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Abstract

Removing unwanted consequences from a knowledge base
has been investigated in belief change under the name con-
traction and is called repair in ontology engineering. Simple
repair and contraction approaches based on removing state-
ments from the knowledge base (respectively called belief
base contractions and classical repairs) have the disadvantage
that they are syntax-dependent and may remove more conse-
quences than necessary. Belief set contractions do not have
these problems, but may result in belief sets that have no finite
representation if one works with logics that are not fragments
of propositional logic. Similarly, optimal repairs, which are
syntax-independent and maximize the retained consequences,
may not exist. In this paper, we want to leverage advances
in characterizing and computing optimal repairs of ontolo-
gies based on the description logics EL to obtain contraction
operations that combine the advantages of belief set and be-
lief base contractions. The basic idea is to employ, in the
partial meet contraction approach, optimal repairs instead of
optimal classical repairs as remainders. We introduce this
new approach in a very general setting, and prove two char-
acterization theorems relating the obtained contractions with
well-known postulates. Then, we consider several interesting
instances, not only in the standard repair/contraction setting
where one wants to get rid of a consequence, but also in other
settings such as variants of forgetting in propositional and de-
scription logic.

1 Introduction

Representing knowledge in a logic-based knowledge rep-
resentation language allows one to derive implicit conse-
quences from a given knowledge base (KB), i.e., facts that
follow from the statements contained in the KB, but are
themselves not explicitly stated there. Modifying a given
KB such that a certain unwanted consequence no longer
follows is a nontrivial task, which has been investigated
in the area of belief change under the name of contrac-
tion (Alchourrón, Gärdenfors, and Makinson 1985) and in
ontology engineering under the name of repair (Kalyan-
pur et al. 2006; Schlobach et al. 2007; Baader et al. 2018;
Troquard et al. 2018). Whereas research in ontology engi-
neering was mainly concerned with designing, implement-
ing, and testing concrete repair algorithms, research in belief
change concentrated on characterizing reasonable classes
of contraction operations by formulating certain properties,

called postulates, they are supposed to satisfy. Connections
between these two areas have, for instance, been investigated
in (Flouris, Plexousakis, and Antoniou 2005; Qi and Yang
2008; Ribeiro and Wassermann 2009; Matos et al. 2019;
Baader 2023).

The purpose of the present paper is to leverage re-
cent advances in characterizing and computing optimal re-
pairs (Baader, Koopmann, and Kriegel 2023) of ontologies
based on Description Logics (DLs) (Baader et al. 2017) to
obtain contraction operations that combine the advantages of
belief set (Alchourrón, Gärdenfors, and Makinson 1985) and
belief base (Hansson 1992) contractions. To be more pre-
cise, we will introduce a general framework for constructing
contraction operations satisfying certain well-known pos-
tulates, which generalizes the partial meet contraction ap-
proach. Like base contraction approaches, it has the advan-
tage that (under certain conditions) it can work with finite
KBs. However, unlike base contraction, it is syntax inde-
pendent and loses less consequences.

Partial meet contraction is a well-know approach for con-
structing contraction operations that satisfy a collection of
reasonable postulates. For belief sets, i.e., KBs that are
closed under logical consequence, this approach was inves-
tigated in the seminal AGM paper (Alchourrón, Gärdenfors,
and Makinson 1985). Basically, it considers all maximal
subsets of the given belief set that do not contain a cer-
tain undesired consequence, selects a non-empty collection
of these maximal subsets, and then builds their intersection
(i.e., the “meet”). This results in a very elegant theory with
intuitive postulates, but has the disadvantage that the belief
sets obtained by applying this operation may not be repre-
sentable as the logical closure of a finite KB, even if one
starts with belief sets that are finitely representable. To over-
come this problem, Nebel (1989) and Hansson (1992) uses
finite KBs (called belief bases), takes their maximal sub-
sets that do not entail the undesired consequence, and again
builds the intersection of a non-empty collection of these
maximal subsets. In the belief change literature, these max-
imal subsets are called remainders, whereas they are called
optimal classical repairs in the DL community (Baader et al.
2018). Both partial meet contractions in the belief base set-
ting and optimal classical repairs have the disadvantage that
these operations are syntax-dependent and may remove too
many consequences (Baader et al. 2018; Santos et al. 2018;



Matos et al. 2019; Baader 2023).
On the DL side, optimal repairs have been introduced,

which maximize the set of consequences of the knowledge
base rather than the set of its explicit statements (Baader et
al. 2018). In cases where such optimal repairs exist (Baader
et al. 2021a; Baader et al. 2022; Baader and Kriegel 2022;
Baader, Koopmann, and Kriegel 2023), they yield a syntax-
independent repair approach that does not lose consequences
unnecessarily. The main idea underlying the approach pro-
posed in this paper is to replace, in the partial meet con-
traction approach, remainders (i.e., optimal classical repairs)
with optimal repairs. This approach has been used in (Rien-
stra, Schon, and Staab 2020; Baader 2023) in the context of
designing contraction operations for concepts of the DL EL,
though there it was not phrased in this way.

Instead of introducing and applying this new approach in
a specific instance, we consider here a very general setup,
which clarifies the basic properties needed to apply it. Basi-
cally, we consider an entailment relation between KBs, with-
out making explicit assumption on the structure of the KBs
and their semantics. For a start, we only require that entail-
ment is reflexive and transitive. In addition, we abstract from
non-entailment of a certain consequence as repair goal and
only require that the set of repairs is closed under entailment.
To apply a variant of the partial meet contraction approach in
this setting, we need to make some additional assumptions.
First, we assume that operations akin to (but not necessarily
equal to) conjunction and disjunction are available, which
we will respectively call sum and product. These operations
correspond to union and intersection of belief sets, but are
performed on (possibly finite) KBs representing them. From
a technical point of view, sum is needed to formulate some
of the relevant postulates whereas product plays the rôle of
meet in the construction of the contraction operation. In ad-
dition, we require the existence of remainders, which are op-
timal repairs in our setting. An important property needed
in the proofs of the characterization theorems (i.e., the theo-
rems that state the connections between the constructed con-
traction operations and the postulates) is that finitely many
of these optimal repairs cover all repairs in the sense that
every repair is entailed by an optimal one.

In the next section, we describe the general setup and il-
lustrate it with two simple examples, one describing a stan-
dard repair/contraction setting, where the repair goal is non-
entailment of a certain consequence, and the other one in-
spired by variable forgetting in propositional logic (Lin and
Reiter 1994; Lang, Liberatore, and Marquis 2003). Then,
we introduce our new contraction approach (called partial
product contractions since the product is used as the meet
operation), and prove two characterization theorems. Next,
we show that partial meet contraction for belief sets (Al-
chourrón, Gärdenfors, and Makinson 1985) can be obtained
as an instance of our approach, but needing less assumptions
on the underlying logic. Finally, we introduce several con-
crete kinds of knowledge bases, entailment relations, and
repair goals that are instances of our general setting, and to
which our new partial product contraction approach thus ap-
plies. In contrast to the belief set approach, these instances
work with finite knowledge bases, and are thus more rele-

vant in practice. For several of these instances, we can use
recent results on how to compute optimal repairs for knowl-
edge bases formulated in the DL EL (Baader et al. 2021a;
Baader et al. 2022; Kriegel 2022) to show that the required
repair property (existence of a set of optimal repairs that
covers all repairs) is satisfied. We also consider an instance
where the repair goal is to get rid of certain concept and role
names in EL concepts, and one where KBs are finite repre-
sentations of formal languages and entailment is induced by
language inclusion.

2 The General Setup

We assume that we are given a set of knowledge bases (KBs)
and an entailment relation between knowledge bases. We
usually write KBs as K, possibly primed (K0) or with an
index (Ki), and entailment as |=, i.e., K |= K0 means that
K entails K0, or equivalently that K0 is entailed by K. We
assume that entailment satisfies the following properties:
• K |= K (reflexivity),
• K |= K0 and K0 |= K00 implies K |= K00 (transitivity).
We define Con(K) := {K0 | K |= K0}, and also call an
element of Con(K) a consequence of K. Clearly, reflexivity
and transitivity of |= yield the following properties of the
Con operator:
• K 2 Con(K) (inclusion),
• K |= K0 iff Con(K0

) ✓ Con(K) (correspondence).
We call two knowledge bases K and K0 equivalent (and
write K ⌘ K0) if Con(K) = Con(K0

). Obviously, this is
the case iff K |= K0 and K0 |= K. We say that K strictly
entails K0 if K |= K0, but K0 6|= K. In this case we write
K |=s K0. The relation ⌘ on KBs is indeed an equivalence
relation, and we write the equivalence class of a KB K as
[K], i.e., [K] := {K0 | K ⌘ K0}. Note that Con(K) uniquely
determines the equivalence class of K.

To illustrate the notions introduced in this section, we use
a very simple example. More practically relevant examples
dealing with KBs for the Description Logic EL are presented
in Section 5.
Example 1. Given a countably infinite set of propositional
variables V , a knowledge base is a finite, non-empty con-
junction of such variables. Entailment |= between KBs is
then classical entailment in propositional logic, which obvi-
ously satisfies reflexivity and transitivity. For such a KB K,
we denote the set of variables occurring in it with Var(K).
Conversely, for a finite, non-empty set P ✓ V , we denote
the conjunction of its elements as KB(P ). It is easy to see
that K |= K0 iff Var(K0

) ✓ Var(K). Consequently, K ⌘ K0

iff Var(K0
) = Var(K).

In the general case, we make no assumptions on the inner
structure of knowledge bases, but we assume that we have
operations sum and product available that are akin to con-
junction and disjunction.
Definition 2. We call the operations � and ⌦ on finite, non-
empty sets of KBs sum and product operations, respectively,
if they satisfy the following properties for each finite, non-
empty set of KBs K:



• Con(�K) ◆ Con(K) for all K 2 K and �K is the least
KB satisfying this property, i.e., if K0 is a KB satisfying
Con(K0

) ◆ Con(K) for all K 2 K, then Con(�K) ✓
Con(K0

).
• Con(⌦K) ✓ Con(K) for all K 2 K and ⌦K is the

greatest KB satisfying this property, i.e., if K0 is a KB
satisfying Con(K0

) ✓ Con(K) for all K 2 K, then
Con(⌦K) ◆ Con(K0

).
Note that “least” and “greatest” in the above definition

must be read modulo equivalence of KBs. In fact, it is easy
to see that the above conditions imply that sum and prod-
uct of a finite set of KBs are unique up to equivalence. If
K = {K} is a singleton set, then �K ⌘ K ⌘ ⌦K. If
K = {K1, . . . ,Kn} for n � 2, then we will sometimes write
its sum as K1 � . . .�Kn and its product as K1 ⌦ . . .⌦Kn.
Lemma 3. Let K be a KB and K a finite, non-empty set of
KBs. Then the following holds:

1. �K |= K0 and K0 |= ⌦K for all K0 2 K.
2. K |= �K iff K |= K0 for all K0 2 K.
3. ⌦K |= K iff K0 |= K for all K0 2 K.

Proof. The first part of the lemma is an immediate conse-
quence of monotonicity and the definition of sum and prod-
uct. Second, assume that K |= �K. Then Con(K0

) ✓
Con(�K) ✓ Con(K) holds for all K0 2 K, and thus
K |= K0 for all K0 2 K. Conversely, assume that K |= K0

for all K0 2 K. Then Con(K) contains the sets Con(K0
)

for all K0 2 K. The definition of the sum thus yields
Con(�K) ✓ Con(K), which is equivalent to K |= �K.
The third statement of the lemma can be shown analogously
to the second.

Example 1 (continued). It is easy to see that sum corre-
sponds to conjunction of KBs, and thus to the union of the
corresponding variable sets. Dually, product corresponds to
the intersection of the variable sets. Thus, we define

�K := KB

 
[

K2K

Var(K)

!
, ⌦K := KB

 
\

K2K

Var(K)

!
.

E.g.: p^q^r�q^s = p^q^r^s and p^q^r⌦q^s = q.
To see that the sum defined this way satisfies the required

properties, first assume that K0 2 Con(K) for some K 2 K.
This implies Var(K0

) ✓ Var(K) ✓ Var(�K), which yields
K0 2 Con(�K). Thus, we have shown that Con(�K) ◆
Con(K) holds for all K 2 K. Second, assume that K0 is a
KB satisfying Con(K0

) ◆ Con(K) for all K 2 K. Then K 2
Con(K0

) for all K 2 K, which yields Var(K) ✓ Var(K0
) for

all K 2 K, and thus Var(�K) ✓ Var(K0
). Consequently,

we obtain K0 |= �K, which is equivalent to Con(�K) ✓
Con(K0

).
The proof that, in this example, our definition of the prod-

uct satisfies the properties required for ⌦ in Definition 2 is
similar to our proof for the sum.

