
Technische Universität Dresden
Institute for Theoretical Computer Science
Chair for Automata Theory

LTCS–Report

Beyond Optimal: Interactive Identification of
Better-than-optimal Repairs (Extended Version)

Francesco Kriegel

LTCS-Report 24-05

This is an extended version of an article accepted at the
KRR track of the 40th ACM/SIGAPP Symposium on

Applied Computing (SAC 2025).

Postal Address:
Lehrstuhl für Automatentheorie
Institut für Theoretische Informatik
TU Dresden
01062 Dresden

http://lat.inf.tu-dresden.de

Visiting Address:
Nöthnitzer Str. 46

Dresden

Beyond Optimal: Interactive Identification of
Better-than-optimal Repairs (Extended Version)

Francesco Kriegel

Theoretical Computer Science, Technische Universität Dresden

Dresden, Germany

Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI)

Dresden/Leipzig, Germany

francesco.kriegel@tu-dresden.de

Abstract
We propose an interactive repair method for the description logic

EL that is based on the optimal-repair framework. The obtained

repair might not be optimal in the theoretical sense, i.e. more than a

minimal amount of consequences might have been removed— but

from a practical perspective it is superior to a theoretically optimal

repair as the interaction strategy enables the users to identify fur-

ther faulty consequences connected to the initially reported errors.

CCS Concepts
• Theory of computation → Description logics; • Computing
methodologies→ Description logics; Ontology engineering.

Keywords
Knowledge-base repair, Optimal repair, Disputable consequence,

Interactive repair

1 Introduction
Knowledge-based systems (KBS) represent complex domains in

an explicit, structured manner and comprise an inference engine

that reasons about the domain to draw precise conclusions and to

answer queries. Many KBS additionally include an explanation com-

ponent that makes transparent the derivation of a conclusion by

showing a human-readable proof to the user. A modern foundation

of KBS is the family of Description Logics (DLs) [3]. Knowledge is

represented as a DL knowledge base (KB) consisting of an assertion

box (ABox) and a DL ontology, which is further subdivided into a

terminology box (TBox) and a role box (RBox). Complete domain

knowledge is not required to build a KB as DLs adopt the open-

world assumption and so allow for statements of which the truth

cannot be determined from the represented knowledge. Factual as-

sertions concerning specific individuals of the domain are declared

in the ABox, such as classifications of the individuals into concepts

and connections between the individuals by roles. The ontology

governs all individuals and defines the domain’s terminology in

terms of concepts and their hierarchy (in the TBox), roles and their

characteristics (in the RBox), as well as further rules and constraints.

The separation of instance-level and schema-level knowledge

facilitates using the same ontology across multiple ABoxes. This

is valuable in applications where sensitive data is processed and

privacy must be protected, e.g. in the medical domain. For exam-

ple, The Systematized Nomenclature of Medicine – Clinical Terms

(SNOMED CT)
L1

is a multilingual ontology that describes medical

terms used in clinical documentation and reporting, and is the most

comprehensive computer-processable clinical terminology in the

world. SNOMED CT is used in clinical decision support systems

to assist healthcare professionals in making accurate diagnoses,

suggesting appropriate treatments, and predicting outcomes based

on patient-specific information. Other domains in which DLs have

been employed are e-commerce [16, 29], finance,
L2, L3, L4

biology,
L5

and car manufacturing and Industry 4.0 [30]. Moreover, DLs serve

as the logical foundation of the Web Ontology Language (OWL)

[18].
L6, L7

Even though DL-based KBS produce logically correct and ex-

plainable inferences, faulty conclusions might be drawn if the KB

itself contains errors. Of course, the KB should then be appropri-

ately repaired. The classical method is to pinpoint the statements in

the KB from which the incorrect conclusion was drawn, and then

either delete a minimal number of them such that the observed

error vanishes or present these statements to knowledge engineers

and domain experts for rectification. However, often only parts of

statements are erroneous and thus deletion of whole statements

would erase too much. On the other hand, it might be difficult

for the experts to correct the statements since they first need to

understand how the faulty consequence is inferred from them.

The EL family [1, 2, 19, 25, 27, 28] stands out from the various

DLs available. Since EL strikes a balance between expressivity and

computational complexity, it offers short reasoning latency and

scalability to even large ontologies, which makes it an ideal choice

for many applications. For example, SNOMED CT is formulated

in EL and OWL comprises the profile OWL2EL
L8

based on EL.

Currently the fastest EL reasoner is ELK [20],
L9

which is a highly

optimized, multi-threaded implementation of the polynomial-time

completion algorithm. It can classify SNOMED CT (with more than

360,000 concepts) in a few seconds on a modern laptop.

In this article, we propose an interactive repair method for EL
that surmounts both practicability issues of the classical method.

As underlying repair framework we employ the optimal repairs

[6, 9], which resolve errors not by deleting a minimal number of

statements but by modifying the KB such that only minimally many

consequences are removed (including the observed faulty ones).

Moreover, the best such repair is interactively identified in a top-

down manner. Unlike the classical method, the experts do not need

to consult, in a bottom-up manner, proofs of the unwanted con-

sequence to appropriately correct the KB. Instead, they start with

the reported error broken down into atomic statements and pro-

ceed towards logical causes of identified faulty statements, finally

reaching statements in the KB. Through this guidance, the experts’

workload is significantly lowered.

https://orcid.org/0000-0003-0219-0330

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

From a technical perspective, each optimal repair can be obtained

from the input by saturation and then delete and copy operations.

To ensure that no consequence is lost unnecessarily, the input

ABox is initially saturated by adding statements implied by the

TBox. While deletions are then necessary to remove the unwanted

consequences, the copy mechanism ensures that not too many

consequences get lost since each of the copies can be modified

differently. The interaction process terminates in polynomial time

and allows the experts to efficiently control these three operations

and thus how the repair is constructed.

(1) Control of the delete operation: The causes of unwanted

consequences are identified, which are afterwards used to

compile a plan which statements need to be removed to

obtain the repair.

(2) Control of the copy operation: When an object is split into

copies that are modified in different ways, it is explored

which copies actually exist in the underlying domain such

that the others can be eliminated.

(3) Control of the saturation: A second phase is devoted to

statements entailed by the input that are still undecided

and of which all substantiations entail a rejected query.

These disputable consequences have no substantiations in

the repair anymore and should thus be investigated.

An implementation of the underlying repair construction as well

as the smart interaction strategy is available.
L10

It comes in form

of a plug-in for the KB editor Protégé.
L11

This extended version

contains all technical details that could not be included in the con-

ference article for space restrictions.

2 Preliminaries
First, we provide general definitions regarding optimal repairs. To

this end, we assume an arbitrary model-based logic consisting of

a set of all statements, a set of all interpretations, and a relation |=
between them such that I |= 𝛼 indicates that the interpretation I
satisfies the statement 𝛼 . A knowledge base (KB) K is a finite set of

statements, and we say that I is a model of K and write I |= K if

I satisfies every statement in K . Moreover, K is consistent if it has
a model, and K entails another KB K′

, written K |= K′
, if every

model ofK is also one ofK′
. We further assume that the statements

are subdivided into assertions and ontological statements, and so each
KB is a disjoint unionA⊎O of an assertion box (ABox)A consisting

of assertions and an ontology O with ontological statements.
1

Definition 2.1. A repair request is an assertion set P := P+ ⊎ P−
partitioned into an addition part P+ and a removal part P− . Of a
consistent KB K := A ⊎ O, an ABox repair for P is an ABox B s.t.

• B ∪ O is consistent,

• B ∪ O |= 𝛼 for each 𝛼 ∈ P+, and
• B ∪ O ̸|= 𝛽 for each 𝛽 ∈ P− .

If there is an ABox repair, then P is feasible w.r.t. K .

In the above definition, we treat the ABox as refutable and the

ontology as static. We may just use the denotation “repair” when no

confusion can arise. Instead of 𝛼 ∈ P+ we may also write +𝛼 ∈ P,

and likewise−𝛽 ∈ P for 𝛽 ∈ P− . We observe that a repair requestP

1
We write𝐴 = 𝐵 ⊎𝐶 iff.𝐴 = 𝐵 ∪𝐶 and 𝐵 ∩𝐶 = ∅.

is feasible iff. P+ is a repair iff. P+ ∪ O is consistent and entails

no statement in P− . Moreover, repairs as defined above have no

connection to the input ABox, but the following order relation

between repairs takes it into account.

Definition 2.2. Consider two repairs B := B+ ⊎ B− and C :=

C+ ⊎ C− of K for P, where B− := {𝛾 | 𝛾 ∈ B and K |= 𝛾 } and C−
is defined likewise. We write B ≤ C and say that C is at least as
good as B if B ∪ O |= C+ and C ∪ O |= B− . Moreover, we write

B < C and say that C is better than B if B ≤ C but C ≰ B, i.e.

either less knowledge is added, C ∪ O ̸|= B+, or less knowledge
is removed, B ∪ O ̸|= C− . We call B optimal if there is no repair

better than B, and P is optimally coverable w.r.t. K if every repair

ofK for P is at most as good as some optimal one. If P is optimally

coverable w.r.t. K and there is exactly one optimal repair of K
w.r.t. P up to equivalence w.r.t. O, then P is deterministic w.r.t. K .

In order to comply with the repair request, optimal repairs pre-

serve as much as possible knowledge entailed by the input KB while

containing as little as possible new knowledge— yet not every asser-

tion entailed by K should be preserved in the concrete application.

The reason is that such an entailed assertion might only make sense

in the application domain as long as it is substantiated. For instance,

if we repair for an assertion stating that Bob has a particular disease,

then we would not want to keep the consequence that Bob is ill,

unless there is knowledge that he has another disease. In contrast,

if it should be repaired that Alice is a celebrity, then we would still

want to retain the consequence that Alice is a human. In order to

formulate this precisely, we use substantiations. In the literature,

justifications of a statement 𝛾 have been defined as subsets of the
refutable part that together with the static part entail 𝛾 . In order to

eliminate dependence on the syntax, our following definition in-

stead defines substantiations as KBs entailed by the refutable part.
2

We further take the provided information in the repair request into

account by treating its addition part like the ABox of the input KB,

since both are the “positive knowledge” before the repair process.

