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Abstract

Unification has been introduced in Description Logic (DL) as a means to detect re-
dundancies in ontologies. In particular, it was shown that testing unifiability in the DL
EL is an NP-complete problem, and this result has been extended in several directions.
Surprisingly, it turned out that the complexity increases to PSpace if one disallows the use
of the top concept in concept descriptions. Motivated by features of the medical ontology
SNOMEDCT, we extend this result to a setting where the top concept is disallowed, but
there is a background ontology consisting of restricted forms of concept and role inclusion
axioms. We are able to show that the presence of such axioms does not increase the com-
plexity of unification without top, i.e., testing for unifiability remains a PSpace-complete
problem.

Description Logics (DLs) [11] are a prominent family of logic-based knowledge representation
languages, which offer their users a good compromise between expressiveness and complexity of
reasoning, and constitute the formal and algorithmic foundation of the standard Web Ontology
Language OWL2.1 The DL EL, which provides the concept constructors conjunction (u),
existential restriction (∃r.C), and top concept (>), is a rather inexpressive, but nevertheless
very useful member of this family. On the one hand, the important reasoning problems, such as
the subsumption and the equivalence problem, in EL and some of its extensions are decidable in
polynomial time [23, 8]. On the other hand, EL and its tractable extensions are frequently used
to define biomedical ontologies, such as the large medical ontology SNOMEDCT.2 To illustrate
the use of the top concept, whose absence plays an important rôle in this paper, consider the
EL concept descriptions Man u ∃child .> and Man u ∃child .Female of the concepts Father and
Father of a daughter, respectively. In the former description, the top concept is used since no
further properties of the child are to be required.

Unification in DLs has been introduced in [18] as a new inference service, motivated by the need
for detecting redundancies in ontologies, in a setting where different ontology engineers (OEs)
constructing the ontology may model the same concepts on different levels of granularity. For
example, assume that (using the style of SNOMEDCT definitions) one OE models the concept
of a viral infection of the lung as

ViralInfection u ∃findingSite.LungStructure,

1https://www.w3.org/TR/owl2-overview/
2https://www.ihtsdo.org/snomed-ct/
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whereas another one models it as

LungInfection u ∃causativeAgent .Virus.

Here ViralInfection and LungInfection are used as atomic concepts without further defin-
ing them, i.e., the two OEs made different decisions when to stop the modelling process.
The resulting concept descriptions are not equivalent, but they are nevertheless meant to
represent the same concept. They can be made equivalent by treating the concept names
ViralInfection and LungInfection as variables, and then substituting the first one by Infectionu
∃causativeAgent .Virus and the second one by Infection u ∃findingSite.LungStructure. In this
case, we say that the descriptions are unifiable, and call the substitution that makes them
equivalent a unifier. Intuitively, such a unifier proposes definitions for the concept names that
are used as variables. In [7], unification and its extension to disunification are used to construct
new medical concepts from SNOMEDCT.

Unification in EL was first investigated in [15], where it was proved that deciding unifiability
is an NP-complete problem. The NP upper bound was shown in that paper using a brute-
force “guess and then test” NP algorithm. More practical algorithms for solving this prob-
lem and for computing unifiers were presented in [17] and [16], where the former describes a
goal-oriented transformation-based algorithm and the latter is based on a translation to SAT.
Implementations of these two algorithms are provided by the system UEL3 [14], which is also
available as a plug-in for the ontology editor Protégé. At the time these algorithms were devel-
oped, SNOMEDCT was an EL ontology consisting of acyclic concept definitions. Since such
definitions can be encoded into the unification problem (see Section 2.3 in [17]), algorithms
for unification of EL concept descriptions (without background ontology) could be applied to
SNOMEDCT.

There was, however, one problem with using these algorithms in the context of SNOMEDCT:
the top concept is not used in SNOMEDCT, but the concepts generated by EL unification
might contain >, even if applied to concept descriptions not containing >. Thus, the con-
cept descriptions produced by the unifier are not necessarily in the style of SNOMEDCT. For
example, assume that we are looking for a unifier satisfying the two subsumption constraints4

∃findingSite.LungStructure v? ∃findingSite.X,

∃findingSite.HeartStructure v? ∃findingSite.X.

It is easy to see that there is only one unifier of these two constraints, which replaces X with >.
Unification in EL−>, i.e., the fragment of EL in which the top constructor is disallowed, was
investigated in [1, 19]. Surprisingly, it turned out that the absence of > makes unification
considerably harder, both from a conceptual and a computational complexity point of view.
In fact, the complexity of deciding unifiability increases from NP-complete for EL to PSpace-
complete for EL−>. The unification algorithm for EL−> introduced in [1, 19] basically proceeds
as follows. It first applies the unification algorithm for EL to compute so-called local unifiers.
If none of them is an EL−>-unifier, then it tries to pad the images of the variables by conjoining
concept descriptions called particles. The task of finding appropriate particles is reduced to
solving certain systems of linear language inclusions, which can be realized in PSpace using an
automata-based approach.

The current version of SNOMEDCT consists not only of acyclic concept definitions, but also
contains more general concept inclusions (GCIs). In addition, properties of the part-of relation
are no longer encoded using the so-called SEP-triplet encoding [28], but are directly expressed

3https://sourceforge.net/projects/uel/
4Instead of equivalence constraints, as in our above example and in early work on unification in DLs, we

consider here a set of subsumption constraints as unification problem. It is easy to see that these two kinds of
unification problems can be reduced to each other [2].
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via role axioms [30], which can, for instance, be used to state that the part-of relation is
transitive and that proper-part-of is a subrole of part-of. Decidability of unification in EL
w.r.t. a background ontology consisting of GCIs is still an open problem. In [2], it is shown
that the problem remains in NP if the ontology is cycle-restricted, which is a condition that the
current version of SNOMEDCT satisfies. Extensions of this result to the DL ELHR+ , which
additionally allows for transitive roles and role inclusion axioms, were presented in [5] and [3],
where the former introduces a SAT-based algorithm and the latter a transformation-based one.
However, in all these algorithms, unifiers may introduce concept descriptions containing >. In
our example with the different finding site, however, the presence of the GCIs

LungStructure v UpperBodyStructure and HeartStructure v UpperBodyStructure

would yield a unifier not using >, namely the one that replaces X with UpperBodyStructure.

The purpose of this paper is to combine the approach for unification in EL−> [1, 19] with the
one for unification in ELHR+ w.r.t. cycle-restricted ontologies [2, 5, 3], to obtain a unification
algorithm for ELH−>R+ w.r.t. cycle-restricted ontologies. This algorithm follows the line of the
one for EL−> in that it basically first generates ELHR+ -unifiers, which it then tries to pad with
particles. Appropriate particles are found as solutions of certain linear language inclusions.
However, due to the presence of GCIs and role axioms, quite a number of non-trivial changes and
additions are required. In particular, the solutions of the systems of linear language inclusions
as constructed in [1, 19] cannot capture particles that are appropriate due to the presence of
an ontology. For instance, in our example, UpperBodyStructure would be such a particle. To
repair this problem, we first need to show that, in ELH−>R+ , unifiability w.r.t. a cycle-restricted
ontology can be characterized by the existence of a special type of unifiers. Afterwards, we
exploit the properties of this kind of unifiers to define more sophisticated systems of language
inclusions, which encode the semantics of GCIs and role axioms occurring in a background
ontology. The solutions of such systems then yield also particles that are appropriate only due
to the presence of this ontology.

While the unification problem investigated in this paper is motivated by an application in
ontology engineering, it is also of interest for unification theory [20], which is concerned with
unification-related properties of equational theories. In fact, unification in DLs can be seen as
a special case of unification modulo equational theories, where the respective equational theory
axiomatizes equivalence in the DL under consideration. For EL and ELHR+ , the corresponding
equational theories can be found in [29]. The ones for the case without top can be obtained
from them by removing the constant 1 from the signature, and all identities containing it from
the axiomatization. The results in [1, 19] and in the present paper show that the seemingly
harmless removal of a constant from the equational theory may increase the complexity of
the unification problem considerably. Considering unification w.r.t. a background ontology
corresponds to adding a finite set of ground identities to the corresponding equational theory.
For the word problem, it was shown that decidability is stable under adding finite sets of ground
identities to theories such as commutativity or associativity-commutativity [26, 21, 12, 25]. For
unification, it was shown in [13] that adding finite sets of ground identities to the theory
ACUI of an associativity-commutativity-idempotent symbol with a unit leaves the unification
problem decidable. The results in [2, 5, 3] can be seen as such transfer results, but they require
a restriction on the ground identities corresponding to cycle-restrictedness.

In the next section, we introduce the DLs ELHR+ and ELH−>R+ and the ontologies they can
be used to construct, define some important notions such as particles, and recall the recursive
characterization of subsumption from [3]. Section 2 introduces unification in ELHR+ and
ELH−>R+ , shows that one can without loss of generality restrict the attention to flat ontologies
and unification problems, and defines the notion of cycle-restricted ontologies. In Section 3, we
recall the known approaches for unification in ELHR+ w.r.t. cycle-restricted ontologies [2, 5]
and unification in EL−> [1, 19]. Section 4 is devoted to demonstrating our new results. It is
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divided into two subsections. The first introduces so-called subsumption mappings, and shows
how they can be used to reduce unification of ELH−>R+ w.r.t. cycle-restricted ontologies to solving
a simpler kind of unification problem. The second subsection then in turn reduces solving this
simpler problem to solving certain linear language inclusions. Overall, this yields a PSpace-
algorithm for testing unifiability in ELHR+ w.r.t. cycle-restricted ontologies. In Section 5, we
briefly summarize the obtained results and describe ideas for future research.

This technical report is an extended version of an article accepted for publication at IJCAR
2024 [10]. The Appendix A, appearing after the references, provides a mapping that supports
the reader in finding the missing proofs and other details that had to be left out from [10] due
to the space constraints.

1 The Description Logics ELHR+ and ELH−>R+

In this section, we first define the syntax and semantics of the DLs investigated in this paper.
Then, we introduce the notions of atoms and particles, which will play an important rôle in our
unification algorithm. To conclude, we recall a useful characterization of subsumption for the
two investigated DLs.

1.1 Syntax and Semantics

Let NC and NR be countably infinite sets of concept names and role names. The set of ELHR+-
concept descriptions (for short, concepts) over NC and NR is inductively defined by using the
concept constructors conjunction (u), existential restriction (∃r.C), and top (>) in the following
way:

C ::= > | A | C u C | ∃r.C,

where A ∈ NC, r ∈ NR and C is an ELHR+ -concept. The subset of ELH−>R+ -concepts consists of
all ELHR+ -concepts defined without using >, i.e., only conjunction and existential restriction
can be used as concept constructors. Most of the definitions and results provided in the rest
of this section transfer from ELHR+ to ELH−>R+ . Therefore, we will only formulate them for
ELHR+ . For those where this is not the case, we will explicitly make the distinction.

A general concept inclusion (GCI) is an expression of the form C v D where C and D are
ELHR+ -concepts, a role hierarchy axiom is of the form r v s for role names r and s, and a
transitivity axiom is of the form r ◦ r v r for a role name r. An ELHR+-ontology is a finite set
O of GCIs, role hierarchy axioms and transitivity axioms. In an ELH−>R+ -ontology, the concepts
occurring in GCIs must be ELH−>R+ -concepts. An EL-ontology O contains only GCIs. If the
concepts occurring in such GCIs are constructed without using >, then O is an EL−>-ontology.

The semantics of ELHR+ -concepts is defined by using standard first-order logic interpretations.
An interpretation I = (∆I , .I) of the symbols in NC and NR consists of a non-empty domain ∆I

and an interpretation function .I that assigns subsets AI of ∆I to each concept name A ∈ NC,
and binary relations rI ⊆ ∆I × ∆I to role names r ∈ NR. The function .I is inductively
extended to interpret arbitrary ELHR+ -concepts as follows:

>I := ∆I ,

(C uD)I := CI ∩DI , and
(∃r.C)I := {d ∈ ∆I | ∃e.((d, e) ∈ rI ∧ e ∈ CI)}.

An interpretation I is a model of an ELHR+ -ontology O (written I |= O) if C v D ∈ O implies
CI ⊆ DI , r v s ∈ O implies rI ⊆ sI , and r ◦ r v r ∈ O implies that rI is transitive.
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1.2 Atoms and Particles

An ELHR+-atom is either a concept name or an existential restriction. Every ELHR+ -concept
C consists of a conjunction of ELHR+ -atoms, where the empty conjunction corresponds to >.
These conjuncts are called the top-level atoms of C. Note that no ELH−>R+ -concept corresponds
to the empty conjunction. Given an ELHR+ -concept C, we use Ats(C) to denote the set of all
atoms (not just top-level ones) occurring in C. Further, given an ontology O, we write Ats(O)
to denote the set of atoms of all concepts occurring in O. For example, if C = ∃r.(∃s.Au∃r.B),
then Ats(C) = {C,∃s.A,∃r.B,A,B}, where C is the only top-level atom.

A particle is an atom of the form ∃r1.∃r2. · · · ∃rn.A, where n ≥ 0, r1, . . . , rn are role names
and A ∈ NC. If n = 0 then the particle is just the concept name A. We will often write
∃w.A, where w = r1r2 . . . rn is viewed as a word over the alphabet NR, as an abbreviation for
∃r1.∃r2. · · · ∃rn.A. The set of particles Part(C) of an ELH−>R+ -concept C is recursively defined
as follows:

Part(C) :=


C, if C ∈ NC,

{∃r.P | P ∈ Part(D)}, if C = ∃r.D,

Part(C1) ∪ Part(C2), if C = C1 u C2.

For instance, if C = ∃r.(∃s.A u ∃r.B), then Part(C) = {∃rs.A,∃rr.B}.

1.3 Subsumption in ELHR+ and ELH−>R+

Given an ELHR+ -ontology O and ELHR+ -concepts C,D, we say that C is subsumed by D
w.r.t. O (written as C vO D) if CI ⊆ DI for all models I of O. These concepts are equivalent
w.r.t. O (written as C ≡O D) if C vO D and D vO C. If O is empty, we often write C v D
and C ≡ D instead of C v∅ D and C ≡∅ D, respectively.

Subsumption (and thus also equivalence) between ELHR+ -concepts w.r.t. arbitrary ELHR+ -
ontologies can be decided in polynomial time [8]. In the context of unification, a recursive
characterization of subsumption turns out to be useful. For the case of the empty ontology, the
following characterization for subsumption between ELHR+ -concepts was provided in [17].

Lemma 1.1. Let C1, . . . , Cn, D1, . . . , Dm be ELHR+-atoms. Then, C1u· · ·uCn v D1u· · ·uDm

iff for every j ∈ {1, . . . ,m} there is an index i ∈ {1, . . . , n} such that:

• Ci = Dj is a concept name, or

• Ci = ∃r.E, Dj = ∃r.F , and E v F .

The following result, shown in [19], is an easy consequence of this characterization. It states
that the particles subsuming an ELH−>R+ -concept C are exactly the particles of C.

Lemma 1.2. If C is an ELH−>R+-concept and ∃w.A a particle, then C v ∃w.A iff ∃w.A ∈
Part(C).

For arbitrary ELHR+ -ontologies, a recursive characterization of subsumption was first given
in [5], and later reformulated in [3]. In this paper we use the one given in [3], but before
we can formulate this characterization, we must introduce the role hierarchy induced by an
ELHR+ -ontology O:

• given role names r, s, we say that r is a subrole of s (written r EO s) if rI ⊆ sI holds for
all models I of O. We call a role name r transitive if r ◦ r v r ∈ O.
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It is easy to see that the relation EO is the reflexive-transitive closure of the explicitly stated
subrole relationships {(r, s) | r v s ∈ O}. The role hierarchy EO can thus be computed in
polynomial time in the size of O, by using standard reachability algorithms.

The characterization of subsumption in [3] uses the notion of structural subsumption. More
precisely, as defined in [5], given atoms C,D, we say that C is structurally subsumed by D
w.r.t. an ELHR+ -ontology O (written C vsO D) if one of the following cases applies:

1. C = D is a concept name.

2. C = ∃r.C ′, D = ∃s.D′, r EO s, and C ′ vO D′.

3. C = ∃r.C ′, D = ∃s.D′, and C ′ vO ∃t.D′ for some transitive role name t satisfying
r EO t EO s.

It is easy to see that C v D implies C vsO D, which in turn implies that C vO D.

Lemma 1.3. Let O be an ELHR+-ontology and C1, . . . , Cn, D1, . . . , Dm ELHR+-atoms. Then,
C1 u · · · u Cn vO D1 u · · · uDm iff for every j ∈ {1, . . . ,m}:

1. there is an index i ∈ {1, . . . , n} such that Ci vsO Dj, or

2. there are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:

(a) At1 u · · · uAtk vO At ′,
(b) for every ` ∈ {1, . . . , k} there exists i ∈ {1, . . . , n} with Ci vsO At`, and
(c) At ′ vsO Dj.

If O is empty, then the second case in the definition of structural subsumption can be modified
to require that r = s and C ′ v D′, whereas the third case in the same definition as well
as the second case in Lemma 1.3 can be removed. This then yields the characterization of
subsumption w.r.t. the empty ontology from Lemma 1.1. Since ELH−>R+ is a fragment of ELHR+ ,
this characterization also applies to subsumption between ELH−>R+ -concepts w.r.t. ELH−>R+ -
ontologies. However, in this setting, the case k = 0 in 2. cannot occur. This is a direct
consequence of the following result.

Lemma 1.4. Let O be an ELH−>R+-ontology and let At be an atom of O. Then, > vO At does
not hold.