When defining repairs, we assume that we have additional
syntactic entities called repair requests, which we usually
denote by ↵.

Definition 4. Given a KB K, a repair request ↵ determines
a set of KBs Rep(K,↵) such that
• K |= K0 holds for every element K0 2 Rep(K,↵), and
• K0 2 Rep(K,↵) and K0 |= K00 imply K00 2 Rep(K,↵).
We call the elements of Rep(K,↵) repairs of K for ↵. Two
repair requests ↵ and ↵0 are equivalent w.r.t. K (↵ ⌘K ↵0)
if they induce the same repairs of K, i.e., Rep(K,↵) =

Rep(K,↵0
).

Example 1 (continued). In this example, we consider a
standard repair setting, where each KB can also be used
as a repair request. Given a KB K and a repair request
↵, the goal then is to find a KB entailed by K that does
not entail ↵, i.e., the induced set of repairs is defined as
Rep(K,↵) := {K0 | K |= K0,K0 6|= ↵}, where K0 range
over KBs. The first condition on repair sets of Definition 4
is satisfied by definition and the second by transitivity of |=.
Clearly, two repair requests are equivalent w.r.t. K if they
are equivalent as KBs.

Continuing with presenting our general setup, we addi-
tionally assume the optimal repair property, which says that,
for every pair K,↵ consisting of a KB and a repair request
(called a repair problem), there exists a finite set of KBs
Orep(K,↵) satisfying
• every element K0 of Orep(K,↵) is a repair of K for ↵

(repair property),
• every element K0 of Orep(K,↵) is optimal, i.e., there is

no repair of K for ↵ that strictly entails K0 (optimality),
• Orep(K,↵) covers all repairs, i.e., for every repair K00 of
K for ↵, there is an element K0 of Orep(K,↵) such that
K00 2 Con(K0

) (coverage).

Example 1 (continued). In this example, the optimal repair
property is satisfied. Let K and ↵ be KBs. If K 6|= ↵, then
we set Orep(K,↵) := {K}, which in this case clearly is a
set of optimal repairs that covers all repairs.

Thus, assume that K |= ↵, which means that Var(↵) ✓
Var(K). For every p 2 Var(↵) we define K�p

:=

KB(Var(K) \ {p}). It is easy to see that each such KB K�p

is a repair of K for ↵, i.e., is entailed by K and does not en-
tail ↵. We claim that Orep(K,↵) := {K�p | p 2 Var(↵)}
is a set of optimal repairs of K for ↵ that covers all repairs.

To show optimality, assume that K0 is a repair of K for ↵
that entails K�p, which implies that Var(K) ◆ Var(K0

) ◆
Var(K�p

). Since Var(K�p
) is obtained from Var(K) by

removing a single element, this chain of inclusions implies
Var(K0

) = Var(K) or Var(K0
) = Var(K�p

). Since K0

does not entail ↵, but K does, the former identity cannot
hold. Thus, the latter identity holds, which shows that K0 is
equivalent to K�p.

To show coverage, assume that K00 is a repair of K for ↵.
This implies Var(K) ◆ Var(K00

) and Var(K00
) 6◆ Var(↵).

The latter non-inclusion yields a variable p 2 Var(↵) such
that p 62 Var(K00

). Together with the former inclusion, we
obtain Var(K�p

) ◆ Var(K00
), and thus K00 2 Con(K�p

).

We conclude this section with a simple example that con-
siders repair requests that do not require non-entailment.



It is inspired by variable forgetting in propositional
logic (Lang, Liberatore, and Marquis 2003).

Example 5. Given a countably infinite set of propositional
variables V , a knowledge base is a formula of propositional
logic (built using the connectives ^, _, ¬, and the truth con-
stants > and ?). Entailment |= between KBs is the follow-
ing restriction of classical entailment |=PL in propositional
logic: K |= K0 if K |=PL K0 and additionally Var(K) ◆
Var(K0

) is satisfied. This entailment relation is clearly re-
flexive and transitive. As repair requests, we consider finite
subsets of the set of propositional variables V . Given a KB
K and a repair request ↵, the induced set of repairs is de-
fined as Rep(K,↵) := {K0 | K |= K0,Var(K0

) \ ↵ = ;}.
The sum operation again corresponds to conjunction, i.e.,

K1 � . . . � Kn := K1 ^ . . . ^ Kn. To see that the sum de-
fined this way satisfies the required properties, first assume
that K0 2 Con(K) for some K 2 K. We must show that
K0 2 Con(�K), i.e., that �K |= K0. Now, K0 2 Con(K)

means that K |=PL K0 and Var(K) ◆ Var(K0
), which to-

gether with K 2 K imply �K |=PL K0 and Var(�K) ◆
Var(K) ◆ Var(K0

). Thus, we have shown that �K |= K0

holds, as required. Second, assume that K0 is a KB satis-
fying Con(K0

) ◆ Con(K) for all K 2 K. This means that
K0 |=PL K and Var(K0

) ◆ Var(K) hold for all K 2 K. Con-
sequently, K0 |=PL �K and Var(K0

) ◆
S

K2K Var(K) =

Var(�K). This shows K0 |= �K, as required.
For the product, one could be tempted to use the disjunc-

tion operation of propositional logic. While disjunction be-
haves correctly w.r.t. |=PL, there is a problem with the con-
tainment condition for the variables. The set of variables
occurring in a disjunction is again the union of the set of
variables occurring in its disjuncts, but we would need it to
be the intersection. For this reason, we defer defining the
product, and first consider the optimal repair property.

Consider a repair problem K,↵, i.e., a propositional for-
mula K and a finite set of propositional variables ↵. For
every mapping ⌧ : ↵! {>,?}, let K⌧ be the propositional
formula obtained from K by replacing every variable p 2 ↵
with ⌧(p). We set Orep(K,↵) := {K�↵}, where K�↵ is the
disjunction of the formulas K⌧ with ⌧ ranging over all map-
pings from ↵ to {>,?}. Clearly, the formulas K⌧ do not
contain any of the variables of ↵, and thus the same is true
for K�↵. To prove that K�↵ is a repair of K for ↵, it is thus
sufficient to show K |=PL K�↵ since Var(K) ◆ Var(K�↵

)

obviously holds. Hence, let v : V ! {0, 1} be a proposi-
tional valuation that makes K true. We define the mapping
⌧v from ↵ to {>,?} as follows: ⌧v(p) = > if v(p) = 1 and
⌧v(p) = ? if v(p) = 0. Obviously, v then also makes K⌧v

true, and thus also K�↵. This show K |=PL K�↵, and thus
also K |= K�↵.

To show optimality and coverage, it is sufficient to prove
that every repair K0 of K for ↵ is entailed by K�↵. We know
that K |= K0 and K0 contains none of the variables of ↵.
This implies Var(K0

) ✓ Var(K) \ ↵ = Var(K�↵
). Thus,

it remains to show K�↵ |=PL K0. Let v be a propositional
valuation that makes K�↵ true. Then there is a disjunct K⌧

of K�↵ such that v makes K⌧ true. We modify v to v⌧ by
setting v⌧ (p) = 1 if ⌧(p) = > and v⌧ (p) = 0 if ⌧(p) = ?,

for all p 2 ↵, and leaving the value unchanged for all other
propositional variables. Then the fact that v makes K⌧ true
implies that v⌧ makes K true, which in turn yields that v⌧
makes K0 true. Since K0 does not contain any element of ↵,
the latter implies that also v makes K0 true. Thus, we have
shown K�↵ |=PL K0.

To come back to the product, consider KBs K1, . . . ,Kn,
and set � :=

S
1in Var(Ki)\

T
1in Var(Ki). We define

K1 ⌦ . . .⌦Kn := (K1 _ . . . _Kn)
�� . It is easy to see that

Var(Ki) ◆
T

1jn Var(Kj) = Var(K1 ⌦ . . . ⌦ Kn). In
addition, Ki |=PL K1 _ . . . _ Kn |=PL (K1 _ . . . _ Kn)

�� ,
where the former is obvious and the latter was shown above.
Thus, we have shown that Ki |= K1 ⌦ . . .⌦Kn.

Now, assume that Ki |= K0 for all i, 1  i  n. This
implies that Var(K0

) ✓
T

1in Var(Ki) = Var(K1⌦. . .⌦
Kn) and K1 _ . . . _ Kn |=PL K0. Since

T
1in Var(Ki) \

� = ;, the KB K0 is a repair of K1_. . ._Kn for �. As shown
above, this implies (K1 _ . . ._Kn)

�� |=PL K0. Overall, we
have thus shown K1 ⌦ . . .⌦Kn |= K0, as required.

3 Partial Product Contractions

In this section, we assume that we are given a set of KBs, a
set of repair requests inducing repair sets that satisfy the con-
ditions in Definition 4, and an entailment relation |= with
the associated consequence operator Con such that all the
properties introduced in the previous section are satisfied.
In the following, we adapt the partial meet contraction ap-
proach to this setting, but call the resulting approach the par-
tial product contraction approach since intersection (meet) is
replaced with the product. Since the properties of entailment
relations introduced in the previous section are needed for
this contraction approach to work, we call such entailment
relations partial product contraction enabling.

Definition 6. Given a set of knowledge bases (KBs), a set of
repair requests inducing repair sets, and a binary relation
|= between KBs, we call |= partial product contraction en-
abling if it is reflexive and transitive, has sum and product
operations � and ⌦ satisfying the properties stated in Def-
inition 2, and for every repair problem K,↵ the induced set
of repairs Rep(K,↵) satisfies the conditions in Definition 4
and has a finite subset Orep(K,↵) that consists of optimal
repairs and covers all repairs.

Let K be a KB and Orep(K,↵) for each repair request
↵ the corresponding set of optimal repairs, which covers all
repairs of K for ↵. A selection function � for K takes such
sets of optimal repairs as input and satisfies the following
properties, for each repair request ↵:

• If Orep(K,↵) 6= ;, then the selected set �(Orep(K,↵))
satisfies ; 6= �(Orep(K,↵)) ✓ Orep(K,↵).

• If Orep(K,↵) = ;, then �(Orep(K,↵)) = {K}.

Note that coverage of Orep(K,↵) implies that this set is
empty iff Rep(K,↵) = ;. In this case, the selection func-
tion returns the singleton set consisting of K. Otherwise, it
returns a non-empty set consisting of some of the optimal
repairs.



In addition, we require that selection functions are invari-
ant under equivalence of their input sets, where we say that
two sets K and K0 of knowledge bases are equivalent (written
K ⌘ K0) if they induce the same sets of equivalence classes,
i.e., {[K] | K 2 K} = {[K0

] | K0 2 K0}. More formally, the
third condition on selection functions requires that, for all
repair requests ↵ and ↵0, the following property is satisfied:
• If Orep(K,↵) ⌘ Orep(K,↵0

), then �(Orep(K,↵)) ⌘
�(Orep(K,↵0

)).
Each selection function � induces a partial product contrac-
tion operation ctr� as follows:

ctr�(K,↵) := ⌦�(Orep(K,↵)).

A partial product contraction operation defined using a se-
lection function � satisfying |�(Orep(K,↵))| = 1 for all
repair requests ↵ is called a MaxiChoice partial product con-
traction operation. In this setting, the selection function re-
turns a singleton set consisting of K (if there is no repair) or
an optimal repair (otherwise). In the latter case, ctr�(K,↵)
is then this optimal repair. This is the way (optimal) repairs
are normally used in ontology engineering: the KB to be re-
paired is replaced by a single repair chosen by the ontology
engineer.

Postulates

We show that each partial product contraction operation ctr

satisfies the following postulates:
• ctr(K,↵) 2 Con(K) (logical inclusion),
• if Rep(K,↵) 6= ;, then ctr(K,↵) 2 Rep(K,↵)

(success),
• if Rep(K,↵) = ;, then ctr(K,↵) = K (failure),
• if K 2 Rep(K,↵), then ctr(K,↵) ⌘ K (vacuity),
• if ↵ ⌘K ↵0, then ctr(K,↵) ⌘ ctr(K,↵0

) (preservation),
• if K0 2 Con(K) and K0 62 Con(ctr(K,↵)), then there is
K00 such that K |=s K00 |= ctr(K,↵), K00 2 Rep(K,↵),
and K00 �K0 62 Rep(K,↵) (relevance).

MaxiChoice partial product contraction operations also sat-
isfy the following postulate, which is stronger than rele-
vance:
• if K0 2 Con(K) and K0 62 Con(ctr(K,↵)), then
ctr(K,↵)�K0 62 Rep(K,↵) (fullness).

In the AGM setting, MaxiChoice operations have been crit-
icized for producing belief sets that are too large (Alchour-
rón, Gärdenfors, and Makinson 1985). However, this only
happens when dealing with logics that contain full proposi-
tional logic. In some cases, it is the most appropriate way to
define contractions (Makinson 1987; Wassermann 2000).

