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Abstract. Errors in knowledge bases (KBs) written in a Description
Logic (DL) are usually detected when reasoning derives an inconsistency
or a consequence that does not hold in the application domain modelled
by the KB. Whereas classical repair approaches produce maximal sub-
sets of the KB not implying the inconsistency or unwanted consequence,
optimal repairs maximize the consequence sets. In this paper, we extend
previous results on how to compute optimal repairs from the DL EL to
its extension EL⊥, which in contrast to EL can express inconsistency.
The problem of how to deal with inconsistency in the context of opti-
mal repairs was addressed previously, but in a setting where the (fixed)
terminological part of the KB must satisfy a restriction on cyclic depen-
dencies. Here, we consider a setting where this restriction is not required.
We also show how the notion of optimal repairs obtained this way can
be used in inconsistency- and error-tolerant reasoning.

1 Introduction

Description Logics (DLs) [2,3] are a well-investigated family of logic-based knowl-
edge representation formalisms, which have gained particular prominence by the
fact that they are the formal basis for the Web ontology language OWL,1 and are
thus employed in many application domains (e.g., biology and medicine [20]). In
particular, in the setting of ontology-mediated query answering (OMQA) [15,27],
concepts defined in the terminological part (TBox) of a DL knowledge base (KB)
can be used as queries or within more complex queries on data, represented in
the assertional part (ABox) of the KB.

For example, assume that the TBox T consists of the concept inclusions (CIs)
Man ⊑ Human and Human ⊓∃ loves.Human ⊑ Caring , which say that men are
humans and that a human loving some human is caring; and that the ABox A
consists of the assertions Man(n), loves(n, n), and Egoistic(n), which say that
Narcissus (represented by the individual name n) is an egoistic man who loves
himself. Given this KB, the instance query (IQ) (Caring⊓Man)(n), which checks
whether the individual n is an instance of the concept Caring ⊓ Man, returns
1 https://www.w3.org/TR/owl2-overview/
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true as an answer, and the conjunctive query (CQ) Human(x) ∧ loves(x, x),
which looks for self-loving humans, returns n. Note that, for both queries, we
would not obtain this answer if we considered only the data (i.e., the ABox
without the TBox). Also note that, in most DLs, this CQ cannot be expressed
by instance queries due to the fact that it looks for a cycle in the data.

The DL community has spent considerable effort on designing sound, com-
plete, and terminating inference algorithms for DLs of various degrees of ex-
pressiveness, not just for query answering, but also for other inference problems,
such as the consistency and the subsumption problem [2,3]. However, even a
sound inference procedure can produce consequences that are plainly wrong in
the application domain that is modeled by a KB in case this KB contains errors.
Inconsistency of a KB is a sure sign that there is something wrong with it, but
errors can also be detected if consequences are produced that are not supposed
to hold in the application domain. In our example, one may wonder whether it
really makes sense to have a KB implying that Narcissus is both egoistic and
caring. To correct this, one may thus try to construct a repair of it, i.e., a new KB
from which the unwanted consequence (Caring ⊓Egoistic)(n) no longer follows.
As pointed out in [4], it is not reasonable to use as a repair an arbitrary KB
that does not have the unwanted consequences. Additionally, the repaired KB
should (a) not introduce new knowledge and (b) be as close as possible to the
original KB. More formally, (a) can be reformulated as saying that every repair
must be entailed by the original KB, and the optimality condition (b) chooses
repairs that are not strictly entailed by another repair. This still leaves different
possibilities for how to formalize the notion of an (optimal) repair, depending
on which entailment relation is employed.

Classical repair approaches [24,26,14] read (a) as talking about the explicitly
represented knowledge, and thus use the superset relation as the “entailment”
relation. Thus, a classical repair is a subset of the original KB that does not have
the unwanted consequences, and it is optimal if it is a maximal such subset. In
our example, if we assume that the TBox is correct (and thus should not be
changed) there are three optimal classical repairs, obtained by removing one
of the three assertions from the ABox. As pointed out in [12], this classical
approach has the disadvantage that it is syntax-dependent. If, in our example,
we had used the single assertion (Man ⊓ Egoistic)(n), which is equivalent to
the two assertions Man(n) and Egoistic(n), then a classical repair would need to
remove the information that Narcissus is an egoistic man as a whole, thus leading
to an optimal classical repair that is weaker than the one obtained when only the
assertion Egoistic(n) is removed. Even for the original version of our example,
the optimal classical repair obtained by removing the assertion loves(n, n) loses
more consequences than necessary. In fact, this repair retains no information at
all about love-relationships, though one could actually have kept the information
that Narcissus loves something not known to be human (this could, e.g., be a
pet), and even more (see below).

To be able to retain such entailed knowledge, we use in [13,5] as entailment
relation the usual logical entailment induced by the semantics of TBoxes and
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ABoxes, and extend ABoxes to quantified ABoxes (qABoxes), which may contain
anonymous individuals. For example, the qABox ∃{x, y}.B with B equal to

{Man(n),Egoistic(n), loves(n, x), loves(x, y), loves(y, y),Man(y),Egoistic(y)}

is a (still not optimal) repair, which says that Narcissus is an egoistic man
who loves something that in turn loves an egoistic man loving himself, where
the existentially quantified variables x, y represent anonymous individuals whose
names are not known. Using logical entailment is appropriate if we are interested
in the answers to CQs that a KB yields. For this reason, this entailment relation
is also called CQ-entailment in [5]. CQ-entailment is too strong if we are only
interested in instance queries. In this case, it is sufficient to employ IQ-entailment,
which looks at what concept assertions a given KB entails, i.e., the KB K1 IQ-
entail the KB K2 if every concept assertion entailed by the latter is also entailed
by the former.

In [5], we investigate the repair problem for the DL EL, which has the top
concept (⊤), conjunction (C ⊓D), and existential restrictions (∃r.C) as concept
constructors. More precisely, we consider KBs consisting of an EL TBox and a
qABox, where the TBox is static (i.e., cannot be changed), and repair requests
consisting of EL concept assertions. In the IQ-case, the set of optimal IQ-repairs
can always be computed in exponential time, and this set covers all repairs in the
sense that every IQ-repair is IQ-entailed by an optimal repair. In the CQ-case, this
covering property need no longer hold; in particular, there are repair problems
that have a CQ-repair, but no optimal one. To regain this important property,
which implies that one does not lose repair options when concentrating on opti-
mal repairs, one must restrict the TBox to being cycle-restricted.2 With respect
to cycle-restricted TBoxes, the set of optimal CQ-repairs can be computed in
exponential time, but this computation requires the use of an NP-oracle.3 These
results show that it makes sense to tailor the employed entailment relation to
the repair problem at hand. It must be strong enough to take the queries one is
interested in and the ones used to specify the repair request into account, but
also should not be stronger than that to avoid unnecessary complications such
as non-coverage or higher computational complexity.

