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Abstract

Uni�cation has been introduced in Description Logic (DL) as a means to detect re-
dundancies in ontologies. In particular, it was shown that testing uni�ability in the DL
EL is an NP-complete problem, and this result has been extended in several directions.
Surprisingly, it turned out that the complexity increases to PSpace if one disallows the use
of the top concept in concept descriptions. Motivated by features of the medical ontology
SNOMEDCT, we extend this result to a setting where the top concept is disallowed, but
there is a background ontology consisting of restricted forms of concept and role inclusion
axioms. We are able to show that the presence of such axioms does not increase the com-
plexity of uni�cation without top, i.e., testing for uni�ability remains a PSpace-complete
problem.

Description Logics (DLs) [10] are a prominent family of logic-based knowledge representation
languages, which o�er their users a good compromise between expressiveness and complexity of
reasoning, and constitute the formal and algorithmic foundation of the standard Web Ontology
Language OWL2.1 The DL EL, which provides the concept constructors conjunction (⊓),
existential restriction (∃r.C), and top concept (⊤), is a rather inexpressive, but nevertheless
very useful member of this family. On the one hand, the important reasoning problems, such as
the subsumption and the equivalence problem, in EL and some of its extensions are decidable in
polynomial time [22, 8]. On the other hand, EL and its tractable extensions are frequently used
to de�ne biomedical ontologies, such as the large medical ontology SNOMEDCT.2 To illustrate
the use of the top concept, whose absence plays an important rôle in this paper, consider the
EL concept descriptions Man ⊓ ∃child .⊤ and Man ⊓ ∃child .Female of the concepts Father and
Father of a daughter, respectively. In the former description, the top concept is used since no
further properties of the child are to be required.

Uni�cation in DLs has been introduced in [17] as a new inference service, motivated by the need
for detecting redundancies in ontologies, in a setting where di�erent ontology engineers (OEs)
constructing the ontology may model the same concepts on di�erent levels of granularity. For
example, assume that (using the style of SNOMEDCT de�nitions) one OE models the concept
of a viral infection of the lung as ViralInfection ⊓ ∃findingSite.LungStructure whereas another
one models it as LungInfection⊓∃causativeAgent .Virus. Here ViralInfection and LungInfection
are used as atomic concepts without further de�ning them, i.e., the two OEs made di�erent

1https://www.w3.org/TR/owl2-overview/
2https://www.ihtsdo.org/snomed-ct/
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decisions when to stop the modelling process. The resulting concept descriptions are not equiv-
alent, but they are nevertheless meant to represent the same concept. They can be made
equivalent by treating the concept names ViralInfection and LungInfection as variables, and
then substituting the �rst one by Infection ⊓ ∃causativeAgent .Virus and the second one by
Infection ⊓ ∃findingSite.LungStructure. In this case, we say that the descriptions are uni�able,
and call the substitution that makes them equivalent a uni�er. Intuitively, such a uni�er pro-
poses de�nitions for the concept names that are used as variables. In [7], uni�cation and its
extension to disuni�cation are used to construct new medical concepts from SNOMEDCT.

Uni�cation in EL was �rst investigated in [14], where it was proved that deciding uni�ability
is an NP-complete problem. The NP upper bound was shown in that paper using a brute-
force �guess and then test� NP algorithm. More practical algorithms for solving this prob-
lem and for computing uni�ers were presented in [16] and [15], where the former describes a
goal-oriented transformation-based algorithm and the latter is based on a translation to SAT.
Implementations of these two algorithms are provided by the system UEL3 [13], which is also
available as a plug-in for the ontology editor Protégé. At the time these algorithms were devel-
oped, SNOMEDCT was an EL ontology consisting of acyclic concept de�nitions. Since such
de�nitions can be encoded into the uni�cation problem (see Section 2.3 in [16]), algorithms
for uni�cation of EL concept descriptions (without background ontology) could be applied to
SNOMEDCT.

There was, however, one problem with using these algorithms in the context of SNOMEDCT:
the top concept is not used in SNOMEDCT, but the concepts generated by EL uni�cation
might contain ⊤, even if applied to concept descriptions not containing ⊤. Thus, the concept
descriptions produced by the uni�er are not necessarily in the style of SNOMEDCT. For ex-
ample, assume that we are looking for a uni�er satisfying the two subsumption constraints4

∃findingSite.LungStructure ⊑? ∃findingSite.X, ∃findingSite.HeartStructure ⊑? ∃findingSite.X.
It is easy to see that there is only one uni�er of these two constraints, which replaces X with ⊤.
Uni�cation in EL−⊤, i.e., the fragment of EL in which the top constructor is disallowed, was
investigated in [1, 18]. Surprisingly, it turned out that the absence of ⊤ makes uni�cation
considerably harder, both from a conceptual and a computational complexity point of view.
In fact, the complexity of deciding uni�ability increases from NP-complete for EL to PSpace-
complete for EL−⊤. The uni�cation algorithm for EL−⊤ introduced in [1, 18] basically proceeds
as follows. It �rst applies the uni�cation algorithm for EL to compute so-called local uni�ers.
If none of them is an EL−⊤-uni�er, then it tries to pad the images of the variables by conjoining
concept descriptions called particles. The task of �nding appropriate particles is reduced to
solving certain systems of linear language inclusions, which can be realized in PSpace using an
automata-based approach.

The current version of SNOMEDCT consists not only of acyclic concept de�nitions, but also
contains more general concept inclusions (GCIs). In addition, properties of the part-of relation
are no longer encoded using the so-called SEP-triplet encoding [27], but are directly expressed
via role axioms [29], which can, for instance, be used to state that the part-of relation is
transitive and that proper-part-of is a subrole of part-of. Decidability of uni�cation in EL
w.r.t. a background ontology consisting of GCIs is still an open problem. In [2], it is shown
that the problem remains in NP if the ontology is cycle-restricted, which is a condition that the
current version of SNOMEDCT satis�es. Extensions of this result to the DL ELHR+ , which
additionally allows for transitive roles and role inclusion axioms, were presented in [5] and [3],
where the former introduces a SAT-based algorithm and the latter a transformation-based one.
However, in all these algorithms, uni�ers may introduce concept descriptions containing ⊤. In

3https://sourceforge.net/projects/uel/
4Instead of equivalence constraints, as in our above example and in early work on uni�cation in DLs, we

consider here a set of subsumption constraints as uni�cation problem. It is easy to see that these two kinds of
uni�cation problems can be reduced to each other [2].
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our example with the di�erent �nding site, however, the presence of the GCIs LungStructure ⊑
UpperBodyStructure and HeartStructure ⊑ UpperBodyStructure would yield a uni�er not using
⊤, namely the one that replaces X with UpperBodyStructure.

The purpose of this paper is to combine the approach for uni�cation in EL−⊤ [1, 18] with the
one for uni�cation in ELHR+ w.r.t. cycle-restricted ontologies [2, 5, 3], to obtain a uni�cation
algorithm for ELH−⊤

R+ w.r.t. cycle-restricted ontologies. This algorithm follows the line of the

one for EL−⊤ in that it basically �rst generates ELHR+ -uni�ers, which it then tries to pad with
particles. Appropriate particles are found as solutions of certain linear language inclusions.
However, due to the presence of GCIs and role axioms, quite a number of non-trivial changes and
additions are required. In particular, the solutions of the systems of linear language inclusions
as constructed in [1, 18] cannot capture particles that are appropriate due to the presence of
an ontology. For instance, in our example, UpperBodyStructure would be such a particle. To
repair this problem, we �rst need to show that, in ELH−⊤

R+ , uni�ability w.r.t. a cycle-restricted
ontology can be characterized by the existence of a special type of uni�ers. Afterwards, we
exploit the properties of this kind of uni�ers to de�ne more sophisticated systems of language
inclusions, which encode the semantics of GCIs and role axioms occurring in a background
ontology. The solutions of such systems then yield also particles that are appropriate only due
to the presence of this ontology.

While the uni�cation problem investigated in this paper is motivated by an application in
ontology engineering, it is also of interest for uni�cation theory [19], which is concerned with
uni�cation-related properties of equational theories. In fact, uni�cation in DLs can be seen as
a special case of uni�cation modulo equational theories, where the respective equational theory
axiomatizes equivalence in the DL under consideration. For EL and ELHR+ , the corresponding
equational theories can be found in [28]. The ones for the case without top can be obtained
from them by removing the constant 1 from the signature, and all identities containing it from
the axiomatization. The results in [1, 18] and in the present paper show that the seemingly
harmless removal of a constant from the equational theory may increase the complexity of
the uni�cation problem considerably. Considering uni�cation w.r.t. a background ontology
corresponds to adding a �nite set of ground identities to the corresponding equational theory.
For the word problem, it was shown that decidability is stable under adding �nite sets of ground
identities to theories such as commutativity or associativity-commutativity [25, 20, 11, 24]. For
uni�cation, it was shown in [12] that adding �nite sets of ground identities to the theory
ACUI of an associativity-commutativity-idempotent symbol with a unit leaves the uni�cation
problem decidable. The results in [2, 5, 3] can be seen as such transfer results, but they require
a restriction on the ground identities corresponding to cycle-restrictedness.

In the next section, we introduce the DLs ELHR+ and ELH−⊤
R+ and the ontologies they can

be used to construct, de�ne some important notions such as particles, and recall the recursive
characterization of subsumption from [3]. Section 2 introduces uni�cation in ELHR+ and
ELH−⊤

R+ , shows that one can without loss of generality restrict the attention to �at ontologies
and uni�cation problems, and de�nes the notion of cycle-restricted ontologies. In Section 3, we
recall the known approaches for uni�cation in ELHR+ w.r.t. cycle-restricted ontologies [2, 5]
and uni�cation in EL−⊤ [1, 18]. Section 4 is devoted to demonstrating our new results. It is
divided into two subsections. The �rst introduces so-called subsumption mappings, and shows
how they can be used to reduce uni�cation of ELH−⊤

R+ w.r.t. cycle-restricted ontologies to solving
a simpler kind of uni�cation problem. The second subsection then in turn reduces solving this
simpler problem to solving certain linear language inclusions. Overall, this yields a PSpace-
algorithm for testing uni�ability in ELHR+ w.r.t. cycle-restricted ontologies. In Section 5, we
brie�y summarize the obtained results and describe ideas for future research.
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1 The Description Logics ELHR+ and ELH−⊤
R+

In this section, we �rst de�ne the syntax and semantics of the DLs investigated in this paper.
Then, we introduce the notions of atoms and particles, which will play an important rôle in our
uni�cation algorithm. To conclude, we recall a useful characterization of subsumption for the
two investigated DLs.

1.1 Syntax and Semantics

Let NC and NR be countably in�nite sets of concept names and role names. The set of ELHR+-
concept descriptions (for short, concepts) over NC and NR is inductively de�ned by using the
concept constructors conjunction (⊓), existential restriction (∃r.C), and top (⊤) in the following
way:

C ::= ⊤ | A | C ⊓ C | ∃r.C,

where A ∈ NC, r ∈ NR and C is an ELHR+ -concept. The subset of ELH−⊤
R+ -concepts consists of

all ELHR+ -concepts de�ned without using ⊤, i.e., only conjunction and existential restriction
can be used as concept constructors. Most of the de�nitions and results provided in the rest
of this section transfer from ELHR+ to ELH−⊤

R+ . Therefore, we will only formulate them for
ELHR+ . For those where this is not the case, we will explicitly make the distinction.

A general concept inclusion (GCI) is an expression of the form C ⊑ D where C and D are
ELHR+ -concepts, a role hierarchy axiom is of the form r ⊑ s for role names r and s, and a
transitivity axiom is of the form r ◦ r ⊑ r for a role name r. An ELHR+-ontology is a �nite set
O of GCIs, role hierarchy axioms and transitivity axioms. In an ELH−⊤

R+ -ontology, the concepts

occurring in GCIs must be ELH−⊤
R+ -concepts. An EL-ontology O contains only GCIs. If the

concepts occurring in such GCIs are constructed without using ⊤, then O is an EL−⊤-ontology.

The semantics of ELHR+ -concepts is de�ned by using standard �rst-order logic interpretations.
An interpretation I = (∆I , .I) of the symbols in NC and NR consists of a non-empty domain ∆I

and an interpretation function .I that assigns subsets AI of ∆I to each concept name A ∈ NC,
and binary relations rI ⊆ ∆I × ∆I to role names r ∈ NR. The function .I is inductively
extended to interpret arbitrary ELHR+ -concepts as follows:

⊤I := ∆I ,

(C ⊓D)I := CI ∩DI , and

(∃r.C)I := {d ∈ ∆I | ∃e.((d, e) ∈ rI ∧ e ∈ CI)}.

An interpretation I is a model of an ELHR+ -ontology O (written I |= O) if C ⊑ D ∈ O implies
CI ⊆ DI , r ⊑ s ∈ O implies rI ⊆ sI , and r ◦ r ⊑ r ∈ O implies that rI is transitive.

1.2 Atoms and Particles

An ELHR+-atom is either a concept name or an existential restriction. Every ELHR+ -concept
C consists of a conjunction of ELHR+ -atoms, where the empty conjunction corresponds to ⊤.
These conjuncts are called the top-level atoms of C. Note that no ELH−⊤

R+ -concept corresponds
to the empty conjunction. Given an ELHR+ -concept C, we use Ats(C) to denote the set of all
atoms (not just top-level ones) occurring in C. Further, given an ontology O, we write Ats(O)
to denote the set of atoms of all concepts occurring in O. For example, if C = ∃r.(∃s.A⊓∃r.B),
then Ats(C) = {C,∃s.A,∃r.B,A,B}, where C is the only top-level atom.
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A particle is an atom of the form ∃r1.∃r2. · · · ∃rn.A, where n ≥ 0, r1, . . . , rn are role names
and A ∈ NC. If n = 0 then the particle is just the concept name A. We will often write
∃w.A, where w = r1r2 . . . rn is viewed as a word over the alphabet NR, as an abbreviation for
∃r1.∃r2. · · · ∃rn.A. The set of particles Part(C) of an ELH−⊤

R+ -concept C is recursively de�ned
as follows:

Part(C) :=


C, if C ∈ NC,

{∃r.P | P ∈ Part(D)}, if C = ∃r.D,

Part(C1) ∪ Part(C2), if C = C1 ⊓ C2.

For instance, if C = ∃r.(∃s.A ⊓ ∃r.B), then Part(C) = {∃rs.A,∃rr.B}.

1.3 Subsumption in ELHR+ and ELH−⊤
R+

Given an ELHR+ -ontology O and ELHR+ -concepts C,D, we say that C is subsumed by D
w.r.t. O (written as C ⊑O D) if CI ⊆ DI for all models I of O. These concepts are equivalent
w.r.t. O (written as C ≡O D) if C ⊑O D and D ⊑O C. If O is empty, we often write C ⊑ D
and C ≡ D instead of C ⊑∅ D and C ≡∅ D, respectively.

Subsumption (and thus also equivalence) between ELHR+ -concepts w.r.t. arbitrary ELHR+ -
ontologies can be decided in polynomial time [8]. In the context of uni�cation, a recursive
characterization of subsumption turns out to be useful. For the case of the empty ontology, the
following characterization for subsumption between ELHR+ -concepts was provided in [16].

Lemma 1.1. Let C1, . . . , Cn, D1, . . . , Dm be ELHR+-atoms. Then, C1⊓· · ·⊓Cn ⊑ D1⊓· · ·⊓Dm

i� for every j ∈ {1, . . . ,m} there is an index i ∈ {1, . . . , n} such that:

� Ci = Dj is a concept name, or

� Ci = ∃r.E, Dj = ∃r.F , and E ⊑ F .

The following result, shown in [18], is an easy consequence of this characterization. It states
that the particles subsuming an ELH−⊤

R+ -concept C are exactly the particles of C.

Lemma 1.2. If C is an ELH−⊤
R+-concept and ∃w.A a particle, then C ⊑ ∃w.A i� ∃w.A ∈

Part(C).

For arbitrary ELHR+ -ontologies, a recursive characterization of subsumption was �rst given
in [5], and later reformulated in [3]. In this paper we use the one given in [3], but before
we can formulate this characterization, we must introduce the role hierarchy induced by an
ELHR+ -ontology O:

� given role names r, s, we say that r is a subrole of s (written r ⊴O s) if rI ⊆ sI holds for
all models I of O. We call a role name r transitive if r ◦ r ⊑ r ∈ O.

It is easy to see that the relation ⊴O is the re�exive-transitive closure of the explicitly stated
subrole relationships {(r, s) | r ⊑ s ∈ O}. The role hierarchy ⊴O can thus be computed in
polynomial time in the size of O, by using standard reachability algorithms.

The characterization of subsumption in [3] uses the notion of structural subsumption. More
precisely, as de�ned in [5], given atoms C,D, we say that C is structurally subsumed by D
w.r.t. an ELHR+ -ontology O (written C ⊑s

O D) if one of the following cases applies:

1. C = D is a concept name.
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2. C = ∃r.C ′, D = ∃s.D′, r ⊴O s, and C ′ ⊑O D′.

3. C = ∃r.C ′, D = ∃s.D′, and C ′ ⊑O ∃t.D′ for some transitive role name t satisfying
r ⊴O t ⊴O s.

It is easy to see that C ⊑ D implies C ⊑s
O D, which in turn implies that C ⊑O D.

Lemma 1.3. Let O be an ELHR+-ontology and C1, . . . , Cn, D1, . . . , Dm ELHR+-atoms. Then,
C1 ⊓ · · · ⊓ Cn ⊑O D1 ⊓ · · · ⊓Dm i� for every j ∈ {1, . . . ,m}:

1. there is an index i ∈ {1, . . . , n} such that Ci ⊑s
O Dj, or

2. there are atoms At1, . . . ,Atk,At
′ of O (k ≥ 0) such that:

(a) At1 ⊓ · · · ⊓Atk ⊑O At ′,

(b) for every ℓ ∈ {1, . . . , k} there exists i ∈ {1, . . . , n} with Ci ⊑s
O Atℓ, and

(c) At ′ ⊑s
O Dj.

If O is empty, then the second case in the de�nition of structural subsumption can be modi�ed
to require that r = s and C ′ ⊑ D′, whereas the third case in the same de�nition as well
as the second case in Lemma 1.3 can be removed. This then yields the characterization of
subsumption w.r.t. the empty ontology from Lemma 1.1. Since ELH−⊤

R+ is a fragment of ELHR+ ,

this characterization also applies to subsumption between ELH−⊤
R+ -concepts w.r.t. ELH−⊤

R+ -
ontologies. However, in this setting, the case k = 0 in 2. cannot occur. This is a direct
consequence of the following result.