It is easy to see that, in the presence of logical inclu-
sion, success, and failure, the postulate fullness implies rel-
evance since one can simply set K00

:= ctr(K,↵). In fact,
K |=s ctr(K,↵) due to logical inclusion and the fact that
K entails K0, whereas ctr(K,↵) does not. This strict en-
tailment also implies that Rep(K,↵) 6= ; since otherwise
ctr(K,↵) would be equivalent to K due to the postulate fail-
ure. Thus, success yields ctr(K,↵) 2 Rep(K,↵).

Proposition 7. Let � be a selection function. Then the
partial product contraction operation ctr� induced by �
satisfies the postulates logical inclusion, success, failure,
vacuity, preservation, and relevance. If � is such that
|�(Orep(K,↵))| = 1 for all repair requests ↵, then ctr�

additionally satisfies fullness.

Proof. By definition, ctr�(K,↵) = K or ctr�(K,↵) is
a non-empty product of optimal repairs of K for ↵. In
the former case, K entails ctr�(K,↵) by reflexivity. In
the latter, we know, for all K0 2 �(Orep(K,↵)) ✓
Orep(K,↵), that K0 2 Con(K), and thus Con(K0

) ✓
Con(K). Since in this case �(Orep(K,↵)) 6= ;, there exists
a KB K0 2 �(Orep(K,↵)). Then we know that the prod-
uct ctr�(K,↵) of the elements of �(Orep(K,↵)) satisfies
Con(ctr�(K,↵)) ✓ Con(K0

) ✓ Con(K), which shows that
the postulate logical inclusion is satisfied.

If Rep(K,↵) 6= ;, then Orep(K,↵) 6= ; by coverage, and
thus ctr�(K,↵) is a non-empty product of repairs of K for ↵.
Let K0 be one of the repairs occurring in this product. Then
K0 2 Rep(K,↵) and K0 |= ctr�(K,↵) yield ctr�(K,↵) 2
Rep(K,↵) by Definition 4. This establishes the postulate
success.

If Rep(K,↵) = ;, then Orep(K,↵) = ;, and thus
ctr�(K,↵) = K by the definition of selection functions,
which yields the postulate failure.

If K 2 Rep(K,↵), then K is an optimal repair. This im-
plies that every element of Orep(K,↵) is equivalent to K,
and thus ctr�(K,↵) ⌘ K, which shows that the postulate
vacuity is satisfied.

Now, assume that ↵ ⌘K ↵0. We claim that this implies
that Orep(K,↵) ⌘ Orep(K,↵0

). Thus, consider an element
K0 of Orep(K,↵). We must show that there is an element
K00 of Orep(K,↵0

) such that K0 ⌘ K00. Since ↵ ⌘K ↵0,
every repair of K for ↵ is also a repair of K for ↵0 and vice
versa. Thus, coverage of Orep(K,↵0

) implies that there is
K00 2 Orep(K,↵0

) such that K00 |= K0. But then coverage
of Orep(K,↵) yields an element K000 2 Orep(K,↵) with
K000 |= K00, and thus K000 |= K0. Optimality of K0 implies
that K000 and K0 are equivalent. Since K00 lies between these
two KBs w.r.t. entailment, this shows that K0 ⌘ K00. Since
the other direction can be shown in the same way, we have
thus established that Orep(K,↵) ⌘ Orep(K,↵0

). Con-
sequently, the third condition on selection functions yields
�(Orep(K,↵)) ⌘ �(Orep(K,↵0

)).
It remains to show that this implies ctr�(K,↵) ⌘

ctr�(K,↵0
). Thus, assume that L 2 Con(ctr�(K,↵)).

Then, by Lemma 3, L belongs to Con(K0
) for all K0 2

�(Orep(K,↵)). Assume that L 62 Con(ctr�(K,↵0
)). Then,

again by Lemma 3, there is K00 2 �(Orep(K,↵0
)) such that

L 62 Con(K00
). This yields a contradiction since there is

K0 2 �(Orep(K,↵)) such that Con(K0
) = Con(K00

). The
other direction can be shown in the same way. Thus, we
have proved that preservation holds.

To show relevance, assume that K0 2 Con(K) and
K0 62 Con(ctr�(K,↵)). Since ctr�(K,↵) is the product
of the elements of �(Orep(K,↵)), Lemma 3 implies that
there must be an element K00 2 �(Orep(K,↵)) such that
K0 62 Con(K00

). Thus, we have Con(K) � Con(K00
) ◆



Con(ctr�(K,↵)), which yields K |=s K00 |= ctr�(K,↵). In
addition, since K00 is an element of Orep(K,↵), it is a repair
of K for ↵. Now assume that K00 � K0 2 Rep(K,↵). We
know that K00 is entailed by K00 � K0 by Lemma 3. How-
ever, since K00 is an optimal repair, the repair K00 � K0 en-
tailing it must be equivalent to K00. This contradicts the fact
that K00 was chosen such that K0 62 Con(K00

) since clearly
also K0 is entailed by K00 � K0. Thus, our assumption that
K00 � K0 2 Rep(K,↵) was wrong, which means that we
have shown that relevance is satisfied.

Finally, we prove fullness under the assumption that the
selection function � is such that |�(Orep(K,↵))| = 1

for all repair requests ↵. Thus, assume again that K0 2
Con(K) and K0 62 Con(ctr�(K,↵)), but ctr�(K,↵) �
K0 2 Rep(K,↵). The MaxiChoice assumption implies that
ctr�(K,↵) is actually an optimal repair of K for ↵. Since
this optimal repair is entailed by the repair ctr�(K,↵)�K0,
ctr�(K,↵) must be equivalent to ctr�(K,↵)�K0. However,
this contradicts the assumption that K0 62 Con(ctr�(K,↵)).
Thus, our assumption that ctr�(K,↵) � K0 2 Rep(K,↵)
must have been wrong, which shows that fullness holds.

The postulates logical inclusion, success, vacuity, and
preservation are variants of the original AGM postulates for
belief set contraction (Alchourrón, Gärdenfors, and Makin-
son 1985), but adapted to a setting where the belief set is rep-
resented by a KB K and the goal of the contraction may be
different from getting rid of an unwanted consequence (see
Example 5). In case the repair request ↵ is itself a knowl-
edge base, and Rep(K,↵) consists of the KBs entailed by
K, but not entailing ↵, the AGM recovery postulate can be
formulated in our setting as
• Con(K) ✓ Con(ctr(K,↵)� ↵) (recovery).
However, even in this restricted setting, it need not hold.
It is replaced by failure and relevance (or fullness for the
MaxiChoice case), which are adaptations of postulates em-
ployed in the belief base setting (Hansson 1992). For the
simple instance of our setup introduced in Example 1, re-
covery does actually hold. In the setting of Example 5, writ-
ing ctr�(K,↵)� ↵ does not even make sense since ↵ is not
a KB. An instance where formulating recovery make sense,
but it nevertheless fails, can be found in Section 5.1.

Characterization theorems

We now show that, modulo equivalence, the converse of
Proposition 7 holds as well. We say that two contrac-
tion operations ctr and ctr

0 are equivalent if ctr(K,↵) ⌘
ctr

0
(K,↵) holds for all KBs K and repair requests ↵. Ob-

viously, equivalent contraction operations behave the same
w.r.t. satisfaction of the postulates introduced above.

We start with the MaxiChoice setting. The following
lemma is needed in the proof of the characterization theo-
rem for this cases.
Lemma 8. If K and K0 are KBs such that K |= K0, then
K �K0 ⌘ K.

Proof. We know that K |= K0 implies Con(K0
) ✓ Con(K),

and thus Con(K) ◆ Con(K) [ Con(K0
). In addition, any

KB K00 satisfying Con(K00
) ◆ Con(K)[Con(K0

) also sat-
isfies Con(K) ✓ Con(K00

). Consequently, K satisfies the
properties required for the sum of K and K0, and thus is
equivalent to K �K0.

Theorem 9. Assume that |= is partial product contraction
enabling, and let ctr be an operation that receives as input a
KB and a repair requests, and returns as output a KB. Then
the following are equivalent:

1. The operation ctr satisfies logical inclusion, success, fail-
ure, vacuity, preservation, and fullness.

2. The operation ctr is equivalent to a MaxiChoice partial
product contraction operation.

Proof. The implication “2 ) 1” is just the statement of
Proposition 7, which we have already proved.

To prove “1 ) 2,” we assume that ctr satisfies the pos-
tulates logical inclusion, success, failure, vacuity, preserva-
tion, and fullness. To show that ctr is a MaxiChoice partial
product contraction operation, we define an appropriate se-
lection function. For a KB K and repair request ↵, we set

�(Orep(K,↵)) :=

8
<

:

{K0} if there is K0 2 Orep(K,↵)
such that K0 ⌘ ctr(K,↵),

{K} otherwise.

We claim that this definition yields a well-defined selection
function � satisfying |�(Orep(K,↵))| = 1 and ctr ⌘ ctr� .

To prove this claim, first assume that Orep(K,↵) = ;.
Then �(Orep(K,↵)) = {K}, and thus ctr�(K,↵) = K. In
addition, failure implies that ctr(K,↵) = K. Thus, in this
case � satisfies the required properties.

Second, assume that Orep(K,↵) 6= ;. We must show
that Orep(K,↵) contains an element that is equivalent to
ctr(K,↵). Since Orep(K,↵) 6= ;, success implies that
ctr(K,↵) is a repair of K for ↵. It is sufficient to prove
that ctr(K,↵) is optimal since then coverage of Orep(K,↵)
implies the existence of an element of Orep(K,↵) that is
equivalent to it. Assume to the contrary that ctr(K,↵) is not
optimal, i.e., there is a repair K0 of K for ↵ that strictly en-
tails ctr(K,↵). This repair satisfies K0 2 Con(K) and K0 62
Con(ctr(K,↵)). Thus, fullness yields ctr(K,↵) � K0 62
Rep(K,↵). However, we also know that K0 |= ctr(K,↵),
which implies that ctr(K,↵)� K0 ⌘ K0 by Lemma 8. This
contradicts our assumption that K0 is repair.

Summing up, we have shown that, in both cases,
�(Orep(K,↵)) is a singleton set whose element is equiva-
lent to ctr(K,↵). Since ctr�(K,↵) is equal to this element,
we have shown that ctr ⌘ ctr� .

It remains to prove that our third condition on selec-
tion functions is also satisfied by �. Thus, assume that
Orep(K,↵) ⌘ Orep(K,↵0

). We claim that in this case
↵ ⌘K ↵0. To show Rep(K,↵) ✓ Rep(K,↵0

), assume that
L 2 Rep(K,↵). Coverage of Orep(K,↵) yields an element
K0 2 Orep(K,↵) such that such that K0 |= L. But them
the assumed equivalence of Orep(K,↵) and Orep(K,↵0

)

yields an element K00 2 Orep(K,↵0
) such that K00 ⌘ K0,

and thus K00 |= L. Since K00 is a repair of K for ↵0, this
shows L 2 Rep(K,↵0

). The inclusion in the other direction



can be shown symmetrically. We can now apply preserva-
tion to conclude that ctr(K,↵) ⌘ ctr(K,↵0

), which shows
that �(Orep(K,↵)) ⌘ �(Orep(K,↵0

)).

Next, we prove a characterization of arbitrary partial
product contraction operations. The following lemma is
used in this proof.
Lemma 10. If K, K0, and K00 are KBs such that K |= K0,
then K �K00 |= K0 �K00.

Proof. By Lemma 3, it is sufficient to show that K �K00 |=
K0 and K � K00 |= K00. The second entailment is an im-
mediate consequence of the first part of Lemma 3. This
part also yields K � K00 |= K, and thus with K |= K0 also
K �K00 |= K0.

Theorem 11. Assume that |= is partial product contraction
enabling, and let ctr be an operation that receives as input a
KB and a repair requests, and returns as output a KB. Then
the following are equivalent:

1. The operation ctr satisfies logical inclusion, success, fail-
ure, vacuity, preservation, and relevance.

2. The operation ctr is equivalent to a partial product con-
traction operation.

Proof. The implication “2 ) 1” is an immediate conse-
quence of Proposition 7.

To prove “1 ) 2,” we assume that ctr satisfies the pos-
tulates logical inclusion, success, failure, vacuity, preserva-
tion, and relevance. To show that ctr is a partial product
contraction operation, we again define an appropriate selec-
tion function. For a KB K and repair request ↵, we set

�(Orep(K,↵)) :=

8
<

:

{K0 2 Orep(K,↵) | K0 |= ctr(K,↵)}
if Orep(K,↵) 6= ;,

{K} otherwise.

We claim that this yields a well-defined selection function �
satisfying ctr ⌘ ctr� . The case where Orep(K,↵) = ; can
be handled as in the proof of Theorem 9.

