤ | ⊥ | A | C ⊓ C | ∃r.C where
A ranges over all CNs and r over all RNs. We call ⊤ the top
CD, ⊥ the bottom CD, C ⊓ D a conjunction, and ∃r.C an
existential restriction (ER). A TBox is a finite set of concept
inclusions (CIs) C ⊑D, range restrictions (RRs) ⊤⊑∀r.C,
and role inclusions (RIs) R ⊑ s, involving CDs C,D, RNs
r, s, and role chains R ::= ε | r | R ◦ R. An ABox is a
finite set of concept assertions (CAs) a : C and role asser-
tions (RAs) (a, b) : r. An ontology consists of a TBox and an
ABox. The EL family and OWL 2 EL additionally allow for
nominals {a} in CDs, but we ignore these to avoid overfit-
ting in the axiomatization method. We also ignore concrete
domains (datatypes for strings, numbers, etc.) as no EL rea-
soner currently supports them. As syntactic sugar we have
disjointness axioms C1 ⊓ · · · ⊓Cn ⊑⊥, domain restrictions
∃r.⊤⊑ C, concept equivalences C ≡D for the CIs C ⊑D
and D⊑C, role equivalences r≡s for the RIs r⊑s and s⊑r,
transitivity axioms r ◦ r ⊑ r, and reflexivity axioms ε⊑ r.

EL can be translated into first-order logic and thus has a
model-theoretic semantics, based on interpretations I con-
sisting of a non-empty set Dom(I), called the domain, and
of a function ·I that gives meaning to the INs a, CNs A, and
RNs r in the signature by assigning them to elements aI ,
subsets AI , and binary relations rI of Dom(I). The inter-
pretation function is extended to compound CDs: ⊤I :=
Dom(I), ⊥I := ∅, (C ⊓D)I := CI ∩DI , and (∃r.C)I :=
{ x | rI(x) ∩ CI ̸= ∅ } where rI(x) := { y | (x, y) ∈ rI }.
Furthermore, I satisfies a CI C ⊑ D if CI ⊆ DI , a RR
⊤ ⊑ ∀r.C if

⋃
{ rI(x) | x ∈ Dom(I) } ⊆ CI , a RI

R ⊑ s if RI ⊆ sI where εI := { (x, x) | x ∈ Dom(I) }
and (R ◦ S)I := { (x, z) | (x, y) ∈ RI and (y, z) ∈ SI

for some y }, a CA a : C if aI ∈ CI , and a RA (a, b) : r if
(aI , bI) ∈ rI . We say that I is a model of O if I satisfies
all axioms in O.

Reasoning is the process of deciding or enumerating con-
sequences of an ontology. An ontology O entails an axiom
α, written O |= α, if α is satisfied in every model of O. In
this case α follows from the axioms in O by logical infer-
ence. Entailment in the EL family can be decided in poly-
nomial time with the Completion algorithm (Baader, Brandt,
Lutz, 2005, 2008), which is implemented in the reasoner
ELK (Kazakov, Klinov, 2015; Kazakov, Krötzsch, Simančik,
2014). It uses rules to materialize implicit consequences by
adding these as axioms to the ontology. In order to check
whether an axiom α (in a particular normal form) follows
from O, one simply needs to check whether α is material-
ized until the algorithm terminates. Subsumption is a spe-
cial form of entailment: D subsumes C w.r.t. T , written
C ⊑T D, if T entails C ⊑D.

2.2 Simulations and the DL EL⊥
si

Given interpretations I and J , a simulation from I to J is a
relation S ⊆ Dom(I)× Dom(J ) that fulfills the following
conditions:

(S1) If x ∈ AI and (x, y) ∈ S, then y ∈ AJ .
(S2) If (x, x′) ∈ rI and (x, y) ∈ S, then (y, y′) ∈ rJ and

(x′, y′) ∈ S for some y′.
We write (I, x) ⪯ (J , y) if there is a simulation from I
to J that contains (x, y). This binary relation ⪯ is a pre-
order (reflexive and transitive). If I and J are clear from
the context, then it suffices to write x ⪯ y. We denote by
x ≈ y that x ⪯ y and y ⪯ x, and by x ≺ y that x ⪯ y but
y ̸⪯ x.

Since the empty relation is a simulation and the union of
simulations is a simulation, there is a maximal simulation
from I to J , denoted by SI,J . It is computable in polyno-
mial time by starting with the full relation and subsequently
deleting pairs that violate Condition (S1) or (S2). The rela-
tions ⪯ and SI,J are equal since x ⪯ y iff. (x, y) ∈ SI,J .

Simulations characterize the semantics of EL: we can
rewrite each CD C but ⊥ into a tree-shaped interpretation
IC with root xC such that CJ = { y | (IC , xC) ⪯ (J , y) }
for each J . The idea underlying the DL EL⊥

si (Lutz, Piro,
Wolter, 2010) is to replace (IC , xC) with an arbitrary finite,
pointed interpretation (I, x): it features the additional CDs
∃sim(I, x) where (∃sim(I, x))J := { y | (I, x) ⪯ (J , y) }.

We often use denotations ∃sim(C, c), ∃sim(D, d), . . . for
such CDs. For convenience we may use ABox notation: we
specify Dom(C) as usual but describe the function ·C by the
set {x :A | x ∈ AC } ∪ { (x, y) : r | (x, y) ∈ rC }.
Lemma I. Each EL⊥

si CD C can be transformed in polyno-
mial time into an equivalent CD that is either ⊥ or has the
form ∃sim(C, c).

Proof. If C contains ⊥ as a sub-CD, then C is equivalent to
⊥. Otherwise, we rewrite C as follows. Assume that

C =
dℓ

i=1 Ai ⊓
dm

j=1 ∃rj .Dj ⊓
dn

k=1 ∃sim(Ek, ek).

We first recursively rewrite each Dj into the form
∃sim(Dj , dj). Afterwards, we obtain C as the union
of all Dj and all Ek, augmented with a fresh root el-
ement c which is assigned to the CNs Ai, has the ob-
jects dj as rj-successors, and gets all assignments of
the objects ek. Formally, it has the domain Dom(C) :=
{c} ∪

⋃m
j=1 Dom(Dj) ∪

⋃n
k=1 Dom(Ek) and its interpreta-

tion function is defined as

·C :=
⋃ℓ

i=1{c :Ai}
∪
⋃m

j=1

(
{(c, dj) : rj} ∪ ·Dj

)
∪
⋃n

k=1

(
{ c :A | ek :A ∈ ·Ek }
∪ { (c, x) : s | (ek, x) : s ∈ ·Ek } ∪ ·Ek

)
.

This mere rewriting of C into a another graph representation
can obviously be computed in polynomial time.

Extensions of EL⊥
si CDs can be read off from maximal

simulations as follows, where S(x) := { y | (x, y) ∈ S }.
Lemma 1. (∃sim(C, c))I = SC,I(c)

Proof. Recall that (C, c) ⪯ (I, x) iff. (c, x) ∈ SC,I , where
SC,I is the maximal simulation from C to I. We conclude
that (∃sim(C, c))I = SC,I(c).



Subsumption w.r.t. the empty TBox is characterized as
follows. See Proposition 3 for non-empty TBoxes.
Lemma 2. The following are equivalent:
1. ∃sim(C, c) ⊑∅ ∃sim(D, d)
2. (D, d) ⪯ (C, c)
3. c ∈ (∃sim(D, d))C

Proof. Statements 2 and 3 are equivalent by definition.
Let ∃sim(C, c) ⊑∅ ∃sim(D, d). Since the reflexive rela-

tion { (x, x) | x ∈ Dom(C) } is a simulation on C that
contains (c, c), we have c ∈ (∃sim(C, c))C . It follows that
c ∈ (∃sim(D, d))C .

Consider a simulation S from D to C that contains (d, c).
To verify the subsumption, assume further that I is an inter-
pretation and x ∈ Dom(I). Now let x ∈ (∃sim(C, c))I , i.e.
there is a simulation T from C to I that contains (c, x). The
composition of S and T is a simulation from D to I that
contains (d, x), and thus x ∈ (∃sim(D, d))I .

The set of top-level conjuncts of an ELsi CD ∃sim(C, c) is

Conj(∃sim(C, c)) := {A | c ∈ AC }
∪ { ∃r.∃sim(C, u) | (c, u) ∈ rC }.

It is a finger exercise to show that ∃sim(C, c) is equivalent to
the conjunction

d
Conj(∃sim(C, c)). Furthermore, C ⊑∅ D

iff, for each F ∈ Conj(D), there is some E ∈ Conj(C)
such that E ⊑∅ F . The latter atomic subsumptions have the
following cases:

• If both atoms are CNs, then A ⊑∅ B iff. A = B.
• If both atoms are ERs, then ∃r.G ⊑∅ ∃s.H iff. r = s

and G ⊑∅ H .
• There are no atomic subsumptions between a CN and an

ER, i.e. A ̸⊑∅ ∃s.H and ∃r.G ̸⊑∅ B.
Consider an ELsi CD ∃sim(C, c), and let n ≥ 0. The un-

folding of ∃sim(C, c) up to depth n, denoted as Unfn(C, c) is
recursively defined as follows:

• Unf0(C, c) :=
d
{A | c ∈ AC }

• Unfn+1(C, c) :=
d
{A | c ∈ AC }

⊓
d
{ ∃r. Unfn(C, c′) | (c, c′) ∈ rC }

We often use the abbreviation C↾n := Unfn(C, c) when C =
∃sim(C, c).
Lemma II. For each ELsi CD ∃sim(C, c) and for each
finite interpretation I, there is a number n ≥ 0 with
(∃sim(C, c))I = (Unfn(C, c))I .

Proof. First of all, consider an arbitrary d ∈ Dom(C).
Since Unfm(C, d) ⊑∅ Unfn(C, d) if m ≥ n, we then
have (Unfm(C, d))I ⊆ (Unfn(C, d))I . As the domain
Dom(I) is finite, there must exist a number ℓ(d) ≥ 0 with
(Unfn(C, d))I = (Unfℓ(d)(C, d))I for each n ≥ ℓ(d). It
follows that

(Unfℓ(d)(C, d))I =
⋂
{ (Unfn(C, d))I | n ≥ 0 }.

We will show that (∃sim(C, c))I = (Unfℓ(c)(C, c))I . For
∃sim(C, c) ⊑∅ Unfℓ(c)(C, c), the inclusion ⊆ holds. We

proceed with the opposite inclusion, and therefore con-
sider an object x ∈ (Unfℓ(c)(C, c))I . To verify that x ∈
(∃sim(C, c))I , we show that the following relation is a simu-
lation from C to I containing (c, x).

S := { (d, y) | y ∈ (Unfℓ(d)(C, d))I }

Clearly, x ∈ (Unfℓ(c)(C, c))I yields (c, x) ∈ S.

(S1) Let (d, y) ∈ S and d ∈ AC . Then the CN A is a
top-level conjunct of Unfℓ(d)(C, d), and thus y ∈ AI .

(S2) Assume (d, y) ∈ S and (d, d′) ∈ rC , and fur-
ther let ℓ ≥ ℓ(d′) + 1 and ℓ ≥ ℓ(d). Then
the ER ∃r. Unfℓ−1(C, d′) is a top-level conjunct of
Unfℓ(C, d), and so there is y′ with (y, y′) ∈ rI and
y′ ∈ (Unfℓ−1(C, d′))I , i.e. (y′, d′) ∈ S.

ELsi is equi-expressive to ELgfp (Baader, 2003), which is
an extension of EL with greatest fixed-point semantics, and
there are polynomial-time computable translations between
them.

An ELgfp CD is a pair (X, T ) consisting of a concept vari-
able X and a TBox T that contains one concept definition
Y ≡ CY for each concept variable Y , where CY is an EL
CD in which concept variables can be used in place of CNs.

The extension of (X, T ) in an interpretation I is defined
by means of the gfp-model of I w.r.t. T , which we intro-
duce next. To this end, we consider interpretations J with
same domain Dom(I) and of which the function ·J coin-
cides with ·I on all INs, CNs, and RNs in the signature, but
additionally sends each concept variable Y to a subset Y J

of Dom(I). These extended interpretations can be ordered:
J1 ≤ J2 if Y J1 ⊆ Y J2 for each concept variable Y . The
mapping f sends each extended interpretation J to the ex-
tended interpretation f(J ) where Y f(J ) := (CY )

J for all
concept variables Y . Each fixed point of f is a model of T .
Since f is order-preserving, f has a greatest fixed point by
Tarski’s fixed-point theorem (Tarski, 1955), which we de-
note as I∗ and call the gfp-model of T based on I. With
that we define the extension (X, T )I := (CX)I

∗
.

Obviously, every EL CD C is equivalent to the ELgfp CD
(X, {X ≡ C}).
Proposition III. The description logics ELgfp and ELsi are
polynomially equivalent.

Proof. Given an ELsi CD ∃sim(I, x), we define the ELgfp CD
(x, T ) where the TBox T consists of the concept definitions

y ≡
d
{A | y ∈ AI } ⊓

d
{ ∃r.z | (y, z) ∈ rI }

for all y ∈ Dom(I). Both CDs are equivalent (Baader,
2003, Proposition 6). Obviously, this translation from ELsi
to ELgfp can be computed in polynomial time.

Vice versa, let (X, T ) be any ELgfp CD. W.l.o.g. T is
normalized (Baader, 2003), i.e. all fillers of ERs occurring
in right-hand sides of concept definitions in T are concept
variables. It is now straightforward to transform T into
an interpretation I that contains all concept variables in its
domain. The CDs (X, T ) and ∃sim(I, X) are equivalent
(Baader, 2003, Proposition 6). Since the normalization of



T can be obtained in polynomial time (Baader, 2003), this
translation from ELgfp to ELsi is computable in polynomial
time as well.

2.3 Rule-Based Calculus for Subsumption
We introduce a rule-based calculus with which subsumption
w.r.t. a TBox T of EL⊥

si CIs can be decided. Without loss of
generality, T must satisfy the following conditions:

• All CIs in T have the form ∃sim(E , e) ⊑ ∃sim(F , f) or
∃sim(E , e)⊑⊥.

• If two interpretations E and F occur in T (not necessarily
in the same CI), and there is an object x ∈ Dom(E) ∩
Dom(F), then E and F are equal on their parts reachable
from x, i.e. there are simulations between E and F that
contain (x, x) and otherwise only contain pairs in which
both components are equal.

According to the first condition, the TBox T can be parti-
tioned into a subset T⊥ consisting of all CIs with conclu-
sion ⊥ and a subset T+ consisting of the remaining CIs. The
latter condition ensures that we do not need to distinguish
between “the x in E” and “the x in F .”

First, we are going to prove that, in order to decide
whether ∃sim(C, c) is subsumed by ∃sim(D, d) w.r.t. T+, we
can first saturate the left interpretation C by means of the
CIs in T+, which yields the saturation sat(C, T+), and then
check if ∃sim(sat(C, T+), c) is subsumed by ∃sim(D, d), now
w.r.t. the empty TBox ∅. Specifically, sat(C, T+) is obtained
by exhaustive applications of the ⊑+-Rule starting with C.

⊑+-Rule. If there is an object x in Dom(C) and a CI
∃sim(E , e) ⊑ ∃sim(F , f) in T+ such that (E , e) ⪯ (C, x) but
(F , f) ̸⪯ (C, x), then yield the interpretation C′ with domain
Dom(C′) := Dom(C) ∪ Dom(F) and function

·C′
:= ·C ∪ ·F ∪ {x :A | f :A ∈ ·F }

∪ { (x, y) : r | (f, y) : r ∈ ·F }.

The obtained interpretation satisfies (F , f) ⪯ (C′, x).
The following is an easy consequence.

Proposition IV. sat(C, T+) is a model of T+, contains C as
a sub-interpretation, and is computable in polynomial time.

Proof. The first statement holds since the ⊑+-Rule is not
applicable to sat(C, T+). The second statement holds since
the ⊑+-Rule only extends the initial interpretation C. It re-
mains to show the third statement. The domain of sat(C, T+)
is polynomially large since it is a subset of the union of
Dom(C) and all Dom(F) where ∃sim(E , e) ⊑ ∃sim(F , f) is
in T+. For each domain element and for each CI in T+,
the ⊑+-Rule can be applied at most once, and one applica-
tion takes polynomial time. Consequently, sat(C, T+) can
be computed in polynomial time.

Lemma V. The following statements are equivalent:

1. ∃sim(C, c) ⊑T+ ∃sim(D, d)

2. ∃sim(sat(C, T+), c) ⊑∅ ∃sim(D, d)
3. (D, d) ⪯ (sat(C, T+), c)

Proof. We will implicitly use Lemma 2 throughout the
proof. With that, Statements 2 and 3 are equivalent.

Next, we prove that Statement 1 implies Statement 2. So
let ∃sim(C, c) be subsumed by ∃sim(D, d) w.r.t. T+. Since C
is a sub-interpretation of sat(C, T+), the relation { (x, x) |
x ∈ Dom(C) } is a simulation from C to sat(C, T+) contain-
ing (c, c). It follows that (C, c) ⪯ (sat(C, T+), c), i.e. c ∈
(∃sim(C, c))sat(C,T+). As sat(C, T+) is a model of T+, the
assumption yields that the CI ∃sim(C, c)⊑ ∃sim(D, d) is sat-
isfied in sat(C, T+). We infer that c ∈ (∃sim(D, d))sat(C,T+),
i.e. ∃sim(sat(C, T+), c) ⊑∅ ∃sim(D, d).

Last, we show that Statement 2 implies Statement 1.
We therefore assume that ∃sim(sat(C, T+), c) is subsumed
by ∃sim(D, d), i.e. (D, d) ⪯ (sat(C, T+), c), and we con-
sider a model I of the TBox T+ where u ∈ (∃sim(C, c))I ,
i.e. (C, c) ⪯ (I, u). We are going to prove that
(sat(C, T+), c) ⪯ (I, u). From this and the assumption
it follows that (D, d) ⪯ (I, u), i.e. u ∈ (∃sim(D, d))I .
Since I and u are arbitrary, we have verified that T+ entails
∃sim(C, c)⊑ ∃sim(D, d).

It remains to demonstrate that (sat(C, T+), c) ⪯ (I, u),
which we do by induction along the sequence of applica-
tions of the ⊑+-Rule that produces sat(C, T+) from C. To
this end, assume that (C′, c) ⪯ (I, u) and that C′′ is obtained
from C′ by one application of the ⊑+-Rule, say for the ob-
ject x ∈ Dom(C′) and the CI ∃sim(E , e) ⊑ ∃sim(F , f), i.e.
(E , e) ⪯ (C′, x) and (F , f) ̸⪯ (C′, x). In order to show that
(C′′, c) ⪯ (I, u), we consider the union S := SC′,I ∪SF,I
of the maximal simulation from C′ to I and the maximal
simulation from F to I, and validate that it is a simula-
tion from C′′ to I that contains (c, u). Since (c, u) is in
SC′,I , also S contains (c, u). We now verify that S sat-
isfies Conditions (S1) and (S2). The only interesting case
deals with the object x at which (F , f) is merged into C′,
yielding C′′. Therefore let (x, v) ∈ S. Since x ̸= f (oth-
erwise (F , f) ⪯ (C′, x) by our second assumption on T ,
which would contradict applicability of the ⊑+-Rule), it fol-
lows that (x, v) ∈ SC′,I , i.e. (C′, x) ⪯ (I, v), and thus
(E , e) ⪯ (I, v). Since I is a model of T+, we infer that
(F , f) ⪯ (I, v), i.e. (f, v) ∈ SF,I .

(S1) Assume that x ∈ AC′′
. We distinguish two cases.

• If x ∈ AC′
, then v ∈ AI since (x, v) ∈ SC′,I .

• Otherwise, we have f ∈ AF and thus v ∈ AI since
(f, v) ∈ SF,I .

(S2) Now let (x, y) ∈ rC
′′

. Again, we consider two cases.
• In the first case we have (x, y) ∈ rC

′
. Since (x, v) ∈

SC′,I , there is some w such that (v, w) ∈ rI and
(y, w) ∈ SC′,I . Of course, then (y, w) ∈ S.

• It remains the case where (f, y) ∈ rF . From (f, v) ∈
SF,I we infer that there is some w such that (v, w) ∈
rI and (y, w) ∈ SF,I . Then (y, w) ∈ S.

Next, we take the CIs in T⊥ into account. They can render
EL⊥

si CDs unsatisfiable w.r.t. the whole TBox T .

Lemma VI. ∃sim(C, c) is unsatisfiable w.r.t. T , i.e.
∃sim(C, c) ⊑T ⊥, iff. there is a CI ∃sim(E , e)⊑⊥ in T⊥ where
(E , e) ⪯ (sat(C, T+), x) for an object x reachable from c.



Proof. Assume that ∃sim(C, c) is unsatisfiable w.r.t. T , i.e.
(∃sim(C, c))J = ∅ for each model J of T . Consider the sat-
uration sat(C, T+). It follows from Lemma V that (C, c) ⪯
(sat(C, T+), c). Now denote by S the sub-interpretation of
sat(C, T+) that consists only of all objects reachable from c.
Then (C, c) ⪯ (S, c) and thus (∃sim(C, c))S ̸= ∅. We con-
clude that S is no model of T . However, sat(C, T+) is a
model of T+ by Proposition IV and thus also S. So there
must be a CI ∃sim(E , e) ⊑ ⊥ in T⊥ with (∃sim(E , e))S ̸= ∅,
which means that there is an object x ∈ Dom(S) such that
(E , e) ⪯ (S, x). By choice of S, x is reachable from c in
sat(C, T+), i.e. we have (E , e) ⪯ (sat(C, T+), x).

In the converse direction, assume that x is reachable
from c, say on a path with RNs r1, . . . , rk, and that there is a
CI ∃sim(E , e) ⊑ ⊥ ∈ T⊥ such that (E , e) ⪯ (sat(C, T+), x).
We infer that

∃sim(C, c) ⊑T ∃sim(sat(C, T+), c)
⊑∅ ∃r1. · · · ∃rk.∃sim(sat(C, T+), x)
⊑∅ ∃r1. · · · ∃rk.∃sim(E , e)
⊑T ∃r1. · · · ∃rk.⊥
⊑∅ ⊥,

where the first subsumption follows from Lemma V.

Similarly, an interpretation I cannot be extended to a
model of T if there is a CI ∃sim(E , e) ⊑ ⊥ in T⊥ such that
(E , e) ⪯ (sat(I, T+), x) for some domain element x.

In accordance with the above lemma, we define the fol-
lowing second rule that detects unsatisfiability.
⊑⊥-Rule. If there is an object x in Dom(C) and a CI
∃sim(E , e)⊑⊥ in T⊥ such that (E , e) ⪯ (C, x), then fail.

Consider a CD C := ∃sim(C, c). Exhaustively applying
the ⊑+-Rule and the ⊑⊥-Rule either fails in which case C
is unsatisfiable w.r.t. T and we define CT := ⊥, or pro-
duces an interpretation C′ and then we set CT := ∃sim(C′, c).
Moreover, let ⊥T := ⊥. We call CT the most specific con-
sequence of C w.r.t. T , and it characterizes subsumption as
follows.
Proposition 3. Subsumption in EL⊥

si can be decided in poly-
nomial time. In particular, C ⊑T D iff. CT ⊑∅ D.

Proof. If rule application fails, then C is unsatisfiable w.r.t.
T by Lemma VI, i.e. CI = ∅ for every model I of T . It
follows that C ≡T ⊥, and CT = ⊥. Thus C ⊑T D and
CT ⊑∅ D hold for all EL⊥

si CDs D.
Otherwise, C is satisfiable w.r.t. T , and CT =

∃sim(sat(C, T+), c). So CT ⊑∅ D iff. C ⊑T+ D by
Lemma V. It is trivial that C ⊑T+ D implies C ⊑T D,
and it remains to verify the converse implication.