Definition 2.3. W.r.t. a KBK and a repair request P, a substantia-
tion of an assertion𝛾 is an ABox J s.t.A∪P+ |= J and J∪O |= 𝛾 .

With that, we call a consequence of K disputable if a repair

entails it while another not (i.e. it could be included in a repair or

not), but none of its substantiations can be preserved in any repair

(i.e. it is not justified anymore).

Definition 2.4. Given a consistent KB K and a feasible repair

request P, a disputable consequence ofK w.r.t. P is an assertion𝛾 s.t.

• K ∪ P+ |= 𝛾 ,

• there is a repair B of K for P with B ∪ O |= 𝛾 ,

• there is a repair B of K for P with B ∪ O ̸|= 𝛾 , and

• for each repair B of K for P, the KB B ∪ O does not entail

any substantiation of 𝛾 w.r.t. K and P.

In order to obtain an optimal repair that makes sense in the

application domain, we recommend to decide each disputable con-

sequence by hand and accordingly refine the repair request, i.e. add

all accepted ones to P+ and all rejected ones to P− .

2
We chose another denotation to avoid confusion. Justifications are defined in the

same way except that A |= J is replaced by J ⊆ A.

Francesco Kriegel

The following example illustrates why the addition part P+ is

taken into account in the above definitions.

Example 2.A. The KBK is formulated in the DL EL and consists

of the ABox A := {bob : HasCold, bob : HasDiagnose1} and the

ontology O := {HasCold ⊑ IsIll, HasDiagnose1 ⊓HasDiagnose2 ⊑
HasFlu, HasFlu⊑IsIll}. The repair requestP has addition partP+ :=

{bob : HasDiagnose2} and removal part P− := {bob : HasCold}.
Moreover, we consider the assertion 𝛾 := bob : IsIll.

For this input, the unique optimal ABox repair is B := {bob :

HasDiagnose1, bob : HasDiagnose2}. This is because the first

assertion bob : HasCold must be deleted for P− . Furthermore,

bob : HasDiagnose2 must be entailed since it is in P+ but it is not

implied by other statements w.r.t. O, and thus it can only be added

to the repair as is. Then the assertions bob : HasFlu and bob : IsIll
are entailed by this repair when taking O into account, i.e. adding

them would only yield an equivalent repair. In the end, we cannot

remove less knowledge or add less knowledge and so obtain a better

repair, i.e. B is optimal.

Now, let’s check if 𝛾 is disputable. We have K ∪ P+ |= 𝛾 . The

above repair B satisfies that B ∪ O |= 𝛾 . On the other hand, also

{bob:HasDiagnose2} is a repair, and {bob:HasDiagnose2}∪O ̸|= 𝛾 .

The substantiations of 𝛾 are J1 := {bob : HasCold} and J2 :=

{bob : HasDiagnose1, bob : HasDiagnose2}. Since for the above

repair B, the union B ∪ O entails J2, the consequence 𝛾 is not

disputable.

Last, we check if 𝛾 is disputable when the addition part P+ is not

taken into account, i.e. we replace A ∪ P+ |= J with A |= J in

Definition 2.3 and likewiseK∪P+ |= 𝛾 withK |= 𝛾 in Definition 2.4.

We also have K |= 𝛾 and, as above, 𝛾 is entailed by a repair and

not entailed by another. However, J1 is the only substantiation of

𝛾 and no repair entails it, i.e. 𝛾 would be disputable now. This is

unexpected since the input gave no reason to doubt validity of the

second assertion bob : HasDiagnose1 in A.

Next, we formulate an equivalent characterization of disputable

consequences.

Lemma 2.B. 𝛾 is a disputable consequence of K w.r.t. P iff.

• K ∪ P+ |= 𝛾 ,
• the ABox P+ ∪ {𝛾} is a repair of K for P, i.e. P+ ∪ {𝛾} ∪ O

is consistent and entails no statement in P− ,
• P+ is no substantiation of 𝛾 w.r.t. K and P, i.e. P+ ∪ O ̸|= 𝛾 ,

and
• no substantiation J of𝛾 w.r.t.K and P is a repair ofK for P,

i.e. J ∪O is inconsistent, does not entail all statements in P+,
or entails some statement in P− .

Proof. • The first condition does not differ and so needs

no treatment.

• Let B be a repair ofK for P such that B∪O entails 𝛾 . Then

B ∪ O |= P+ ∪ {𝛾} ∪ O. Since B ∪ O is consistent, also

P+ ∪ {𝛾} ∪O is consistent. Moreover, since B ∪O does not

entail any statement in P− , neither does P+ ∪ {𝛾} ∪ O. It
follows that P+ ∪ {𝛾} is a repair. The converse direction is

obvious.

• Let B be a repair of K for P such that B ∪ O does not

entail 𝛾 . Since B ∪ O |= P+ ∪ O, it follows that P+ ∪ O

neither entails 𝛾 . The converse direction follows easily by

feasibility of P.

• Assume that, for each repair B of K for P and for each

substantiation J of 𝛾 w.r.t. K and P, we have B ∪ O ̸|= J .

Further let J be a substantiation of 𝛾 w.r.t. K and P. Since

J ∪ O |= J , it follows that J is no repair of K for P.

Regarding the converse direction, let B be a repair ofK for

P and let J be a substantiation of 𝛾 w.r.t. K and P. Then

J ∪ P+ is also a substantiation of 𝛾 , but by assumption no

repair. IfJ∪P+∪O would be inconsistent, then consistency

of B ∪ O implies that B ∪ O ̸|= J ∪ P+ ∪ O. Otherwise,
J ∪ P+ ∪ O would entail some statement in P− , but since
B ∪ O does not it follows that B ∪ O ̸|= J ∪ P+ ∪ O as

well. In either case, since B ∪ O |= P+ ∪ O, it follows that

B ∪ O ̸|= J . □

Furthermore, if the repair request is non-deterministic, then it

should be further refined to eventually identify an optimal repair

appropriate for the application. Formally, we say that a repair re-

quest P′
is a refinement of P if P+ ⊆ P′

+ and P− ⊆ P′
− , and at least

one of these inclusions is strict (i.e. does not hold in the converse

direction). Then every repair of K for P′
is also one for P, but not

vice versa. In Section 3 we will develop an interactive method for

refining a given repair request to a deterministic one in the DL EL.

The Description Logic EL. We recall the DL EL, on which all other

DLs in the EL family are based. In order to structurally describe

the domain of interest, we fix individual names (INs), concept names
(CNs), and role names (RNs). Concept descriptions (CDs) are built by
𝐶 F ⊤ | 𝐴 | 𝐶 ⊓𝐶 | ∃𝑟 .𝐶 where 𝐴 ranges over all CNs and 𝑟 over

all RNs. We call ⊤ the top CD,𝐶 ⊓𝐷 the conjunction of𝐶 and 𝐷 , and

∃𝑟 .𝐶 the existential requirement on 𝑟 with intent 𝐶 . Since nestings
of and order in conjunctions are irrelevant, we also use conjunctionsd

Φ of finite sets Φ of CDs. CNs and existential requirements are

atoms and each CD 𝐶 is a conjunction of atoms, called the top-level
conjuncts of𝐶 and gathered in the set Conj(𝐶). A terminological box
(TBox) T is a finite set of concept inclusions (CIs) 𝐶 ⊑ 𝐷 involving

CDs𝐶, 𝐷 , and an EL ontology is such a TBox without anything else.

An assertion box (ABox) A is a finite set of concept assertions (CAs)
𝑎 :𝐶 and role assertions (RAs) (𝑎, 𝑏) : 𝑟 involving INs 𝑎, 𝑏, CDs𝐶 , and
RNs 𝑟 . A KB consists of an ABox and a TBox.

The semantics of EL can be defined by translation into the two-

variable fragment of first-order logic (FOL): 𝜏𝑥 (⊤) is any tautology

with one free variable 𝑥 , 𝜏𝑥 (𝐴) := 𝐴(𝑥), 𝜏𝑥 (𝐶⊓𝐷) := 𝜏𝑥 (𝐶)∧𝜏𝑥 (𝐷),
𝜏𝑥 (∃𝑟 .𝐶) := ∃𝑦. (𝑟 (𝑥,𝑦) ∧ 𝜏𝑦 (𝐶)) where 𝜏𝑦 is obtained from 𝜏𝑥 by

swapping 𝑥 and 𝑦, 𝜏 (𝐶 ⊑ 𝐷) := ∀𝑥 . (𝜏𝑥 (𝐶) → 𝜏𝑥 (𝐷)), 𝜏 (𝑎 : 𝐶) :=

𝜏𝑥 (𝐶) [𝑥/𝑎], 𝜏 ((𝑎, 𝑏) : 𝑟) := 𝑟 (𝑥,𝑦) [𝑥/𝑎,𝑦/𝑏], 𝜏 (K) :=
∧{ 𝜏 (𝛼) |

𝛼 ∈ K }. Thus, EL inherits the model-theoretic semantics of FOL,

defined by means of interpretations I consisting of a non-empty

set Dom(I), called the domain, and an interpretation function ·I
that gives meaning to the INs, CNs, and RNs by assigning them

to elements, subsets, and binary relations of Dom(I), respectively.
We say that 𝛼 entails 𝛽 and write 𝛼 |= 𝛽 if 𝜏 (𝛼) |= 𝜏 (𝛽), i.e. if every
model of 𝜏 (𝛼) is a model of 𝜏 (𝛽). Unlike FOL, entailment in EL is

decidable, viz. in polynomial time. We say that a CD 𝐶 is subsumed
by a CD 𝐷 w.r.t. a TBox T , written 𝐶 ⊑T 𝐷 , if T entails 𝐶 ⊑ 𝐷 .