Assuming Orep(K,↵) 6= ;, we now show ctr�(K,↵) ⌘
ctr(K,↵). Because of our definition of �, we know that
the inclusion Con(ctr(K,↵)) ✓ Con(K0

) holds for all
K0 2 �(Orep(K,↵)). The definition of the product thus
yields Con(⌦�(Orep(K,↵))) ◆ Con(ctr(K,↵)), and thus
ctr�(K,↵) = ⌦�(Orep(K,↵)) |= ctr(K,↵).

To show ctr(K,↵) |= ⌦�(Orep(K,↵)), we assume to
the contrary that there is K0 2 Con(⌦�(Orep(K,↵)) not
belonging to Con(ctr(K,↵)), i.e, ⌦�(Orep(K,↵)) |= K0,
but ctr(K,↵) 6|= K0. Since K entails every element L of
�(Orep(K,↵)), and each such element entails the product
of these elements, we know that K |= K0 holds. Conse-
quently, relevance yields the existence of a KB K00 such
that K |=s K00 |= ctr(K,↵), K00 2 Rep(K,↵), and
K00 � K0 62 Rep(K,↵). Coverage of Orep(K,↵) implies
that it contains an element K000 such that K000 |= K00. Our
definition of � thus yields K000 2 �(Orep(K,↵)), and thus
K000 |= K0. This holds by Lemma 3 since we have assumed
that the product of the elements of �(Orep(K,↵)) entails
K0. Consequently, K000 |= K00 � K0 by Lemma 3. Since

K000 2 Rep(K,↵), this yields a contradiction to the fact that
K00 �K0 62 Rep(K,↵).

Finally, the third condition on selection functions can be
shown as in the proof of Theorem 9. In fact, we have shown
there that Orep(K,↵) ⌘ Orep(K,↵0

) implies ↵ ⌘K ↵0,
and thus ctr(K,↵) ⌘ ctr(K,↵0

) due to preservation. It is
easy to see that, together with Orep(K,↵) ⌘ Orep(K,↵0

),
this implies �(Orep(K,↵)) ⌘ �(Orep(K,↵0

)).

4 Belief Set Contraction as Instance

Contraction operations and in particular partial meet con-
tractions were introduced in the seminal AGM paper (Al-
chourrón, Gärdenfors, and Makinson 1985) for belief sets,
i.e., sets of formulas that are closed under the inference re-
lation of an underlying logic. We show that this can be
seen as an instance of the approach introduced in this pa-
per. However, the instance we investigate here is more gen-
eral than the original AGM setting (Alchourrón, Gärdenfors,
and Makinson 1985) since we make less assumptions on the
underlying logic.

We assume that we are given a set of formulas F (without
any assumptions on their syntactic form) and a closure oper-
ator Cl mapping sets of formulas to sets of formulas (which
generalizes inference closure w.r.t. some logic). A belief set
B is a closed subset of F , i.e. Cl(B) = B ✓ F . The closure
operator is assumed to satisfy the following properties (for
all A,A0 ✓ F):
• A ✓ Cl(A) (inclusion),
• A ✓ A0 implies Cl(A) ✓ Cl(A0

) (monotonicity),
• Cl(Cl(A)) = Cl(A) (idempotency),
• ' 2 Cl(A) implies that there is a finite set E ✓ A such

that ' 2 Cl(E) (compactness).
Note that the first three properties imply that, for every set
of formulas A, its closure Cl(A) is the least belief set con-
taining A. These are exactly the conditions needed for a
closure operator to be compliant with the relevance postu-
late (Ribeiro et al. 2013).

We use F and a closure operator Cl satisfying inclusion,
monotonicity, idempotency, and compactness to define the
following instance of our general framework:
• Knowledge bases are belief sets, i.e., subsets of F that are

closed under Cl.
• Entailment is the superset relation between belief sets,

i.e., B1 entails B2 (written B1 |=◆ B2) iff B1 ◆ B2.
• Repair requests are of the form ' for ' 2 F , and they in-

duce the repair sets Rep(B,↵) := {B0 | B ◆ B0 and ' 62
B0}.

Note that the consequence operator Con◆ induced by |=◆
does not coincide with Cl. The operator Cl applies to ar-
bitrary sets of formulas and defines what we consider to be
KBs (i.e., sets that are closed under Cl). The operator Con◆
applies to KBs and yields all KBs that are subsets of its in-
put KB. Since the superset relation is reflexive and transitive,
the entailment relation |=◆ satisfies these two properties re-
quired by our framework. The repair operator Rep satisfies



the first condition of Definition 4 by definition and the sec-
ond one since ' 62 B0 ◆ B00 clearly implies ' 62 B00.

As sum operation on belief sets we define B1�. . .�Bn :=

Cl(B1 [ . . . [ Bn).
Lemma 12. The operation � on belief sets satisfies the
properties of sum for the entailment relation |=◆.

Proof. First, note that B1 � . . . � Bn is a belief set due to
idempotency of Cl.

Second, we must show that B1 � . . . � Bn |=◆ Bi for
i = 1, . . . , n, i.e., that Cl(B1 [ . . . [ Bn) ◆ Bi holds for
i = 1, . . . , n. Since Bi ✓ B1 [ . . .[Bn, monotonicity of Cl
and the fact that Bi is closed w.r.t. Cl yield Bi = Cl(Bi) ✓
Cl(B1 [ . . . [ Bn), as required.

Third, assume that B is a belief set that satisfies B |=◆ Bi

for i = 1, . . . , n. Then B1[ . . .[Bn ✓ B, and thus Cl(B1[
. . . [ Bn) ✓ Cl(B) = B by monotonicity of Cl and the fact
that B is closed w.r.t. Cl. This yields B |=◆ B1 � . . .� Bn,
as required.

As product operation on belief sets we take intersection,
i.e., B1 ⌦ . . .⌦ Bn := B1 \ . . . \ Bn.
Lemma 13. The operation ⌦ on belief sets satisfies the
properties of product for the entailment relation |=◆.

Proof. It is sufficient to shows that the intersection of belief
sets is again a belief set since intersection clearly satisfies
the properties required for the product w.r.t. |=◆.

By monotonicity of Cl and the fact that the belief sets Bi

are closed, the inclusion B1⌦ . . .⌦Bn = B1\ . . .\Bn ✓ Bi

yields Cl(B1 ⌦ . . . ⌦ Bn) ✓ Cl(Bi) = Bi for i = 1, . . . , n,
and thus Cl(B1⌦. . .⌦Bn) ✓ B1\. . .\Bn = B1⌦. . .⌦Bn.
The inclusion in the other direction follows from the fact that
Cl satisfies inclusion.

Regarding repairs, given a belief set B and a repair request
', we define Orep(B,') to consist of the maximal subsets
of B whose closure does not contain '.
Lemma 14. The elements of Orep(B,') are belief sets and
optimal repairs of B for '.

Proof. Let A be an element of Orep(B,'. Then ' 62
Cl(A), and thus idempotency of Cl yields ' 62 Cl(Cl(A)).
Monotonicity of Cl, A ✓ B, and the fact that B is closed
imply that Cl(A) is a subset of B whose closure does not
contain '. In addition, inclusion yields A ✓ Cl(A), which
in turn implies A = Cl(A) due to the assumed maxi-
mality of A. Thus, we have shown that the elements of
Orep(B,Cl(') are belief sets.

Every element A of Orep(B,') is a belief set contained
in B and satisfying ' 62 A, which shows that A is a repair of
B for '. Optimality of these repairs is an immediate conse-
quence of the fact that they were chosen to be maximal.

Lemma 15. The set Orep(B,') covers all repairs of B for
'. In particular, it contains all optimal repairs.

Proof. The second statement is an immediate consequence
of the first. In fact, assume that B0 is an optimal repair of
B for '. Then coverage of all repairs by the set Orep(B,')

implies that there is an element B00 of Orep(B,') such that
B00 ◆ B0. Since B00 is a repair, this inclusion cannot be
strict since this would contradict the optimality of B0. Con-
sequently, B00

= B0, and thus B0 2 Orep(B,').
Let B0 be a repair of B for '. We use transfinite induction

to extend B0 to a maximal subset of B whose closure does
not contain '. To this purpose, we assume1 that B consist of
the formulas '↵ where ↵ ranges over the ordinals � � for
an appropriate ordinal �. We define sets B↵ for all ordinals
↵ � � as follows:

• B0 := B0,
• B↵+1 := B↵ [ {'↵} if ' 62 Cl(B↵ [ {'↵}),
• B↵+1 := B↵ if ' 2 Cl(B↵ [ {'↵}),
• B↵ :=

S
↵0�↵ B↵0 if ↵ is a limit ordinal.

By definition, B0 ✓ B� . In addition, one can easily prove
by transfinite induction that all sets B↵ for ↵ � � satisfy
' 62 Cl(B↵). This proof uses compactness of Cl to deal
with the limit case.

It remains to show maximality of B� . Assume to the con-
trary that there is a strict superset B0 of B� whose closure
does not entail ', i.e., B� ⇢ B0 ✓ B and ' 62 Cl(B0

).
Monotonicity of Cl implies that there is an element  in
B \ B� such that ' 62 Cl(B� [ { }). Let ↵ � � be
the ordinal such that  = '↵. Since '↵ 62 B� , it can-
not belong to B↵+1 ✓ B� . However, this means that ' 2
Cl(B↵ [ {'↵}) since otherwise '↵ would have been added
to B↵+1. Since B↵[{'↵} ✓ B� [{ }, monotonicity of Cl
yields ' 2 Cl(B� [{ }), which contradicts our assumption
that  is such that ' 62 Cl(B� [ { }). Consequently, we
have shown that B� is an element of Orep(B,Cl({'})) that
covers B0.

Summing up, we have thus shown that the entailment re-
lation |=◆ on belief sets induced by a closure operator Cl
that satisfies the conditions introduced above fulfills all the
properties introduced in Section 2.
Theorem 16. Consider as knowledge bases belief sets that
are closed w.r.t. a closure operator Cl that satisfies inclu-
sion, monotonicity, idempotency, and compactness, and as
repair requests single formulas with associated repair sets
of the form Rep(B,') := {B0 | B ◆ B0 and ' 62 B0}. Then
the entailment relation |=◆ corresponding to the superset
relation between belief sets is partial product contraction
enabling.

As a consequence, we can use the partial product contrac-
tion approach introduced in Section 3 to obtain contraction
operations for belief sets that satisfy the postulates logical
inclusion, success, failure, vacuity, preservation, and rele-
vance (and additionally fullness in the MaxiChoice case).

Since in this case product is intersection and optimal re-
pairs are obtained as maximal sets that do not have the con-
sequence, the construction of partial product contractions as
described in Section 3 coincides with the construction of
the partial meet contractions for belief sets introduced in the

1This assumption is based on the well ordering theorem, whose
validity is equivalent to the axiom of choice (Halmos 1960).



seminal AGM paper. Nevertheless, our postulates do not co-
incide with the ones given in (Alchourrón, Gärdenfors, and
Makinson 1985). In particular, instead of recovery we have
relevance or fullness. The reason is that Alchourrón, Gär-
denfors, and Makinson make additional assumptions on the
formulas and the closure operator. Their proof of recovery
actually employs the fact that their closure operator corre-
sponds to logical consequence for a logic that has negation
and disjunction.

The setting introduced in this subsection does not make
any assumptions on the formulas, and only requires the clo-
sure operator to satisfy inclusion, monotonicity, idempo-
tency, and compactness. For example, we could use as for-
mulas Horn implications or more generally concepts of the
Description Logic EL, and as closure operator logical conse-
quence for Horn formulas or subsumption between EL con-
cepts. In these setting, recovery does not hold (Delgrande
and Wassermann 2013; Zhuang and Pagnucco 2009). Intu-
itionistic Logic (Heyting 1956) is another example where re-
covery does not hold (Ribeiro et al. 2013). A detailed study
of the postulates recovery and relevance for logics that do
not satisfy all the assumptions of the original AGM paper
can be found in (Ribeiro et al. 2013)

Considering belief sets as knowledge bases has the disad-
vantage that, for logics that are more powerful than propo-
sitional logic, the optimal repairs, and thus also the belief
sets produced by applying the contraction operator, may be-
come infinite without appropriate finite representation, even
if one starts with finitely generated belief sets. A practi-
cal example where this problem occurs are ABoxes of the
description logic (DL) EL (Baader et al. 2017) as KBs and
inference w.r.t. an EL TBox as entailment relation. Note that
ABoxes are assumed to be finite in the DL community. As
shown in the proof of Proposition 2 in (Baader et al. 2018),
in this setting there are repair problems that have repairs, but
no optimal repairs. Basically, the reason is that one would
need an infinite ABox to represent such an optimal repair.
The approach for belief set contraction introduced in the
present section applies to the setting of EL ABoxes w.r.t.
an EL TBox if one allows ABoxes to be infinite. However,
the obtained contraction operation may then return infinite
ABoxes, which makes this approach useless in practice un-
less one finds an appropriate finite representation for the in-
finite ABoxes.2 In the next section, we consider instances of
our general setup where knowledge bases are finite.