In this paper, we consider repairs in EL⊥, which extends EL with the bottom
concept ⊥, and in which inconsistency can be expressed. In our example, we
could then use the CI Caring ⊓ Egoistic ⊑ ⊥ to say that no one can both be
caring and egoistic. With this additional CI, the KB of our example becomes
inconsistent. To repair the inconsistency, it is no longer enough to request that
Narcissus should not be both caring and egoistic, one must also forbid this for
all other individuals, also anonymous ones. For example, the qABox ∃{x, y}.B
introduced above would still be inconsistent w.r.t. the extended TBox. Since
anything follows from an inconsistent KB, condition (a) can no longer enforce
2 For example, the CI Human ⊑ ∃ loves.Human destroys cycle-restrictedness, whereas

the CI ∃ loves.Human ⊑ Human does not.
3 In the CQ-case, using conjunctive instead of instance queries as repair requests may

appear to be more appropriate, but this may destroy the covering property [9].
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that the repair is related in a reasonable way to the original KB. This problem
is solved in [9] for a more expressive DL, according to which any EL⊥ TBox
can be transformed into a normal form that is the union of a positive part T+
not containing ⊥ and a bottom part T⊥ consisting of CIs of the form C ⊑ ⊥
for EL concepts C. As entailment relation, one then uses entailment w.r.t. T+,
and the repair request must be extended by global requests ∃{x}.{C(x)} for
all CIs C ⊑ ⊥ in T⊥, expressing that C must not be populated by any indi-
vidual, be it named or anonymous. In our extended example, T⊥ consists of the
CI Caring ⊓ Egoistic ⊑ ⊥, and T+ of all other CIs. If we want to repair the
inconsistency, then this boils down to repairing the original ABox A for the
global repair request ∃{x}.{(Caring ⊓ Egoistic)(x)} w.r.t. the TBox T+. In [9],
such repair problems were investigated using CQ-entailment, which takes care
of global repair requests since they can be represented as CQs. In the present
paper, we investigate the IQ-case, which has the advantage that TBoxes need
not be cycle-restricted. However, in addition to instance queries, the entailment
relation now also needs to take global requests of the form ∃{x}.{C(x)} into
account. Following [11], we additionally allow role assertions to be contained
in the repair request, which means that we have to consider gloIRQ-entailment,
which takes these three types of queries (instance and roles assertions as well as
global requests) into account. Dealing with such extended repair requests and the
stronger entailment relation requires non-trivial changes to our repair approach
in [5], but in the end we can again show that the set of optimal gloIRQ-repairs
can be computed in exponential time, and this set covers all gloIRQ-repairs.

Both in EL and in EL⊥, a given repair problem may have exponentially many
repairs, in the classical as well as in the optimal sense, and it is often hard to
decide which one to use. Error-tolerant reasoning does not commit to a single
repair, but rather reasons w.r.t. all of them: cautious reasoning returns the an-
swers that follow from all repairs whereas brave reasoning returns the answers
that follow from some repair. For classical repairs of EL TBoxes, it was inves-
tigated in [22,25], but for more expressive DLs that can create inconsistencies,
error-tolerant reasoning w.r.t. classical repairs had been considered before, for
the case where the error is an inconsistency, under the name of inconsistency-
tolerant reasoning [17,16,21]. In [10], we investigate error-tolerant reasoning in
EL w.r.t. the optimal repairs introduced in [5], and in [11], this work is extended
to take also role assertions in the repair request into account. Here, we make the
further extension from EL to EL⊥, which then also allows us to do inconsistency-
tolerant reasoning. Again, the stronger entailment relation requires non-trivial
changes of the approaches developed in [5,11].

This extended version contains all proofs of technical results that needed to
be removed from the conference article for space restrictions.

2 Preliminaries

First, we briefly recall syntax and semantics of the DL EL and of quantified
ABoxes, but refer the reader to standard texts on DLs [3] and to [13,5] for more
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detailed expositions. Then, we introduce the relevant entailment relations and re-
call some useful results regarding them from [5,7,11]. Finally, we define the notion
of optimal repairs, and recall our previously obtained results for them [13,5,7,9].

2.1 The Description Logic EL and Quantified ABoxes

The syntax of EL concepts is defined inductively as follows. Starting with disjoint
sets ΣC of concept names and ΣR of role names, EL concepts are built using the
constructors top concept (⊤), conjunction (C ⊓ D), and existential restriction
(∃r.C). An EL atom is either a concept name or an existential restriction. We
use Conj(C) to denote the set of all EL atoms that occur as a top-level conjunct
of C. Such concepts can be used to define both terminological and assertional
knowledge. An EL concept inclusion (CI) is of the form C ⊑ D for EL concepts
C,D. An EL TBox T is a finite set of such CIs. Given an additional set ΣI of
individual names, disjoint with ΣC and ΣR, an EL concept assertion is of the
form C(a), where C is an EL concept and a ∈ ΣI, and a role assertion is of the
form r(a, b), where r ∈ ΣR and a, b ∈ ΣI. An EL ABox A is a finite set of EL
concept assertions and role assertions.

The semantics of EL concepts, TBoxes, and ABoxes is defined in a model-
theoretic way. An interpretation I is a pair (∆I , ·I), where the domain ∆I is a
non-empty set, and the interpretation function ·I maps each a ∈ ΣI to an element
aI of ∆I , each concept name A ∈ ΣC to AI ⊆ ∆I , and each role name r ∈ ΣR

to a binary relation rI ⊆ ∆I ×∆I . The interpretation CI of an EL concept C is
defined inductively as follows: ⊤I := ∆I , (C ⊓D)I := CI ∩DI , and (∃r.C)I :=
{d ∈ ∆I | ∃e ∈ ∆I such that (d, e) ∈ rI and CI}. The interpretation I satisfies
the CI C ⊑ D (denoted by I |= C ⊑ D) if CI ⊆ DI , the concept assertion
C(a) (I |= C(a)) if aI ∈ CI , and the role assertion r(a, b) (I |= r(a, b)) if
(aI , bI) ∈ rI . We further say that I is a model of the EL TBox T (ABox A) if
each CI in T (assertion in A) is satisfied by I.

A quantified ABox (qABox) ∃X.A consists of a finite set X of variables,
which is disjoint with Σ = ΣI ∪ΣC ∪ΣR, and a matrix A, which is a finite set of
concept assertions A(u) and role assertions r(u, v), where A ∈ ΣC, r ∈ ΣR and
u, v ∈ ΣI ∪ X. Thus, the matrix is an ABox built over the extended signature
Σ ∪ X, but cannot contain complex concept descriptions. An object of ∃X.A
is either an individual name in ΣI or a variable in X. We denote the set of
objects of ∃X.A with Obj(∃X.A). The interpretation I is a model of a qABox
∃X.A (I |= ∃X.A) if there is a variable assignment Z : X → ∆I such that
the augmented interpretation I[Z] that additionally maps each variable x to
Z(x) is a model of the matrix A, i.e., uI[Z] ∈ AI for each A(u) ∈ A and
(uI[Z], vI[Z]) ∈ rI for each r(u, v) ∈ A. As pointed out in [13], qABoxes are
syntactic variants of Boolean conjunctive queries [18], i.e., CQs with an empty
tuple of answer variables. In addition, EL ABoxes can be expressed by qABoxes.
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2.2 Queries and Entailment Relations

Let α, β be any of the syntactical objects (CI, assertion, ABox, qABox) intro-
duced above, and T be an EL TBox. Then, α entails β w.r.t. T (α |=T β) if
each model of α and T is also a model of β. If ∃X.A |=T C(a), then a is called
an instance of C in ∃X.A w.r.t. T . In case T = ∅, we will sometimes write |=
instead of |=∅. If ∅ |=T C ⊑ D, then we also write C ⊑T D and say that C
is subsumed by D w.r.t. T ; in case T = ∅ we simply say that C is subsumed
by D. The subsumption and the instance problems in EL are decidable in poly-
nomial time [1]. With respect to the empty TBox, the instance problem can be
characterized as follows:

Lemma 1. [13] The following statements hold for each qABox ∃X.A:

1. ∃X.A |= C(a) iff A |= C(a) for each concept assertion C(a).
2. For each EL concept C and each object u of ∃X.A, we have A |= C(u) iff

A(u) ∈ A for each A ∈ Conj(C), and for each existential restriction ∃r.D ∈
Conj(C), there is some role assertion r(u, v) ∈ A such that A |= D(v).