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

Quantified ABoxes. A quantified ABox (qABox) ∃𝑋 .A consists of

a finite set 𝑋 of variables and a finite set A, called matrix, that
contains assertions 𝑢 :𝐴 and (𝑢, 𝑣) : 𝑟 involving INs or variables 𝑢, 𝑣 ,
CNs 𝐴, and RNs 𝑟 . Each variable in 𝑋 and each IN is an object of
∃𝑋 .A. A KB can now also consist of a qABox and a TBox. QABoxes

are ABoxes in which variables can be additionally used in place

of INs. Since these variables are existentially quantified, they are

“anonymous individuals” whose names are not exposed. Moreover,

only CNs are allowed within qABoxes, but complex CDs can be

represented by the use of variables— e.g. the ABox {𝑎 : (𝐴⊓∃𝑟 .𝐵)}
is equivalent to the qABox ∃{𝑥}. {𝑎 :𝐴, (𝑎, 𝑥) :𝑟, 𝑥 :𝐵}. Conjunctive
queries (CQs), primitive positive formulas (pp-formulas) in FOL,

and qABoxes are syntactic variants of each other. The union of two

qABoxes is ∃𝑋 .A ∪ ∃𝑌 .B := ∃ (𝑋 ∪ 𝑌) . (A ∪ B) where w.l.o.g.
𝑋 ∩ 𝑌 = ∅ (otherwise variables need to be renamed).

A qABox ∃𝑋 .A can be translated into FOL by 𝜏 (∃𝑋 .A) :=

∃𝑥1 . · · · ∃𝑥𝑛 .
∧{ 𝜏 (𝛼) | 𝛼 ∈ A } where 𝑋 = {𝑥1, . . . , 𝑥𝑛} is an

arbitrary enumeration, and a KB K consisting of ∃𝑋 .A and a

TBox T is translated to 𝜏 (K) := 𝜏 (∃𝑋 .A) ∧ 𝜏 (T). If K |= 𝛽 , then

we also say that ∃𝑋 .A entails 𝛽 w.r.t. T and write ∃𝑋 .A |=T 𝛽 .

Entailment between two qABoxes is an NP-complete problem,

but whether a qABox entails an ABox can be decided in polynomial

time. Without a TBox, ∃𝑋 .A |= ∃𝑌 .B iff. there is a homomorphism
from ∃𝑌 .B to ∃𝑋 .A, which is a function ℎ that sends each IN 𝑎

to itself and each variable in 𝑌 to an object of ∃𝑋 .A such that

applying ℎ within any assertion in B yields an assertion inA. With

a TBox T , entailment can be decided by first saturating ∃𝑋 .A by

means of T (i.e. compute the chase or the universal model) and

then checking for a homomorphism from ∃𝑌 .B to the saturation.

For some applications model-based entailment is too strong and

it suffices to compare qABoxes based on their consequences from

a query language. In DL, important query languages are IQ and

IRQ . The former consists of all CAs (sometimes also called instance
queries, IQs), and the latter of all CAs and RAs. As further query

languages, CQ consists of all qABoxes, and gloIRQ extends IRQ
by all global IQs ∃{𝑥}. {𝐶 (𝑥)} where 𝐶 is a CD. Given a query

languageQL, we say that∃𝑋 .A QL-entails ∃𝑌 .B w.r.t.T andwrite

∃𝑋 .A |=T
QL ∃𝑌 .B if ∃𝑌 .B |=T 𝛾 only if ∃𝑋 .A |=T 𝛾 for each

query 𝛾 ∈ QL. Since the TBox is fixed, CQ-entailment coincides

with model-based entailment. In contrast, IQ- and IRQ-entailment

are decidable in polynomial time. Without a TBox, ∃𝑋 .A |=IQ
∃𝑌 .B iff. there is a simulation from ∃𝑌 .B to ∃𝑋 .A, which is

a “non-functional homomorphism” that can relate each object of

∃𝑌 .B to multiple objects of ∃𝑋 .A. With a TBox T , we check for

a simulation from ∃𝑌 .B to the IQ-saturation of ∃𝑋 .A w.r.t. T ,

which is obtained by materializing all CAs implied by the TBox:

while there is an object 𝑢 and a CI 𝐶 ⊑ 𝐷 such that the matrix of

the current qABox entails 𝑢 :𝐶 but not 𝑢 :𝐷 , we extend the current

qABox with 𝑢 : 𝐷 but represented by the use of variables if 𝐷 is

complex. Unlike the above saturations, we can here reuse variables

that have already been introduced for the same CD (w.l.o.g. denoted

as 𝑥𝐸 where 𝐸 is the subconcept to be represented) and thus the

IQ-saturation can be computed in polynomial time. Alternatively,

the canonical model of the input KB computed by an IQ-complete

calculus (such as the completion procedure [1, 20]) can be treated

as a qABox to obtain the IQ-saturation, though might be larger

than necessary. Furthermore, ∃𝑋 .A |=T
IRQ ∃𝑌 .B iff. ∃𝑋 .A |=T

IQ
∃𝑌 .B and each RA in B involving only INs is also contained in

A. Technical details on these model-based and consequence-based

entailment relations can be found in [4, 6, 8, 9, 11, 13] and the

accompanying extended versions.

The following lemma shows that IRQ-entailment is invariant

under addition of ontological knowledge.

Lemma 2.C. If ∃𝑌 .B |=IRQ ∃𝑍 .C, then ∃𝑌 .B |=T
IRQ ∃𝑍 .C.

Proof. Consider a query 𝛾 ∈ IRQ with ∃𝑍 .C |=T 𝛾 . If 𝛾 =

(𝑎, 𝑏) : 𝑟 is a RA, then it is contained in C. The assumption yields

𝛾 ∈ B, and so we have ∃𝑌 .B |=T 𝛾 .

Now let 𝛾 = 𝑎 :𝐶 be CA. According to Lemma 22 in [26] there is

a CD 𝐷 such that ∃𝑍 .C |= 𝑎 : 𝐷 and 𝐷 ⊑T 𝐶 . Then ∃𝑌 .B |= 𝑎 : 𝐷

by assumption, and thus ∃𝑌 .B |=T 𝑎 :𝐶 . □

Note, however, that IRQ-entailment is not invariant under ad-

dition of any knowledge, i.e. ∃𝑌 .B |=IRQ ∃𝑍 .C does not imply in

general that ∃𝑋 .A ∪ ∃𝑌 .B |=T
IRQ ∃𝑋 .A ∪ ∃𝑍 .C. One might be

tempted to use similar arguments as in the above proof, and addi-

tionally try to show that there is a simulation from ∃𝑋 .A ∪∃𝑍 .C
to ∃𝑋 .A ∪ ∃𝑌 .B. The precondition ∃𝑌 .B |=IRQ ∃𝑍 .C would

already yield a simulation𝔖 from ∃𝑍 .C to ∃𝑌 .B, and at first one

might believe that one only needs to extend𝔖 by all reflexive pairs

with objects of ∃𝑋 .A, i.e. show that𝔖 ∪ { (𝑥, 𝑥) | 𝑥 ∈ 𝑋 } is the
required simulation. But this does not work. A counterexample is

as follows.

• ∃𝑌 .B := ∃{𝑦1, 𝑦2, 𝑦3}. {(𝑎,𝑦1) :𝑟, (𝑎,𝑦2) :𝑟, 𝑦2 :𝐶, (𝑦1, 𝑏) :𝑠,
𝑏 : 𝐷, (𝑦2, 𝑦3) : 𝑠}

• ∃𝑍 .C := ∃{𝑧1, 𝑧2, 𝑧3}. {(𝑎, 𝑧1) :𝑟, (𝑎, 𝑧2) :𝑟, 𝑧2 :𝐶, (𝑧1, 𝑧3) :𝑠,
𝑧3 : 𝐷, (𝑧2, 𝑏) : 𝑠}

It is easy to verify that ∃𝑌 .B |=IRQ ∃𝑍 .C. Now with the qABox

∃𝑋 .A := ∃∅. {𝑏 : 𝐸}, we have that ∃𝑋 .A ∪ ∃𝑌 .B ̸|=IRQ ∃𝑋 .A ∪
∃𝑍 .C since the latter entails 𝑎 : ∃𝑟 . (𝐶 ⊓∃𝑠 .𝐸) but the former not.

Optimal Repairs in EL. There is no general approach to computing

optimal repairs, and we will now recall results obtained so far.

Previous research focused on repair requests without an addition

part. It seems that abduction methods [17, 21, 22] could be used to

treat the addition part but it is still unclear how optimality could

be achieved, and thus we leave this for future research. Instead,

we just assume that the addition part P+ is already entailed by the

input KB (which could be achieved by simply adding all statements

in P+ to the KB), and so P+ is only to be preserved by every repair.

Optimal repairs need not exist in every setting [15]. EL TBoxes

can be optimally repaired when the left-hand sides of CIs are fixed

[23, 24]. Moreover, we can compute optimal repairs of KBs consist-

ing of a refutable qABox and a static TBox [4, 6, 8, 9, 11, 12, 13]. In

the following, we will reformulate definitions regarding optimal

repairs for some of these settings and recall main results.

Assume that the input KBK consists of a refutable qABox ∃𝑋 .A
and a static EL TBox T , and further let QL be the query language

used to access this KB. Since such KBs are always consistent, we do

not need to explicitly require consistency. Now a repair request is a
finite subset P of QL and, as explained above, such that the given

KB K entails its addition part P+. Thus the optimal repairs are

qABoxes entailed by K since no new knowledge must be added to

Francesco Kriegel

make P+ entailed. In this sense, a QL-repair of K for P (also called

a QL-repair of ∃𝑋 .A for P w.r.t. T) is a qABox ∃𝑌 .B such that

(R1) ∃𝑋 .A |=T
QL ∃𝑌 .B,

(R2) ∃𝑌 .B |=T 𝛼 for each +𝛼 ∈ P, and

(R3) ∃𝑌 .B ̸|=T 𝛽 for each −𝛽 ∈ P.