5 Instances with Finite KBs

As practically relevant instances of the general setup for
which KBs are finite, we consider KBs and entailment re-
lations connected with the DL EL (Baader et al. 2017). As a
consequence of the results shown in Section 3, we can then
use the partial product contraction approach to obtain con-
traction operations for these instances satisfying the postu-
lates logical inclusion, success, failure, vacuity, preserva-
tion, and relevance (and additionally fullness in the Maxi-
Choice case).

2First steps in this direction are described in Section 5
of (Baader, Koopmann, and Kriegel 2023).

In this setting, when showing that a set of KBs, repair
requests, and an entailment relation satisfy the properties re-
quired for the entailment relation to be partial product con-
traction enabling, the most challenging task will be to prove
that the properties related to optimal repairs are satisfied.
Fortunately, in most of the cases considered below, this task
has already been solved by recent work on optimal repairs in
EL. Nevertheless, the overall task of showing that the con-
sidered entailment relations are partial product contraction
enabling remains non-trivial since we must prove the exis-
tence of appropriate product and sum operations.

In most of the cases, we consider a standard repair setting
where the repair request is a KB that is supposed to be no
longer entailed, i.e., Rep(K,↵) = {K0 | K |= K0,K0 6|= ↵}.
It is easy to see that in this case the conditions of Defini-
tion 4 are satisfied. In addition, we will consider a modified
version of the standard repair setting where non-entailment
of the repair request is demanded for a different entailment
relation, i.e., Rep(K,↵) = {K0 | K |= K0,K0 6|=r ↵}. If
|=r is transitive and a stronger entailment relation than |=
(i.e., |= ✓ |=r), then the conditions of Definition 4 are still
satisfied in this extended setting.

In case KBs are finite sets of formulas and repair re-
quests ↵ are not assumed to be just singleton sets, there
are actually (at least) two possibilities for how to define re-
pairs, corresponding to choice and package contraction in
the belief change literature (Fuhrmann and Hansson 1994;
Fermé, Saez, and Sanz 2003; Resina, Ribeiro, and Wasser-
mann 2014). What we have defined above corresponds to
choice contraction since K0 6|= ↵ means that at least one
of the elements of ↵ should not be entailed. For package
contraction, none of the elements of ↵ is allowed to be en-
tailed, i.e., repairs are defined as Rep(K,↵) = {K0 | K |=
K0,K0 6|= ' for all ' 2 ↵}. We will call these two forms
of repairs choice and package repairs, respectively. Package
repair is actually the notion of repair employed in our previ-
ous work on optimal repairs (Baader et al. 2021a). Thus, at
first sight, one might think that these results show the op-
timal repair property required by our framework only for
the package setting. However, it is easy to see that satis-
faction of this property in the package setting implies that it
is also satisfied in the choice setting since we consider finite
KBs (Fuhrmann and Hansson 1994).

In addition to such standard repair settings, we will also
introduce an instance that is akin to variable forgetting (see
Example 5), but considered in the context of concepts of
the DL EL, where concept and role names may be forgot-
ten. Finally, we introduce an instances of the general setup
that has nothing to do with logic, but considers automata or
grammars as KBs, and uses language inclusion to define en-
tailment. The main reason for introducing this instance is
to demonstrate the generality of our approach. To show the
partial product contraction enabling property in this setting,
one can use results on the closure properties for the language
classes of the Chomsky hierarchy (Chomsky 1959).

5.1 EL Concept Contraction

In this setting, knowledge bases and repair requests are
EL concepts and entailment is subsumption w.r.t. an EL



TBox (Baader et al. 2017).
EL concepts are built inductively, starting with concept

names A from a set NC of such names, and using the con-
cept constructors > (top concept), C uD (conjunction), and
9r.C (existential restriction), where C,D are EL concepts
and r belongs to a set NR of role names. A general concept
inclusion (GCI) of EL is of the form C v D for EL concepts
C,D, and an EL TBox is a finite set of such GCIs.

The semantics of EL is defined in a model-theoretic way,
using the notion of an interpretation I, which is a pair
I = (�

I , ·I), where the domain �
I is a non-empty set

and the interpretation function ·I maps each concept name
A 2 NC to AI ✓ �

I and each role name r 2 NR to a
binary relation rI ✓ �

I ⇥ �
I . The interpretation of an

EL concept is defined inductively as follows: >I := �
I ,

(C u D)
I := CI \ DI , and (9r.C)

I := {d 2 �
I | 9e 2

�
I such that (d, e) 2 rI and e 2 CI}. A model I of the

EL TBox T is an interpretation that satisfies all its GCIs,
i.e., CI ✓ DI holds for all C v D 2 T . Given EL con-
cepts C,D and an EL TBox T , we say that C is subsumed
by D w.r.t. T (and write C vT D) if CI ✓ DI holds in
all models I of T . The EL concepts C,D are equivalent
(written C ⌘T D) if C vT D and D vT C.

For a given EL TBox T , we obtain the following instance
of our general framework:

• Knowledge bases are EL concepts.

• Entailment is given by the subsumption relation w.r.t. T ,
i.e., C entails D (written C |=vT D) iff C vT D.

• Repair requests are EL concepts, and repairs are defined
as RepT (C,D) := {C 0 | C vT C 0, C 0 6vT D}.

This instance has first been considered in (Rienstra,
Schon, and Staab 2020) for subsumption w.r.t. the empty
TBox (v;) and was then extended to subsumption w.r.t. a
cycle-restricted EL TBox T (vT ) in (Baader 2023).

It is easy to see that the sum operation for the entailment
relation |=vT is conjunction of concepts, and the product is
the least common subsumer (lcs) w.r.t. the TBox T :

• the EL concept C is a least common subsumer of the EL
concepts C1, . . . , Cn w.r.t. T if Ci vT C for all i =

1, . . . , n, and C is the least EL concept (for vT ) with this
property, i.e., if D is an EL concept satisfying Ci vT D
for all i = 1, . . . , n, then C vT D.

Obviously, if it exists, then such an lcs is unique up to equiv-
alence ⌘T . For the case of the empty TBox, the lcs in EL
always exists (Baader, Küsters, and Molitor 1999), but this
is not the case w.r.t. an arbitrary EL TBox. The character-
ization of the existence of the lcs w.r.t. an EL TBox given
in (Zarrieß and Turhan 2013) implies that the lcs always ex-
ists for cycle-restricted TBoxes:

• The EL TBox T is cycle-restricted if there is no EL con-
cept C and m � 1 (not necessarily distinct) role names
r1, . . . , rm such that C vT 9r1. · · · 9rm.C.

As stated in (Baader, Borgwardt, and Morawska 2012), it
can be decided in polynomial time whether a given EL TBox
is cycle-restricted or not.

Cycle-restrictedness is also required to obtain the nec-
essary repair properties. As explained in more detail in
(Baader 2023), satisfaction of these properties is an easy
consequence of the results on optimal ABox repairs shown
in (Baader et al. 2022).
Theorem 17. Let T be a cycle-restricted EL TBox and |=vT

subsumption w.r.t. T between EL concepts, and consider EL
concepts repair requests as inducing repair sets defined as
Rep

T
(C,D) := {C 0 | C vT C 0, C 0 6vT D}. Then |=vT is

partial product contraction enabling.
The following example, which is due to (Rienstra, Schon,

and Staab 2020), demonstrates that in this setting no con-
traction operation that satisfies success and logical inclusion
can also satisfy the recovery postulate.
Example 18. Let T = ; and C = 9r.(A u B), and con-
sider the repair request D = 9r.A. Thus, any contraction
operation satisfying success and logical inclusion must re-
turn an EL concepts C 0 such that C v; C 0 and C 0 6v; D.
It is easy to see that the only EL concepts satisfying these
two (non-)subsumption relationships are 9r.B, 9r.>, and
the top concept >. Conjoining 9r.A with any of these con-
cepts does no yield a concept that is subsumed by C, which
implies that recovery does not hold.

5.2 Contractions for Quantified ABoxes:

Classical Entailment

ABoxes of EL are finite sets of concept assertions C(a) and
role assertions r(a, b), where C is an EL concept, r a role
name, and a, b are individuals from a set NI . In the pres-
ence of an ABox, an interpretation I additionally interprets
individuals a as elements aI of �I . The interpretation I is
a model of the EL ABox A if aI 2 CI and (aI , bI) 2 rI

respectively holds for all concept and role assertions C(a)
and r(a, b) in A.

Quantified ABoxes were first introduced in (Baader et al.
2020) since they allow for the existence of optimal repairs in
situations where this would not be the case if only ABoxes
were used. Basically, they are variants of ABoxes where
some of the individual names are assumed to be anonymous,
which we express by writing them as existentially quantified
variables. More formally, a quantified ABox (qABox) 9X.A
consists of a finite set X of variables, which is disjoint with
NI , and a matrix A, which is a finite set of concept as-
sertions A(u) and role assertions r(u, v), where A 2 NC ,
r 2 NR and u, v 2 NI [ X . Thus, the matrix is an ABox
built using the extended set of individuals NI [X , but can-
not contain complex concept descriptions. Semantically, the
latter is not a restriction since it is easy to see that a con-
cept assertions C(a) for a complex EL concept C ican be
expressed by a qABox.

The interpretation I is a model of the qABox 9X.A if
there is a variable assignment Z : X ! �

I such that the
augmented interpretation I[Z] that additionally maps each
variable x to Z(x) is a model of the matrix A, i.e, uI[Z] 2
AI for each A(u) 2 A and (uI[Z], vI,Z) 2 rI for each
r(u, v) 2 A. The qABox 9X.A entails the qABox 9Y.B
w.r.t. the EL TBox T (written 9X.A |=T 9Y.B) if every



model of 9X.A and T is also a model of 9Y.B. Note that
this also defines entailment of a concept assertion C(a) by
a qABox w.r.t. an EL TBox since C(a) can be expressed
by a qABox. For the empty TBox, we write the entailment
relation as |= rather than |=;.

The entailment relation |= between qABoxes can be char-
acterized using the notion of a homomorphism. Given
qABoxes 9X.A and 9Y.B, a homomorphism from 9X.A
to 9Y.B is a mapping h from the objects (i.e., variables or
individuals) of A to the objects of B such that
• h(a) = a for all individuals a,
• A(u) 2 A implies A(h(u)) 2 B for all objects u and

concept names A,
• r(u, v) 2 A implies r(h(u), h(v)) 2 B for all objects u, v

and role names r.
The following characterization of entailment was shown in
(Baader et al. 2020): 9Y.B |= 9X.A iff there is a homo-
morphism from 9X.A to 9Y.B.3 This characterization also
works in the setting with a background TBox T if one first
saturates the qABox 9Y.B w.r.t. T . However, a finite sat-
uration only exists if the TBox is cycle-restricted. Given a
qABox 9Y.B and a cycle-restricted TBox T , one can com-
pute the saturation sat

T
(9Y.B) of 9Y.B w.r.t. T in expo-

nential time, and this saturation satisfies 9Y.B |=T 9X.A
iff satT (9Y.B) |= 9X.A for each qABox 9X.A (Baader et
al. 2021a). Thus, we have the following characterization of
entailment w.r.t. a cycle-restricted TBox.
Lemma 19. Let 9X.A, 9Y.B be qABoxes, and T a cycle-
restricted EL TBox. Then the following are equivalent:
• 9Y.B |=T 9X.A,
• sat

T
(9Y.B) |= 9X.A,

• there is a homomorphism from 9X.A to sat
T
(9Y.B).

The saturation of a qABox is of at most exponential size,
and there are examples showing that this size-bound is tight
(see Example III in (Baader et al. 2021b)). Nevertheless, as
pointed out in (Baader et al. 2021a), deciding the entailment
relation |=T is an NP-complete problem (where hardness al-
ready holds without TBox).

In the following, we use qABoxes as KBs, |=T for a
cycle-restricted TBox T as entailment, and finite sets of
EL concept assertions as repair requests. Repairs are de-
fined as package repairs, i.e., RepT (9X.A,↵) := {9Y.B |
9X.A |=T 9Y.B, 9Y.B 6|=T C(a) for all C(a) 2 ↵}. We
show that this yields an entailment relation such that all the
properties introduced in Section 2 are satisfied, i.e., we show
that |=T is then partial product contraction enabling.

Reflexivity and transitivity of |=T are obvious. Next, we
introduce an appropriate sum operation. For a singleton set
K = {9X.A}, its sum is simply 9X.A itself. Given a
set of n � 2 qABoxes K = {9X1.A1, . . . , 9Xn.An}, we
construct its disjoint union as follows: we first rename the
qABoxes in K into equivalent ones 9X 0

1.A0
1, . . . , 9X 0

n.A0
n

with pairwise disjoint sets of variables X 0
1, . . . , X

0
n, and then

set ]K := 9(X 0
1 [ . . . [X 0

n).(A0
1 [ . . . [A0

n).