Lemma 1.4. Let O be an ELH−⊤
R+-ontology and let At be an atom of O. Then, ⊤ ⊑O At does

not hold.

Proof. Let I be an arbitrary model of O. We extend I by adding a new element d to ∆I

without changing the interpretation function .I . This means that

� d ̸∈ AI for all A ∈ NC, and

� rI does not contain a pair of the form (d, e) nor (e, d) for all r ∈ NR.

This implies that d ̸∈ AtI . Moreover, since O contains no occurrence of ⊤, d trivially satis�es
all GCIs in O. Hence, I is still a model of O. Thus, ⊤ ⊑O At cannot not hold since d ∈ ⊤I .

2 Uni�cation in ELHR+ and ELH−⊤
R+

We now de�ne the uni�cation problem for the DLs ELHR+ and ELH−⊤
R+ . After providing the

formal de�nition of the problem, we recall the notions of �at ontologies and �at uni�cation
problems. We conclude the section with the de�nition of cycle-restricted ontologies, which are
the type of ontologies we investigate in this paper.

2.1 The Uni�cation Problem

To de�ne the uni�cation problem, we assume that the set of concept names is partitioned
into a set NC of concept constants and a set NV of concept variables. Given a DL L ∈
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{ELHR+ , ELH−⊤
R+}, an L-substitution σ is a mapping from a �nite subset of NV to the set

of L-concepts. The application of σ to an arbitrary L-concept over NR and NC ∪ NV is de�ned
inductively in the usual way. A concept (ontology) is ground if it does not contain variables. A
substitution σ is ground if σ(X) is ground for all variables X that have an image under σ.

De�nition 2.1. Let O be a ground ontology. An L-uni�cation problem w.r.t. O is of the form
Γ = {C1 ⊑? D1, . . . , Cn ⊑? Dn}, where C1, D1, . . . , Cn, Dn are L-concepts. An L-substitution
σ is an L-uni�er of Γ w.r.t. O i� σ(Ci) ⊑O σ(Di) for all i ∈ {1, . . . , n}. The uni�cation problem
Γ is called L-uni�able w.r.t. O if it has an L-uni�er w.r.t. O.

The use of subsumption constraints C ⊑? D instead of equations of the form C ≡? D (which
are the ones usually employed to de�ne uni�cation in DLs) is without loss of generality, since

C ≡O D i� C ⊑O D and D ⊑O C, and

C ⊑O D i� C ≡O C ⊓D.

The restriction to ground ontologies is not without loss of generality. A discussion about why
this restriction is appropriate can be found in [2].

The following example illustrates that uni�ability of a given uni�cation problem may depend
on the considered DL L and on the presence of a non-empty ontology.

Example 2.2. Let O = ∅ and consider the following uni�cation problem:

Γ1 := {∃r.A ⊑? X, ∃u.B ⊑? Y, ∃s.X ⊓A ⊑? Y }.

Viewed as an ELHR+ -uni�cation problem, it has the uni�er σ with σ(X) = σ(Y ) = ⊤. However,
Γ1 does not have an ELH−⊤

R+ -uni�er w.r.t. O = ∅. To see this, suppose that δ is such a uni�er.
Using Lemma 1.1, we can deduce from ∃u.B ⊑ δ(Y ) that every top-level atom of δ(Y ) is an
existential restriction for the role u. However, we can also deduce from ∃s.δ(X) ⊓ A ⊑ δ(Y )
that every top-level atom of δ(Y ) is either A or an existential restriction for the role s. Since
not both is possible, δ(Y ) cannot have any top-level atoms, and thus must be ⊤, contradicting
our assumption that δ is an ELH−⊤

R+ -uni�er.

The uni�ability status of Γ1 can change in the presence of an ontology. For instance, Γ1 does
have an ELH−⊤

R+ -uni�er w.r.t. the following ELH−⊤
R+ -ontology:

O′ := {B ⊑ ∃r.A, u ⊑ s}.

It is not hard to verify that the following ELH−⊤
R+ -substitution δ is a uni�er of Γ1 w.r.t. O′:

δ := {X 7→ ∃r.A, Y 7→ ∃s.∃r.A}.

In particular, the ontology ensures that δ solves the second constraint. In fact, although ∃u.B ⊑
∃s.∃r.A does not hold (i.e., w.r.t. the empty ontology), the axioms u ⊑ s and B ⊑ ∃r.A in O′

imply that u ⊴O′ s and B ⊑O′ ∃r.A. Thus, it follows that ∃u.B ⊑O′ ∃s.B ⊑O′ ∃s.∃r.A =
δ(Y ). △

The L-uni�cation decision problem asks, given an L-uni�cation problem Γ and an ontology O,
whether Γ has an L-uni�er w.r.t. O. There are two assumptions one can make regarding the
form of the input and solutions of this decision problem. The �rst assumption tells us that a
decision procedure for uni�ability needs to search only for uni�ers of a particular form:

� it is enough to consider ground L-substitutions σ de�ned over the concept names and
role names occurring in Γ or O. In fact, as mentioned in the introduction, uni�cation in
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ELHR+ and ELH−⊤
R+ can be seen as uni�cation modulo an equational theory, where the

corresponding equational theory consists of a �nite set axiomatizing equivalence in these
DLs (as de�ned in [28]) plus a �nite set of ground identities representing the GCIs in O.
It then follows from well-known results in uni�cation theory [19] that, if Γ is L-uni�able
w.r.t. O, then it has an L-uni�er of the aforementioned form.5

Based on this, we assume in the following that NC is the set of concept constants occurring in
Γ or O, and NR is the set of role names occurring in Γ or O, where we can assume without loss
of generality that there is at least one concept constant. To simplify the technical details and
development of our uni�cation algorithm, we can without loss of generality also assume that
the input ontology and uni�cation problem are �at.

2.2 Flat Ontologies and Uni�cation Problems

An ELHR+ -atom is �at if it is a concept name or of the form ∃r.C, where C is a concept name
or ⊤. This notion adapts to ELH−⊤

R+ by restricting C (in ∃r.C) to be a concept name. An
ELHR+ -ontology O is called �at, if it only contains GCIs of the form C1 ⊓ · · · ⊓Cn ⊑ D, where
C1, . . . , Cn are �at ELHR+ -atoms or ⊤ and D is a �at ELHR+ -atom. This notion can naturally
be adapted to ELH−⊤

R+ -ontologies by requiring that C1, . . . , Cn and D are �at ELH−⊤
R+ -atoms.

As shown in [5, 6], by using the normalization procedure described in [9], every ELHR+ -ontology
can be transformed in polynomial time into an ontology in �at form. The role axioms in the
resulting ELHR+ -ontology remain unchanged, whereas the GCIs in the normalized ontology
are of the form:

A ⊑ B, A1 ⊓A2 ⊑ B, ∃r.A ⊑ B, B ⊑ ∃r.A, (1)

where A,A1, A2 and B are concept names or ⊤. Furthermore, unless ⊤ occurs in the given
ontology, no rule application of this normalization procedure generates a GCI containing ⊤.
Thus, the application of this procedure to an ELH−⊤

R+ -ontology takes polynomial time, and

yields a �at ELH−⊤
R+ -ontology consisting of a set of GCIs of the form in (1), where A,A1, A2

and B are concept names.

Given a DL L ∈ {ELHR+ , ELH−⊤
R+}, an L-uni�cation problem is called �at, if it consists

of subsumption constraints of the form C1 ⊓ · · · ⊓ Cn ⊑? D, where C1, . . . , Cn and D are
�at L-atoms. By introducing new concept variables, every ELHR+ -uni�cation problem Γ can
be �atten in polynomial time, and this transformation stays within ELH−⊤

R+ if applied to an

ELH−⊤
R+ -uni�cation problem (see [14, 18]).

As shown in [5] for ELHR+ , given an ELHR+ -uni�cation problem Γ and an ELHR+ -ontology
O, the uni�cation problem Γ′ and the ontology O′ obtained by �attening Γ and O are such
that Γ is uni�able w.r.t. O i� Γ′ is uni�able w.r.t. O′. This result also applies to ELH−⊤

R+ . More
precisely,

� as explained above, if Γ and O are formulated in ELH−⊤
R+ , the applications of the cor-

responding �attening procedures yield (in polynomial time) a �at ELH−⊤
R+ -uni�cation

problem Γ′ and a �at ELH−⊤
R+ -ontology O′;

� as shown in the technical report [6], an ELH−⊤
R+ -uni�er σ of Γ w.r.t. O can be extended

into an ELH−⊤
R+ -uni�er of Γ

′ w.r.t. O′, by extending σ with appropriate de�nitions for the

auxiliary variables introduced to obtain Γ′. Conversely, an ELH−⊤
R+ -uni�er σ

′ of Γ′ w.r.t.

5In case of L = ELH−⊤
R+ , we may need an additional concept constant A when O is empty and Γ does not

contain any occurrence of a concept constant. However, we can assume without loss of generality that Γ contains
a concept constant by adding the trivial subsumption constraint A ⊑? A to it if it does not.
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O′ can always be transformed into an ELH−⊤
R+ -uni�er of Γ w.r.t. O (this can be concluded

from the proof of Lemma 17 in [6]).

Overall, we can without loss of generality assume that the given ontology and uni�cation prob-
lem are both �at.

2.3 Cycle-Restricted Ontologies

In this paper, we investigate uni�cation w.r.t. cycle-restricted ontologies, which were �rst in-
troduced in [2]. This is motivated by the fact that, without this restriction, it is not even clear
whether uni�cation is decidable.

De�nition 2.3. An ELHR+ -ontology O is called cycle-restricted if there is no sequence of
n > 0 role names r1, . . . , rn ∈ NR and ELHR+ -concept C such that C ⊑O ∃r1.∃r2. · · · ∃rn.C.

As stated in [5] (and proved in the corresponding technical report [6]), one can test in polynomial
time whether a given ELHR+ -ontology is cycle-restricted or not. In addition, if the input
ontology is cycle-restricted, then so is the �at ontology obtained by applying the normalization
procedure mentioned above to it (see the proof of Lemma 21 in [6]).

The following result for �at, cycle-restricted ELHR+ -ontologies will turn out to be quite useful
later on to obtain our results. It basically follows from the proof of Lemma 8 in [4].

Lemma 2.4. Let O be a �at, cycle-restricted ELHR+-ontology, A ∈ NC and ∃r.C an ELHR+-
atom. Then, A ⊑O ∃r.C i� there exists ∃u.B ∈ Ats(O) such that B ⊑O C, and

� A ⊑O ∃u.B and u ⊴O r, or

� A ⊑O ∃t.B for a transitive role t with u ⊴O t ⊴O r.

In Section 4, we will show how to decide uni�ability of an ELH−⊤
R+ -uni�cation problem w.r.t. a

cycle-restricted ELH−⊤
R+ -ontology. Before doing that, we recall (in the next section) the existing

results on uni�cation in ELHR+ and ELH−⊤
R+ , and brie�y describe the techniques employed to

obtain these results.

3 Known results for uni�cation in ELHR+ and ELH−⊤
R+

The decision problem for uni�cation in ELHR+ has been investigated in [14, 16, 2, 5, 3]. It was
�rst established that uni�cation in the DL EL w.r.t. the empty ontology is NP-complete [14, 16].
This result was later extended to uni�cation w.r.t. cycle-restricted EL-ontologies [2], and then
further to uni�cation w.r.t. cycle-restricted ELHR+ -ontologies [5, 3]. For the DL ELH−⊤

R+ ,

uni�cation has only been studied in the context of EL−⊤ for the case of the empty ontology.
Compared to EL, the complexity of the decision problem increases: deciding uni�ability in
EL−⊤ is PSpace-complete [18] rather than NP-complete. We continue with brie�y describing
the techniques used to obtain these results.

3.1 Deciding Uni�cation in ELHR+

The main idea employed to obtain the �in NP� result is to show that, in ELHR+ , uni�ability
w.r.t. cycle-restricted ontologies implies the existence of local uni�ers. Based on this, a corre-
sponding NP-procedure guesses an appropriate representation of a local substitution, and then
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checks by ELHR+ reasoning whether it really is a uni�er. Basically, to guess a local substi-
tution σ, one must guess for every variable X and non-variable atom C of Γ and O whether
σ(X) ⊑O σ(C) is supposed to hold. In the following, we introduce these ideas in a more formal
way.

Given a uni�cation problem Γ, we write Vars(Γ) to denote the set of variables occurring in Γ.
The atoms of Γ are the atoms of the concepts occurring in Γ. We denote the set of all such
atoms as Ats(Γ). For simplicity, given an ontology O, we will write Ats(Γ,O) to denote the set
Ats(Γ)∪Ats(O). Furthermore, due to the third case in the de�nition of structural subsumption,
we also need to consider certain atoms that are not explicitly present in the input of an ELHR+ -
uni�cation problem:

Atstr (Γ,O) := Ats(Γ,O) ∪ {∃t.C | ∃s.C ∈ Ats(Γ,O), t ⊴O s, t is a transitive role}.

A non-variable atom is an atom in Atstr (Γ,O) that is not a variable. We denote the set of all
such atoms as Atnv (Γ,O), i.e.,

Atnv (Γ,O) := Atstr (Γ,O) \Vars(Γ).

Let S be an assignment mapping each variable in Γ to a set of non-variable atoms from
Atstr (Γ,O). The assignment S induces the following binary relation:

>S :={(X,Y ) ∈ Vars(Γ)×Vars(Γ) | Y occurs in an atom of S(X)}

Let >+
S be the transitive closure of >S . We say that S is acyclic if >+

S is irre�exive, and thus
a strict partial order. If S is acyclic, then it induces a substitution σS , de�ned by induction on
>+

S as follows:

� If X is minimal w.r.t. >+
S , then σS(X) :=

d
D∈S(X) D.

� Otherwise, assuming that σS(Y ) has already been de�ned for all Y such that X >+
S Y ,

one de�nes σS(X) :=
d

D∈S(X) σS(D).

A substitution σ is called local, if there exists an acyclic assignment S such that σ = σS . A
uni�er σ of Γ w.r.t. an ontology O is called a local uni�er if it is a local substitution.

Example 3.1. Let O = ∅ and consider the following uni�cation problem:

Γ2 := {X ⊑? A, X ⊑? ∃r.Z, ∃r.B ⊓ ∃s.X ⊑? Y, ∃s.A ⊓ ∃r.Z ⊑? Y, ∃r.A ⊓ ∃r.B ⊑? ∃r.Z}.

It is easy to see that the substitution σ := {X 7→ A ⊓ ∃r.⊤, Y 7→ ⊤, Z 7→ ⊤} is a uni�er of Γ2

w.r.t. O. Moreover, σ is also a local uni�er. In fact, the assignment S de�ned as

S(X) := {∃r.Z,A}, S(Y ) := ∅, S(Z) := ∅

is acyclic and induces the substitution σS = σ. △

Theorem 3.2 ([5]). Let Γ be a �at ELHR+-uni�cation problem and O a �at cycle-restricted
ELHR+-ontology. If Γ is uni�able w.r.t. O, then it has a local uni�er w.r.t. O.

Thus, the NP-decision procedure for uni�cation in ELHR+ w.r.t. cycle-restricted ontologies
works as follows. It �rst guesses an assignment S. If S is not acyclic, then the procedure fails.
Otherwise, it checks whether the induced substitution σS is a uni�er of Γ w.r.t. O. Testing
whether σS is a uni�er in polynomial time requires some care, since σS(X) may be a concept of
exponential size. The main idea is to represent these concepts using a polynomial-size ontology
(for details see [5]).
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3.2 Deciding Uni�cation in EL−⊤

We now describe the idea underlying the PSpace algorithm devised in [18] for uni�cation in
EL−⊤ w.r.t. the empty ontology. Given an EL−⊤-uni�cation problem Γ, the overall idea is to

� guess a local EL-uni�er σ of Γ, and

� if σ is not already an EL−⊤-substitution, then try to extend σ into an EL−⊤-uni�er δ of
Γ, by conjoining particles to the concepts σ(X), where X ∈ Vars(Γ).

To be more precise, instead of speci�cally guessing a local substitution, the algorithm guesses a
more general subsumption mapping for Γ. This is a mapping of the form τ : Ats(Γ)×Ats(Γ) 7→
{0, 1}, which is required to satisfy a series of properties. This mapping plays the following rôles:

� It describes a local EL-uni�er of Γ, i.e., each such mapping τ induces the assignment:

Sτ (X) := {D ∈ Atnv (Γ) | τ(X,D) = 1} (for all X ∈ Vars(Γ)), (2)

and this assignment is required to be acyclic. Acyclicity of Sτ is de�ned as in Section 3.1,
i.e., the assignment Sτ induces the binary relation >Sτ between the variables of Γ (as
described above to introduce local uni�ers), whose transitive closure we denote as >τ .
We say that Sτ is acyclic in case >τ is irre�exive. If Sτ is acyclic, then it induces a
substitution σSτ , de�ned by induction on >τ as described above. For simplicity, we will
denote σSτ as στ . The other properties required of τ ensure that στ is indeed an EL-uni�er
of Γ.6

� It speci�es other subsumption relations between atoms of Γ that should hold for the EL−⊤-
uni�er δ the algorithm tries to generate from στ . This means that if τ(D1, D2) = 1 for
some D1, D2 ∈ Ats(Γ), then the search for δ can be restricted to substitutions satisfying
δ(D1) ⊑ δ(D2).

As already mentioned, the local uni�er obtained from a subsumption mapping τ need not be
an EL−⊤-uni�er. To test for the existence of an EL−⊤-uni�er related to τ , the subsumption
mapping τ together with the original uni�cation problem Γ is then used to construct a new uni-
�cation problem ∆Γ,τ , in which only variables can occur on the right-hand side of subsumption
constraints. This set is de�ned as ∆Γ,τ := ∆Γ ∪∆τ , where

∆Γ := {C1 ⊓ · · · ⊓ Cn ⊑? X ∈ Γ} and ∆τ := {C ⊑? X | τ(C,X) = 1}. (3)

Example 3.3. Recall the uni�cation problem Γ2 and the local EL-uni�er σ from Example 3.1.
Following (2) and the assignment S from Example 3.1, a subsumption mapping τ representing
σ must satisfy:

τ(X,A) = 1, τ(X,∃r.Z) = 1 and τ(Y,At) = τ(Z,At) = 0 (for all At ∈ Atnv (Γ)).