Tractability also holds (w.r.t. an EL TBox) for entailment between EL ABoxes
and entailment of a concept assertion by a qABox. A role assertion between
individuals is entailed by a qABox iff it is contained in its matrix. The entailment
problem between qABoxes (with or without EL TBox) is NP-complete [5,13].

For our purposes, a query language QL is a set of Boolean conjunctive
queries. The qABox ∃X.A QL-entails the qABox ∃Y.B w.r.t. the TBox T
(∃X.A |=T

QL ∃Y.B) if, for each query α ∈ QL, ∃Y.B |=T α implies ∃X.A |=T α.
In our previous work, we have considered three query languages: IQ consists of all
EL concept assertions [13,5,10], IRQ extends IQ by all role assertions between in-
dividuals [7,11], and CQ consists of all Boolean conjunctive queries (equivalently:
qABoxes) [13,5,9]. As shown in [5], CQ-entailment and model-based entailment
coincide, and thus deciding |=T

CQ is also NP-complete.
In contrast, IQ-entailment between qABoxes can be decided in polynomial

time. This is a consequence of the following result from [5]. Given a qABox
∃X.A and a TBox T , one can compute the IQ-saturation satTIQ(∃X.A) of ∃X.A
w.r.t. T in polynomial time, and this saturation satisfies ∃X.A |=T

IQ ∃Y.B iff
satTIQ(∃X.A) |=IQ ∃Y.B. Basically, the IQ-saturation process works as follows:
while there is an object u and a CI C ⊑ D in T such that the matrix of the
current qABox entails C(u), but not D(u), the qABox is extended by adding
D(u) and then representing this assertion as a qABox. To ensure termination,
new variables introduced to express existential restrictions are re-used, i.e., for
every concept E occurring in an existential restriction, a single variable xE is
introduced (see [5] for details).

Example 2. Starting with the qABox ∃∅.{A(a)} and the TBox {A ⊑ ∃r.A ⊓
∃s.(B ⊓ ∃s.A)}, we obtain the IQ-saturation ∃{xA, xB⊓∃s.A}.{A(a), r(a, xA),
A(xA), s(a, xB⊓∃s.A), B(xB⊓∃s.A), s(xB⊓∃s.A, xA), r(xA, xA), s(xA, xB⊓∃s.A)}.
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The equivalence ∃X.A |=T
IQ ∃Y.B iff satTIQ(∃X.A) |=IQ ∃Y.B provides us with

a polynomial-time reduction of IQ-entailment w.r.t. a TBox to IQ-entailment
w.r.t. the empty TBox. The latter in turn corresponds to the existence of a
simulation in the other direction [13]. A simulation from ∃Y.B to ∃X.A is a
relation S ⊆ Obj(∃Y.B)× Obj(∃X.A) such that:

(S1) If a is an individual name, then (a, a) ∈ S.
(S2) If (u, u′) ∈ S and A(u) ∈ B, then A(u′) ∈ A.
(S3) If (u, u′)∈S and r(u, v)∈B, then (v, v′)∈S and r(u′, v′)∈A for some v′.

Since existence of a simulation can be decided in polynomial time [19], IQ-
entailment between qABoxes (with or without TBox) is also in P.

This implies that IRQ-entailment is also tractable. In fact, as shown in [11],
∃X.A |=T

IRQ ∃Y.B iff ∃X.A |=T
IQ ∃Y.B and r(a, b) ∈ B implies r(a, b) ∈ A for all

r ∈ ΣR and a, b ∈ ΣI. The second condition can clearly be checked in P.

2.3 Optimal Repairs of Quantified ABoxes w.r.t. Static EL TBoxes

Assume that we have a qABox (and possibly an EL TBox) and use the query
language QL to extract information from this KB. Usually, one notices that there
is something wrong with the given KB if queries are entailed that do not hold
in the application domain. Thus, we specify what is to be repaired by a finite
set of queries P, which we call a repair request, i.e., a repair request is a finite
set P ⊆ QL. As pointed out in the introduction, when defining the notion of an
(optimal) repair, it is sufficient to use as entailment relation the one induced by
the employed query language.

Definition 3. Let QL be a query language, ∃X.A be a qABox, T be an EL
TBox, and P a repair request for QL. Then, a QL-repair of ∃X.A for P w.r.t.
T is a qABox ∃Y.B such that

(Rep1) ∃X.A |=T
QL ∃Y.B

(Rep2) ∃Y.B ̸|=T α for each α ∈ P.

This repair is optimal if it is not strictly QL-entailed by another repair. The
set R of QL-repairs of ∃X.A for P w.r.t. T QL-covers all QL-repairs of ∃X.A
for P w.r.t. T if, for each QL-repair ∃Y.B of ∃X.A for P w.r.t. T , there is
∃Z.C ∈ R such that ∃Z.C |=T

QL ∃Y.B.

In our previous work on optimal repairs we have determined situations in which
the set of optimal QL-repairs can effectively by computed, and covers all re-
pairs: (1) QL = IQ and arbitrary EL TBox [5]; (2) QL = IRQ and arbitrary EL
TBox [7,11]; (3) QL = CQ, but P ⊆ IQ and T is cycle-restricted [5]; (4) QL = CQ,
but P ⊆ gloIRQ and T is a terminating Horn-ALCROI TBox [9]. The computa-
tion of all optimal QL-repairs can be performed in exponential time for situations
(1) and (2), and may additionally require an NP-oracle for (3). For situation (4),
the exact complexity of the computation problem has not been determined yet.
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3 Global Instance Queries

As mentioned in the introduction, in the presence of CIs of the form C ⊑ ⊥, we
need to express, in the repair request, that concept C must not have any element.
This is possible using global instance queries, which are of the form ∃{x}.{C(x)}
where C is an EL concept. Such a query is satisfied in an interpretation I if
CI ̸= ∅. The query language gloIRQ is obtained from IRQ by adding all global
IQs. Since EL concepts can be expressed by (tree-shaped) conjunctive queries,
the inclusions IRQ ⊆ gloIRQ ⊆ CQ hold, which imply the inverse inclusions
between the induced entailment relations: |=T

CQ ⊆ |=T
gloIRQ ⊆ |=T

IRQ. It is easy to
see that these inclusions are strict.

In this section, we give a characterization of gloIRQ-entailment that is based
on the existence of certain simulations, and which implies that |=T

gloIRQ is decid-
able in polynomial time. We call a simulation S from ∃Y.B to ∃X.A total if, for
each object u ∈ Obj(∃Y.B), there is an object v ∈ Obj(∃X.A) with (u, v) ∈ S.

Lemma 4. ∃X.A |=gloIRQ ∃Y.B iff there is a total simulation from ∃Y.B to
∃X.A and r(a, b) ∈ B implies r(a, b) ∈ A for all r ∈ ΣR and a, b ∈ ΣI.