3Note that checking for the existence of homomorphism be-
tween qABoxes is an NP-complete problem (Baader et al. 2020).

Lemma 20. Disjoint union ] of qABoxes satisfies the prop-
erties of sum for |=T .

Proof. First, we must show that ]K |=T 9Xi.Ai for i =

1, . . . , n. In fact, this entailment even holds without TBox
since we can define a homomorphism from 9Xi.Ai to ]K
by mapping individuals to individuals and the variables in
Xi to their renamings in X 0

i .
Second, assume that 9Y.B satisfies 9Y.B |=T 9Xi.Ai

for i = 1, . . . , n. By Lemma 19, this implies that there
are homomorphisms hi (for i = 1, . . . , n) from 9Xi.Ai to
sat

T
(9Y.B). These homomorphisms can be turned into a

single homomorphism h from ]K to sat
T
(9Y.B) by map-

ping x0 2 X 0
i to hi(x) where x0 is the renaming of x 2 Xi,

and of course a to a for all individuals a.

The product of a set of qABoxes K = {9X1.A1, . . . ,
9Xn.An} is 9X1.A1 if n = 1. For n � 2, we consider
the saturations 9Y1.B1 := sat

T
(9X1.A1), . . . , 9Yn.Bn :=

sat
T
(9Xn.An) of 9X1.A1, . . . , 9Xn.An. Let Ind be the

set of individuals occurring in at least one of the ABoxes
B1, . . . ,Bn and Obji := Yi [ Ind for i = 1, . . . , n. We set
Ind

⇥
:= {(a, . . . , a) | a 2 Ind} and Y := Obj1 ⇥ . . . ⇥

Objn \ Ind
⇥, and define ⌦K := 9Y.B where

B := {A(u1, . . . , un) | A(ui) 2 Bi for i = 1, . . . , n} [
{r((u1, . . . , un), (v1, . . . , vn)) | r(ui, vi) 2 Bi

for i = 1, . . . , n}.

In this qABox, each tuple (a, . . . , a) 2 Ind
⇥ is viewed as

representing the individual a 2 Ind.
Lemma 21. The product ⌦ of qABoxes satisfies the proper-
ties of product for |=T .

Proof. First, we must show that 9Xi.Ai |=T ⌦K for i =

1, . . . , n. By Lemma 19, it is sufficient to show that, for all
i = 1, . . . , n, there is a homomorphisms from ⌦K to 9Yi.Bi.
Obviously, the projection to the i-th component yields such
a homomorphism.

Second, assume that 9Z.C satisfies 9Xi.Ai |=T 9Z.C
for i = 1, . . . , n, which means that there are homomor-
phisms hi from 9Z.C to 9Yi.Bi for i = 1, . . . , n. These
homomorphisms can be turned into a single homomorphism
h from 9Z.C to ⌦K by mapping each object u of 9Z.C to
(h1(u), . . . , hn(u)). It is easy to see that the function h de-
fined this way really yields a homomorphism.

Repairs of qABoxes w.r.t. cycle-restricted TBoxes for re-
pair requests given as finite sets of EL concept assertions
have been investigated in (Baader et al. 2021a). It is shown
there that, up to equivalence, the set of all optimal repairs of
a qABox for a repair request w.r.t. a cycle-restricted TBox
can be computed in exponential time using an NP oracle
(Theorem 9 in (Baader et al. 2021a)). To be more precise,
the paper introduces the notion of canonical repairs induced
by repair seed functions. There are at most exponentially
many such canonical repairs, each of which is of at most ex-
ponential size. These canonical repairs are indeed repairs,
and the set of canonical repairs covers all repairs (Proposi-
tion 8 in (Baader et al. 2021a)). As a consequence, up to



equivalence, this set contains all optimal repairs, which can
be obtained by removing elements that are strictly entailed
by another element.4 The coverage property for the obtained
set of optimal repairs Orep

T
(9X.A,↵) is then an easy con-

sequence of the coverage property for the set of canonical
repairs. Summing up, we have thus shown that |=T for a
cycle-restricted TBox T as entailment satisfies all the prop-
erties introduced in Section 2.
Theorem 22. Let T be a cycle-restricted TBox and |=T en-
tailment w.r.t. T between qABoxes, and consider as repair
requests finite sets of EL concept assertions inducing repair
sets according to the package approach. Then |=T is partial
product contraction enabling.

The same result holds if we use the choice approach for
defining repairs, i.e., if we define the induced repair sets as
Rep

T
c (9X.A,↵) := {9Y.B | 9X.A |=T 9Y.B, 9Y.B 6|=T

C(a) for some C(a) 2 ↵}. To show this we must demon-
strate that the optimal repair property is satisfied in this
setting. Given a qABox 9X.A and a repair request ↵ =

{C1(a1), . . . , Cn(an)}, we consider the union of the sets
Orep

T
(9X.A, {Ci(ai)}). It is easy to see that this set cov-

ers RepTc (9X.A,↵). Thus, the set of all optimal repairs in
the choice setting is obtained by removing elements that are
strictly entailed by another elements.
Corollary 23. Let T be a cycle-restricted TBox and |=T

entailment w.r.t. T between qABoxes, and consider as repair
requests finite sets of EL concept assertions inducing repair
sets according to the choice approach. Then |=T is partial
product contraction enabling.

As a consequence, in both the package and the choice set-
ting, we can use the partial product contraction approach
to obtain contraction operations for qABoxes w.r.t. cycle-
restricted TBoxes that satisfy the postulates logical inclu-
sion, success, failure, vacuity, preservation, and relevance
(and additionally fullness in the MaxiChoice case).

5.3 Contractions for Quantified ABoxes:

IQ-Entailment

If one is only interested in answering instance queries (i.e.,
checking which concept assertions a qABox entails), then
it makes sense to compare qABoxes w.r.t. the instance rela-
tionships they entail rather than w.r.t. the models they have
or (equivalently) w.r.t. the conjunctive queries they entail (as
classical entailment does) (Baader, Koopmann, and Kriegel
2023). We say that 9X.A IQ-entails 9Y.B w.r.t. the TBox
T (written 9X.A |=T

IQ 9Y.B) if every concept assertion en-
tailed by 9Y.B w.r.t. T is also entailed by 9X.A w.r.t. T .
Two qABoxes are called IQ-equivalent w.r.t. T if they IQ-
entail each other w.r.t. T , which is the case iff they entail the
same concept assertions w.r.t. T .

Using IQ-entailment rather than classical entailment has
several practical advantages. First, IQ-entailment between
qABoxes can be characterized using the notion of a simula-
tion, which has the advantage that the existence of a simu-
lation can be decided in polynomial time (Henzinger, Hen-
zinger, and Kopke 1995). Given qABoxes 9X.A and 9Y.B,

4The NP oracle is used to realize these entailment tests.

a simulation from 9X.A to 9Y.B is a binary relation S be-
tween the objects of A and the objects of B such that
• (a, a) 2 S for all individuals a,
• A(u) 2 A and (u, u0

) 2 S implies A(u0
) 2 B for all

objects u, u0 and concept names A,
• r(u, v) 2 A and (u, u0

) 2 S implies the existence of an
object v0 with r(u0, v0) 2 B and (v, v0) 2 S for all objects
u, v, u0 and role names r.

As shown in (Baader et al. 2020), IQ-entailment without
TBox can be characterized as follows: 9Y.B |=IQ 9X.A
iff there is a simulation from 9X.A to 9Y.B. Again, this
characterization also works in the setting with a background
TBox T if one first IQ-saturates the qABox 9Y.B w.r.t. T .
However, in the IQ case, a finite saturation (of polynomial
size) exists for all TBoxes. Given a qABox 9Y.B and an
arbitrary EL TBox T , one can compute the IQ-saturation
sat

T
IQ(9Y.B) of 9Y.B w.r.t. T in polynomial time, and this

saturation satisfies 9Y.B |=T
IQ 9X.A iff sat

T
IQ(9Y.B) |=IQ

9X.A for each qABox 9X.A (Baader et al. 2021a). Thus,
we have the following characterization of IQ-entailment
w.r.t. an EL TBox.
Lemma 24. Let 9X.A and 9Y.B be qABoxes, and T an EL
TBox. Then the following are equivalent:
• 9Y.B |=T

IQ 9X.A,
• sat

T
IQ(9Y.B) |=IQ 9X.A,

• there is a simulation from 9X.A to sat
T
IQ(9Y.B).

Since the IQ-saturation of a given qABox is of polyno-
mial size and the existence of a simulation can be decided in
polynomial time, this shows that IQ-entailment w.r.t. an EL
TBox can be checked in polynomial time.

We now show that, just as classical entailment |=T ,
IQ-entailment |=T

IQ is partial product contraction enabling.
However, unlike the case of classical entailment, the TBox
T need not be required to be cycle-restricted. Reflexivity
and transitivity of |=T

IQ are again obvious. For the product,
we can use the same construction as in Section 5.2.
Lemma 25. The product ⌦ of qABoxes satisfies the proper-
ties of product for |=T

IQ.

Proof. First, recall that we have already shown the entail-
ments 9Xi.Ai |=T ⌦K for i = 1, . . . , n. This obviously
implies 9Xi.Ai |=T

IQ ⌦K for i = 1, . . . , n.
Second, assume that 9Z.C satisfies 9Xi.Ai |=T 9Z.C for

i = 1, . . . , n, which means that there are simulations Si

from 9Z.C to 9Yi.Bi := sat
T
(9Xn.An) for i = 1, . . . , n.

These simulations can be turned into a single simulation S
from 9Z.C to ⌦K by setting

S := {(u, (v1, . . . , vn) | (u, vi) 2 Si for i = 1, . . . , n}.

It is easy to see that the relation S defined this way yields a
simulation.

For the sum, we cannot simply take the disjoint union as
defined in Section 5.2. This is illustrated by the next exam-
ple, where we assume that the TBox is empty.



Example 26. Consider the qABoxes 9X1.A1 :=

9;.{r(a, a)}, 9X2.A2 := 9;.{A(a)}, and 9Y.B :=

9{y}.{A(a), r(a, y), r(y, y)}. Then 9Y.B |=IQ 9Xi.Ai

for i = 1, 2, which can be certified by the simulations
S1 := {(a, a), (a, y)} and S2 := {(a, a)}. The disjoint
union of 9X1.A1 and 9X2.A2, as defined in Section 5.2,
is 9;.{r(a, a), A(a)}. However, 9Y.B does not IQ-entail
this qABox. In fact, 9;.{r(a, a), A(a)} entails the concept
assertion (A u 9r.A)(a), whereas 9Y.B does not.

In order to overcome this problem, we first observe that
any qABox is IQ-equivalent to one that does not contain role
assertions of the form r(u, a) for an individual a.
Lemma 27. Let 9X.A be a qABox. Then there exists
a qABox 9Y.B that is IQ-equivalent to 9X.A such that
r(u, v) 2 B implies v 2 Y . This qABox can be computed
from 9X.A in polynomial time.

Proof. We define the qABox 9Y.B as follows. The
quantifier-prefix Y consists of copies yu of all objects (vari-
ables and individuals) of 9X.A. The matrix B consists of
the following assertions:
B := {A(yu) | A(u) 2 A} [ {r(yu, yv)) | r(u, v) 2 A} [

{A(a) | A(a) 2 A where a is an individual} [
{r(a, yv)) | r(a, v) 2 A where a is an individual}.

By definition of B, r(u, v) 2 B implies v 2 Y . To show that
9X.A |=IQ 9Y.B, we define the following simulation from
9Y.B to 9X.A:

S := {(a, a) | where a is an individual} [
{(yu, u) | where u is any object of 9X.A}.

To see that S is indeed a simulation, first note that (a, a) 2
S for all individuals a holds by the definition of S.

Second, assume that A(v) 2 B and (v, v̂) 2 S. If v = a
is an individual, then v̂ = a and A(a) 2 B can only be the
case if A(a) 2 A. If v = yu for an object u of 9X.A, then
v̂ = u and A(yu) 2 B can only be the case if A(u) 2 A.
Thus, we have shown that in both cases A(v̂) 2 A holds.

Third, assume that r(v, w) 2 B and (v, v̂) 2 S. If
v = a is an individual, then v̂ = a and r(a,w) 2 B im-
plies that w = yu for an object u with r(a, u) 2 A. Since
(yu, u) 2 S, this finishes the proof that S satisfies the re-
quired property for the case v = a. If v is not an individual,
then v = yu for an object u of 9X.A, and v̂ = u. In ad-
dition, r(v, w) 2 B implies that w = yz for an object z of
9X.A. Thus, r(u, z) 2 A and (w, z) 2 S, which finishes
the proof that S is a simulation.