Proof. Let I be an arbitrary model of O. We extend I by adding a new element d to ∆I

without changing the interpretation function .I . This means that

• d 6∈ AI for all A ∈ NC, and

• rI does not contain a pair of the form (d, e) nor (e, d) for all r ∈ NR.

This implies that d 6∈ AtI . Moreover, since O contains no occurrence of >, d trivially satisfies
all GCIs in O. Hence, I is still a model of O. Thus, > vO At cannot not hold since d ∈ >I .

2 Unification in ELHR+ and ELH−>R+

We now define the unification problem for the DLs ELHR+ and ELH−>R+ . After providing the
formal definition of the problem, we recall the notions of flat ontologies and flat unification
problems. We conclude the section with the definition of cycle-restricted ontologies, which are
the type of ontologies we investigate in this paper.
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2.1 The Unification Problem

To define the unification problem, we assume that the set of concept names is partitioned
into a set NC of concept constants and a set NV of concept variables. Given a DL L ∈
{ELHR+ , ELH−>R+}, an L-substitution σ is a mapping from a finite subset of NV to the set
of L-concepts. The application of σ to an arbitrary L-concept over NR and NC ∪ NV is defined
inductively in the usual way. A concept (ontology) is ground if it does not contain variables. A
substitution σ is ground if σ(X) is ground for all variables X that have an image under σ.

Definition 2.1. Let O be a ground ontology. An L-unification problem w.r.t. O is of the form
Γ = {C1 v? D1, . . . , Cn v? Dn}, where C1, D1, . . . , Cn, Dn are L-concepts. An L-substitution
σ is an L-unifier of Γ w.r.t. O iff σ(Ci) vO σ(Di) for all i ∈ {1, . . . , n}. The unification problem
Γ is called L-unifiable w.r.t. O if it has an L-unifier w.r.t. O.

The use of subsumption constraints C v? D instead of equations of the form C ≡? D (which
are the ones usually employed to define unification in DLs) is without loss of generality, since

C ≡O D iff C vO D and D vO C, and

C vO D iff C ≡O C uD.

The restriction to ground ontologies is not without loss of generality. A discussion about why
this restriction is appropriate can be found in [2].

The following example illustrates that unifiability of a given unification problem may depend
on the considered DL L and on the presence of a non-empty ontology.

Example 2.2. Let O = ∅ and consider the following unification problem:

Γ1 := {∃r.A v? X, ∃u.B v? Y, ∃s.X uA v? Y }.

Viewed as an ELHR+ -unification problem, it has the unifier σ with σ(X) = σ(Y ) = >. However,
Γ1 does not have an ELH−>R+ -unifier w.r.t. O = ∅. To see this, suppose that δ is such a unifier.
Using Lemma 1.1, we can deduce from ∃u.B v δ(Y ) that every top-level atom of δ(Y ) is an
existential restriction for the role u. However, we can also deduce from ∃s.δ(X) u A v δ(Y )
that every top-level atom of δ(Y ) is either A or an existential restriction for the role s. Since
not both is possible, δ(Y ) cannot have any top-level atoms, and thus must be >, contradicting
our assumption that δ is an ELH−>R+ -unifier.

The unifiability status of Γ1 can change in the presence of an ontology. For instance, Γ1 does
have an ELH−>R+ -unifier w.r.t. the following ELH−>R+ -ontology:

O′ := {B v ∃r.A, u v s}.

It is not hard to verify that the following ELH−>R+ -substitution δ is a unifier of Γ1 w.r.t. O′:

δ := {X 7→ ∃r.A, Y 7→ ∃s.∃r.A}.

In particular, the ontology ensures that δ solves the second constraint. In fact, although ∃u.B v
∃s.∃r.A does not hold (i.e., w.r.t. the empty ontology), the axioms u v s and B v ∃r.A in O′
imply that u EO′ s and B vO′ ∃r.A. Thus, it follows that ∃u.B vO′ ∃s.B vO′ ∃s.∃r.A =
δ(Y ). 4

The L-unification decision problem asks, given an L-unification problem Γ and an ontology O,
whether Γ has an L-unifier w.r.t. O. There are two assumptions one can make regarding the
form of the input and solutions of this decision problem. The first assumption tells us that a
decision procedure for unifiability needs to search only for unifiers of a particular form:

7



• it is enough to consider ground L-substitutions σ defined over the concept names and
role names occurring in Γ or O. In fact, as mentioned in the introduction, unification in
ELHR+ and ELH−>R+ can be seen as unification modulo an equational theory, where the
corresponding equational theory consists of a finite set axiomatizing equivalence in these
DLs (as defined in [29]) plus a finite set of ground identities representing the GCIs in O.
It then follows from well-known results in unification theory [20] that, if Γ is L-unifiable
w.r.t. O, then it has an L-unifier of the aforementioned form.5

Based on this, we assume in the following that NC is the set of concept constants occurring in
Γ or O, and NR is the set of role names occurring in Γ or O, where we can assume without loss
of generality that there is at least one concept constant. To simplify the technical details and
development of our unification algorithm, we can without loss of generality also assume that
the input ontology and unification problem are flat.

2.2 Flat Ontologies and Unification Problems

An ELHR+ -atom is flat if it is a concept name or of the form ∃r.C, where C is a concept name
or >. This notion adapts to ELH−>R+ by restricting C (in ∃r.C) to be a concept name. An
ELHR+ -ontology O is called flat, if it only contains GCIs of the form C1 u · · · uCn v D, where
C1, . . . , Cn are flat ELHR+ -atoms or > and D is a flat ELHR+ -atom. This notion can naturally
be adapted to ELH−>R+ -ontologies by requiring that C1, . . . , Cn and D are flat ELH−>R+ -atoms.

As shown in [5, 6], by using the normalization procedure described in [9], every ELHR+ -ontology
can be transformed in polynomial time into an ontology in flat form. The role axioms in the
resulting ELHR+ -ontology remain unchanged, whereas the GCIs in the normalized ontology
are of the form:

A v B, A1 uA2 v B, ∃r.A v B, B v ∃r.A, (1)
where A,A1, A2 and B are concept names or >. Furthermore, unless > occurs in the given
ontology, no rule application of this normalization procedure generates a GCI containing >.
Thus, the application of this procedure to an ELH−>R+ -ontology takes polynomial time, and
yields a flat ELH−>R+ -ontology consisting of a set of GCIs of the form in (1), where A,A1, A2

and B are concept names.

Given a DL L ∈ {ELHR+ , ELH−>R+}, an L-unification problem is called flat, if it consists
of subsumption constraints of the form C1 u · · · u Cn v? D, where C1, . . . , Cn and D are
flat L-atoms. By introducing new concept variables, every ELHR+ -unification problem Γ can
be flatten in polynomial time, and this transformation stays within ELH−>R+ if applied to an
ELH−>R+ -unification problem (see [15, 19]).

As shown in [5] for ELHR+ , given an ELHR+ -unification problem Γ and an ELHR+ -ontology
O, the unification problem Γ′ and the ontology O′ obtained by flattening Γ and O are such
that Γ is unifiable w.r.t. O iff Γ′ is unifiable w.r.t. O′. This result also applies to ELH−>R+ . More
precisely,

• as explained above, if Γ and O are formulated in ELH−>R+ , the applications of the cor-
responding flattening procedures yield (in polynomial time) a flat ELH−>R+ -unification
problem Γ′ and a flat ELH−>R+ -ontology O′;

• as shown in the technical report [6], an ELH−>R+ -unifier σ of Γ w.r.t. O can be extended
into an ELH−>R+ -unifier of Γ′ w.r.t. O′, by extending σ with appropriate definitions for the

5In case of L = ELH−>R+ , we may need an additional concept constant A when O is empty and Γ does not
contain any occurrence of a concept constant. However, we can assume without loss of generality that Γ contains
a concept constant by adding the trivial subsumption constraint A v? A to it if it does not.
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auxiliary variables introduced to obtain Γ′. Conversely, an ELH−>R+ -unifier σ′ of Γ′ w.r.t.
O′ can always be transformed into an ELH−>R+ -unifier of Γ w.r.t. O (this can be concluded
from the proof of Lemma 17 in [6]).

Overall, we can without loss of generality assume that the given ontology and unification prob-
lem are both flat.

2.3 Cycle-Restricted Ontologies

In this paper, we investigate unification w.r.t. cycle-restricted ontologies, which were first in-
troduced in [2]. This is motivated by the fact that, without this restriction, it is not even clear
whether unification is decidable.

Definition 2.3. An ELHR+ -ontology O is called cycle-restricted if there is no sequence of
n > 0 role names r1, . . . , rn ∈ NR and ELHR+ -concept C such that C vO ∃r1.∃r2. · · · ∃rn.C.

As stated in [5] (and proved in the corresponding technical report [6]), one can test in polynomial
time whether a given ELHR+ -ontology is cycle-restricted or not. In addition, if the input
ontology is cycle-restricted, then so is the flat ontology obtained by applying the normalization
procedure mentioned above to it (see the proof of Lemma 21 in [6]).

The following result for flat, cycle-restricted ELHR+ -ontologies will turn out to be quite useful
later on to obtain our results. It basically follows from the proof of Lemma 8 in [4].

Lemma 2.4. Let O be a flat, cycle-restricted ELHR+-ontology, A ∈ NC and ∃r.C an ELHR+-
atom. Then, A vO ∃r.C iff there exists ∃u.B ∈ Ats(O) such that B vO C, and

• A vO ∃u.B and u EO r, or

• A vO ∃t.B for a transitive role t with u EO t EO r.

In Section 4, we will show how to decide unifiability of an ELH−>R+ -unification problem w.r.t. a
cycle-restricted ELH−>R+ -ontology. Before doing that, we recall (in the next section) the existing
results on unification in ELHR+ and ELH−>R+ , and briefly describe the techniques employed to
obtain these results.

3 Known results for unification in ELHR+ and ELH−>R+

The decision problem for unification in ELHR+ has been investigated in [15, 17, 2, 5, 3]. It was
first established that unification in the DL EL w.r.t. the empty ontology is NP-complete [15, 17].
This result was later extended to unification w.r.t. cycle-restricted EL-ontologies [2], and then
further to unification w.r.t. cycle-restricted ELHR+ -ontologies [5, 3]. For the DL ELH−>R+ ,
unification has only been studied in the context of EL−> for the case of the empty ontology.
Compared to EL, the complexity of the decision problem increases: deciding unifiability in
EL−> is PSpace-complete [19] rather than NP-complete. We continue with briefly describing
the techniques used to obtain these results.

3.1 Deciding Unification in ELHR+

The main idea employed to obtain the “in NP” result is to show that, in ELHR+ , unifiability
w.r.t. cycle-restricted ontologies implies the existence of local unifiers. Based on this, a corre-
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sponding NP-procedure guesses an appropriate representation of a local substitution, and then
checks by ELHR+ reasoning whether it really is a unifier. Basically, to guess a local substi-
tution σ, one must guess for every variable X and non-variable atom C of Γ and O whether
σ(X) vO σ(C) is supposed to hold. In the following, we introduce these ideas in a more formal
way.

Given a unification problem Γ, we write Vars(Γ) to denote the set of variables occurring in Γ.
The atoms of Γ are the atoms of the concepts occurring in Γ. We denote the set of all such
atoms as Ats(Γ). For simplicity, given an ontology O, we will write Ats(Γ,O) to denote the set
Ats(Γ)∪Ats(O). Furthermore, due to the third case in the definition of structural subsumption,
we also need to consider certain atoms that are not explicitly present in the input of an ELHR+ -
unification problem:

Atstr (Γ,O) := Ats(Γ,O) ∪ {∃t.C | ∃s.C ∈ Ats(Γ,O), t EO s, t is a transitive role}.

A non-variable atom is an atom in Atstr (Γ,O) that is not a variable. We denote the set of all
such atoms as Atnv (Γ,O), i.e.,

Atnv (Γ,O) := Atstr (Γ,O) \Vars(Γ).

Let S be an assignment mapping each variable in Γ to a set of non-variable atoms from
Atstr (Γ,O). The assignment S induces the following binary relation:

>S :={(X,Y ) ∈ Vars(Γ)×Vars(Γ) | Y occurs in an atom of S(X)}

Let >+
S be the transitive closure of >S . We say that S is acyclic if >+

S is irreflexive, and thus
a strict partial order. If S is acyclic, then it induces a substitution σS , defined by induction on
>+
S as follows:

• If X is minimal w.r.t. >+
S , then σS(X) :=

d
D∈S(X)D.

• Otherwise, assuming that σS(Y ) has already been defined for all Y such that X >+
S Y ,

one defines σS(X) :=
d
D∈S(X) σS(D).

A substitution σ is called local, if there exists an acyclic assignment S such that σ = σS . A
unifier σ of Γ w.r.t. an ontology O is called a local unifier if it is a local substitution.

Example 3.1. Let O = ∅ and consider the following unification problem:

Γ2 := {X v? A, X v? ∃r.Z, ∃r.B u ∃s.X v? Y, ∃s.A u ∃r.Z v? Y, ∃r.A u ∃r.B v? ∃r.Z}.

It is easy to see that the substitution σ := {X 7→ A u ∃r.>, Y 7→ >, Z 7→ >} is a unifier of Γ2

w.r.t. O. Moreover, σ is also a local unifier. In fact, the assignment S defined as

S(X) := {∃r.Z,A}, S(Y ) := ∅, S(Z) := ∅

is acyclic and induces the substitution σS = σ. 4

Theorem 3.2 ([5]). Let Γ be a flat ELHR+-unification problem and O a flat cycle-restricted
ELHR+-ontology. If Γ is unifiable w.r.t. O, then it has a local unifier w.r.t. O.

Thus, the NP-decision procedure for unification in ELHR+ w.r.t. cycle-restricted ontologies
works as follows. It first guesses an assignment S. If S is not acyclic, then the procedure fails.
Otherwise, it checks whether the induced substitution σS is a unifier of Γ w.r.t. O. Testing
whether σS is a unifier in polynomial time requires some care, since σS(X) may be a concept of
exponential size. The main idea is to represent these concepts using a polynomial-size ontology
(for details see [5]).
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3.2 Deciding Unification in EL−>

We now describe the idea underlying the PSpace algorithm devised in [19] for unification in
EL−> w.r.t. the empty ontology. Given an EL−>-unification problem Γ, the overall idea is to

• guess a local EL-unifier σ of Γ, and

• if σ is not already an EL−>-substitution, then try to extend σ into an EL−>-unifier δ of
Γ, by conjoining particles to the concepts σ(X), where X ∈ Vars(Γ).

To be more precise, instead of specifically guessing a local substitution, the algorithm guesses a
more general subsumption mapping for Γ. This is a mapping of the form τ : Ats(Γ)×Ats(Γ) 7→
{0, 1}, which is required to satisfy a series of properties. This mapping plays the following rôles:

• It describes a local EL-unifier of Γ, i.e., each such mapping τ induces the assignment:

Sτ (X) := {D ∈ Atnv (Γ) | τ(X,D) = 1} (for all X ∈ Vars(Γ)), (2)

and this assignment is required to be acyclic. Acyclicity of Sτ is defined as in Section 3.1,
i.e., the assignment Sτ induces the binary relation >Sτ between the variables of Γ (as
described above to introduce local unifiers), whose transitive closure we denote as >τ .
We say that Sτ is acyclic in case >τ is irreflexive. If Sτ is acyclic, then it induces a
substitution σSτ , defined by induction on >τ as described above. For simplicity, we will
denote σSτ as στ . The other properties required of τ ensure that στ is indeed an EL-unifier
of Γ.6

• It specifies other subsumption relations between atoms of Γ that should hold for the EL−>-
unifier δ the algorithm tries to generate from στ . This means that if τ(D1, D2) = 1 for
some D1, D2 ∈ Ats(Γ), then the search for δ can be restricted to substitutions satisfying
δ(D1) v δ(D2).

As already mentioned, the local unifier obtained from a subsumption mapping τ need not be
an EL−>-unifier. To test for the existence of an EL−>-unifier related to τ , the subsumption
mapping τ together with the original unification problem Γ is then used to construct a new uni-
fication problem ∆Γ,τ , in which only variables can occur on the right-hand side of subsumption
constraints. This set is defined as ∆Γ,τ := ∆Γ ∪∆τ , where

∆Γ := {C1 u · · · u Cn v? X ∈ Γ} and ∆τ := {C v? X | τ(C,X) = 1}. (3)

Example 3.3. Recall the unification problem Γ2 and the local EL-unifier σ from Example 3.1.
Following (2) and the assignment S from Example 3.1, a subsumption mapping τ representing
σ must satisfy:

τ(X,A) = 1, τ(X,∃r.Z) = 1 and τ(Y,At) = τ(Z,At) = 0 (for all At ∈ Atnv (Γ)).

In addition, suppose that τ satisfies τ(∃r.B, ∃r.Z) = 1. This tells the algorithm, for instance,
how the unifier δ should solve the subsumption constraint ∃r.A u ∃r.B v? ∃r.Z ∈ Γ2, i.e.,
the algorithm will search for an EL−>-substitution δ such that ∃r.B v ∃r.δ(Z). Moreover,
since τ captures the properties of the subsumption relation, it must set τ(B,Z) = 1 since

6These properties are based on the properties of subsumption w.r.t. the empty ontology. Their precise
definitions can be found in [19].
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∃r.B v ∃r.δ(Z) implies B v δ(Z). Consequently, τ transforms Γ2 into the unification problem
∆Γ2,τ := ∆Γ2 ∪∆τ , where

∆Γ2
:= {∃r.B u ∃s.X v? Y, ∃s.A u ∃r.Z v? Y } and ∆τ := {B v? Z}.