In addition, suppose that τ satis�es τ(∃r.B, ∃r.Z) = 1. This tells the algorithm, for instance,
how the uni�er δ should solve the subsumption constraint ∃r.A ⊓ ∃r.B ⊑? ∃r.Z ∈ Γ2, i.e.,
the algorithm will search for an EL−⊤-substitution δ such that ∃r.B ⊑ ∃r.δ(Z). Moreover,
since τ captures the properties of the subsumption relation, it must set τ(B,Z) = 1 since

6These properties are based on the properties of subsumption w.r.t. the empty ontology. Their precise
de�nitions can be found in [18].
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∃r.B ⊑ ∃r.δ(Z) implies B ⊑ δ(Z). Consequently, τ transforms Γ2 into the uni�cation problem
∆Γ2,τ := ∆Γ2 ∪∆τ , where

∆Γ2
:= {∃r.B ⊓ ∃s.X ⊑? Y, ∃s.A ⊓ ∃r.Z ⊑? Y } and ∆τ := {B ⊑? Z}.

The next task is then to solve ∆Γ2,τ in a way that is compatible with τ . △

As shown in [18], Γ has an EL−⊤-uni�er i� there exists a subsumption mapping τ such that
∆Γ,τ has an EL−⊤-uni�er that is compatible with τ (we will formally de�ne in De�nition 4.2
what �compatible with� means). Thus, one can restrict the attention to solving uni�cation
problems where only concept variables occur on the right-hand side of the constraints. The
advantage of this is that checking existence of an EL−⊤-uni�er of ∆Γ,τ that is compatible with
τ can be reduced to checking existence of an admissible solution of a corresponding set IΓ,τ of
linear language inclusions. In the following, we brie�y describe this reduction.

De�nition 3.4. Let X1, . . . , Xn be a �nite set of indeterminates. A linear language inclusion
over this set of indeterminates and the alphabet NR is an expression of the form

Xi ⊆ L0 ∪ L1X1 ∪ · · · ∪ LnXn,

where i ∈ {1, . . . , n} and Lj ⊆ {ε} ∪ NR for all j, 0 ≤ j ≤ n. As usual, the symbol ε denotes
the empty word. A solution θ of such an inclusion assigns sets of words θ(Xi) ⊆ NR

∗ to each
indeterminate Xi such that θ(Xi) ⊆ L0 ∪ L1·θ(X1) ∪ · · · ∪ Ln·θ(Xn), where � ·� denotes the
concatenation of languages. The solution θ is �nite if θ(Xi) is a �nite set for all i ∈ {1, . . . , n}.

As described in [18], the uni�cation problem ∆Γ,τ can be translated into a system of linear
language inclusions as follows. For each concept constant A ∈ NC and each subsumption
constraint s = C1 ⊓ · · · ⊓ Cn ⊑? X in ∆Γ,τ , a linear language inclusion iA(s) is de�ned as:

XA ⊆ fA(C1) ∪ · · · ∪ fA(Cn), where fA(C) :=



{r}fA(C ′) if C = ∃r.C ′,

YA if C = Y ∈ NV,

{ε} if C = A,

∅ if C ∈ NC \ {A}.

The set of language inclusions IΓ,τ consists of all the inclusions obtained from ∆Γ,τ in this way.
Note that the �at form of ∆Γ,τ and the fact that the right-hand side of each constraint in ∆Γ,τ

is a variable ensure that the application of this translation indeed yields a set of linear language
inclusions. A solution θ of IΓ,τ is called admissible if for each variable X in ∆Γ,τ there exists
A ∈ NC such that θ(XA) ̸= ∅.

Example 3.5. Let us come back to the set ∆Γ2,τ obtained in Example 3.3. The translation
described above yields the following set of linear language inclusions:

IΓ2,τ =


YA ⊆ {r}∅ ∪ {s}XA, YB ⊆ {r}{ε} ∪ {s}XB ,

YA ⊆ {s}{ε} ∪ {r}ZA, YB ⊆ {s}∅ ∪ {r}ZB ,

ZA ⊆ ∅, ZB ⊆ {ε}


The following assignment θ is a �nite, admissible solution of IΓ2,τ :

θ(XA) := {ε}, θ(YA) := {s}, θ(YB) := {r}, θ(ZB) := {ε}, θ(XB) = θ(ZA) := ∅.

From θ, one can obtain an EL−⊤-uni�er γ of∆Γ2,τ , by de�ning γ(U) as the following conjunction
of particles (for all U ∈ Vars(Γ)):

γ(U) :=
l

A∈NC

l

w∈θ(UA)

∃w.A.
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Hence, θ yields the EL−⊤-substitution γ := {X 7→ A, Y 7→ ∃s.A ⊓ ∃r.B, Z 7→ B}. One can
easily verify that γ is a uni�er ∆Γ2,τ w.r.t. O = ∅.

However, γ is not yet a uni�er of the original problem Γ2 from Example 3.1, since it does
not satisfy the constraint X ⊑? ∃r.Z. Basically, the set IΓ2,τ is agnostic of the constraints
dropped when translating Γ2 into ∆Γ2,τ . Nevertheless, the subsumption mapping τ stores the

information on how to solve such constraints, e.g., τ(X,∃r.Z) = 1. Hence, an EL−⊤-uni�er δ of
Γ2 can be constructed by extending the local EL-uni�er σ induced by Sτ with the particles in
γ. In our example, Sτ corresponds to the assignment S from Example 3.1. Thus, δ is de�ned
as:

δ(X) := δ(∃r.Z) ⊓A = (∃r.B) ⊓A, δ(Y ) := ∃s.A ⊓ ∃r.B, δ(Z) := B.

One can easily verify that δ is an EL−⊤-uni�er of Γ2. △

The following theorem summarizes one of the main results obtained in [18]. It shows that
deciding uni�cation in EL−⊤ can be reduced to solving linear language inclusions.

Theorem 3.6. Let Γ be a �at EL−⊤-uni�cation problem. Then, Γ has an EL−⊤-uni�er i�
there exists a subsumption mapping τ for Γ such that IΓ,τ has a �nite, admissible solution.

It is also shown in [18] that deciding the existence of a �nite, admissible solution of a set of linear
language inclusions can be reduced in polynomial time to checking emptiness of alternating �nite
automata with ε-transitions. The emptiness problem for this class of automata is a PSpace-
complete problem [23]. This, together with Theorem 3.6, yields a polynomial space decision
procedure for uni�cation in EL−⊤, since a subsumption mapping can be guessed in polynomial
time and the size of IΓ,τ is polynomial in the size of Γ.

4 The Uni�cation Algorithm for ELH−⊤
R+

In the following, we assume that O is a �at and cycle-restricted ELH−⊤
R+ -ontology, and Γ is

a �at ELH−⊤
R+ -uni�cation problem. We introduce an algorithm that can test whether Γ has

an ELH−⊤
R+ -uni�er and needs only polynomial space for this task. This algorithm follows the

approach described in the previous section for uni�cation in EL−⊤, but must take the ontology
into account. There are two main obstacles that need to be overcome when doing this:

1. The notion of a subsumption mapping from [18] is not complete for subsumption w.r.t. a
non-empty ontology. The reason is that its de�nition is based on the characterization of
subsumption w.r.t. the empty ontology, as stated in Lemma 1.1, and thus does not take
the additional cases in the de�nition of structural subsumption and in Lemma 1.3 into
account, which are required to capture subsumption w.r.t. an ELH−⊤

R+ -ontology.

2. The second, and more challenging, obstacle to overcome is that the reduction to solving
language inclusions described in Subsection 3.2 only yields a sound (but not complete)
procedure to decide uni�ability of ∆Γ,τ w.r.t. a cycle-restricted ontology. In fact, Exam-

ple 2.2 provides an ELH−⊤
R+ -uni�cation problem Γ1 and a cycle-restricted ELH−⊤

R+ -ontology
O′ such that:

� the subsumption constraints of Γ1 have the same form as the ones in problems of
the form ∆Γ,τ ,

� Γ1 has an ELH−⊤
R+ -uni�er w.r.t. O′, but it does not have ELH−⊤

R+ -uni�ers w.r.t. the
empty ontology.
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The latter implies that applying the translation from [18] to Γ1 yields a set of language
inclusions that has no �nite, admissible solution.

To regain completeness we proceed as follows. In Subsection 4.1, we introduce the notion of
subsumption mapping w.r.t. a cycle-restricted ELHR+ -ontology O, and show that (similarly
to the case of the empty ontology) checking ELH−⊤

R+ -uni�ability of Γ w.r.t. O can be reduced

to deciding whether there is a subsumption mapping τ such that ∆Γ,τ has an ELH−⊤
R+ -uni�er

w.r.t. O that is compatible with τ . Afterwards, we de�ne in Subsection 4.2 a new translation of
∆Γ,τ into linear language inclusions, which takes into account the axioms in a cycle-restricted

ELH−⊤
R+ -ontology.

4.1 The New Subsumption Mapping

A mapping of the form τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} induces an assignment Sτ that
(in the current setting) maps variables in Γ to subsets of non-variable atoms in Atstr (Γ,O):

Sτ (X) := {D ∈ Atnv (Γ,O) | τ(X,D) = 1}.

Di�erently to the notion introduced in [18], a subsumption mapping τ must now capture the
properties of ⊑O, where O is a cycle-restricted ELHR+ -ontology (instead of just the empty one).
To achieve this, the conditions imposed on our new (extended) notion of subsumption mapping
are based on the characterization of subsumption from Lemma 1.3. In order to simplify the
de�nition of these conditions, we de�ne the following set (for atoms ∃r.C, ∃s.D ∈ Atstr (Γ,O)):

S(∃r.C, ∃s.D) := {D | if r ⊴O s} ∪ {∃t.D | r ⊴O t ⊴O s, t is transitive}.

Basically, this set collects all concepts F such that C ⊑O F implies ∃r.C ⊑s
O ∃s.D (see the

second and third case in the de�nition of ⊑s
O).

De�nition 4.1. The mapping τ : Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} is called a subsumption
mapping for Γ w.r.t. O if it satis�es the following conditions:

1. It respect the properties of subsumption w.r.t. O:

(a) τ(D,D) = 1, for each D ∈ Atstr (Γ,O).

(b) For all D1, D2, D3 ∈ Atstr (Γ,O), if τ(D1, D2) = τ(D2, D3) = 1 then τ(D1, D3) = 1.

(c) τ(C,D) = 1 i� C ⊑O D, for all ground atoms C,D ∈ Atstr (Γ,O).

(d) For each concept constant A ∈ Ats(Γ,O), role name r, and variable X with ∃r.X ∈
Atstr (Γ):

i. τ(A,∃r.X) = 1 i� 7 there exists an atom ∃u.B of O such that τ(B,X) = 1, and

� A ⊑O ∃u.B and u ⊴O r, or

� A ⊑O ∃t.B for a transitive role t with u ⊴O t ⊴O r.

ii. τ(∃r.X,A) = 1 i�

� there are atoms ∃r1.A1, . . . ,∃rk.Ak ofO (k ≥ 0) and atoms Fℓ ∈ S(∃r.X,∃rℓ.Aℓ)
(1 ≤ ℓ ≤ k), such that:

τ(X,Fℓ) = 1 (1 ≤ ℓ ≤ k) and ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O A. (4)

(e) For all role names r, s ∈ NR, variableX and atoms ∃r.C, ∃s.D ∈ Atstr (Γ) with C = X
or D = X: τ(∃r.C, ∃s.D) = 1 i�

7The right-hand side of this equivalence is based on Lemma 2.4.
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� there exists F ∈ S(∃r.C, ∃s.D) such that τ(C,F ) = 1, or

� there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B ofO (k ≥ 0), atoms Fℓ ∈ S(∃r.C, ∃rℓ.Aℓ)
(1 ≤ ℓ ≤ k), and an atom F ∈ S(∃u.B, ∃s.D), such that:

τ(C,Fℓ) = 1 (1 ≤ ℓ ≤ k), ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O ∃u.B, τ(B,F ) = 1. (5)

2. The assignment Sτ is acyclic. Note that this means that the mapping τ induces the
ELHR+ -substitution στ .

3. The substitution στ is an ELHR+ -uni�er of Γ w.r.t.O. In combination with the conditions
already introduced, this is expressed by the following conditions for each subsumption
constraint C1 ⊓ · · · ⊓ Cn ⊑? D ∈ Γ:

(a) If D is a non-variable atom, then either τ(Ci, D) = 1 for some i ∈ {1, . . . , n}, or
there exist atoms At1, . . . ,Atk,At

′ of O (k ≥ 0) such that:

� At1 ⊓ · · · ⊓Atk ⊑O At ′,

� for each ℓ ∈ {1, . . . , k} there exists i ∈ {1, . . . , n} such that τ(Ci,Atℓ) = 1, and

� τ(At ′, D) = 1.

(b) If D is a variable and τ(D,C) = 1 for a non-variable atom C ∈ Atnv (Γ,O), then
C1 ⊓ · · · ⊓ Cn ⊑? C satis�es the previous case.

By using the close relationship between this de�nition and the characterization of subsumption
in Lemma 1.3, one can show that Γ has an ELHR+ -uni�er w.r.t. O i� there is a subsumption
mapping for Γ w.r.t. O. In the proof of the if-direction, one shows that the substitution
induced by the subsumption mapping is indeed a uni�er. For the other direction, one takes an
ELHR+ -uni�er σ and shows that the mapping τ satisfying τ(C,D) = 1 i� σ(C) ⊑O σ(D) is a
subsumption mapping for Γ w.r.t. O.

However, using subsumption mappings to characterize uni�ability in ELH−⊤
R+ requires more

e�ort. As de�ned in (3) for the case of the empty ontology, together with the uni�cation
problem Γ, a subsumption mapping τ yields a simpler uni�cation problem ∆Γ,τ = ∆Γ∪∆τ . We
can here re-use this de�nition without change. Before we can formulate the main result of this
subsection, we need to de�ne the notion of compatibility of a substitution with a subsumption
mapping.

De�nition 4.2. Any substitution σ induces an assignment Sσ of the form

Sσ(X) := {D ∈ Atnv (Γ,O) | σ(X) ⊑O σ(D)}.

We write Sτ ≤ Sσ if Sτ (X) ⊆ Sσ(X) holds for all variables X. In this case we say that σ is
compatible with τ .

The following result gives a characterization of the existence of an ELH−⊤
R+ -uni�er w.r.t. an

ELH−⊤
R+ -ontology.

Proposition 4.3. Let O be a �at and cycle-restricted ELH−⊤
R+-ontology and Γ a �at ELH−⊤

R+-

uni�cation problem. Then, Γ has an ELH−⊤
R+-uni�er w.r.t. O i� there exists a subsumption

mapping τ for Γ w.r.t. O such that ∆Γ,τ has an ELH−⊤
R+-uni�er γ w.r.t. O that is compatible

with τ .

Before we can prove this proposition, we �rst need to show two lemmas.

Lemma 4.4. Let ∃r.C, ∃s.D be atoms in Atstr (Γ,O) and σ an ELHR+-substitution. Further,
let F ∈ S(∃r.C, ∃s.D) be such that σ(C) ⊑O σ(F ). Then, ∃r.σ(C)⊑s

O ∃s.σ(D).
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Proof. By de�nition of S(·, ·), there are two possibilities for having F in S(∃r.C, ∃s.D):

� F = D and r ⊴O s, or

� F = ∃t.D, where t is a transitive role such that r ⊴O t ⊴O s.

Then σ(C) ⊑O σ(F ) implies ∃r.σ(C)⊑s
O ∃s.σ(D), by the de�nition of ⊑s

O.

The next lemma shows that, given an ELHR+ -substitution σ that is compatible with τ , we have
that τ(At1,At2) = 1 implies σ(At1) ⊑O σ(At2), where At1 ∈ Atstr (Γ,O) and At2 ∈ Atnv (Γ,O).

Lemma 4.5. Let τ be a subsumption mapping for Γ w.r.t. O and σ an ELHR+-substitution
that is compatible with τ . For all atoms C ∈ Atstr (Γ,O) and D ∈ Atnv (Γ,O) we have that:

1. If D is a ground atom, then τ(C,D) = 1 implies σ(C) ⊑O σ(D).

2. If D is of the form ∃r.Y for some variable Y and σ satis�es all subsumption constraints
C ′ ⊑? Y ∈ ∆τ , then τ(C,D) = 1 implies σ(C) ⊑O σ(D).

Proof. If C is a variable X, then τ(X,D) = 1 implies D ∈ Sτ (X). Since σ is compatible with
τ , we know that Sτ (X) ⊆ Sσ(X) holds, and thus D ∈ Sτ (X) implies D ∈ Sσ(X). Hence, the
de�nition of Sσ yields σ(X) ⊑O σ(D). Thus, both cases hold regardless of the form of D. The
rest of the proof consists of proving 1 and 2 for the remaining possible forms of C and D.

1. Assume that D is ground and τ(C,D) = 1. If C is also ground, then Condition (1c) of
De�nition 4.1 implies that σ(C) ⊑O σ(D). Otherwise, C = ∃r.X for some variable X.
Let us distinguish between the two possible forms of D:

� D = A. By the second case in Condition (1d) of De�nition 4.1, τ(∃r.X,A) = 1
implies that there are atoms ∃r1.A1, . . . ,∃rk.Ak of O (k ≥ 0) and atoms Fℓ ∈
S(∃r.X,∃rℓ.Aℓ) (1 ≤ ℓ ≤ k) satisfying (4). Hence, we know that τ(X,Fℓ) = 1 for all
ℓ ∈ {1, . . . , k}. Since ∃rℓ.Aℓ is ground, the de�nition of S(·, ·) yields that Fℓ is also a
ground atom. Therefore, as shown above, τ(X,Fℓ) = 1 implies σ(X) ⊑O σ(Fℓ). We
can then apply Lemma 4.4 to ∃r.X, ∃rℓ.Aℓ and Fℓ to obtain that ∃r.σ(X)⊑s

O ∃rℓ.Aℓ.
This, together with ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O A, yields the following subsumption
relations:

σ(∃r.X) ⊑O ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O A.

Thus, σ(∃r.X) ⊑O A.

� D = ∃s.A. Since C = ∃r.X, we can apply Condition (1e) of De�nition 4.1. This
yields two possibilities for having τ(∃r.X,∃s.A) = 1. The �rst one tells us that there
exists F ∈ S(∃r.X,∃s.A) such that τ(X,F ) = 1. Since ∃s.A is ground, the de�nition
of S(·, ·) yields that F is also a ground atom. Hence, as in the previous case, we know
that τ(X,F )=1 implies σ(X) ⊑O σ(F ). This means that we can apply Lemma 4.4
to ∃r.X, ∃s.A and F to obtain that ∃r.σ(X)⊑s

O ∃s.A. Consequently, σ(∃r.X) ⊑O D.