The IQ-entailment in the other direction can be shown by
proving that the inverse S�1 of S is also a simulation.

In our example, 9X2.A2 already satisfies the restriction
that role assertions must not have an individual in the sec-
ond position, but 9X1.A1 does not. The qABox 9Y1.B1 :=

9{ya}.{r(a, ya), r(ya, ya)} is IQ-equivalent to 9X1.A1 and
satisfies this restriction.
Lemma 28. Let 9Y.B be a qABox such that r(u, v) 2 B
implies v 2 Y . If 9Z.C |=IQ 9Y.B, then there is a simulation
S from 9Y.B to 9Z.C such that (a, u) 2 S implies u = a
for all individuals a.

Proof. If 9Z.C |=IQ 9Y.B, then there is a simulation S from
9Y.B to 9Z.C. To ensure the additional condition required
by the lemma, we modify S to S0 by removing all pair
(a, u) where a is an individual and u 6= a. We claim that
S0 is also a simulation. The only condition in the definition
of a simulation where the removal of such pairs could lead to
a problem is the one dealing with role assertions. Thus, as-
sume that r(u, v) 2 B and (u, u0

) 2 S0. Then (u, u0
) 2 S,

and thus there exists of an object v0 with r(u0, v0) 2 C and
(v, v0) 2 S. Since v is a role successor in B, it cannot be an
individual. This implies the (v, v0) also belongs to S0.

We now define the sum operation � on finite, non-empty
sets of qABoxes K = {9X1.A1, . . . , 9Xn.An} as follows.
If n = 1, then �K := 9X1.A1. If n � 2, then we construct
K0

:= {9Y1.B1, . . . , 9Yn.Bn}, where (for i = 1, . . . , n)
9Yi.Bi is the qABox obtained from 9Xi.Ai by applying the
construction in the proof of Lemma 27, and set �K := ]K0.
Lemma 29. The operation � on qABoxes satisfies the prop-
erties of sum for |=T

IQ.

Proof. First, recall that we have shown in the proof of
Lemma 20 that �K = ]K0 |=T 9Yi.Bi for all i, 1  i  n.
Since 9Yi.Bi is IQ-equivalent to 9Xi.Ai by Lemma 27, this
implies �K |=T

IQ 9Xi.Ai for i = 1, . . . , n.
Second, assume that 9Y.B satisfies 9Y.B |=T

IQ 9Xi.Ai

for i = 1, . . . , n. The IQ-equivalence of 9Xi.Ai and 9Yi.Bi

yields 9Y.B |=T
IQ 9Yi.Bi for i = 1, . . . , n. By Lemma 24

and Lemma 28, this implies that there are simulations Si

(for i = 1, . . . , n) from 9Yi.Bi to sat
T
IQ(9Y.B) such that

(a, u) 2 Si implies u = a for all individuals a and all
i = 1, . . . , n. These simulations can be turned into a single
simulation S from ]K to sat

T
IQ(9Y.B) by setting

S := {(y0, v) | (y, v) 2 Si, y0 renaming of y 2 Yi} [
{(a, a) | a is an individual}.

It remains to show that S is indeed a simulation from
�K = ]K0 to sat

T
IQ(9Y.B). First, note that (a, a) 2 S for

all individuals a holds by the definition of S.
Second, assume that A(u) belongs to the matrix of �K

and (u, v) 2 S. If u is an individual a, then u = a = v.
Since A(a) belongs to the matrix of �K, we know that there
is an i such that A(a) belongs to Bi. Thus, (a, a) 2 Si

yields that A(a) belongs to the matrix of sat
T
IQ(9Y.B). If

u is a variable, then u = y0 where y0 is the renaming of
y 2 Yi for some i, 1  i  n, and thus (y, v) 2 Si and
A(y) belongs to Bi. Since Si is a simulation, this implies
that A(v) belongs to the matrix of satTIQ(9Y.B).

Third, assume that r(u, v) belongs to the matrix of �K
and (u, û) 2 S. We must show that this implies the
existence of an object v̂ with r(û, v̂) in the matrix of
sat

T
IQ(9Y.B) and (v, v̂) 2 S. Since r(u, v) belongs to the

matrix of �K, there is an index i such that r(u, v) 2 B0
i,

where B0
i is the renamed version of Bi that was created when

constructing the disjoint union. Due to our construction of
the qABoxes Bi, we know that v cannot be an individual.
Thus, v = y0 is the renaming of a variable y 2 Yi.

If u = a is an individual, then û = a, and r(a, y) 2
Bi. Thus, (a, a) 2 Si yields an object v̂ such that r(a, v̂)



belongs to the matrix of satTIQ(9Y.B) and (y, v̂) 2 Si. The
definition of S, together with the fact that v = y0, yields
(v, v̂) 2 S.

Finally, assume u = z0 is a variable, where z0 is the re-
naming of z 2 Yi for some i, 1  i  n. Then we know
that (z, û) 2 Si and r(z, y) 2 Bi, which implies the exis-
tence of an object v̂ such that r(û, v̂) belongs to the matrix of
sat

T
IQ(9Y.B) and (y, v̂) 2 Si. The definition of S, together

with the fact that v = y0, again yields (v, v̂) 2 S.

IQ-repairs of qABoxes w.r.t. EL TBoxes for repair re-
quests formulated as EL instance assertions have also been
investigated in (Baader et al. 2021a), again in the package
setting. It is shown there that, up to IQ-equivalence, the
set of all optimal IQ-repairs of a qABox for a repair re-
quest w.r.t. an EL TBox can be computed in exponential time
(Theorem 9 in (Baader et al. 2021a)). As in the case of clas-
sical entailment, the paper introduces the notion of canonical
IQ-repairs induced by repair seed functions. There are again
at most exponentially many such canonical IQ-repairs, each
of which is of at most exponential size. These canonical IQ-
repairs are indeed IQ-repairs, and the set of canonical IQ-
repairs IQ-covers all IQ-repairs (Proposition 8 in (Baader et
al. 2021a)). As a consequence, up to IQ-equivalence, this set
contains all optimal IQ-repairs, which can be obtained by
removing elements that are strictly IQ-entailed by another
elements.5 The coverage property for the set of optimal IQ-
repairs is then an easy consequence of the coverage property
for the set of canonical IQ-repairs. As in the case of classical
entailment, this also yields satisfaction of the optimal repair
property in the choice setting. Summing up, we have thus
shown that |=T

IQ for an EL TBox T as entailment satisfies all
the properties introduced in Section 2 both for the package
and the choice setting.
Theorem 30. Let T be an EL TBox and |=T

IQ IQ-entailment
w.r.t. T between qABoxes, and consider as repair requests
finite sets of EL concept assertions inducing repair sets ac-
cording to the package (choice) approach. Then |=T

IQ is par-
tial product contraction enabling.

5.4 Contractions for EL TBoxes

In the context of repairing EL TBoxes, the following en-
tailment relation between such TBoxes was introduced
in (Kriegel 2022).
Definition 31. Let T and T 0 be EL TBoxes. Then T 0 is
a generalized-conclusion weakening (GC-weakening) of T
(written T |=GC T 0) if for each GCI C v D in T 0 there is a
GCI C v E in T such that E v; D.

Obviously, generalized-conclusion weakening implies
classical entailment, i.e., T |=GC T 0 implies T |= T 0.
Since the subsumption relation v; between EL concepts is
decidable in polynomial time, the same is true for the entail-
ment relation |=GC between EL TBoxes. The idea underly-
ing generalized-conclusion weakening is that one wants to
repair EL TBoxes, but preserve their structure as much as

5Since IQ-entailment can be decided in polynomial time, no
NP-oracle is needed.

possible. Thus, one only allows to remove GCIs or weaken
them by weakening their conclusion. This way, every GCI
in the repair is obtained in a transparent way from a GCI in
the original TBox. However, classical entailment is used for
the non-entailment demanded for the repair request. To be
more precise, following (Kriegel 2022), we consider GCIs
(or equivalently, TBoxes consisting of a single GCI) as re-
pair requests, and define

RepGC(T , {C v D}) := {T 0 | T |=GC T 0, C 6vT 0
D}.

Due to the fact that GC-weakening implies classical entail-
ment, it is easy to see that this definition of repairs satis-
fies the conditions of Definition 4 for the entailment relation
|=GC.

In the following, we show that |=GC is partial product con-
traction enabling. First, note that, as sum, we can just use
union of TBoxes.
Lemma 32. The operation [ (i.e., set union) on EL TBoxes
satisfies the properties of sum for |=GC.

Proof. Obviously T1 [ . . . [ Tn for EL TBoxes T1, . . . , Tn
satisfies T1 [ . . . [ Tn |=GC Ti for i = 1, . . . , n. Now,
assume that T 0 |=GC Ti for i = 1, . . . , n. We must show
that T 0 |=GC T1 [ . . . [ Tn. Thus, let C v D be a GCI
in the union. This means that there is an index i such that
C v D 2 Ti. Then T 0 |=GC Ti yields a GCI C v E in T 0

such that E v; D. Since C v D was chosen as an arbitrary
element of the union, this shows T 0 |=GC T1 [ . . .[Tn.

To construct the product for |=GC, we use the lcs w.r.t. the
empty TBox. As shown in (Baader, Küsters, and Molitor
1999), the lcs w.r.t. the empty TBox always exists in EL, and
it is unique up to equivalence. We write lcs;(C1, . . . , Cm)

to denote (an arbitrary element of the equivalence class of)
the lcs of C1, . . . , Cm. If the number m of concepts to which
the lcs operation is applied is assumed to be constant, then
it can be computed in polynomial time. However, the size
of the lcs may be exponential in m, and thus computing it
may take exponential time if m is assumed to be part of the
input (Baader and Turhan 2002).

Given EL TBoxes T1, . . . , Tn, we denote with
Pre(T1, . . . , Tn) the set of all EL concepts C such that each
of the TBoxes Ti contains a GCI with premise C. For each
C 2 Pre(T1, . . . , Tn), we define Pos(C, T1, . . . , Tn) :=

{lcs(D1, . . . , Dn) | C v Di 2 Ti for i = 1, . . . , n}, and set
T1 ⌦ · · ·⌦ Tn := {C v D | C 2 Pre(T1, . . . , Tn) and D 2
Pos(C, T1, . . . , Tn)}.
Lemma 33. The operation ⌦ on EL TBoxes satisfies the
properties of product for |=GC.

Proof. First, we show that Ti |=GC T1 ⌦ · · · ⌦ Tn holds
for all i = 1, . . . , n. Thus, let C v D 2 T1 ⌦ · · · ⌦ Tn.
Then C 2 Pre(T1, . . . , Tn) and D = lcs(D1, . . . , Dn)

where C v Di 2 Ti for i = 1, . . . , n. Since Di v;

lcs(D1, . . . , Dn) holds for all i = 1, . . . , n and C v Di 2
Ti, this shows Ti |=GC T1 ⌦ · · ·⌦ Tn.

Second, assume that T is such that Ti |=GC T for i =

1, . . . , n. We must show that T1 ⌦ · · · ⌦ Tn |=GC T . Thus,
let C v D be an element of T . Then, for each i, 1  i  n,



there is a GCI C v Di in Ti such that Di v; D. Con-
sequently, C 2 Pre(T1, . . . , Tn) and lcs(D1, . . . , Dn) 2
Pos(C, T1, . . . , Tn). In addition, Di v; D for i = 1, . . . , n
yields lcs(D1, . . . , Dn) v; D. Since C v lcs(D1, . . . , Dn)

belongs to T1 ⌦ · · · ⌦ Tn, this completes the proof that
T1 ⌦ · · ·⌦ Tn |=GC T .

Regarding repairs, it was shown in (Kriegel 2022) that,
for a given repair problem consisting of an EL TBox and
a GCI as repair request, a finite set of optimal generalized
conclusion repairs (GC-repairs) can be computed in expo-
nential time, and this set covers all repairs in the sense that
every GC-repair is a GC-weakening of an element of this
set. Note that the notion of (optimal) GC-repairs employed
in (Kriegel 2022) coincides with our notion of (optimal) re-
pairs if one uses |=GC as entailment relation and our above
definition of RepGC as repairs.

Summing up, we have thus shown that the entailment rela-
tion |=GC satisfies all the properties introduced in Section 2.
Theorem 34. Let |=GC be generalized conclusion weaken-
ing between EL TBoxes, and consider EL GCIs as repair
requests inducing repair sets defined as RepGC(T , {C v
D}) := {T 0 | T |=GC T 0, C 6vT 0

D}. Then |=GC is partial
product contraction enabling.

5.5 Forgetting for EL Concepts

In the DL literature, different versions of forgetting con-
cept and role names have been investigated (see, e.g.,
(Konev, Walther, and Wolter 2009; Lutz and Wolter 2011;
Ludwig and Konev 2014; Koopmann and Schmidt 2015;
Sakr and Schmidt 2021). Here, we consider a variant of
forgetting that is akin to the EL concept contraction consid-
ered in Section 5.1, but now the goal is to remove concepts
or role names rather than to remove subsuming concepts.