First of all, EL⊥
si is invariant under direct products, i.e.

CI×J = CI × CJ for all EL⊥
si CDs C and for all in-

terpretations I and J . This follows from the observation
that the direct product operation × is the infimum opera-
tion in the set of all (equivalence classes of) pointed inter-
pretations ordered by ⪯, i.e. (I × J , (x, y)) ⪯ (I, x) and
(I × J , (x, y)) ⪯ (J , y), and for each (C, c), if (C, c) ⪯
(I, x) and (C, c) ⪯ (J , y), then (C, c) ⪯ (I × J , (x, y)).

Now let C ⊑T D, and consider a model I of T+ where
x ∈ CI . Since C is satisfiable w.r.t. T , there is a model J of
T such that CJ ̸= ∅. Product invariance yields that I × J
is a model of T+. It is also a model of the other CIs in T : for
each E⊑⊥ ∈ T⊥, we have EJ = ∅ and thus EI×J = ∅ by
product invariance. Since CJ ̸= ∅, there is some element
y ∈ CJ , and thus (x, y) ∈ CI×J . Since I × J is a model
of T , it follows that (x, y) ∈ DI×J , and thus x ∈ DI by
product invariance. We conclude that C ⊑T+ D.

Last, we analyze the computational complexity. Let C :=
∃sim(C, c) and D := ∃sim(D, d). According to Proposi-
tion IV, the saturation sat(C, T+) is computable in polyno-
mial time. Then, to compute CT we try for the polynomially
many objects in this saturation and the polynomially many
CIs of the form ∃sim(E , e) ⊑ ⊥ in T⊥ whether the ⊑⊥-Rule
fails, which needs polynomial time. If it fails, then CT = ⊥
and thus the subsumption C ⊑T D holds. Otherwise, we
have CT = ∃sim(sat(C, T+), c) and to decide C ⊑T D
we check if there is a simulation from D to sat(C, T+) con-
taining (d, c), see Lemma 2, which needs polynomial time
since the maximal simulation can be computed in polyno-
mial time.

Lemma VII. EL⊥
si has the polynomial countermodel prop-

erty: if a TBox T does not entail a CI C ⊑ D, then there
is a model of T that is a countermodel to C ⊑ D and has
polynomial size (w.r.t. T and C only).

Proof. Assume C := ∃sim(C, c) and D := ∃sim(D, d) where
w.l.o.g. each of the interpretations C and D has only one
connected component. Since C ̸⊑T D, Proposition 3 yields
that CT ̸⊑∅ D. In particular, C is satisfiable w.r.t. T and
CT = ∃sim(sat(C, T+), c).

Since C ⊑T+ C and C ̸⊑T+ D, we infer with Lemma V
that (C, c) ⪯ (sat(C, T+), c) but (D, d) ̸⪯ (sat(C, T+), c).
By Lemma 2 it follows that c ∈ (∃sim(C, c))sat(C,T+) but
c ̸∈ (∃sim(D, d))sat(C,T+), i.e. the saturation sat(C, T+) is a
countermodel to C ⊑D.

According to Proposition IV the saturation sat(C, T+) is
a model of the sub-TBox T+. Since the ⊑⊥-Rule does not
fail, this saturation is also a model of the sub-TBox T⊥, and
thus of the whole TBox T . Last, sat(C, T+) has polynomial
size by Proposition IV.

Lemma VIII. C ⊑T D iff. C ⊑T D↾n for each n.

Proof. The only-if direction follows from D ⊑∅ D↾n for
every n ≥ 0. Regarding the if direction, assume that T ̸|=
C ⊑ D. By Lemma VII there is a finite model I of T that
does not satisfy C ⊑ D, i.e. CI ̸⊆ DI . Lemma II further
yields DI = (D↾n)I for some n ≥ 0. We conclude that I
neither satisfies the CI C⊑D↾n, and thus T ̸|= C⊑D↾n.

2.4 Formal Concept Analysis
FCA is concerned with analyzing a formal context K :=
(G,M, I), where G is a set of objects, M is a set of at-
tributes, and I ⊆ G × M is an incidence relation. We ex-
press by (g,m) ∈ I that the object g has the attribute m.
The incidence relation I is used to define two operations:



• For every subset A ⊆ G, let AI be the set of all attributes
that the objects in A have in common, i.e. AI := {m |
(g,m) ∈ I for each g ∈ A }.

• For every subset B ⊆ M , define BI as the set of all
objects that have all attributes in B, i.e. BI := { g |
(g,m) ∈ I for each m ∈ B }.

An implication is an expression U → V where U and V are
subsets of M . The context K satisfies U→V if every object
in G that has all attributes in U also has each attribute in V ;
and K is a model of an implication set L if it satisfies every
implication in L. Furthermore, L entails U →V , denoted as
L |= U → V , if U → V is satisfied in every model of L.

Implication entailment can be decided in linear time
by means of the algorithm LinClosure (Beeri, Bernstein,
1979).1 This is done by computing the closure UL of the
premise U w.r.t. L and then checking if V is a subset. Here,
it suffices to know that UL can be obtained, in the naı̈ve way,
from U ′ := U by adding all attributes in Y to U ′ whenever
one finds an implication X → Y in L for which U ′ contains
all attributes in the premise X but not all in the conclusion
Y — the final U ′ is the closure.

An implication base of K relative to L is an implication
set B of which K is a model and that together with L is
complete, i.e. B ∪ L entails each implication satisfied in K.
A pseudo-intent of K w.r.t. L is a subset P ⊆ M such that

(PI1) P is no intent (i.e. P ̸= P II ),
(PI2) P is closed under the implications in L, i.e. for each

implication U → V ∈ L, if U ⊆ P , then V ⊆ P (i.e.
P = PL), and

(PI3) for each pseudo-intent Q, if Q ⊂ P , then QII ⊆ P .

The canonical implication base Can(K,L) consists of all
implications P →P II where P is a pseudo-intent (Guigues,
Duquenne, 1986; Stumme, 1996). It can be computed in
exponential time with the algorithm NextClosure (Ganter,
1984), and no base with fewer implications exists (Distel,
2011; Wild, 1994).

FCA can be seen as EL without RNs and ⊥. More specifi-
cally, a formal context K := (G,M, I) encodes the same in-
formation as the interpretation I over the signature that con-
tains all attributes in M as CNs, with domain Dom(I) := G,
and where mI := { g | (g,m) ∈ I } for each m ∈ M .
Then, implications U → V satisfied in K correspond to
CIs

d
U ⊑

d
V satisfied in I, using the syntactic sugard

{C1, . . . , Cn} := C1 ⊓ · · · ⊓ Cn and
d
∅ := ⊤.

3 Axiomatization of EL TBoxes
We first focus on axiomatizing CIs. RRs and RIs will be
considered in Section 3.4. As input we expect graph data
in form of an interpretation I, which includes knowledge
graphs, graph databases, and RDF data: the CNs are the
node labels and the RNs are the edge labels. Preprocess-
ing of a knowledge graph might be necessary, e.g. to cor-
rectly treat the metadata as well as to materialize the mod-
elling conventions (Krötzsch, 2019). Using an interpretation

1see also (Maier, 1983) for an alternative presentation.

as input means that we expect data under closed-world as-
sumption — axiomatizing CIs from data under open-world
assumption (e.g. an ABox) is pointless since only tautolo-
gies could be produced: for each non-trivial CI C⊑D, there
could be a still unknown individual in C that is not in D.
Further given is a TBox T of which I is a model and that
contains known CIs that should be preserved by the axiom-
atization. Note that T might be empty. We will compute a
CI base in the following sense.
Definition 4. A TBox is complete for I if it entails all CIs
satisfied in I. A CI base of I relative to T is a TBox B of
which I is a model and such that B ∪ T is complete for I.

A CI base B together with the given TBox T axiomatizes
all CIs satisfied in I. We also call B a completion of T w.r.t.
I as we obtain a complete TBox by adding all CIs in B to T .

We will convert the interpretation I into a formal context
such that its implication base can be rewritten into a CI base
of I. We therefore use induced contexts (Rudolph, 2004).2

Definition 5. Let M be a set of CDs. The induced context
is KI := (Dom(I),M, I) where (x,C) ∈ I iff. x ∈ CI .
Lemma 6. Given subsets C,D ⊆ M, the CI

d
C⊑

d
D is

satisfied in I iff. the implication C→D is satisfied in KI .

It follows that, if B is an implication base of KI , then the
TBox

d
B := {

d
C⊑

d
D | C→D ∈ B } has I as a model.

Whether this TBox is complete depends on the choice of the
attribute set M, which we will address next. The naı̈ve way
was to take the infinite set of all CDs as the attribute set M,
but it would then be unclear how a base could actually be
computed.

3.1 Model-based Most Specific Concepts
For each subset X of Dom(I), we denote by XI the model-
based most specific CD (MMSCD) of X in I that is deter-
mined up to equivalence by the following conditions:
(M1) X ⊆ (XI)I

(M2) for each CD C, if X ⊆ CI , then XI ⊑∅ C.
We will omit braces and write XII instead of (XI)I .

The extended interpretation function C 7→ CI , which
maps each CD C to the set CI of all objects in Dom(I) sat-
isfying C, corresponds to the mapping B 7→ BI of a formal
context K := (G,M, I), which sends each subset B of M
to the set BI of all objects in G having every attribute in B.
Likewise, the mapping X 7→ XI from subsets of Dom(I) to
their MMSCDs corresponds to the mapping A 7→ AI of K.
As in FCA these two operators form a Galois connection,
i.e. all subsets X,Y of Dom(I) and all CDs C,D satisfy
the following properties (Baader, Distel, 2008).
(G1) X ⊆ CI iff. XI ⊑∅ C

(G2) XI ⊑∅ Y I if X ⊆ Y

(G3) X ⊆ XII

(G4) XI ≡∅ XIII

(G5) CI ⊆ DI if C ⊑∅ D

(G6) CII ⊑∅ C

(G7) CI = CIII

2Note that interpretations and binary power context families are
the same. Earlier papers that apply FCA in a DL setting also needed
to define formal contexts, of which some are similar.



For cycles in the interpretation I, some MMSCDs might
not be expressible in EL⊥ but in EL⊥

si . The MMSCD of ∅
is ⊥ and the MMSCD of each singleton {x} is ∃sim(I, x).
MMSCDs of sets with two or more objects can be obtained
as least common subsumers (Baader, Distel, 2008), com-
puted by products. For instance, the MMSCD of {x, y} in
I is ∃sim(I × I, (x, y)). However, this approach is infeasi-
ble when all MMSCDs in I must be computed, like in our
reduction to FCA. A more efficient way uses the powering,
which is a permutation-invariant representation of all powers
of I of any arity.
Definition 7. The powering ℘(I) is the interpretation with
domain Dom(℘(I)) := ℘(Dom(I)) and interpr. function

·℘(I) := {X :A | X ⊆ AI }

∪
{
(X,Y ) : r

∣∣∣∣ Y is a minimal hitting set
of { rI(x) | x ∈ X }

}
.

Recall that a hitting set of a set S of sets is a set H such
that H ∩S ̸= ∅ for each set S ∈ S. We call H minimal if no
strict subset is a hitting set. All minimal hitting sets can ef-
ficiently be computed with the algorithm HS-DAG (Greiner,
Smith, Wilkerson, 1989; Reiter, 1987).

All MMSCDs but of ∅ are computable by the powering.
We use the following lemma to show this.
Lemma IX. (J , y) ⪯ (℘(I), X) iff. (J , y) ⪯ (I, x) for
each x ∈ X .

Proof. For the only-if direction, assume that S is a simu-
lation from J to ℘(I) that contains (y,X). We will show
that the following relation is a simulation from J to I that
contains all pairs (y, x) where x ∈ X .

T := { (v, u) | (v, U) ∈ S and u ∈ U for some U }
Clearly, (y,X) ∈ S implies (y, x) ∈ T for each x ∈ X .

(S1) Let (v, u) ∈ T and v ∈ AJ . The former implies that
there is some U with (v, U) ∈ S and u ∈ U . Since S
satisfies Condition (S1), it follows that U ∈ A℘(I). This
means U ⊆ AI , and thus u ∈ AI .

(S2) Consider (v, u) ∈ T and (v, v′) ∈ rJ . By definition of
T there is a set U with (v, U) ∈ S and u ∈ U . Since S
fulfills Condition (S2), we infer that there is some set U ′

with (v′, U ′) ∈ S and (U,U ′) ∈ r℘(I). The latter means
that U ′ is a minimal hitting set of { rI(u) | u ∈ U }, and
so there is some object u′ ∈ U ′ with (u, u′) ∈ rI . Last,
we obviously have (v′, u′) ∈ T.

We proceed with the if direction. Therefore consider, for
each x ∈ X , a simulation Tx from J to I that contains
(y, x). We will verify that the relation defined below is a
simulation from J to ℘(I) that contains (y,X).

S :=

{
(v, U)

∣∣∣∣ for each u ∈ U , there is x ∈ X

with (v, u) ∈ Tx

}
We have (y,X) ∈ S since (y, x) ∈ Tx for each x ∈ X .

(S1) Take (v, U) ∈ S with v ∈ AJ . Then, for each u ∈ U ,
there is some xu ∈ X with (v, u) ∈ Txu

. Since each
Txu

satisfies Condition (S1), we have u ∈ AI for each
u ∈ U , i.e. U ⊆ A℘(I).

(S2) Finally, let (v, U) ∈ S where (v, v′) ∈ rJ . The defi-
nition of S yields, for each u ∈ U , some xu ∈ X with
(v, u) ∈ Txu

. Consider one x ∈ X . For Condition (S2)
fulfilled by Txu

, there is some u′ with (v′, u′) ∈ Txu
and

(u, u′) ∈ rI .
Clearly, the set {u′ | u ∈ U } is a hitting set of { rI(u) |
u ∈ U }. It follows that there is a minimal hitting set U ′

of { rI(u) | u ∈ U } with U ′ ⊆ { u′ | u ∈ U }, and then
(U,U ′) ∈ r℘(I). We further have (v′, U ′) ∈ S since
(v′, u′) ∈ Txu

for each u ∈ U .

It follows immediately that ∃sim(℘(I), X) satisfies Con-
dition (M2). Specifically for (J , y) := (℘(I), X) we ob-
tain that (℘(I), X) ⪯ (I, x) for each x ∈ X , and thus
∃sim(℘(I), X) also satisfies Condition (M1).

Proposition 8. XI ≡∅ ∃sim(℘(I), X) if ∅ ̸=X ⊆ Dom(I).
Since the simulations only “look forward” along the RNs,

here starting from X , it suffices to take the sub-interpretation
P of ℘(I) consisting of all elements reachable from X —
then the MMSCD XI is already equivalent to ∃sim(P, X).

It is interesting to remark that Lemma IX yields
C℘(I) = ℘(CI) for each ELsi CD C.

3.2 Axiomatization of CIs by means of FCA
The MMSCDs allow us to restrict attention to CIs of a par-
ticular form, viz. the set { C ⊑ CII | C is an ELsi CD }
would already be a CI base if it was finite. To see this, con-
sider a CI C ⊑ D satisfied in I. Then CII ⊑∅ D by (M2)
and thus C ⊑CII entails C ⊑D. The Galois property (G7)
further ensures that every CI C ⊑ CII is satisfied in I.

Each MMSCD XI is either ⊥ or, according to Propo-
sition 8, a conjunction of CNs and existential restrictions
∃r.Y I . For this reason, we let M consist of ⊥, all CNs, and
all ∃r.Y I where r is a RN and Y is a non-empty subset of
Dom(I).

M := {⊥} ∪ {A | A is a CN }
∪ { ∃r.XI | r is a RN and X ⊆ Dom(I), X ̸= ∅ }

This definition is up to equivalence, i.e. if Y I ≡∅ ZI for two
subsets Y,Z ⊆ Dom(I), then it suffices that M contains the
attributes ∃r.Y I for all RNs r.

Due to our choice of M, we can now represent the con-
clusion CII of any CI C ⊑ CII as a conjunction of atoms
in M, but this is not always possible for the premise C. We
instead use the partial closure C [II] which is closed every-
where above the root: ⊥[II] := ⊥ and, if C ̸= ⊥, then

C [II] :=
d
{A | A ∈ Conj(C) }

⊓
d
{ ∃r.DII | ∃r.D ∈ Conj(C) }.

All top-level conjuncts of C [II] are contained in M.
There are only finitely many CIs of the form C [II]⊑CII

since their premises and conclusions are conjunctions over
the finite set M. We will show that the TBox consisting of
all these CIs is already a CI base. We therefore use the fol-
lowing slightly modified notion from (Baader, Distel, 2008).



Definition X. Given sets P , Q of CDs and a function
f : P → Q, we say that f dominates P if P ⊑∅ f(P ) and
P I = f(P )I for each P ∈ P . If the function f is irrelevant,
then we also say that Q dominates P .

Lemma XI. If B is a complete set of CIs that has model I
and f dominates { C | C ⊑ D ∈ B }, then also the set
{ f(C)⊑D | C ⊑D ∈ B } is complete and has model I.

Proof. Let Bf := { f(C)⊑D | C⊑D ∈ B } and consider a
CI C⊑D in B. Since C ⊑∅ f(C) and Bf contains f(C)⊑D,
it follows that Bf entails C⊑D. Thus, Bf is complete since
it entails a complete set.

Next, consider a CI f(C) ⊑D in Bf . Since I is a model
of B and the CI C ⊑ D is in B, we have CI ⊆ DI . With
CI = f(C)I we conclude that I satisfies f(C)⊑D.

Lemma 9. {C [II] ⊑CII | C is an ELsi CD } is a CI base.

Proof. The above TBox is denoted by B. We first show that
I satisfies each CI C [II] ⊑CII in B. Recall that I satisfies
C⊑CII . By applying (G6) to the fillers of the ERs we infer
that C [II] ⊑∅ C and thus C [II] ⊑ C is satisfied in I. We
conclude that I satisfies C [II] ⊑ CII .

It remains to prove that B is complete. To this end, we
show that B entails the set { C ⊑ CII | C is an EL CD },
which is complete since according to Lemma II all EL CDs
dominate all ELsi CDs (Baader, Distel, 2008).

We prove by induction on C that B entails each CI C ⊑
CII where C is an EL CD. The induction base where C has
role depth3 zero is trivial since then C = C [II] ⊑B CII .
Now assume that rd(C) > 0. Since rd(D) < rd(C) for
each ∃r.D ∈ Conj(C), the induction hypothesis yields that
C is subsumed by

d
{A | A ∈ Conj(C) } ⊓

d
{ ∃r.DII |

∃r.D ∈ Conj(C) } w.r.t. B. The latter equals C [II] and is
thus subsumed by CII w.r.t. B.

Since the latter CI base consists of CIs between conjunc-
tions over M, Lemma 6 implies that we can obtain other,
usually smaller CI bases by rewriting an implication base B
of the induced context KI into the TBox

d
B. We will prove

this in the following.
Moreover, we take the TBox T into account by transform-

ing it into the set LI,T consisting of the implications

• Conj(C [II])→{E | E ∈ M and C ⊑T E } for each CI
C ⊑D in T

• {E}→ {F} for each two E,F ∈ M with E ⊑∅ F .

The induced context KI is a model of LI,T as I is a
model of T .

Lemma XII. If B is an implication set over M with B ∪
LI,T |= C→D, then (

d
B) ∪ T |=

d
C⊑

d
D.

Proof. Let J be a model of (
d
B)∪T . We define the formal

context J := (Dom(J ),M, J) with incidence (x,C) ∈ J
iff. x ∈ CJ . Note that J and KI have the same attribute set.

3The role depth of an EL CD C is the maximal number of nest-
ings of ERs in C, denoted by rd(C). In particular, rd(C) = 0 iff.
C is ⊥, ⊤, or a conjunction of CNs iff. C does not contain any ER.

For each subset U ⊆ M we have (
d

U)J = UJ . Thus
J satisfies a CI

d
U ⊑

d
V iff. J satisfies the implication

U→V. We conclude that J is a model of B.
We show that J is also a model of LI,T . Consider an

implication Conj(C [II]) → { E | E ∈ M and C ⊑T E }
where C ⊑ D ∈ T . Since C [II] ⊑∅ C and J is a model
of T , the CI C [II] ⊑ E is satisfied in J for each atom E
in the conclusion, and thus the implication is satisfied in J.
Furthermore, if E ⊑∅ F , then J satisfies the CI E ⊑ F and
thus J satisfies the implication {E}→ {F}.

It follows that C→D is satisfied in J, and thus
d
C⊑

d
D

is satisfied in J .

Proposition XIII. If B is an implication base of KI relative
to LI,T , then the TBox

d
B is a CI base of I relative to T .

Proof. Recall from Lemma 9 that I satisfies all CIs C [II]⊑
CII where C is an ELsi CD. With Lemma 6 we infer that
all implications Conj(C [II]) → Conj(CII) are satisfied in
the induced context KI . Since B ∪ LI,T is complete for
KI , this union entails all these implications. According to
Lemma XII the union (

d
B)∪T entails all CIs C [II]⊑CII

and is thus complete for I by Lemma 9. That all CIs in
d
B

are satisfied in I follows from Lemma 6.

As next step, we show that also in the opposite direction
every CI base of I relative to T can be transformed into an
implication base of the induced context KI relative to LI,T ,
provided that it is in a certain normal form. This transforma-
tion helps us with proving that a CI base

d
B obtained from

a minimal implication base B is also minimal.

Lemma XIV. For each subset X of M and for each CD C,
if

d
X ⊑∅ C, then

d
X ⊑∅ C [II].

Proof. Recall that C and its partial closure C [II] have the
same CNs in the top-level conjunction. It is thus only in-
teresting to consider ERs. So let ∃r.DII ∈ Conj(C [II]),
i.e. we have ∃r.D ∈ Conj(C). Since

d
X ⊑∅ ∃r.D,

there is ∃r.EII ∈ X with EII ⊑∅ D. It follows
that EII ⊑∅ DII by Properties (G1) and (G2), and thusd
X ⊑∅ ∃r.DII .

Lemma XV. If S is a CI base of I relative to T and
every CI in T has the form C ⊑ D[II], then BS :=
{ Conj(C [II]) → Conj(CII) | C ⊑ D ∈ S } is an impli-
cation base of KI relative to LI,T .

Proof. Note that
d
BS = { C [II] ⊑ CII | C ⊑ D ∈ S }.

In general, S and
d
BS do not entail each other, but due

to Lemma XIV
d

BS allows us to draw the same conse-
quences at the root of a conjunction

d
X where X ⊆ M

(and sometimes even more, since we replace the conclu-
sion D of each CI in S by CII , which is subsumed by
D by (G1)). Further note that LI,T entails the implication
Conj(C [II])→ Conj(D[II]) for each C ⊑D[II] in T .

First, we show that KI satisfies all implications in BS .
Recall from the proof of Lemma 9 that I satisfies each CI
C [II] ⊑ CII . By Lemma 6, KI satisfies each implication
Conj(C [II])→ Conj(CII).



Next, we show that BS ∪ LI,T is complete for KI . Let
X → Y be satisfied in KI . Then

d
X ⊑

d
Y is satisfied

in I and thus entailed by S ∪ T . We consider the TBox
S ′ := {C ⊑ CII | C ⊑D ∈ S }, which entails S by (G1).
It follows that S ′ ∪ T entails

d
X ⊑

d
Y. According to

Proposition 3, saturating
d
X by means of the ⊑+-Rule and

the ⊑⊥-Rule for S ′ ∪ T yields a CD that is subsumed byd
Y.
A crucial observation is that, for each conjunction

d
X

with X ⊆ M, one rule application yields again a conjunc-
tion

d
X′ for some X′ ⊆ M. We illustrate this as follows.

Since I is a model of S ′∪T and each filler of an ER in M is
a MMSCD of I, a rule application is only possible the root
of

d
X.