The second case yields atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O (k ≥ 0), atoms Fℓ ∈
S(∃r.X,∃rℓ.Aℓ) (1 ≤ ℓ ≤ k), and an atom F ∈ S(∃u.B, ∃s.A) satisfying (5). As in
the case with D = A, we know that τ(X,Fℓ) = 1 (1 ≤ ℓ ≤ k). Hence, the same
arguments can be applied to obtain ∃r.σ(X)⊑s

O∃rℓ.Aℓ (1 ≤ ℓ ≤ k). Furthermore, (5)
also tells us that τ(B,F ) = 1. In addition, since ∃s.A is ground, F ∈ S(∃u.B, ∃s.A)
implies that F is also ground. Hence, by Condition (1c), τ(B,F ) = 1 implies that
B ⊑O F . We can then apply Lemma 4.4 to ∃u.B, ∃s.A and F to obtain that
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∃u.B ⊑s
O ∃s.A. This, together with ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O ∃u.B, yields the

following subsumption relations:

σ(∃r.X) ⊑O ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O ∃u.B ⊑O ∃s.A.

Thus, σ(∃r.X) ⊑O ∃s.A.

2. Assume that D = ∃r.Y for some variable Y , σ satis�es all constraints C ′ ⊑? Y ∈ ∆τ , and
τ(C,D) = 1. We consider the possible forms of C:

� C = A. Hence, since τ(C,∃r.Y ) = 1, the �rst case in Condition (1d) of De�nition 4.1
yields an atom ∃u.B of O such that τ(B, Y ) = 1, and

� A ⊑O ∃u.B and u ⊴O r, or

� A ⊑O ∃t.B for a transitive role t with u ⊴O t ⊴O r.

It is easy to see that A ⊑O ∃r.B is a consequence of both cases. Furthermore,
τ(B, Y ) = 1 implies that B ⊑? Y ∈ ∆τ (see the de�nition of ∆Γ,τ ). Hence, our
assumption about σ yields that B ⊑O σ(Y ), which implies that ∃r.B ⊑O ∃r.σ(Y ).
Thus, A ⊑O ∃r.B and ∃r.B ⊑O ∃r.σ(Y ) imply A ⊑O σ(∃r.Y ).

� C = ∃s.C ′. By Condition (1e) of De�nition 4.1 there are two possibilities for having
τ(∃s.C ′,∃r.Y ) = 1:

� τ(C ′, F ) = 1 for some F ∈ S(∃s.C ′,∃r.Y ). Since ∃s.C ′ is a �at atom, C ′ is
either a constant or a variable. In addition, by de�nition of S(·, ·), we have that
F = Y or F = ∃t.Y . If F = Y , then τ(C ′, Y ) = 1 implies that C ′ ⊑? Y ∈ ∆τ .
Hence, our assumption about σ yields σ(C ′) ⊑O σ(Y ). Otherwise, one of the
previous cases applies, and τ(C ′, F ) = 1 implies σ(C ′) ⊑O σ(F ). Thus, we can
apply Lemma 4.4 to ∃s.C ′, ∃r.Y and F to obtain that σ(∃s.C ′) ⊑O σ(∃r.Y ).

� There are atoms ∃s1.A1, . . . ,∃sk.Ak (for some k ≥ 0) and ∃u.B of O, atoms
Fℓ ∈ S(∃s.C ′,∃sℓ.Aℓ) (1 ≤ ℓ ≤ k), and an atom F ∈ S(∃u.B, ∃r.Y ) satisfying
(5). If C ′ is a variable then the same arguments used for the case C = ∃r.X and
D = ∃s.A above, together with the assumptions made for σ, can be applied to
obtain that σ(∃s.C ′) ⊑O σ(∃r.Y ). Otherwise, C ′ must be a concept name since
∃s.C ′ is a �at atom. Therefore, by Condition (1c), the mappings τ(C ′, Fℓ) = 1
derived from (5) imply that σ(C ′) ⊑O Fℓ (1 ≤ ℓ ≤ k). Hence, we can again
re-use the aforementioned arguments to show that σ(∃s.C ′) ⊑O σ(∃r.Y ).

Thus, we have shown that σ(∃s.C ′) ⊑O σ(∃r.Y ) holds in both cases.

This concludes the proof of the lemma.

We are now ready to prove the correspondence stated in Proposition 4.3.8

Proof of Proposition 4.3.

(⇒) Assume that Γ has an ELH−⊤
R+ -uni�er δ w.r.t. O. We de�ne the assignment τ as follows:

τ(D1, D2) = 1 i� δ(D1) ⊑O δ(D2), for all D1, D2 ∈ Atstr (Γ,O).

It is an immediate consequence of this de�nition and the fact that δ is an ELH−⊤
R+ -uni�er of Γ

w.r.t. O that δ is an ELH−⊤
R+ -uni�er of ∆Γ,τ w.r.t. O that is compatible with τ . Therefore, it

remains to show that τ is a subsumption mapping for Γ w.r.t. O. To this end, we consider the
conditions required in De�nition 4.1, and show that τ satis�es them.

8Lemma 4.5 and Proposition 4.3 are the analoga of Lemmas 10 and 11 in [18], respectively.
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1. We show that τ satis�es (1a)�(1e). Conditions (1a), (1b) and (1c) follow directly from
the properties of ⊑O and the de�nition of τ . The remaining cases are more involved and
require the application of Lemma 1.3. We consider them separately.

� First case in (1d). The de�nition of τ yields

τ(A,∃r.X) = 1 i� A ⊑O δ(∃r.X).

By Lemma 2.4, A ⊑O δ(∃r.X) holds i� there is ∃u.B ∈ Ats(O) such that B ⊑O δ(X)
and the conditions required for A and ∃u.B in the �rst case of (1d) are satis�ed.
Furthermore, by the de�nition of τ , we know that B ⊑O δ(X) i� τ(B,X) = 1. Thus,
we have shown that τ satis�es the �rst case of Condition (1d).

� Second case in (1d). The de�nition of τ yields

τ(∃r.X,A) = 1 i� δ(∃r.X) ⊑O A.

Since δ(∃r.X) ̸⊑s
O A, Lemma 1.3 tells us that δ(∃r.X) ⊑O A i� there are atoms

∃r1.A1, . . . ,∃rk.Ak, B of O (k ≥ 0) such that:

δ(∃r.X)⊑s
O ∃rℓ.Aℓ (1 ≤ ℓ ≤ k), ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O B, B ⊑s

O A.

By de�nition of ⊑s
O, the �rst group of k subsumption relations holds i� there are

Fℓ ∈ S(∃r.X,∃rℓ.Aℓ) such that δ(X) ⊑O Fℓ (1 ≤ ℓ ≤ k). Moreover, by de�nition
of τ , we know that δ(X) ⊑O Fℓ i� τ(X,Fℓ) = 1 (1 ≤ ℓ ≤ k). Thus, since B ⊑s

O A
implies that B = A, we have shown that τ satis�es the second condition in (1d).

� Case (1e). By de�nition of τ , we have

τ(∃r.C, ∃s.D) = 1 i� δ(∃r.C) ⊑O δ(∃s.D).

An application of Lemma 1.3 yields that δ(∃r.C) ⊑O δ(∃s.D) i�

� δ(∃r.C)⊑s
O δ(∃s.D), or

� there are atoms ∃r1.A1, . . . ,∃rk.Ak,∃u.B of O (k ≥ 0) such that:

δ(∃r.C)⊑s
O∃rℓ.Aℓ (1 ≤ ℓ ≤ k), ∃r1.A1⊓· · ·⊓∃rk.Ak ⊑O ∃u.B, ∃u.B⊑s

Oδ(∃s.D).

In the �rst case, the de�nition of ⊑s
O tells us that δ(∃r.C)⊑s

O δ(∃s.D) i�

there exists F ∈ S(∃r.C, ∃s.D) such that δ(C) ⊑O δ(F ).

Furthermore, by de�nition of τ , δ(C) ⊑O δ(F ) i� τ(C,F ) = 1. Thus, it follows that
δ(∃r.C)⊑s

O δ(∃s.D) i� the �rst case of (1e) is true.

Regarding the second case, several applications of ⊑s
O yield that δ(∃r.C)⊑s

O ∃rℓ.Aℓ

(1 ≤ ℓ ≤ k) and ∃u.B ⊑s
O δ(∃s.D) i� there are Fℓ ∈ S(∃r.C, ∃rℓ.Aℓ) (1 ≤ ℓ ≤ k) and

F ∈ S(∃u.B, ∃s.D) such that:

δ(C) ⊑O Fℓ (1 ≤ ℓ ≤ k) and B ⊑O δ(F ).

By de�nition of τ , these subsumption relations hold i�

τ(C,Fℓ) = 1 (1 ≤ ℓ ≤ k) and τ(B,F ) = 1.

Hence, the second case holds i� the statements in (5) hold. Overall, we have thus
shown that τ satis�es (1e).

2. To show that τ satis�es Condition 2, assume that Sτ is not acyclic. Then, there is
a sequence of variables X1, . . . , Xn+1 and role names r1, . . . , rn such that X1 = Xn+1,
∃ri.Xi+1 ∈ Atnv (Γ) and τ(Xi,∃ri.Xi+1) = 1 (1 ≤ i ≤ n). The de�nition of τ yields
δ(Xi) ⊑O ∃ri.δ(Xi+1) for all i ∈ {1, . . . , n}, which implies δ(X1) ⊑O ∃r1. · · · ∃rn.δ(X1).
However, this contradict our assumption that O is cycle-restricted. Thus, we can conclude
that τ is acyclic.
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3. To show that τ satis�es Condition 3, we �x a subsumption constraint C1 ⊓ · · · ⊓ Cn ⊑?

D ∈ Γ. If D is a non-variable atom, then we must show that Condition (3a) holds. Note
that δ(C1) ⊓ · · · ⊓ δ(Cn) ⊑O δ(D) holds because δ is a uni�er of Γ. Hence, since δ(D) is
an atom, the application of Lemma 1.3 yields two possibilities:

� there exists i ∈ {1, . . . , n} and a top-level atom C of δ(Ci) such that C ⊑s
O δ(D).

Since δ(Ci) ⊑O C, this yields δ(Ci) ⊑O δ(D), which by the de�nition of τ implies
τ(Ci, D) = 1, as required in Condition (3a).

� δ(C1)⊓ · · · ⊓ δ(Cn) ⊑O δ(D) satis�es case 2 of Lemma 1.3. This yields the existence
of atoms At1, . . . ,Atk,At

′ of O (k ≥ 0) such that: (a) At1⊓· · ·⊓Atk ⊑O At ′, (b) for
each ℓ ∈ {1, . . . , k}, there exists i ∈ {1, . . . , n} and a top-level atom Dℓ of δ(Ci) such
that δ(Ci) ⊑O Dℓ ⊑s

O Atℓ, and (c) At ′ ⊑s
O δ(D).

Hence, by de�nition of τ , we have that τ(Ci,Atℓ) = 1 (for each respective pair) and
τ(At ′, D) = 1. Thus, the second case in Condition (3a) is satis�ed.

It remains to show that, if D is a variable, then Condition (3b) holds. Let C ∈ Atnv (Γ,O)
such that τ(D,C) = 1. The de�nition of τ yields δ(D) ⊑O δ(C), which then implies that
δ(C1) ⊓ · · · ⊓ δ(Cn) ⊑O δ(C). Thus, since δ(C) is a non-variable atom, we can show as
above that C1 ⊓ · · · ⊓ Cn and C satisfy Condition (3a).

(⇐) Let τ be a subsumption mapping for Γ w.r.t. O. Furthermore, let γ be an ELH−⊤
R+ -uni�er

of ∆Γ,τ w.r.t. O such that γ is compatible with τ . We show that γ is also a uni�er of Γ w.r.t.
O. It su�ces to consider subsumption constraints in Γ \∆Γ. These constraints are of the form
C1 ⊓ · · · ⊓ Cn ⊑? D where D is not a variable. Since τ is a subsumption mapping for Γ w.r.t.
O, it satis�es Condition (3a) of De�nition 4.1. Let us consider the two possible cases.

� There is i ∈ {1, . . . , n} such that τ(Ci, D) = 1. Note that D ∈ Atnv (Γ,O) and γ solves
all constraints in ∆τ . Hence, we can apply Lemma 4.5 to obtain that γ(Ci) ⊑O γ(D).
Thus, γ(C1) ⊓ · · · ⊓ γ(Cn) ⊑O γ(D) holds.

� There are atoms At1, . . . ,Atk,At
′ of O (k ≥ 0) satisfying the conditions required in the

second case of (3a) w.r.t. C1⊓· · ·⊓Cn and D. As above, we can apply Lemma 4.5 to each
pair (Ci,Atℓ) and to (At ′, D), to obtain that γ(Ci) ⊑O Atℓ and At ′ ⊑O γ(D). Overall,
we have that:

γ(C1) ⊓ · · · ⊓ γ(Cn) ⊑O At1 ⊓ · · · ⊓Atk ⊑T At ′ ⊑O γ(D).

Hence, it follows that γ(C1) ⊓ · · · ⊓ γ(Cn) ⊑O γ(D).

Thus, we have shown that γ is a an ELH−⊤
R+ -uni�er of Γ w.r.t. O.

Example 4.6. Let O = ∅ and consider the following uni�cation problem:

Γ3 := {∃r.B ⊑? ∃r.Y, ∃s.X ⊓ ∃r.A ⊑? Y }.

Due to Condition 3 in De�nition 4.1 and the fact that O is empty, any subsumption mapping
τ must satisfy τ(∃r.B, ∃r.Y ) = 1. Condition (1e) then implies that τ(B, Y ) = 1 must hold
as well. Regarding the second subsumption constraint in Γ3, Condition (3b) does not apply
as long as there is no non-variable atom C with τ(Y,C) = 1. We can conclude that, for any
subsumption mapping τ , the set ∆Γ3,τ contains at least the subsumption constraints B ⊑? Y
and ∃s.X ⊓ ∃r.A ⊑? Y . Using an argument similar to the one employed in Example 2.2, one
can show that such a set ∆Γ3,τ cannot have an ELH−⊤

R+ -uni�er w.r.t. O.

It is easy to see that there also is a subsumption mapping τ that has only these two constraints
in ∆Γ3,τ since the only other mandatory values 1 are the ones required by (1a). For the
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ontology O′′ = {B ⊑ ∃r.A}, the set ∆Γ3,τ then has an ELH−⊤
R+ -uni�er w.r.t. O′′. This uni�er is

compatible with τ since the subsumption mapping τ that yields value 1 only if required satis�es
Sτ (X) = Sτ (Y ) = ∅. Thus, by Proposition 4.3, Γ3 has an ELH−⊤

R+ -uni�er w.r.t. O′′. Note that
this uni�er is not στ since στ in this case assigns ⊤ to X and Y . △

4.2 The New Translation into Linear Language Inclusions

We have already pointed out at the beginning of this section that the translation from ∆Γ,τ into
IΓ,τ for the case of an empty ontology (as sketched in Section 3.2) is not suitable for uni�cation
w.r.t. non-empty cycle-restricted ontologies. Let us illustrate this with two concrete examples.

Example 4.7. Consider the system ∆Γ3,τ = {B ⊑? Y,∃s.X ⊓ ∃r.A ⊑? Y } from Example 4.6.
The �rst subsumption constraint yields the language inclusions

YA ⊆ ∅ and YB ⊆ {ε},

and the second yields

YA ⊆ {s}XA ∪ {r}{ε} and YB ⊆ {s}XB ∪ {r}∅.

There are no language inclusions constraining XA or XB . Obviously, any solution θ of IΓ3,τ

must satisfy θ(YA) = ∅. This means that, if θ is admissible, then θ(YB) must be non-empty.
The �rst inclusion for YB says that θ(YB) consists of the empty word, whereas the second says
that every element of θ(YB) must start with the letter s. Thus, IΓ3,τ cannot have an admissible
solution.

However, it is easy to see that∆Γ3,τ has an ELH−⊤
R+ -uni�er w.r.t. the ontologyO′′ = {B ⊑ ∃r.A}

from Example 4.6. For instance, the substitution γ := {X 7→ B, Y 7→ ∃r.A} is such an
uni�er. Note that B ⊑O′′ γ(Y ) = ∃r.A holds because B ⊑ ∃r.A is a GCI in O′′. This
subsumption relationship can also be explained by applying the characterization of subsumption
in Lemma 1.3, i.e., an application of the second case in Lemma 1.3 yields B ⊑O′′ ∃r.A.

Summing up, this example demonstrates that the translation of the uni�cation problem ∆Γ3,τ

into a system of linear language inclusions must be augmented to take subsumption relationships
induced by GCIs into account. △

The following example is more involved. It also considers the e�ect of role inclusion axioms.

Example 4.8. Recall the uni�cation problem Γ1 and ontology O′ from Example 2.2. We have
seen that Γ1 has ELH−⊤

R+ -uni�ers w.r.t. O′, e.g., the substitution δ de�ned in Example 2.2.

However, the system IΓ1,τ obtained by applying the translation described in Section 3.2 to Γ1

does not have any �nite, admissible solution. To see why, note that translating the �rst and
third subsumption constraints in Γ1 w.r.t. the concept constant B yields the following inclusions
in IΓ1,τ :

XB ⊆ {r}∅, and YB ⊆ {s}XB ∪ ∅.
This means that any solution θ of IΓ1,τ must satisfy θ(XB) = ∅, and hence, θ(YB) = ∅. Thus,
in an admissible solution of IΓ1,τ , the set θ(YA) must be non-empty. The problem is, however,
that translating the second constraint in Γ1 w.r.t. A yields the inclusion:

YA ⊆ {u}∅,

which forces θ(YA) to be empty. Thus, the system cannot have an admissible solution.

To see the contrast with the uni�ability of Γ1 w.r.t. O′, consider �rst the subsumption constraint
∃u.B ⊑? Y ∈ Γ1. We have seen in Example 2.2 that ∃u.B ⊑O′ δ(Y ) = ∃s.∃r.A. This can be
explained by applying the characterization of subsumption in Lemma 1.3, i.e.,
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� the application of the second case in Lemma 1.3 yields B ⊑O′ ∃r.A, and

� u ⊴O′ s and B ⊑O′ ∃r.A can be used to apply ⊑s
O′ and conclude that ∃u.B ⊑O′ ∃s.∃r.A.