Proof. Recall from [13,5,7] that ∃X.A |=IRQ ∃Y.B iff there is a simulation from
∃Y.B to ∃X.A and r(a, b) ∈ B implies r(a, b) ∈ A. Thus, it remains to relate
the entailed global IQs with totality of the simulation.

For the only-if direction, we assume that ∃X.A |=gloIRQ ∃Y.B. The proof of
Proposition 23 in [13] shows (under the weaker assumption ∃X.A |=IQ ∃Y.B)
that S := { (u, v) | B |= C(u) implies A |= C(v) for each EL concept C } is
a simulation. Assume that S is not total. Then there exists an object u ∈
Obj(∃Y.B) for which there is no object v ∈ Obj(∃X.A) with (u, v) ∈ S. Thus,
for each v ∈ Obj(∃X.A), there must be an EL concept Cv with B |= Cv(u),
but A ̸|= Cv(v). Let C be the conjunction of these finitely many concepts.
Then ∃Y.B |= ∃{x}.{C(x)}, and thus ∃X.A |=gloIRQ ∃Y.B yields ∃X.A |=
∃{x}.{C(x)}. By Proposition 2 in [13], this implies that there is a homomor-
phism4 h from ∃{x}.{C(x)} (expressed as a qABox) to ∃X.A such that A |=
C(h(x)). However, since Ch(x) is a conjunct of C, this contradicts the fact that
the concepts Cv satisfy A ̸|= Cv(v). Thus, the simulation S must be total.

To show the if direction, consider a total simulation S from ∃Y.B to ∃X.A,
and assume that ∃Y.B |= ∃{x}.{C(x)}. According to Proposition 2 in [13], there
is a homomorphism h from ∃{x}.{C(x)} (expressed as a qABox) to ∃Y.B. It
is easy to construct, by induction on the structure of C, a homomorphism g
from ∃{x}.{C(x)} to ∃X.A: we choose each value g(u) from the non-empty (!)
set { v | (h(u), v) ∈ S }. Another application of Proposition 2 in [13] yields
∃X.A |= ∃{x}.{C(x)}. ⊓⊔

The proof of the following lemma is similar to the proof of Proposition IV
in [6].

Lemma 5. ∃X.A |=T ∃{x}.{C(x)} iff satTIQ(∃X.A) |= ∃{x}.{C(x)}
4 A homomorphism is a total and functional simulation.
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Proof. We can proceed similarly to the proof of Proposition IV in [6]. Regarding
the only-if direction, assume that ∃X.A |=T ∃{x}.{C(x)}. The canonical model
of the saturation, denoted as J := IsatTIQ(∃X.A), is a model of ∃X.A and T and
thus satisfies the global IQ ∃{x}.{C(x)}. We conclude by induction on C that
satTIQ(∃X.A) entails ∃{x}.{C(x)}.

To show the if direction, consider a model I of ∃X.A and T . In [6], we
consider a sequence of qABoxes ∃Xi.Ai obtained by constructing the satura-
tion satTIQ(∃X.A) step by step, and inductively define simulations Si from the
canonical models I∃Xi.Ai

to I. The key observation for the present proof is that
each of these simulations Si is total, and thus the last one is a total simulation
from J to I. Now assume that satTIQ(∃X.A) |= ∃{x}.{C(x)}. We infer that the
canonical model J satisfies ∃{x}.{C(x)}, i.e., there is an element u ∈ CJ . The
total simulation relates u to an element v of I. By induction on C, we can show
that this implies v ∈ CI , i.e., also I satisfies ∃{x}.{C(x)}. Since this holds for
all models I of ∃X.A and T , we conclude that ∃X.A |=T ∃{x}.{C(x)}. ⊓⊔

Before we can show the main result of this section, we need one more technical
lemma.

Lemma 6. ∃X.A |=T ∃{x}.{C(x)} iff there exists a global IQ ∃{y}.{D(y)}
with ∃X.A |= ∃{y}.{D(y)} and ∃{y}.{D(y)} |=T ∃{x}.{C(x)}.

Proof. Since the if direction is trivial, we turn our attention to the only-if di-
rection. First note that each global IQ ∃{x}.{C(x)} is equivalent to the IQ
(∃u.C)(a), where u denotes the universal role with semantics uI := Dom(I) ×
Dom(I) in every interpretation I [23], and a is an arbitrary individual name.
Thus, the assumption ∃X.A |=T ∃{x}.{C(x)} yields that ∃X.A |=T (∃u.C)(a).
According to Statement 2 of Lemma 22 in [23], there is an EL concept D such
that one of the following two statements holds:

– ∃X.A |=T D(a) and D ⊑T ∃u.C
– ∃X.A |=T (∃u.D)(a) and ∃u.D ⊑T ∃u.C.

Clearly, the first statement implies the second, and the second statement directly
yields the claim. ⊓⊔

Proposition 7. Let ∃X.A and ∃Y.B be qABoxes and T be an EL TBox. Then,
∃X.A |=T

gloIRQ ∃Y.B iff satTIQ(∃X.A) |=gloIRQ ∃Y.B. In addition, |=T
gloIRQ can be

decided in polynomial time.

Proof. To see that the equivalence holds, note that IQs were already treated in
the proof of the corresponding result (Theorem 3) in [5], and role assertions in
the proof of Proposition 2 in [7]. Thus, it remains to deal with global IQs.

First, assume ∃X.A |=T
gloIRQ ∃Y.B, and let ∃Y.B |= ∃{x}.{C(x)}. The lat-

ter implies ∃Y.B |=T ∃{x}.{C(x)}, and therefore ∃X.A |=T ∃{x}.{C(x)}.
Lemma 5 yields that satTIQ(∃X.A) |= ∃{x}.{C(x)}. Since this holds for all global
IQs ∃{x}.{C(x)} entailed by ∃Y.B, satTIQ(∃X.A) |=gloIRQ ∃Y.B follows.
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Second, let satTIQ(∃X.A) |=gloIRQ ∃Y.B, and consider a global IQ ∃{x}.{C(x)}
that is entailed by ∃Y.B w.r.t. T . By Lemma 6, there is a global IQ ∃{y}.{D(y)}
with ∃Y.B |= ∃{y}.{D(y)} |=T ∃{x}.{C(x)}. Since satTIQ(∃X.A) |=gloIRQ ∃Y.B,
we infer satTIQ(∃X.A) |= ∃{y}.{D(y)}. Lemma 5 yields ∃X.A |=T ∃{y}.{D(y)},
and thus ∃X.A |=T ∃{x}.{C(x)}. Since this argumentation works for all global
IQs ∃{x}.{C(x)}, we obtain ∃X.A |=T

gloIRQ ∃Y.B.
To show the complexity result, we use Lemma 4 together with the equivalence

we have just shown. First recall that the IQ-saturation satTIQ(∃X.A) can be
computed in polynomial time [5]. Second, the (unique) maximal simulation from
a qABox to another can also be computed in polynomial time [19]. This maximal
simulation is total iff there is a total simulation, i.e., it suffices to check whether
the maximal simulation from ∃Y.B to satTIQ(∃X.A) is total, which can be done in
polynomial time. Finally, checking containment of the role assertions involving
only individual names obviously needs only polynomial time. ⊓⊔

4 Optimal Repairs of qABoxes w.r.t. EL⊥ TBoxes

The description logic EL⊥ extends EL with the bottom concept ⊥, which has
the semantics ⊥I := ∅ in every interpretation I. In contrast to EL, a quantified
ABox ∃X.A can be inconsistent w.r.t. an EL⊥ TBox T , which means that
there is no model of the qABox and the TBox. Since any query is entailed
by such an inconsistent qABox, repairing it for unwanted consequences also
encompasses resolving the inconsistency. This problem was tackled in [9] for the
more expressive DL ELROI(⊥) and the query language CQ. Here, we restrict the
attention to EL⊥, but consider a smaller query language, which has the advantage
the TBoxes need not be restricted to being cycle-restricted and repairs can be
computed more efficiently.