• If the ⊑+-Rule is applied for a CI C⊑CII in S ′, then we
have

d
X ⊑∅ C and obtain the CD

d
X ⊓ CII . Since

M contains all top-level conjuncts of CII , the obtained
CD equals

d
X′ where X′ := X ∪ Conj(CII).

• If the ⊑+-Rule is applied for a CI C ⊑D[II] in T , then
we have

d
X ⊑∅ C and obtain the CD

d
X ⊓ D[II].

Since M contains all top-level conjuncts of D[II], the
obtained CD equals

d
X′ where X′ := X∪Conj(D[II]).

• If the ⊑⊥-Rule is applied for a CI C ⊑ CII in S ′ with
CII = ⊥, then we have

d
X ⊑∅ C and obtain the CD

⊥, which equals
d
X′ where X′ := {⊥}. Further rule

applications are then not possible.
• If the ⊑⊥-Rule is applied for a CI C ⊑D[II] in T with
D[II] = ⊥, then we have

d
X ⊑∅ C and obtain the CD

⊥, which equals
d
X′ where X′ := {⊥}. Further rule

applications are then not possible.

Now recall that saturating
d
X w.r.t. S ′ ∪ T yields a

CD that is subsumed by
d
Y. We infer that there is a se-

quence X0, . . . ,Xn of subsets of M such that X0 := X,
each Xi+1 is obtained from Xi by one rule application,
and

d
Xn ⊑∅ d

Y. We define the sequence X′
0, . . . ,X

′
n

of subsets of M where each X′
i is the closure of Xi un-

der all implications {E} → {F} with E ⊑∅ F . Thend
Xi ⊑∅ C iff.

d
Xi ⊑∅ C [II] iff. Conj(C [II]) ⊆ X′

i,
where the first equivalence holds by Lemma XIV and the
second by definition of X′

i. This means that the implication
Conj(C [II])→ Conj(CII) contained in BS or the implica-
tion Conj(C [II]) → Conj(D[II]) entailed by LI,T can be
used to obtain X′

i+1 from X′
i, i.e. X′

i+1 ⊆ (X′
i)

BS∪LI,T .
By induction we conclude that Y ⊆ X′

n ⊆ XBS∪LI,T , i.e.
BS ∪ LI,T |= X→Y.

Proposition XVI. In addition to Proposition XIII: if B con-
tains the fewest implications among all implication bases of
KI relative to LI,T and if further each CI in T has the form
C ⊑ D[II], then also the CI base

d
B contains the fewest

CIs among all CI bases of I relative to T .

Proof. Assume that B is minimal, and consider another CI
base S of I. Lemma XV yields that BS is an implication
base of KI relative to LI,T . Since |BS | ≤ |S|, minimality
of B implies that |B| ≤ |BS |. Since |

d
B| ≤ |B|, it follows

that |
d
B| ≤ |S|. Since this holds for all CI bases S , we

conclude that
d
B is minimal.

As last step, we analyze the computational complexity of
computing a CI base. The attribute set M of the induced
context KI has exponential size, and thus an implication
base of KI relative to LI,T could, in principle, contain
a double-exponential number of implications. We use the
below lemma to show that the canonical implication base
Can(KI ,LI,T ) is not so large and can be computed in ex-
ponential time.

Lemma XVII. Let K := (G,M, I) be a formal context and
L be a set of implications over M . Then the canonical im-
plication base of K relative to L can be computed in time
exponential in G, polynomial in M , and polynomial in L.

Proof. We employ the algorithm NextClosures (Kriegel,
Borchmann, 2017) to show the upper bound on the time
complexity. Our background implication set L is there de-
noted by B, while the canonical implication base under con-
struction is there denoted by L. Furthermore, we are in the
case where all background implications are satisfied in K,
and thus CII⋎B = CII for all subsets C ⊆ M .

The algorithm NextClosures maintains a candidate set C
that initially contains only the set ∅B. Further candidates are
only added in Line 7, and the candidates are only updated
in Line 9. We first show that the number of fresh candidates
(added in Line 7) is exponential in G and polynomial in M .
To this end, we exploit the close relationship between ex-
tents and intents: if A is an extent, then AI is an intent, and
every intent is of this form (i.e. if B is an intent, then there
is an extent A such that AI = B). Since every extent is a
subset of G, we conclude that the number of intents is expo-
nential in G. Whenever NextClosures recognizes an intent
CII , then it adds the fresh candidates CII ∪ {m} for all at-
tributes m ∈ M \ CII . It follows that the number of fresh
candidates is exponential in G and polynomial in M .

Since every pseudo-intent (and thus every implication in
the canonical implication base) is obtained from a candidate,
the size of the canonical implication base (denoted by L
within NextClosures) is also exponential in G and polyno-
mial in M .

Each candidate (and its updated versions) is considered at
most |M | times in the outer for-loop in Lines 1–10. When
a candidate is processed, then the closures CL∗⋎B and CII

are computed and checked for equality with C, which needs
polynomial time w.r.t. L and B and w.r.t. G and M , respec-
tively.

In summary, NextClosures runs in time exponential in G
and polynomial in M and L and returns the canonical impli-
cation base of K w.r.t. L.

We obtain our first main result by putting all lemmas to-
gether.

Theorem 10. For each finite interpretation I and each EL⊥
si

TBox T of which I is a model, the TBox Can(I, T ) :=d
Can(KI ,LI,T ) is a CI base of I relative to T . It is called

canonical CI base and can be computed in time that is expo-
nential in Dom(I) and polynomial in T . If all CIs in T have



the form C ⊑ D[II], then it contains the fewest CIs among
all CI bases of I relative to T . Furthermore, there are finite
interpretations that have no polynomial-size CI base.

Proof. The canonical implication base Can(KI ,LI,T )
is an implication base of KI relative to LI,T (Guigues,
Duquenne, 1986; Stumme, 1996). Proposition XIII yields
that Can(I, T ) is a CI base of I relative to T . Since
Can(KI ,LI,T ) contains a minimal number of implications
(Distel, 2011; Wild, 1994), Proposition XVI implies that
Can(I, T ) contains the fewest CIs among all CI bases of I
relative to T if all CIs in T have the form C ⊑D[II].

Next, we explain how Can(I, T ) can be computed in time
that is exponential in Dom(I) and polynomial in T . We
therefore examine all necessary steps.

1. We first compute the induced context KI . We already
know its object set, namely Dom(I). Further recall that
its attribute set M contains ⊥, all CNs, and all ERs
∃r.XI where r is an RN and X is a non-empty subset
of Dom(I). According to Proposition 8, each MMSCD
XI is equivalent to ∃sim(℘(I), X). Since the powering
℘(I) can be computed in exponential time, we obtain M
in exponential time as well.
The incidence relation I on the pairs (x,A) is easy to
determine by a look-up in I. Regarding the other pairs,
recall that (x,∃r.XI) ∈ I iff. x ∈ (∃r.XI)I . The lat-
ter holds iff. there is y with (x, y) ∈ rI and y ∈ XII .
According to Lemma 15, we have XII = S℘(I),I(X).
So, we compute the maximal simulation S℘(I),I , which
needs polynomial time w.r.t. ℘(I) and I, i.e. exponen-
tial time w.r.t. I. To determine whether I contains a
pair (x, ∃r.XI) we then only need to check whether
rI(x) ∩S℘(I),I(X) ̸= ∅, which is merely a look-up.

2. Next, we compute the background implication set LI,T .
Recall that it contains the implication Conj(C [II]) →
{E | E ∈ M and C ⊑T E } for each C ⊑D ∈ T and
further all implications {E} → {F} where E,F ∈ M
and E ⊑∅ F .
Computing C [II] from C needs exponential time: for
each ∃r.D ∈ Conj(C), we first determine DI and then
the MMSCD DII is ∃sim(℘(I), DI). Furthermore, we
go through all E ∈ M and check whether C ⊑T E.
By Proposition 3 each check needs polynomial time, and
since E can be exponential w.r.t. Dom(I), each check
needs time polynomial in T and exponential in Dom(I).
Since the number of attributes in M is exponential in
Dom(I), we infer that the CIs in T can be transformed
into the background implications in time polynomial in
T and exponential in Dom(I).
To determine the other implications {E} → {F}, we go
through all pairs (E,F ) of attributes E,F ∈ M and
check whether E ⊑∅ F . By Proposition 3 each check
needs polynomial time, and since E and F can be expo-
nential w.r.t. Dom(I), each check needs time exponential
in Dom(I). Since the number of attributes in M is expo-
nential in Dom(I), we multiply three exponentials and
conclude that all other implications {E} → {F} can be
found in exponential time w.r.t. Dom(I).

3. Last, Lemma XVII yields that the canonical implication
base of KI relative to LI,T can be computed in time ex-
ponential in Dom(I), polynomial in M, and polynomial
in LI,T . Together with the above we infer that it can
be computed in time exponential in Dom(I) and polyno-
mial in T . The transformation into the canonical CI base
is trivial and needs only linear time.

Last, there is a sequence of formal contexts Kexp,n with
3·n objects and 3·n+1 attributes for which the number of
implications in the canonical implication bases is exponen-
tial in n (Kuznetsov, Obiedkov, 2008). When viewing these
contexts as interpretations, their canonical CI bases do not
have polynomial size. Since every canonical CI base con-
tains a minimal number of CIs, also no other CI bases of
polynomial size exist.

Of course, we can strengthen the given TBox T by replac-
ing every CI C⊑D with C⊑D[II] and then compute a min-
imal CI base of the interpretation I relative to this stronger
TBox. Alternatively, we could compute the CI base relative
to the unmodified TBox T and afterwards remove redundant
CIs, which follow from others, but it is unclear whether this
yields a CI base with the fewest possible number of CIs.

The next example shows that the computed CI base might
not be minimal if not every CI in T has the form C⊑D[II].

Example 11. Consider the following interpretation I.

I : w x

A

y

C

z

B,C
r r r

We further have the TBox T := {A ⊑ ∃r.B} of which I is
a model. Our goal is to compute the canonical CI base. We
therefore first determine all MMSCDs, these are:

• {w}I ≡∅ ∃r.(A ⊓ ∃r.(B ⊓ C))

• {x}I ≡∅ A ⊓ ∃r.(B ⊓ C)

• {y}I ≡∅ C ⊓ ∃r.(B ⊓ C)

• {z}I ≡∅ B ⊓ C

• {x, y}I ≡∅ ∃r.(B ⊓ C)

• {y, z}I ≡∅ C

• {w, x, y}I ≡∅ ∃r.⊤
• {w, x, y, z}I ≡∅ ⊤

We thus obtain the following induced context KI .

KI ⊥ A B C ∃r
.{
w
}I

∃r
.{
x
}I

∃r
.{
y
}I

∃r
.{
z
}I

∃r
.{
x
,y
}I

∃r
.{
y
,z
}I

∃r
.{
w
,x

,y
}I

∃r
.{
w
,x

,y
,z
}I

w · · · · · × · · × · × ×
x · × · · · · · × · × · ×
y · · · × · · · × · × · ×
z · · × × · · · · · · · ·



The implication set LI,T consists of all {E} → {F} where
E ⊑∅ F and of {A}→{∃r.{w, x, y, z}I}. Note that the lat-
ter evaluates to {A}→ {∃r.⊤} and thus does not fully cap-
ture the CI A⊑∃r.B. By transforming the canonical impli-
cation base of KI relative to LI,T , we obtain the canonical
CI base of I relative to T with the following CIs:

• B ⊑ C

• A ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I ⊓ ∃r.{y, z}I

• C ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I ⊓ ∃r.{y, z}I

• ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑ ∃r.{z}I

• ∃r.{w, x, y}I⊓∃r.{w, x, y, z}I⊑∃r.{x}I⊓∃r.{x, y}I

• A ⊓ C ⊓ ∃r.{z}I ⊓ ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑⊥
• B ⊓ C ⊓ ∃r.{z}I ⊓ ∃r.{y, z}I ⊓ ∃r.{w, x, y, z}I ⊑⊥
• ∃r.{w}I ⊓ ∃r.{x}I ⊓ ∃r.{x, y}I ⊓ ∃r.{w, x, y}I ⊓
∃r.{w, x, y, z}I ⊑⊥

• ∃r.{x}I ⊓ ∃r.{z}I ⊓ ∃r.{x, y}I ⊓ ∃r.{y, z}I ⊓
∃r.{w, x, y}I ⊓ ∃r.{w, x, y, z}I ⊑⊥

Specifically the second CI is superfluous as it can be de-
duced from the others. To see this, first note that it can be
simplified to A ⊓ ∃r.⊤ ⊑ ∃r.(B ⊓ C). Now, the premise
A⊓∃r.⊤ is subsumed by ∃r.B (since T contains A⊑∃r.B)
and thus subsumed by ∃r.(B ⊓ C) (since the CI base con-
tains B ⊑ C), which is the conclusion of the second CI.

To obtain a minimal CI base, we could replace the con-
clusion of the CI A ⊑ ∃r.B in T with (∃r.B)[II] =
∃r.(B ⊓ C). Then, the implication set LI,T would con-
tain {A} → {∃r.(B ⊓ C)} in place of {A} → {∃r.⊤} and
so the replaced CI could be fully captured.

One might be tempted to think that it were sufficient to
add all top-level conjuncts of CIs in T to the attribute set
M in order to obtain a minimal CI base since T can then be
fully captured by implications. The below example shows
that this is wrong.

Example XVIII. We use the same interpretation I but
where z additionally is an instance of the CN D, and the
TBox T is extended with the CI B ⊑ C. We would add to
M the additional attribute ∃r.B and can therefore fully cap-
ture A⊑∃r.B as {A}→{∃r.B} and B⊑C as {B}→{C}.
Compared to the previous example, KI would then contain
the additional attributes D and ∃r.B, and the MMSCDs are
the same except that B ⊓ C is replaced by B ⊓ C ⊓D.

The CI base would then contain the CI B ⊓ C ⊑ D, but
also the superfluous CI A ⊓ ∃r.B ⊑ ∃r.(B ⊓ C ⊓ D), i.e.
the base is not minimal. The problem here is that T entails
A⊑∃r.(B⊓C) but this cannot be captured by an implication
over M (neither directly nor entailed by other implications).

In the last example we illustrate that a minimal CI base
is neither guaranteed when we use the “saturated atoms”
∃r.CT for every ER ∃r.C occurring as a top-level conjunct
in T , where CT is defined in Section 2.3.

Example XIX. As interpretation I we take the following.

I : x

A

yz

B,C,D

t

D

u

C,D

v w

r r

r

We further consider the TBox T := {A ⊑ ∃r.B, B ⊑ C}.
Now we would add the “saturated atom” ∃r.(B ⊓ C) to the
attribute set M, so that we can take the implications {A}→
{∃r.(B ⊓ C)} and {B} → {C} as background knowledge.
The implication set LI,T additionally contains all {E} →
{F} where E ⊑∅ F .

It is easy to verify that the implication base of the in-
duced context KI relative to LI,T contains {C} → {D}
and {∃r.(B ⊓ C)} → {∃r.(B ⊓ C ⊓ D), ∃r.(C ⊓ D),
∃r.D}, which are transformed to the CIs C ⊑ D and
∃r.(B ⊓ C)⊑ ∃r.(B ⊓ C ⊓D). The latter is superfluous.

The problem here is that the additional atoms can be used
in further implications that need not follow from the others
in implication semantics (which does not look into the ERs)
but that would be superfluous with the DL semantics. Propo-
sition XVI shows that this cannot happen if all fillers in ERs
are MMSCDs.

Novel Contributions. To differentiate our novel contribu-
tions from results already shown in the literature, we provide
the following dissection. To begin with, the paper (Baader,
Distel, 2008) shows in Theorem 15 that each finite interpre-
tation has a finite CI base. FCA is not used explicitly therein,
but key notions from FCA are translated into the DL setting,
e.g. the model-based most specific concepts. Moreover, the
attribute set M is hidden in the proof of that Theorem 15
and is made explicit in the follow-up paper (Baader, Distel,
2009), see Definition 4. There, the computation of the CI
base is done by means of FCA, see Theorem 4, where back-
ground implications are used to avoid the axiomatization of
tautological CIs. That this canonical CI base contains the
fewest number of CIs among all CI bases is shown in the
thesis (Distel, 2011).

Our first significant contribution is to show that the canon-
ical CI base is computable in at most exponential time. Sec-
ond, we enable support for an existing TBox T relative to
which the input interpretation I is axiomatized. This is not
trivial. The key was to find a background implication set
that can be constructed from T in at most exponential time,
see Appendix A for a remark. To sum up, Theorem 10 with-
out a TBox T and without the complexity result was already
known in the literature. Analogously for Theorem 18, which
expands on (Borchmann, Distel, Kriegel, 2016).

Third, we carefully revised and extended the technical ar-
gumentation leading to Theorem 10. Instead of EL⊥

gfp we
used the equi-expressive DL EL⊥

si as it is easier to handle.
We introduced the powering ℘(I) as a joint, smaller repre-
sentation of all MMSCDs; before it was necessary to com-
pute products of different arities. (In a domain of cardinality
n, the size of an MMSCD of k objects is at most

∑k
i=1

(
n
i

)
with the powering vs. nk with products.) Moreover, we in-



troduced the attribute set M as needed and not let it “fall
from the sky.” More specifically in this Section 3.2, all stated
results and proofs but Lemma XV are revised versions from
the above three references and that are extended to deal with
the given TBox T .

Last, we emphasize that the specific role of FCA in the re-
sult stated in Theorem 10 is two-fold: on the one hand, FCA
guarantees that the canonical CI base contains the fewest
possible number of CIs, especially no tautologies or CIs en-
tailed by T ; on the other hand, we can employ FCA algo-
rithms to actually compute CI bases in practise. In contrast,
the CI base B in (Baader, Distel, 2008) is constructed with-
out FCA and is of exponential size (but this was not men-
tioned there). With further efforts one could show that B is
computable in exponential time, though is not minimal and
might contain tautologies or CIs entailed by T , i.e. its prac-
tical computability and usability is unclear. In particular, a
minimal CI base is preferred if reasoning performance with
the constructed ontology is crucial.

3.3 Rewriting the CI Base
The canonical CI base contains EL⊥

si CIs. We rewrite it
into EL to gain support by state-of-the-art reasoners, such as
ELK. We subdivide the rewriting into two steps. First, since
the set of all ELsi CDs is dominated by the set of all EL
CDs (Baader, Distel, 2008), Lemma XI allows us to replace
the premises in Can(I, T ) by suitable EL CDs. Minimality
is preserved since such a replacement does not change the
number of CIs in the base. In particular, we can replace,
in every conjunction

d
C that occurs as a premise, each

∃r.XI by ∃r.(XI↾n) with the following choices for n.

• n is minimal such that (XI↾n)I = XII , which can be
determined by trying non-negative integers in ascending
order and picking the first for which the MMSCD XI

and its unfolding XI↾n have the same extension in I.
Lemma II ensures that such a minimal n exists.

• n := 2|Dom(I)| · |Dom(I)|+ 1 (Baader, Distel, 2008)

• n is obtained from the MVF measure based on lengths
of simple paths in I or powers of I, seen as graphs
(Guimarães, Ozaki, Persia, Sertkaya, 2021).

Next, we devise a mechanism to replicate the cyclic struc-
tures within the conclusions directly in the CI base, namely
by means of variables (auxiliary CNs) that can be used in
place of CNs.

Definition XX. A TBox with variables (vTBox) ∃X.T con-
sists of a finite set X of concept variables that is disjoint
with the signature, and of a finite set T of EL⊥ CIs in which
the variables can be used in place of CNs. An interpreta-
tion I is a model of ∃X.T if there is a variable assignment
Z : X → ℘(Dom(I)) such that the augmented interpreta-
tion I[Z] is a model of T , where I[Z] equals I but its func-
tion ·I[Z] additionally maps each variable X ∈ X to Z(X).

No new procedures or implementations are needed to de-
cide if a vTBox entails a CI — we just discard the quantifier.

Lemma XXI. ∃X.T |= C ⊑D iff. T |= C ⊑D

Proof. Assume ∃X.T |= C ⊑ D and that I is a model of
T (over the extended signature that contains all variables as
additional CNs). Then the restriction of I to the signature,
denoted as I ′, is a model of ∃X.T since for the variable as-
signment Z : X 7→ XI the augmented interpretation I ′[Z]
is equal to I and is thus a model of T . We conclude that the
CI C ⊑D is satisfied in I ′. Since the CDs C and D do not
contain variables, and since the interpretation functions of I
and I ′ coincide on the signature, it follows that C ⊑ D is
also satisfied in I.

Conversely, let T |= C ⊑ D and consider a model I of
∃X.T . Then I[Z] is a model of T for some variable assign-
ment Z , and we infer that C ⊑D is satisfied in I[Z]. Since
no variables occur in C or in D, it follows that C ⊑D must
already be satisfied in I.

Proposition XXII. Every TBox consisting of CIs with
EL CDs as premises and EL⊥

si CDs as conclusions can be
rewritten into an equivalent vTBox in linear time.

Proof. Since each EL⊥
si CD is equivalent either to ⊥ or to

a CD of the form ∃sim(D, y), we can assume w.l.o.g. that
all CIs in T are either of the form C ⊑ ⊥ or of the form
C⊑∃sim(D, y). We further assume w.l.o.g. that all the latter
CDs ∃sim(D, y) share the same interpretation D (otherwise
we define D as the union of all these interpretations). Since
each ∃sim(D, y) is equivalent to ∃sim(Red(D), [y]≈), we can
also assume w.l.o.g. that D is weakly reduced (see Defini-
tion XXV). Last, we can remove from D all elements that
are not reachable from y for some CI C ⊑ ∃sim(D, y) in T .

We define the vTBox ∃X.T ′ where X := Dom(D) and
T ′ consists of the following CIs:

1. C ⊑⊥ for each CI C ⊑⊥ in T .
2. C ⊑ y for each CI C ⊑ ∃sim(D, y) in T .
3. y ⊑A for each CN A and each y ∈ AD

4. y ⊑ ∃r.z for each RN r and each (y, z) ∈ rD

Instead of the latter two instructions, we could also add the
CI y⊑

d
{A | y ∈ AD }⊓

d
{ ∃r.z | (y, z) ∈ rD } to T ′ for

each y ∈ Dom(D). Obviously, ∃X.T ′ is constructed from
T by mere syntactic rewriting in linear time.

We show that T and ∃X.T ′ have the same models and
are thus equivalent. Let I be a model of T . We define the
variable assignment Z by Z(y) := (∃sim(D, y))I and show
that I[Z] is a model of T ′.

1. Assume that C ⊑⊥ is in T ′, i.e. the same CI is in T and
thus CI = ⊥I = ∅. Since no concept variables occur in
C, we have that CI[Z] = CI . It follows that C ⊑ ⊥ is
satisfied in I[Z].

2. Consider a CI C ⊑ y in T ′, i.e. the CI C ⊑ ∃sim(D, y) is
in T . Further let x ∈ CI[Z]. Since no concept variables
occur in C, we have that CI[Z] = CI . With I being a
model of T it follows that x ∈ (∃sim(D, y))I . By defini-
tion of Z , the latter shows that x ∈ Z(y) = yI[Z].

3. Let y ⊑ A be in T ′, i.e. y ∈ AD, and further let x ∈
yI[Z] = Z(y) = (∃sim(D, y))I . So there is a simulation
from D to I containing (y, x), and thus y ∈ AD implies
x ∈ AI = AI[Z].



4. Last, assume that T ′ contains the CI y ⊑ ∃r.z, i.e.
(y, z) ∈ rD, and that x ∈ yI[Z] = Z(y) =
(∃sim(D, y))I . The latter implies that there is a sim-
ulation from D to I containing (y, x). Thus, it fol-
lows from (y, z) ∈ rD that there is x′ such that
(x, x′) ∈ rI = rI[Z] and there is a simulation from
D to I containing (z, x′), i.e. x′ ∈ Z(z) = zI[Z]. We
conclude that x ∈ (∃r.z)I[Z].