Nevertheless, as illustrated above, the inclusion YA ⊆ {u}∅ does not admit a solution θ with
sr ∈ θ(YA). Consequently, the translation must be modi�ed such that a solution θ with sr ∈
θ(YA) is possible. △

To summarize, the problem is that the language inclusions generated by the existing translation
are not equipped to recognize the sequence of steps that leads, for instance, to inferring B ⊑O′′

∃r.A in Example 4.7 and ∃u.B ⊑O′ ∃s.∃r.A in Example 4.8. They are only appropriate to
�simulate� consecutive applications of the subsumption relation ⊑s

∅.

Our new translation is designed to overcome these limitations. It constructs, given τ , ∆Γ,τ ,
and O, a new set of inclusions IOΓ,τ such that the following holds:

� if γ is an ELH−⊤
R+ -uni�er of ∆Γ,τ compatible with τ , then there is an assignment θγ of

sets of words over NR to the indeterminates9 in IOΓ,τ satisfying

θγ(XA) = {w | ∃w.A ∈ Part(γ(X))}

that is a �nite, admissible solution of the system IOΓ,τ .

Conversely, �nite, admissible solutions of IOΓ,τ yield an appropriate uni�er of ∆Γ,τ :

� if IOΓ,τ has a �nite, admissible solution, then it has such a solution θ that yields an ELH−⊤
R+ -

uni�er γθ of ∆Γ,τ that is compatible with τ . This uni�er is de�ned similarly to στ , but
using particles provided by θ for padding:

� if X is minimal w.r.t. >τ , then

γθ(X) :=
l

D∈Sτ (X)

D ⊓
l

A∈NC

l

w∈θ(XA)

∃w.A

� if γθ(Y ) has already been de�ned for all Y such that X >τ Y , then

γθ(X) :=
l

D∈Sτ (X)

γθ(D) ⊓
l

A∈NC

l

w∈θ(XA)

∃w.A.

To achieve this, we exploit the characterization of subsumption in Lemma 1.3. Basically, given
a particle ∃w.A ∈ Part(γ(X)) and a constraint C1 ⊓ · · · ⊓ Cn ⊑? X ∈ ∆Γ,τ , we know that
γ(C1) ⊓ · · · ⊓ γ(Cn) ⊑O ∃w.A holds. Hence, the idea is to encode within the inclusions in IOΓ,τ ,
whether a conjunction of atoms and a particle satisfy the characterization of subsumption in
Lemma 1.3. It is not clear to us how to simulate the satisfaction of the conditions required
in Lemma 1.3 for arbitrary conjunctions and particles. Nevertheless, as we will next show, it
is possible to do that for conjunctions σ(C1) ⊓ · · · ⊓ σ(Cn) and particles ∃w.A ∈ Part(σ(X)),
where σ is a special kind of uni�er, which we call simple.

The rest of this subsection is structured as follows. We continue by formally de�ning the notion
of a simple uni�er. We then show that uni�ability can be characterized by whether a simple
uni�er exists or not. Afterwards, we show how to exploit the properties of these uni�ers to
de�ne the new set of linear inclusions IOΓ,τ . We �nish by proving the correctness of the new
translation.

9In contrast to the system obtained by the old translation, the system IOΓ,τ uses additional auxiliary indeter-
minates that are not of the form XA for a variable of Γ and a concept name A.
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4.2.1 Simple Uni�ers for ∆Γ,τ

Let us start with the de�nition of simple uni�ers for ∆Γ,τ w.r.t. O.

De�nition 4.9. The ELH−⊤
R+ -uni�er γ of∆Γ,τ w.r.t. O is called simple if, for all C1⊓· · ·⊓Cn ⊑?

X ∈ ∆Γ,τ and ∃w.A ∈ Part(γ(X)) the following holds:

1. there exists i, 1 ≤ i ≤ n such that

(a) Ci is a ground atom and Ci ⊑s
O ∃w.A, or

(b) Ci = Y is a variable and ∃w.A ∈ Part(γ(Ci)), or

(c) Ci = ∃r.Y for a variable Y , w = sw′ for some s ∈ NR and w′ ∈ NR
∗, and

� ∃w′.A ∈ Part(γ(Y )) and r ⊴O s, or

� ∃t.∃w′.A ∈ Part(γ(Y )) for a transitive role t such that r ⊴O t ⊴O s; or

2. There are atoms At1, . . . ,Atk,At
′ of O (k ≥ 0) such that:

(a) At1 ⊓ · · · ⊓Atk ⊑O At ′,

(b) for all ℓ ∈ {1, . . . , k}, there exists i ∈ {1, . . . , n} such that τ(Ci,Atℓ) = 1, and

(c) At ′ ⊑s
O ∃w.A.

Intuitively, the �rst condition in this de�nition strengthens the �rst condition of Lemma 1.3.
It tells us that, if γ(Ci)⊑s

O ∃w.A and Ci is not ground, then depending on the case, either

γ(Y )⊑s
∅ ∃w.A or γ(Y )⊑s

∅ ∃w
′.A or γ(Y )⊑s

∅ ∃t.∃w
′.A.

This basically means that the existing translation can be re-used to simulate these structural
subsumption relations. Hence, one can restrict the attention to �nding linear inclusions that
can capture the relation Ci ⊑s

O ∃w.A, where Ci is a ground atom of Γ and ∃w.A an arbitrary
particle. Regarding the second condition, it rephrases item (b) in Condition 2 of Lemma 1.3
in terms of the subsumption mapping τ . Similarly to the �rst condition, this will prove to be
convenient to handle the relation Ci ⊑s

O Atℓ when Ci is a non-ground atom.

The following lemma strengthens the correspondence established in Proposition 4.3, in terms
of the existence of simple uni�ers.

Lemma 4.10. If Γ is an ELH−⊤
R+-uni�cation problem that is uni�able w.r.t. O, then there

exists a subsumption mapping τ for Γ w.r.t. O such that

� ∆Γ,τ has a simple ELH−⊤
R+-uni�er σ w.r.t. O that is compatible with τ .

Proof. Assume that Γ has an ELH−⊤
R+ -uni�er δ w.r.t. O. We de�ne the assignment τ as

τ(D1, D2) = 1 i� δ(D1) ⊑O δ(D2), for all D1, D2 ∈ Atstr (Γ,O).

As shown in Proposition 4.3, the assignment τ is a subsumption mapping for Γ w.r.t. O, and δ
is a uni�er of ∆Γ,τ w.r.t. O that is compatible with τ .

We use δ to de�ne a substitution σ satisfying the properties required in our claim. Let us de�ne
the set of particles of δ as

Part(δ) :=
⋃

X∈dom(δ)

Part(δ(X)).
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Furthermore, we denote as CPart(δ) the closure of Part(δ) under building subconcepts and left
concatenation of subsumed transitive roles, i.e.,

CPart(δ) := {∃u.A | w = vu ∧ {v, u} ⊆ NR
∗ ∧ ∃w.A ∈ Part(δ)} ∪

{∃t.∃u.A | w = vsu ∧ s ∈ NR ∧ {v, u} ⊆ NR
∗ ∧ t is a transitive role ∧

t ⊴O s ∧ ∃w.A ∈ Part(δ)}.

Since Part(δ) is a �nite set andO contains �nitely many transitive roles, it follows that CPart(δ)
is also a �nite set. Hence, we can extend δ into a substitution σ with dom(σ) = dom(δ) as
follows: for all X ∈ dom(δ), we de�ne:

σ(X) := δ(X) ⊓
l

{∃w.A ∈ CPart(δ) | δ(X) ⊑O ∃w.A}.

Since δ is an ELH−⊤
R+ -substitution, this means that σ is also an ELH−⊤

R+ -substitution. In addi-
tion, the following observations follow from the de�nition of σ (for all X ∈ dom(σ)):

� σ(X) is obtained from δ(X) by possibly adding new particles to the top-level conjunction
of δ(X). Hence, σ(X) ⊑ δ(X) holds.

� Every new particle ∃w.A added to obtain σ(X) is such that δ(X) ⊑O ∃w.A. Hence, it
follows that δ(X) ⊑O σ(X).

Therefore, σ(X) ≡O δ(X) holds for all variables X, and thus σ(D) ≡O δ(D) holds for all
concept descriptions D. A direct consequence of this is that σ is a uni�er of ∆Γ,τ w.r.t. O that
is compatible with τ .

It remains to prove that σ is simple. Let s be a subsumption constraint C1⊓· · ·⊓Cn ⊑? X ∈ ∆Γ,τ

and ∃w.A ∈ Part(σ(X)). We need to show that s and ∃w.A satisfy one of the conditions in
De�nition 4.9. Since ∃w.A ∈ Part(σ(X)), the de�nition of σ implies that ∃w.A ∈ CPart(δ),
and an application of Lemma 1.2 yields σ(X) ⊑O ∃w.A. Moreover, since σ is a uni�er of ∆Γ,τ ,
we know that σ(C1)⊓· · ·⊓σ(Cn) ⊑O σ(X) ⊑O ∃w.A. Hence, one of the two cases of Lemma 1.3
applies to this subsumption relation:

� The �rst case holds. Then, there is an index i ∈ {1, . . . , n} such that σ(Ci)⊑s
O ∃w.A. If

Ci is a ground atom, then (1a) in De�nition 4.9 immediately holds. Otherwise, Ci = Y
or Ci = ∃r.Y for some variable Y . If Ci = Y , then δ(Y ) ⊑O σ(Y ) and σ(Ci) ⊑s

O ∃w.A
imply that δ(Y ) ⊑O ∃w.A. Hence, since ∃w.A ∈ CPart(δ), the de�nition of σ yields that
∃w.A is a top-level atom of σ(Y ). Thus, ∃w.A ∈ Part(σ(Y )) and (1b) in De�nition 4.9
holds.

It remains to look at the case where Ci = ∃r.Y . Since σ(Ci) ⊑s
O ∃w.A and σ(Ci) is not

a concept name, the de�nition of structural subsumption implies that w = sw′ for some
s ∈ NR and w′ ∈ NR

∗. Moreover, the de�nition of ⊑s
O gives us two possibilities for having

∃r.σ(Y ) ⊑s
O ∃s.∃w′.A. We distinguish between these two cases, and show that each of

them implies that (1c) in De�nition 4.9 holds:

� σ(Y ) ⊑O ∃w′.A and r ⊴O s. Hence, σ(Y ) ≡O δ(Y ) implies that δ(Y ) ⊑O ∃w′.A.
In addition, we know that ∃s.∃w′.A ∈ CPart(δ), which means that there exists a
particle ∃w′′.A ∈ Part(δ) such that:

* ∃s.∃w′.A is a sub-concept of ∃w′′.A, or

* ∃w′′.A has a sub-concept of the form ∃s′.∃w′.A such that s ⊴O s′.
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These two cases have in common that ∃w′.A is a sub-concept of ∃w′′.A, which is
a particle in Part(δ). Hence, since CPart(δ) contains the closure of Part(δ) under
sub-concepts, we know that ∃w′.A ∈ CPart(δ). The latter, together with σ(Y ) ⊑O
∃w′.A, yields that ∃w′.A is a top-level atom of σ(Y ) (see the de�nition of σ). Thus,
∃w′.A ∈ Part(σ(Y )), and the �rst case in (1c) is true.

� σ(Y ) ⊑O ∃t.∃w′.A for a transitive role t such that r ⊴O t ⊴O s. As in the previous
case, we can infer that δ(Y ) ⊑O ∃t.∃w′.A. Furthermore, since ∃s.∃w′.A ∈ CPart(δ),
we know from the two cases considered above that ∃s.∃w′.A is a sub-concept of
∃w′′.A or ∃s′.∃w′.A is a sub-concept of ∃w′′.A for a particle ∃w′′.A ∈ Part(δ) and
a role s′ with s ⊴O s′. In addition, t ⊴O s ⊴O s′ implies t ⊴O s′. Hence, since t is
a transitive role, the de�nition of CPart(δ) yields ∃t.∃w′.A ∈ CPart(δ). Therefore,
as in the previous case, we can conclude that ∃t.∃w′.A is a top-level atom of σ(Y ).
Thus, ∃t′.∃w′.A ∈ Part(σ(Y )), and the second case in (1c) is true.

Summing up, we have shown that case 1) in De�nition 4.9 holds.

� The second case of Lemma 1.3 holds. Hence, there are atoms At1, . . . ,Atk,At
′ of O

(k ≥ 0) such that:

� At1 ⊓ · · · ⊓Atk ⊑O At ′,

� for every ℓ ∈ {1, . . . , k}, there is an index i ∈ {1, . . . , n} and a top-level atom D of
σ(Ci) such that D ⊑s

O Atℓ, and

� At ′ ⊑s
O ∃w.A.

We only need to show that (2b) in De�nition 4.9 holds. Suppose that k > 0 and let
ℓ ∈ {1, . . . , k}. Then, there exists i ∈ {1, . . . , n} and a top-level atom D of σ(Ci) such that
D⊑s

OAtℓ. This implies that σ(Ci) ⊑O Atℓ since σ(Ci) ⊑ D. Hence, since σ(Ci) ≡O δ(Ci),
it follows that δ(Ci) ⊑O Atℓ. The latter implies that τ(Ci,Atℓ) = 1, by construction of
τ . Thus, we have shown that case 2) in De�nition 4.9 holds.

Overall, we have shown that σ is a simple ELH−⊤
R+ -uni�er of ∆Γ,τ w.r.t. O that is compatible

with τ . This concludes the proof.

4.2.2 The Set of Linear Inclusions IOΓ,τ

The inclusions in the set IOΓ,τ must take into account a non-empty ontology O. To this end,
the right-hand sides of the original language inclusions in IΓ,τ must be extended. Our new
translation yields, for each s = C1 ⊓ · · · ⊓ Cn ⊑? X ∈ ∆Γ,τ and each concept constant A, a
linear language inclusion i∗A(s) of the form

XA ⊆ f∗
A(C1) ∪ · · · ∪ f∗

A(Cn) ∪ UA(s), (6)

where f∗
A(C) di�ers from fA(C) in the way existential restrictions are treated:

f∗
A(∃r.C ′) := LrfA(C

′), where Lr := {s ∈ NR | r ⊴O s}.

The intention is that the right-hand side of the inclusion i∗A(s) should capture words w ∈ NR
∗

satisfying that
γ(C1) ⊓ · · · ⊓ γ(Cn) ⊑O ∃w.A, (7)

where γ is a simple ELH−⊤
R+ -uni�er of ∆Γ,τ w.r.t. O and ∃w.A ∈ Part(γ(X)). The fact that

γ can be assumed to be a simple uni�er tells us that one of the cases in De�nition 4.9 applies
whenever the subsumption in (7) holds. Thus, our idea to de�ne the right-hand side of i∗A(s)
is to include terms that can encode the cases stated in De�nition 4.9. Among theses cases, the
one stated in (1b) is already taken care of since it is covered by the original translation. More
precisely,
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� this case states that ∃w.A ∈ Part(γ(Ci)), where Ci is a variable Y . By Lemma 1.2, this
means that γ(Ci) ⊑ ∃w.A. Since this subsumption does not require the ontology, we can
just re-use the term f∗

A(Y ) = fA(Y ) = YA.

The other cases are not that trivial since they depend on the axioms in the ontology. A �rst
step towards encoding them is already implemented by the modi�cation of fA to f∗

A, which
takes care of the role hierarchy induced by O.

Example 4.11. For instance, if in the system of Example 4.7 we replace B ⊑? Y with ∃u.X ⊑?

Y , then the language inclusions corresponding to this constraint are

YA ⊆ {u}XA and YB ⊆ {u}XB .

The new system again does not have an admissible solution. However, if we consider an ontology
O containing u ⊑ s, then the application of the new translation to this constraint yields the
language inclusions

YA ⊆ {u, s}XA and YB ⊆ {u, s}XB .

Consequently, the new system of language inclusions has a �nite, admissible solution. For
instance, since the other inclusion for YA is YA ⊆ {s}XA ∪ {r}{ε} and there are no language
inclusions constraining XA or XB , the following assignment is such a solution:

θ(XA) := {ε}, θ(YA) := {s}, θ(XB) = θ(YB) := ∅.

This re�ects the fact that the substitution γ := {X 7→ A, Y 7→ ∃s.A} is an ELH−⊤
R+ -uni�er of

the modi�ed system of subsumption constraints w.r.t. O. △

The scenario illustrated in this example is an instance of the general case where (7) follows
from the �rst part of (1c) in De�nition 4.9. In fact, with the simple modi�cation of fA to f∗

A

we can already simulate the general case. Let us brie�y explain why this is true.

� The �rst part of (1c) considers the situation where Ci = ∃r.Y for some variable Y ,
w = sw′ for some s ∈ NR and w′ ∈ NR

∗, and the following holds:

� r ⊴O s and ∃w′.A ∈ Part(γ(Y )).

An application of Lemma 1.2 yields that γ(Y ) ⊑ ∃w′.A. Hence, we can use the term
f∗
A(∃r.Y ) = LrYA in i∗A(s), since the pre�x set Lr contains all role names s that satisfy
r ⊴O s, and γ(Y ) ⊑ ∃w′.A holds w.r.t. the empty ontology.

Coming back to Example 4.11, note that u ⊴O s and A ∈ Part(γ(X)), since u ⊑ s ∈ O
and γ(X) = A, respectively. This implies that ∃u.γ(X) ⊑O γ(Y ) = ∃s.A. It also
implies that ∃u.X and ∃s.A satisfy the �rst case of (1c). This is captured by the term
f∗
A(∃u.X) = LuXA = {u, s}XA in the linear inclusion obtained from ∃u.X ⊑? Y .

The remaining cases from De�nition 4.9 depend on the GCIs and transitivity axioms of the
ontology. They are taken care of by the additional term UA(s) in (6). This term uses additional
types of indeterminates whose meaning is encoded using additional language inclusions. Let us
�rst consider the cases (1a) and (2) of De�nition 4.9, which describe scenarios that depend on
the GCIs of the ontology. In what follows, we �rst introduce the indeterminates and language
inclusions used to take care of these cases. Then we explain how they can be used to encode
the aforementioned cases into the de�nition of UA(s).

For all concept constants A and B occurring in Γ and O, we introduce an indeterminate of
the form ZB→A. The purpose of these indeterminates is to represent languages containing only
words w such that B ⊑O ∃w.A. This intuition is formalized by a corresponding set of linear
language inclusions IO that we will shortly introduce. Its de�nition is inspired by the following
result, which is an easy consequence of Lemma 2.4.
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Proposition 4.12. Let O be a �at and cycle-restricted ELHR+-ontology, A,B ∈ NC, r ∈ NR

and w′ ∈ NR
∗. Then, B ⊑O ∃r.∃w′.A i� there exists B′ ∈ Ats(O) ∩ NC such that:

� B ⊑O ∃r.B′ and B′ ⊑O ∃w′.A.