∃𝑌 .B is optimal if there is no QL-repair ∃𝑍 .C that strictly QL-
entails ∃𝑌 .B (i.e. ∃𝑍 .C |=T

QL ∃𝑌 .B but ∃𝑌 .B ̸|=T
QL ∃𝑍 .C).

The set of optimal QL-repairs can effectively be computed and

every QL-repair is QL-entailed by an optimal one (i.e. each repair

request is optimally coverable) in the following situations: in EL
withQL = IQ and arbitrary TBoxes and withQL = CQ but P ⊆ IQ
and cycle-restricted TBoxes [6, 13], in EL with QL = CQ but P ⊆
IQ and arbitrary TBoxes but infinite repairs [4], in ELROI(⊥)3
with QL = CQ but P ⊆ gloIRQ and terminating TBoxes [9], in

EL with QL = IRQ and arbitrary TBoxes [8, 12], and in EL⊥

withQL = gloIRQ and arbitrary TBoxes [11]. In all aforementioned

cases, a construction of canonical repairs is provided such that every

optimal repair is entailed by a canonical one. We will recall the

construction for EL and QL = IRQ , which is especially interesting

since between EL ABoxes model-based entailment coincides with

IRQ-entailment [8] and qABoxes can represent EL ABoxes.

Let P ⊆ IRQ be a repair request. We use nominals to express

RAs (𝑎, 𝑏) :𝑟 and replace them with CAs 𝑎 :∃𝑟 . {𝑏} [9]. Keep in mind

that each of these CAs contributes the atoms ∃𝑟 . {𝑏} and {𝑏}. Since
entailment between qABoxes is characterized by a rewrite system

that can copy objects into fresh variables and delete assertions [4],

we can construct repairs by copying and deleting too. Moreover,

since optimal repairs retain as many consequences as possible,

we construct them from saturations. The canonical repairs have

a closed-form representation involving copies of the form ⟨⟨𝑢,Φ⟩⟩
where 𝑢 is an object in the saturation and Φ is a repair type, which

specifies what must be deleted for this copy.

More specifically, let ∃𝑋 T .AT
be the IQ-saturation of the in-

put KB. Each repair type Φ for 𝑢 consists of atoms occurring in P
or T 4

and must satisfy the following three conditions:

(RT1) AT |= 𝑢 :𝐶 for each atom 𝐶 in Φ.
(RT2) 𝐶 @∅ 𝐷 for each two atoms 𝐶 , 𝐷 in Φ.
(RT3) For each atom𝐶 inΦ and each CI 𝐸⊑𝐹 inT withAT |= 𝑢:𝐸5

and 𝐹 ⊑T 𝐶 , there is an atom 𝐷 in Φ with 𝐸 ⊑∅ 𝐷 .6

In order to ensure that each copy ⟨⟨𝑢,Φ⟩⟩ is no instance of any

atom in Φ, the matrix of each canonical IRQ-repair consists of the

following assertions:

(CR1) ⟨⟨𝑢,Φ⟩⟩ :𝐴 if 𝑢 :𝐴 ∈ AT
and 𝐴 ∉ Φ, and

(CR2) (⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩) : 𝑟 if (𝑢, 𝑣) : 𝑟 ∈ AT
and, for each ∃𝑟 .𝐶 ∈ Φ

with AT |= 𝑣 :𝐶 , there is an atom 𝐷 ∈ Ψ with 𝐶 ⊑∅ 𝐷 .

We finally need to select which of the copies ⟨⟨𝑎,Φ⟩⟩ is used as the

IN 𝑎. For this purpose, a repair seed S maps each IN 𝑎 to a repair

type S𝑎 for 𝑎 such that:

3ELROI(⊥) is the normal form of Horn-ALCROI where, additionally, regular

role expressions can be used in parts of negative polarity, e.g. in premises of CIs and

in repair requests.

4Atoms(T, P) denotes the set of all atoms occurring in P or T .

5
Here the quantifier “∃𝑋T . ” is dropped to allow named access to the variables, which

would otherwise be protected from outside access. This is only done in technical

considerations and must not be allowed when users access qABoxes.

6
This is the revised, more efficient definition as in [4] and differs from earlier articles.

(RS1) For each +𝑎 :𝐶 in P, there is no atom 𝐷 ∈ S𝑎 with𝐶 ⊑T 𝐷 .

(RS2) For each + (𝑎, 𝑏) : 𝑟 in P and for each ∃𝑟 .𝐶 ∈ S𝑎 with

∃𝑋 .A |=T 𝑏 :𝐶 , there is an atom 𝐷 ∈ S𝑏 with 𝐶 ⊑∅ 𝐷 .

(RS3) For each −𝑎 :𝐶 in P with ∃𝑋 .A |=T 𝑎 :𝐶 ,7 there is an atom

𝐷 ∈ S𝑎 with 𝐶 ⊑∅ 𝐷 .

(RS4) For each − (𝑎, 𝑏) : 𝑟 in P with ∃𝑋 .A |=T (𝑎, 𝑏) : 𝑟 , we have
∃𝑟 . {𝑏} ∈ S𝑎 .

(RS5) {𝑎} ∉ S𝑎
(RS1) is new since previous work on optimal repairs in EL has

assumed P+ = ∅. Support can be added either through the static

part of the input KB [9] or by means of Lemma 3 in [10], from

which (RS1) is derived. Also Condition (RS2) is new and together

with Instruction (CR2) ensures that every +(𝑎, 𝑏) : 𝑟 is entailed, as
observed in Lemma 4.5 in [12]. Moreover, the interplay of Con-

ditions (RS4) and (RS5) and Instruction (CR2) makes sure that no

− (𝑎, 𝑏) : 𝑟 is entailed. Only (RS3) is from the original definition

and guarantees together with Instructions (CR1) and (CR2) that

no −𝑎 : 𝐶 is entailed [4, 6]. In the end, the canonical IRQ-repair
induced by S is denoted as

repTIRQ (∃𝑋 .A,S)

and its variable set consists of all copies ⟨⟨𝑢,Φ⟩⟩ except those of the
form ⟨⟨𝑎,S𝑎⟩⟩, which rather are synonyms of the INs 𝑎. This repair

is saturated, i.e. it entails a query 𝛾 ∈ IRQ w.r.t. T iff. it entails 𝛾

w.r.t. the empty TBox.

Evidently, canonical repairs are computable in polynomial time

w.r.t. data complexity, i.e. computation time is dominated by T
and P. In practice we should not compute the whole exponentially

large canonical repair but only an equivalent sub-qABox, called

optimized repair [6, 9]. Experiments have shown that such optimized

repairs of real-world KBs can indeed be computed in practice [6].

With the revised definition of repair types used here a further speed-

up is expected, but this would still need to be verified empirically.

Not every canonical repair is optimal, but every optimal repair

is equivalent to a canonical one. Thus in order to get all optimal

repairs in exponential time, we can enumerate all repair seeds,

compute the induced repairs, and then filter out the non-optimal

ones. Alternatively to filtering the repairs, we could also filter the

repair seeds since it is decidable in polynomial time whether a

repair seed induces an optimal repair [10, 12].

Comparison of Repair Seeds. IRQ-entailment between canonical

repairs can be characterized with a relation between their seeds.

Let Φ and Ψ be sets of CDs. We say that Φ is covered by Ψ and

write Φ ≤ Ψ if, for each 𝐶 ∈ Φ, there is 𝐷 ∈ Ψ with 𝐶 ⊑∅ 𝐷 .

Given repair seeds S and S′
, we say that S is IRQ-covered by S′

and write S ≤IRQ S′
if S𝑎 ≤ S′

𝑎 for each IN 𝑎 and furthermore

Succ(S′
𝑎, 𝑟 , 𝑏) ≤ S′

𝑏
implies Succ(S𝑎, 𝑟 , 𝑏) ≤ S𝑏 for each RA (𝑎, 𝑏):𝑟

in ∃𝑋 .A, where

Succ(Φ, 𝑟 , 𝑣) := {𝐶 | ∃𝑟 .𝐶 ∈ Φ and AT |= 𝑣 :𝐶 }.

Note that, for each RA (𝑎, 𝑏):𝑟 in∃𝑋 .A, we have Succ(S𝑎, 𝑟 , 𝑏) ≤ S𝑏
iff. the repair induced by S contains (𝑎, 𝑏) :𝑟 , because ⟨⟨𝑎,S𝑎⟩⟩ and 𝑎
are synonyms, likewise for 𝑏, and Instruction (CR2) is equivalent to:

• (⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩) : 𝑟 if (𝑢, 𝑣) : 𝑟 ∈ AT
and Succ(Φ, 𝑟 , 𝑣) ≤ Ψ.

7
This is equivalent to AT |= 𝑎 :𝐶 since ∃𝑋T .AT

is the saturation.

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

Lemma 2.D. If S ≤IRQ S′, then repTIRQ (∃𝑋 .A,S) |=IRQ
repTIRQ (∃𝑋 .A,S′).

Proof. Analogously as in the proof of Proposition 27 in [14]

one can show that the relation { (⟨⟨𝑢,Φ′⟩⟩, ⟨⟨𝑢,Φ⟩⟩) | Φ ≤ Φ′ } is
a simulation from repTIRQ (∃𝑋 .A,S′) to repTIRQ (∃𝑋 .A,S), and
thus each CA entailed by the repair induced by S′

is also entailed

by the repair induced by S. Since Succ(S′
𝑎, 𝑟 , 𝑏) ≤ S′

𝑏
implies

Succ(S𝑎, 𝑟 , 𝑏) ≤ S𝑏 for each RA (𝑎, 𝑏) : 𝑟 in ∃𝑋 .A, we further

conclude that each RA entailed by the repair induced by S′
is

entailed by the repair induced byS as well. Thus, repTIRQ (∃𝑋 .A,S)
IRQ-entails repTIRQ (∃𝑋 .A,S′). □

The converse direction also holds w.r.t. the old definition of repair

types used in [6, 8, 12, 13]. For the more efficient definition this is

currently unclear, but we won’t need it here.