Conversely, assume that I is a model of ∃X.T ′, i.e. there
is a variable assignment Z such that I[Z] is a model of T ′.
Each CI of the form C ⊑ ⊥ in T is also contained in T ′,
which implies that C ⊑⊥ is satisfied in I[Z]. Since C does
not contain variables we have CI = CI[Z], and thus C ⊑⊥
is also satisfied in I.

Further let C ⊑ ∃sim(D, y) be a CI in T where x ∈ CI .
Then T ′ contains the CI C⊑y and x ∈ CI[Z], which implies
x ∈ yI[Z] = Z(y). In order to show that x ∈ (∃sim(D, y))I ,
we verify that the following relation S, which contains
(y, x) since x ∈ Z(y), is a simulation from D to I.

S := { (v, u) | u ∈ Z(v) }

(S1) Let (v, u) ∈ S, i.e. u ∈ Z(v), and further let v ∈ AD.
Then T ′ contains v ⊑ A. Since I[Z] is a model of T ′,
we have that Z(v) ⊆ AI . We conclude that u ∈ AI .

(S2) Let (v, u) ∈ S, i.e. u ∈ Z(v), and further let (v, v′) ∈
rD. Then T ′ contains v ⊑ ∃r.v′. Since I[Z] is a model
of T ′, we have that Z(v) ⊆ (∃r.v′)I[Z], i.e. (u, u′) ∈ rI

for some u′ ∈ Z(v′). The latter yields (v′, u′) ∈ S.

Last, we apply the rewriting approach to the conclusions
in the canonical CI base. Assume that B is obtained from
Can(I, T ) by replacing the premises as above. We obtain
an EL TBox B′ with auxiliary CNs that entails the same CIs
as follows. For each CI C ⊑ ⊥ in B, we add C ⊑ ⊥ to B′.
For each CI C ⊑

d
D in B, we add the following CIs to B′:

• C ⊑
d
{A | A ∈ D } ⊓

d
{ ∃r.X | ∃r.XI ∈ D }

• Y ⊑
d
{A | Y ∈ A℘(I) } ⊓

d
{ ∃r.Z | (Y,Z) ∈ r℘(I) }

for all Y reachable from any X in℘(I) with ∃r.XI ∈D

Due to structural sharing this transformation is considerably
smaller than the known one (Baader, Distel, 2008).

3.4 Axiomatization of RRs and RIs
As I satisfies a RR ⊤⊑∀r.C if

⋃
{ rI(x) | x ∈ Dom(I) } ⊆

CI , the most specific RR on r uses the MMSCD Y I of Y :=⋃
{ rI(x) | x ∈ Dom(I) } in place of C. We thus add these

RRs to the CI base, possibly after replacing ⊤⊑∀r.Y I with
⊤⊑ ∀r.Y and the CIs describing all Z reachable from Y .

Next, we show how RIs can be completely axiomatized.
Since I is finite, all RIs are regular in the following sense.

Proposition 12. For every RN s, the language LI(s) :=
{ r1 · · · rn | I satisfies the RI r1 ◦ · · · ◦ rn ⊑ s } is regular
and is accepted by a finite automaton As of exponential size.

Proof. We view the interpretation I as finite automaton over
the alphabet consisting of all RNs, with state set Dom(I),
and with the transition relation { (x, r, y) | (x, y) ∈ rI }.

Specifically for objects x, y ∈ Dom(I) we denote by Ax,y

the automaton with initial state x and final state y.
Now consider a RN s. The automaton As is defined as the

complement of
⋃
{ Ax,y | (x, y) ̸∈ sI }, and it accepts the

word r1 · · · rn iff. the RI r1 ◦ · · · ◦ rn ⊑ s is satisfied in I.
Last, we show that the automaton As has exponential size.

The automaton
⋃
{Ax,y | (x, y) ̸∈ sI } has polynomial size

since it is a union of polynomially many copies of I. To
construct the complement automaton, we need to employ the
powerset construction to make this automaton deterministic,
which leads to an exponential blow-up, and then swap final
and non-final states. We conclude that the size of the final
automaton As is exponential in I.

For each RN s, let As be a finite automaton accepting
LI(s). We convert it into the following RIs and add them to
the CI base.

• p ◦ r ⊑ q for each transition (p, r, q) in As

• ε⊑ i for the initial state i in As

• f ⊑ s for each final state f in As

Note that these RIs use the automaton states as auxiliary
RNs. In order to prevent interactions that could produce RIs
not satisfied in I, we assume that w.l.o.g. all automata As

have disjoint state sets. By construction, this set of RIs en-
tails r1 ◦ · · · ◦ rn ⊑ s iff. I satisfies r1 ◦ · · · ◦ rn ⊑ s, i.e. it
is a complete axiomatization. It remains open how these RIs
can be rewritten into equivalent RIs without auxiliary RNs,
but we believe this is possible. However, many reasoners
transform the RIs in a given ontology into finite automata
anyway and for these the above RIs are advantageous since
the automata can easily be read off.

Since we add the above RIs to the CI base, we can also
employ modified automata. Specifically, the CI base entails
the disjointness axiom ∃r1. · · · ∃rn.⊤⊑⊥ iff. the role chain
r1 ◦ · · · ◦ rn does not connect any objects in I, i.e. (r1 ◦ · · · ◦
rn)

I = ∅. In this case, all RIs r1 ◦ · · · ◦ rn⊑ s for RNs s are
trivially satisfied in I. To avoid the derivation of such RIs in
the automata, we can instead use

As :=
⋃
{Ax,y | (x, y) ∈ sI } \

⋃
{Ax,y | (x, y) ̸∈ sI },

which accepts the word r1 · · · rn iff. the RI r1 ◦ · · · ◦ rn ⊑ s
is satisfied in I and (r1 ◦ · · · ◦ rn)

I ̸= ∅. These automata
can be constructed in exponential time as well.

We can now formulate our second main result.

Theorem 13. For each finite interpretation I, a complete
TBox of EL CIs, RRs, and RIs satisfied in I can be com-
puted in exponential time. There are finite interpretations
for which such a TBox cannot be of polynomial size.

In order to ensure polynomial-time reasoning, a syntac-
tic restriction on the interplay of RRs and RIs is imposed
on TBoxes expressed in the EL family and in OWL 2 EL
(Baader, Brandt, Lutz, 2008): for each RI r1 ◦ · · · ◦ rn ⊑ s
in T where n ≥ 1, if T does not entail ⊤ ⊑ ∀rn.C, then
T neither entails ⊤ ⊑ ∀s.C. This restriction prevents new
concept memberships for objects in the range of s.

The following example shows that this restriction need
not be satisfied when RRs and RIs are constructed as above.



Example XXIII. We consider the interpretation I defined
as follows.

I : x y z

A

u v

r1 r2

s

r2

Since z is the only object in the range of s, we obtain the RR
⊤ ⊑ ∀s.A. The range of r2, however, consists of z and v
and we obtain the trivial RR ⊤⊑ ∀r2.⊤. We do not go into
the details regarding the automaton construction, it suffices
to know that we would axiomatize RIs that entail r1 ◦r2⊑s.
Since the RR ⊤⊑∀r2.A is not entailed, the syntactic restric-
tion is not satisfied.

As a solution, we weaken the RRs. For each RN s, we first
compute the finite automaton As and then identify all RNs
that lead to a final state, viz. since each transition (p, r, f) in
As where f is a final state and p is reachable from the initial
state encodes a RI of the form · · · ◦ r⊑ s. We thus obtain an
admissible RR on s by taking all successors of these RNs r
into account, i.e. we compute the RR ⊤⊑∀s.Y I from the set
Y :=

⋃
({ sI(x) | x ∈ Dom(I) } ∪ { rI(x) | x ∈ Dom(I)

and (p, r, f) is a transition in As where p is reachable and
f is final }). By construction, these are the most specific
RRs that together with the RIs obtained from the automata
satisfy the syntactic restriction.

4 Implementation Details
In this section we describe how the canonical CI base from
Theorem 10 can be efficiently computed. We have already
seen some details in proofs in Section 3, but there mainly
focused on deriving upper complexity bounds.

4.1 Computing a Maximal Simulation
Several steps employ maximal simulations and therefore a
performant algorithm for computing these is advantageous.
We adapt an approach to computing simulations between
graphs (M. R. Henzinger, T. A. Henzinger, Kopke, 1995)
such that it works with interpretations (which can be seen as
labelled graphs) and runs in parallel on multiple threads.

We will construct a finite sequence of relations S0 ⊃
S1 ⊃ · · · . The initial relation S0 is the full relation
Dom(I) × Dom(J ). The next relation S1 consists of all
pairs (x, y) where
• for each CN A, if x ∈ AI , then y ∈ AJ , and
• for each RN r, if (x, x′) ∈ rI for some x′, then (y, y′) ∈
rJ for some y′.

The first instruction ensures that S1 and also every subse-
quent relation only contains pairs (x, y) that satisfy Condi-
tion (S1). The second instruction filters out all pairs (x, y)
that violate Condition (S2) for x having an r-successor while
y does not.

In order to compute the subsequent relations and specif-
ically to ensure that Condition (S2) is fulfilled, we need to

Algorithm 1: Computing the Maximal Simulation
Input: Interpretations I and J
Output: Maximal Simulation from I to J

1 S := S1 (see above)
2 R := R1 (see above)
3 while x ∈ Dom(I) and r ∈ NR exist with R(x, r) ̸= ∅
4 foreach x′ where (x′, x) ∈ rI

5 foreach y′ where y′ ∈ R(x, r)
6 if (x′, y′) ∈ S
7 S := S \ {(x′, y′)}
8 foreach r′ ∈ NR

9 foreach y′′ where (y′′, y′) ∈ r′J

10 if r′J (y′′) ∩S(x′) = ∅
11 R(x′, r′) := R(x′, r′) ∪ {y′′}
12 R(x, r) := ∅
13 return S

propagate deletion of pairs backwards along the RNs. If we
find that an object x in Dom(I) cannot be simulated by an
object y in Dom(J ) and thus delete the pair (x, y) from
Si−1, then we must examine all pairs (x′, y′) ∈ Si where
(x′, x) ∈ rI and (y′, y) ∈ rJ — if there is no object z ̸= y
such that (y′, z) ∈ rJ and (x, z) ∈ Si, then y′ cannot sim-
ulate x′ and the pair (x′, y′) must be deleted from Si, for
violating Condition (S2).

Now, we formally construct the subsequent relations in
the following manner, starting with i := 1. If Si−1 = Si,
then return Si. Otherwise there is an element x ∈ Dom(I)
for which Si−1(x) ̸= Si(x), where S(x) denotes the set
{ y | (x, y) ∈ S }. For each element x′ ∈ Dom(I), we
define

Si+1(x
′) := Si(x

′) \
⋃
{Ri(x, r) | (x′, x) ∈ rI } where

Ri(x, r) :=

{
y′

∣∣∣∣ (y′, y) ∈ rJ for some (x, y) ∈ Si−1

and (y′, z) ̸∈ rJ for each (x, z) ∈ Si

}
Algorithm 1 shows a possible implementation in pseudo-

code. It maintains the relations S and R, but does not keep
previous versions in memory.

Note that, using the notation rI(x) := { y | (x, y) ∈ rI },
we have Ri(x, r) = { y′ | rJ (y′) ∩ Si−1(x) ̸= ∅ and
rJ (y′) ∩Si(x) = ∅ }. In Line 10 only the latter condition
needs to be checked, since the former one had been satisfied
in the previous version of S before (x′, y′) was deleted.

Moreover, we can speed-up Algorithm 1 by paralleliza-
tion. The data structures used to represent the simulation S
and the relation R must support concurrent read/write access
by multiple threads. Both the computation of S1 in Line 1
and of R1 in Line 2 can be easily parallelized by iterating
over Dom(I) in parallel (since processing one x ∈ Dom(I)
is independent from the others). The remaining while-loop
in Lines 3–12 can be parallelized as follows.
(First) One first searches for an object x0 ∈ Dom(I) such

that R(x0, r0) ̸= ∅ for some RN r0. When found, a
thread is started to process x0 as in Lines 4–12 and
Instruction (Next) is executed (without waiting for the
thread to complete); otherwise the algorithm is finished.



(Next) Whenever a thread has been started, say for the ob-
ject xi, one searches for another object xi+1 ∈ Dom(I)
with R(xi+1, ri+1) ̸= ∅ for some RN ri+1 and — in or-
der to guarantee independence from the currently run-
ning computations — that has no common predecessor
with any of the objects x0, . . . , xi (then no predecessor x′

in Line 4 will be processed by different threads). When
found, another thread is started to process xi+1 as per
Lines 4–12 and Instruction (Next) is executed (without
waiting for the thread to complete); otherwise one waits
until all started threads have completed their computa-
tions and afterwards Instruction (First) is executed.

In addition, when an object xi is processed in its own thread,
then right away for all RNs ri with R(xi, ri) ̸= ∅ in a batch.
This yields a further speed-up.

4.2 Reducing the Input Interpretation
Computing the canonical CI base needs exponential time in
the worst case. We reduce the input interpretation I to save
computation time. The key observation is that we can group
together all objects in Dom(I) satisfying the same CDs. By
doing so, no counterexamples against CIs satisfied in I are
removed, and also no new counterexamples against satisfied
CIs are introduced. However, instead of checking infinitely
many CIs the following characterization comes to the res-
cue: if I and J are finite, then (I, x) ⪯ (J , y) iff. x ∈ CI

implies y ∈ CJ for all C (Lutz, Wolter, 2010). Thus, in
order to decide whether two objects x and y in I satisfy the
same CDs, we check if the maximal simulation SI on I
contains (x, y) as well as (y, x).

Now, assume that we have computed the maximal simu-
lation SI on I. By means of it, we formalize the (weak)
reduction of I as follows.

Definition XXIV. An interpretation I is weakly reduced
if the following conditions are fulfilled for all x, y, z ∈
Dom(I):
(R1) If x ≈ y, then x = y.
(R2) If (x, y) ∈ rI , (x, z) ∈ rI , and y ⪯ z, then y = z.

Condition (R2) is from (Ecke, Peñaloza, Turhan, 2015).

Definition XXV. The weak reduction of I is denoted as
Red(I), its domain Dom(Red(I)) consists of all equiva-
lence classes [x]≈ where x ∈ Dom(I), and the interpre-
tation function ·Red(I) is defined by

ARed(I) := { [x]≈ | x ∈ AI }

rRed(I) :=

{
([x]≈, [y]≈)

∣∣∣∣ x r−→ y and there is no z
with y ≺ z and x r−→ z

}
for each CN A and for each RN r, respectively, where x r−→ y
indicates that (x, y′) ∈ rI and y ⪯ y′ for some y′.

We need to show that the above definition is independent
of representatives.

• If x ≈ u, then x ∈ AI implies u ∈ AI .
• Let x ≈ u and y ≈ v. We first show that x r−→ y implies
u r−→ v. From x r−→ y it follows that (x, y′) ∈ rI and
y ⪯ y′ for some y′. Since x ≈ u and (x, y′) ∈ rI , there

is some v′ with (u, v′) ∈ rI and y′ ⪯ v′. The latter
together with v ≈ y ⪯ y′ yields v ⪯ v′, which together
with (u, v′) ∈ rI implies u r−→ v.
Now, assume that v ≺ w and u r−→ w for some w. Since
w ≈ w, the above yields x r−→ w. From y ≈ v and v ≺ w
we infer that y ≺ w. As contraposition we obtain: if
there is no z with y ≺ z and x r−→ z, then there is no w
with v ≺ w and u r−→ w.

Next, we show that the weak reduction Red(I) is minimal
and can be computed in polynomial time. More importantly,
we verify that I and Red(I) satisfy the same CIs. In order to
show the latter as well as to specify the relationship between
I and Red(I) we introduce the following notion.
Definition XXVI. We say that interpretations I and J are
fully similar, denoted as I ∼∼∼ J , if there are mappings
f : Dom(I) → Dom(J ) and g : Dom(J ) → Dom(I)
such that
1. x ≈ f(x) for each x ∈ Dom(I), and
2. y ≈ g(y) for each y ∈ Dom(J ).

If two interpretations I and J are isomorphic, then they
are fully similar as well. The following example shows that
the converse does not hold.
Example XXVII. The interpretations I and J with rI :=
{(x, x)} and rJ := {(y, z), (z, z)} are fully similar but
not isomorphic. The maximal simulation from I to J is
{(x, y), (x, z)}, and the maximal simulation from J to I is
{(y, x), (z, x)}. There is no homomorphism from I to J
that is surjective, and thus no isomorphism.

The next lemma shows that fully similar interpretations
satisfy the same CIs.
Lemma XXVIII. If I and J are fully similar, then both
satisfy the same EL⊥

si CIs.

Proof. Let ∃sim(C, c)⊑∃sim(D, d) be a CI satisfied in I. Fur-
ther let y ∈ (∃sim(C, c))J , i.e. (C, c) ⪯ (J , y). Since I and
J are fully similar, (J , y) ⪯ (I, g(y)) ⪯ (J , y), and thus
(C, c) ⪯ (I, g(y)), i.e. g(y) ∈ (∃sim(C, c))I . The assump-
tion yields g(y) ∈ (∃sim(D, d))I , i.e. (D, d) ⪯ (I, g(y)),
and thus (D, d) ⪯ (J , y), i.e. y ∈ (∃sim(D, d))J .

Moreover, CIs ⊥ ⊑ ∃sim(D, d) need no special treatment
as they are satisfied in all interpretations, and it remains to
consider CIs ∃sim(C, c) ⊑ ⊥. Assume that such a CI is sat-
isfied in I, i.e. (∃sim(C, c))I = ∅ and so (C, c) ̸⪯ (I, x)
for each x ∈ Dom(I). Let y ∈ Dom(J ). It follows
that (J , y) ≈ (I, g(y)) and (C, c) ̸⪯ (I, g(y)), and thus
(C, c) ̸⪯ (J , y). We conclude that (∃sim(C, c))J = ∅.

By swapping I and J , the converse direction follows as
well.

Proposition XXIX. Red(I) can be computed in polynomial
time and it is the smallest weakly reduced interpretation that
is fully similar to I (modulo renaming of domain elements).

Proof. Since the maximal simulation SI on I can be com-
puted in polynomial time, we can determine from it all
equivalence classes (in the domain of Red(I)) in polyno-
mial time as follows. We maintain a set X of remaining ob-
jects, which is initialized as Dom(I). As long we can find



an object x ∈ X , we determine the equivalence class [x]≈
as { y | (x, y) ∈ SI and (y, x) ∈ SI }, add it to the domain
of Red(I), and remove from X all objects in [x]≈.

Note that each equivalence class can also be written as
[x]≈ = SI(x) ∩ (SI)

−1(x). If SI is represented in form
of a matrix, then SI(x) is a row and (SI)

−1(x) is a column.
It further holds that x r−→ y iff. rI(x) ∩SI(y) ̸= ∅, and so
all RNs are interpreted as

rRed(I) =

{
([x]≈, [y]≈)

∣∣∣∣ rI(x)∩SI(y) ̸= ∅ and
rI(x)∩ (SI(y)\S−1

I (y))= ∅

}
.

With that, we can determine the extensions of RNs in poly-
nomial time. For CNs this is trivial.

Now, we show that I and Red(I) are fully similar. To this
end, we first show that the relation

T1 := { (x, [u]≈) | x ⪯ u }

is a simulation from I to Red(I).

(S1) Let x ∈ AI and (x, [u]≈) ∈ T1. Then x ⪯ u and
thus u ∈ AI . By definition of Red(I) it follows that
[u]≈ ∈ ARed(I).

(S2) Let (x, y) ∈ rI and (x, [u]≈) ∈ T1, i.e. x ⪯ u. So
there is v such that (u, v) ∈ rI and y ⪯ v. It follows
that u r−→ y. If there is no z with y ≺ z and u r−→ z, then
([u]≈, [y]≈) ∈ rRed(I) by definition and (y, [y]≈) ∈ T1.
Otherwise, there exists a ⪯-maximal z with y ≺ z and
u r−→ z. Then ([u]≈, [z]≈) ∈ rRed(I) and (y, [z]≈) ∈ T1.

In the converse direction we show that the relation

T2 := { ([x]≈, u) | x ⪯ u }

is a simulation from Red(I) to I.

(S1) Let [x]≈ ∈ ARed(I) and ([x]≈, u) ∈ T2, i.e. x ∈ AI ,
and x ⪯ u. We infer that u ∈ AI .

(S2) Let ([x]≈, [y]≈) ∈ rRed(I) and ([x]≈, u) ∈ T2. The
former implies x r−→ y and the latter implies x ⪯ u. Thus
there is y′ such that (x, y′) ∈ rI and y ⪯ y′. From
(x, y′) ∈ rI and x ⪯ u it follows that (u, v) ∈ rI and
y′ ⪯ v for some v. We infer y ⪯ v and thus ([y]≈, v) ∈
T2.

Define the mapping f : Dom(I) → Dom(Red(I)) by
f(x) := [x]≈, and choose a mapping g : Dom(Red(I)) →
Dom(I) such that g([x]≈) ∈ [x]≈. (Since equivalence
classes are non-empty, at least one such g exists.) We
then have (x, f(x)) ∈ T1 and (f(x), x) ∈ T2, and thus
x ≈ f(x). Similarly, it holds that ([x]≈, g([x]≈)) ∈ T2 and
(g([x]≈), [x]≈) ∈ T1, which implies [x]≈ ≈ g([x]≈).

As next step, we show that Red(I) is weakly reduced.

(R1) Assume that [x]≈ and [y]≈ are similar, i.e. there is
a simulation on Red(I) containing ([x]≈, [y]≈) and an-
other one containing ([y]≈, [x]≈). Composing the first
with T1 on the left as well as with T2 on the right yields
a simulation on I containing (x, y), i.e. x ⪯ y. Similarly,
we obtain that y ⪯ x. It follows that x ≈ y, which means
that [x]≈ and [y]≈ are actually equal.

(R2) Let ([x]≈, [y]≈) ∈ rRed(I) and ([x]≈, [z]≈) ∈ rRed(I),
and assume that there is a simulation on Red(I) contain-
ing ([y]≈, [z]≈). Composing the simulation with T1 on
the left as well as with T2 on the right yields a simu-
lation on I containing (y, z), i.e. y ⪯ z. Furthermore,
([x]≈, [y]≈) ∈ rRed(I) implies that there is no z′ with
y ⪯ z′ and x r−→ z′, and ([x]≈, [z]≈) ∈ rRed(I) implies
x r−→ z. Together with y ⪯ z, the latter yields a contra-
diction.

Regarding the final step, assume that J is another weakly
reduced interpretation that is fully similar to I. Since
full similarity is transitive, we have that Red(I) ∼∼∼ J .
Let f : Dom(Red(I)) → Dom(J ) and g : Dom(J ) →
Dom(Red(I)) be the accompanying functions as per Def-
inition XXVI.

From Definition XXVI it follows that [x]≈ ≈ g(f([x]≈)),
and thus Condition (R1) yields [x]≈ = g(f([x]≈)). It simi-
larly follows that f(g(u)) = u. Thus, f and g are inverses of
each other and thus are bijective. It follows that that Red(I)
and J contain the same number of domain elements.

Next, consider a CN A. The bijection f sends each [x]≈ in
ARed(I) to another f([x]≈) in AJ (since [x]≈ ≈ f([x]≈)),
and thus |ARed(I)| ≤ |AJ |. (Actually, the converse inequal-
ity can be shown as well by means of g.)

Last, consider a RN r and a pair ([x]≈, [y]≈) ∈ rRed(I).
We will show that (f([x]≈), f([y]≈)) ∈ rJ . Since f is bi-
jective, it then follows that rJ contains at least as many pairs
as rRed(I).