The next task is then to solve ∆Γ2,τ in a way that is compatible with τ . 4

As shown in [19], Γ has an EL−>-unifier iff there exists a subsumption mapping τ such that
∆Γ,τ has an EL−>-unifier that is compatible with τ (we will formally define in Definition 4.2
what “compatible with” means). Thus, one can restrict the attention to solving unification
problems where only concept variables occur on the right-hand side of the constraints. The
advantage of this is that checking existence of an EL−>-unifier of ∆Γ,τ that is compatible with
τ can be reduced to checking existence of an admissible solution of a corresponding set IΓ,τ of
linear language inclusions. In the following, we briefly describe this reduction.

Definition 3.4. Let X1, . . . , Xn be a finite set of indeterminates. A linear language inclusion
over this set of indeterminates and the alphabet NR is an expression of the form

Xi ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn,

where i ∈ {1, . . . , n} and Lj ⊆ {ε} ∪ NR for all j, 0 ≤ j ≤ n. As usual, the symbol ε denotes
the empty word. A solution θ of such an inclusion assigns sets of words θ(Xi) ⊆ NR

∗ to each
indeterminate Xi such that θ(Xi) ⊆ L0 ∪ L1·θ(X1) ∪ · · · ∪ Ln·θ(Xn), where “·” denotes the
concatenation of languages. The solution θ is finite if θ(Xi) is a finite set for all i ∈ {1, . . . , n}.

As described in [19], the unification problem ∆Γ,τ can be translated into a system of linear
language inclusions as follows. For each concept constant A ∈ NC and each subsumption
constraint s = C1 u · · · u Cn v? X in ∆Γ,τ , a linear language inclusion iA(s) is defined as:

XA ⊆ fA(C1) ∪ · · · ∪ fA(Cn), where fA(C) :=



{r}fA(C ′) if C = ∃r.C ′,

YA if C = Y ∈ NV,

{ε} if C = A,

∅ if C ∈ NC \ {A}.

The set of language inclusions IΓ,τ consists of all the inclusions obtained from ∆Γ,τ in this way.
Note that the flat form of ∆Γ,τ and the fact that the right-hand side of each constraint in ∆Γ,τ

is a variable ensure that the application of this translation indeed yields a set of linear language
inclusions. A solution θ of IΓ,τ is called admissible if for each variable X in ∆Γ,τ there exists
A ∈ NC such that θ(XA) 6= ∅.

Example 3.5. Let us come back to the set ∆Γ2,τ obtained in Example 3.3. The translation
described above yields the following set of linear language inclusions:

IΓ2,τ =


YA ⊆ {r}∅ ∪ {s}XA, YB ⊆ {r}{ε} ∪ {s}XB ,

YA ⊆ {s}{ε} ∪ {r}ZA, YB ⊆ {s}∅ ∪ {r}ZB ,
ZA ⊆ ∅, ZB ⊆ {ε}


The following assignment θ is a finite, admissible solution of IΓ2,τ :

θ(XA) := {ε}, θ(YA) := {s}, θ(YB) := {r}, θ(ZB) := {ε}, θ(XB) = θ(ZA) := ∅.

From θ, one can obtain an EL−>-unifier γ of ∆Γ2,τ , by defining γ(U) as the following conjunction
of particles (for all U ∈ Vars(Γ)):

γ(U) :=
l

A∈NC

l

w∈θ(UA)

∃w.A.
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Hence, θ yields the EL−>-substitution γ := {X 7→ A, Y 7→ ∃s.A u ∃r.B, Z 7→ B}. One can
easily verify that γ is a unifier ∆Γ2,τ w.r.t. O = ∅.

However, γ is not yet a unifier of the original problem Γ2 from Example 3.1, since it does
not satisfy the constraint X v? ∃r.Z. Basically, the set IΓ2,τ is agnostic of the constraints
dropped when translating Γ2 into ∆Γ2,τ . Nevertheless, the subsumption mapping τ stores the
information on how to solve such constraints, e.g., τ(X,∃r.Z) = 1. Hence, an EL−>-unifier δ of
Γ2 can be constructed by extending the local EL-unifier σ induced by Sτ with the particles in
γ. In our example, Sτ corresponds to the assignment S from Example 3.1. Thus, δ is defined
as:

δ(X) := δ(∃r.Z) uA = (∃r.B) uA, δ(Y ) := ∃s.A u ∃r.B, δ(Z) := B.

One can easily verify that δ is an EL−>-unifier of Γ2. 4

The following theorem summarizes one of the main results obtained in [19]. It shows that
deciding unification in EL−> can be reduced to solving linear language inclusions.

Theorem 3.6. Let Γ be a flat EL−>-unification problem. Then, Γ has an EL−>-unifier iff
there exists a subsumption mapping τ for Γ such that IΓ,τ has a finite, admissible solution.

It is also shown in [19] that deciding the existence of a finite, admissible solution of a set of linear
language inclusions can be reduced in polynomial time to checking emptiness of alternating finite
automata with ε-transitions. The emptiness problem for this class of automata is a PSpace-
complete problem [24]. This, together with Theorem 3.6, yields a polynomial space decision
procedure for unification in EL−>, since a subsumption mapping can be guessed in polynomial
time and the size of IΓ,τ is polynomial in the size of Γ.

4 The Unification Algorithm for ELH−>R+

In the following, we assume that O is a flat and cycle-restricted ELH−>R+ -ontology, and Γ is
a flat ELH−>R+ -unification problem. We introduce an algorithm that can test whether Γ has
an ELH−>R+ -unifier and needs only polynomial space for this task. This algorithm follows the
approach described in the previous section for unification in EL−>, but must take the ontology
into account. There are two main obstacles that need to be overcome when doing this:

1. The notion of a subsumption mapping from [19] is not complete for subsumption w.r.t. a
non-empty ontology. The reason is that its definition is based on the characterization of
subsumption w.r.t. the empty ontology, as stated in Lemma 1.1, and thus does not take
the additional cases in the definition of structural subsumption and in Lemma 1.3 into
account, which are required to capture subsumption w.r.t. an ELH−>R+ -ontology.

2. The second, and more challenging, obstacle to overcome is that the reduction to solving
language inclusions described in Subsection 3.2 only yields a sound (but not complete)
procedure to decide unifiability of ∆Γ,τ w.r.t. a cycle-restricted ontology. In fact, Exam-
ple 2.2 provides an ELH−>R+ -unification problem Γ1 and a cycle-restricted ELH−>R+ -ontology
O′ such that:

• the subsumption constraints of Γ1 have the same form as the ones in problems of
the form ∆Γ,τ ,

• Γ1 has an ELH−>R+ -unifier w.r.t. O′, but it does not have ELH−>R+ -unifiers w.r.t. the
empty ontology.
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The latter implies that applying the translation from [19] to Γ1 yields a set of language
inclusions that has no finite, admissible solution.

To regain completeness we proceed as follows. In Subsection 4.1, we introduce the notion of
subsumption mapping w.r.t. a cycle-restricted ELHR+ -ontology O, and show that (similarly
to the case of the empty ontology) checking ELH−>R+ -unifiability of Γ w.r.t. O can be reduced
to deciding whether there is a subsumption mapping τ such that ∆Γ,τ has an ELH−>R+ -unifier
w.r.t. O that is compatible with τ . Afterwards, we define in Subsection 4.2 a new translation of
∆Γ,τ into linear language inclusions, which takes into account the axioms in a cycle-restricted
ELH−>R+ -ontology.

4.1 The New Subsumption Mapping

A mapping of the form τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} induces an assignment Sτ that
(in the current setting) maps variables in Γ to subsets of non-variable atoms in Atstr (Γ,O):

Sτ (X) := {D ∈ Atnv (Γ,O) | τ(X,D) = 1}.

Differently to the notion introduced in [19], a subsumption mapping τ must now capture the
properties of vO, where O is a cycle-restricted ELHR+ -ontology (instead of just the empty one).
To achieve this, the conditions imposed on our new (extended) notion of subsumption mapping
are based on the characterization of subsumption from Lemma 1.3. In order to simplify the
definition of these conditions, we define the following set (for atoms ∃r.C, ∃s.D ∈ Atstr (Γ,O)):

F(∃r.C, ∃s.D) := {D | if r EO s} ∪ {∃t.D | r EO t EO s, t is transitive}.

Basically, this set collects all concepts F such that C vO F implies ∃r.C vsO ∃s.D (see the
second and third case in the definition of vsO).

Definition 4.1. The mapping τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} is called a subsumption
mapping for Γ w.r.t. O if it satisfies the following conditions:

1. It respect the properties of subsumption w.r.t. O:

(a) τ(D,D) = 1, for each D ∈ Atstr (Γ,O).

(b) For all D1, D2, D3 ∈ Atstr (Γ,O), if τ(D1, D2) = τ(D2, D3) = 1 then τ(D1, D3) = 1.

(c) τ(C,D) = 1 iff C vO D, for all ground atoms C,D ∈ Atstr (Γ,O).

(d) For each concept constant A ∈ Ats(Γ,O), role name r, and variable X with ∃r.X ∈
Atstr (Γ):

i. τ(A,∃r.X) = 1 iff 7 there exists an atom ∃u.B of O such that τ(B,X) = 1, and
• A vO ∃u.B and u EO r, or
• A vO ∃t.B for a transitive role t with u EO t EO r.

ii. τ(∃r.X,A) = 1 iff
• there are atoms ∃r1.A1, . . . ,∃rk.Ak ofO (k ≥ 0) and atoms F` ∈ F(∃r.X,∃r`.A`)
(1 ≤ ` ≤ k), such that:

τ(X,F`) = 1 (1 ≤ ` ≤ k) and ∃r1.A1 u · · · u ∃rk.Ak vO A. (4)

(e) For all role names r, s ∈ NR, variableX and atoms ∃r.C, ∃s.D ∈ Atstr (Γ) with C = X
or D = X: τ(∃r.C, ∃s.D) = 1 iff

7The right-hand side of this equivalence is based on Lemma 2.4.
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• there exists F ∈ F(∃r.C, ∃s.D) such that τ(C,F ) = 1, or
• there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B ofO (k ≥ 0), atoms F` ∈ F(∃r.C, ∃r`.A`)

(1 ≤ ` ≤ k), and an atom F ∈ F(∃u.B, ∃s.D), such that:

τ(C,F`) = 1 (1 ≤ ` ≤ k), ∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B, τ(B,F ) = 1. (5)

2. The assignment Sτ is acyclic. Note that this means that the mapping τ induces the
ELHR+ -substitution στ .

3. The substitution στ is an ELHR+ -unifier of Γ w.r.t.O. In combination with the conditions
already introduced, this is expressed by the following conditions for each subsumption
constraint C1 u · · · u Cn v? D ∈ Γ:

(a) If D is a non-variable atom, then either τ(Ci, D) = 1 for some i ∈ {1, . . . , n}, or
there exist atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:

• At1 u · · · uAtk vO At ′,
• for each ` ∈ {1, . . . , k} there exists i ∈ {1, . . . , n} such that τ(Ci,At`) = 1, and
• τ(At ′, D) = 1.

(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ Atnv (Γ,O), then
C1 u · · · u Cn v? C satisfies the previous case.

By using the close relationship between this definition and the characterization of subsumption
in Lemma 1.3, one can show that Γ has an ELHR+ -unifier w.r.t. O iff there is a subsumption
mapping for Γ w.r.t. O. In the proof of the if-direction, one shows that the substitution
induced by the subsumption mapping is indeed a unifier. For the other direction, one takes an
ELHR+ -unifier σ and shows that the mapping τ satisfying τ(C,D) = 1 iff σ(C) vO σ(D) is a
subsumption mapping for Γ w.r.t. O.

However, using subsumption mappings to characterize unifiability in ELH−>R+ requires more
effort. As defined in (3) for the case of the empty ontology, together with the unification
problem Γ, a subsumption mapping τ yields a simpler unification problem ∆Γ,τ = ∆Γ∪∆τ . We
can here re-use this definition without change. Before we can formulate the main result of this
subsection, we need to define the notion of compatibility of a substitution with a subsumption
mapping.

Definition 4.2. Any substitution σ induces an assignment Sσ of the form

Sσ(X) := {D ∈ Atnv (Γ,O) | σ(X) vO σ(D)}.

We write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) holds for all variables X. In this case we say that σ is
compatible with τ .

The following result gives a characterization of the existence of an ELH−>R+ -unifier w.r.t. an
ELH−>R+ -ontology.

Proposition 4.3. Let O be a flat and cycle-restricted ELH−>R+-ontology and Γ a flat ELH−>R+-
unification problem. Then, Γ has an ELH−>R+-unifier w.r.t. O iff there exists a subsumption
mapping τ for Γ w.r.t. O such that ∆Γ,τ has an ELH−>R+-unifier γ w.r.t. O that is compatible
with τ .

Before we can prove this proposition, we first need to show two lemmas.

Lemma 4.4. Let ∃r.C, ∃s.D be atoms in Atstr (Γ,O) and σ an ELHR+-substitution. Further,
let F ∈ F(∃r.C, ∃s.D) be such that σ(C) vO σ(F ). Then, ∃r.σ(C)vsO ∃s.σ(D).
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Proof. By definition of F(·, ·), there are two possibilities for having F in F(∃r.C, ∃s.D):

• F = D and r EO s, or

• F = ∃t.D, where t is a transitive role such that r EO t EO s.

Then σ(C) vO σ(F ) implies ∃r.σ(C)vsO ∃s.σ(D), by the definition of vsO.

The next lemma shows that, given an ELHR+ -substitution σ that is compatible with τ , we have
that τ(At1,At2) = 1 implies σ(At1) vO σ(At2), where At1 ∈ Atstr (Γ,O) and At2 ∈ Atnv (Γ,O).

Lemma 4.5. Let τ be a subsumption mapping for Γ w.r.t. O and σ an ELHR+-substitution
that is compatible with τ . For all atoms C ∈ Atstr (Γ,O) and D ∈ Atnv (Γ,O) we have that:

1. If D is a ground atom, then τ(C,D) = 1 implies σ(C) vO σ(D).

2. If D is of the form ∃r.Y for some variable Y and σ satisfies all subsumption constraints
C ′ v? Y ∈ ∆τ , then τ(C,D) = 1 implies σ(C) vO σ(D).

Proof. If C is a variable X, then τ(X,D) = 1 implies D ∈ Sτ (X). Since σ is compatible with
τ , we know that Sτ (X) ⊆ Sσ(X) holds, and thus D ∈ Sτ (X) implies D ∈ Sσ(X). Hence, the
definition of Sσ yields σ(X) vO σ(D). Thus, both cases hold regardless of the form of D. The
rest of the proof consists of proving 1 and 2 for the remaining possible forms of C and D.

1. Assume that D is ground and τ(C,D) = 1. If C is also ground, then Condition (1c) of
Definition 4.1 implies that σ(C) vO σ(D). Otherwise, C = ∃r.X for some variable X.
Let us distinguish between the two possible forms of D:

• D = A. By the second case in Condition (1d) of Definition 4.1, τ(∃r.X,A) = 1
implies that there are atoms ∃r1.A1, . . . ,∃rk.Ak of O (k ≥ 0) and atoms F` ∈
F(∃r.X,∃r`.A`) (1 ≤ ` ≤ k) satisfying (4). Hence, we know that τ(X,F`) = 1 for all
` ∈ {1, . . . , k}. Since ∃r`.A` is ground, the definition of F(·, ·) yields that F` is also a
ground atom. Therefore, as shown above, τ(X,F`) = 1 implies σ(X) vO σ(F`). We
can then apply Lemma 4.4 to ∃r.X, ∃r`.A` and F` to obtain that ∃r.σ(X)vsO ∃r`.A`.
This, together with ∃r1.A1 u · · · u ∃rk.Ak vO A, yields the following subsumption
relations:

σ(∃r.X) vO ∃r1.A1 u · · · u ∃rk.Ak vO A.

Thus, σ(∃r.X) vO A.
• D = ∃s.A. Since C = ∃r.X, we can apply Condition (1e) of Definition 4.1. This

yields two possibilities for having τ(∃r.X,∃s.A) = 1. The first one tells us that there
exists F ∈ F(∃r.X,∃s.A) such that τ(X,F ) = 1. Since ∃s.A is ground, the definition
of F(·, ·) yields that F is also a ground atom. Hence, as in the previous case, we know
that τ(X,F )=1 implies σ(X) vO σ(F ). This means that we can apply Lemma 4.4
to ∃r.X, ∃s.A and F to obtain that ∃r.σ(X)vsO ∃s.A. Consequently, σ(∃r.X) vO D.
The second case yields atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O (k ≥ 0), atoms F` ∈
F(∃r.X,∃r`.A`) (1 ≤ ` ≤ k), and an atom F ∈ F(∃u.B, ∃s.A) satisfying (5). As in
the case with D = A, we know that τ(X,F`) = 1 (1 ≤ ` ≤ k). Hence, the same
arguments can be applied to obtain ∃r.σ(X)vsO∃r`.A` (1 ≤ ` ≤ k). Furthermore, (5)
also tells us that τ(B,F ) = 1. In addition, since ∃s.A is ground, F ∈ F(∃u.B, ∃s.A)
implies that F is also ground. Hence, by Condition (1c), τ(B,F ) = 1 implies that
B vO F . We can then apply Lemma 4.4 to ∃u.B, ∃s.A and F to obtain that
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∃u.B vsO ∃s.A. This, together with ∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B, yields the
following subsumption relations:

σ(∃r.X) vO ∃r1.A1 u · · · u ∃rk.Ak vO ∃u.B vO ∃s.A.

Thus, σ(∃r.X) vO ∃s.A.