TwoApproaches to Repairing for Role Assertions. There are twoways
to treat the RAs in the removal part P− . Here, we use nominals

to replace each RA (𝑎, 𝑏) : 𝑟 with the equivalent CA 𝑎 : ∃𝑟 . {𝑏} [9].
Alternatively, we could first repair for all RAs in P− and then repair

for all CAs in P− [12].

With the first option (stripped down to EL as above) we have the

additional atoms ∃𝑟 . {𝑏} and {𝑏} for each RA (𝑎, 𝑏) : 𝑟 in P− . Since
they cannot occur in the EL TBox T , they are not implied by other

CDs and thus will not be treated by Condition (RT3) in any way. In

order to obtain a repair seed S, it is only necessary to include the

atom ∃𝑟 . {𝑏} in the repair type S𝑎 for every (𝑎, 𝑏) : 𝑟 in P− , and to

require thatS𝑏 must not contain the atom {𝑏}, see Conditions (RS4)
and (RS5). With that, Succ(S𝑎, 𝑟 , 𝑏) cannot be covered by S𝑏 and

thus the induced repair does not entail (𝑎, 𝑏) : 𝑟 . This first option
was easier to implement for us.

In contrast, with the second option we would first compute the

saturation, then copy every IN 𝑎 into a fresh variable 𝑥𝑎 , then delete

all RAs in P− , and finally repair for the rest of P− . The connection
to the first option is as follows. For each nominal {𝑏} coming from

a RA (𝑎, 𝑏) : 𝑟 in P− , copies ⟨⟨𝑏,Φ⟩⟩ in repairs by the first approach

correspond to copies ⟨⟨𝑏,Φ⟩⟩ in repairs by the second approach if

{𝑏} ∉ Φ, and to copies ⟨⟨𝑥𝑏 ,Φ \ {{𝑏}}⟩⟩ otherwise. This is because in
the second approach 𝑏 and 𝑥𝑏 have the same repair types (since the

RAs in P− do not contribute any atoms), and in the first approach Φ
is a repair type for𝑏 iff.Φ∪{{𝑏}} is a repair type for𝑏, and the repair
types for 𝑏 not containing {𝑏} are the same in both approaches.

That is, the duplication of INs is implicitly done by the first option

employed here.

3 The Smart Interaction Strategy
When a KB consisting of a qABox ∃𝑋 .A and a static EL TBox T
should be repaired for a feasible repair request P, it is not useful

to compute all optimal repairs by enumerating all repair seeds and

then let the experts choose among them. With that approach the

workload of the experts would be too high since in the worst case

there are exponentially many optimal repairs and each of them

might be of exponential size (even their optimized variant).

From a practical perspective, not every optimal repair makes

sense in the domain of interest. This is because the unwanted con-

sequences in P− as well as their logical causes w.r.t. T may contain

conjunctions, and in order to prevent entailment of a conjunction

it suffices to choose one of its conjuncts and make it not entailed.

The construction of an optimal repair is thus non-deterministic

and there are multiple repair seeds in general. Instead of making

random choices, we recommend to interact with the experts to

refine the given repair request P to a deterministic one and so

identify a useful optimal repair. With our interactive approach the

experts need to answer at most polynomially many questions, i.e.

their workload is significantly lower.

This section presents the smart interaction strategy, which runs

in two phases. By means of backward chaining, Phase 1 computes

causes of identified errors and interacts with the experts when

choices must be made. Phase 1 terminates with a deterministic

refinement of the initially provided repair request P. Already with

Phase 1 every optimal repair can be reached. Phase 2 is concerned

with disputable consequences: they first need to be decided by the

experts, and then Phase 2 proceeds with the further refined repair

request like Phase 1. In the end, a repair that is optimal w.r.t. the

given repair request P and all experts answers has been identified.

3.1 Fundamentals of the Strategy and Phase 1
In the following, let P0

:= P be the initial repair request. The

strategy maintains three sets. Undecided queries are held by the

set Q, which is initially empty, and all queries currently in Q are

displayed to the experts for the purpose of decision making, e.g.

in form of a list with action buttons for each entry (accept and

reject). Queries accepted by the experts are added to P+, whereas
rejected queries are added to P− . Initially all queries not entailed

by the input KB are removed from P− since for these no repair is

necessary. The strategy evolves as follows, always ensuring that

P+ ⊎ P− refines P0
and is feasible (i.e. P+ ̸ |=T 𝛽 for each 𝛽 ∈ P−).

(SIS1) Whenever a non-atomic query 𝛼 has been added to P− , it
needs to be inspected to find out why it should not hold.

• If 𝛼 has the form 𝑎 :𝐶 where 𝐶 is a conjunction, then

for each top-level conjunct 𝐷 ∈ Conj(𝐶), the query
𝑎 : 𝐷 is added to Q.

• If 𝛼 has the form 𝑎 : ∃𝑟 .𝐶 , then for each IN 𝑏 where

∃𝑋 .A entails (𝑎, 𝑏) :𝑟 and𝑏 :𝐶 w.r.t. T , the two queries

(𝑎, 𝑏) : 𝑟 and 𝑏 :𝐶 are added to Q.

Nothing needs to be done for atomic queries, i.e. CAs 𝑎 :𝐴

where𝐴 is a CN or RAs (𝑎, 𝑏) : 𝑟 , since these can be directly

deleted from the qABox.

(SIS2) Furthermore, we need to ensure that inference with

the TBox cannot restore a rejected query: for each re-

jected query 𝛼 added to P− , all implicant queries 𝛽 with

∃𝑋 .A |=T 𝛽 and 𝛽 |=T 𝛼 must be rejected too.

• RAs have no implicants w.r.t. an EL TBox and thus

need no further treatment.

• For CAs, it suffices to restrict attention to the impli-

cants as in Condition (RT3): when a CA 𝑎 :𝐶 has been

added to P− , we add to P− all CAs 𝑎 : 𝐷 where 𝐷 ⊑ 𝐸

is a CI in T with ∃𝑋 .A |=T 𝑎 : 𝐷8
and 𝐸 ⊑T 𝐶 .

8
Since the IN 𝑎 already occurs in the input qABox ∃𝑋 .A, we do not need to use the

saturation here but must thus take the TBox in the entailment into account.

Francesco Kriegel

(SIS3) Last, inherited answers are computed after every answer

received from the experts. To this end, each currently un-

decided query 𝛼 in Q is checked.

• If P+ entails 𝛼 w.r.t. T , then 𝛼 inherits acceptance and

is moved from Q to P+.
• If P+ ∪ {𝛼} entails w.r.t. T any assertion in P− , then

𝛼 inherits rejection and is moved from Q to P− .

These instructions enable control of the delete operation. Phase 1

ends as soon as no undecided queries are contained in Q anymore.

As all queries are built from the polynomially many sub-CDs of

the input and EL allows for polynomial-time reasoning, Phase 1

terminates in polynomial time.

3.2 Induced Repairs after Phase 1
We denote by P1

+ and P1

− the sets of accepted and, respectively,

rejected queries at the end of Phase 1. Then P1
:= P1

+ ⊎ P1

− is a

repair request that refines the initial repair requestP0
. Furthermore,

we define the mapping S1
that sends each IN 𝑎 to the set

S1

𝑎 := Max{𝐶 | 𝑎 :𝐶 ∈ P1

− } ∪ { ∃𝑟 . {𝑏} | (𝑎, 𝑏) : 𝑟 ∈ P1

− },
where the operator Max selects the CDs that are maximal w.r.t.

subsumption ⊑∅
. We first show that this definition yields a repair

seed for P1
. It follows that its induced repair entails each accepted

query but no rejected query, i.e. the identified repair actually reflects

all decisions made by the experts. In particular, it is a repair for P0

since P1
refines P0

.

Lemma 3.1. S1 is a repair seed for P1 and thus also for P0.

Proof. We first explain why each set S1

𝑎 is a repair type for 𝑎.

(RT1) Condition (RT1) is satisfied since each query shown to the

experts is entailed by the input qABox ∃𝑋 .A w.r.t. the

given TBox T .

(RT2) The operator Max in the above definition ensures that Con-

dition (RT2) holds.

(RT3) Since Instruction (SIS2) ensures that causes of rejected

queries are identified and treated as rejected too, and since

Instruction (SIS1) ensures that, for each rejected query 𝑎 :𝐶 ,

there is a rejected query 𝑎 :𝐷 with 𝐷 an atom subsuming𝐶 ,

Condition (RT3) is satisfied as well.

Now we verify that S1
satisfies the five conditions of a repair seed.

(RS1) Let +𝑎 :𝐶 ∈ P1
and assume to the contrary that there was

an atom 𝐷 ∈ S1

𝑎 with 𝐶 ⊑∅ 𝐷 , i.e. −𝑎 : 𝐷 ∈ P1
. Then P1

+
would entail the rejected query 𝑎 : 𝐷 , which contradicts

Instruction (SIS3): if 𝑎 :𝐶 appeared first, then 𝑎 : 𝐷 would

have inherited acceptance, and otherwise 𝑎 :𝐶 would have

inherited rejection.

(RS2) by Lemma 3.A, see below.