4.1 Repairing the Inconsistency

For a qABox ∃X.A that is inconsistent w.r.t. the EL⊥ TBox T , Condition (Rep1)
in the definition of repairs is vacuously true, and thus does not enforce the
repair to be related in any way to ∃X.A. In [9], this problem is addressed for
ELROI(⊥) TBoxes, according to which any EL⊥ TBox T can be normalized
such that it is the union of a positive part T+ consisting of EL CIs and an
unsatisfiable part T⊥ consisting of CIs of the form C ⊑ ⊥ for EL concepts C.
This separation allows us to characterize inconsistency of qABoxes w.r.t. EL⊥

TBoxes as follows.

Lemma 8. [9, Proposition 17] Let ∃X.A be a qABox and T be an EL⊥ TBox.

1. ∃X.A is inconsistent w.r.t. T iff there is a CI C ⊑⊥ ∈ T⊥ with ∃X.A |=T+

∃{x}.{C(x)}.
2. If ∃X.A is consistent w.r.t. T , then ∃X.A |=T ∃Y.B iff ∃X.A |=T+ ∃Y.B.
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Specifically, Statement 1 tells us that an inconsistency can be resolved by en-
suring that the repair does not entail any global IQ ∃{x}.{C(x)} for which the
unsatisfiable part T⊥ contains C⊑⊥. Statement 2 in turn states that the unsat-
isfiable part T⊥ can be ignored when working with a consistent qABox. Thus, to
regain a meaningful connection between the original qABox and the repair, T+
rather than T is used in Condition (IRep1) below.

Definition 9. [9, Definition 18] Let QL be a query language, ∃X.A be a qABox,
T be an EL⊥ TBox, and P ⊆ QL a repair request. An inconsistency QL-repair
of ∃X.A for P w.r.t. T is a qABox ∃Y.B such that

(IRep1) ∃X.A |=T+

QL ∃Y.B,
(IRep2) ∃Y.B is consistent w.r.t. T ,
(IRep3) ∃Y.B ̸|=T α for each α ∈ P.

We say that ∃Y.B is optimal if it is not strictly QL-entailed by another repair.

In [9], such repairs were investigated for the query language CQ. Here, we are
mainly interested in IRQ-repairs, but since resolving the inconsistency requires
us to consider global instance queries as well, we use gloIRQ-entailment and
also allow the user to include global instance queries in the repair request. The
following proposition shows that inconsistency gloIRQ-repairs for P w.r.t. T
correspond to gloIRQ-repairs for PT⊥ w.r.t. T+, where PT⊥ extends P with the
global IQs ∃{x}.{C(x)} for all CIs C ⊑⊥ in T⊥. It can be proved by adapting
the proof of Theorem 19 in [9].

Proposition 10. Let ∃X.A be a qABox, T be an EL⊥ TBox, and P be a repair
request. If T is inconsistent, then there are no inconsistency gloIRQ-repairs of
∃X.A for P w.r.t. T . Otherwise, the set of all (optimal) inconsistency gloIRQ-
repairs of ∃X.A for P w.r.t. T coincides with the set of all (optimal) gloIRQ-
repairs of ∃X.A for PT⊥ w.r.t. T+.

For the case where T is consistent, we compute optimal inconsistency gloIRQ-
repairs w.r.t. T in three stages. To repair the inconsistency of the qABox, we
replace T by the EL TBox T+ and P by the extended repair request PT⊥ as
described in Proposition 10. Then, we repair for the unwanted role assertions
using Proposition 11 below. The main remaining task is then to repair for the
unwanted concept assertions and global IQs using gloIRQ-entailment (see Sec-
tion 4.3).

4.2 Repairing for Role Assertions

We assume that T is an EL TBox and P ⊆ gloIRQ is a repair request. We denote
the set of the role assertions from P as PR and the set of remaining elements
as PC. Given that a role assertion between individuals follows from a qABox
iff it is contained in its matrix, one might think that one can deal with role
assertions in the repair request by simply removing them. However, this way
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one may also lose concept assertions involving existential restrictions that could
have been retained (see Example 3.3 in [11]). Instead, before removing the role
assertions of PR, one needs to add a variable xa as copy of every individual a to
the qABox. This copy belongs to the same concept and role assertions as a (see
the construction in the proof of Lemma 3.4 in [11] for details). The following
proposition can be shown by adapting the proof of Theorem 3.6 in [11] to deal
with gloIRQ-repairs rather than IRQ-repairs.

Proposition 11. Let ∃X.A be a qABox, T an EL TBox, and P a repair request.
Consider the qABox ∃Z.C constructed from ∃X.A by first copying all individual
names into fresh variables and then removing all role assertions of PR, i.e.,

Z := X ∪ {xa | a ∈ ΣI }
C := (A ∪ {A(xa) | A(a) ∈ A} ∪ { r(xa, u) | r(a, u) ∈ A}

∪ { r(u, xa) | r(u, a) ∈ A}) \ PR.

The set of all (optimal) gloIRQ-repairs of ∃X.A for P w.r.t. T coincides with
the set of all (optimal) gloIRQ-repairs of ∃Z.C for PC w.r.t. T .

Proof. As shown in [11, Theorem 3.6], the qABox ∃Z.C is an optimal IRQ-
repair of ∃X.A for PR w.r.t. T , and it IRQ-entails every other IRQ-repair. The
same proof also works for gloIRQ-entailment since, in the proof of the crucial
Lemma 3.4 in [11], the constructed simulation is total, and thus ∃Z.C is gloIQ-
equivalent to ∃X.A, where gloIQ denotes the query language consisting of all
IQs and global IQs.

It is easy to see that any gloIRQ-repair of ∃Z.C for PC w.r.t. T is also a
gloIRQ-repair of ∃X.A for P w.r.t. T . In fact, ∃Z.C does not entail the role
assertions from PR, and its gloIRQ-repair for PC keeps this property and no
longer entails the the elements of PC. Conversely, assume that ∃V.D is a gloIRQ-
repair of ∃X.A for P w.r.t. T . Since ∃V.D is also a gloIRQ-repair for PR and
∃Z.C covers all these repairs, we obtain ∃Z.C |=T

gloIRQ ∃V.D. Furthermore, since
∃V.D does not entail any element from P w.r.t. T , we conclude that ∃V.D is a
gloIRQ-repair of ∃Z.C for PC w.r.t. T .

Since the sets of repairs are equal and the same entailment relation |=T
gloIRQ

is employed, the respective sets of optimal repairs also coincide. ⊓⊔

When going to the last stage, we can thus assume that we are given a qABox,
an EL TBox, and a repair request that consists of unwanted concept assertions
and global IQs. However, we still need to use gloIRQ-entailment rather than
gloIQ-entailment to avoid reintroducing role assertions that have been removed.