Since [x]≈ ≈ f([x]≈) by Definition XXVI, Condi-
tion (S2) yields an element v such that (f([x]≈), v) ∈ rJ

and [y]≈ ⪯ v. Similarly by Condition (S2), there is [y′]≈
such that (g(f([x]≈)), [y′]≈) ∈ rRed(I) and v ⪯ [y′]≈. Re-
call from above that f and g are inverses of each other, which
implies that g(f([x]≈)) = [x]≈, i.e. ([x]≈, [y′]≈) ∈ rRed(I).
We further have that [y]≈ ⪯ v ⪯ [y′]≈. Now Condi-
tion (R2) yields that [y]≈ = [y′]≈, and consequently that
[y]≈ ≈ v. Since f([y]≈) ≈ [y]≈ by Definition XXVI, we
obtain f([y]≈) ≈ v. Since J is weakly reduced, this im-
plies f([y]≈) = v by Condition (R1), and so we conclude
that (f([x]≈), f([y]≈)) ∈ rJ .

The weak reduction Red(I) is not the smallest interpre-
tation that satisfies the same CIs as I, but its advantage is
that it can be computed in polynomial time. By means of
the powering, we could reduce Red(I) even further. The
first important observation is that I and its powering ℘(I)
satisfy the same CIs. Therefore, we could remove from I
every object x that is represented by a subset Y in ℘(I),
i.e. x ̸∈ Y and (I, x) ≈ (℘(I), Y ). The remaining objects
are called strongly irreducible and constitute the domain of
the strong reduction. However, determining the strongly ir-
reducible objects needs exponential time. Experiments with
the test datasets have shown that, in the cases where deter-
mining them was possible, not much can be saved since at
least half of the objects in the weak reduction are strongly
irreducible (often more than 80 %).



Algorithm 2: Computing all MMSCDs with FCbO

Input: Interpretation I where Dom(I) = {x1, . . . , xn}
Output: All MMSCDs in I (modulo equivalence)

1 Closures(I) := ∅
2 FCbO(∅, 1, ∅, . . . , ∅)
3 def FCbO(X, i,Ni, . . . , Nn)
4 Q := ∅
5 foreach j ∈ {i, . . . , n} in ascending order
6 Mj := Nj

7 if xj ̸∈ X
8 if Nj ∩ {x1, . . . , xj−1} ⊆ X ∩ {x1, . . . , xj−1}
9 Y := (X ∪ {xj})II

10 if X ∩ {x1, . . . , xj−1} = Y ∩ {x1, . . . , xj−1}
11 Q := Q∪ {(Y, j)}
12 else
13 Mj := Y
14 foreach j ∈ {i, . . . , n} in ascending order
15 if (Y, j) ∈ Q for some Y
16 Closures(I) := Closures(I) ∪ {Y }
17 FCbO(Y, j + 1,Mj+1, . . . ,Mn)

18 return {Y I | Y ∈ Closures(I) }

4.3 Computing all MMSCDs
Recall that the induced context KI has object set Dom(I)
and its attribute set M consists of the bottom CD ⊥, all CNs
A, and all ERs ∃r.XI where r is a RN and XI is a MMSCD
of a non-empty subset X of Dom(I). To compute the at-
tribute set M, we should not naı̈vely go through all sub-
sets of Dom(I) and compute their MMSCDs because there
are exponentially many subsets and MMSCDs of different
subsets are often equivalent. The following consequence of
Properties (G1)–(G7) helps us.

Lemma 14. The mapping ϕI : X 7→ XII is a closure op-
erator4 on Dom(I).

In order to avoid computing duplicates, we employ an op-
timized FCA algorithm to enumerate all closures of ϕI . By
Property (G4) and Proposition 8 all MMSCDs are then ob-
tained from the closures XII as ∃sim(℘(I), XII).

For this purpose, Algorithm 2 is an adaptation of
Fast Close-by-One (FCbO) (Krajča, Outrata, Vychodil,
2010), which is an optimized version of Close-by-One
(CbO) (Kuznetsov, 1993). In a nutshell, Algorithm 2 jumps
through the powerset of Dom(I) and determines all clo-
sures of ϕI . Whenever it has found a closure X , then it
recursively calls the function FCbO and generates the next
closures by adding one domain element to X and applying
ϕI , see Line 9. In order to narrow down the search space
and to avoid duplicate computations of the same closure, it
uses a so-called canonicity test in Lines 8 and 10. Com-
putations involving the different values of j in Lines 6–13
are independent of each other and can thus run in parallel

4Definition. A closure operator on a set M is a mapping
ϕ : ℘(M) → ℘(M) that is extensive (X ⊆ Xϕ), monotone
(X ⊆ Y implies Xϕ ⊆ Y ϕ), and idempotent (Xϕϕ = Xϕ). A
closure of ϕ is a subset X of M with X = Xϕ.

on multiple threads. Since we later need the closures them-
selves, e.g. in Lemma XXXI, an implementation should
return in Line 18 all MMSCDs together with the closure
from which they are induced, i.e. all pairs (Y, Y I) where
Y ∈ Closures(I).

Comparisons of CbO-based and other algorithms can be
found in (Konečný, Krajča, 2021; Kuznetsov, Obiedkov,
2002). There are also other, possibly faster algorithms that
can compute a closure system, but require that the closure
operator comes in form of a formal context, e.g. In-Close5
(Andrews, 2011, 2014, 2017, 2018) or LCM (Janoštı́k,
Konečný, Krajča, 2022a). Thus, these are either not applica-
ble or one must find an efficient way to describe the closure
operator by a formal context.

The operator ϕI is computed with the maximal simulation
S℘(I),I from the powering ℘(I) to I.

Lemma 15. XII = S℘(I),I(X) if ∅ ≠ X ⊆ Dom(I).

Proof. Consider a non-empty subset X of Dom(I). Propo-
sition 8 shows that the MMSCD XI is equivalent to
the ELsi CD ∃sim(℘(I), X). It follows that XII =
(∃sim(℘(I), X))I . By Lemma 1, the latter extension equals
S℘(I),I(X), where S℘(I),I is the maximal simulation
from ℘(I) to I.

To avoid fully constructing the exponentially-large pow-
ering, we lazily build only the part reachable from X when
a closure XII is computed.

By means of generators, these closures and their
MMSCDs can be computed more efficiently. Specifically,
in Line 9 each closure Y := (X ∪ {xj})II is computed
from its direct generator X ∪ {xj}. It is cheaper to com-
pute its MMSCD Y I from this generator rather than from
the closure since the generator is usually smaller than the
closure. In particular, the MMSCD Y I is equivalent to
∃sim(℘(I), X ∪ {xj}) by Property (G4) and Proposition 8.

In a direct generator X ∪ {xj}, the set X is another,
smaller closure since X comes from the first argument in the
recursive call in Line 17. By subsequently replacing these
closures with their direct generators, we obtain even smaller
generators. To this end, an implementation maintains a map-
ping g from closures to their direct generators. Now, given a
closure Y we compute its generator g∗(Y ) as follows. First,
let g1(Y ) := g(Y ) = X1 ∪ {xj1}. For the inductive step,
assume gk(Y ) = Xk ∪ {xj1 , . . . , xjk}.

• If Xk = ∅, then set g∗(Y ) := {xj1 , . . . , xjk}.

• Otherwise, define gk+1(Y ) := Xk+1 ∪ {xj1 , . . . , xjk+1
}

where g(Xk) = Xk+1 ∪ {xjk+1
}.

Lemma XXX. Y = g∗(Y )II

Proof. We show by induction that Y = gk(Y )II . We al-
ready know that Y = g(Y )II , which is the induction base
since g1(Y ) = g(Y ). Now let k > 1 for the induction step,
and assume gk(Y ) = Xk ∪ {xj1 , . . . , xjk}.

• If Xk = ∅, then g∗(Y ) = gk(Y ) and thus the induction
hypothesis yields Y = g∗(Y )II .



• Otherwise, we have gk+1(Y ) := Xk+1∪{xj1 , . . . , xjk+1
}

where g(Xk) = Xk+1∪{xjk+1
}. We infer the following.

gk+1(Y )II

= (Xk+1 ∪ {xj1 , . . . , xjk+1
})II

= (g(Xk) ∪ {xj1 , . . . , xjk})II

= (g(Xk)
I ∨ {xj1 , . . . , xjk}I)I by (∗)

= (g(Xk)
III ∨ {xj1 , . . . , xjk}I)I by (G4)

= (XI
k ∨ {xj1 , . . . , xjk}I)I by I.H.

= (Xk ∪ {xj1 , . . . , xjk})II by (∗)

= gk(Y )II

= Y by I.H.

It remains to specify (∗). Given two ELsi CDs C and D,
their least common subsumer (LCS, supremum) C ∨ D
is an ELsi CD that is uniquely defined up to equivalence
by two conditions:
1. C ⊑∅ C ∨D and D ⊑∅ C ∨D

2. for each ELsi CD E, if C ⊑∅ E and D ⊑∅ E, then
C ∨D ⊑∅ E.

LCS always exist and can be computed by products:
∃sim(C, c)∨∃sim(D, d) ≡∅ ∃sim(C×D, (c, d)). The above
used Property (∗) is (X ∪ Y )I ≡∅ XI ∨ Y I for all sub-
sets X,Y ⊆ Dom(I) (Baader, Distel, 2008), and it fol-
lows immediately from the definition of MMSCDs and
LCSs.

Specifically, to compute a closure Y := (X ∪ {xj})II
in Line 9 of Algorithm 2, we determine its generator
g∗(Y ) = g∗(X) ∪ {xj}, build the sub-interpretation P of
℘(I) consisting of g∗(Y ) and its descendants, compute the
maximal simulation SP,I from P to I, and then return
the row SP,I(g

∗(Y )). In addition, this sub-interpretation
P represents the MMSCD Y I , which is equivalent to
∃sim(℘(I), g∗(Y )) by Property (G4) and Proposition 8 and
thus also to ∃sim(P, g∗(Y )). We therefore add to the at-
tribute set M the ERs ∃r.∃sim(P, g∗(Y )) for all RNs r and
all closures Y . In addition, we memorize that Y is the clo-
sure of g∗(Y ) to avoid recomputing this when needed later,
e.g. by means of a mapping c with c(g∗(Y )) := Y . By
Lemma XXX, c(Z) = ZII for each generator Z := g∗(Y ).

For some datasets even these lazily constructed parts of
℘(I) are so large that they cannot be computed within rea-
sonable time limits. In order to detect such cases beforehand
and to not waste computation time, the prototype approxi-
mates, for the current object set at which the powering is to
be expanded, the number of successors — if it is larger than
10,000,000, the computation will be aborted. In order to
fulfil the requirements of a closure operator, we then return
the set Dom(I), which is the largest closure. The result-
ing CI base will, however, not be complete anymore since
some attributes required in the set M could not be computed.
But, if completeness comes for the price of extremely large
CIs, which might not have practical relevance or suffer from
overfitting, then one can probably dispense with this goal.
Moreover, we also allowed to manually specify a smaller

limit on the number of successors and thereby to further re-
strict the size of CIs in the base. We turned this bound into a
conjunction size limit by also counting the CNs that label the
particular object set in℘(I). It remains unclear to which ex-
tent completeness is lost, and we leave the investigation as
future research. We expect that completeness is still guar-
anteed for all CIs that obey the conjunction size limit, but
modifications to the method might be needed to achieve this.
Another way to limit the size of MMSCDs is by restricting
their role depth, i.e. by looking into the powering only up to
a pre-defined depth, see Section 5.3.

4.4 Computing the Induced Context
Next, we are concerned with efficiently computing the inci-
dence relation I of the induced context KI . Recall that it
consists of all pairs (x,C) ∈ I where x ∈ CI . Since ⊥I is
empty, I does not contain any pair (x,⊥). For each object x
and each CN A, determining if I contains the pair (x,A) is
a simple look-up in the interpretation function (check if AI

contains x). The following lemma shows that also the other
incidence pairs are easy to determine, viz. because we com-
pute the ERs ∃r.XI in M as explained in Section 4.3 and
thus we always have c(X) = XII .

Lemma XXXI. (x, ∃r.Y I) ∈ I iff. rI(x) ∩ c(Y ) ̸= ∅ for
each x ∈ Dom(I) and each ∃r.Y I ∈ M.

Proof. Consider an object x ∈ Dom(I) and an ER ∃r.Y I

in M. Then (x,∃r.Y I) ∈ I iff. there is an object y such that
(x, y) ∈ rI and (℘(I), Y ) ⪯ (I, y). Recall that the latter
holds iff. y ∈ S℘(I),I(Y ), where S℘(I),I is the maximal
simulation. Since c(Y ) = Y II , and Y II = S℘(I),I(Y ) by
Lemma 15, we conclude that (x, ∃r.Y I) ∈ I iff. rI(x) ∩
c(Y ) ̸= ∅.

4.5 Computing the Background Implications
Recall that the background implication set LI,T consists of
the implications

• Conj(C [II])→{E | E ∈ M and C ⊑T E } for each CI
C ⊑D in T

• {E}→ {F} for each two E,F ∈ M with E ⊑∅ F .

For those of the first kind, we go through all CIs C ⊑ D in
T and transform them into implications as follows.

1. According to the definition of the partial closure C [II],
the premise Conj(C [II]) contains, up to equivalence, all
CNs in the top-level conjunction of C as well as all ERs
∃r.DII where ∃r.D is in the top-level conjunction of
C. All CNs are attributes in M. Furthermore, each ER
∃r.DII is equivalent to an attribute in M. To find this
attribute, we first compute the extension DI , which is a
closure of the operator ϕI by Property (G7). Then we
determine its generator Z := g∗(DI). According to our
construction of M in Section 4.3, the ER ∃r.DII is rep-
resented by the attribute ∃r.ZI in M, and so the premise
Conj(C [II]) contains this attribute.

2. In order to determine the conclusion consisting of all at-
tributes E ∈ M with C ⊑T E, we first construct the



most specific consequence CT and, by Proposition 3, we
then check using maximal simulations which E ∈ M
satisfy CT ⊑∅ E. If T is an EL TBox, then CT can be
efficiently obtained from the classification or rather the
canonical model computed by the reasoner ELK.

To determine the implications of the second kind, we use
the recursive characterization of subsumption in Section 2.2.
The only non-trivial such implications in LI,T are the impli-
cations {⊥}→{F} for all F ∈ M as well as the implications
{∃r.XI}→ {∃r.Y I} where XI ⊑∅ Y I . Recall that, since
X and Y are generators, c(X) = XII and c(Y ) = Y II by
Lemma XXX.

• If XI ⊑∅ Y I , then XII ⊆ Y II by Property (G5), and
thus c(X) ⊆ c(Y ).

• Conversely, c(X) ⊆ c(Y ) implies XI ⊑∅ Y I by Prop-
erties (G2) and (G4).

Thus, we go through all ERs in M and add the implication
{∃r.XI}→ {∃r.Y I} to LI,T whenever c(X) ⊆ c(Y ).

4.6 Computing the CI Base
Our next goal is to compute the canonical implica-
tion base of the induced context KI relative to LI,T ,
which we afterwards transform into the canonical CI based

Can(KI ,LI,T ) from Theorem 10.
First of all, the set of all pseudo-intents and all intents can

be described by a closure operator (Ganter, 1984; Stumme,
1996). As in Section 4.3, we can employ an FCA al-
gorithm to enumerate all these closures. This not only
yields all pseudo-intents, from which the canonical impli-
cation base is built, but also all intents as a by-product. It
is currently unclear whether all pseudo-intents can be ef-
ficiently computed without them. The number of pseudo-
intents can be exponential in the size of the formal context
as well as in the number of intents, and several decision
problems related to pseudo-intents are intractable (Babin,
Kuznetsov, 2010, 2013; Distel, 2010; Distel, Sertkaya,
2011; Kuznetsov, 2004; Kuznetsov, Obiedkov, 2006, 2008;
Sertkaya, 2009a,b).

Currently, LinCbO is the fastest (single-threaded) algo-
rithm for computing canonical implication bases (Janoštı́k,
Konečný, Krajča, 2021a,b, 2022b). It is based on Close-
by-One (CbO) (Kuznetsov, 1993) and closures w.r.t. impli-
cations are computed with an improved version of LinClo-
sure (Beeri, Bernstein, 1979) that reuses counters. Like all
CbO-based algorithms, it uses the canonicity test to avoid
duplicate computations of the same closure. This test is in-
tegrated into the modified LinClosure sub-routine, which en-
ables early stop of unnecessary computation branches, and
is additionally supported by pruning rules. First experi-
ments with the C++-implementation [8] of LinCbO showed
a satisfying performance.

However, we need to extend LinCbO with support for
background implications. The only difference between
pseudo-intents with and without a background implication
set L is that the former additionally are closed under L.
We can easily ensure this by initially adding all background
implications to the implication set maintained by LinCbO.

Referring to Algorithm 5 in (Janoštı́k, Konečný, Krajča,
2022b), we initialize its variables as follows:
• add every background implication in L to the maintained

implication set T ,
• set list[i] := {U →V | U →V ∈ L and i ∈ U } for each

attribute i,
• compute the set F :=

⋃
{V | ∅ → V ∈ L},

• initialize the first counter as count[U→V ] := |U \F | for
each U → V ∈ L.

Afterwards, we start the recursive computation by call-
ing LinCbO P Step(F, 0, F, count) in place of the call
LinCbO P Step(∅, 0, ∅, ∅).

5 Variations
The canonical CI base from Theorem 10 is complete for
all CIs satisfied in the given interpretation I, even for all
disjointness axioms as well as for huge CIs that might not
have practical relevance. We will describe variations that
dispense with the computation of such CIs.

5.1 Not Computing Disjointness Axioms
Some CIs in the canonical CI base Can(I, T ) are disjoint-
ness axioms C ⊑ ⊥, which express that no objects in I are
described by C. Sometimes only the other CIs C ⊑ D are
desired as they describe the implications between CDs that
are satisfied and also witnessed in I. We have seen in ex-
periments that more than half of the computation time is
required for generating disjointness axioms. It is cheaper
to compute only the witnessed CIs since some intermediate
computation steps can be stopped early.
Definition 16. A CI C⊑D is witnessed in I if CI ̸= ∅ and
CI ⊆ DI . A TBox is witnessed complete for I if it entails
all CIs that are witnessed in I. A witnessed CI base of I
relative to T is a TBox B that consists of witnessed CIs and
for which B ∪ T is witnessed complete.

We partition the canonical CI base from Theorem 10 into
two sub-TBoxes: Can+(I, T ) consists of all witnessed CIs
and Can⊥(I, T ) consists of the remaining CIs.
Lemma XXXII. Can⊥(I, T ) consists of disjointness ax-
ioms.

Proof. Let
d
C ⊑

d
CII be a non-witnessed CI in the

canonical CI base Can(I, T ), i.e. (
d

C)I = ∅. It follows
that, in the induced context KI , there is no object that has
all attributes in C, i.e. CI = ∅. Thus CII = M, which
specifically means that ⊥ ∈ CII and so

d
CII is equal to ⊥

(modulo equivalence).

Proposition 17. Can+(I, T ) is a witnessed CI base of I
relative to T . Among all witnessed CI bases of I relative to
T it contains the fewest CIs.

Proof. We first show witnessed completeness. Recall from
the proof of Proposition 3 that EL⊥

si is invariant under direct
products. Assume that C ⊑D is satisfied in I and CI ̸= ∅.
Consider a model J of Can+(I, T ) ∪ T . We need to show
that C ⊑D is satisfied in J .

Product invariance yields that the direct product I × J
is a model of Can+(I, T ) ∪ T . We show that I × J is



also a model of the other CIs in Can(I, T ). Let E ⊑ F ∈
Can(I, T ) with EI = ∅. It follows that EI×J = ∅ and thus
I × J satisfies E ⊑ F .

Completeness of Can(I, T ) yields that C ⊑D is entailed
by Can(I, T )∪T . We conclude that CI×J ⊆ DI×J . Since
CI ̸= ∅, there is some x ∈ CI . In order to verify that CJ ⊆
DJ , we consider an object y ∈ CJ . Then (x, y) ∈ CI×J

by product invariance, and thus (x, y) ∈ DI×J . By product
invariance, we infer that y ∈ DJ .

Next, we show minimality. Consider another witnessed
CI base B. Due to witnessed completeness, B ∪ T |=
Can+(I, T ) and thus B ∪ Can⊥(I, T ) ∪ T |= Can(I, T ).
It follows that the union of B and Can⊥(I, T ) is a CI base.
According to Theorem 10, this union cannot contain fewer
CIs than Can(I, T ), which implies that B must contain at
least as many CIs as Can+(I, T ).

To compute Can+(I, T ), we should exclude from the at-
tribute set M all CDs not describing any object in I. Specif-
ically, denote by KI↾None the sub-context of KI with at-
tribute set M↾None := { C | C ∈ M and CI ̸= ∅ }, and
let LI,T ↾None be the subset of LI,T consisting of all impli-
cations in which only attributes from M↾None occur. The
witnessed CI base Can+(I, T ) can be computed from this
sub-context.

Lemma XXXIII. Can+(I, T ) is equal to {
d
C ⊑

d
D |

C→D ∈ Can(KI↾None,LI,T ↾None) and (
d
C)I ̸= ∅ }.

Proof. According to Theorem 10 and Section 2.4, the wit-
nessed CI base Can+(I, T ) consists of the CIs

d
C⊑

d
D

where C is a pseudo-intent of the induced context KI rela-
tive to the background implications in LI,T with (

d
C)I ̸=

∅, and D = CII .
We denote by J the incidence relation of KI↾None, i.e.

J := I∩(Dom(I)×M↾None). The following two statements
hold.

(α) If C ⊆ M↾None, then CI = CJ .
Recall from Section 2.4 that CI is the set of all elements
in Dom(I) that satisfy every atom in C. Since I and
J coincide on Dom(I) × M↾None and C is a subset of
M↾None, also CJ is the set of all elements in Dom(I)
that satisfy every atom in C, i.e. CI = CJ .

(β) If X ⊆ Dom(I) with X ̸= ∅, then XI = XJ .
The definition of J yields XJ = XI ∩ M↾None. Recall
from Section 2.4 that XI is the set of atoms in M that
are satisfied by each domain element in X . Since X is
non-empty, XI must be a subset of M↾None, and thus
XJ = XI .

By means of an induction along the subset inclusion ⊆,
we show that a set C ⊆ M with (

d
C)I ̸= ∅ is a pseudo-

intent of KI w.r.t. LI,T iff. it is a pseudo-intent of the sub-
context KI↾None w.r.t. LI,T ↾None. Consider some such C.

(PI1) From (
d
C)I ̸= ∅ we infer that CI ̸= ∅ for each

C ∈ C, and thus C ⊆ M↾None. Statement (α) yields
CJ = CI . Since CI = (

d
C)I ̸= ∅, it follows with

Statement (β) that CII = CJJ . So C ̸= CII iff. C ̸=
CJJ .

(PI2) If C is closed under the background implications in
LI,T , then it is also closed under the implications in the
subset LI,T ↾None.
Conversely, let C be closed under LI,T ↾None. We need
to show that C is also closed under LI,T . We proceed
with a case distinction on the implications in LI,T .
• First, consider an implication Conj(C [II]) → { E |
E ∈ M and C ⊑T E } for some CI C ⊑ D in
T , and assume Conj(C [II]) ⊆ C. The latter im-
plies C [II] ⊒∅ d

C and thus (C [II])I ⊇ (
d

C)I

by Property (G5). Since (
d
C)I is non-empty, also

(C [II])I is non-empty, and thus Conj(C [II]) is a sub-
set of M↾None.
Now consider an attribute E in the conclusion of the
implication. Recall from Section 3.2 that C [II] ⊑∅ C,
and thus C [II] ⊑T E. Since I is a model of T , we
have (C [II])I ⊆ EI , which implies that also EI is
non-empty and thus E ∈ M↾None. We conclude that
the considered implication is contained in LI,T ↾None,
and therefore its conclusion is a subset of C.