2. Assume that D = ∃r.Y for some variable Y , σ satisfies all constraints C ′ v? Y ∈ ∆τ , and
τ(C,D) = 1. We consider the possible forms of C:

• C = A. Hence, since τ(C,∃r.Y ) = 1, the first case in Condition (1d) of Definition 4.1
yields an atom ∃u.B of O such that τ(B, Y ) = 1, and

– A vO ∃u.B and u EO r, or
– A vO ∃t.B for a transitive role t with u EO t EO r.

It is easy to see that A vO ∃r.B is a consequence of both cases. Furthermore,
τ(B, Y ) = 1 implies that B v? Y ∈ ∆τ (see the definition of ∆Γ,τ ). Hence, our
assumption about σ yields that B vO σ(Y ), which implies that ∃r.B vO ∃r.σ(Y ).
Thus, A vO ∃r.B and ∃r.B vO ∃r.σ(Y ) imply A vO σ(∃r.Y ).

• C = ∃s.C ′. By Condition (1e) of Definition 4.1 there are two possibilities for having
τ(∃s.C ′,∃r.Y ) = 1:

– τ(C ′, F ) = 1 for some F ∈ F(∃s.C ′,∃r.Y ). Since ∃s.C ′ is a flat atom, C ′ is
either a constant or a variable. In addition, by definition of F(·, ·), we have that
F = Y or F = ∃t.Y . If F = Y , then τ(C ′, Y ) = 1 implies that C ′ v? Y ∈ ∆τ .
Hence, our assumption about σ yields σ(C ′) vO σ(Y ). Otherwise, one of the
previous cases applies, and τ(C ′, F ) = 1 implies σ(C ′) vO σ(F ). Thus, we can
apply Lemma 4.4 to ∃s.C ′, ∃r.Y and F to obtain that σ(∃s.C ′) vO σ(∃r.Y ).

– There are atoms ∃s1.A1, . . . ,∃sk.Ak (for some k ≥ 0) and ∃u.B of O, atoms
F` ∈ F(∃s.C ′,∃s`.A`) (1 ≤ ` ≤ k), and an atom F ∈ F(∃u.B, ∃r.Y ) satisfying
(5). If C ′ is a variable then the same arguments used for the case C = ∃r.X and
D = ∃s.A above, together with the assumptions made for σ, can be applied to
obtain that σ(∃s.C ′) vO σ(∃r.Y ). Otherwise, C ′ must be a concept name since
∃s.C ′ is a flat atom. Therefore, by Condition (1c), the mappings τ(C ′, F`) = 1
derived from (5) imply that σ(C ′) vO F` (1 ≤ ` ≤ k). Hence, we can again
re-use the aforementioned arguments to show that σ(∃s.C ′) vO σ(∃r.Y ).

Thus, we have shown that σ(∃s.C ′) vO σ(∃r.Y ) holds in both cases.

This concludes the proof of the lemma.

We are now ready to prove the correspondence stated in Proposition 4.3.8

Proof of Proposition 4.3.

(⇒) Assume that Γ has an ELH−>R+ -unifier δ w.r.t. O. We define the assignment τ as follows:

τ(D1, D2) = 1 iff δ(D1) vO δ(D2), for all D1, D2 ∈ Atstr (Γ,O).

It is an immediate consequence of this definition and the fact that δ is an ELH−>R+ -unifier of Γ

w.r.t. O that δ is an ELH−>R+ -unifier of ∆Γ,τ w.r.t. O that is compatible with τ . Therefore, it
remains to show that τ is a subsumption mapping for Γ w.r.t. O. To this end, we consider the
conditions required in Definition 4.1, and show that τ satisfies them.

8Lemma 4.5 and Proposition 4.3 are the analoga of Lemmas 10 and 11 in [19], respectively.
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1. We show that τ satisfies (1a)–(1e). Conditions (1a), (1b) and (1c) follow directly from
the properties of vO and the definition of τ . The remaining cases are more involved and
require the application of Lemma 1.3. We consider them separately.

• First case in (1d). The definition of τ yields

τ(A,∃r.X) = 1 iff A vO δ(∃r.X).

By Lemma 2.4, A vO δ(∃r.X) holds iff there is ∃u.B ∈ Ats(O) such that B vO δ(X)
and the conditions required for A and ∃u.B in the first case of (1d) are satisfied.
Furthermore, by the definition of τ , we know that B vO δ(X) iff τ(B,X) = 1. Thus,
we have shown that τ satisfies the first case of Condition (1d).

• Second case in (1d). The definition of τ yields

τ(∃r.X,A) = 1 iff δ(∃r.X) vO A.

Since δ(∃r.X) 6vsO A, Lemma 1.3 tells us that δ(∃r.X) vO A iff there are atoms
∃r1.A1, . . . ,∃rk.Ak, B of O (k ≥ 0) such that:

δ(∃r.X)vsO ∃r`.A` (1 ≤ ` ≤ k), ∃r1.A1 u · · · u ∃rk.Ak vO B, B vsO A.

By definition of vsO, the first group of k subsumption relations holds iff there are
F` ∈ F(∃r.X, ∃r`.A`) such that δ(X) vO F` (1 ≤ ` ≤ k). Moreover, by definition
of τ , we know that δ(X) vO F` iff τ(X,F`) = 1 (1 ≤ ` ≤ k). Thus, since B vsO A
implies that B = A, we have shown that τ satisfies the second condition in (1d).

• Case (1e). By definition of τ , we have

τ(∃r.C, ∃s.D) = 1 iff δ(∃r.C) vO δ(∃s.D).

An application of Lemma 1.3 yields that δ(∃r.C) vO δ(∃s.D) iff
– δ(∃r.C)vsO δ(∃s.D), or
– there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O (k ≥ 0) such that:

δ(∃r.C)vsO∃r`.A` (1 ≤ ` ≤ k), ∃r1.A1u· · ·u∃rk.Ak vO ∃u.B, ∃u.BvsOδ(∃s.D).

In the first case, the definition of vsO tells us that δ(∃r.C)vsO δ(∃s.D) iff

there exists F ∈ F(∃r.C, ∃s.D) such that δ(C) vO δ(F ).

Furthermore, by definition of τ , δ(C) vO δ(F ) iff τ(C,F ) = 1. Thus, it follows that
δ(∃r.C)vsO δ(∃s.D) iff the first case of (1e) is true.
Regarding the second case, several applications of vsO yield that δ(∃r.C)vsO ∃r`.A`
(1 ≤ ` ≤ k) and ∃u.B vsO δ(∃s.D) iff there are F` ∈ F(∃r.C, ∃r`.A`) (1 ≤ ` ≤ k) and
F ∈ F(∃u.B, ∃s.D) such that:

δ(C) vO F` (1 ≤ ` ≤ k) and B vO δ(F ).

By definition of τ , these subsumption relations hold iff

τ(C,F`) = 1 (1 ≤ ` ≤ k) and τ(B,F ) = 1.

Hence, the second case holds iff the statements in (5) hold. Overall, we have thus
shown that τ satisfies (1e).

2. To show that τ satisfies Condition 2, assume that Sτ is not acyclic. Then, there is
a sequence of variables X1, . . . , Xn+1 and role names r1, . . . , rn such that X1 = Xn+1,
∃ri.Xi+1 ∈ Atnv (Γ) and τ(Xi,∃ri.Xi+1) = 1 (1 ≤ i ≤ n). The definition of τ yields
δ(Xi) vO ∃ri.δ(Xi+1) for all i ∈ {1, . . . , n}, which implies δ(X1) vO ∃r1. · · · ∃rn.δ(X1).
However, this contradict our assumption that O is cycle-restricted. Thus, we can conclude
that τ is acyclic.
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3. To show that τ satisfies Condition 3, we fix a subsumption constraint C1 u · · · u Cn v?

D ∈ Γ. If D is a non-variable atom, then we must show that Condition (3a) holds. Note
that δ(C1) u · · · u δ(Cn) vO δ(D) holds because δ is a unifier of Γ. Hence, since δ(D) is
an atom, the application of Lemma 1.3 yields two possibilities:

• there exists i ∈ {1, . . . , n} and a top-level atom C of δ(Ci) such that C vsO δ(D).
Since δ(Ci) vO C, this yields δ(Ci) vO δ(D), which by the definition of τ implies
τ(Ci, D) = 1, as required in Condition (3a).

• δ(C1)u · · · u δ(Cn) vO δ(D) satisfies case 2 of Lemma 1.3. This yields the existence
of atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that: (a) At1u· · ·uAtk vO At ′, (b) for
each ` ∈ {1, . . . , k}, there exists i ∈ {1, . . . , n} and a top-level atom D` of δ(Ci) such
that δ(Ci) vO D` vsO At`, and (c) At ′ vsO δ(D).
Hence, by definition of τ , we have that τ(Ci,At`) = 1 (for each respective pair) and
τ(At ′, D) = 1. Thus, the second case in Condition (3a) is satisfied.

It remains to show that, if D is a variable, then Condition (3b) holds. Let C ∈ Atnv (Γ,O)
such that τ(D,C) = 1. The definition of τ yields δ(D) vO δ(C), which then implies that
δ(C1) u · · · u δ(Cn) vO δ(C). Thus, since δ(C) is a non-variable atom, we can show as
above that C1 u · · · u Cn and C satisfy Condition (3a).

(⇐) Let τ be a subsumption mapping for Γ w.r.t. O. Furthermore, let γ be an ELH−>R+ -unifier
of ∆Γ,τ w.r.t. O such that γ is compatible with τ . We show that γ is also a unifier of Γ w.r.t.
O. It suffices to consider subsumption constraints in Γ \∆Γ. These constraints are of the form
C1 u · · · u Cn v? D where D is not a variable. Since τ is a subsumption mapping for Γ w.r.t.
O, it satisfies Condition (3a) of Definition 4.1. Let us consider the two possible cases.

• There is i ∈ {1, . . . , n} such that τ(Ci, D) = 1. Note that D ∈ Atnv (Γ,O) and γ solves
all constraints in ∆τ . Hence, we can apply Lemma 4.5 to obtain that γ(Ci) vO γ(D).
Thus, γ(C1) u · · · u γ(Cn) vO γ(D) holds.

• There are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) satisfying the conditions required in the
second case of (3a) w.r.t. C1u· · ·uCn and D. As above, we can apply Lemma 4.5 to each
pair (Ci,At`) and to (At ′, D), to obtain that γ(Ci) vO At` and At ′ vO γ(D). Overall,
we have that:

γ(C1) u · · · u γ(Cn) vO At1 u · · · uAtk vT At ′ vO γ(D).

Hence, it follows that γ(C1) u · · · u γ(Cn) vO γ(D).

Thus, we have shown that γ is a an ELH−>R+ -unifier of Γ w.r.t. O.

Example 4.6. Let O = ∅ and consider the following unification problem:

Γ3 := {∃r.B v? ∃r.Y, ∃s.X u ∃r.A v? Y }.

Due to Condition 3 in Definition 4.1 and the fact that O is empty, any subsumption mapping
τ must satisfy τ(∃r.B, ∃r.Y ) = 1. Condition (1e) then implies that τ(B, Y ) = 1 must hold as
well. We can conclude that, for any subsumption mapping τ , the set ∆Γ3,τ contains at least the
subsumption constraints B v? Y and ∃s.X u∃r.A v? Y . Using an argument similar to the one
employed in Example 2.2, one can show that such a set ∆Γ3,τ cannot have an ELH−>R+ -unifier
w.r.t. O.

Definition 4.1 also tells us that Condition 3b does not apply to the constraints B v? Y and
∃s.X u ∃r.A v? Y as long as there is no non-variable atom C with τ(Y,C) = 1. Hence, it is
easy to see that there also is a subsumption mapping τ that has only these two constraints in
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∆Γ2,τ since the only other mandatory values 1 are the ones required by 1a. For the ontology
O′′ = {B v ∃r.A}, the set ∆Γ2,τ then has an ELH−>R+ -unifier w.r.t. O′′, which maps Y to ∃r.A.
This unifier is compatible with τ since the subsumption mapping τ that yields value 1 only if
required satisfies Sτ (X) = Sτ (Y ) = ∅. Thus, by Proposition 4.3, Γ2 has an ELH−>R+ -unifier
w.r.t. O′′. Note that this unifier is not στ since στ in this case assigns > to X and Y .

4

4.2 The New Translation into Linear Language Inclusions

We have already pointed out at the beginning of this section that the translation from ∆Γ,τ into
IΓ,τ for the case of an empty ontology (as sketched in Section 3.2) is not suitable for unification
w.r.t. non-empty cycle-restricted ontologies. Let us illustrate this with two concrete examples.

Example 4.7. Consider the system ∆Γ3,τ = {B v? Y,∃s.X u ∃r.A v? Y } from Example 4.6.
The first subsumption constraint yields the language inclusions

YA ⊆ ∅ and YB ⊆ {ε},

and the second yields

YA ⊆ {s}XA ∪ {r}{ε} and YB ⊆ {s}XB ∪ {r}∅.

There are no language inclusions constraining XA or XB . Obviously, any solution θ of IΓ3,τ

must satisfy θ(YA) = ∅. This means that, if θ is admissible, then θ(YB) must be non-empty.
The first inclusion for YB says that θ(YB) consists of the empty word, whereas the second says
that every element of θ(YB) must start with the letter s. Thus, IΓ3,τ cannot have an admissible
solution.

However, it is easy to see that ∆Γ3,τ has an ELH
−>
R+ -unifier w.r.t. the ontologyO′′ = {B v ∃r.A}

from Example 4.6. For instance, the substitution γ := {X 7→ B, Y 7→ ∃r.A} is such an
unifier. Note that B vO′′ γ(Y ) = ∃r.A holds because B v ∃r.A is a GCI in O′′. This
subsumption relationship can also be explained by applying the characterization of subsumption
in Lemma 1.3, i.e., an application of the second case in Lemma 1.3 yields B vO′′ ∃r.A.

Summing up, this example demonstrates that the translation of the unification problem ∆Γ3,τ

into a system of linear language inclusions must be augmented to take subsumption relationships
induced by GCIs into account. 4

The following example is more involved. It also considers the effect of role inclusion axioms.

Example 4.8. Recall the unification problem Γ1 and ontology O′ from Example 2.2. We have
seen that Γ1 has ELH−>R+ -unifiers w.r.t. O′, e.g., the substitution δ defined in Example 2.2.

However, the system IΓ1,τ obtained by applying the translation described in Section 3.2 to Γ1

does not have any finite, admissible solution. To see why, note that translating the first and
third subsumption constraints in Γ1 w.r.t. the concept constant B yields the following inclusions
in IΓ1,τ :

XB ⊆ {r}∅, and YB ⊆ {s}XB ∪ ∅.

This means that any solution θ of IΓ1,τ must satisfy θ(XB) = ∅, and hence, θ(YB) = ∅. Thus,
in an admissible solution of IΓ1,τ , the set θ(YA) must be non-empty. The problem is, however,
that translating the second constraint in Γ1 w.r.t. A yields the inclusion:

YA ⊆ {u}∅,
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which forces θ(YA) to be empty. Thus, the system cannot have an admissible solution.

To see the contrast with the unifiability of Γ1 w.r.t. O′, consider first the subsumption constraint
∃u.B v? Y ∈ Γ1. We have seen in Example 2.2 that ∃u.B vO′ δ(Y ) = ∃s.∃r.A. This can be
explained by applying the characterization of subsumption in Lemma 1.3, i.e.,

• the application of the second case in Lemma 1.3 yields B vO′ ∃r.A, and

• u EO′ s and B vO′ ∃r.A can be used to apply vsO′ and conclude that ∃u.B vO′ ∃s.∃r.A.

Nevertheless, as illustrated above, the inclusion YA ⊆ {u}∅ does not admit a solution θ with
sr ∈ θ(YA). Consequently, the translation must be modified such that a solution θ with sr ∈
θ(YA) is possible. 4

To summarize, the problem is that the language inclusions generated by the existing translation
are not equipped to recognize the sequence of steps that leads, for instance, to inferring B vO′′
∃r.A in Example 4.7 and ∃u.B vO′ ∃s.∃r.A in Example 4.8. They are only appropriate to
“simulate” consecutive applications of the subsumption relation vs∅.

Our new translation is designed to overcome these limitations. It constructs, given τ , ∆Γ,τ ,
and O, a new set of inclusions IOΓ,τ such that the following holds:

• if γ is an ELH−>R+ -unifier of ∆Γ,τ compatible with τ , then there is an assignment θγ of
sets of words over NR to the indeterminates9 in IOΓ,τ satisfying

θγ(XA) = {w | ∃w.A ∈ Part(γ(X))}

that is a finite, admissible solution of the system IOΓ,τ .

Conversely, finite, admissible solutions of IOΓ,τ yield an appropriate unifier of ∆Γ,τ :

• if IOΓ,τ has a finite, admissible solution, then it has such a solution θ that yields an ELH−>R+ -
unifier γθ of ∆Γ,τ that is compatible with τ . This unifier is defined similarly to στ , but
using particles provided by θ for padding:

– if X is minimal w.r.t. >τ , then

γθ(X) :=
l

D∈Sτ (X)

D u
l

A∈NC

l

w∈θ(XA)

∃w.A

– if γθ(Y ) has already been defined for all Y such that X >τ Y , then

γθ(X) :=
l

D∈Sτ (X)

γθ(D) u
l

A∈NC

l

w∈θ(XA)

∃w.A.