4.3 Repairing for Concept Assertions and Global IQs

The main tool used in [5] to compute all optimal repairs is the construction of
canonical repairs. It is shown that the set of canonical repairs covers all repairs,
and thus the optimal ones can be obtained by removing elements strictly entailed
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by others. We recall the construction of canonical repairs from [5] and explain the
modifications that are necessary to treat global IQs. We denote by Sub(T ,P)
and Atoms(T ,P) the set of subconcepts and atoms occurring in the TBox T
and the repair request P. The objects of the canonical repairs are copies of the
objects of the saturation ∃X ′.A′ := satTIQ(∃X.A) of the input qABox ∃X.A.
These copies are of the form ⟨⟨u,K⟩⟩, where u is an object of ∃X ′.A′ and K is
a repair type (see below). Intuitively, C ∈ K says that, in the canonical repair,
the object ⟨⟨u,K⟩⟩ is not an instance of C. Formally, a repair type for an object
u of ∃X ′.A′ is a set of K ⊆ Atoms(T ,P) such that

(RT1) The object u is an instance of all atoms in K, i.e., the matrix A′ of the
saturation entails C(u) for each atom C ∈ K.

(RT2) The atoms in K are pairwise subsumption-incomparable, i.e., C ̸⊑∅ D
for distinct atoms C,D ∈ K.

(RT3) If C is an atom in K and E is a subconcept in Sub(T ,P) with E ⊑T C
and A′ |= E(u), then there is an atom D in K with E ⊑∅ D.

(RT1) is motivated by the fact that instance relationships that do not hold need
not be removed. (RT2) avoids redundancies in K since having D in K for C ⊑∅ D
also prevents ⟨⟨u,K⟩⟩ from being an instance of C. (RT3) ensures that inference
with the TBox cannot restore instance relationships for atoms in K.

Given sets K and L of EL concepts (e.g. repair types), we say that K is
covered by L and write K ≤ L if, for each C ∈ K, there is D ∈ L with C ⊑∅ D.
The matrix B of a canonical repair is defined in a way that ensures that indeed
each object ⟨⟨u,K⟩⟩ is not an instance of any atom in K for this repair.

(CR1) B contains all concept assertions A(⟨⟨u,K⟩⟩) with A(u) ∈ A′ and A ̸∈ K.
(CR2) B contains all role assertions r(⟨⟨u,K⟩⟩, ⟨⟨v,L⟩⟩) with r(u, v) ∈ A′ and

Succ(K, r, u) ≤ L, where Succ(K, r, u) := {C | ∃r.C ∈ K and A′ |= C(v) }.

Finally, for each individual a we select one of its copies ⟨⟨a,K⟩⟩ as representation
of a in the repair. However, to obtain a genuine repair, the type K must satisfy an
additional condition. Formally, this selection is made by a repair seed S, which
maps each individual name a to a repair type Sa for a such that:

(RS) If C(a) is an IQ in P with A′ |= C(a), then there is an atom D in Sa such
that C ⊑∅ D.

Given a repair seed S, the variable set Y consists of all copies ⟨⟨u,K⟩⟩ except
those of the form ⟨⟨a,Sa⟩⟩, which are treated as synonyms of the individual
names. We then call ∃Y.B the canonical repair induced by S, and denote it
by repTIQ(∃X.A,S).

In [9], global IQs in the repair request were treated in the context of a more
expressive DL (also containing inverse roles, role inclusions, and nominals) and
for CQ-entailment. Here, we present a simpler treatment, which is also easier to
handle algorithmically. The following condition, which is introduced in [9], is a
variant of (RS) that deals with global IQs by forbidding their concepts for all
objects of the repair, and not just for individual names:
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(RT4) If ∃{x}.{C(x)} is a global IQ in P and A′ |= C(u), then there is an
atom D in K such that C ⊑∅ D.

The following example shows that this condition is not sufficient to repair for
global IQs since it does not prevent the TBox from restoring global IQs.

Example 12. Consider the TBox {A⊑ ∃r.B}, the ABox {A(a)}, and the repair
request {∃{x}.{B(x)}}. The saturation is ∃{y}.{A(a), r(a, y), B(y)}. With only
the above conditions, a repair seed S could map a to the empty repair type. In the
canonical repair induced by this repair seed, the assertion A(a) is not removed,
and inference with the TBox will re-introduce an r-successor of a that is an
instance of B. Thus, the unwanted global IQ is still entailed.

In [9], this problem is dealt with by introducing a (rather complex) condition on
repair seed, called admissibility, which also deals with inverse roles, role inclu-
sions, and nominals. Here, we treat it by introducing a new condition on repair
types, which is stronger than (RT4) and easier to check than admissibility.

Definition 13. An EL concept D is globally forbidden w.r.t. P if it entails a
global IQ in P, i.e. if ∃{y}.{D(y)} |=T ∃{x}.{C(x)} for some ∃{x}.{C(x)} ∈ P.

Repairs must not entail ∃{y}.{D(y)} for any globally forbidden concept D.

(RT5) If C is a subconcept in Sub(T ,P) that is globally forbidden w.r.t. P and
A′ |= C(u), then there is an atom D in K with C ⊑∅ D.

Since ∃{x}.{C(x)} ∈ P obviously implies that C is globally forbidden, (RT5)
encompasses (RT4). In the remainder of this section, we will verify that repair
types additionally satisfying (RT5) correctly treat the global IQs in P. With
respect to this extended definition of repair types, we denote the canonical repair
induced by the repair seed S as repTgloIRQ(∃X.A,S).

Lemma 14. Let S be a repair seed and consider a subconcept C ∈ Sub(T ,P).
The matrix of repTgloIRQ(∃X.A,S) entails C(⟨⟨u,K⟩⟩) iff the matrix of satTIQ(∃X.A)
entails C(u) and no atom in K subsumes C.

Proof. The proof is almost the same as for Lemma XII in [5], except that we
must extend the last case in the if direction where C = ∃r.D is an existential re-
striction.

According to Lemma 1, it follows from the preconditions that there exists
some object v such that A′ contains r(u, v) and entails D(v). We infer that
D ̸⊑T E for each ∃r.E ∈ K (otherwise ∃r.D ⊑T ∃r.E, and by (RT3) ∃r.D
would be subsumed by an atom in K, a contradiction). Thus for each ∃r.E ∈ K,
there is some atom FE ∈ Conj(E) such that D ̸⊑T FE .

We also need to take care of Conditions (RT4) and (RT5). Therefore let G ∈
Sub(T ,P) be globally forbidden and A′ |= G(u). Since no atom in K subsumes
∃r.D and K satisfies (RT5), it follows that ∃r.D is not globally forbidden. So
D is not globally forbidden either and thus D ̸⊑T G, i.e., there is an atom
FG ∈ Conj(G) such that D ̸⊑T FG.
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According to Lemma XI in [5] there is a repair type L for v that covers the set
L0 := Max⊑∅({FE | ∃r.E ∈ K and A′ |= E(v) } ∪ {FG | G is globally forbidden
and A′ |= G(v) }) and that does not contain an atom subsuming D. Although
Lemma XI only guarantees that L is a repair type as per the old definition, i.e.,
satisfies only (RT1), (RT2), and (RT3), our construction of L0 guarantees that
also (RT4) and (RT5) are fulfilled since L covers L0.