• It remains to consider an implication {E} → {F}
where E,F ∈ M and E ⊑∅ F , for which we assume
E ∈ C. From the latter we infer that E ⊒∅ d

C and
so EI ⊇ (

d
C)I by Property (G5). Thus EI is non-

empty, i.e. E ∈ M↾None. We further have EI ⊆ F I ,
which implies that also F I is non-empty and thus
F ∈ M↾None. We conclude that the considered im-
plication {E} → {F} is contained in LI,T ↾None, and
so F ∈ C.

(PI3) The induction hypothesis shows that the pseudo-
intents Q that are strict subsets of C are the same in KI
and KI↾None. Let Q ⊂ C be such a pseudo-intent. Then
(
d
Q)I ⊇ (

d
C)I and thus (

d
Q)I ̸= ∅. With simi-

lar arguments as above we infer that QII = QJJ . So
QII ⊆ C iff. QJJ ⊆ C.

Implementation Details. We have seen in Section 4.3
how the attribute set M can be efficiently computed, and
we will now describe modifications regarding the subset
M↾None. Of course, we always exclude the bottom CD ⊥
from M. It is easy to determine which CNs must be ex-
cluded from M (just check if AI is empty). However, we
should not filter the ERs ∃r.Y I after they have been com-
puted but rather avoid their computation (since computing
closures is expensive). According to Lemma XXXI, ∃r.Y I

must be excluded from M iff. rI(x) ∩ c(Y ) = ∅ for each
x ∈ Dom(I). Thus, we should compute only those closures
of ϕI that contain an object with a predecessor.

In order to achieve this with FCbO, we need to carefully
modify it. Recall from Algorithm 2 that an enumeration
{x1, . . . , xn} of the domain Dom(I) is expected. This enu-
meration influences the order in which subsets X of Dom(I)
occur during the algorithm’s run.

The first call of the function FCbO is with arguments
X = ∅ and i = 1. For each j ∈ {1, . . . , n}, the closure
{xj}II is computed in Line 9. If {xj}II does not contain
an object xk where k < j, then FCbO is recursively called
with arguments X = {xj}II and i = j + 1. If we ensure



that all objects with a predecessor come first in the enumer-
ation {x1, . . . , xn}, then we can skip the recursive calls for
all {xj}II where xj has no predecessor — because in the
subsequent recursive calls only further objects without pre-
decessor could be added to it.

Furthermore, we only need to compute pseudo-intents C
that are premises of witnessed CIs, i.e. for which (

d
C)I =

CI is non-empty. This is a monotonous property: if CI

is empty, then also EI is empty for each superset E ⊇ C.
Since the algorithm LinCbO enumerates the pseudo-intents
in a sub-order of set inclusion ⊆, we can stop a computation
branch as soon as such a pseudo-intent C with CI = ∅ has
been found.

In a similar way, we incorporate a conjunction size limit
(here for the top-level conjunctions in the CI base, whereas
for inner conjunctions the limit is taken into account during
the computation of all MMSCDs in Section 4.3). Such a
limit is monotonous as well: if C contains more than ℓ at-
tributes, then also every superset. Thus, we dispense with
processing supersets and stop the respective computation
branch as soon as a pseudo-intent C with |C| > ℓ has been
found.

5.2 Fast Disjointness Axioms
If, instead, we want a CI base that is still complete for dis-
jointness axioms but which need not be minimal, then we
compute the attribute set M as usual, but before building
the induced context KI from it we remove every CD C not
satisfied in I, except ⊥, and store the fast disjointness ax-
iom C ⊑ ⊥ in an intermediate set that we will later add to
the computed CI base. Since thereby the size of KI is of-
ten significantly reduced, the computation of the canonical
implication base is much faster. The downside is, however,
that the final CI base is larger.

Denote by KI↾Fast the sub-context of KI with at-
tribute set M↾Fast := {⊥}∪{C | C ∈ M and CI ̸= ∅ }, let
LI,T ↾Fast consist of all implications in LI,T that use only
attributes from M↾Fast, and define the set of fast disjointness
axioms as FastDA(I) := { C ⊑ ⊥ | C ∈ M \ M↾Fast }.
From this sub-context we compute the fast CI base
CanFast(I, T ) :=

d
Can(KI↾Fast,LI,T ↾Fast) ∪ FastDA(I).

Proposition XXXIV. CanFast(I, T ) is a CI base of I rela-
tive to T , though it need not be minimal.

Proof. We first show that the canonical CI base Can(I, T )
from Theorem 10 and the fast CI base CanFast(I, T ) are
equivalent.

Each CI in the fast CI base is satisfied in I and thus fol-
lows from the canonical CI base, for its completeness.

In the converse direction, we show that the fast CI base
entails each CI in the canonical CI base. We denote by L
the incidence relation of the sub-context KI↾Fast, i.e. L :=
I ∩ (Dom(I)×M↾Fast).

Similar as in the proof of Lemma XXXIII, a set C ⊆
M with (

d
C)I ̸= ∅ is a pseudo-intent of KI w.r.t.

LI,T iff. it is a pseudo-intent of the sub-context KI↾Fast
w.r.t. LI,T ↾Fast. We conclude that each CI

d
C ⊑

d
D

in Can(I, T ) where (
d
C)I ̸= ∅ is also contained in

CanFast(I, T ).

Now consider a CI
d

C ⊑
d

D in Can(I, T ) where
(
d

C)I = ∅. In particular, C is a pseudo-intent of KI
w.r.t. LI,T and D = CII . Since CI = (

d
C)I , we ob-

tain CI = ∅ and thus CII = M. It follows that ⊥ ∈ CII

and so
d

C⊑
d
D is (equivalent to) the disjointness axiomd

C⊑⊥. We distinguish the following cases.

• If C is no subset of M↾Fast, then there is some atom
C ∈ C with CI = ∅. Thus C ⊑ ⊥ is a fast disjoint-
ness axiom, and we conclude that

d
C ⊑

d
D follows

from FastDA(I) and thus also from CanFast(I, T ).
• We proceed with the case where C is a subset of
M↾Fast. The Statements (α) and (β) from the proof of
Lemma XXXIII hold similarly, and we will implicitly
use them in the following. It follows that CI = CL.
If there is a pseudo-intent Q ⊂ C of KI↾Fast w.r.t.
LI,T ↾Fast with QI = ∅, then also QL is empty, i.e.
⊥ ∈ QLL. In this case, CanFast(I, T ) contains, mod-
ulo equivalence, the CI

d
Q⊑⊥. Since Q is a subset of

C, the CI
d

C⊑⊥ follows from the latter.
• Otherwise, we will verify that C is also a pseudo-intent

of KI↾Fast w.r.t. LI,T ↾Fast.

(PI1) Recall that CI = ∅, which implies CL = ∅. Then
CLL = M↾Fast, i.e. ⊥ is contained in CLL. We show
that C cannot contain ⊥, from which C ̸= CLL fol-
lows. Assume the contrary. Since {⊥}→ {F} for all
F ∈ M are background implications in LI,T and C is
closed under all background implications, it would
follow that M is a subset of C, i.e. C and M are
actually equal. But then C would be an intent of KI ,
namely the largest one, a contradiction to (PI1).

(PI2) By assumption, C is closed under the background
implications in LI,T . It follows that C is also closed
under the subset LI,T ↾Fast.

(PI3) Consider a pseudo-intent Q ⊂ C of KI↾Fast w.r.t.
LI,T ↾Fast. Then QI ̸= ∅ (otherwise we would be in
the previous case), and so Q is also a pseudo-intent
of KI w.r.t. LI,T (see above). (PI3) yields QII ⊆ C.
Similarly as in the proof of Lemma XXXIII we infer
that QII = QLL, and thus QLL ⊆ C.

We conclude that CanFast(I, T ) contains the CId
C⊑

d
CLL where ⊥ ∈ CLL, which entails

d
C⊑⊥.

Last, we give an example where the fast CI base
CanFast(I, T ) is no minimal CI base. We choose a
signature with CNs A,B,C and without RNs. As in-
terpretation, we take I with Dom(I) := {x, y} and
·I := {x :A, y :B}. The existing knowledge is contained in
the TBox T := {C ⊑ A ⊓ B}, which has I as a model. In
order to construct the induced context KI , we do not need to
compute any MMSCDs since there are not RNs. We obtain
the following context.

KI A B C ⊥

x × · · ·
y · × · ·



The background implications in LI,T are {C} → {A,B}
and {⊥} → {A,B,C}. The canonical implication base
of KI w.r.t. LI,T contains only the implication {A,B} →
{A,B,C,⊥}, which is transformed into the CI A ⊓B ⊑⊥.
We obtain the canonical CI base {A ⊓B ⊑⊥}.

Now, the only fast disjointness axiom here is C ⊑⊥. The
restricted context KI↾Fast is KI without the attribute C, and
the restricted implication set LI,T ↾Fast is {{⊥}→{A,B}}.
The canonical implication base of KI↾Fast w.r.t. LI,T ↾Fast
consists of the single implication {A,B} → {A,B,⊥},
which is transformed into A ⊓ B ⊑ ⊥. The fast CI base
CanFast(I, T ) is thus {A ⊓B ⊑⊥, C ⊑⊥}. It is not mini-
mal since the fast disjointness axiom C ⊑⊥ already follows
from A ⊓B ⊑⊥ and T .

5.3 Bounding the Role Depth
Apart from bounding the conjunction size, another effective
way to avoid the axiomatization of impractically huge CIs
is to limit the role depth. Specifically, the role depth of
an EL CD is the maximal number of nestings of existen-
tial restrictions. By modifications to the approach in Sec-
tion 3.2, we can also compute a CI base w.r.t. a role-depth
bound n ≥ 0 which is, however, only guaranteed to be com-
plete for all CIs bounded by n. The case without a known
TBox T has already been considered (Borchmann, Distel,
Kriegel, 2016). We show how such an existing TBox can
be taken into account, yielding a minimal CI base as for the
unrestricted case if T also satisfies the role-depth bound n.

It is a finger exercise to verify that all results in Section 3.2
hold for the role-depth bounded case when all employed no-
tions are replaced by their role-depth bounded variants:

• For each subset X ⊆ Dom(I), the MMSCD of X for
role-depth bound n is denoted as XIn , and it is obtained
by unfolding the unbounded MMSCD: XIn ≡∅ XI↾n.

• We represent a bounded MMSCD XIn by layered copies
of the powering. We therefore construct the interpreta-
tion J that contains all pairs (X, k) in its domain where
X is in the domain of℘(I) and 0 ≤ k ≤ n, and its exten-
sion function labels (X, k) with the CN A if X is labelled
with A in ℘(I) and connects (X, k) and (Y, ℓ) with the
RN r if X is connected to Y by r in ℘(I) and k+1 = ℓ.
With that, the bounded MMSCD XIn is equivalent to
the CD ∃sim(J , (X, 0)), which is exponential in Dom(I)
and polynomial in n. Moreover, as it suffices to know all
pairs reachable from (X, 0), the powering ℘(I) needs to
be built only up to depth n, starting with X .

• As attribute set we now use Mn consisting of ⊥, all CNs,
and all ∃r.XIn−1 if n > 0 (instead of ∃r.XI). The in-
duced context with attribute set Mn is denoted by KI,n,
and the background implication set by LI,T ,n. When the
incidence relation I is filled, we add a pair (x, ∃r.XIn)
if rI(x) ∩SJ ,I((X, 0)) ̸= ∅.

• Also to the partial closure we apply the role-depth bound
and use the unfolding C [II]↾n.

• Only the adaptation of Lemma XV is not obvious. In
the proof, reconsider the part where we use the sequence
of applications of the ⊑+-Rule and the ⊑⊥-Rule that

produces from
d
X a subsumee of

d
Y to verify that

BS ∪LI,T entails X→Y. Now, the two rules might also
be applicable above the root, but these applications are
irrelevant since all involved concepts are already closed
w.r.t. I up to depth n and thus additional information
could be added only at deeper levels (as I models T ).

Altogether we obtain the following variant of Theorem 10.
Proposition XXXV. The TBox

d
Can(KI,n,LI,T ,n) is a

CI base of I relative to T for role depth n and is computable
in time that is exponential in Dom(I) and polynomial in T
and n. If all CIs in T are of the form C ⊑ D[II]↾n and
bounded by n, then it contains the fewest CIs among all CI
bases of I relative to T for n. Furthermore, there are finite
interpretations that have no polynomial-size CI base for n.

The following example shows that
d

Can(KI,n,LI,T ,n)
need not be a minimal CI base for role depth n if not all CIs
in T are bounded by n, even though T contains only CIs
C ⊑D with D ⊑∅ D[II]↾n.
Example XXXVI. Consider the following interpretation I.

I : x1

C

x2

A

x3

B

x4

C

x5

A

x6

B

x7 x8

B

x9

B

r r

r

r

We further have the TBox T := {∃r.∃r.B ⊑ C}, and we
consider the role-depth bound n := 1. Computing the in-
duced context KI,n is rather simple since we only need to
determine all MMSCDs for role depth n − 1, which are ⊤,
A, B, C and thus KI,n has the attributes ∃r.⊤, ∃r.A, ∃r.B,
and ∃r.C in addition to ⊥ and all CNs.

KI,n ⊥ A B C ∃r
.⊤

∃r
.A

∃r
.B

∃r
.C

x1 · · · × × × · ·
x2 · × · · × · × ·
x3 · · × · · · · ·
x4 · · · × · · · ·
x5 · × · · × · × ·
x6 · · × · · · · ·
x7 · · · · × · × ·
x8 · · × · · · · ·
x9 · · × · · · · ·

The background implication set LI,T ,n is empty since T
does not entail any non-trivial CIs between conjunctions
over these attributes. Ignoring disjointness axioms, the CI
base

d
Can(KI,n,LI,T ,n) is {A⊑∃r.B, ∃r.A⊑C}. The

latter CI is redundant since it follows from A ⊑ ∃r.B and
∃r.∃r.B ⊑ C.



Even if we add all top-level conjuncts in CIs in T to
the attribute set, which here yields the additional attribute
∃r.∃r.B only, the obtained CI base need not be minimal.
Although we can now capture the CI ∃r.∃r.B ⊑ C in T by
means of the background implication {∃r.∃r.B} → {C},
there are two problems. On the one hand, the induced con-
text now contains attributes with a role depth exceeding the
bound and these will be contained in the CIs. On the other
hand, the implication base of the extended induced context
KI,n would now contain the implications {A} → {∃r.B}
and {∃r.A} → {∃r.∃r.B, C}, but after transformation
into CIs the second is still redundant. It might be a solu-
tion to update the background implication set LI,T ,n ac-
cording to the transformation of each computed implication
into a CI. Here, we would add the background implication
{∃r.A}→{∃r.∃r.B} when {A}→{∃r.B} has been com-
puted. Then {∃r.A} would not be a pseudo-intent any-
more (and thus no premise of an implication in the base)
since its closure under the updated LI,T ,n would be {∃r.A,
∃r.∃r.B, C}. We leave this as future research.

Our last main result is the following.
Theorem 18. Given a finite interpretation I, an EL⊥

si TBox
T of which I is a model, and a number n ≥ 0, then a CI base
of I relative to T for role depth n can be computed in time
that is exponential in Dom(I) and polynomial in T and n. If
all CIs in T are of the form C⊑D[II]↾n and bounded by n,
then it contains the fewest CIs among all CI bases of I rela-
tive to T for n. Furthermore, there are finite interpretations
of which no CI base for n has polynomial size.

As an application of Theorem 18, we can keep the CIs in
a base small by iteratively axiomatizing CIs from a given in-
terpretation I. We therefore increase the role-depth bound in
each step (starting with 0) and take all CIs in T as well as the
CIs from all previous steps as background knowledge. This
guarantees a CI base that is complete for all CIs when the
role-depth bound 2|Dom(I)| · |Dom(I)|+1 has been reached
(Baader, Distel, 2008). Alternatively, we could stop earlier
and as last step compute the canonical CI base from Theo-
rem 10 relative to T and all CIs from the previous steps.

6 Experimental Evaluation
We implemented [9] the axiomatization method in the pro-
gramming language Scala 3 [10] and we evaluate the proto-
type with the plethora of ontologies [11] from real-world ap-
plications used in the ORE 2015 Reasoner Competition (Par-
sia, Matentzoglu, Gonçalves, Glimm, Steigmiller, 2017).
This collection is split into OWL 2 EL and OWL 2 DL on-
tologies. The former cannot contain any CIs not expressible
in EL. For the latter, we syntactically transform as many ax-
ioms as possible into EL and remove the others. There is no
best way to do this since optimal finite EL approximations
need not exist (Haga, Lutz, Marti, Wolter, 2020). Removal
of unsupported axioms makes these ontologies weaker in the
sense that some logical consequences are lost; however, no
new, undesired consequences are thereby introduced. Each
test dataset is derived from such an ontology, viz. we treat
the ABox as interpretation I (under closed-world assump-
tion) and the TBox T as existing knowledge.

In general, the so obtained interpretation I need not be a
model of the TBox T . In order to fulfill the preconditions
of Theorem 10, we saturate I by means of the ⊑+-Rule and
the ⊑⊥-Rule from Section 2.3 for the CIs in T . This was
possible for all test datasets, i.e. the ⊑⊥-Rule never failed.
According to Proposition IV and Lemma VI, the saturated
interpretation sat(I, T+) contains I as a sub-interpretation
and is a model of T . Now, it depends on the point of
view whether one wants to take the newly added domain
elements into account during axiomatization. We decided
to ignore these, and therefore slightly deviate from Theo-
rem 10 in that we restrict the induced context of the sat-
uration sat(I, T+) to the object set Dom(I). Technically,
this means that we axiomatize the closure operator C 7→
(Csat(I,T+) ∩ Dom(I))sat(I,T+) instead (Kriegel, 2019a).

Altogether we obtain 614 test datasets with up to 747,998
objects, of which 446 (72.64 %) are acyclic. The average
number of triples per object varies from slightly over 0 up to
25.39.

The prototype supports three modes in which disjoint-
ness axioms are not computed (None) as per Section 5.1,
computed in the fast way (Fast) as per Section 5.2, or com-
puted in the canonical way (Can.) as per Theorem 10. It
further allows for specifying a role depth bound and a con-
junction size limit. During the experiment, we used all
three modes and the settings (0, 32), (1, 8), (1, 32), (2, 32),
(∞, 32), (∞,∞) where the first parameter is the role depth
bound and the second is the conjunction size limit. For every
dataset, the prototype was executed once for each configura-
tion (mode and parameters).

There are three types of failures that can occur dur-
ing computation: timeouts (limit: 8 hours), out-of-memory
errors (limit: 80 GB), and powering-too-large exceptions
(conjunction size limit: 10,000,000). In order to save
unnecessary computation time resulting in the same fail-
ure, we assumed the following order ≤ on the configura-
tions and skipped subsequent computations with the same
dataset when a failure occurred for a smaller configuration:
None(x, y) < Fast(x, y) < Can.(x, y), and M(0, 32) <
M(1, 32) < M(2, 32) < M(∞, 32) < M(∞,∞), and
M(1, 8) < M(1, 32). In the statistics, the failure is then
inherited by all larger configurations.

The prototype is implemented according to presented de-
tails. It uses Java’s Fork/Join Framework [12] to execute
concurrent computation tasks and therefore all used data
structures must support concurrent read/write access by mul-
tiple threads. The standard libraries in Java and Scala al-
ready contain many suitable thread-safe collections, but we
also needed to implement a ConcurrentBitSet to repre-
sent subsets efficiently. However, the prototype differs in
the following aspects from this extended version.

• During the computation of all MMSCDs as per Sec-
tion 4.3, it uses the direct generators g(Y ) instead of the
generators g∗(Y ). The reason is that we found the lat-
ter only later, when there was no time left to repeat the
experiments. Since the generators g∗(Y ) are subsets of
the respective direct generators g(Y ), we expect a per-
formance gain when the prototype is updated.
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Figure 1: Computing reductions of the test datasets

• The prototype uses a background implication set differ-
ent from LI,T in Section 3.2. In an earlier version of
this article and its accompanying report, we used a rather
straightforward definition of the background implication
set that was easy to handle in proofs but was not suit-
able in computation for its exponential size w.r.t. the at-
tribute set M. We resolved this bottleneck by devel-
oping a polynomial-size set of background implications
that can be computed efficiently, though uses auxiliary
attributes and needs a rather long correctness proof, see
Appendix A. The presented background implication set
LI,T in Section 3.2 is both easy to handle in proofs and
can be computed efficiently. We do not expect a relevant
difference in performance as both implication sets have
similar size and can be computed in similar ways.

• Axiomatization of RRs and RIs was not implemented.
The experiments were run on a small, old computer server

with two Intel Xeon E5-2640 processors (each with 6 CPU
cores, hyper-threading, 15 MB cache, 2.80 GHz frequency,
boost up to 3.00 GHz) and 96 GB DDR3-SDRAM main

memory. Modern laptops have faster processors but usually
only a smaller amount of main memory. As runtime envi-
ronment we used Oracle GraalVM EE 22.3.0 (Java 19.0.1).

The only other prototype for axiomatizing graph datasets
that we are aware of is the one by Daniel Borchmann [13].
It was used in (Borchmann, Distel, Kriegel, 2016) for a case
study with a fragment of DBpedia (with only one role name).
However, no resource consumption was measured. For the
particular programming language used, we were not able to
conduct a performance comparison. We do expect that our
implementation is faster, due to many optimizations, effi-
cient data structures, and multi-threading, but also for the
modern FCA algorithms employed.

Computing the Weak Reduction. For 599 (97.56 %) of
the 614 test datasets the prototype successfully computed
the (weak) reduction. Figure 1 shows computation times as
well as size changes. In many cases, the number of objects
was significantly reduced and often by more than one or-
der of magnitude. Several reductions contain fewer than
ten objects, meaning that there is only a small variety of
different types of objects. We ignored these for the subse-
quent experiment steps. Reductions could not be computed
for 13 (2.12 %) larger datasets with more than 300,000 ob-
jects due to out-of-memory errors (limit: 80 GB), and for 2
(0.33 %) datasets due to timeouts (limit: 8 hours). Note that
in these cases the maximal simulation could contain more
than 300,000 · 300,000 pairs, which amounts to more than
83 GB if only one bit is used to represent containment of a
pair (like in the prototype, plus some metadata).

Computing all MMSCDs. Figures I and XVIII show the
numbers of MMSCDs computed for the test datasets, and
Figures II, XIX and XX show the computation times. We
observe that in more restricted settings fewer MMSCDs are
obtained in less time. This is a consequence of the smaller
and fewer CDs that can be used to differentiate the objects.

Computing the Induced Context. In Figures III and XXI
we see the number of attributes in the induced contexts KI
for the test datasets, and Figures IV, XXII and XXIII show
the computation times for KI (from the set of all MMSCDs
computed in the previous step). As expected, computing the
incidence relation is cheap. Moreover, we see that KI con-
tains significantly more attributes when disjointness axioms
are to be computed in the canonical way (in order to get a
minimal CI base), but for the other two modes the induced
contexts do not differ in size (ignoring ⊥). Of course, the
fewer MMSCDs have been computed in the previous step
due to more restricted parameters, the smaller KI is and the
faster it can be computed.