Proof. The implication from right-to-left is obvious. For the other direction, assume that B ⊑O
∃r.∃w′.A. By Lemma 2.4, there exists ∃u.B′ ∈ Ats(O) such that B′ ⊑O ∃w′.A, and

� B ⊑O ∃u.B′ and u ⊴O r, or

� B ⊑O ∃t.B′ for a transitive role t with u ⊴O t ⊴O r.

Both cases have in common that B ⊑O ∃r.B′. Thus, the implication from left-to-right holds.

Intuitively, this tells us that a subsumption relationship B ⊑O ∃w.A, with w = r1r2 . . . rn
(n > 0), can be explained by a �nite sequence of subsumption relationships

B ⊑O ∃r1.B1, B1 ⊑O ∃r2.B2, . . . , Bn−1 ⊑O ∃rn.Bn, Bn ⊑O A,

where each Bi is a concept name occurring in O (1 ≤ i ≤ n). Based on this, we de�ne IO in
the following way. For each concept name B ∈ NC, we de�ne I(B) as the following set:

I(B) := {(r,B′) ∈ NR × (Ats(O) ∩ NC) | B ⊑O ∃r.B′}.

Then, the set of linear inclusions IO consists of one language inclusion for each indeterminate
ZB→A having the following form:

ZB→A ⊆ L ∪
⋃

(r,B′)∈I(B)

{r}ZB′→A, (8)

where L := {ε} if B ⊑O A, and L := ∅ otherwise. The system of linear inclusions IO captures
subsumptions of the form B ⊑O ∃w.A in the following sense.

Lemma 4.13. Let O be a �at, cycle-restricted ELHR+-ontology.

1. If θ is a solution of IO, then w ∈ θ(ZB→A) implies B ⊑O ∃w.A.

2. If we de�ne θ(ZB→A) := {w ∈ NR
∗ | B ⊑O ∃w.A}, then θ is a �nite solution of IO.

The proof of this lemma requires several steps. We defer it to the next subsection. Let us see
how the indeterminates ZB→A help in de�ning UA(s). The following example gives a glimpse
of the intuition behind this.

Example 4.14. Consider again the system ∆Γ3,τ of Example 4.7, but replace B ⊑? Y with
∃r.B ⊑? Y . The language inclusions corresponding to this constraint are

YA ⊆ {r}∅ and YB ⊆ {r}{ε}.

The new system again does not have an admissible solution. However, if we consider the
ontology O = {B ⊑ A}, then there are solutions θ of IO that satisfy ε ∈ θ(ZB→A). Thus, if we
extend the language inclusion YA ⊆ {r}∅ obtained from ∃r.B ⊑? Y to

YA ⊆ {r}∅ ∪ {r}ZB→A,
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then the new system of language inclusions has a solution θ such that r ∈ θ(YA) since the other
inclusion for YA is YA ⊆ {s}XA ∪ {r}{ε}. Hence, it follows that there is an admissible solution
since there are no language inclusions constraining XA or XB .

This re�ects the fact that the modi�ed set of subsumption constraints has an ELH−⊤
R+ -uni�er

w.r.t. O. For instance, the substitution γ := {X 7→ B, Y 7→ ∃r.A} is one such uni�er. Note that
∃r.B ⊑O γ(Y ) = ∃r.A because O contains the GCI B ⊑ A. This is captured in the extended
language inclusion YA ⊆ ∅ ∪ {r}ZB→A by the term {r}ZB→A. △

This example illustrates an instance of the more general case where (7) follows from case (1a)
in De�nition 4.9. This simple instance would be encoded by including {r}ZB→A into the term
UA(s) of the language inclusion obtained from s = ∃r.B ⊑? Y . We generalize this intuition to
cover the scenarios described in case (1a) and case (2) of De�nition 4.9.

� Case (1a). This requires the left-hand side of (7) to have a ground top-level atom Ci

such that Ci ⊑s
O ∃w.A. The �at form of ∆Γ,τ implies that Ci is of the form ∃α.B where

α ∈ {ε} ∪NR and B ∈ NC. By de�nition of structural subsumption, Ci ⊑s
O ∃w.A holds i�

one of the following is the case:

� Ci = ∃ε.B = B = A and w = ε.

� Ci = ∃r.B, w = sw′ for some s ∈ NR satisfying r ⊴O s, and B ⊑O ∃w′.A.

� Ci = ∃r.B, w = sw′, andB ⊑O ∃t.∃w′.A for a transitive role t such that r ⊴O t ⊴O s.

The �rst possibility is already covered since f∗
A(A) = {ε}, which means that the right-

hand side of i∗A(s) already has a term that matches w = ε. Let us continue with the
second one.

� We simulate this case in i∗A(s) by including in UA(s) a term of the form:

LrZB→A, where Lr := {s ∈ NR | r ⊴O s}.

In this way, Lr matches any role name s such that r ⊴O s, whereas ZB→A takes care
of recognizing w′. The use of ZB→A is based on the idea that this indeterminate is
meant to represent the set of all words w′ ∈ NR

∗ such that B ⊑O ∃w′.A, as explained
above.

It remains to consider the third case.

� In this case, an application of Proposition 4.12 yields that B ⊑O ∃t.∃w′.A i� there
is B′ ∈ Ats(O) ∩ NC such that:

B ⊑O ∃t.B′ and B′ ⊑O ∃w′.A.

Hence, to recognize the words w = sw′ such that ∃r.B⊑s
O∃s.∃w′.A satis�es the third

case, we can use a term of the form LtZB′→A for each suitable t and B′. This way,
the pre�x set Lt matches any role name s such that r ⊴O t ⊴O s, whereas ZB′→A

recognizes the words w′ such that B′ ⊑O ∃w′.A. We denote as Tr(∃r.B) the set of
such suitable pairs (t, B′), i.e.,

Tr(∃r.B) := {(t, B′) | B′ ∈ Ats(O) ∩ NC, t is transitive, r ⊴O t, and B ⊑O ∃t.B′}.

Thus, we include in UA(s) a term of the form LtZB′→A for each (t, B′) ∈ Tr(∃r.B).

� Case (2). This case is de�ned in terms of atoms At of O such that τ(Ci,At) = 1 for some
i ∈ {1, . . . , n}, as required by Condition (2b). We denote by Cs,τ the conjunction of such
atoms, i.e.,

Cs,τ :=
l

{At ∈ Ats(O) | τ(Ci,At) = 1 for some i ∈ {1, . . . , n}}. (9)

Then, (7) satis�es the second case in De�nition 4.9 i� there exists At ∈ Ats(O) such that:
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Cs,τ ⊑O At ⊑s
O ∃w.A.

These conditions can also be simulated by using the set {ε} and the new indeterminates
ZB→A. Note that At ⊑s

O ∃w.A is similar to the case (1a) considered above. Basically, for
each At ∈ Ats(O) such that Cs,τ ⊑O At , we include in UA(s):

� a term of the form {ε}, if At = A, and

� in case At = ∃r.B, one of the form LrZB→A, as well as all terms obtained from
Tr(∃r.B).

It only remains to consider the second part of (1c) in De�nition 4.9. This case depends on the
transitivity axioms in the ontology. To deal with these axioms, additional indeterminates and
linear language inclusions are needed. We continue by introducing them. Afterwards, we will
explain how they are used to encode the second part of (1c) into UA(s).

We introduce additional indeterminates of the formXA,t, which are constrained by the following
linear language inclusions:

iA,t(s) = XA,t ⊆ fA,t(C1) ∪ · · · ∪ fA,t(Cn) ∪ UA,t(s), where (10)

fA,t(C) :=


fA(C

′) if C = ∃r.C ′ ∧ r ⊴O t,

YA,t if C = Y ∈ NV,

∅ otherwise.

Intuitively, the di�erence between i∗A(s) and iA,t(s) is that, given a particle ∃t.∃w.A satisfying
(7), the right-hand side of iA,t(s) is designed to recognize w instead of tw. This can already be
seen with the use of fA,t instead of f∗

A in the de�nition of iA,t(s).

Example 4.15. Suppose that a particle ∃t.∃w.A satis�es (7) w.r.t. some ontology O because
there is an i, 1 ≤ i ≤ n, such that

Ci = ∃r.Y, r ⊴O t, γ(Y ) ⊑ ∃w.A.

The right-hand side of the inclusion i∗A(s) contains the term f∗
A(∃r.Y ) = LrYA. This term

matches t through Lr and recognizes w via YA. In contrast, the right-hand side of iA,t(s)
contains the term fA,t(∃r.Y ) = YA, provided that r ⊴O t holds. The condition r ⊴O t ensures
that t is implicitly taken into account, while using YA instead of LrYA is in line with the idea
of recognizing just w.

Consider now the scenario in which ∃t.∃w.A satis�es (7) for the following reasons:

Ci = Y and γ(Y ) ⊑ ∃t.∃w.A.

To treat this case, di�erently from f∗
A(Y ) = YA, the function fA,t de�nes fA,t(Y ) = YA,t . The

reason is that including YA in iA,t(s) to recognize w would forget the fact that t still needs to
be taken into account. △

The term UA,t(s) in (10) has the same purpose as UA(s) has for i∗A(s). It consists of a slight
variant of UA(s) that �ts with the intended meaning of iA,t(s), i.e., its right-hand is supposed
to recognize w instead of tw. The de�nition of UA,t(s) will become clear later on, after we fully
de�ne UA(s).

Let us continue by explaining how the indeterminates XA,t contribute to the de�nition of UA(s)
in i∗A(s). The following example illustrates the intuition behind this.
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Example 4.16. Assume that

∆Γ,τ = {∃r.B ⊑? Y, ∃s.X ⊓ ∃r.A ⊑? Y, ∃t.B ⊑? X}.

In addition, consider the ontology O = {s ⊑ t, t ⊑ r}. Since ∃r.B ⊑? Y yields the language
inclusion YA ⊆ {r}∅, any solution θ of IOΓ,τ must satisfy θ(YA) = ∅. Hence, if θ is admissible,
then θ(YB) ̸= ∅. In the presence of O, the new translation also yields the inclusions:

YB ⊆ {r}{ε}, YB ⊆ {s, t, r}XB ∪ {r}∅ and XB ⊆ {t, r}{ε}.

Together with θ(YB) ̸= ∅, the �rst of these inclusions yields θ(YB) = {r}. Thus, the second
inclusion implies that ε ∈ θ(XB), and thus θ does not solve the third inclusion. Consequently,
IOΓ,τ cannot have an admissible solution, corresponding to the fact that ∆Γ,τ does not have an

ELH−⊤
R+ -uni�er w.r.t. O.

However, if we add the transitivity axiom t ◦ t ⊑ t to O, then ∆Γ,τ has an ELH−⊤
R+ -uni�er γ

with γ(X) = ∃t.B and γ(Y ) = ∃r.B w.r.t. this ontology. The inclusion iB,t(s) = XB,t ⊆ {ε},
obtained from s = ∃t.B ⊑? X, admits solutions θ with θ(XB,t) = {ε}. Hence, if we extend the
language inclusion YB ⊆ {s, t, r}XB ∪ ∅ to the new one

YB ⊆ {s, t, r}XB ∪ {r}∅ ∪ {r}XB,t

that takes transitivity of t into account, then the new system of language inclusions has an
admissible solution with θ(YB) = {r} and θ(XB) = {t}, which corresponds to the uni�er γ. △

In this example, the role inclusions and the transitivity axiom in O ensure that ∃s.∃t.B ⊑O ∃r.B
holds, which implies that ∃s.γ(X)⊓∃r.A ⊑O γ(Y ) = ∃r.B holds. It is not hard to see that this
represents an instance of the more general case where (7) follows from the second part of (1c) in
De�nition 4.9. We now explain how to generalize these ideas to encode such a case into UA(s).

� The second part of (1c) requires that Ci = ∃r.Y for some variable Y , w = sw′ for some
s ∈ NR and w′ ∈ NR

∗, and the following holds:

� there is a transitive role t such that r ⊴O t ⊴O s and ∃t.∃w′.A ∈ Part(γ(Y )).

Since Ci = ∃r.Y , the right-hand side of the inclusion i∗A(s) contains a term of the form
f∗
A(∃r.Y ) = LrYA. Hence, in order to admit sw′, one could in principle try to use Lr

to match the admissible role names s since r ⊴O s. However, using LrYA to match the
whole word sw′ would not be correct, since this case requires ∃t.∃w′.A to be a particle of
γ(Y ) instead of simply ∃w′.A.

Basically, this scenario requires us to simulate the introduction of t. This is where the
new indeterminates YA,t and the inclusions of the form iA,t(s) are needed. More precisely,
for each transitive role t such that r ⊴O t, we include in UA(s) a term of the form:

LtYA,t.

In this way, the pre�x Lt matches the appropriate role names s, while YA,t recognizes w
′

but remembers that t needs to be taken into account.

Finally, we are ready to provide the formal de�nitions of UA(s) and UA,t(s), which together
with (6) and (10) then completes the de�nition of the language inclusions i∗A(s) and iA,t(s).

We start by de�ning the following subset of Ats(Γ,O):

Rs,τ := {∃r.B | (Ci = ∃r.B for some i, 1 ≤ i ≤ n) or (Cs,τ ⊑O ∃r.B ∧ ∃r.B ∈ Ats(O)
)
}.
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These atoms are the ones that generate the terms of the form LrZB→A and LtZB′→A (where
the latter are obtained from Tr(∃r.B)) that are relevant to de�ne UA(s), as discussed above in
the analysis of the cases (1a) and (2) from De�nition 4.9. As for the terms of the form LtYA,t,
they are derived from pairs (Y, t) ∈ Vars(∆Γ,τ )× NR satisfying the conditions described above
when analyzing the second part of (1c). We collect all admissible such pairs in the set

Vs := {(Y, t) | Ci = ∃r.Y for some i, 1 ≤ i ≤ n, r ⊴O t, t is a transitive role}.

Hence, taking into account the previous analysis concerning the cases (1a), second part of (1c),
and (2) from De�nition 4.9, we de�ne UA(s) as

UA(s) := Ls,τ ∪
⋃

∃r.B∈Rs,τ

LrZB→A ∪
⋃

(t,B′)∈Tr(∃r.B)

LtZB′→A

 ∪
⋃

(Y,t)∈Vs

LtYA,t, (11)

where Ls,τ := {ε} if Cs,τ ⊑O A and A ∈ Ats(O), and Ls,τ := ∅ otherwise.

We now modify the de�nition of UA(s) to formally de�ne UA,t(s). More precisely, based on the
discussions about iA,t(s), the terms occurring in UA(s) that are relevant for UA,t(s) are those
whose pre�x set Lr contains t. Hence, UA,t(s) is de�ned by dispensing with those pre�x sets,
as well as the term Ls,τ :

UA,t(s) :=
⋃

∃r.B∈Rs,τ

t∈Lr

ZB→A ∪
⋃

(t′,B′)∈Tr(∃r.B)
t∈Lt′

ZB′→A

 ∪
⋃

(Y,t′)∈Vs

t∈Lt′

YA,t′ . (12)

De�nition 4.17. The system of linear language inclusions IOΓ,τ consists of IO and the inclusions
i∗A(s) and iA,t(s) for every subsumption constraint s in ∆Γ,τ , as de�ned in (6), (11) and (10),
(12), respectively. We call a solution θ of IOΓ,τ admissible if for each variable X in ∆Γ,τ there
exists A ∈ NC such that θ(XA) ̸= ∅.

The next step is to prove that the new translation is correct, i.e., to show the following propo-
sition.

Proposition 4.18. Let τ be a subsumption mapping for Γ w.r.t. O. The uni�cation problem
∆Γ,τ has an ELH−⊤

R+-uni�er γ w.r.t. O that is compatible with τ i� the system of linear language
inclusions IOΓ,τ has a �nite, admissible solution.

We proceed in two steps. First, we show the properties stated in Lemma 4.13 about IO. Once
we have done this, we can prove both directions of Proposition 4.18.

4.2.3 Proof of Lemma 4.13

We start by proving the �rst of the statements claimed in Lemma 4.13.

Lemma 4.19. Let O be a �at and cycle-restricted ELHR+-ontology. If θ is a solution of IO,
then for all w ∈ NR

∗ and A,B ∈ NC the following holds:

w ∈ θ(ZB→A) implies B ⊑O ∃w.A.

Proof. Let w ∈ NR
∗ and A,B ∈ NC such that w ∈ θ(ZB→A). We prove B ⊑O ∃w.A by

induction on the length of w.
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� |w| = 0. This means that w = ε, and thus ε ∈ θ(ZB→A) and ∃w.A = A. Since θ is a
solution of IO, ε must belong to θ(t) for some term t on the right-hand side of (8). This
can only be the case if L = {ε}, which in turn is only the case if B ⊑O A.

� |w| > 0. Then, w = rw′ for some r ∈ NR and w′ ∈ NR
∗. In this case, w ∈ θ(ZB→A)

implies the existence of a term of the form {r}ZB′→A on the right-hand side of (8) such
that w′ ∈ θ(ZB′→A). Since |w′| < |w|, the induction hypothesis applied to w′ ∈ θ(ZB′→A)
yields B′ ⊑O ∃w′.A. Furthermore, by de�nition of (8), the presence of the term {r}ZB′→A

in the right-hand side of the inclusion means that (r,B′) ∈ I(B). Hence, by de�nition
of I(B), we know that B ⊑O ∃r.B′. Together with B′ ⊑O ∃w′.A, this subsumption
relationship implies B ⊑O ∃w.A.

This concludes the proof since we have shown that B ⊑O ∃w.A holds in both cases.

The proof of the second statement of Lemma 4.13 is given in two steps. The �rst one proves
that the set of all valid subsumption relationships B ⊑O ∃w.A induces a solution of IO.

Lemma 4.20. Let O be a �at and cycle-restricted ELHR+-ontology. De�ne θ as the following
assignment of subsets of NR

∗ to the indeterminates ZB→A:

θ(ZB→A) := {w ∈ NR
∗ | B ⊑O ∃w.A}.

Then, θ is a solution of IO.

Proof. Consider an indeterminate ZB→A and the corresponding inclusion (8) in IO, i.e.,

ZB→A ⊆ L ∪
⋃

(r,B′)∈I(B)

{r}ZB′→A where L := {ε} if B ⊑O A, and L := ∅ otherwise.

Let w ∈ θ(ZB→A). We need to show that w ∈ θ(t) for some term t on the right-hand side of
this inclusion. To this end, we make the following case distinction:

� w = ε. By de�nition of θ(ZB→A), this means that B ⊑O A. Hence, as de�ned in (8), the
set L is equal to {ε}. Thus, w = ε ∈ θ(L).