(RS3) by the very definition of S1
since initially all CAs in P0

− and

entailed by the input KB are in P− . To see this, consider a

CA 𝑎 : 𝐶 in P0

− with ∃𝑋 .A |=T 𝑎 : 𝐶 . Then P− contains

𝑎 : 𝐶 . If 𝐶 is no atom, then Instruction (SIS1) adds 𝑎 : 𝐷

for all 𝐷 ∈ Conj(𝐶) to the set Q of undecided queries. For

Instruction (SIS3) at least one of them must be rejected: if

the user has accepted all but a last one, say 𝑎 : 𝐸, then P+
contains 𝑎 :𝐷 for all𝐷 ∈ Conj(𝐶)\{𝐸} and thus 𝑎 :𝐸 inherits

rejection since P+ ∪ {𝑎 :𝐸} |=T 𝑎 :𝐶 . In any case, at the end

of Phase 1 there is a top-level conjunct 𝐷 ∈ Conj(𝐶) with
𝑎 :𝐷 ∈ P1

− . Then𝐶 ⊑∅ 𝐷 and, moreover, S1

𝑎 contains either

𝐷 itself or, for the operator Max, an atom subsuming 𝐷 .

Thus 𝐶 ⊑∅ 𝐹 for some 𝐹 ∈ S1

𝑎 .

(RS4) by the very definition of S1
since initially all RAs in P0

− and

entailed by the input KB are in P− .
(RS5) Every query 𝑎 : {𝑎} is automatically accepted by Instruc-

tion (SIS3). None of them is therefore in P1

− and thus

{𝑎} ∉ S1

𝑎 . □

Lemma 3.A. Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏
for each RA (𝑎, 𝑏) : 𝑟 in ∃𝑋 .A

and not rejected during Phase 1 (i.e. not in P1

−).

Proof. First note that ∃𝑟 . {𝑏} is not in S1

𝑎 since (𝑎, 𝑏) :𝑟 has not
been rejected in Phase 1. Now consider an existential requirement

∃𝑟 .𝐶 in S1

𝑎 with ∃𝑋 .A |=T 𝑏 : 𝐶 . This means that 𝑎 : ∃𝑟 .𝐶 is a

rejected query in P1

− . After it has been rejected, the new queries

(𝑎, 𝑏) : 𝑟 and 𝑏 :𝐶 are generated by Instruction (SIS1). Since the first

has not been rejected, the second must have been, i.e. 𝑏 :𝐶 is added

to P− . Subsequently, also a query 𝑏 : 𝐷 where 𝐷 ∈ Conj(𝐶) must

have been rejected due to Instructions (SIS1) and (SIS3), and thus

S1

𝑏
contains an atom subsuming 𝐶 . □

Next, we show that the strategy is fine-grained enough in the

sense that a unique repair is identified.

Proposition 3.2. P1 is a deterministic repair request, for which
the only optimal IRQ-repair is the one induced by S1.

Proof. We show that every IRQ-repair of the input KB for P1

is IRQ-entailed by repTIRQ (∃𝑋 .A,S1). To this end, consider an

IRQ-repair ∃𝑌 .B for P1
. Then there is a repair seed SF

such that

the induced canonical IRQ-repair repTIRQ (∃𝑋 .A,SF) IRQ-entails

∃𝑌 .B [6, 8]. This seedSF
is defined by means of a mapping F with

which the aforementioned IRQ-entailment was verified—here it

suffices to know that the repair types SF
𝑎 have the following form:

SF
𝑎 = Max{𝐶 | 𝐶 ∈ Atoms(T ,P), ∃𝑋 .A |=T 𝑎 :𝐶,

and ∃𝑌 .B ̸|=T 𝑎 :𝐶 }.
According to Lemma 2.D it suffices to verify the follow-

ing two claims since then repTIRQ (∃𝑋 .A,S1) IRQ-entails

repTIRQ (∃𝑋 .A,SF) and thus also ∃𝑌 .B.

(1) S1

𝑎 ≤ SF
𝑎 for each IN 𝑎.

(2) Succ(SF
𝑎 , 𝑟 , 𝑏) ≤ SF

𝑏
implies Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏
for each

RA (𝑎, 𝑏) : 𝑟 in ∃𝑋 .A.

We start with the first claim. To this end, consider an atom 𝐶 ∈ S1

𝑎 ,

i.e. the assertion 𝑎 :𝐶 is in P1

− . Since ∃𝑌 .B is a repair for P1
, it does

not entail this assertion w.r.t. T . Furthermore, this assertion 𝑎 :𝐶

is entailed by the input qABox ∃𝑋 .A w.r.t. T , since otherwise it

would not have been considered as a query by the smart interaction

strategy and could then not be in P1

− . Therefore SF
𝑎 contains 𝐶

itself or another atom subsuming 𝐶 . Since this holds for all 𝐶 , we

conclude that S1

𝑎 ≤ SF
𝑎 for every IN 𝑎.

It remains to verify the second claim. Assume that (𝑎, 𝑏) : 𝑟 is
a RA in ∃𝑋 .A with Succ(SF

𝑎 , 𝑟 , 𝑏) ≤ SF
𝑏
, i.e. repTIRQ (∃𝑋 .A,SF)

contains the RA (𝑎, 𝑏) : 𝑟 . Since repTIRQ (∃𝑋 .A,SF) is a repair for

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

P1
, this RA is not contained in P1

− . By Lemma 3.A we infer that

Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏
. □

As first main result, we verify that every optimal repair can really

be reached with the strategy.

Theorem 3.3. For every optimal IRQ-repair for P0, an inducing
repair seed can be identified with Phase 1.

Proof. Consider an optimal IRQ-repair for P0
. Since every

repair is entailed by a canonical repair, every optimal repair is

equivalent to a canonical repair. Thus, we can assume w.l.o.g. that

the considered optimal repair is of the form repTIRQ (∃𝑋 .A,S) for
a repair seed S.

During Phase 1, we accept an undecided query iff. it follows

from repTIRQ (∃𝑋 .A,S). We will show that repTIRQ (∃𝑋 .A,S) is
IRQ-entailed by repTIRQ (∃𝑋 .A,S1), where S1

is the repair seed

obtained at the end of Phase 1. Optimality then yields that both are

IRQ-equivalent.

First, we show two claims.

(1) repTIRQ (∃𝑋 .A,S) entails each accepted query in P1

+ .

We show the claim by induction. Initially, P+ = P0

+ and

each query in this set is entailed by repTIRQ (∃𝑋 .A,S) by
assumption. Next, a query that is manually added to P+ fol-

lows from repTIRQ (∃𝑋 .A,S) according to the above speci-

fication. Last, a query added to P+ by inheritance in Instruc-
tion (SIS3) follows from the set of all previously accepted

queries. By induction hypothesis, all these previously ac-

cepted queries follow from repTIRQ (∃𝑋 .A,S), and thus also
the newly added one.

(2) repTIRQ (∃𝑋 .A,S) entails no rejected query in P1

− .

Again, we use induction. In the beginning we have P− =

P0

− and since repTIRQ (∃𝑋 .A,S) is a repair for P0
it does

not entail any query in P− . Next, each query manually

added to P− according the above specification is not en-

tailed by repTIRQ (∃𝑋 .A,S). Last, consider a query 𝛼 added

to P− by inheritance in Instruction (SIS3), i.e. there is a pre-

viously rejected query 𝛽 in P− with P+ ∪ {𝛼} |=T 𝛽 . By in-

duction hypothesis, 𝛽 is not entailed by repTIRQ (∃𝑋 .A,S),
and the first claim above yields that P+ is entailed by

repTIRQ (∃𝑋 .A,S). It follows that 𝛼 cannot be entailed by

repTIRQ (∃𝑋 .A,S).

We proceed with proving that repTIRQ (∃𝑋 .A,S1) |=IRQ
repTIRQ (∃𝑋 .A,S). To this end, consider a CA 𝑎 : 𝐶 not entailed

by repTIRQ (∃𝑋 .A,S1). If this CA is not entailed by the input KB,

then it cannot be entailed by repTIRQ (∃𝑋 .A,S) either. Otherwise,
Lemma XII in the erratum to [4, 5] yields an atom 𝐷 ∈ S1

𝑎 with

𝐶 ⊑T 𝐷 , and thus 𝑎 : 𝐷 is a rejected query in P1

− . By Claim 2

above we infer that repTIRQ (∃𝑋 .A,S) does not entail 𝑎 : 𝐷 , and

thus neither 𝑎 :𝐶 .

It remains to consider the RAs. Let (𝑎, 𝑏) : 𝑟 be not entailed

by repTIRQ (∃𝑋 .A,S1). Since in EL entailment of a RA is the

same as containment of it, we infer that (𝑎, 𝑏) : 𝑟 is not contained
in repTIRQ (∃𝑋 .A,S1) either. If the input KB does not contain

this RA, then neither does repTIRQ (∃𝑋 .A,S). Otherwise, we have
Succ(S1

𝑎 , 𝑟 , 𝑏) ≰ S1

𝑏
by definition. Lemma 3.A yields (𝑎, 𝑏) : 𝑟 ∈ P1

−
and thus repTIRQ (∃𝑋 .A,S) does not entail (𝑎, 𝑏) : 𝑟 by Claim 2

above. □

3.3 Control of the Copy Operation
So far, Phase 1 only allows to control the delete operation, i.e. the

repair might contain undesired copies. On the one hand, such a sit-

uation can only occur when the input is insufficiently specified: the

repair request does not preclude these copies and thus an optimal

repair will contain them. On the other hand, these copies might not

be immediately problematic since they could only later be revealed

when the repair is queried— then one can simply repair again.
9

In order to also control the copy operation and thus the creation

of copies, we can employ the following additional instruction.

(SIS4) When a query 𝑎 : ∃𝑟1 . · · · ∃𝑟𝑛 .𝐶 has been added to P− , the
experts needs to specify which copies of objects linked to 𝑎

by an 𝑟1 · · · 𝑟𝑛-chain exist.

• If𝐶 is a conjunction, then the query 𝑎 :∃𝑟1 . · · · ∃𝑟𝑛 .𝐶 \
𝐷 is added to Q for each top-level conjunct 𝐷 ∈
Conj(𝐶), where 𝐶 \ 𝐷 :=

d
Conj(𝐶) \ {𝐷}.