Computing the Background Implications. Figures V
and XXIV show the number of background implications
computed for the test datasets. There is no clear correla-
tion with the number of objects in the reduction, but instead
with the number of CIs in the given TBox T , see Figure VII,
as well as with the size of the underlying signature, see Fig-
ure VIII. As shown in Figures VI, XXV and XXVI, comput-
ing L∗

I,T is quite cheap and the computation times seem to
be highly correlated with the domain size of the reduction.
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Figure I: Computing all MMSCDs of I
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Figure II: Computing all MMSCDs of I
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Figure III: Computing the induced context KI
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Figure IV: Computing the induced context KI
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Figure V: Computing all background implications in L∗
I,T
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Figure VI: Computing all background implications in L∗
I,T
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Figure VII: Computing all background implications in L∗
I,T
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Figure VIII: Computing all background impl. in L∗
I,T
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Figure IX: Computing the implication base Can(KI ,L∗
I,T )
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Figure X: Computing the CI base Can(I, T )

Computing the CI Base. In Figures IX, XXVIII
and XXIX we see the computation times needed for comput-
ing the canonical implication base. Furthermore, Figures X
and XXVII show the number of implications/CIs in the base
(including the fast disjointness axioms). Unsurprisingly, the
mode without disjointness axioms is the fastest and produces
the fewest CIs. The canonical mode without any modifica-
tions is the slowest (mainly because the induced contexts
then become very large), but produces fewer CIs than the
mode with fast disjointness axioms, i.e. there is a trade-off
between computation time and cardinality of the base.

Total computation time. Figures XI to XIII show the to-
tal computation times for the CI bases (without reduction),
including failures due to timeouts (limit: 8 hours), out-of-
memory errors (limit: 80 GB), or powering-too-large excep-
tions (conjunction size limit: 10,000,000). The respective
success rates and rates for the three failure types are gleaned
in Tables XIV to XVII. However, we did not implement and
measure the rewriting of the CI base into EL, nor the ax-
iomatization of RRs and RIs. Computation finished for all
reduced datasets with no more than 100 objects. For reduced
datasets with up to 1,000 objects, the first errors due to insuf-
ficient computing resources occurred without a role-depth
bound. Between 1,000 and 10,000 objects, computations
failed without restrictions, but otherwise succeeded in the
majority of cases. Reduced datasets with more than 10,000
objects could only sometimes be axiomatized with very re-
stricted settings, given 8 hours time and 80 GB memory.

In summary, we clearly see that computation resources
can be saved if no disjointness axioms are wanted, or if they
are computed in the fast way. Furthermore, the parameters
allow us to control the overall resource consumption on the
one hand, but also the size and number of the CIs in the final
base on the other hand. We can avoid the computation of
huge CIs that might not have any practical relevance.

Last, since the implemented method produces only cor-
rect axioms by design, all computed axioms are 100 % cor-
rect in the input dataset. It would instead make sense to
measure completeness of the computed CI base since only
without restrictions it is guaranteed to be complete by de-
sign. Since an ontology usually entails infinitely many ax-
ioms and thus counting does not work, it is unclear how the
loss of completeness can be quantified. We leave the devel-
opment of a suitable metric as future task.

7 Future Prospects
That the theoretical approach itself can be extended to more
expressive DLs has already been proven, but it is unclear
whether such an extended approach can still be efficiently
implemented and used in practice. From the perspective
of this article, this seems possible for DLs characterized by
simulations, e.g. ELI or Horn-ALC.

Regarding the presented approach, an interesting question
for future research would be whether one can give any kind
of completeness guarantee if a conjunction size limit is used
(e.g. every CI that also satisfies the limit is entailed). A
smaller task can be to investigate how range restrictions and
role inclusions can be integrated into the background know-
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Figure XI: Total computation time (without reduction)

ledge after they have been computed but prior to axiomatiz-
ing the CIs, preferably yielding an overall minimal base.

It should be investigated whether the canonical CI base
can be obtained more efficiently from the fast CI base by
means of the algorithm in (Rudolph, 2007). The witnessed
CI base ignores all disjointness axioms. One could restrict it
even more by requiring that the number of objects satisfying
a CI premise must exceed an absolute limit (e.g. at least ten
objects) or relative limit (e.g. at least every twentieth object).

Furthermore, the computation can be speed-up with even
faster FCA algorithms for enumerating closures. The em-
ployed LinCbO algorithm is currently the fastest algorithm
for computing the canonical implication base, but it is unfor-
tunately only single-threaded. Developing a multi-threaded
variant is thus another future goal. It might already help to
change its depth-first behaviour. Apart from that one could
use a faster programming language (like C++), more com-
putation time, a faster server, or optimize the prototype.

A CI C ⊑ D is confident if the ratio |(C ⊓ D)I |/|CI |
exceeds a pre-defined limit but need not be 100% (Borch-
mann, 2013). Since a confident CI base extends a canonical
CI base by CIs of the form XI ⊑Y I , the prototype could be
upgraded as it already computes all MMSCDs XI and Y I .

We have not considered keys supported by the OWL 2 EL
profile. Learning of keys from RDF data using FCA has
been addressed in (Abbas, Bazin, David, Napoli, 2021,
2022; Atencia, David, Euzenat, Napoli, Vizzini, 2020). To
apply this approach to DL and OWL it must be extended
towards complex DL concepts in place of RDF classes.
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Figure XII: Total computation time (without reduction)
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≥ 101

< 102
≥ 102

< 103
≥ 103

< 104
≥ 104

None (0,32) 100.00 % 100.00 % 100.00 % 65.22 %
Fast (0,32) 100.00 % 100.00 % 100.00 % 30.43 %
Can. (0,32) 100.00 % 100.00 % 96.15 % 30.43 %

None (1,8) 100.00 % 100.00 % 100.00 % 34.78 %
Fast (1,8) 100.00 % 100.00 % 92.31 % 13.04 %
Can. (1,8) 100.00 % 100.00 % 88.46 % 13.04 %

None (1,32) 100.00 % 100.00 % 96.15 % 13.04 %
Fast (1,32) 100.00 % 100.00 % 88.46 % 4.35 %
Can. (1,32) 100.00 % 100.00 % 76.92 % 0.00 %

None (2,32) 100.00 % 100.00 % 84.62 % 0.00 %
Fast (2,32) 100.00 % 100.00 % 73.08 % 0.00 %
Can. (2,32) 100.00 % 100.00 % 53.85 % 0.00 %

None (∞,32) 100.00 % 100.00 % 76.92 % 0.00 %
Fast (∞,32) 100.00 % 96.43 % 69.23 % 0.00 %
Can. (∞,32) 100.00 % 92.86 % 50.00 % 0.00 %

None (∞,∞) 100.00 % 57.14 % 11.54 % 0.00 %
Fast (∞,∞) 100.00 % 53.57 % 11.54 % 0.00 %
Can. (∞,∞) 100.00 % 46.43 % 3.85 % 0.00 %

Table XIV: Success rates

≥ 101

< 102
≥ 102

< 103
≥ 103

< 104
≥ 104

None (0,32) 0.00 % 0.00 % 0.00 % 30.43 %
Fast (0,32) 0.00 % 0.00 % 0.00 % 65.22 %
Can. (0,32) 0.00 % 0.00 % 3.85 % 65.22 %

None (1,8) 0.00 % 0.00 % 0.00 % 60.87 %
Fast (1,8) 0.00 % 0.00 % 7.69 % 82.61 %
Can. (1,8) 0.00 % 0.00 % 11.54 % 82.61 %

None (1,32) 0.00 % 0.00 % 3.85 % 82.61 %
Fast (1,32) 0.00 % 0.00 % 11.54 % 91.30 %
Can. (1,32) 0.00 % 0.00 % 23.08 % 95.65 %

None (2,32) 0.00 % 0.00 % 15.38 % 95.65 %
Fast (2,32) 0.00 % 0.00 % 26.92 % 95.65 %
Can. (2,32) 0.00 % 0.00 % 42.31 % 95.65 %

None (∞,32) 0.00 % 0.00 % 23.08 % 95.65 %
Fast (∞,32) 0.00 % 3.57 % 30.77 % 95.65 %
Can. (∞,32) 0.00 % 3.57 % 46.15 % 95.65 %

None (∞,∞) 0.00 % 10.71 % 50.00 % 95.65 %
Fast (∞,∞) 0.00 % 10.71 % 50.00 % 95.65 %
Can. (∞,∞) 0.00 % 10.71 % 50.00 % 95.65 %

Table XV: Timeout rates

≥ 101

< 102
≥ 102

< 103
≥ 103

< 104
≥ 104

None (0,32) 0.00 % 0.00 % 0.00 % 4.35 %
Fast (0,32) 0.00 % 0.00 % 0.00 % 4.35 %
Can. (0,32) 0.00 % 0.00 % 0.00 % 4.35 %

None (1,8) 0.00 % 0.00 % 0.00 % 4.35 %
Fast (1,8) 0.00 % 0.00 % 0.00 % 4.35 %
Can. (1,8) 0.00 % 0.00 % 0.00 % 4.35 %

None (1,32) 0.00 % 0.00 % 0.00 % 4.35 %
Fast (1,32) 0.00 % 0.00 % 0.00 % 4.35 %
Can. (1,32) 0.00 % 0.00 % 0.00 % 4.35 %

None (2,32) 0.00 % 0.00 % 0.00 % 4.35 %
Fast (2,32) 0.00 % 0.00 % 0.00 % 4.35 %
Can. (2,32) 0.00 % 0.00 % 3.85 % 4.35 %

None (∞,32) 0.00 % 0.00 % 0.00 % 4.35 %
Fast (∞,32) 0.00 % 0.00 % 0.00 % 4.35 %
Can. (∞,32) 0.00 % 3.57 % 3.85 % 4.35 %

None (∞,∞) 0.00 % 3.57 % 3.85 % 4.35 %
Fast (∞,∞) 0.00 % 3.57 % 3.85 % 4.35 %
Can. (∞,∞) 0.00 % 10.71 % 11.54 % 4.35 %

Table XVI: Out-of-memory rates

≥ 101

< 102
≥ 102

< 103
≥ 103

< 104
≥ 104

None (0,32) 0.00 % 0.00 % 0.00 % 0.00 %
Fast (0,32) 0.00 % 0.00 % 0.00 % 0.00 %
Can. (0,32) 0.00 % 0.00 % 0.00 % 0.00 %

None (1,8) 0.00 % 0.00 % 0.00 % 0.00 %
Fast (1,8) 0.00 % 0.00 % 0.00 % 0.00 %
Can. (1,8) 0.00 % 0.00 % 0.00 % 0.00 %

None (1,32) 0.00 % 0.00 % 0.00 % 0.00 %
Fast (1,32) 0.00 % 0.00 % 0.00 % 0.00 %
Can. (1,32) 0.00 % 0.00 % 0.00 % 0.00 %

None (2,32) 0.00 % 0.00 % 0.00 % 0.00 %
Fast (2,32) 0.00 % 0.00 % 0.00 % 0.00 %
Can. (2,32) 0.00 % 0.00 % 0.00 % 0.00 %

None (∞,32) 0.00 % 0.00 % 0.00 % 0.00 %
Fast (∞,32) 0.00 % 0.00 % 0.00 % 0.00 %
Can. (∞,32) 0.00 % 0.00 % 0.00 % 0.00 %

None (∞,∞) 0.00 % 28.57 % 34.62 % 0.00 %
Fast (∞,∞) 0.00 % 32.14 % 34.62 % 0.00 %
Can. (∞,∞) 0.00 % 32.14 % 34.62 % 0.00 %

Table XVII: Powering-too-large rates



100

101

102

103

104

N
um

be
ro

fM
M

SC
D

s
None (0,32) None (1,8) None (1,32)
None (2,32) None (∞,32) None (∞,∞)

100

101

102

103

104

N
um

be
ro

fM
M

SC
D

s

Fast (0,32) Fast (1,8) Fast (1,32)
Fast (2,32) Fast (∞,32) Fast (∞,∞)

101 102 103 104 105

100

101

102

103

104

Number of domain objects (after reduction)

N
um

be
ro

fM
M

SC
D

s

Can. (0,32) Can. (1,8) Can. (1,32)
Can. (2,32) Can. (∞,32) Can. (∞,∞)

Figure XVIII: Computing all MMSCDs of I
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Figure XIX: Computing all MMSCDs of I
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Figure XX: Computing all MMSCDs of I
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Figure XXI: Computing the induced context KI
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Figure XXII: Computing the induced context KI
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Figure XXIII: Computing the induced context KI
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Figure XXIV: Computing all background impl. in L∗
I,T
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Figure XXV: Computing all background impl. in L∗
I,T
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Figure XXVI: Computing all background implications in L∗
I,T
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Figure XXVII: Computing the CI base Can(I, T )
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Figure XXVIII: Computing the impl. base Can(KI ,L∗
I,T )
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Figure XXIX: Computing the implication base Can(KI ,L∗
I,T )



A Alternative Background Implications
Recall that the background implications in LI,T (see
Page 10) are constructed from the input TBox T and en-
sure that the canonical CI base in Theorem 10 does not
contain unnecessary CIs, i.e., no tautologies and no CIs that
already follow from T . As mentioned in Section 6, in an
earlier version of Section 3.2 we used a rather straightfor-
ward definition of the background implication set LI,T : it
consisted of all implications C → D where C and D are
subsets of M such that T entails

d
C ⊑

d
D. In all proofs

in Section 3.2 this alternative definition of LI,T can be used
without any issues. However, it is of exponential size w.r.t.
the attribute set M, which is itself exponential in Dom(I)
in the worst case, and it should thus not be directly used in
the computation of the canonical CI base. We resolved this
bottleneck by developing a conservative extension L∗

I,T of
the alternative LI,T that can be computed in polynomial
time w.r.t. M. It is defined over a superset of M but entails
the same implications involving only attributes in M. Since
this conservative extension L∗

I,T is computed and used in
the prototype, we will here describe all details and provide
proofs. However, we do not expect a relevant difference in
performance as both implication sets (the newer LI,T on
Page 10 and the conservative extension L∗

I,T ) have similar
size and can be computed in similar ways.

In what follows, LI,T always refers to the alternative,
older definition of the background implications (see above).

A.1 The Conservative Extension L∗
I,T

According to Proposition 3, we can decide by means of the
⊑+-Rule and the ⊑⊥-Rule whether the background implica-
tion set LI,T entails an implication C→D. We will show
how these rules can be emulated with FCA implications that
use additional attributes.

Since FCA implications can only capture conjunctions in
their premises and conclusions, we take as additional at-
tributes all top-level conjuncts in the CIs in T . The so ex-
tended attribute set contains all atoms that are necessary for
detecting applicability of the ⊑+-Rule or of the ⊑⊥-Rule as
well as all atoms that could be added by an application of
the ⊑+-Rule. Formally, we extend the attribute set M with
the smallest set M∗ of additional attributes such that
• Conj(E) ∪ Conj(F ) ⊆ M ∪M∗ for each E ⊑ F ∈ T+
• and Conj(E) ⊆ M ∪M∗ for each E ⊑⊥ ∈ T⊥.

Over the extended attribute set M∪M∗ we define the impli-
cation set L∗

I,T that consists of the following implications:
(BI1) Conj(E)→ Conj(F ) for each E ⊑ F ∈ T+
(BI2) {∃r.E} → {∃r.F} for each ∃r.E ∈ M ∪ M∗ and

each ∃r.F ∈ M ∪M∗ with E ⊑T+ F

(BI3) Conj(E)→{⊥} for each E ⊑⊥ ∈ T⊥
(BI4) Conj(F )→{⊥} for each E⊑F ∈ T+ with F ⊑T ⊥
(BI5) {⊥}→M ∪M∗

We are going to prove that L∗
I,T is a conservative extension

in the following sense.
Definition XXXVII. Consider implication sets L and L∗

over M and M∗, respectively, where M ⊆ M∗. We say that

L∗ is a conservative extension of L if both entail the same
implications over M , i.e., L |= U → V iff L∗ |= U → V for
each implication U → V where U, V ⊆ M .

Lemma XXXVIII. L∗ is a conservative extension of L iff
UL = UL∗ ∩M for each subset U ⊆ M .

Proof. Recall that L |= U → V iff V ⊆ UL.
We begin with the if direction. Therefore consider an im-

plication U → V where U, V ⊆ M . From UL = UL∗ ∩M
it follows that V ⊆ UL iff V ⊆ UL∗

, and thus L |= U → V
iff L∗ |= U → V .

Next, we show the only-if direction, for which we con-
sider a subset U ⊆ M . On the one hand, the implication
U → UL follows from L and thus also from L∗, i.e., UL ⊆
UL∗

. On the other hand, the implication U →UL∗ ∩M fol-
lows from L∗ and thus also from L, i.e., UL∗ ∩ M ⊆ UL.
We conclude that UL = UL∗ ∩M .

Lemma XXXIX. Let L be an implication set over M∪M∗

such that
d

E ⊑T d
F for each implication E → F in L.

For each subset C ⊆ M∪M∗, it holds that
d
C ⊑T d

CL.

Proof. As explained above, there must be sets C0, . . . ,Cn

and implications E1 → F1, . . . ,En → Fn in L such that

1. C0 = C
2. Ek+1 ⊆ Ck but Fk+1 ̸⊆ Ck

3. Ck+1 = Ck ∪ Fk+1

4. Cn = CL.

Consider a number k with 0 ≤ k < n. From Ek+1 ⊆
Ck we infer

d
Ck ⊑∅ d

Ek+1, and the assumption impliesd
Ek+1 ⊑T d

Fk+1. It follows that
d

Ck ⊑T d
(Ck ∪

Fk+1) =
d

Ck+1. By induction, we obtain that
d
C =d

C0 ⊑T d
Cn =

d
CL.

Proposition XL. L∗
I,T is a conservative extension of LI,T .

Proof. According to Lemma XXXVIII it is enough to verify
that CLI,T = CL∗

I,T ∩M for all C ⊆ M. The inclusion ⊇
comes first. Let D ∈ CL∗

I,T ∩ M. Since Lemma XXXIX
yields

d
C ⊑T d

CL∗
I,T , we infer that

d
C ⊑T D. Thus

LI,T contains C→{D}, and so the closure CLI,T contains
D.

Next, we turn our attention to the inclusion ⊆. Assume
that D is an attribute in the closure CLI,T . If ⊥ ∈ C, then
CL∗

I,T = M ∪ M∗ for the implication {⊥} → M ∪ M∗,
and so D ∈ CL∗

I,T . We proceed with the case where ⊥ ̸∈
C. Lemma XXXIX yields

d
C ⊑T d

CLI,T , and thusd
C ⊑T D. With Proposition 3 we obtain (

d
C)T ⊑∅ D,

where (
d
C)T is constructed from

d
C by means of the

⊑+-Rule and the ⊑⊥-Rule.
According to Lemma I,

d
C is equivalent to a CD of the

form ∃sim(C, c). Specifically, by means of the generic con-
struction in the proof of Lemma I we obtain (C, c) by aug-
menting the powering℘(I) with a fresh object c, i.e., which
is no object in the powering ℘(I) and also does not occur
in any of the CIs in the TBox T . Formally, we define the



domain as Dom(C) := {c} ∪ Dom(℘(I)) and the interpre-
tation function as ·C := { c : A | A ∈ C } ∪ { (c,X) : r |
∃r.XI ∈ C } ∪ ·℘(I).

In the following we consider a sequence of applications of
the ⊑+-Rule and the ⊑⊥-Rule that produces (

d
C)T from

the above representation ∃sim(C, c) of
d
C. We will con-

struct from it, step by step, the closure of C w.r.t. the impli-
cations in L∗

I,T and we show that it contains all attributes in
M that subsume (

d
C)T , in particular D.

Since I is a model of T and X ∈ C℘(I) iff X ⊆ CI by
Lemma IX, also the powering ℘(I) is a model of T . This
means that, within C, neither the ⊑+-Rule nor the ⊑⊥-Rule
is applicable for objects in Dom(℘(I)); in the beginning
they are only applicable to the root object c.

Now assume that C0, C1, . . . , Cn is a sequence of interpre-
tations such that

i. C0 := C
ii. The ⊑⊥-Rule does not fail for Ck, and the subsequent

interpretation Ck+1 is constructed from Ck by
(a) once applying the ⊑+-Rule at the root object c, say

for the CI Ek+1 ⊑ Fk+1 ∈ T+ where Ek+1 =
∃sim(Ek+1, ek+1) and Fk+1 = ∃sim(Fk+1, fk+1),

(b) and then exhaustively applying the ⊑+-Rule at all ob-
jects except c.

iii. Either the ⊑⊥-Rule fails for Cn (then
d
C is not satis-

fiable w.r.t. T ), or the ⊑+-Rule is not applicable to Cn
(then this last interpretation is the saturation sat(C, T+)).

We set Ck := ∃sim(Ck, c) for each k < n. If the ⊑⊥-Rule
failed, then let Cn := ⊥, and otherwise Cn := ∃sim(Cn, c),
i.e., Cn = (

d
C)T .

From this sequence, we will construct a sequence of sub-
sets C0,C1, . . . ,Cn of M ∪M∗ in the following way:

I. C0 is obtained as the closure of C w.r.t. the implications
in L∗

I,T \ {Conj(E)→ Conj(F ) | E ⊑ F ∈ T+ }.
II. Ck+1 is constructed as the closure of Ck

(a) first w.r.t. the implication Conj(Ek+1)→Conj(Fk+1),
i.e., we have Conj(Ek+1) ⊆ Ck and we set Ck+1 :=
Ck ∪ Conj(Fk+1),

(b) and then w.r.t. the implications in L∗
I,T \{Conj(E)→

Conj(F ) | E ⊑ F ∈ T+ }.

We need to show that the latter sequence is well-defined,
specifically that Instruction II(a) can always be carried out.
To this end, we show the following claim.

Claim. For each M ∈ M∪M∗, if Ck ⊑∅ M , then M ∈ Ck.
Recall from Property ii(a) of the sequence Ck that the

⊑+-Rule is applicable for a CI with premise Ek+1, i.e.,
Ck ⊑∅ Ek+1. The claim yields Conj(Ek+1) ⊆ Ck, and
thus Instruction II(a) can be executed.

Moreover, the claim allows us to finish the proof as fol-
lows. Recall that Cn = (

d
C)T , and note that each Ck is a

subset of the closure CL∗
I,T . We can thus conclude from the

claim (specifically for k = n) that (
d
C)T ⊑∅ M implies

M ∈ CL∗
I,T for each M ∈ M ∪ M∗. Taking as M the

considered attribute D yields D ∈ CL∗
I,T as we need it.

It remains to show the claim. We begin with the induc-
tion base (k = 0) and therefore assume that C0 ⊑∅ M .
If the ⊑⊥-Rule failed already for C0, then C0 = ⊥. Fur-
thermore, there must be a disjointness axiom E ⊑ ⊥ ∈
T⊥ with E = ∃sim(E , e) and (E , e) ⪯ (C0, c). Since
∃sim(C0, c) = ∃sim(C, c) ≡∅ d

C, we infer with Lemma 2
that

d
C ⊑∅ E, i.e., for each E′ ∈ Conj(E) there is some

C ′ ∈ C such that C ′ ⊑∅ E′. We conclude that either
C ′ = E′ or L∗

I,T contains the implication {C ′} → {E′}
(by Instruction (BI2)), and thus Conj(E) ⊆ C0. Further-
more, L∗

I,T contains the implications Conj(E) → {⊥} (by
Instruction (BI3)) and {⊥}→M∪M∗ (by Instruction (BI5)),
which implies C0 = M ∪M∗ and thus also M ∈ C0.

We proceed with the remaining case of the induction base,
where the ⊑⊥-Rule did not fail for C0. Since then C0 =
∃sim(C0, c) = ∃sim(C, c) ≡∅ d

C, we have
d
C ⊑∅ M .

We must prove that M ∈ C0. Since M is an atom, there
must be some C ∈ C such that C ⊑∅ M . If C = M ,
then it immediately follows that M ∈ C0. Otherwise, L∗

I,T
contains the implication {C}→{M} (by Instruction (BI2))
and thus C0 contains M .