Since D ∈ Sub(R, T ), we can apply the induction hypothesis and obtain that
B |= D(yv,L). By the very construction of L, it follows that the matrix B contains
the role assertion r(yu,K, yv,L). Thus, we conclude that B |= C(yu,K). ⊓⊔

Proposition 15. Let ∃X.A be a qABox, T an EL TBox, and P ⊆ gloIQ a
repair request. For each repair seed S, the induced canonical repair is a gloIRQ-
repair of ∃X.A for P w.r.t. T . Conversely, every gloIRQ-repair of ∃X.A for P
w.r.t. T is gloIRQ-entailed by a canonical repair.

Proof. The proof of the first claim is the same as for Proposition 8 in [5], but
uses Lemma 14 instead of Lemma XII.

We proceed with the second claim and consider a gloIRQ-repair ∃Y.B. Since
it fulfills Condition (Rep1), Proposition 7 yields a total simulation S from ∃Y.B
to the saturation ∃X ′.A′ := satTIQ(∃X.A). Like in the proof of Proposition 8
in [5], we define the mapping F : S → ℘(Atoms(T ,P)) by

F(t, v) := Max⊑∅{C | C ∈ Atoms(T ,P), A′ |= C(v), and B ̸|=T C(t) }

for all (t, v) ∈ S. In [5] we showed that each set F(t, v) satisfies Conditions (RT1),
(RT2), and (RT3). To conclude that F(t, v) is a repair type for v, we need to
verify that Conditions (RT4) and (RT5) also hold.

(RT4) Let ∃{x}.{C(x)} be a global IQ in P with A′ |= C(v). Since ∃Y.B
satisfies Condition (Rep2), it follows that B ̸|=T C(t). Thus there is a top-
level conjunct D ∈ Conj(C) with A′ |= D(v) and B ̸|=T D(t). We conclude
that either D itself or an atom subsuming D is contained in F(t, v).

(RT5) Let C ∈ Sub(T ,P) be globally forbidden and A′ |= C(v), i.e., there is
a global IQ ∃{y}.{E(y)} in P with ∃{x}.{C(x)} |=T ∃{y}.{E(y)}. Since
∃Y.B satisfies Condition (Rep2), it follows that B ̸|=T ∃{y}.{E(y)} and thus
in particular that B ̸|=T C(t). Thus there is a top-level conjunct D ∈ Conj(C)
with A′ |= D(v) and B ̸|=T D(t). We conclude that either D itself or an atom
subsuming D is contained in F(t, v).

Like in [5] we obtain a repair seed S by defining Sa := F(a, a) for each individ-
ual name a, and the relation T := { (t, ⟨⟨v,F(t, v)⟩⟩) | (t, v) ∈ S } is a simulation
from the considered repair ∃Y.B to the induced repair repTgloIRQ(∃X.A,S). Fur-
thermore, T is total since S is total and F is defined for each pair in S. The
role assertions involving only individual names are treated as in the proof of
Proposition 21 in [8]. Proposition 7 yields the claim. ⊓⊔

This proposition shows that the set of canonical repairs is a set of gloIRQ-
repairs that covers all gloIRQ-repairs. The definition of canonical repairs implies
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that there are at most exponentially many such repairs of at most exponen-
tial size, which can be computed in exponential time. Up to equivalence, the
optimal gloIRQ-repairs can be obtained from this set by removing redundant
elements, i.e., ones that are strictly gloIRQ-entailed by other elements. Since
gloIRQ-entailment is in P (Proposition 7), we obtain the following complexity
result for computing the set of all optimal repairs, and clearly this set still covers
all repairs.

Proposition 16. For each qABox ∃X.A, each EL TBox T , and each repair
request P ⊆ gloIQ, the set of all optimal gloIRQ-repairs can be computed in
exponential time, up to gloIRQ-equivalence, and this set covers all gloIRQ-repairs.

Putting Propositions 10, 11, and 16 together, yields the main result of this
section.

Theorem 17. Given a qABox ∃X.A, an EL⊥ TBox T , and a repair request
P ⊆ gloIRQ, the set of all optimal inconsistency gloIRQ-repairs can be computed
in exponential time, up to gloIRQ-equivalence, and this set covers all inconsis-
tency gloIRQ-repairs.

5 Inconsistency- and Error-Tolerant Reasoning

Error-tolerant reasoning does not commit to a single repair, but rather reasons
w.r.t. all of them. In [10,11], we have investigated error-tolerant reasoning in a
setting where the query language is IRQ and the TBox is written in EL. Here,
we extend the obtained results to EL⊥ TBoxes and the query language gloIRQ.
Inconsistency-tolerant reasoning is the special case where the repair request is
{⊥(a)} for some individual a, which is entailed by a KB iff the KB is inconsistent.
We assume in the following that the repair request P is solvable, i.e., has a repair,
which is the case if none of the queries in P is entailed by T alone.

Definition 18. Let ∃X.A be a qABox, T an EL⊥ TBox, P ⊆ gloIRQ a solvable
repair request, and α ∈ gloIRQ a query. Then α is bravely (cautiously) gloIRQ-
entailed by ∃X.A w.r.t. P and T if it is entailed w.r.t. T by some (all) optimal
inconsistency gloIRQ-repair(s) of ∃X.A for P w.r.t. T .

As shown in [10] for a restricted setting, brave entailment can be reduced to
classical entailment. To this purpose, let ∃Z.C be the qABox representation of
∃∅.{α} if α is a concept or role assertion, and α itself if it is a global IQ. Since
every inconsistency gloIRQ-repair is entailed by an optimal one, α is bravely
gloIRQ-entailed by ∃X.A w.r.t. T and P iff ∃Z.C is an inconsistency gloIRQ-
repair of ∃X.A for P w.r.t. T . This reduces checking brave gloIRQ-entailment
to deciding whether a given qABox satisfies Conditions (IRep1)–(IRep3). Since
each condition can verified in polynomial time, we obtain the following result.

Theorem 19. Brave gloIRQ-entailment is in P.
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Dealing with cautious entailment is more involved. Since a given repair prob-
lem may have exponentially many optimal repairs of exponential size, the naïve
approach to solve cautious entailment, which computes all optimal repairs and
checks whether each of them entails the query α, would require exponential
time. The approach employed in [10] (for a more restricted setting) to reduce
the complexity to coNP proceeds as follows: to check whether α is not cautiously
entailed, it guesses a mapping S from individuals a to sets of atoms Sa and then
checks whether

1. S is a repair seed,
2. the repair seed S induces an optimal repair,
3. the optimal repair induced by S does not entail α.

To extend this approach to our setting, we must show that Conditions 1–3 can
be checked in polynomial time for the query language gloIRQ and EL TBoxes.
In fact, we have shown in the previous section that the optimal inconsistency
gloIRQ-repairs w.r.t. EL⊥ TBoxes we are interested in can actually be obtained
as optimal gloIRQ-repairs w.r.t. EL TBoxes.

Regarding Condition 1, it is easy to see that (RT1)–(RT3), (RT5), and (RS)
can be checked in polynomial time. Note that this shows an advantage of (RT5)
over the admissibility condition in [9] since for the latter it is less clear how to
test it in P. To deal with Condition 2, we use a pre-order on repair seeds that
reflects gloIRQ-entailment between the induced canonical gloIRQ-repairs.

Definition 20. [8,11] Given repair seeds S and R, we say that S is IRQ-covered
by R (write S ≤IRQ R) if Sa ≤ Ra for each a ∈ ΣI, and Succ(Ra, r, b) ≤ Rb

implies Succ(Sa, r, b) ≤ Sb for all r(a, b) ∈ A with a, b ∈ ΣI.