• The query 𝑎 : ∃𝑟1 . · · · ∃𝑟𝑛 . 𝐸 is added to Q for each

CI 𝐸 ⊑ 𝐹 ∈ T with ∃𝑋 .A |=T 𝑎 : ∃𝑟1 . · · · ∃𝑟𝑛 . 𝐸 and

𝐹 ⊑T 𝐶 .

The number of queries to be decided by the experts is polynomial

with Instructions (SIS1), (SIS2), and (SIS3), but can be worst-case

exponential when the additional Instruction (SIS4) is employed.

Another alternative would be to wait until Phase 1 without the

above additional instruction has finished, and then determine su-

perfluous copies as follows. For each object 𝑢 reachable from an

IN 𝑎 by a role path 𝑟1, . . . , 𝑟𝑛 in the input KB, determine all copies

⟨⟨𝑢,Φ1⟩⟩, . . . , ⟨⟨𝑢,Φ𝑛⟩⟩ in the repair induced by S1
that are still reach-

able from 𝑎 by the role path 𝑟1, . . . , 𝑟𝑛 . Then compute characteristic

CDs 𝐶1, . . . ,𝐶𝑛 such that 𝐶𝑖 only has copy ⟨⟨𝑢,Φ𝑖 ⟩⟩ as instance and
present the queries 𝑎 :∃𝑟1 . · · · ∃𝑟𝑛 .𝐶𝑖 to the experts. If such a query
is rejected, then the corresponding copy ⟨⟨𝑢,Φ𝑖 ⟩⟩ is deleted. With

that, still all causes need to be considered by means of Instruc-

tion (SIS2), viz. to avoid re-introduction of the unwanted copies

through the TBox. Since there might be exponentially many copies

in the worst case, this alternative approach could also need exponen-

tially many additional queries (at least one for each reachable copy).

3.4 Disputable Consequences and Phase 2
We now consider the disputable consequences of the input KB

T⊎∃𝑋 .A w.r.t. the refined repair requestP1
obtained fromPhase 1,

which we also call disputable consequence at the end of Phase 1. In
this specific setting, Definitions 2.3 and 2.4 read as follows.

Definition 3.4. A substantiation of a query 𝛾 ∈ IRQ is a qABox

∃𝑌 .B with ∃𝑋 .A ∪ P1

+ |= ∃𝑌 .B and ∃𝑌 .B |=T 𝛾 .

We obtain the following corollary to Lemma 2.B. Regarding the

first statement, recall that we assume ∃𝑋 .A |=T P+ and thus

∃𝑋 .A ∪ P+ |=T 𝛾 iff. ∃𝑋 .A |=T 𝛾 .

9
The author assumes that, in practice, nobody would read a large real-world KB

statement by statement.

Francesco Kriegel

Corollary 3.5. A query 𝛾 ∈ IRQ is a disputable consequence at
the end of Phase 1 iff. it fulfills all of the following conditions:
(DC1) 𝛾 is entailed by ∃𝑋 .A w.r.t. T .
(DC2) 𝛾 has not been decided by the experts or by inheritance, i.e.

• P1

+ ∪ {𝛾} does not entail w.r.t. T any query in P1

− , and
• P1

+ does not entail 𝛾 w.r.t. T .
(DC3) For every substantiation J of 𝛾 , we have that J does not

entail w.r.t. T all accepted queries in P1

+ , or J entails w.r.t. T
some rejected query in P1

− .

Recall from Lemma 3.1 that the repair induced by the repair seed

identified in Phase 1 does not entail any rejected query in P1

− . No
substantiations for a disputable consequence 𝛾 can thus be retained

in the repair, i.e. all bare causes for 𝛾 in the data must be removed.

Since validity of 𝛾 cannot be decided by the information collected

from the experts in Phase 1, and keeping 𝛾 in the repair might not

be reasonable, such disputable consequences 𝛾 are rather shown to

the experts for examination, viz. right in the beginning of Phase 2.

Phase 2 controls the saturation and runs as follows. First we

compute all disputable consequences. Since we consider the query

language IRQ , we restrict attention to disputable RAs and disputable

CAs involving sub-CDs of the input, i.e. of the form 𝑎 :𝐶 where 𝐶

occurs in P0
or T . All these queries are then presented to the ex-

perts by adding them to Q. Afterwards, the strategy proceeds as in

Phase 1. Like the first phase, Phase 2 ends whenQ contains no unde-

cided query anymore. Then all disputable consequences have been

processed, and the final repair is computed from the so identified

repair seed S2
. Lemma 3.1 and Proposition 3.2 hold analogously.

4 Computing Disputable Consequences
Next, we will develop a practical method for computing the dis-

putable consequences at the end of Phase 1. Conditions (DC1)

and (DC2) in Corollary 3.5 can be checked in polynomial time,

but it is not obvious how Condition (DC3) can be checked in an

efficient way. Naïvely following the very definition will not work in

practice since we would need to go through all queries in IRQ and

all substantiations. In order to find a more efficient approach, we

transform Condition (DC3) into the following equivalent condition:

• For every qABox ∃𝑌 .B, if ∃𝑋 .A ∪ P1

+ |= ∃𝑌 .B, and

∃𝑌 .B |=T 𝛼 for every 𝛼 ∈ P1

+ , and ∃𝑌 .B ̸|=T 𝛽 for each

𝛽 ∈ P1

− , then ∃𝑌 .B ̸|=T 𝛾 . (see proof of Proposition 4.8)

Now the qABoxes ∃𝑌 .B almost satisfy the definition of a repair of

∃𝑋 .A for P1
, the only exceptions are that the entailment of ∃𝑌 .B

by the input KB does not involve the TBox T but additionally P1

+ .
Such repairs are obtained directly from ∃𝑋 .A and not from its

saturation, and are thus called “unsaturated.”

Definition 4.1. An unsaturated repair of a qABox ∃𝑋 .A for a

repair request P w.r.t. a TBox T is a qABox ∃𝑌 .B such that

(UR1) ∃𝑋 .A ∪ P+ |= ∃𝑌 .B,

(UR2) ∃𝑌 .B |=T 𝛼 for each 𝛼 ∈ P+, and
(UR3) ∃𝑌 .B ̸|=T 𝛽 for each 𝛽 ∈ P− .

Moreover, we call ∃𝑌 .B QL-optimal if it is not strictly QL-entailed
by another unsaturated repair.

With this definition in place, Condition (DC3) can be rewritten to:

• no unsat. repair of ∃𝑋 .A for P1
w.r.t. T entails 𝛾 w.r.t. T

4.1 Unsaturated Repairs
Unsaturated repairs can be constructed from the input qABox and

not from its saturation, i.e. they are independent from the employed

query language. Only optimality must refer to a particular entail-

ment relation. In order to define a canonical form of unsaturated

repairs, we keep the notion of repair types as it is and only include

copies of objects of the input qABox, whereas objects and assertions

produced by the saturation are ignored.

Since we also need to take the addition part P+ into account, we

first define the qABox ∃𝑋 ′ .A′
as the union of ∃𝑋 .A and a qABox

equivalent to P+, which can be obtained from P+ by replacing each

CA with a tree-shaped sub-qABox (e.g. obtained by introducing

a variable for each intent 𝐶 of an existential requirement ∃𝑟 .𝐶
occurring in P+, as explained on Page 5).

Lemma 4.2. There is a homomorphism ℎ from ∃𝑋 ′ .A′ to the IQ-
saturation ∃𝑋 T .AT such that ℎ(𝑢) = 𝑢 for each object 𝑢 of ∃𝑋 .A.

Proof. We build the required homomorphism ℎ in two steps.

First, since ∃𝑋 .A is a sub-qABox of its IQ-saturation ∃𝑋 T .AT
,

we can define ℎ(𝑢) := 𝑢 for each object 𝑢 of ∃𝑋 .A.

Next, recall the assumption that ∃𝑋 .A |=T P+. This implies

that the matrix A contains all RAs in P+ and further that the IQ-

saturation ∃𝑋 T .AT
entails all CAs in P+ (w.r.t. the empty TBox).

The latter means that, for each 𝑎 :𝐶 in P+, there is a homomorphism

ℎ𝑎:𝐶 from a qABox equivalent to {𝑎 :𝐶} to ∃𝑋 T .AT
. Now ∃𝑋 ′ .A′

is (equivalent to) the union of ∃𝑋 .A with all the latter qABoxes,

where w.l.o.g. all these qABoxes have pairwise disjoint sets of vari-

ables. We thus further define ℎ(𝑢) := ℎ𝑎:𝐶 (𝑢) for each object 𝑢

of the qABox equivalent to {𝑎 : 𝐶}. The so obtained mapping is

well-defined since, for each 𝑎 :𝐶 in P+, we have ℎ𝑎:𝐶 (𝑎) = 𝑎 and 𝑎

is the only IN in the qABox equivalent to {𝑎 :𝐶}. □

Definition 4.3. The canonical unsaturated repair induced by a

repair seed S is the qABox repTunsat (∃𝑋 .A,S) of which the objects
are all pairs ⟨⟨𝑢,Φ⟩⟩ with an object 𝑢 of ∃𝑋 ′ .A′

and a repair type Φ
for ℎ(𝑢), and the matrix consists of the following assertions:

(CUR1) ⟨⟨𝑢,Φ⟩⟩ :𝐴 if 𝑢 :𝐴 ∈ A′
and 𝐴 ∉ Φ, and

(CUR2) (⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩):𝑟 if (𝑢, 𝑣):𝑟 ∈ A′
and Succ(Φ, 𝑟 , ℎ(𝑣)) ≤ Ψ.

Moreover, an object ⟨⟨𝑢,Φ⟩⟩ is a variable if 𝑢 is a variable (i.e. 𝑢 ∈ 𝑋)

or Φ ≠ S𝑢 , and each IN 𝑎 and ⟨⟨𝑎,S𝑎⟩⟩ are treated as synonyms.