� w = rw′ for some r ∈ NR and w′ ∈ NR
∗. This means that B ⊑O ∃r.∃w′.A. An application

of Proposition 4.12 yields a concept name B′ ∈ Ats(O) such that B ⊑O ∃r.B′ and
B′ ⊑O ∃w′.A. This implies that (r,B′) ∈ I(B). Consequently, the right-hand side of the
linear inclusion must contain a term of the form {r}ZB′→A. Moreover, since B′ ⊑O ∃w′.A,
the de�nition of θ implies that w′ ∈ θ(ZB′→A). Thus, we have that w ∈ {r}·θ(ZB′→A).

Overall, we have shown that, for all words w ∈ θ(ZB→A), there is a term t on the right-hand
side of the linear inclusion (8) introduced for ZB→A such that w ∈ θ(t). Thus, we can conclude
that θ is a solution of IO.

It remains to show that the solution introduced in this lemma is �nite. The next lemma does
this by establishing a bound on the length of words in solutions of IO, whenO is cycle-restricted.

Lemma 4.21. Let O be a cycle-restricted ELHR+-ontology, θ be a solution of IO, and k be the
number of distinct concept names occurring in O. Then |w| ≤ k holds for all indeterminates
ZB→A and words w ∈ θ(ZB→A).
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Proof. Let ZB→A be an indeterminate such that w ∈ θ(ZB→A) for some w ∈ NR
∗. The case

where w = ε is trivial. Hence, we now assume that w = r1r2 . . . rn with n > 0.

Since θ is a solution of IO and w ∈ θ(ZB→A), the inclusion corresponding to ZB→A in IO must
contain a term of the form {r1}ZB1→A on its right-hand side, such that r2 . . . rn ∈ θ(ZB1→A).
By repeatedly applying this argument until we are left with the su�x ε, we can infer that there
are concept names B0, B1, . . . , Bn such that B0 = B, B1, . . . , Bn occur in O, and the following
holds for all j, 1 ≤ j ≤ n:

� {rj}ZBj→A is a term on the right-hand side of the inclusion corresponding to ZBj−1→A.

This means that (rj , Bj) ∈ I(Bj−1), which by de�nition of I(Bj−1) yields that Bj−1 ⊑O ∃rj .Bj

for all j, 1 ≤ j ≤ n. Consequently, the following subsumption relationships hold:

Bj−1 ⊑O ∃rj .∃rj+1. · · · ∃rj+m.Bj+m (1 ≤ j ≤ n, 0 ≤ m ≤ n− j). (13)

Suppose now that |w| > k. Since B1, . . . , Bn occur in O, there must exist two indices 1 ≤ i <
j ≤ n such that Bi = Bj . Hence, (13) implies that Bi ⊑O ∃ri+1. · · · ∃ri+m.Bi withm ≥ 1. Since
this contradicts our assumption that O is cycle-restricted, we can conclude that |w| ≤ k.

Recall that NR is assumed to be the set of role names occurring in Γ or O, which is a �nite
set. Hence, this lemma implies that, if O is cycle-restricted, then all solutions of IO are �nite.
Thus, the previous three lemmas provide us with a proof of Lemma 4.13.

4.2.4 Proof of Proposition 4.18

We are now ready to show the correctness of our new translation. Let us start by proving
the left-to-right implication in Proposition 4.18. By Lemma 4.10, it is enough to show this
implication for simple ELH−⊤

R+ -uni�ers of ∆Γ,τ w.r.t. O. This is done in Lemma 4.23 below,
with the help of the result shown in the following lemma.

Lemma 4.22. Let s ∈ ∆Γ,τ , A ∈ NC, and i∗A(s) be the language inclusion of IOΓ,τ obtained from
s and A. In addition, let LrT be a term on the right-hand side of i∗A(s), where r ∈ NR. Then,
for all transitive roles t of O such that r ⊴O t, the following holds:

� the right-hand side of the inclusion iA,t(s) of I
O
Γ,τ (obtained from s, A and t) contains a

term of the form T .

Proof. Let LrT be a term on the right-hand side of i∗A(s) such that r ∈ NR. Assume s is of the
form C1 ⊓ · · · ⊓ Cn ⊑? X. We consider the two possible ways such a term can occur in i∗A(s).

� f∗
A(Ci) = LrT , where Ci is of the form ∃r.C ′ (1 ≤ i ≤ n). This means that f∗

A(C
′) = T .

Since ∆Γ,τ is in �at form, C ′ is a concept name. Hence, f∗
A(C

′) = fA(C
′) = T . Now, the

de�nition of iA,t(s) tells us that fA,t(∃r.C ′) is a term on the right-hand side of this linear
inclusion. Hence, since r ⊴O t, we have that fA,t(∃r.C ′) = fA(C

′) = T .

� LrT is a term of the union UA(s). By looking at the de�nitions of UA(s) and UA,t(s) in
(11) and (12), it is easy to see that r ⊴O t implies that T is a term of UA,t(s).

Thus, in both cases we can conclude that the right-hand side of iA,t(s) contains T .

Lemma 4.23. Let τ be a subsumption mapping for Γ w.r.t. O. If ∆Γ,τ has a simple ELH−⊤
R+-

uni�er γ w.r.t. O that is compatible with τ , then IOΓ,τ has a �nite, admissible solution.
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Proof. Let γ be a simple ELH−⊤
R+ -uni�er of ∆Γ,τ w.r.t. O that is compatible with the subsump-

tion mapping τ . As explained in Section 2, we can without loss of generality assume that γ is
a ground substitution. We de�ne a solution θγ of IOΓ,τ as follows:

� For each X ∈ Vars(∆Γ,τ ), concept constant A, and transitive role t, we de�ne:

θγ(XA) := {w ∈ NR
∗ | ∃w.A ∈ Part(γ(X))},

θγ(XA,t) := {w ∈ NR
∗ | ∃t.∃w.A ∈ Part(γ(X))}.

� For each indeterminate ZB→A, we de�ne:

θγ(ZB→A) := {w ∈ NR
∗ | B ⊑O ∃w.A}.

For all indeterminates ZB→A, we can infer from Lemma 4.13 that θγ(ZB→A) is a �nite set. This
is also the case for all indeterminates of the form XA and XA,t, since Part(γ(X)) is a �nite set
and O has �nitely many transitive roles. Hence, θγ is �nite. The admissibility of θγ is a direct

consequence of γ being a ground ELH−⊤
R+ -substitution. The reason is that γ(X) is mapped to

an ELH−⊤
R+ -concept for all X ∈ Vars(∆Γ,τ ). Hence, Part(γ(X)) ̸= ∅, which by de�nition of θγ

implies that θγ(XA) ̸= ∅ for some concept constant A.

It remains to show that θγ is indeed a solution of I
O
Γ,τ . To start with, the de�nition of θγ(ZB→A)

and the application of Lemma 4.13 immediately yields that θγ solves all inclusions in IO. To
show that θγ also solves the other inclusions in IOΓ,τ , we �rst show that it solves all inclusions
of the form i∗A(s). Then, we will use the result in Lemma 4.22 to prove that it also solves the
ones of the form iA,t(s).

Let i∗A(s) ∈ IOΓ,τ , where s ∈ ∆Γ,τ is of the form C1 ⊓ · · · ⊓ Cn ⊑? X. Then, by its de�nition in
(6), the language inclusion i∗A(s) has the following form:

XA ⊆ f∗
A(C1) ∪ · · · ∪ f∗

A(Cn) ∪ UA(s).

If θγ(XA) = ∅, then θγ trivially solves i∗A(s). Otherwise, let w ∈ θγ(XA). By de�nition of θγ ,
we know that ∃w.A ∈ Part(γ(X)). Since γ is a simple uni�er, one of the cases in De�nition 4.9
holds for s and ∃w.A. For each such case, we show that w ∈ θγ(R(i∗A(s))), where R(i∗A(s))
denotes the right-hand side of i∗A(s):

� There is i ∈ {1, . . . , n} such that Ci is a ground atom and Ci ⊑s
O ∃w.A. This structural

subsumption relationship holds due to one of the following cases:

� Ci = ∃w.A ∈ NC. This means that w = ε and Ci = ∃w.A = A. Hence, in this case
we have f∗

A(Ci) = {ε}. Therefore, {ε} is a term on the right-hand side of i∗A(s) and
ε ∈ θγ({ε}). Thus, w ∈ θγ(R(i∗A(s))).

� Ci = ∃r.B, w = sw′, r ⊴O s, and B ⊑O ∃w′.A. We know that B ∈ NC because Γ
is in �at form. In addition, by de�nition of Rs,τ , we know that ∃r.B ∈ Rs,τ . Hence,
LrZB→A is a term in UA(s). Finally, r ⊴O s yields that s ∈ Lr, whereas B ⊑O ∃w′.A
and the de�nition of θγ imply that w′ ∈ θγ(ZB→A). Thus, w ∈ Lr·θγ(ZB→A), which
implies that w ∈ θγ(R(i∗A(s))).

� Ci = ∃r.B, w = sw′, andB ⊑O ∃t.∃w′.A for a transitive role t such that r ⊴O t ⊴O s.
By Proposition 4.12, there exists B′ ∈ Ats(O) ∩ NC such that

B ⊑O ∃t.B′ and B′ ⊑O ∃w′.A.

Hence, since r ⊴O t and t is transitive, we know that (t, B′) ∈ Tr(∃r.B). Further-
more, Ci = ∃r.B implies that ∃r.B ∈ Rs,τ . Therefore, LtZB′→A is a term in UA(s).
Finally, as in the previous case, we have that s ∈ Lt and w′ ∈ θγ(ZB′→A). Thus,
w ∈ Lt·θγ(ZB′→A), which yields w ∈ θγ(R(i∗A(s))).
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� There is i ∈ {1, . . . , n} such that Ci = Y for a variable Y and ∃w.A ∈ Part(γ(Ci)). The
de�nition of i∗A(s) yields f

∗
A(Ci) = YA and the de�nition of θγ yields w ∈ θγ(YA). Thus,

w ∈ θγ(R(i∗A(s))).

� There is i ∈ {1, . . . , n} such that Ci = ∃r.Y for a variable Y , w = sw′, and one of the
two cases in (1c) holds. In the �rst case, ∃w′.A ∈ Part(γ(Y )) and r ⊴O s. By de�nition
of θγ and Lr, it follows that w′ ∈ θγ(YA) and s ∈ Lr, and thus w ∈ Lr·θγ(YA). Since
f∗
A(∃r.Y ) = LrYA, we can conclude that w ∈ θγ(R(i∗A(s))).

In the second case, ∃t.∃w′.A ∈ Part(γ(Y )) for a transitive role t such that r ⊴O t ⊴O s.
By de�nition of θγ , we have that w

′ ∈ θγ(YA,t). Moreover, since t is transitive and r ⊴O t,
the pair (Y, t) belongs to the set Vs. This implies that UA(s) contains a term of the form
LtYA,t. In addition, t ⊴O s implies that s ∈ Lt. Thus, w ∈ Lt·θγ(YA,t), which yields
w ∈ θγ(R(i∗A(s))).

� There are atoms At1, . . . ,Atk,At
′ of O (k ≥ 0) satisfying the three conditions in the

second case of De�nition 4.9. In case k > 0, all atoms At1, . . . ,Atk are conjuncts of
Cs,τ (recall the de�nition in (9)), since they satisfy Condition (2b). Hence, together with
Conditions (2a) and (2c) of De�nition 4.9, this yields:

Cs,τ ⊑ At1 ⊓ · · · ⊓Atk ⊑O At ′ ⊑s
O ∃w.A.

The same holds for k = 0, since the empty conjunction corresponds to ⊤. Let us continue
by considering the possible forms of At ′.

� At ′ = B for some B ∈ NC. In this case, At ′ ⊑s
O ∃w.A implies w = ε and B = A.

Since Cs,τ ⊑O At ′, it follows that Ls,τ = {ε}. Hence, the right-hand side of i∗A(s)
contains a term of the form {ε}. Thus, w ∈ θγ(R(i∗A(s))).

� At ′ = ∃r.B for some r ∈ NR and B ∈ NC. Since Cs,τ ⊑O At ′, we know that ∃r.B ∈
Rs,τ . This implies that LrZB→A is a term in UA(s), as well as all terms LtZB′→A

with (t, B′) ∈ Tr(∃r.B). To conclude the proof, recall that At ′ = ∃r.B ⊑s
O ∃w.A.

Then, by employing the arguments used in the last two cases considering a ground
atom Ci, we can show that w ∈ Lr·θγ(ZB→A), or w ∈ Lt·θγ(ZB′→A) for some
(t, B′) ∈ Tr(∃r.B). Thus, we again obtain w ∈ θγ(R(i∗A(s))).

Thus, we have now shown that θγ also solves all inclusions of the form i∗A(s). It remains to
deal with the language inclusions of the form iA,t(s) for a transitive role t. By (10), such an
inclusion has the following form:

XA,t ⊆ fA,t(C1) ∪ · · · ∪ fA,t(Cn) ∪ UA,t(s).

Assume that w ∈ θγ(XA,t) for some w ∈ NR
∗. By de�nition of θγ , this means that ∃t.∃w.A ∈

Part(γ(X)), and thus tw ∈ θγ(XA). We have already proved that θγ solves the language
inclusion i∗A(s). Hence, the right-hand side of i∗A(s) contains a term t such that tw ∈ θγ(t). This
term must be of one of the following forms:

� t = LrT , where r ∈ NR such that r ⊴O t. This means that w ∈ θγ(T ). An application
of Lemma 4.22 yields that the right-hand side of iA,t(s) contains the term T . Hence,
w ∈ θγ(R(iA,t(s))).

� t = YA for some variable Y . This means that s contains an atom Ci = Y (for some
i, 1 ≤ i ≤ n). Hence, the right-hand side of iA,t(s) contains the term fA,t(Y ) = YA,t.
Furthermore, tw ∈ θγ(t) yields tw ∈ θγ(YA). Hence, by de�nition of θγ , it follows that
∃t.∃w.A ∈ Part(γ(Y )), which then implies that w ∈ θγ(YA,t). Thus, we can conclude
that w ∈ θγ(R(iA,t(s))).
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Overall, we have shown that θγ solves all language inclusions in IOΓ,τ . Thus, I
O
Γ,τ has a �nite,

admissible solution.

We continue by proving the right-to-left direction of Proposition 4.18. But �rst, we must show
an auxiliary result, which states that solvability of IOΓ,τ implies the existence of a special kind
of solutions.

Lemma 4.24. If IOΓ,τ has a �nite, admissible solution, then it has a �nite, admissible solution
θ such that the following holds for all X ∈ Vars(∆Γ,τ ), A ∈ NC, w ∈ NR

∗, and transitive roles t:

w ∈ θ(XA,t) implies tw ∈ θ(XA). (14)

Proof. Let θ be a solution of IOΓ,τ . We extend θ to an assignment θ′ as follows. For each

indeterminate of the form XA in IOΓ,τ , we de�ne:

θ′(XA) := θ(XA) ∪ {tw | w ∈ θ(XA,t) for a transitive role t}.

For any other indeterminate W , we de�ne θ′(W ) := θ(W ).

Since θ is �nite and O has �nitely many transitive roles, θ′ is also �nite. Hence, since θ(W ) ⊆
θ′(W ) for all indeterminates W of IOΓ,τ and θ is admissible, we can conclude that θ′ is a �nite,

admissible assignment. It remains to show that θ′ is also a solution of IOΓ,τ .

Since θ is a solution of IOΓ,τ , and the indeterminates of the form XA whose assignment may
di�er between θ and θ′ occur only in language inclusion of the form i∗A(s), it is su�cient to
check these inclusions. In case θ′ does not solve i∗A(s), then this can only be caused by a word
tw assigned to θ′(XA) for some w ∈ θ(XA,t). Hence, to see that θ′ is really a solution of IOΓ,τ ,
it is enough to prove that w ∈ θ(XA,t) implies that the right-hand side of i∗A(s) contains a term
t such that tw ∈ θ′(t). To this end, consider the language inclusion iA,t(s). Since θ is a solution
of IOΓ,τ and w ∈ θ(XA,t), the right-hand side of iA,t(s) contains a term t′ such that w ∈ θ(t′).
Let us look at the possible forms of the term t′:

� t′ = fA,t(C) for some top-level atom C of s. This means that C = ∃r.C ′ and r ⊴O t,
or C = Y for some variable Y . In the �rst case, we know that fA,t(C) = fA(C

′) and
w ∈ θ(fA(C

′)). Moreover, by de�nition of i∗A(s), its right-hand side contains a term
t = f∗

A(∃r.C ′) = LrfA(C
′). Hence, since r ⊴O t implies t ∈ Lr, it follows that tw ∈ θ(t).

This implies that tw ∈ θ′(t) since θ is contained in θ′.

Regarding the second case, we know that fA,t(Y ) = YA,t and w ∈ θ(YA,t). The de�nition
of θ′ then yields tw ∈ θ′(YA). Thus, since i∗A(s) contains the term f∗

A(Y ) = YA, this case
also satis�es the claim.

� t′ is a term of UA,t(s). By comparing the de�nitions of UA,t(s) and UA(s), it is not hard
to see that t′ corresponds to a term t of UA(s) such that tw ∈ θ′(t).

This concludes the proof of the lemma.

In addition to the previous lemma, we will also use the binary relation >τ ⊆ Vars(Γ)×Vars(Γ)
induced by the assignment Sτ . Note that >τ is a well-founded strict order, since Sτ is acyclic
and Vars(Γ) is a �nite set. Based on this, the proof of the next lemma shows how to use Sτ

and a �nite, admissible solution of IOΓ,τ , to construct an ELH−⊤
R+ -uni�er of ∆Γ,τ w.r.t. O that

is compatible with τ .

Lemma 4.25. Let τ be a subsumption mapping for Γ w.r.t. O. If IOΓ,τ has a �nite, admissible

solution, then ∆Γ,τ has an ELH−⊤
R+-uni�er w.r.t. O that is compatible with τ .
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Proof. Let θ be a �nite, admissible solution of IOΓ,τ . By Lemma 4.24, we can assume that
θ satis�es the implication in (14). We use θ and the relation >τ induced by Sτ to de�ne
the substitution γθ. More precisely, we de�ne γθ by well-founded induction on >τ (for all
X ∈ Vars(∆Γ,τ )):

� If X is minimal w.r.t. >τ , then

γθ(X) :=
l

D∈Sτ (X)

D ⊓
l

A∈NC

l

w∈θ(XA)

∃w.A.