Lemma 21. S ≤IRQ R iff repTgloIRQ(∃X.A,S) |=T
gloIRQ repTgloIRQ(∃X.A,R).

Proof. With respect to the old definition of repair types (without (RT5)), it was
shown in [7] that S ≤IRQ R iff repTIQ(∃X.A,S) |=T

IRQ repTIQ(∃X.A,R). The same
proof, but using Lemma 14 instead of Lemma XII in [6], shows that S ≤IRQ R iff
repTgloIRQ(∃X.A,S) |=T

IRQ repTgloIRQ(∃X.A,R). Since all can. repairs (for the same
input) entail the same global IQs, the latter is actually a gloIRQ-entailment. ⊓⊔

Given any pre-order ≤, we write α < β if α ≤ β and β ̸≤ α, and say that α is
≤-minimal if there is no β such that β < α. Lemma 21 implies that, up to gloIRQ-
equivalence, the optimal gloIRQ-repairs are exactly the canonical gloIRQ-repairs
induced by ≤IRQ-minimal repair seeds. Thus, to decide optimality in polynomial
time, it remains to show the following result.

Proposition 22. ≤IRQ-minimality of repair seeds is in P.

Proof. With respect to the old definition of repair types, this result follows from
Lemma 5.7 in [11], which states that a repair seed S is not ≤IRQ-minimal iff there
exists an individual a and an atom D ∈ Sa such that the lowering low(S, D(a)) is
a repair seed. Intuitively, if there is a repair seed S ′ that is strictly smaller than
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S, then there must by an individual a and an atom D ∈ Sa such that D ̸∈ S ′
a.

However, just removing D from Sa is not sufficient since such a removal also has
an impact on other parts of the repair seed. The (rather intricate) definition of
the lowering function (see Definition 5.3 in [11]) takes care of such effects.

The same proof as in [11] also applies w.r.t. the extended definition of repair
types, but in the only-if direction we additionally need to verify that each repair
type assigned by the lowering low(S, D(a)) satisfies (RT5).

To see this, assume that S is not ≤IRQ-minimal, i.e., there is a repair seed
R such that R <IRQ S. By Lemma 5.5 in [11], there exists a ∈ ΣI and D ∈ Sa

such that R ≤IQ low(S, D(a)). As argued in [11], the lowering is a repair seed
w.r.t. the old definition of repair types. Since the repair type assigned to an
individual b by low(S, D(a)) covers the repair type Rb, and the latter satisfies
Conditions (RT5), it follows that also the former covers all globally forbidden
concepts, and thus satisfies (RT5). ⊓⊔

It remains to show that Condition 3 can be checked in polynomial time.

Proposition 23. Given a qABox ∃X.A, an EL TBox T , a repair request P ⊆
gloIRQ, a query α ∈ gloIRQ, and a repair seed S, we can decide in polynomial
time whether α is entailed w.r.t. T by the canonical gloIRQ-repair induced by S.

Proof. We prove three subclaims regarding the different kinds of queries.

1. repTgloIRQ(∃X.A,S) entails a concept assertion/IQ C(a)

iff satTIQ(∃X.A) |= C(a) and no atom in Sa subsumes C w.r.t. T .
2. repTgloIRQ(∃X.A,S) entails a global IQ ∃{x}.{C(x)}

iff satTIQ(∃X.A) |= ∃{x}.{C(x)} and C is not globally forbidden.
3. repTgloIRQ(∃X.A,S) entails a role assertion r(a, b)

iff r(a, b) ∈ A, r(a, b) ̸∈ P, and Succ(Sa, r, b) ≤ Sb.

The first claim is mentioned in Lemma 3 in [10], but for the old definition of
repair types. It is straightforward to adapt the proof of Lemma 14 such that
C can be an arbitrary EL concept and the if direction requires that no atom
in K subsumes C w.r.t. T . (Then ∃r.D ̸⊑T ∃r.E follows from the assumption
and not by (RT3).) Regarding the only-if direction, if an atom D in Sa sub-
sumes C w.r.t. T , i.e., C ⊑T D, then repTgloIRQ(∃X.A,S) ̸|= D(a) by Lemma 14,
and thus repTgloIRQ(∃X.A,S) ̸|= C(a) since repTgloIRQ(∃X.A,S) is saturated (see
Lemma XIII in [6]).

Next, we consider the second claim. The relation consisting of all pairs
(⟨⟨u,K⟩⟩, u) is a total simulation from repTgloIRQ(∃X.A,S) to satTIQ(∃X.A). Thus,
if repTgloIRQ(∃X.A,S) |= ∃{x}.{C(x)}, then Lemma 4 yields that satTIQ(∃X.A) |=
∃{x}.{C(x)}. Further recall that no repair entails ∃{x}.{C(x)} for any globally
forbidden concept C. It remains to prove the if direction. By assumption, there
is an object u of satTIQ(∃X.A) that is an instance of C. Since C is not globally
forbidden, we can build a repair type K for u that does not contain any sub-
sumer of C. It follows that ⟨⟨u,K⟩⟩ is an instance of C by Lemma 14, and thus
repTgloIRQ(∃X.A,S) |= ∃{x}.{C(x)}.
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Last, the third claim is shown in Lemma 4.5 in [11], and the same proof
works here. ⊓⊔

In sum, we have now shown that the Conditions 1–3 introduced above can be
checked in polynomial time. This provides us with an NP-procedure for cautious
non-entailment, not only for optimal gloIRQ-repairs w.r.t. EL TBoxes, but also
for optimal inconsistency gloIRQ-repairs w.r.t. EL⊥ TBoxes.

Theorem 24. Cautious gloIRQ-entailment is in coNP.

It is not clear whether this upper bound is tight. For the case of classical repairs,
coNP-completeness of cautious entailment is shown in [11], but the hardness
proof cannot easily be adapted to the case of optimal repairs.

6 Conclusion

We have shown that our previous work on optimal repairs [5] and error-tolerant
reasoning w.r.t. optimal repairs [10,11] can be extended from TBoxes written
in the DL EL to EL⊥ TBoxes. From a practical point of view, ⊥ can be used
to express disjointness of concepts, which means that certain modelling errors
can be detected as inconsistencies, as illustrated in our introductory example.
From a theoretical point of view, EL⊥ is a minimal extension of EL that can
express inconsistency. This allows us to investigate the effect that inconsistency
has on repairs (such as the need for considering global instance queries in repair
requests) without being distracted by clutter caused by other constructors, as
e.g. the ones of ELROI(⊥). In contrast to the treatment of optimal repairs for
the DL ELROI(⊥) in [9], we use here a different entailment relation (gloIRQ-
entailment) in the definition of optimal repairs. This relation has the advantage
that TBoxes need not be cycle-restricted, and is appropriate if one does not
intend to use general conjunctive queries to access the knowledge base. We con-
jecture that the approach developed in this paper can be extended to ELRO(⊥)
TBoxes, though this would probably cause a higher complexity for computing
optimal repairs and for cautious reasoning. As pointed out in [9], in the presence
of inverse roles, finite IQ-saturation cannot always work, and thus the motivation
for using gloIRQ-entailment rather than CQ-entailment is no longer there. The
complexity of error-tolerant reasoning w.r.t. optimal CQ-repairs [5] still needs to
be investigated. Since entailment of a CQ by a qABox is already NP-hard, the
best complexity for cautious entailment we can hope for is then on the second
level of the polynomial hierarchy.
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