To achieve this, we exploit the characterization of subsumption in Lemma 1.3. Basically, given
a particle ∃w.A ∈ Part(γ(X)) and a constraint C1 u · · · u Cn v? X ∈ ∆Γ,τ , we know that
γ(C1) u · · · u γ(Cn) vO ∃w.A holds. Hence, the idea is to encode within the inclusions in IOΓ,τ ,
whether a conjunction of atoms and a particle satisfy the characterization of subsumption in
Lemma 1.3. It is not clear to us how to simulate the satisfaction of the conditions required
in Lemma 1.3 for arbitrary conjunctions and particles. Nevertheless, as we will next show, it

9In contrast to the system obtained by the old translation, the system IOΓ,τ uses additional auxiliary indeter-
minates that are not of the form XA for a variable of Γ and a concept name A.
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is possible to do that for conjunctions σ(C1) u · · · u σ(Cn) and particles ∃w.A ∈ Part(σ(X)),
where σ is a special kind of unifier, which we call simple.

The rest of this subsection is structured as follows. We continue by formally defining the notion
of a simple unifier. We then show that unifiability can be characterized by whether a simple
unifier exists or not. Afterwards, we show how to exploit the properties of these unifiers to
define the new set of linear inclusions IOΓ,τ . We finish by proving the correctness of the new
translation.

4.2.1 Simple Unifiers for ∆Γ,τ

Let us start with the definition of simple unifiers for ∆Γ,τ w.r.t. O.

Definition 4.9. The ELH−>R+ -unifier γ of ∆Γ,τ w.r.t. O is called simple if, for all C1u· · ·uCn v?

X ∈ ∆Γ,τ and ∃w.A ∈ Part(γ(X)) the following holds:

1. there exists i, 1 ≤ i ≤ n such that

(a) Ci is a ground atom and Ci vsO ∃w.A, or
(b) Ci = Y is a variable and ∃w.A ∈ Part(γ(Ci)), or

(c) Ci = ∃r.Y for a variable Y , w = sw′ for some s ∈ NR and w′ ∈ NR
∗, and

• ∃w′.A ∈ Part(γ(Y )) and r EO s, or
• ∃t.∃w′.A ∈ Part(γ(Y )) for a transitive role t such that r EO t EO s; or

2. There are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) such that:

(a) At1 u · · · uAtk vO At ′,

(b) for all ` ∈ {1, . . . , k}, there exists i ∈ {1, . . . , n} such that τ(Ci,At`) = 1, and

(c) At ′ vsO ∃w.A.

Intuitively, the first condition in this definition strengthens the first condition of Lemma 1.3.
It tells us that, if γ(Ci)vsO ∃w.A and Ci is not ground, then depending on the case, either

γ(Y )vs∅ ∃w.A or γ(Y )vs∅ ∃w
′.A or γ(Y )vs∅ ∃t.∃w

′.A.

This basically means that the existing translation can be re-used to simulate these structural
subsumption relations. Hence, one can restrict the attention to finding linear inclusions that
can capture the relation Ci vsO ∃w.A, where Ci is a ground atom of Γ and ∃w.A an arbitrary
particle. Regarding the second condition, it rephrases item (b) in Condition 2 of Lemma 1.3
in terms of the subsumption mapping τ . Similarly to the first condition, this will prove to be
convenient to handle the relation Ci vsO At` when Ci is a non-ground atom.

The following lemma strengthens the correspondence established in Proposition 4.3, in terms
of the existence of simple unifiers.

Lemma 4.10. If Γ is an ELH−>R+-unification problem that is unifiable w.r.t. O, then there
exists a subsumption mapping τ for Γ w.r.t. O such that

• ∆Γ,τ has a simple ELH−>R+-unifier σ w.r.t. O that is compatible with τ .

Proof. Assume that Γ has an ELH−>R+ -unifier δ w.r.t. O. We define the assignment τ as

τ(D1, D2) = 1 iff δ(D1) vO δ(D2), for all D1, D2 ∈ Atstr (Γ,O).
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As shown in Proposition 4.3, the assignment τ is a subsumption mapping for Γ w.r.t. O, and δ
is a unifier of ∆Γ,τ w.r.t. O that is compatible with τ .

We use δ to define a substitution σ satisfying the properties required in our claim. Let us define
the set of particles of δ as

Part(δ) :=
⋃

X∈dom(δ)

Part(δ(X)).

Furthermore, we denote as CPart(δ) the closure of Part(δ) under building subconcepts and left
concatenation of subsumed transitive roles, i.e.,

CPart(δ) := {∃u.A | w = vu ∧ {v, u} ⊆ NR
∗ ∧ ∃w.A ∈ Part(δ)} ∪

{∃t.∃u.A | w = vsu ∧ s ∈ NR ∧ {v, u} ⊆ NR
∗ ∧ t is a transitive role ∧

t EO s ∧ ∃w.A ∈ Part(δ)}.

Since Part(δ) is a finite set andO contains finitely many transitive roles, it follows that CPart(δ)
is also a finite set. Hence, we can extend δ into a substitution σ with dom(σ) = dom(δ) as
follows: for all X ∈ dom(δ), we define:

σ(X) := δ(X) u
l
{∃w.A ∈ CPart(δ) | δ(X) vO ∃w.A}.

Since δ is an ELH−>R+ -substitution, this means that σ is also an ELH−>R+ -substitution. In addi-
tion, the following observations follow from the definition of σ (for all X ∈ dom(σ)):

• σ(X) is obtained from δ(X) by possibly adding new particles to the top-level conjunction
of δ(X). Hence, σ(X) v δ(X) holds.

• Every new particle ∃w.A added to obtain σ(X) is such that δ(X) vO ∃w.A. Hence, it
follows that δ(X) vO σ(X).

Therefore, σ(X) ≡O δ(X) holds for all variables X, and thus σ(D) ≡O δ(D) holds for all
concept descriptions D. A direct consequence of this is that σ is a unifier of ∆Γ,τ w.r.t. O that
is compatible with τ .

It remains to prove that σ is simple. Let s be a subsumption constraint C1u· · ·uCn v? X ∈ ∆Γ,τ

and ∃w.A ∈ Part(σ(X)). We need to show that s and ∃w.A satisfy one of the conditions in
Definition 4.9. Since ∃w.A ∈ Part(σ(X)), the definition of σ implies that ∃w.A ∈ CPart(δ),
and an application of Lemma 1.2 yields σ(X) vO ∃w.A. Moreover, since σ is a unifier of ∆Γ,τ ,
we know that σ(C1)u· · ·uσ(Cn) vO σ(X) vO ∃w.A. Hence, one of the two cases of Lemma 1.3
applies to this subsumption relation:

• The first case holds. Then, there is an index i ∈ {1, . . . , n} and a top-level atomD of σ(Ci)
such that DvsO ∃w.A. If Ci is a ground atom, then Ci = D since Ci is flat. Hence, (1a) in
Definition 4.9 immediately holds. Otherwise, Ci = Y or Ci = ∃r.Y for some variable Y .
If Ci = Y , then δ(Y ) vO σ(Y ) v D and D vsO ∃w.A imply that δ(Y ) vO ∃w.A. Hence,
since ∃w.A ∈ CPart(δ), the definition of σ yields that ∃w.A is a top-level atom of σ(Y ).
Thus, ∃w.A ∈ Part(σ(Y )) and (1b) in Definition 4.9 holds.

It remains to look at the case where Ci = ∃r.Y . This means that σ(Ci) = ∃r.σ(Y ) =
D. Since σ(Ci) vsO ∃w.A and σ(Ci) is not a concept name, the definition of structural
subsumption implies that w = sw′ for some s ∈ NR and w′ ∈ NR

∗. Moreover, the definition
of vsO gives us two possibilities for having ∃r.σ(Y )vsO ∃s.∃w′.A. We distinguish between
these two cases, and show that each of them implies that (1c) in Definition 4.9 holds:
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– σ(Y ) vO ∃w′.A and r EO s. Hence, σ(Y ) ≡O δ(Y ) implies that δ(Y ) vO ∃w′.A.
In addition, we know that ∃s.∃w′.A ∈ CPart(δ), which means that there exists a
particle ∃w′′.A ∈ Part(δ) such that:

∗ ∃s.∃w′.A is a sub-concept of ∃w′′.A, or
∗ ∃w′′.A has a sub-concept of the form ∃s′.∃w′.A such that s EO s′.

These two cases have in common that ∃w′.A is a sub-concept of ∃w′′.A, which is
a particle in Part(δ). Hence, since CPart(δ) contains the closure of Part(δ) under
sub-concepts, we know that ∃w′.A ∈ CPart(δ). The latter, together with σ(Y ) vO
∃w′.A, yields that ∃w′.A is a top-level atom of σ(Y ) (see the definition of σ). Thus,
∃w′.A ∈ Part(σ(Y )), and the first case in (1c) is true.

– σ(Y ) vO ∃t.∃w′.A for a transitive role t such that r EO t EO s. As in the previous
case, we can infer that δ(Y ) vO ∃t.∃w′.A. Furthermore, since ∃s.∃w′.A ∈ CPart(δ),
we know from the two cases considered above that ∃s.∃w′.A is a sub-concept of
∃w′′.A or ∃s′.∃w′.A is a sub-concept of ∃w′′.A for a particle ∃w′′.A ∈ Part(δ) and
a role s′ with s EO s′. In addition, t EO s EO s′ implies t EO s′. Hence, since t is
a transitive role, the definition of CPart(δ) yields ∃t.∃w′.A ∈ CPart(δ). Therefore,
as in the previous case, we can conclude that ∃t.∃w′.A is a top-level atom of σ(Y ).
Thus, ∃t′.∃w′.A ∈ Part(σ(Y )), and the second case in (1c) is true.

Summing up, we have shown that case 1) in Definition 4.9 holds.

• The second case of Lemma 1.3 holds. Hence, there are atoms At1, . . . ,Atk,At ′ of O
(k ≥ 0) such that:

– At1 u · · · uAtk vO At ′,
– for every ` ∈ {1, . . . , k}, there is an index i ∈ {1, . . . , n} and a top-level atom D of
σ(Ci) such that D vsO At`, and

– At ′ vsO ∃w.A.

We only need to show that (2b) in Definition 4.9 holds. Suppose that k > 0 and let
` ∈ {1, . . . , k}. Then, there exists i ∈ {1, . . . , n} and a top-level atom D of σ(Ci) such that
DvsOAt`. This implies that σ(Ci) vO At` since σ(Ci) v D. Hence, since σ(Ci) ≡O δ(Ci),
it follows that δ(Ci) vO At`. The latter implies that τ(Ci,At`) = 1, by construction of
τ . Thus, we have shown that case 2) in Definition 4.9 holds.

Overall, we have shown that σ is a simple ELH−>R+ -unifier of ∆Γ,τ w.r.t. O that is compatible
with τ . This concludes the proof.

4.2.2 The Set of Linear Inclusions IOΓ,τ

The inclusions in the set IOΓ,τ must take into account a non-empty ontology O. To this end,
the right-hand sides of the original language inclusions in IΓ,τ must be extended. Our new
translation yields, for each s = C1 u · · · u Cn v? X ∈ ∆Γ,τ and each concept constant A, a
linear language inclusion i∗A(s) of the form

XA ⊆ f∗A(C1) ∪ · · · ∪ f∗A(Cn) ∪ UA(s), (6)

where f∗A(C) differs from fA(C) in the way existential restrictions are treated:

f∗A(∃r.C ′) := LrfA(C ′), where Lr := {s ∈ NR | r EO s}.

The intention is that the right-hand side of the inclusion i∗A(s) should capture words w ∈ NR
∗

satisfying that
γ(C1) u · · · u γ(Cn) vO ∃w.A, (7)
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where γ is a simple ELH−>R+ -unifier of ∆Γ,τ w.r.t. O and ∃w.A ∈ Part(γ(X)). The fact that
γ can be assumed to be a simple unifier tells us that one of the cases in Definition 4.9 applies
whenever the subsumption in (7) holds. Thus, our idea to define the right-hand side of i∗A(s)
is to include terms that can encode the cases stated in Definition 4.9. Among theses cases, the
one stated in (1b) is already taken care of since it is covered by the original translation. More
precisely,

• this case states that ∃w.A ∈ Part(γ(Ci)), where Ci is a variable Y . By Lemma 1.2, this
means that γ(Ci) v ∃w.A. Since this subsumption does not require the ontology, we can
just re-use the term f∗A(Y ) = fA(Y ) = YA.

The other cases are not that trivial since they depend on the axioms in the ontology. A first
step towards encoding them is already implemented by the modification of fA to f∗A, which
takes care of the role hierarchy induced by O.

Example 4.11. For instance, if in the system of Example 4.7 we replace B v? Y with ∃u.X v?

Y , then the language inclusions corresponding to this constraint are

YA ⊆ {u}XA and YB ⊆ {u}XB .

The new system again does not have an admissible solution. However, if we consider an ontology
O containing u v s, then the application of the new translation to this constraint yields the
language inclusions

YA ⊆ {u, s}XA and YB ⊆ {u, s}XB .

Consequently, the new system of language inclusions has a finite, admissible solution. For
instance, since the other inclusion for YA is YA ⊆ {s}XA ∪ {r}{ε} and there are no language
inclusions constraining XA or XB , the following assignment is such a solution:

θ(XA) := {ε}, θ(YA) := {s}, θ(XB) = θ(YB) := ∅.

This reflects the fact that the substitution γ := {X 7→ A, Y 7→ ∃s.A} is an ELH−>R+ -unifier of
the modified system of subsumption constraints w.r.t. O. 4

The scenario illustrated in this example is an instance of the general case where (7) follows
from the first part of (1c) in Definition 4.9. In fact, with the simple modification of fA to f∗A
we can already simulate the general case. Let us briefly explain why this is true.

• The first part of (1c) considers the situation where Ci = ∃r.Y for some variable Y ,
w = sw′ for some s ∈ NR and w′ ∈ NR

∗, and the following holds:

– r EO s and ∃w′.A ∈ Part(γ(Y )).

An application of Lemma 1.2 yields that γ(Y ) v ∃w′.A. Hence, we can use the term
f∗A(∃r.Y ) = LrYA in i∗A(s), since the prefix set Lr contains all role names s that satisfy
r EO s, and γ(Y ) v ∃w′.A holds w.r.t. the empty ontology.

Coming back to Example 4.11, note that u EO s and A ∈ Part(γ(X)), since u v s ∈ O
and γ(X) = A, respectively. This implies that ∃u.γ(X) vO γ(Y ) = ∃s.A. It also
implies that ∃u.X and ∃s.A satisfy the first case of (1c). This is captured by the term
f∗A(∃u.X) = LuXA = {u, s}XA in the linear inclusion obtained from ∃u.X v? Y .

The remaining cases from Definition 4.9 depend on the GCIs and transitivity axioms of the
ontology. They are taken care of by the additional term UA(s) in (6). This term uses additional
types of indeterminates whose meaning is encoded using additional language inclusions. Let us
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first consider the cases (1a) and (2) of Definition 4.9, which describe scenarios that depend on
the GCIs of the ontology. In what follows, we first introduce the indeterminates and language
inclusions used to take care of these cases. Then we explain how they can be used to encode
the aforementioned cases into the definition of UA(s).

For all concept constants A and B occurring in Γ and O, we introduce an indeterminate of
the form ZB→A. The purpose of these indeterminates is to represent languages containing only
words w such that B vO ∃w.A. This intuition is formalized by a corresponding set of linear
language inclusions IO that we will shortly introduce. Its definition is inspired by the following
result, which is an easy consequence of Lemma 2.4.

Proposition 4.12. Let O be a flat and cycle-restricted ELHR+-ontology, A,B ∈ NC, r ∈ NR

and w′ ∈ NR
∗. Then, B vO ∃r.∃w′.A iff there exists B′ ∈ Ats(O) ∩ NC such that:

• B vO ∃r.B′ and B′ vO ∃w′.A.

Proof. The implication from right-to-left is obvious. For the other direction, assume that B vO
∃r.∃w′.A. By Lemma 2.4, there exists ∃u.B′ ∈ Ats(O) such that B′ vO ∃w′.A, and

• B vO ∃u.B′ and u EO r, or

• B vO ∃t.B′ for a transitive role t with u EO t EO r.

Both cases have in common that B vO ∃r.B′. Thus, the implication from left-to-right holds.

Intuitively, this tells us that a subsumption relationship B vO ∃w.A, with w = r1r2 . . . rn
(n > 0), can be explained by a finite sequence of subsumption relationships

B vO ∃r1.B1, B1 vO ∃r2.B2, . . . , Bn−1 vO ∃rn.Bn, Bn vO A,

where each Bi is a concept name occurring in O (1 ≤ i ≤ n). Based on this, we define IO in
the following way. For each concept name B ∈ NC, we define I(B) as the following set:

I(B) := {(r,B′) ∈ NR × (Ats(O) ∩ NC) | B vO ∃r.B′}.

Then, the set of linear inclusions IO consists of one language inclusion for each indeterminate
ZB→A having the following form:

ZB→A ⊆ L ∪
⋃

(r,B′)∈I(B)

{r}ZB′→A, (8)

where L := {ε} if B vO A, and L := ∅ otherwise. The system of linear inclusions IO captures
subsumptions of the form B vO ∃w.A in the following sense.

Lemma 4.13. Let O be a flat, cycle-restricted ELHR+-ontology.

1. If θ is a solution of IO, then w ∈ θ(ZB→A) implies B vO ∃w.A.

2. If we define θ(ZB→A) := {w ∈ NR
∗ | B vO ∃w.A}, then θ is a finite solution of IO.

The proof of this lemma requires several steps. We defer it to the next subsection. Let us see
how the indeterminates ZB→A help in defining UA(s). The following example gives a glimpse
of the intuition behind this.
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Example 4.14. Consider again the system ∆Γ3,τ of Example 4.7, but replace B v? Y with
∃r.B v? Y . The language inclusions corresponding to this constraint are

YA ⊆ {r}∅ and YB ⊆ {r}{ε}.