� If γθ(X) has already been de�ned for all variables Y with X >τ Y , then

γθ(X) :=
l

D∈Sτ (X)

γθ(D) ⊓
l

A∈NC

l

w∈θ(XA)

∃w.A.

Since θ is �nite and admissible, we have the following consequences:

� θ assigns �nite subsets of NR
∗ to each indeterminate in IOΓ,τ .

� For eachX ∈ Vars(∆Γ,τ ), there exists at least one indeterminateXA such that θ(XA) ̸= ∅.

Hence, it is easy to see that γθ really is an ELH−⊤
R+ -substitution. Moreover, by de�nition of

γθ, we know that D ∈ Sτ (X) implies γθ(X) ⊑ γθ(D) for all variables X ∈ NV. Consequently,
Sτ (X) ⊆ Sγθ (X) holds for all X ∈ NV. Thus, γθ is compatible with τ .

It remains to show that γθ is a uni�er of ∆Γ,τ w.r.t. O. To this end, we show that all X ∈
Vars(∆Γ,τ ) satisfy the following property:

If C1 ⊓ · · · ⊓ Cn ⊑? X ∈ ∆Γ,τ then γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O γθ(X). (15)

Since all subsumption constraints in ∆Γ,τ are of the form C1 ⊓ · · · ⊓ Cn ⊑? X for some X ∈
Vars(∆Γ,τ ), showing (15) is su�cient to prove that γθ solves all constraints in ∆Γ,τ .

The proof is by well-founded induction on >τ . More precisely, given X ∈ Vars(∆Γ,τ ) and a
subsumption constraint s = C1 ⊓ · · · ⊓ Cn ⊑? X in ∆Γ,τ , we must show that γθ satis�es the
right-hand side of (15) for s, under the assumption that (15) holds for all Y such that X >τ Y .
To show this, it is enough to prove that γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O At for each top-level atom
At of γθ(X). We distinguish the two possible forms such a top-level atom At can have:

� At = γθ(C) for a non-variable atom C ∈ Sτ (X). This means that τ(X,C) = 1. If
s ∈ ∆Γ ⊆ Γ, we can apply (3b) in De�nition 4.1 to obtain that C1⊓· · ·⊓Cn ⊑? C satis�es
Condition (3a) in De�nition 4.1, which yields two possibilities:

� τ(Ci, C) = 1 for some i ∈ {1, . . . , n}. If C is a ground atom, the �rst case of
Lemma 4.5 can be directly applied to obtain that γθ(Ci) ⊑O γθ(C). Otherwise,
C is of the form ∃r.Y for some variable Y . Since τ(X,C) = 1, this means that
∃r.Y ∈ Sτ (X). Hence, X >τ Y and Y satis�es (15), i.e., γθ solves all subsumption
constraints of the form · · · ⊓ · · · ⊑? Y in ∆Γ,τ . Since ∆τ ⊆ ∆Γ,τ , the second case of
Lemma 4.5 can be applied to obtain that γθ(Ci) ⊑O γθ(∃r.Y ) = γθ(C). Therefore,
γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O γθ(C) holds.

� There are atoms At1, . . . ,Atk,At
′ of O (k ≥ 0) satisfying the properties listed in

Condition (3a) of De�nition 4.1. The �rst of these properties tells us that

At1 ⊓ · · · ⊓Atk ⊑O At ′,
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whereas the other two, combined with induction and an application of Lemma 4.5
(as in the previous case), yield that for each ℓ ∈ {1, . . . , k} there exists i ∈ {1, . . . , n}
such that γθ(Ci) ⊑O Atℓ, and At ′ ⊑O γθ(C). Overall, we obtain the following
subsumption relationships:

γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O At1 ⊓ · · · ⊓Atk ⊑O At ′ ⊑O γθ(C).

Therefore, γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O γθ(C) holds.

Finally, if s ∈ ∆τ , then s is of the form C1 ⊑? X and τ(C1, X) = 1. Since τ(X,C) = 1, an
application of (1b) in De�nition 4.1 yields that τ(C1, C) = 1. As shown for τ(Ci, C) = 1
above, we obtain that γθ(C1) ⊑O γθ(C) holds.

Summing up, we have thus shown that γθ(C1)⊓· · ·⊓γθ(Cn) ⊑O γθ(C) for all C ∈ Sτ (X).

� At = ∃w.A for some A ∈ NC and w ∈ θ(XA). Let us consider the language inclusion i∗A(s)
in IOΓ,τ obtained from s and A, i.e.,

i∗A(s) = XA ⊆ f∗
A(C1) ∪ · · · ∪ f∗

A(Cn) ∪ UA(s).

Since θ is a solution of IOΓ,τ and w ∈ θ(XA), there exists a term t on the right-hand
side of i∗A(s) such that w ∈ θ(t). Let us �rst look at the case where t = f∗

A(Ci) for some
i ∈ {1, . . . , n}. We show that γθ(Ci) ⊑O ∃w.A, by distinguishing between Ci being ground
or not:

� Ci is a ground atom. Then, either Ci = A or Ci = ∃r.A, for otherwise f∗
A(Ci) = ∅

contradicting w ∈ θ(t). This yields two possible forms for t:

t = f∗
A(A) = {ε} or t = f∗

A(∃r.A) = Lr{ε}.

Since w ∈ θ(t), this means that w = ε or w = s ∈ Lr, respectively. By de�nition of
Lr, the second case yields that r ⊴O s. Thus, in both cases we have that γθ(Ci) ⊑O
∃w.A

� Ci is not ground. In case Ci = Y for some variable Y , we have t = f∗
A(Y ) = YA and

w ∈ θ(YA). By de�nition of γθ, the latter implies that ∃w.A is a top-level conjunct
of γθ(Y ). Hence, γθ(Ci) ⊑ ∃w.A.
The other possible case is Ci = ∃r.Y . This means that t = f∗

A(∃r.Y ) = LrYA

and w ∈ Lr·θ(YA). Consequently, w = sw′ for some s ∈ NR and w′ ∈ NR
∗ such

that r ⊴O s and w′ ∈ θ(YA). As in the previous case, the latter implies that
γθ(Y ) ⊑ ∃w′.A. Thus, since r ⊴O s and Ci = ∃r.Y , it follows that γθ(Ci) ⊑O ∃w.A.

As a direct consequence of this case distinction, we obtain that γθ(C1)⊓ · · · ⊓ γθ(Cn) ⊑O
∃w.A, whenever t is of the form f∗

A(Ci).

It remains to consider the case where t is a term in UA(s). These terms are of the form
{ε}, LrZB→A, LtZB′→A or LtYA,t. We distinguish between these cases:

� t = {ε}. This means that w = ε and Cs,τ ⊑O A. Recall the de�nition of Cs,τ in (9):

Cs,τ =
l

{At ∈ Ats(O) | τ(Ci,At) = 1 for some i ∈ {1, . . . , n}}.

Note that each atom At in this conjunction is ground. Hence, since γθ is compatible
with τ , we can apply Lemma 4.5 to obtain that γθ(Ci) ⊑O At for some i ∈ {1, . . . , n}.
As a consequence of this, we obtain

γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O Cs,τ ⊑O A.

Thus, since A = ∃w.A, it follows that γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃w.A.
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� t = LrZB→A. In this case, w ∈ Lr·θ(ZB→A) implies that w = sw′ for some s ∈ NR

and w′ ∈ NR
∗ such that

s ∈ Lr = {s ∈ NR | r ⊴O s} and w′ ∈ θ(ZB→A).

Since θ is a solution of IO, an application of Lemma 4.13 to w′ ∈ θ(ZB→A) yields
that B ⊑O ∃w′.A. The de�nition of UA(s) yields ∃r.B ∈ Rs,τ , i.e.,

(Ci = ∃r.B for some i, 1 ≤ i ≤ n) or (Cs,τ ⊑O ∃r.B and ∃r.B ∈ Ats(Γ,O)).

Since ∃r.B is ground and r ⊴O s, we obtain γθ(∃r.B) ⊑O ∃s.B. Hence, if Ci = ∃r.B,
then the following holds:

γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃r.B ⊑O ∃s.B.

Otherwise, Cs,τ ⊑O ∃r.B. Hence, similarly to the case where t = {ε}, we have:

γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O Cs,τ ⊑O ∃r.B ⊑O ∃s.B.

Overall, we can infer that γθ(C1)⊓ · · · ⊓ γθ(Cn) ⊑O ∃s.B. Thus, since B ⊑O ∃w′.A,
it follows that γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃w.A.

� t = LtZB′→A. This means that there is ∃r.B ∈ Rs,τ such that (t, B′) is a pair in
Tr(∃r.B). Following the previous case, w ∈ Lt·θ(ZB′→A) implies that w = sw′ for
some s ∈ NR and w′ ∈ NR

∗ such that:

t ⊴O s, γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃r.B, B′ ⊑O ∃w′.A

In addition, (t, B′) ∈ Tr(∃r.B) yields r ⊴O t, B ⊑O ∃t.B′, and t is a transitive role.
This, together with γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃r.B yields

γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O ∃r.B ⊑O ∃r.∃t.B′ ⊑O ∃t.∃t.B′ ⊑O ∃t.B′.

Thus, since t ⊴O s and B′ ⊑O ∃w′.A, it follows that γθ(C1)⊓ · · ·⊓γθ(Cn) ⊑O ∃w.A.
� t = LtYA,t. From w ∈ Lt·θ(YA,t), we obtain w = sw′ for some s ∈ NR such that

t ⊴O s and w′ ∈ θ(YA,t).

In addition, by construction of UA(s), we know that (Y, t) ∈ Vs, which means that
there is an index i ∈ {1, . . . , n} such that

Ci = ∃r.Y, r ⊴O t, and t is a transitive role.

Finally, since θ satis�es the implication in (14), we have that tw′ ∈ θ(YA). Hence,
by de�nition of γθ, it follows that γθ(Y ) ⊑ ∃t.∃w′.A. Hence, since r ⊴O t, t ⊴O s
and t is a transitive role, we obtain the following subsumption chain:

∃r.γθ(Y ) ⊑ ∃r.∃t.∃w′.A ⊑O ∃t.∃w′.A ⊑O ∃s.∃w′.A.

Thus, since γθ(Ci) = ∃r.γθ(Y ), we have shown that γθ(C1)⊓ · · · ⊓ γθ(Cn) ⊑O ∃w.A.

The previous case distinction shows that γθ(C1)⊓ · · · ⊓ γθ(Cn) ⊑O ∃w.A also holds when
t is a term in UA(s).

Overall, we have thus shown that γθ(C1)⊓ · · · ⊓γθ(Cn) ⊑O At holds for each top-level atom At
of γθ(X). This implies that γθ(C1) ⊓ · · · ⊓ γθ(Cn) ⊑O γθ(X) holds, i.e., γθ satis�es the right-
hand side of (15) for s. Therefore, we have shown by well-founded induction that γθ solves all
subsumption constraints in ∆Γ,τ . Thus, γθ is a uni�er of ∆Γ,τ w.r.t. O. As already explained

immediately after the de�nition of γθ, this uni�er is an ELH−⊤
R+ -substitution that is compatible

with τ . This concludes the proof of the lemma.
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4.3 The PSpace Algorithm

Based on the results described in the previous two subsections, we can construct an NPSpace
decision procedure for uni�cation in ELH−⊤

R+ w.r.t. cycle-restricted ELH−⊤
R+ -ontologies. Due to

Savitch's theorem [26], this implies that the problem is also in PSpace.

Given an input consisting of an ELH−⊤
R+ -uni�cation problem and a cycle-restricted ELH−⊤

R+ -
ontology, the algorithm transforms the ontology and the uni�cation problem into �at ones,
which we denote as Γ and O. It then proceeds as follows:

1. It guesses a subsumption mapping τ for Γ w.r.t. O. If no such mapping exists, then it
fails.

2. It transforms Γ into ∆Γ,τ , and then translates the latter into the set of linear language
inclusions IOΓ,τ .

3. Finally, the algorithm answers �yes� i� IOΓ,τ has a �nite, admissible solution.

Flattening can be done in polynomial time and preserves uni�ability [5, 18]. A mapping τ :
Atstr (Γ,O) × Atstr (Γ,O) → {0, 1} can be guessed in non-deterministic polynomial time, and
checking whether it satis�es the properties of a subsumption mapping (see De�nition 4.1) can be
realized in polynomial time. In fact, since subsumption between ELHR+ -concepts and ⊴O can
be decided in polynomial time w.r.t. ELHR+ -ontologies, the only conditions in De�nition 4.1
that might look problematic are those stated in terms of the existence of atoms At1, . . . ,Atk of
O. However, such existential tests can be decided in polynomial time, since the tested property
holds i� it holds for the sequence of all atoms of O that have the required syntactic form and
satisfy the sub-property about τ . To be more precise, let us illustrate this with the second case
of Condition (1d). The same arguments can be applied for the other relevant cases.

� Suppose there are atoms ∃r1.A1, . . . ,∃rk.Ak of O (k ≥ 0) and atoms Fℓ ∈ S(∃r.X, ∃rℓ.Aℓ)
(1 ≤ ℓ ≤ k), such that:

τ(X,Fℓ) = 1 (1 ≤ ℓ ≤ k) and ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O A.

Let M be the set of all atoms of O of the form ∃u.B such that τ(X,F ) = 1 for some
F ∈ S(∃r.X,∃u.B). Clearly, the set M contains the atoms ∃r1.A1, . . . ,∃rk.Ak, and hence

l

At∈M

At ⊑O ∃r1.A1 ⊓ · · · ⊓ ∃rk.Ak ⊑O A.

Therefore, checking whether the sequence of atoms ∃r1.A1, . . . ,∃rk.Ak exists is equivalent
to compute M and check whether

d
At∈M At ⊑O A holds or not. The computation of M

can be done in polynomial time in the size of O, since S(∃r.X,∃u.B) can be computed in
polynomial time in the size of O.

Once a subsumption mapping τ is guessed, the set ∆Γ,τ can clearly be computed in polynomial
time. Moreover, the translation from ∆Γ,τ into IOΓ,τ can also be carried out in polynomial time:

� The number of language inclusions in IOΓ,τ is polynomial in the size of the input. The

set IOΓ,τ consists of the languages inclusions in IO, the language inclusions of the form
i∗A(s), and the language inclusions of the form iA,t(s). The set IO contains one inclusion
for each indeterminate ZB→A, where A and B are concept constants occurring in Γ or O.
This implies that the number of language inclusions in IO is polynomial in the size of Γ
and O. The system IOΓ,τ contains one inclusion of the form i∗A(s) for each subsumption
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constraint s ∈ ∆Γ,τ and concept constant A. It also contains one language inclusion of
the form iA,t(s) for each transitive role t of O. Hence, since the number of subsumption
constraints in ∆Γ,τ is polynomial in the size of Γ and O, then the number of inclusions
in IOΓ,τ of the form i∗A(s) and iA,t(s) is polynomial in the size of Γ and O. Overall, we can

conclude that the cardinality of IOΓ,τ is polynomial in the size of the input Γ and O.

� All the inclusions are of polynomial size. For IO, the number of terms on the right-hand
side of an inclusion is bounded by the cardinality of I(B), which consists of pairs of role
names and concept constants occurring in Γ and O. As for the inclusions of the form i∗A(s)
and iA,t(s) in IOΓ,τ , the number of additional terms in UA(s) and UA,t(s) is polynomial
in the combined size of the sets Rs,τ , Tr(∃r.B) where ∃r.B ∈ Ats(Γ,O), and Vs. Since
the cardinality of these sets is polynomial in the size of the input, it follows that such
inclusions are of polynomial size. Thus, every language inclusion contained in IOΓ,τ is of
size polynomial in the size of the input Γ and O.

� The set IOΓ,τ can be computed in polynomial time. This follows from the fact that the
sets I(B), Rs,τ , Tr(∃r.B) and Vs can all be computed in polynomial time.

Finally, as shown in [18], testing for the existence of a �nite, admissible solution of IOΓ,τ can
be reduced in polynomial time to checking emptiness of alternating �nite automata with ε-
transitions, which is a PSpace-complete problem [23]. This shows that the introduced algorithm
really is an NPSpace algorithm. Its correctness is an immediate consequence of Propositions 4.3
and 4.18. Since PSpace-hardness already holds for the special case of an empty ontology, we
thus have shown the following main result of this paper.

Theorem 4.26. Deciding uni�ability of ELH−⊤
R+-uni�cation problems w.r.t. cycle-restricted

ELH−⊤
R+-ontologies is PSpace-complete.

5 Conclusion

We have shown that the approach for obtaining a PSpace decision procedure for EL−⊤-uni�cation
without a background ontology [18] can be extended to uni�cation w.r.t. a cycle-restricted
ELHR+ -ontology, i.e., an ontology that may contain general concept inclusions (GCIs) formu-
lated in EL−⊤ as well as role inclusion and transitivity axioms, but does not entail a cyclic sub-
sumption of the form C ⊑O ∃r1.∃r2. · · · ∃rn.C (n ≥ 1). As explained in the introduction, both
considering concept descriptions not containing the top concept ⊤ and considering GCIs and
role axioms is motivated by the expressivity employed in the medical ontology SNOMEDCT.
Dealing with such a background ontology not only makes the approach more complicated due
to the more involved characterization of subsumption (see Lemma 1.3 and De�nition 4.1, com-
pared to the much simpler versions in [18]). It also requires the development of new notions,
such as simple uni�ers and the extension of the system of linear language inclusions with new
indeterminates and corresponding inclusions.

With SNOMEDCT in mind, it would be interesting to see whether results on uni�cation (with
or without top) can be further extended to ontologies additionally containing so-called right-
identity rules, i.e., role axioms of the form r ◦ s ⊑ r, since they are also needed to get rid of the
SEP-triplet encoding mentioned in the introduction. However, extending the characterization of
subsumption to this setting is probably a non-trivial problem. From a theoretical point of view,
the big open problem is whether one can dispense with the requirement that the ontology must
be cycle-restricted. Even for pure EL, decidability of uni�cation w.r.t. unrestricted ontologies
is an open problem.

From a practical point of view, the next step is to develop an algorithm that replaces non-
deterministic guessing by a more intelligent search procedure. Since the uni�cation problem is
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PSpace-complete, a polynomial translation of the whole problem into SAT is not possible (unless
NP=PSpace). However, one could try to delegate the search for a subsumption mapping to
a SAT solver, which interacts with a solver for the additional condition on such a mapping
(existence of a �nite, admissible solution of IOΓ,τ ) in an SMT-like fashion [21].
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