As in Section 5.1, knowledge bases are EL concepts and
entailment |=vT is subsumption vT w.r.t. a fixed cycle-
restricted EL TBox T . Given an EL concept C, its signa-
ture Sig(C) consists of the concept and role names occur-
ring in C. Repair requests are finite sets of concept and role
names satisfying an additional restriction. Given an EL con-
cept C, such a repair request ↵ induces the following set of
repairs:

Rep(C,↵) := {D | C vT D and Sig(D) \ ↵ = ;}.
To ensure that the second condition of Definition 4 is satis-
fied, we must impose an additional restriction on repair re-
quests: ↵ must be compatible with T . A finite set ↵ of con-
cept and role names is compatible with T if Sig(E)\↵ = ;
implies Sig(F ) \ ↵ = ; for all GCIs E v F in T .
Lemma 35. Let ↵ be a repair request and D an EL concept
with Sig(D) \ ↵ = ;. If D vT D0, then Sig(D0

) \ ↵ = ;.

Proof. Assume to the contrary that D vT D0, but Sig(D0
)\

↵ 6= ;. Let I be the interpretation with �
I
= {d} and

• rI = ; and AI
= ; for all role names r and concept

names A in ↵,
• rI = {(d, d)} and AI

= {d} for all role names r and
concept names A not belonging to ↵.

It is easy to see that the following is satisfied for all EL con-
cepts C: if Sig(C) \ ↵ = ;, then CI

= {d}; and CI
= ;

otherwise. Due to compatibility of ↵ with T , this implies
that I is a model of T . In fact, if E v F is a GCI in T
with Sig(E) \ ↵ 6= ;, then EI

= ;, and thus EI ✓ F I

clearly holds. If Sig(E)\↵ = ;, then also Sig(F )\↵ = ;,
and thus EI ✓ F I since both are equal to {d}. Our as-
sumptions that Sig(D) \ ↵ = ; and Sig(D0

) \ ↵ 6= ; yield
DI

= {d} 6✓ ; = D0I . This contradicts the assumed sub-
sumption D vT D0.

By adapting Lemma 19 of Section 5.2, we obtain the
following characterization of subsumption w.r.t. a cycle-
restricted EL TBox.

Lemma 36. Let T be a cycle-restricted EL TBox and C
an EL concept. Then one can compute in at most exponen-
tial time an EL concept satT (C) such that the following are
equivalent for all EL concepts D:

• C vT D,
• sat

T
(C) v; D,

• there is a homomorphism from D to sat
T
(C).

The notion of homomorphism between EL concepts E
and F employed in this lemma is the one introduced in
(Baader, Küsters, and Molitor 1999) as homomorphism be-
tween EL description trees. It is easy to see that it coincides
with the notion of homomorphism between the qABox rep-
resentations of the ABoxes {E(a)} and {F (a)}.

We have already seen in Section 5.1 that |=vT has prod-
ucts and sums. Thus, it remains to prove that the optimal
repair property is satisfied as well. Given a cycle-restricted
EL TBox T , an EL concept C, and a finite set ↵ of concept
and role names, we first saturate C w.r.t. T , i.e., compute the
concept satT (C). Then we remove from sat

T
(C) all con-

cept names occurring in ↵ and all existential restrictions of
the form 9r.E for r 2 ↵. We denote the resulting concept
as satT (C)

�↵ and set Orep(C,↵) := {satT (C)
�↵}.

Example 37. Let T := {A v Bu9r.B}, C := A, and ↵ :=

{A, r}. Then ↵ is admissible as repair request for T , and
sat

T
(C) = AuB u 9r.B. Removing A and 9r.B from this

concept yields sat
T
(C)

�↵
= B, and thus Orep(C,↵) =

{B}.

To shows that Orep(C,↵) consists of optimal repairs and
covers all repairs, it is sufficient to prove the following
lemma.

Lemma 38. The concept satT (C)
�↵ is a repair of C for ↵

that entails every repair of C for ↵.

Proof. Since all concept names in ↵ and all existen-
tial restrictions for roles in ↵ are removed by our con-
struction of sat

T
(C)

�↵ from sat
T
(C), we know that

Sig(sat
T
(C)

�↵
) \ ↵ = ;. In addition, this construc-

tion also implies that sat
T
(C) vT

sat
T
(C)

�↵. Since
C vT

sat
T
(C) by Lemma 36, transitivity of subsump-

tion yields C vT
sat

T
(C)

�↵. Thus, we have shown that
sat

T
(C)

�↵ 2 Rep(C,↵). Optimality of this repair follows
from the fact that it entails every repair.



To show this coverage property, assume that D 2
Rep(C,↵), i.e., C vT D and Sig(C) \ ↵ = ;. By
Lemma 36, the former subsumption implies that there is a
homomorphism from D to sat

T
(C). Since D does not con-

tain any of the concept and role names from ↵, this also
yields a homomorphism from D to sat

T
(C)

�↵. This shows
sat

T
(C)

�↵ vT D.

Summing up, we have thus shown that, in the setting in-
troduced in this subsection, the entailment relation |=vT sat-
isfies all the properties introduced in Section 2.
Theorem 39. Let |=vT be subsumption w.r.t. a cycle-
restricted EL TBox T , and consider as repair requests finite
sets of concept and role names that are compatible with T
and induce repair sets defined as Rep(C,↵) := {D | C vT

D and Sig(D)\↵ = ;}. Then |=vT is partial product con-
traction enabling.

5.6 Contractions for Automata, Grammars, and

Turing Machines

To illustrate the generality of our approach, we consider a
setting where KBs define formal languages and entailment
corresponds to language inclusion. We start with the simple
case of finite automata. Given a finite automaton A over a
finite alphabet ⌃, we denote the set of words over ⌃ accepted
by A as L(A). We say that A L-entails B (written A |=L B)
if every word accepted by B is also accepted by A, i.e., if
L(A) ◆ L(B).

It is easy to see that, in this setting, sum corresponds
to union and product to intersection of the correspond-
ing languages. In addition, it is well-known that the class
of recognizable languages (i.e., languages accepted by fi-
nite automata) is closed under finite union and intersec-
tion (Hopcroft, Motwani, and Ullman 2007). Thus, given
finite automata A1, . . . ,An, their sum A1 � . . . � An is a
finite automaton accepting L(A1) [ . . . [ L(An) and their
product is a finite automaton accepting L(A1)\. . .\L(An).
These automata can be obtained using the constructions em-
ployed to show closure under union and intersection for the
class of recognizable languages in standard textbooks such
as (Hopcroft, Motwani, and Ullman 2007).

As repair requests, we consider finite sets of words. Note
that, given such a set R = {w1, . . . , wm}, there is a finite
automaton R with L(R) = {w1, . . . , wm} that has at most
|w1| + . . . + |wm| + 1 states. We use the choice approach
to define repairs. This means that, given a repair problem A
and R, a repair is an automaton B such that L(B) ✓ L(A)

and L(B) 6◆ R, i.e., there is a w 2 R such that w 62 L(B).
In case L(A) 6◆ R, then up to equivalence (which coincides
with the usual notion of equivalence for finite automata), A
is the only optimal repair, which clearly covers all repairs. If
L(A) ◆ R, then

{A�w | w 2 R}
is (up to equivalence) the set of all optimal repairs, where
A�w is a finite automaton accepting the language L(A) \
{w}. Since {w} can be accepted by a deterministic finite
automaton whose size is linear in |w|, and the class of recog-
nizable languages is closed under intersection and comple-
ment, the finite automaton A�w can be constructed in time

polynomial in the size of the repair problem, using standard
textbook constructions.

Theorem 40. Let |=L be the superset relation for the in-
duced languages for finite automata, and consider finite sets
of words as repair requests inducing repair sets according to
the choice approach. Then |=L is partial product contraction
enabling.

Our proof of this theorem uses the fact that the class of
recognizable languages is closed under union, intersection,
and complement. The same is true for the class of context-
sensitive languages. Thus, if we replace finite automata by
context-sensitive grammars (or equivalently, linear bounded
automata), the above theorem still holds. However, in this
case, the entailment relation (i.e., language inclusion) is not
decidable.

The class of context-free (cf) languages is not closed un-
der intersection and complement. The latter is not a prob-
lem since removing the word w from a cf-language can be
achieved by intersecting it with a recognizable language (the
complement of the recognizable language {w}), and the in-
tersection of a cf language with a recognizable language is
again cf. However, failure of closure under intersection of
the class of cf languages implies that there is no appropri-
ate product operation. In fact, assume that G1, G2 are cf
grammars such that L(G1) \ L(G2) is not a cf language.
Now assume that G1 ⌦G2 is a cf grammar that is the prod-
uct of G1, G2, i.e., L(G1 ⌦ G2) ✓ L(G1) \ L(G2) and
there is no cf language L such that L(G1 ⌦ G2) ⇢ L ✓
L(G1) \ L(G2). Since L(G1) \ L(G2) is not cf, L(G1 ⌦
G2) ⇢ L(G1)\L(G2), and thus there is a word w such that
w 2 (L(G1)\L(G2))\L(G1⌦G2). Since cf languages are
closed under union and {w} is cf, L := L(G1⌦G2)[{w} is
a cf language satisfying L(G1⌦G2) ⇢ L ✓ L(G1)\L(G2),
which contradicts our assumption that G1 ⌦G2 is the prod-
uct of G1, G2.

The class of Turing recognizable languages (aka lan-
guages generated by a general Chomsky grammar) is closed
under union and intersection, but not under complement.
The latter is, however, again not a problem. In fact, given
a Turing machine accepting the language L and a word w,
one can easily construct one that accepts L \ {w}. Note,
however, that entailment (i.e., language inclusion) is again
undecidable.

Corollary 41. If we replace in Theorem 40 finite automata
with Turing machines (linear bounded automata), then |=L
is partial product contraction enabling. However, if we use
cf grammars instead, then |=L is not partial product contrac-
tion enabling since the product need not exist.

The definition of repairs used until now in this subsections
follows the choice approach. If we employ the package ap-
proach, then a repair of a finite automaton A for the repair
request R is a finite automaton B such that L(B) ✓ L(A)

and L(B) \ R = ;. It is easy to see that then, up to equiv-
alence, the set {A�R} where A�R is a finite automaton ac-
cepting the language L(A) \ R, is the set of optimal repair,
and this set covers all repairs. Similar arguments can be used
to show that |=L is partial product contraction enabling not



only for the case of finite automata, but also for Turing ma-
chines and linear bounded automata.

6 Conclusion

We have shown that the partial meet contraction approach
can be generalized to the setting of a reflexive and transitive
entailment relation between KBs with associated sum and
product operations generalizing conjunction and disjunc-
tion. The main novelty of the approach is that we employ op-
timal repairs in place of remainders. Under the additional as-
sumption that the optimal repairs cover all repairs, we were
able to prove characterization theorems linking the obtained
contraction operations, called partial product contractions,
with reasonable postulates, both for the MaxiChoice and the
general case. In contrast to belief base contractions, our par-
tial product contractions are syntax-independent and usually
preserve more consequences. Though partial product con-
tractions can express belief set contractions, they also work
in settings where finite KBs generating the belief sets are
required. In these settings, the main challenge is usually to
show that the required repair properties are satisfied. In Sec-
tions 5.1 to 5.4 we were able to use recent results on optimal
repairs for the DL EL to obtain instances of our approach
that are relevant for ontology engineering.

A second important novelty of our approach is that it gen-
eralizes the notion of contraction and repair towards repair
goals different from non-entailment of a certain formula or
knowledge base. This allows us, for instance, to treat dif-
ferent approaches to multiple contraction, such a choice and
package contraction, in a uniform way. Additionally, we
have shown in Example 5 and Section 5.5 that certain no-
tions of variable forgetting in propositional logic and con-
cept and role forgetting in DLs can be seen as instances
of our approach, and thus satisfy the same postulates as
the more standard contraction approaches that have non-
entailment as a goal.

One interesting direction for future research is to iden-
tify instances of our approach also for other logics, or for
repair goals other than non-entailment or signature forget-
ting. Another is to determine whether other contraction ap-
proaches, such as kernel contractions (Hansson 1994), can
be generalized in a similar way. Finally, the relationship
to previous work on forgetting, both in the DL community
(Konev, Walther, and Wolter 2009; Lutz and Wolter 2011;
Ludwig and Konev 2014; Koopmann and Schmidt 2015;
Sakr and Schmidt 2021) and in the belief change community
(Lang and Marquis 2010; Delgrande 2017; Kern-Isberner et
al. 2019a; Kern-Isberner et al. 2019b) needs to be investi-
gated in more detail.
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