The new system again does not have an admissible solution. However, if we consider the
ontology O = {B v A}, then there are solutions θ of IO that satisfy ε ∈ θ(ZB→A). Thus, if we
extend the language inclusion YA ⊆ {r}∅ obtained from ∃r.B v? Y to

YA ⊆ {r}∅ ∪ {r}ZB→A,

then the new system of language inclusions has a solution θ such that r ∈ θ(YA) since the other
inclusion for YA is YA ⊆ {s}XA ∪ {r}{ε}. Hence, it follows that there is an admissible solution
since there are no language inclusions constraining XA or XB .

This reflects the fact that the modified set of subsumption constraints has an ELH−>R+ -unifier
w.r.t. O. For instance, the substitution γ := {X 7→ B, Y 7→ ∃r.A} is one such unifier. Note that
∃r.B vO γ(Y ) = ∃r.A because O contains the GCI B v A. This is captured in the extended
language inclusion YA ⊆ ∅ ∪ {r}ZB→A by the term {r}ZB→A. 4

This example illustrates an instance of the more general case where (7) follows from case (1a)
in Definition 4.9. This simple instance would be encoded by including {r}ZB→A into the term
UA(s) of the language inclusion obtained from s = ∃r.B v? Y . We generalize this intuition to
cover the scenarios described in case (1a) and case (2) of Definition 4.9.

• Case (1a). This requires the left-hand side of (7) to have a ground top-level atom Ci
such that Ci vsO ∃w.A. The flat form of ∆Γ,τ implies that Ci is of the form ∃α.B where
α ∈ {ε} ∪NR and B ∈ NC. By definition of structural subsumption, Ci vsO ∃w.A holds iff
one of the following is the case:

– Ci = ∃ε.B = B = A and w = ε.

– Ci = ∃r.B, w = sw′ for some s ∈ NR satisfying r EO s, and B vO ∃w′.A.
– Ci = ∃r.B, w = sw′, andB vO ∃t.∃w′.A for a transitive role t such that r EO t EO s.

The first possibility is already covered since f∗A(A) = {ε}, which means that the right-
hand side of i∗A(s) already has a term that matches w = ε. Let us continue with the
second one.

– We simulate this case in i∗A(s) by including in UA(s) a term of the form:

LrZB→A, where Lr := {s ∈ NR | r EO s}.

In this way, Lr matches any role name s such that r EO s, whereas ZB→A takes care
of recognizing w′. The use of ZB→A is based on the idea that this indeterminate is
meant to represent the set of all words w′ ∈ NR

∗ such that B vO ∃w′.A, as explained
above.

It remains to consider the third case.

– In this case, an application of Proposition 4.12 yields that B vO ∃t.∃w′.A iff there
is B′ ∈ Ats(O) ∩ NC such that:

B vO ∃t.B′ and B′ vO ∃w′.A.

Hence, to recognize the words w = sw′ such that ∃r.BvsO∃s.∃w′.A satisfies the third
case, we can use a term of the form LtZB′→A for each suitable t and B′. This way,
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the prefix set Lt matches any role name s such that r EO t EO s, whereas ZB′→A
recognizes the words w′ such that B′ vO ∃w′.A. We denote as Tr(∃r.B) the set of
such suitable pairs (t, B′), i.e.,

Tr(∃r.B) := {(t, B′) | B′ ∈ Ats(O) ∩ NC, t is transitive, r EO t, and B vO ∃t.B′}.

Thus, we include in UA(s) a term of the form LtZB′→A for each (t, B′) ∈ Tr(∃r.B).

• Case (2). This case is defined in terms of atoms At of O such that τ(Ci,At) = 1 for some
i ∈ {1, . . . , n}, as required by Condition (2b). We denote by Cs,τ the conjunction of such
atoms, i.e.,

Cs,τ :=
l
{At ∈ Ats(O) | τ(Ci,At) = 1 for some i ∈ {1, . . . , n}}. (9)

Then, (7) satisfies the second case in Definition 4.9 iff there exists At ∈ Ats(O) such that:

Cs,τ vO At vsO ∃w.A.

These conditions can also be simulated by using the set {ε} and the new indeterminates
ZB→A. Note that At vsO ∃w.A is similar to the case (1a) considered above. Basically, for
each At ∈ Ats(O) such that Cs,τ vO At , we include in UA(s):

– a term of the form {ε}, if At = A, and

– in case At = ∃r.B, one of the form LrZB→A, as well as all terms obtained from
Tr(∃r.B).

It only remains to consider the second part of (1c) in Definition 4.9. This case depends on the
transitivity axioms in the ontology. To deal with these axioms, additional indeterminates and
linear language inclusions are needed. We continue by introducing them. Afterwards, we will
explain how they are used to encode the second part of (1c) into UA(s).

We introduce additional indeterminates of the formXA,t, which are constrained by the following
linear language inclusions:

iA,t(s) = XA,t ⊆ fA,t(C1) ∪ · · · ∪ fA,t(Cn) ∪ UA,t(s), where (10)

fA,t(C) :=


fA(C ′) if C = ∃r.C ′ ∧ r EO t,

YA,t if C = Y ∈ NV,

∅ otherwise.

Intuitively, the difference between i∗A(s) and iA,t(s) is that, given a particle ∃t.∃w.A satisfying
(7), the right-hand side of iA,t(s) is designed to recognize w instead of tw. This can already be
seen with the use of fA,t instead of f∗A in the definition of iA,t(s).

Example 4.15. Suppose that a particle ∃t.∃w.A satisfies (7) w.r.t. some ontology O because
there is an i, 1 ≤ i ≤ n, such that

Ci = ∃r.Y, r EO t, γ(Y ) v ∃w.A.

The right-hand side of the inclusion i∗A(s) contains the term f∗A(∃r.Y ) = LrYA. This term
matches t through Lr and recognizes w via YA. In contrast, the right-hand side of iA,t(s)
contains the term fA,t(∃r.Y ) = YA, provided that r EO t holds. The condition r EO t ensures
that t is implicitly taken into account, while using YA instead of LrYA is in line with the idea
of recognizing just w.
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Consider now the scenario in which ∃t.∃w.A satisfies (7) for the following reasons:

Ci = Y and γ(Y ) v ∃t.∃w.A.

To treat this case, differently from f∗A(Y ) = YA, the function fA,t defines fA,t(Y ) = YA,t . The
reason is that including YA in iA,t(s) to recognize w would forget the fact that t still needs to
be taken into account. 4

The term UA,t(s) in (10) has the same purpose as UA(s) has for i∗A(s). It consists of a slight
variant of UA(s) that fits with the intended meaning of iA,t(s), i.e., its right-hand is supposed
to recognize w instead of tw. The definition of UA,t(s) will become clear later on, after we fully
define UA(s).

Let us continue by explaining how the indeterminates XA,t contribute to the definition of UA(s)
in i∗A(s). The following example illustrates the intuition behind this.

Example 4.16. Assume that

∆Γ,τ = {∃r.B v? Y,∃s.X u ∃r.A v? Y,∃t.B v? X}.

In addition, consider the ontology O = {s v t, t v r}. Since ∃r.B v? Y yields the language
inclusion YA ⊆ {r}∅, any solution θ of IOΓ,τ must satisfy θ(YA) = ∅. Hence, if θ is admissible,
then θ(YB) 6= ∅. In the presence of O, the new translation also yields the inclusions:

YB ⊆ {r}{ε}, YB ⊆ {s, t, r}XB ∪ {r}∅ and XB ⊆ {t, r}{ε}.

Together with θ(YB) 6= ∅, the first of these inclusions yields θ(YB) = {r}. Thus, the second
inclusion implies that ε ∈ θ(XB), and thus θ does not solve the third inclusion. Consequently,
IOΓ,τ cannot have an admissible solution, corresponding to the fact that ∆Γ,τ does not have an
ELH−>R+ -unifier w.r.t. O.

However, if we add the transitivity axiom t ◦ t v t to O, then ∆Γ,τ has an ELH−>R+ -unifier γ
with γ(X) = ∃t.B and γ(Y ) = ∃r.B w.r.t. this ontology. The inclusion iB,t(s) = XB,t ⊆ {ε},
obtained from s = ∃t.B v? X, admits solutions θ with θ(XB,t) = {ε}. Hence, if we extend the
language inclusion YB ⊆ {s, t, r}XB ∪ ∅ to the new one

YB ⊆ {s, t, r}XB ∪ {r}∅ ∪ {r}XB,t

that takes transitivity of t into account, then the new system of language inclusions has an
admissible solution with θ(YB) = {r} and θ(XB) = {t}, which corresponds to the unifier γ. 4

In this example, the role inclusions and the transitivity axiom in O ensure that ∃s.∃t.B vO ∃r.B
holds, which implies that ∃s.γ(X)u∃r.A vO γ(Y ) = ∃r.B holds. It is not hard to see that this
represents an instance of the more general case where (7) follows from the second part of (1c) in
Definition 4.9. We now explain how to generalize these ideas to encode such a case into UA(s).

• The second part of (1c) requires that Ci = ∃r.Y for some variable Y , w = sw′ for some
s ∈ NR and w′ ∈ NR

∗, and the following holds:

– there is a transitive role t such that r EO t EO s and ∃t.∃w′.A ∈ Part(γ(Y )).

Since Ci = ∃r.Y , the right-hand side of the inclusion i∗A(s) contains a term of the form
f∗A(∃r.Y ) = LrYA. Hence, in order to admit sw′, one could in principle try to use Lr
to match the admissible role names s since r EO s. However, using LrYA to match the
whole word sw′ would not be correct, since this case requires ∃t.∃w′.A to be a particle of
γ(Y ) instead of simply ∃w′.A.
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Basically, this scenario requires us to simulate the introduction of t. This is where the
new indeterminates YA,t and the inclusions of the form iA,t(s) are needed. More precisely,
for each transitive role t such that r EO t, we include in UA(s) a term of the form:

LtYA,t.

In this way, the prefix Lt matches the appropriate role names s, while YA,t recognizes w′
but remembers that t needs to be taken into account.

Finally, we are ready to provide the formal definitions of UA(s) and UA,t(s), which together
with (6) and (10) then completes the definition of the language inclusions i∗A(s) and iA,t(s).

We start by defining the following subset of Ats(Γ,O):

Rs,τ := {∃r.B | (Ci = ∃r.B for some i, 1 ≤ i ≤ n) or (Cs,τ vO ∃r.B ∧ ∃r.B ∈ Ats(O)
)
}.

These atoms are the ones that generate the terms of the form LrZB→A and LtZB′→A (where
the latter are obtained from Tr(∃r.B)) that are relevant to define UA(s), as discussed above in
the analysis of the cases (1a) and (2) from Definition 4.9. As for the terms of the form LtYA,t,
they are derived from pairs (Y, t) ∈ Vars(∆Γ,τ )× NR satisfying the conditions described above
when analyzing the second part of (1c). We collect all admissible such pairs in the set

Vs := {(Y, t) | Ci = ∃r.Y for some i, 1 ≤ i ≤ n, r EO t, t is a transitive role}.

Hence, taking into account the previous analysis concerning the cases (1a), second part of (1c),
and (2) from Definition 4.9, we define UA(s) as

UA(s) := Ls,τ ∪
⋃

∃r.B∈Rs,τ

LrZB→A ∪ ⋃
(t,B′)∈Tr(∃r.B)

LtZB′→A

 ∪
⋃

(Y,t)∈Vs

LtYA,t, (11)

where Ls,τ := {ε} if Cs,τ vO A and A ∈ Ats(O), and Ls,τ := ∅ otherwise.

We now modify the definition of UA(s) to formally define UA,t(s). More precisely, based on the
discussions about iA,t(s), the terms occurring in UA(s) that are relevant for UA,t(s) are those
whose prefix set Lr contains t. Hence, UA,t(s) is defined by dispensing with those prefix sets,
as well as the term Ls,τ :

UA,t(s) :=
⋃

∃r.B∈Rs,τ

t∈Lr

ZB→A ∪ ⋃
(t′,B′)∈Tr(∃r.B)

t∈Lt′

ZB′→A

 ∪
⋃

(Y,t′)∈Vs

t∈Lt′

YA,t′ . (12)

Definition 4.17. The system of linear language inclusions IOΓ,τ consists of IO and the inclusions
i∗A(s) and iA,t(s) for every subsumption constraint s in ∆Γ,τ , as defined in (6), (11) and (10),
(12), respectively. We call a solution θ of IOΓ,τ admissible if for each variable X in ∆Γ,τ there
exists A ∈ NC such that θ(XA) 6= ∅.

The next step is to prove that the new translation is correct, i.e., to show the following propo-
sition.

Proposition 4.18. Let τ be a subsumption mapping for Γ w.r.t. O. The unification problem
∆Γ,τ has an ELH−>R+-unifier γ w.r.t. O that is compatible with τ iff the system of linear language
inclusions IOΓ,τ has a finite, admissible solution.

We proceed in two steps. First, we show the properties stated in Lemma 4.13 about IO. Once
we have done this, we can prove both directions of Proposition 4.18.
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4.2.3 Proof of Lemma 4.13

We start by proving the first of the statements claimed in Lemma 4.13.

Lemma 4.19. Let O be a flat and cycle-restricted ELHR+-ontology. If θ is a solution of IO,
then for all w ∈ NR

∗ and A,B ∈ NC the following holds:

w ∈ θ(ZB→A) implies B vO ∃w.A.

Proof. Let w ∈ NR
∗ and A,B ∈ NC such that w ∈ θ(ZB→A). We prove B vO ∃w.A by

induction on the length of w.

• |w| = 0. This means that w = ε, and thus ε ∈ θ(ZB→A) and ∃w.A = A. Since θ is a
solution of IO, ε must belong to θ(t) for some term t on the right-hand side of (8). This
can only be the case if L = {ε}, which in turn is only the case if B vO A.

• |w| > 0. Then, w = rw′ for some r ∈ NR and w′ ∈ NR
∗. In this case, w ∈ θ(ZB→A)

implies the existence of a term of the form {r}ZB′→A on the right-hand side of (8) such
that w′ ∈ θ(ZB′→A). Since |w′| < |w|, the induction hypothesis applied to w′ ∈ θ(ZB′→A)
yields B′ vO ∃w′.A. Furthermore, by definition of (8), the presence of the term {r}ZB′→A
in the right-hand side of the inclusion means that (r,B′) ∈ I(B). Hence, by definition
of I(B), we know that B vO ∃r.B′. Together with B′ vO ∃w′.A, this subsumption
relationship implies B vO ∃w.A.

This concludes the proof since we have shown that B vO ∃w.A holds in both cases.

The proof of the second statement of Lemma 4.13 is given in two steps. The first one proves
that the set of all valid subsumption relationships B vO ∃w.A induces a solution of IO.

Lemma 4.20. Let O be a flat and cycle-restricted ELHR+-ontology. Define θ as the following
assignment of subsets of NR

∗ to the indeterminates ZB→A:

θ(ZB→A) := {w ∈ NR
∗ | B vO ∃w.A}.

Then, θ is a solution of IO.

Proof. Consider an indeterminate ZB→A and the corresponding inclusion (8) in IO, i.e.,

ZB→A ⊆ L ∪
⋃

(r,B′)∈I(B)

{r}ZB′→A where L := {ε} if B vO A, and L := ∅ otherwise.

Let w ∈ θ(ZB→A). We need to show that w ∈ θ(t) for some term t on the right-hand side of
this inclusion. To this end, we make the following case distinction:

• w = ε. By definition of θ(ZB→A), this means that B vO A. Hence, as defined in (8), the
set L is equal to {ε}. Thus, w = ε ∈ θ(L).

• w = rw′ for some r ∈ NR and w′ ∈ NR
∗. This means that B vO ∃r.∃w′.A. An application

of Proposition 4.12 yields a concept name B′ ∈ Ats(O) such that B vO ∃r.B′ and
B′ vO ∃w′.A. This implies that (r,B′) ∈ I(B). Consequently, the right-hand side of the
linear inclusion must contain a term of the form {r}ZB′→A. Moreover, since B′ vO ∃w′.A,
the definition of θ implies that w′ ∈ θ(ZB′→A). Thus, we have that w ∈ {r}·θ(ZB′→A).
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Overall, we have shown that, for all words w ∈ θ(ZB→A), there is a term t on the right-hand
side of the linear inclusion (8) introduced for ZB→A such that w ∈ θ(t). Thus, we can conclude
that θ is a solution of IO.

It remains to show that the solution introduced in this lemma is finite. The next lemma does
this by establishing a bound on the length of words in solutions of IO, whenO is cycle-restricted.

Lemma 4.21. Let O be a cycle-restricted ELHR+-ontology, θ be a solution of IO, and k be the
number of distinct concept names occurring in O. Then |w| ≤ k holds for all indeterminates
ZB→A and words w ∈ θ(ZB→A).

Proof. Let ZB→A be an indeterminate such that w ∈ θ(ZB→A) for some w ∈ NR
∗. The case

where w = ε is trivial. Hence, we now assume that w = r1r2 . . . rn with n > 0.

Since θ is a solution of IO and w ∈ θ(ZB→A), the inclusion corresponding to ZB→A in IO must
contain a term of the form {r1}ZB1→A on its right-hand side, such that r2 . . . rn ∈ θ(ZB1→A).
By repeatedly applying this argument until we are left with the suffix ε, we can infer that there
are concept names B0, B1, . . . , Bn such that B0 = B, B1, . . . , Bn occur in O, and the following
holds for all j, 1 ≤ j ≤ n:

• {rj}ZBj→A is a term on the right-hand side of the inclusion corresponding to ZBj−1→A.