Last, we turn our attention towards the induction step
(k → k + 1). Recall that Ck+1 is obtained from Ck
as follows. First the ⊑+-Rule is once applied at the
root object c for the CI Ek+1 ⊑ Fk+1 where Ek+1 =
∃sim(Ek+1, ek+1) and Fk+1 = ∃sim(Fk+1, fk+1), which re-
quires that (Ek+1, ek+1) ⪯ (Ck, c) and yields the interpreta-
tion with domain Dom(Ck)∪Dom(Fk+1) and interpretation
function

·Ck ∪ ·Fk+1 ∪ { c :A | fk+1 :A ∈ ·Fk+1 }
∪ { (c, x) : r | (fk+1, x) : r ∈ ·Fk+1 }.

Afterwards the ⊑+-Rule is exhaustively applied at all ob-
jects except c and for all CIs in T+. Since this has already
been done within Ck in the previous induction step, this
means that we saturate the part Fk+1 only. Since c is not
reachable from any other object, no further assertions for c
are added. It follows that (Ck+1, x) and (sat(Fk+1, T+), x)
are simulation-equivalent for each (fk+1, x) : r ∈ ·Fk+1 . We
conclude that ∃sim(Ck+1, c) is equivalent to

∃sim(Ck, c)
⊓

d
{A | fk+1 :A ∈ ·Fk+1 }

⊓
d
{ ∃r.∃sim(sat(Fk+1, T+), x) | (fk+1, x) : r ∈ ·Fk+1 }

Now let ∃sim(Ck+1, c) ⊑∅ M for an atom M ∈ M∪M∗.
(Then M ̸= ⊥.) If this subsumption already holds for Ck,
then the induction hypothesis yields M ∈ Ck, and with
Ck ⊆ Ck+1 we conclude that M ∈ Ck+1. Otherwise, since
M is an atom, M must subsume any of the other atoms in
the above conjunction.

• If M is a CN, then A ⊑∅ M for some fk+1 : A ∈ ·Fk+1 ,
and thus M = A ∈ Conj(Fk+1). According to In-
struction II(a), Conj(Fk+1) is a subset of Ck+1, and thus
M ∈ Ck+1.

• Otherwise, M is an ER, say ∃r.M ′. Then there is some
(fk+1, x):r ∈ ·Fk+1 such that ∃r.∃sim(sat(Fk+1, T+), x) ⊑∅



∃r.M ′. It follows that ∃sim(sat(Fk+1, T+), x) ⊑∅ M ′

and Lemma V yields ∃sim(Fk+1, x) ⊑T+ M ′. Since
both ERs are in M ∪ M∗, we infer that the implication
{∃r.∃sim(Fk+1, x)} → {∃r.M ′} is in L∗

I,T (by Instruc-
tion (BI2)).
According to Instruction II, Ck+1 is obtained from Ck

by first adding all elements in Conj(Fk+1), and then sat-
urating w.r.t. the other implications in L∗

I,T that do not
correspond to a CI in T . Since ∃r.∃sim(Fk+1, x) ∈
Conj(Fk+1), we conclude that ∃r.M ′ must be added by
the latter, i.e., M ∈ Ck+1.

First assume that the ⊑⊥-Rule does not fail for Ck+1, i.e.,
Ck+1 = ∃sim(Ck+1, c). From the above we immediately
conclude that Ck+1 ⊑∅ M implies M ∈ Ck+1.

We finish the induction step by considering the case where
the ⊑⊥-Rule fails for Ck+1. Then Ck+1 is the last inter-
pretation in the sequence, i.e., n = k + 1. It follows that
Ck+1 = Cn = ⊥ and further there is a disjointness axiom
E ⊑ ⊥ in T⊥ with E = ∃sim(E , e) and (E , e) ⪯ (Ck+1, y)
for some object y ∈ Dom(Ck+1).

• If y is the root object c, then ∃sim(Ck+1, c) ⊑∅ E
by Lemma 2. The above yields Conj(E) ⊆ Ck+1.
Since L∗

I,T contains the implications Conj(E) → {⊥}
(by Instruction (BI3)) and {⊥} → M ∪ M∗ (by In-
struction (BI5)), it follows from Instruction II(b) that
M ∪M∗ ⊆ Ck+1, and thus the claim holds.

• Otherwise, since the ⊑⊥-Rule did not fail for Ck, the ob-
ject y must be reachable from an object x with (fk+1, x):
r ∈ ·Fk+1 . Recall that (Ck+1, x) and (sat(Fk+1, T+), x)
are simulation-equivalent. So the ⊑⊥-Rule also fails
for sat(Fk+1, T+) and thus Fk+1 is unsatisfiable w.r.t.
T by Lemma VI, i.e., Fk+1 ⊑T ⊥. It follows that
L∗
I,T contains the implication Conj(Fk+1) → {⊥} (by

Instruction (BI4)). Since Conj(Fk+1) ⊆ Ck+1 and L∗
I,T

also contains the implication {⊥} → M ∪ M∗ (by In-
struction (BI5)), we conclude from Instruction II(b) that
M ∪M∗ ⊆ Ck+1, and thus the claim holds.

Lemma XLI. L∗
I,T is computable in polynomial time w.r.t.

M and T .

Proof. The implications in Instructions (BI1) and (BI3) are
just syntactic rewritings of the CIs in T and can thus be com-
puted in polynomial time. Instruction (BI2) yields at most
polynomially many implications and since subsumption can
be decided in polynomial time by Proposition 3, all these im-
plications can be computed in polynomial time. In Instruc-
tion (BI4) one goes through the polynomially many CIs in
the sub-TBox T+ and checks whether the conclusion is un-
satisfiable, which needs polynomial time by Proposition 3.
Instruction (BI5) yields only one implication without check-
ing any condition.

The Case with a Role-Depth Bound. Regarding the
proof of Proposition XL in the role-depth-bounded case,
the ⊑+-Rule and the ⊑⊥-Rule are initially not only appli-
cable at the root of

d
C, but also elsewhere. The crucial

point is:
d
C satisfies the chosen role-depth bound, and

thus applying the rules to
d

C above the root does not add
anything within the role-depth bound (only at deeper lev-
els). However, since D also satisfies the role-depth bound,
these deeper levels are irrelevant. It therefore suffices to
apply the rules only at the root, just like in the unbounded
case. This assumes that the given TBox T complies with
the role-depth bound as well, since then testing applicability
of the ⊑+-Rule does not need the deeper levels either.

Last, if T does not satisfy the role-depth bound, then it
might also be necessary to apply the ⊑+-Rule initially to
deeper levels in

d
C. W.l.o.g. we can assume that this is

done right in the beginning, i.e., we exhaustively apply the
⊑+-Rule everywhere below the root in

d
C. This replaces

each ER ∃r.(XI↾n−1) with ∃r.((XI↾n−1)
T+). That the

same atoms at the root are then deducible is already taken
care of by the implications (BI2).

The only necessary change in the above proof is thus to
start with C0 obtained from C by exhaustively applying the
⊑+-Rule everywhere but at the root. The construction of the
Ci is the same, no change necessary. (Then also the induc-
tion base for the claim needs to be adapted in the obvious
way.)

A.2 Impl. Bases w.r.t. Conservative Extensions
In order to use the background implications over the ex-
tended attribute set we need to modify the definition of the
canonical implication base.
Definition XLII. Let K := (G,M, I) be a formal context
and L∗ be an implication set over M∗, where M is a subset
of M∗. A pseudo-intent of K w.r.t. L∗ is a subset P ⊆ M∗

that fulfills the following conditions:
(PI∗1) P ∩M is no intent, i.e., (P ∩M) ̸= (P ∩M)II

(PI∗2) P is closed under L∗, i.e., P = PL∗

(PI∗3) Q ∩ M ⊂ P implies (Q ∩ M)II ⊆ P for each
pseudo-intent Q.

The canonical implication base Can(K,L∗) consists of all
implications (P ∩M)→ (P ∩M)II where P is a pseudo-
intent.

The following lemma shows how the pseudo-intents of K
w.r.t. an implication set L and w.r.t. a conservative extension
L∗ are related.
Lemma XLIII. Consider a formal context K := (G,M, I),
an implication set L over M , and an implication set L∗ over
M∗, where M ⊆ M∗. Further let L∗ be a conservative
extension of L. The following statements hold.

1. If P is a pseudo-intent of K w.r.t. L∗, then P ∩ M is a
pseudo-intent of K w.r.t. L.

2. If P is a pseudo-intent of K w.r.t. L, then PL∗
is a

pseudo-intent of K w.r.t. L∗ such that P = PL∗ ∩M .

Proof. We show the two statements simultaneously by an
induction along the partial order ⊆M where Q ⊆M P if
Q ∩M ⊆ P ∩M . Note that ⊆M is well-founded.

First of all, since L∗ is a conservative extension of L, we
have PL = PL∗ ∩M for all subsets P ⊆ M .

1. Let P be a pseudo-intent of K w.r.t. L∗.



(PI1) (PI∗1) already yields that P∩M is no intent, i.e., (PI1)
is satisfied by P ∩M .

(PI2) Since L∗ is a conservative extension of L, we have
(P ∩M)L = (P ∩M)L

∗ ∩M . Since P ∩M ⊆ P , we
infer that (P ∩ M)L

∗ ⊆ PL∗
. By (PI∗2), P = PL∗

. It
follows that (P ∩ M)L ⊆ P . Since L is an implication
set over M and P ∩ M is a subset of M , the closure
(P ∩M)L must be a subset of M as well. We conclude
that (P ∩M)L ⊆ P ∩M . The converse subset inclusion
trivially holds, and thus (PI2) is fulfilled by P ∩M .

(PI3) Finally, consider a pseudo-intent Q of K w.r.t. L with
Q ⊂ P ∩ M . We need to verify that QII ⊆ P ∩ M .
We have QL∗ ∩ M = QL = Q ⊂ P ∩ M , and thus
QL∗ ⊂M P . The induction hypothesis yields that QL∗

is a pseudo-intent of K w.r.t. L∗ and QL∗ ∩ M = Q.
Then QL∗ ∩M ⊂ P , and by (PI∗3) we infer that (QL∗ ∩
M)II ⊆ P , i.e., QII ⊆ P . Since QII is a subset of M ,
we conclude that QII ⊆ P ∩M , which verifies (PI3) for
P ∩M .

2. Assume that P is a pseudo-intent of K w.r.t. L.
(PI∗1) According to (PI1), P ̸= P II . Since P satisfies

(PI2), we have P = PL and thus PL∗ ∩ M = P . It
follows that PL∗ ∩ M ̸= (PL∗ ∩ M)II , i.e., (PI∗1) is
satisfied by PL∗

.
(PI∗2) By definition PL∗

is closed under all implications in
L∗, and so (PI∗2) is fulfilled by PL∗

.
(PI∗3) Last, assume that Q is a pseudo-intent of K w.r.t. L∗

such that Q∩M ⊂ PL∗
. Recall that PL∗ ∩M = PL =

P = P ∩M , and thus Q ∩M ⊂ P ∩M , i.e., Q ⊂M P .
By induction hypothesis, Q ∩M is a pseudo-intent of K
w.r.t. L. Since Q∩M ⊂ P , (PI3) yields (Q∩M)II ⊆ P .
Since P ⊆ PL∗

, we conclude that (Q ∩ M)II ⊆ PL∗
,

i.e., (PI∗3) is satisfied by PL∗
.

Proposition XLIV. Consider a formal context K :=
(G,M, I), an implication set L over M , and an impli-
cation set L∗ over M∗, where M ⊆ M∗. Further assume
that L∗ is a conservative extension of L. The canonical
implication bases Can(K,L) and Can(K,L∗) are equal.

Proof. Consider an implication P → P II in Can(K,L),
i.e., P is a pseudo-intent of K w.r.t. L. According to
Lemma XLIII, PL∗

is a pseudo-intent of K w.r.t. L∗ such
that PL∗ ∩ M = P . From Definition XLII we infer that
Can(K,L∗) contains the implication PL∗ ∩ M → (PL∗ ∩
M)II , which equals P → P II .

In the opposite direction, let (P ∩ M) → (P ∩ M)II be
an implication in Can(K,L∗), i.e., P is a pseudo-intent of
K w.r.t. L∗. By Lemma XLIII it follows that P ∩ M is a
pseudo-intent of K w.r.t. L, and thus Can(K,L) contains the
implication (P ∩M)→ (P ∩M)II .

The following example shows that a background implica-
tion set can have an exponentially smaller representation in
form of a conservative extension, just like L∗

I,T is exponen-
tially smaller than LI,T .

Example XLV. For a number ℓ ≥ 0, consider the implica-
tion set L := {U→{#n} | U ⊆ {x1, . . . , xℓ} and n = |U | }
over the attribute set M := {x1, . . . , xℓ} ∪ {#0, . . . ,#ℓ}.
The implications in L count the number of elements in a
subset of {x1, . . . , xℓ}. More specifically, the cardinality of
a subset U ⊆ {x1, . . . , xℓ} equals the largest n for which
#n is contained in the closure UL. Note that the number of
implications in L is exponential in M .

We define a conservative extension L∗ of L by means of
additional attributes #i,j

n each of which expresses that n at-
tributes with an index between i and j have been seen. This
meaning is axiomatized as follows.

L∗ := {∅→ {#0}}
∪ { {xi}→ {#i,i

1 } | 1 ≤ i ≤ ℓ }

∪
{
{#i,j

n , xk}→ {#i,k
n+1}

∣∣∣∣ 1 ≤ i ≤ j < k ≤ ℓ

and 1 ≤ n < ℓ

}
∪
{
{#i,j

n }→ {#n}
∣∣∣∣ 1 ≤ i ≤ j ≤ ℓ

and 1 ≤ n ≤ ℓ

}
By construction, UL∗ ∩M = UL for each subset U ⊆ M .
Moreover, the number of implications in L∗ is only polyno-
mial in M .

A.3 Implementation Details
Last, we explain further implementation details in addition
to Section 4.

Computing the Background Implications in L∗
I,T . The

Instructions (BI1) and (BI3)–(BI5) can be executed in the
obvious way. For Instruction (BI2) we should make a case
distinction whether the involved ERs are in M or in M∗.
Lemma XLVI. The implications in L∗

I,T according to In-
struction (BI2) are the following:

• {∃r.XI} → {∃r.Y I} for each ∃r.XI ∈ M and each
∃r.Y I ∈ M with c(X) ⊆ c(Y )

• {∃r.XI} → {∃r.F} for each ∃r.XI ∈ M and each
∃r.F ∈ M∗ with X ⊆ F I

• {∃r.E} → {∃r.F} for each ∃r.E ∈ M∗ and each
∃r.F ∈ M∗ with E ⊑T+ F

• {∃r.E} → {∃r.Y I} for each ∃r.E ∈ M∗ and each
∃r.Y I ∈ M with (Y, e) ∈ S℘(I),sat(E,T+), where E =
∃sim(E , e)

Proof. Consider ERs ∃r.XI and ∃r.Y I in M. According
to Proposition 3, we have XI ⊑T+ Y I iff. (XI)T+ ⊑∅ Y I .
Since I is a model of T+, the ⊑+-Rule is not applicable
to XI , and thus (XI)T+ equals XI . Recall that, since X
and Y are generators, c(X) = XII and c(Y ) = Y II by
Lemma XXX. On the one hand, if XI ⊑∅ Y I , then XII ⊆
Y II by Property (G5), and thus c(X) ⊆ c(Y ). On the other
hand, c(X) ⊆ c(Y ) implies XI ⊑∅ Y I by Properties (G2)
and (G4). Altogether we have shown that XI ⊑T+ Y I iff.
c(X) ⊆ c(Y ).

Next, let ∃r.XI ∈ M and ∃r.F ∈ M∗. We have
XI ⊑T+ F iff. (XI)T+ ⊑∅ F (by Proposition 3) iff.
XI ⊑∅ F (as above) iff. X ⊆ F I (by Property (G1)).



The condition for two ERs ∃r.E and ∃r.F in M∗ is as in
the definition of L∗

I,T and so there is nothing to show.
Last, assume ∃r.E ∈ M∗ and ∃r.Y I ∈ M. Then E ⊑T+

Y I iff. ET+ ⊑∅ Y I . Recall that ET+ = ∃sim(sat(E , T+), e)
where E ≡∅ ∃sim(E , e). Thus ET+ ⊑∅ Y I iff. (℘(I), Y ) ⪯
(sat(E , T+), e) iff. (Y, e) ∈ S℘(I),sat(E,T+).

The proof of Proposition XL shows that, in the above im-
plications, it suffices to consider ERs ∃r.E ∈ M∗ that occur
in conclusions of CIs in T+ and, similarly, ERs ∃r.F ∈ M∗

that occur in premises of CIs in T+. This allows to use a
slightly smaller set of background implications in an imple-
mentation.

In the role-depth-bounded case, the second implication
type is characterized by X ⊆ F I if F satisfies the bound.
Otherwise, one would really need to check whether XI ⊑T+

F . All these subsumptions where F is an EL CD can effi-
ciently be precomputed with ELK. For the others one would
need to saturate the left-hand side by means of the ⊑+-Rule
and then decide the subsumption by checking existence of a
simulation.

Computing the CI Base. Recall from Section 4.6 that we
compute the canonical implication base with LinCbO. Since
our background knowledge L comes as a conservative ex-
tension L∗, further modifications are necessary. In order
to continue employing the improved LinClosure with reused
counters, we must now operate with subsets of the extended
attribute set M ∪ M∗. In principle, we need to supple-
ment a subset of M with a part that is only needed to store
the additional attributes added by closing under L∗. Ac-
cording to Definition XLII, such a subset D ⊆ M ∪ M∗

represents an intent if the part D ∩ M is an intent, i.e. if
D∩M = (D∩M)II . Whenever a subset D has been found
that represents no intent and is closed under all previously
computed implications as well as under all background im-
plications, then D represents a pseudo-intent and thus we
store the implication D ∩M → (D ∩M)II .

Consequently, we modify Algorithm 5 in (Janoštı́k,
Konečný, Krajča, 2022b) as follows:
• Line 5: replace D ̸= DII with D ∩M ̸= (D ∩M)II

• Lines 6, 8: replace D→DII with D∩M → (D∩M)II

• Line 7: replace i ∈ D with i ∈ D ∩M
• Lines 9, 10: replace DII with (D ∩M)II ∪D

Moreover, we still assume that M = {1, . . . , n} is the set
of attributes of the formal context and further that M∗ =
{n+1, . . . ,m} is the set of additional attributes used in L∗.
In Line 12 we still iterate over attributes i below n only.
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216. DOI: 10.1145/3460210.3493564.
Simon Andrews (2011). In-Close2, a High Performance
Formal Concept Miner. In: Conceptual Structures for Dis-
covering Knowledge – 19th International Conference on
Conceptual Structures, ICCS 2011, Derby, UK, July 25-29,
2011. Proceedings. Ed. by Simon Andrews, Simon Polov-
ina, Richard Hill, Babak Akhgar. Vol. 6828. Lecture Notes
in Computer Science. Springer, pp. 50–62. DOI: 10.1007/
978-3-642-22688-5_4.
Simon Andrews (2014). A Partial-Closure Canonicity Test
to Increase the Efficiency of CbO-Type Algorithms. In:
Graph-Based Representation and Reasoning – 21st In-
ternational Conference on Conceptual Structures, ICCS
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from FCA point of view: A CbO-style algorithm with speed-
up features. In: Int. J. Approx. Reason. 142, pp. 64–80. DOI:
10.1016/j.ijar.2021.11.005.
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Petr Krajča, Jan Outrata, Vilém Vychodil (2010). Advances
in Algorithms Based on CbO. In: Proceedings of the 7th
International Conference on Concept Lattices and Their
Applications, Sevilla, Spain, October 19-21, 2010. Ed.
by Marzena Kryszkiewicz, Sergei A. Obiedkov. Vol. 672.
CEUR Workshop Proceedings. CEUR-WS.org, pp. 325–
337. URL: http://ceur-ws.org/Vol-672/paper29.
pdf.
Francesco Kriegel (2017). Acquisition of Terminological
Knowledge from Social Networks in Description Logic. In:
Formal Concept Analysis of Social Networks. Ed. by Rokia
Missaoui, Sergei O. Kuznetsov, Sergei A. Obiedkov. Lec-
ture Notes in Social Networks. Springer, pp. 97–142. DOI:
10.1007/978-3-319-64167-6_5.
Francesco Kriegel (2019a). Constructing and extending de-
scription logic ontologies using methods of formal concept
analysis. Doctoral thesis. Technische Universität Dresden,
Germany. URL: https://nbn- resolving.org/urn:
nbn:de:bsz:14- qucosa2- 360998. See the summary
(Kriegel, 2020).
Francesco Kriegel (2019b). Joining Implications in For-
mal Contexts and Inductive Learning in a Horn Description
Logic. In: Formal Concept Analysis – 15th International
Conference, ICFCA 2019, Frankfurt, Germany, June 25-28,
2019, Proceedings. Ed. by Diana Cristea, Florence Le Ber,
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Lecture Notes in Computer Science. Springer, pp. 17–31.
DOI: 10.1007/978-3-030-21462-3_2.
Sergei O. Kuznetsov (1993). A fast algorithm for computing
all intersections of objects from an arbitrary semilattice. In:
Nauchno-Tekhnicheskaya Informatsiya Seriya 2 – Informat-
sionnye protsessy i sistemy 1, pp. 17–20.
Sergei O. Kuznetsov (2004). On the Intractability of Com-
puting the Duquenne-Guigues Base. In: J. Univers. Comput.
Sci. 10.8, pp. 927–933. DOI: 10.3217/jucs- 010- 08-
0927.
Sergei O. Kuznetsov, Sergei A. Obiedkov (2002). Compar-
ing performance of algorithms for generating concept lat-
tices. In: J. Exp. Theor. Artif. Intell. 14.2-3, pp. 189–216.
DOI: 10.1080/09528130210164170.
Sergei O. Kuznetsov, Sergei A. Obiedkov (2006). Counting
Pseudo-intents and #P-completeness. In: Formal Concept
Analysis, 4th International Conference, ICFCA 2006, Dres-
den, Germany, February 13-17, 2006, Proceedings. Ed. by
Rokia Missaoui, Jürg Schmid. Vol. 3874. Lecture Notes in
Computer Science. Springer, pp. 306–308. DOI: 10.1007/
11671404_21.
Sergei O. Kuznetsov, Sergei A. Obiedkov (2008). Some de-
cision and counting problems of the Duquenne-Guigues
basis of implications. In: Discret. Appl. Math. 156.11,
pp. 1994–2003. DOI: 10.1016/j.dam.2007.04.014.
Carsten Lutz, Robert Piro, Frank Wolter (2010). Enrich-
ing EL-Concepts with Greatest Fixpoints. In: ECAI 2010 –
19th European Conference on Artificial Intelligence, Lisbon,
Portugal, August 16-20, 2010, Proceedings. Ed. by Helder
Coelho, Rudi Studer, Michael J. Wooldridge. Vol. 215. Fron-
tiers in Artificial Intelligence and Applications. IOS Press,
pp. 41–46. DOI: 10.3233/978-1-60750-606-5-41.
Carsten Lutz, Frank Wolter (2010). Deciding inseparability
and conservative extensions in the description logic EL. In:
J. Symb. Comput. 45.2, pp. 194–228. DOI: 10.1016/j.
jsc.2008.10.007.
Carsten Lutz, Frank Wolter (2011). Foundations for Uni-
form Interpolation and Forgetting in Expressive Description
Logics. In: IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011. Ed. by Toby Walsh. IJ-
CAI/AAAI, pp. 989–995. DOI: 10.5591/978-1-57735-
516-8/IJCAI11-170.
David Maier (1983). The Theory of Relational Databases.
Computer Science Press. URL: http://web.cecs.pdx.
edu/~maier/TheoryBook/TRD.html.
Bijan Parsia, Nicolas Matentzoglu, Rafael S. Gonçalves,
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