This means that (rj , Bj) ∈ I(Bj−1), which by definition of I(Bj−1) yields that Bj−1 vO ∃rj .Bj
for all j, 1 ≤ j ≤ n. Consequently, the following subsumption relationships hold:

Bj−1 vO ∃rj .∃rj+1. · · · ∃rj+m.Bj+m (1 ≤ j ≤ n, 0 ≤ m ≤ n− j). (13)

Suppose now that |w| > k. Since B1, . . . , Bn occur in O, there must exist two indices 1 ≤ i <
j ≤ n such that Bi = Bj . Hence, (13) implies that Bi vO ∃ri+1. · · · ∃ri+m.Bi withm ≥ 1. Since
this contradicts our assumption that O is cycle-restricted, we can conclude that |w| ≤ k.

Recall that NR is assumed to be the set of role names occurring in Γ or O, which is a finite
set. Hence, this lemma implies that, if O is cycle-restricted, then all solutions of IO are finite.
Thus, the previous three lemmas provide us with a proof of Lemma 4.13.

4.2.4 Proof of Proposition 4.18

We are now ready to show the correctness of our new translation. Let us start by proving
the left-to-right implication in Proposition 4.18. By Lemma 4.10, it is enough to show this
implication for simple ELH−>R+ -unifiers of ∆Γ,τ w.r.t. O. This is done in Lemma 4.23 below,
with the help of the result shown in the following lemma.

Lemma 4.22. Let s ∈ ∆Γ,τ , A ∈ NC, and i∗A(s) be the language inclusion of IOΓ,τ obtained from
s and A. In addition, let LrT be a term on the right-hand side of i∗A(s), where r ∈ NR. Then,
for all transitive roles t of O such that r EO t, the following holds:

• the right-hand side of the inclusion iA,t(s) of IOΓ,τ (obtained from s, A and t) contains a
term of the form T .

Proof. Let LrT be a term on the right-hand side of i∗A(s) such that r ∈ NR. Assume s is of the
form C1 u · · · u Cn v? X. We consider the two possible ways such a term can occur in i∗A(s).
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• f∗A(Ci) = LrT , where Ci is of the form ∃r.C ′ (1 ≤ i ≤ n). This means that f∗A(C ′) = T .
Since ∆Γ,τ is in flat form, C ′ is a concept name. Hence, f∗A(C ′) = fA(C ′) = T . Now, the
definition of iA,t(s) tells us that fA,t(∃r.C ′) is a term on the right-hand side of this linear
inclusion. Hence, since r EO t, we have that fA,t(∃r.C ′) = fA(C ′) = T .

• LrT is a term of the union UA(s). By looking at the definitions of UA(s) and UA,t(s) in
(11) and (12), it is easy to see that r EO t implies that T is a term of UA,t(s).

Thus, in both cases we can conclude that the right-hand side of iA,t(s) contains T .

Lemma 4.23. Let τ be a subsumption mapping for Γ w.r.t. O. If ∆Γ,τ has a simple ELH−>R+-
unifier γ w.r.t. O that is compatible with τ , then IOΓ,τ has a finite, admissible solution.

Proof. Let γ be a simple ELH−>R+ -unifier of ∆Γ,τ w.r.t. O that is compatible with the subsump-
tion mapping τ . As explained in Section 2, we can without loss of generality assume that γ is
a ground substitution. We define a solution θγ of IOΓ,τ as follows:

• For each X ∈ Vars(∆Γ,τ ), concept constant A, and transitive role t, we define:

θγ(XA) := {w ∈ NR
∗ | ∃w.A ∈ Part(γ(X))},

θγ(XA,t) := {w ∈ NR
∗ | ∃t.∃w.A ∈ Part(γ(X))}.

• For each indeterminate ZB→A, we define:

θγ(ZB→A) := {w ∈ NR
∗ | B vO ∃w.A}.

For all indeterminates ZB→A, we can infer from Lemma 4.13 that θγ(ZB→A) is a finite set. This
is also the case for all indeterminates of the form XA and XA,t, since Part(γ(X)) is a finite set
and O has finitely many transitive roles. Hence, θγ is finite. The admissibility of θγ is a direct
consequence of γ being a ground ELH−>R+ -substitution. The reason is that γ(X) is mapped to
an ELH−>R+ -concept for all X ∈ Vars(∆Γ,τ ). Hence, Part(γ(X)) 6= ∅, which by definition of θγ
implies that θγ(XA) 6= ∅ for some concept constant A.

It remains to show that θγ is indeed a solution of IOΓ,τ . To start with, the definition of θγ(ZB→A)
and the application of Lemma 4.13 immediately yields that θγ solves all inclusions in IO. To
show that θγ also solves the other inclusions in IOΓ,τ , we first show that it solves all inclusions
of the form i∗A(s). Then, we will use the result in Lemma 4.22 to prove that it also solves the
ones of the form iA,t(s).

Let i∗A(s) ∈ IOΓ,τ , where s ∈ ∆Γ,τ is of the form C1 u · · · u Cn v? X. Then, by its definition in
(6), the language inclusion i∗A(s) has the following form:

XA ⊆ f∗A(C1) ∪ · · · ∪ f∗A(Cn) ∪ UA(s).

If θγ(XA) = ∅, then θγ trivially solves i∗A(s). Otherwise, let w ∈ θγ(XA). By definition of θγ ,
we know that ∃w.A ∈ Part(γ(X)). Since γ is a simple unifier, one of the cases in Definition 4.9
holds for s and ∃w.A. For each such case, we show that w ∈ θγ(R(i∗A(s))), where R(i∗A(s))
denotes the right-hand side of i∗A(s):

• There is i ∈ {1, . . . , n} such that Ci is a ground atom and Ci vsO ∃w.A. This structural
subsumption relationship holds due to one of the following cases:

– Ci = ∃w.A ∈ NC. This means that w = ε and Ci = ∃w.A = A. Hence, in this case
we have f∗A(Ci) = {ε}. Therefore, {ε} is a term on the right-hand side of i∗A(s) and
ε ∈ θγ({ε}). Thus, w ∈ θγ(R(i∗A(s))).
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– Ci = ∃r.B, w = sw′, r EO s, and B vO ∃w′.A. We know that B ∈ NC because Γ
is in flat form. In addition, by definition of Rs,τ , we know that ∃r.B ∈ Rs,τ . Hence,
LrZB→A is a term in UA(s). Finally, r EO s yields that s ∈ Lr, whereas B vO ∃w′.A
and the definition of θγ imply that w′ ∈ θγ(ZB→A). Thus, w ∈ Lr·θγ(ZB→A), which
implies that w ∈ θγ(R(i∗A(s))).

– Ci = ∃r.B, w = sw′, andB vO ∃t.∃w′.A for a transitive role t such that r EO t EO s.
By Proposition 4.12, there exists B′ ∈ Ats(O) ∩ NC such that

B vO ∃t.B′ and B′ vO ∃w′.A.

Hence, since r EO t and t is transitive, we know that (t, B′) ∈ Tr(∃r.B). Further-
more, Ci = ∃r.B implies that ∃r.B ∈ Rs,τ . Therefore, LtZB′→A is a term in UA(s).
Finally, as in the previous case, we have that s ∈ Lt and w′ ∈ θγ(ZB′→A). Thus,
w ∈ Lt·θγ(ZB′→A), which yields w ∈ θγ(R(i∗A(s))).

• There is i ∈ {1, . . . , n} such that Ci = Y for a variable Y and ∃w.A ∈ Part(γ(Ci)). The
definition of i∗A(s) yields f∗A(Ci) = YA and the definition of θγ yields w ∈ θγ(YA). Thus,
w ∈ θγ(R(i∗A(s))).

• There is i ∈ {1, . . . , n} such that Ci = ∃r.Y for a variable Y , w = sw′, and one of the
two cases in (1c) holds. In the first case, ∃w′.A ∈ Part(γ(Y )) and r EO s. By definition
of θγ and Lr, it follows that w′ ∈ θγ(YA) and s ∈ Lr, and thus w ∈ Lr·θγ(YA). Since
f∗A(∃r.Y ) = LrYA, we can conclude that w ∈ θγ(R(i∗A(s))).

In the second case, ∃t.∃w′.A ∈ Part(γ(Y )) for a transitive role t such that r EO t EO s.
By definition of θγ , we have that w′ ∈ θγ(YA,t). Moreover, since t is transitive and r EO t,
the pair (Y, t) belongs to the set Vs. This implies that UA(s) contains a term of the form
LtYA,t. In addition, t EO s implies that s ∈ Lt. Thus, w ∈ Lt·θγ(YA,t), which yields
w ∈ θγ(R(i∗A(s))).

• There are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) satisfying the three conditions in the
second case of Definition 4.9. In case k > 0, all atoms At1, . . . ,Atk are conjuncts of
Cs,τ (recall the definition in (9)), since they satisfy Condition (2b). Hence, together with
Conditions (2a) and (2c) of Definition 4.9, this yields:

Cs,τ v At1 u · · · uAtk vO At ′ vsO ∃w.A.

The same holds for k = 0, since the empty conjunction corresponds to >. Let us continue
by considering the possible forms of At ′.

– At ′ = B for some B ∈ NC. In this case, At ′ vsO ∃w.A implies w = ε and B = A.
Since Cs,τ vO At ′, it follows that Ls,τ = {ε}. Hence, the right-hand side of i∗A(s)
contains a term of the form {ε}. Thus, w ∈ θγ(R(i∗A(s))).

– At ′ = ∃r.B for some r ∈ NR and B ∈ NC. Since Cs,τ vO At ′, we know that ∃r.B ∈
Rs,τ . This implies that LrZB→A is a term in UA(s), as well as all terms LtZB′→A
with (t, B′) ∈ Tr(∃r.B). To conclude the proof, recall that At ′ = ∃r.B vsO ∃w.A.
Then, by employing the arguments used in the last two cases considering a ground
atom Ci, we can show that w ∈ Lr·θγ(ZB→A), or w ∈ Lt·θγ(ZB′→A) for some
(t, B′) ∈ Tr(∃r.B). Thus, we again obtain w ∈ θγ(R(i∗A(s))).

Thus, we have now shown that θγ also solves all inclusions of the form i∗A(s). It remains to
deal with the language inclusions of the form iA,t(s) for a transitive role t. By (10), such an
inclusion has the following form:

XA,t ⊆ fA,t(C1) ∪ · · · ∪ fA,t(Cn) ∪ UA,t(s).
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Assume that w ∈ θγ(XA,t) for some w ∈ NR
∗. By definition of θγ , this means that ∃t.∃w.A ∈

Part(γ(X)), and thus tw ∈ θγ(XA). We have already proved that θγ solves the language
inclusion i∗A(s). Hence, the right-hand side of i∗A(s) contains a term t such that tw ∈ θγ(t). This
term must be of one of the following forms:

• t = LrT , where r ∈ NR such that r EO t. This means that w ∈ θγ(T ). An application
of Lemma 4.22 yields that the right-hand side of iA,t(s) contains the term T . Hence,
w ∈ θγ(R(iA,t(s))).

• t = YA for some variable Y . This means that s contains an atom Ci = Y (for some
i, 1 ≤ i ≤ n). Hence, the right-hand side of iA,t(s) contains the term fA,t(Y ) = YA,t.
Furthermore, tw ∈ θγ(t) yields tw ∈ θγ(YA). Hence, by definition of θγ , it follows that
∃t.∃w.A ∈ Part(γ(Y )), which then implies that w ∈ θγ(YA,t). Thus, we can conclude
that w ∈ θγ(R(iA,t(s))).

Overall, we have shown that θγ solves all language inclusions in IOΓ,τ . Thus, IOΓ,τ has a finite,
admissible solution.

We continue by proving the right-to-left direction of Proposition 4.18. But first, we must show
an auxiliary result, which states that solvability of IOΓ,τ implies the existence of a special kind
of solutions.

Lemma 4.24. If IOΓ,τ has a finite, admissible solution, then it has a finite, admissible solution
θ such that the following holds for all X ∈ Vars(∆Γ,τ ), A ∈ NC, w ∈ NR

∗, and transitive roles t:

w ∈ θ(XA,t) implies tw ∈ θ(XA). (14)

Proof. Let θ be a solution of IOΓ,τ . We extend θ to an assignment θ′ as follows. For each
indeterminate of the form XA in IOΓ,τ , we define:

θ′(XA) := θ(XA) ∪ {tw | w ∈ θ(XA,t) for a transitive role t}.

For any other indeterminate W , we define θ′(W ) := θ(W ).

Since θ is finite and O has finitely many transitive roles, θ′ is also finite. Hence, since θ(W ) ⊆
θ′(W ) for all indeterminates W of IOΓ,τ and θ is admissible, we can conclude that θ′ is a finite,
admissible assignment. It remains to show that θ′ is also a solution of IOΓ,τ .

Since θ is a solution of IOΓ,τ , and the indeterminates of the form XA whose assignment may
differ between θ and θ′ occur only in language inclusion of the form i∗A(s), it is sufficient to
check these inclusions. In case θ′ does not solve i∗A(s), then this can only be caused by a word
tw assigned to θ′(XA) for some w ∈ θ(XA,t). Hence, to see that θ′ is really a solution of IOΓ,τ ,
it is enough to prove that w ∈ θ(XA,t) implies that the right-hand side of i∗A(s) contains a term
t such that tw ∈ θ′(t). To this end, consider the language inclusion iA,t(s). Since θ is a solution
of IOΓ,τ and w ∈ θ(XA,t), the right-hand side of iA,t(s) contains a term t′ such that w ∈ θ(t′).
Let us look at the possible forms of the term t′:

• t′ = fA,t(C) for some top-level atom C of s. This means that C = ∃r.C ′ and r EO t,
or C = Y for some variable Y . In the first case, we know that fA,t(C) = fA(C ′) and
w ∈ θ(fA(C ′)). Moreover, by definition of i∗A(s), its right-hand side contains a term
t = f∗A(∃r.C ′) = LrfA(C ′). Hence, since r EO t implies t ∈ Lr, it follows that tw ∈ θ(t).
This implies that tw ∈ θ′(t) since θ is contained in θ′.
Regarding the second case, we know that fA,t(Y ) = YA,t and w ∈ θ(YA,t). The definition
of θ′ then yields tw ∈ θ′(YA). Thus, since i∗A(s) contains the term f∗A(Y ) = YA, this case
also satisfies the claim.
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• t′ is a term of UA,t(s). By comparing the definitions of UA,t(s) and UA(s), it is not hard
to see that t′ corresponds to a term t of UA(s) such that tw ∈ θ′(t).

This concludes the proof of the lemma.

In addition to the previous lemma, we will also use the binary relation >τ ⊆ Vars(Γ)×Vars(Γ)
induced by the assignment Sτ . Note that >τ is a well-founded strict order, since Sτ is acyclic
and Vars(Γ) is a finite set. Based on this, the proof of the next lemma shows how to use Sτ
and a finite, admissible solution of IOΓ,τ , to construct an ELH−>R+ -unifier of ∆Γ,τ w.r.t. O that
is compatible with τ .

Lemma 4.25. Let τ be a subsumption mapping for Γ w.r.t. O. If IOΓ,τ has a finite, admissible
solution, then ∆Γ,τ has an ELH−>R+-unifier w.r.t. O that is compatible with τ .

Proof. Let θ be a finite, admissible solution of IOΓ,τ . By Lemma 4.24, we can assume that
θ satisfies the implication in (14). We use θ and the relation >τ induced by Sτ to define
the substitution γθ. More precisely, we define γθ by well-founded induction on >τ (for all
X ∈ Vars(∆Γ,τ )):

• If X is minimal w.r.t. >τ , then

γθ(X) :=
l

D∈Sτ (X)

D u
l

A∈NC

l

w∈θ(XA)

∃w.A.

• If γθ(X) has already been defined for all variables Y with X >τ Y , then

γθ(X) :=
l

D∈Sτ (X)

γθ(D) u
l

A∈NC

l

w∈θ(XA)

∃w.A.

Since θ is finite and admissible, we have the following consequences:

• θ assigns finite subsets of NR
∗ to each indeterminate in IOΓ,τ .

• For eachX ∈ Vars(∆Γ,τ ), there exists at least one indeterminateXA such that θ(XA) 6= ∅.

Hence, it is easy to see that γθ really is an ELH−>R+ -substitution. Moreover, by definition of
γθ, we know that D ∈ Sτ (X) implies γθ(X) v γθ(D) for all variables X ∈ NV. Consequently,
Sτ (X) ⊆ Sγθ (X) holds for all X ∈ NV. Thus, γθ is compatible with τ .

It remains to show that γθ is a unifier of ∆Γ,τ w.r.t. O. To this end, we show that all X ∈
Vars(∆Γ,τ ) satisfy the following property:

If C1 u · · · u Cn v? X ∈ ∆Γ,τ then γθ(C1) u · · · u γθ(Cn) vO γθ(X). (15)

Since all subsumption constraints in ∆Γ,τ are of the form C1 u · · · u Cn v? X for some X ∈
Vars(∆Γ,τ ), showing (15) is sufficient to prove that γθ solves all constraints in ∆Γ,τ .

The proof is by well-founded induction on >τ . More precisely, given X ∈ Vars(∆Γ,τ ) and a
subsumption constraint s = C1 u · · · u Cn v? X in ∆Γ,τ , we must show that γθ satisfies the
right-hand side of (15) for s, under the assumption that (15) holds for all Y such that X >τ Y .
To show this, it is enough to prove that γθ(C1) u · · · u γθ(Cn) vO At for each top-level atom
At of γθ(X). We distinguish the two possible forms such a top-level atom At can have:
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• At = γθ(C) for a non-variable atom C ∈ Sτ (X). This means that τ(X,C) = 1. If
s ∈ ∆Γ ⊆ Γ, we can apply (3b) in Definition 4.1 to obtain that C1u· · ·uCn v? C satisfies
Condition (3a) in Definition 4.1, which yields two possibilities:

– τ(Ci, C) = 1 for some i ∈ {1, . . . , n}. If C is a ground atom, the first case of
Lemma 4.5 can be directly applied to obtain that γθ(Ci) vO γθ(C). Otherwise,
C is of the form ∃r.Y for some variable Y . Since τ(X,C) = 1, this means that
∃r.Y ∈ Sτ (X). Hence, X >τ Y and Y satisfies (15), i.e., γθ solves all subsumption
constraints of the form · · · u · · · v? Y in ∆Γ,τ . Since ∆τ ⊆ ∆Γ,τ , the second case of
Lemma 4.5 can be applied to obtain that γθ(Ci) vO γθ(∃r.Y ) = γθ(C). Therefore,
γθ(C1) u · · · u γθ(Cn) vO γθ(C) holds.

– There are atoms At1, . . . ,Atk,At ′ of O (k ≥ 0) satisfying the properties listed in
Condition (3a) of Definition 4.1. The first of these properties tells us that

At1 u · · · uAtk vO At ′,

whereas the other two, combined with induction and an application of Lemma 4.5
(as in the previous case), yield that for each ` ∈ {1, . . . , k} there exists i ∈ {1, . . . , n}
such that γθ(Ci) vO At`, and At ′ vO γθ(C). Overall, we obtain the following
subsumption relationships:

γθ(C1) u · · · u γθ(Cn) vO At1 u · · · uAtk vO At ′ vO γθ(C).

Therefore, γθ(C1) u · · · u γθ(Cn) vO γθ(C) holds.

Finally, if s ∈ ∆τ , then s is of the form C1 v? X and τ(C1, X) = 1. Since τ(X,C) = 1, an
application of (1b) in Definition 4.1 yields that τ(C1, C) = 1. As shown for τ(Ci, C) = 1
above, we obtain that γθ(C1) vO γθ(C) holds.

Summing up, we have thus shown that γθ(C1)u· · ·uγθ(Cn) vO γθ(C) for all C ∈ Sτ (X).

• At = ∃w.A for some A ∈ NC and w ∈ θ(XA). Let us consider the language inclusion i∗A(s)
in IOΓ,τ obtained from s and A, i.e.,

i∗A(s) = XA ⊆ f∗A(C1) ∪ · · · ∪ f∗A(Cn) ∪ UA(s).

Since θ is a solution of IOΓ,τ and w ∈ θ(XA), there exists a term t on the right-hand
side of i∗A(s) such that w ∈ θ(t). Let us first look at the case where t = f∗A(Ci) for some
i ∈ {1, . . . , n}. We show that γθ(Ci) vO ∃w.A, by distinguishing between Ci being ground
or not:

– Ci is a ground atom. Then, either Ci = A or Ci = ∃r.A, for otherwise f∗A(Ci) = ∅
contradicting w ∈ θ(t). This yields two possible forms for t:

t = f∗A(A) = {ε} or t = f∗A(∃r.A) = Lr{ε}.

Since w ∈ θ(t), this means that w = ε or w = s ∈ Lr, respectively. By definition of
Lr, the second case yields that r EO s. Thus, in both cases we have that γθ(Ci) vO
∃w.A

– Ci is not ground. In case Ci = Y for some variable Y , we have t = f∗A(Y ) = YA and
w ∈ θ(YA). By definition of γθ, the latter implies that ∃w.A is a top-level conjunct
of γθ(Y ). Hence, γθ(Ci) v ∃w.A.
The other possible case is Ci = ∃r.Y . This means that t = f∗A(∃r.Y ) = LrYA
and w ∈ Lr·θ(YA). Consequently, w = sw′ for some s ∈ NR and w′ ∈ NR

∗ such
that r EO s and w′ ∈ θ(YA). As in the previous case, the latter implies that
γθ(Y ) v ∃w′.A. Thus, since r EO s and Ci = ∃r.Y , it follows that γθ(Ci) vO ∃w.A.
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As a direct consequence of this case distinction, we obtain that γθ(C1)u · · · u γθ(Cn) vO
∃w.A, whenever t is of the form f∗A(Ci).

It remains to consider the case where t is a term in UA(s). These terms are of the form
{ε}, LrZB→A, LtZB′→A or LtYA,t. We distinguish between these cases:

– t = {ε}. This means that w = ε and Cs,τ vO A. Recall the definition of Cs,τ in (9):

Cs,τ =
l
{At ∈ Ats(O) | τ(Ci,At) = 1 for some i ∈ {1, . . . , n}}.

Note that each atom At in this conjunction is ground. Hence, since γθ is compatible
with τ , we can apply Lemma 4.5 to obtain that γθ(Ci) vO At for some i ∈ {1, . . . , n}.
As a consequence of this, we obtain

γθ(C1) u · · · u γθ(Cn) vO Cs,τ vO A.

Thus, since A = ∃w.A, it follows that γθ(C1) u · · · u γθ(Cn) vO ∃w.A.
– t = LrZB→A. In this case, w ∈ Lr·θ(ZB→A) implies that w = sw′ for some s ∈ NR

and w′ ∈ NR
∗ such that

s ∈ Lr = {s ∈ NR | r EO s} and w′ ∈ θ(ZB→A).

Since θ is a solution of IO, an application of Lemma 4.13 to w′ ∈ θ(ZB→A) yields
that B vO ∃w′.A. The definition of UA(s) yields ∃r.B ∈ Rs,τ , i.e.,

(Ci = ∃r.B for some i, 1 ≤ i ≤ n) or (Cs,τ vO ∃r.B and ∃r.B ∈ Ats(Γ,O)).

Since ∃r.B is ground and r EO s, we obtain γθ(∃r.B) vO ∃s.B. Hence, if Ci = ∃r.B,
then the following holds:

γθ(C1) u · · · u γθ(Cn) vO ∃r.B vO ∃s.B.

Otherwise, Cs,τ vO ∃r.B. Hence, similarly to the case where t = {ε}, we have:

γθ(C1) u · · · u γθ(Cn) vO Cs,τ vO ∃r.B vO ∃s.B.

Overall, we can infer that γθ(C1)u · · · u γθ(Cn) vO ∃s.B. Thus, since B vO ∃w′.A,
it follows that γθ(C1) u · · · u γθ(Cn) vO ∃w.A.

– t = LtZB′→A. This means that there is ∃r.B ∈ Rs,τ such that (t, B′) is a pair in
Tr(∃r.B). Following the previous case, w ∈ Lt·θ(ZB′→A) implies that w = sw′ for
some s ∈ NR and w′ ∈ NR

∗ such that:

t EO s, γθ(C1) u · · · u γθ(Cn) vO ∃r.B, B′ vO ∃w′.A

In addition, (t, B′) ∈ Tr(∃r.B) yields r EO t, B vO ∃t.B′, and t is a transitive role.
This, together with γθ(C1) u · · · u γθ(Cn) vO ∃r.B yields

γθ(C1) u · · · u γθ(Cn) vO ∃r.B vO ∃r.∃t.B′ vO ∃t.∃t.B′ vO ∃t.B′.

Thus, since t EO s and B′ vO ∃w′.A, it follows that γθ(C1)u · · ·uγθ(Cn) vO ∃w.A.
– t = LtYA,t. From w ∈ Lt·θ(YA,t), we obtain w = sw′ for some s ∈ NR such that

t EO s and w′ ∈ θ(YA,t).

In addition, by construction of UA(s), we know that (Y, t) ∈ Vs, which means that
there is an index i ∈ {1, . . . , n} such that

Ci = ∃r.Y, r EO t, and t is a transitive role.
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Finally, since θ satisfies the implication in (14), we have that tw′ ∈ θ(YA). Hence,
by definition of γθ, it follows that γθ(Y ) v ∃t.∃w′.A. Hence, since r EO t, t EO s
and t is a transitive role, we obtain the following subsumption chain:

∃r.γθ(Y ) v ∃r.∃t.∃w′.A vO ∃t.∃w′.A vO ∃s.∃w′.A.

Thus, since γθ(Ci) = ∃r.γθ(Y ), we have shown that γθ(C1)u · · · u γθ(Cn) vO ∃w.A.

The previous case distinction shows that γθ(C1)u · · · u γθ(Cn) vO ∃w.A also holds when
t is a term in UA(s).

Overall, we have thus shown that γθ(C1)u · · · uγθ(Cn) vO At holds for each top-level atom At
of γθ(X). This implies that γθ(C1) u · · · u γθ(Cn) vO γθ(X) holds, i.e., γθ satisfies the right-
hand side of (15) for s. Therefore, we have shown by well-founded induction that γθ solves all
subsumption constraints in ∆Γ,τ . Thus, γθ is a unifier of ∆Γ,τ w.r.t. O. As already explained
immediately after the definition of γθ, this unifier is an ELH−>R+ -substitution that is compatible
with τ . This concludes the proof of the lemma.

4.3 The PSpace Algorithm

Based on the results described in the previous two subsections, we can construct an NPSpace
decision procedure for unification in ELH−>R+ w.r.t. cycle-restricted ELH−>R+ -ontologies. Due to
Savitch’s theorem [27], this implies that the problem is also in PSpace.

Given an input consisting of an ELH−>R+ -unification problem and a cycle-restricted ELH−>R+ -
ontology, the algorithm transforms the ontology and the unification problem into flat ones,
which we denote as Γ and O. It then proceeds as follows:

1. It guesses a subsumption mapping τ for Γ w.r.t. O. If no such mapping exists, then it
fails.

2. It transforms Γ into ∆Γ,τ , and then translates the latter into the set of linear language
inclusions IOΓ,τ .

3. Finally, the algorithm answers “yes” iff IOΓ,τ has a finite, admissible solution.

Flattening can be done in polynomial time and preserves unifiability [5, 19]. A mapping τ :
Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} can be guessed in non-deterministic polynomial time, and
checking whether it satisfies the properties of a subsumption mapping (see Definition 4.1) can be
realized in polynomial time. In fact, since subsumption between ELHR+ -concepts and EO can
be decided in polynomial time w.r.t. ELHR+ -ontologies, the only conditions in Definition 4.1
that might look problematic are those stated in terms of the existence of atoms At1, . . . ,Atk of
O. However, such existential tests can be decided in polynomial time, since the tested property
holds iff it holds for the sequence of all atoms of O that have the required syntactic form and
satisfy the sub-property about τ . To be more precise, let us illustrate this with the second case
of Condition (1d). The same arguments can be applied for the other relevant cases.

• Suppose there are atoms ∃r1.A1, . . . ,∃rk.Ak of O (k ≥ 0) and atoms F` ∈ F(∃r.X, ∃r`.A`)
(1 ≤ ` ≤ k), such that:

τ(X,F`) = 1 (1 ≤ ` ≤ k) and ∃r1.A1 u · · · u ∃rk.Ak vO A.
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Let M be the set of all atoms of O of the form ∃u.B such that τ(X,F ) = 1 for some
F ∈ F(∃r.X,∃u.B). Clearly, the setM contains the atoms ∃r1.A1, . . . ,∃rk.Ak, and hence

l

At∈M
At vO ∃r1.A1 u · · · u ∃rk.Ak vO A.

Therefore, checking whether the sequence of atoms ∃r1.A1, . . . ,∃rk.Ak exists is equivalent
to compute M and check whether

d
At∈M At vO A holds or not. The computation of M

can be done in polynomial time in the size of O, since F(∃r.X,∃u.B) can be computed
in polynomial time in the size of O.

Once a subsumption mapping τ is guessed, the set ∆Γ,τ can clearly be computed in polynomial
time. Moreover, the translation from ∆Γ,τ into IOΓ,τ can also be carried out in polynomial time:

• The number of language inclusions in IOΓ,τ is polynomial in the size of the input. The
set IOΓ,τ consists of the languages inclusions in IO, the language inclusions of the form
i∗A(s), and the language inclusions of the form iA,t(s). The set IO contains one inclusion
for each indeterminate ZB→A, where A and B are concept constants occurring in Γ or O.
This implies that the number of language inclusions in IO is polynomial in the size of Γ
and O. The system IOΓ,τ contains one inclusion of the form i∗A(s) for each subsumption
constraint s ∈ ∆Γ,τ and concept constant A. It also contains one language inclusion of
the form iA,t(s) for each transitive role t of O. Hence, since the number of subsumption
constraints in ∆Γ,τ is polynomial in the size of Γ and O, then the number of inclusions
in IOΓ,τ of the form i∗A(s) and iA,t(s) is polynomial in the size of Γ and O. Overall, we can
conclude that the cardinality of IOΓ,τ is polynomial in the size of the input Γ and O.

• All the inclusions are of polynomial size. For IO, the number of terms on the right-hand
side of an inclusion is bounded by the cardinality of I(B), which consists of pairs of role
names and concept constants occurring in Γ and O. As for the inclusions of the form i∗A(s)
and iA,t(s) in IOΓ,τ , the number of additional terms in UA(s) and UA,t(s) is polynomial
in the combined size of the sets Rs,τ , Tr(∃r.B) where ∃r.B ∈ Ats(Γ,O), and Vs. Since
the cardinality of these sets is polynomial in the size of the input, it follows that such
inclusions are of polynomial size. Thus, every language inclusion contained in IOΓ,τ is of
size polynomial in the size of the input Γ and O.

• The set IOΓ,τ can be computed in polynomial time. This follows from the fact that the
sets I(B), Rs,τ , Tr(∃r.B) and Vs can all be computed in polynomial time.

Finally, as shown in [19], testing for the existence of a finite, admissible solution of IOΓ,τ can
be reduced in polynomial time to checking emptiness of alternating finite automata with ε-
transitions, which is a PSpace-complete problem [24]. This shows that the introduced algorithm
really is an NPSpace algorithm. Its correctness is an immediate consequence of Propositions 4.3
and 4.18. Since PSpace-hardness already holds for the special case of an empty ontology, we
thus have shown the following main result of this paper.

Theorem 4.26. Deciding unifiability of ELH−>R+-unification problems w.r.t. cycle-restricted
ELH−>R+-ontologies is PSpace-complete.

5 Conclusion

We have shown that the approach for obtaining a PSpace decision procedure for EL−>-unification
without a background ontology [19] can be extended to unification w.r.t. a cycle-restricted
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ELHR+ -ontology, i.e., an ontology that may contain general concept inclusions (GCIs) formu-
lated in EL−> as well as role inclusion and transitivity axioms, but does not entail a cyclic sub-
sumption of the form C vO ∃r1.∃r2. · · · ∃rn.C (n ≥ 1). As explained in the introduction, both
considering concept descriptions not containing the top concept > and considering GCIs and
role axioms is motivated by the expressivity employed in the medical ontology SNOMEDCT.
Dealing with such a background ontology not only makes the approach more complicated due
to the more involved characterization of subsumption (see Lemma 1.3 and Definition 4.1, com-
pared to the much simpler versions in [19]). It also requires the development of new notions,
such as simple unifiers and the extension of the system of linear language inclusions with new
indeterminates and corresponding inclusions.

With SNOMEDCT in mind, it would be interesting to see whether results on unification (with
or without top) can be further extended to ontologies additionally containing so-called right-
identity rules, i.e., role axioms of the form r ◦ s v r, since they are also needed to get rid of the
SEP-triplet encoding mentioned in the introduction. However, extending the characterization of
subsumption to this setting is probably a non-trivial problem. From a theoretical point of view,
the big open problem is whether one can dispense with the requirement that the ontology must
be cycle-restricted. Even for pure EL, decidability of unification w.r.t. unrestricted ontologies
is an open problem.

From a practical point of view, the next step is to develop an algorithm that replaces non-
deterministic guessing by a more intelligent search procedure. Since the unification problem is
PSpace-complete, a polynomial translation of the whole problem into SAT is not possible (unless
NP=PSpace). However, one could try to delegate the search for a subsumption mapping to
a SAT solver, which interacts with a solver for the additional condition on such a mapping
(existence of a finite, admissible solution of IOΓ,τ ) in an SMT-like fashion [22].
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A Appendix

As mentioned in the final part of the introduction, this technical report is the extended version
of [10]. Since this document contains a considerably larger number of definitions and auxiliary
results, the numbering assigned to definitions, lemmas, etc., in this document differs from the
one given in [10]. The purpose of this appendix is to provide a mapping that supports the
reader in finding the missing proofs and other details that had to be left out from [10] due to
the space constraints. The following list contains this information.

• Lemma 2 in [10] corresponds to Lemma 1.4.

• The introduction of Section 3 in [10] briefly sketches the approaches developed in [17]
and [19] for unification in EL and in EL−> w.r.t. the empty ontology, respectively. In
this report, Section 3 is devoted to provide a more comprehensive summary of these
approaches.

• Proposition 1 in [10] corresponds to Proposition 4.3.

• The notion of a simple unifier, defined in Definition 5 in [10], is introduced in Subsec-
tion 4.2.1. Further, Lemma 5 in [10] corresponds to Lemma 4.10.

• The exact definition (Definition 4.17) and detailed explanations motivating the construc-
tion of the system IOΓ,τ are presented in Subsection 4.2.2. There, we explain how simple
unifiers are taken into account to define the language inclusions in IOΓ,τ . In addition, we
provide the exact definitions for the terms UA(s) and UA,t(s) (immediately above Defini-
tion 4.17).

• Lemma 4 in [10] corresponds to Lemma 4.13.

• Proposition 2 in [10] corresponds to Proposition 4.18.

• A more precise analysis of the computational complexity of our algorithm can be found
in Subsection 4.3.
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