Lemma 4.A. The mapping ⟨⟨𝑢,Φ⟩⟩ ↦→ 𝑢 is a homomorphism from
repTunsat (∃𝑋 .A,S) to ∃𝑋 ′ .A′, and repTunsat (∃𝑋 .A,S) satisfies
Condition (UR1).

Proof. We first verify that the mapping is a homomorphism.

• For each IN 𝑎, we have 𝑎 = ⟨⟨𝑎,S𝑎⟩⟩ by Definition 4.3, and

thus 𝑎 is mapped to 𝑎.

• If the matrix of repTunsat (∃𝑋 .A,S) contains ⟨⟨𝑢,Φ⟩⟩ :𝐴, then
by Instruction (CUR1) the matrix of ∃𝑋 ′ .A′

contains 𝑢 :𝐴.

• If (⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩) : 𝑟 is in the matrix of repTunsat (∃𝑋 .A,S),
then by Instruction (CUR1) the matrix of ∃𝑋 ′ .A′

contains

(𝑢, 𝑣) : 𝑟 .
Since entailment between qABoxes coincides with existence of a

homomorphism in the converse direction, it follows that ∃𝑋 ′ .A′

entails repTunsat (∃𝑋 .A,S). □

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

Lemma 4.B. The mapping ⟨⟨𝑢,Φ⟩⟩ ↦→ ⟨⟨ℎ(𝑢),Φ⟩⟩ is a homo-
morphism from repTunsat (∃𝑋 .A,S) to repTIRQ (∃𝑋 .A,S), and

repTunsat (∃𝑋 .A,S) satisfies Condition (UR3).

Proof. We begin with showing that the mapping is a homo-

morphism.

• Consider an IN 𝑎. Then ℎ(𝑎) = 𝑎 by definition of a homo-

morphism, 𝑎 = ⟨⟨𝑎,S𝑎⟩⟩ by Definition 4.3, and also 𝑎 =

⟨⟨𝑎,S𝑎⟩⟩ by definition of a canonical (saturated) repair. Thus,

𝑎 is mapped to 𝑎.

• Let ⟨⟨𝑢,Φ⟩⟩ : 𝐴 be in the matrix of repTunsat (∃𝑋 .A,S), i.e.
𝑢 : 𝐴 ∈ A′

and 𝐴 ∉ Φ by Instruction (CUR1). Then the

matrix of the saturation of ∃𝑋 .A contains ℎ(𝑢) : 𝐴, and
thus the matrix of repTIRQ (∃𝑋 .A,S) contains ⟨⟨ℎ(𝑢),Φ⟩⟩ :𝐴.

• Last, consider (⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩) : 𝑟 in the matrix of

repTunsat (∃𝑋 .A,S). For Instruction (CUR2) we thus have

(𝑢, 𝑣) : 𝑟 ∈ A′
and Succ(Φ, 𝑟 , ℎ(𝑣)) ≤ Ψ. It follows that the

matrix of the saturation of ∃𝑋 .A contains (ℎ(𝑢), ℎ(𝑣)) : 𝑟 ,
which implies that the matrix of repTIRQ (∃𝑋 .A,S) con-
tains (⟨⟨ℎ(𝑢),Φ⟩⟩, ⟨⟨ℎ(𝑣),Ψ⟩⟩) : 𝑟 .

We conclude that repTIRQ (∃𝑋 .A,S) entails repTunsat (∃𝑋 .A,S).
Since repTIRQ (∃𝑋 .A,S) entails w.r.t.T no assertions inP− , neither

does repTunsat (∃𝑋 .A,S). □

Lemma 4.C. The matrix of repTunsat (∃𝑋 .A,S) entails ⟨⟨𝑢,Φ⟩⟩ :𝐶
iff. the matrix of ∃𝑋 ′ .A′ entails 𝑢 :𝐶 and 𝐶 is not subsumed w.r.t.
T by any atom in Φ.

Proof. We start with the only-if direction and assume that

the matrix of the unsaturated repair repTunsat (∃𝑋 .A,S) entails
⟨⟨𝑢,Φ⟩⟩ : 𝐶 . Then, since ⟨⟨𝑢,Φ⟩⟩ ↦→ ⟨⟨ℎ(𝑢),Φ⟩⟩ is a homomorphism

from repTunsat (∃𝑋 .A,S) to repTIRQ (∃𝑋 .A,S), the matrix of the

saturated repair repTIRQ (∃𝑋 .A,S) entails ⟨⟨ℎ(𝑢),Φ⟩⟩ :𝐶 . Lemma XII

in the erratum to [4, 5] implies that no atom in Φ subsumes 𝐶

w.r.t. ∅. Furthermore, since ⟨⟨𝑢,Φ⟩⟩ ↦→ 𝑢 is a homomorphism from

repTunsat (∃𝑋 .A,S) to ∃𝑋 ′ .A′
, the matrix of ∃𝑋 ′ .A′

entails 𝑢 :𝐶 .

Now assume that an atom 𝐷 in Φ subsumed 𝐶 w.r.t. T . Since

𝐷 ∈ Φ, the matrix of the saturated repair repTIRQ (∃𝑋 .A,S) would
not entail ⟨⟨ℎ(𝑢),Φ⟩⟩ :𝐷 by Lemma XII in the erratum to [4, 5]. Since

repTIRQ (∃𝑋 .A,S) is saturated by Lemma XIII in the erratum to [4,

5] and 𝐶 ⊑T 𝐷 , the matrix of repTIRQ (∃𝑋 .A,S) would neither en-

tail ⟨⟨ℎ(𝑢),Φ⟩⟩ :𝐶 , a contradiction. Consequently,𝐶 is not subsumed

w.r.t. T by any atom in Φ.
We proceed with the if direction, assuming that the matrix of

∃𝑋 ′ .A′
entails𝑢 :𝐶 and𝐶 is not subsumedw.r.t.T by any atom inΦ.

Actually, the proof is almost the same as for the second statement

of Lemma XII in the erratum to [4, 5], but we include it here for

being complete. We make an induction on 𝐶 .

• The case where 𝐶 = ⊤ is trivial.

• Assume that 𝐶 = 𝐴 for a CN 𝐴. By Lemma II in [7], the ma-

trixA′
contains the CA 𝑢 :𝐴. Since no atom in Φ subsumes

𝐴 w.r.t. T , we infer that 𝐴 ∉ Φ. According to Definition 4.3

the CA ⟨⟨𝑢,Φ⟩⟩ : 𝐴 is contained and thus entailed by the

matrix of repTunsat (∃𝑋 .A,S).

• Let𝐶 = 𝐶1 ⊓ · · · ⊓𝐶𝑛 be a conjunction of atoms𝐶1, . . . ,𝐶𝑛
where 𝑛 ≥ 2. The preconditions immediately imply that, for

each index 𝑖 , the matrixA′
entails𝑢 :𝐶𝑖 and Φ does not con-

tain an atom subsuming𝐶𝑖 w.r.t. T (otherwise there would

be an atom subsuming 𝐶 since 𝐶 ⊑∅ 𝐶𝑖). The induction

hypothesis yields that the matrix of repTunsat (∃𝑋 .A,S) en-
tails ⟨⟨𝑢,Φ⟩⟩ :𝐶𝑖 for each 𝑖 , and thus also ⟨⟨𝑢,Φ⟩⟩ :𝐶 .

• Consider the last case where 𝐶 = ∃𝑟 .𝐷 is an existential

requirement. According to Lemma II in [7], it follows from

the preconditions that there exists some object 𝑣 such that

the matrixA′
contains (𝑢, 𝑣) :𝑟 and entails 𝑣 :𝐷 . Since ∃𝑟 .𝐷

is not subsumed by an atom in Φ w.r.t. T , it follows that

𝐷 @T 𝐸 for each ∃𝑟 .𝐸 ∈ Φ. Thus for each ∃𝑟 .𝐸 ∈ Φ, there
is some atom 𝐹𝐸 ∈ Conj(𝐸) such that 𝐷 @T 𝐹𝐸 . According

to Lemma XI in the erratum to [4, 5] there exists a repair

type Ψ for ℎ(𝑣) that covers the repair pre-type Max{ 𝐹𝐸 |
∃𝑟 .𝐸 ∈ Φ and AT |= ℎ(𝑣) : 𝐸 } and that does not contain

an atom subsuming 𝐷 w.r.t. T . Applying the induction hy-

pothesis then yields that the matrix of repTunsat (∃𝑋 .A,S)
entails ⟨⟨𝑣,Ψ⟩⟩ : 𝐷 . By the very construction of Ψ, it fol-
lows that the matrix of repTunsat (∃𝑋 .A,S) contains the RA
(⟨⟨𝑢,Φ⟩⟩, ⟨⟨𝑣,Ψ⟩⟩) : 𝑟 , hence it entails ⟨⟨𝑢,Φ⟩⟩ :𝐶 .
Note that, in the above repair pre-type it would be wrong to

only include those maximal atoms 𝐹𝐸 for which the matrix

A′
entails 𝑣 : 𝐸 since it would then not be guaranteed that

Succ(Φ, 𝑟 , ℎ(𝑣)) ≤ Ψ, i.e. the unsaturated repair might not

contain the necessary RA. □

Lemma 4.D. repTunsat (∃𝑋 .A,S) satisfies Condition (UR2).

Proof. Consider a CA 𝑎 :𝐶 in P+. Then ∃𝑋 ′ .A′
entails 𝑎 :𝐶 by

its very definition. Moreover by Condition (RS1),𝐶 is not subsumed

w.r.t. T by any atom in S𝑎 , and thus Lemma 4.C ensures that

repTunsat (∃𝑋 .A,S) entails 𝑎 :𝐶 since 𝑎 and ⟨⟨𝑎,S𝑎⟩⟩ are synonyms.

Now let (𝑎, 𝑏) : 𝑟 be a RA in P+. Then ∃𝑋 ′ .A′
contains this

RA, and for Condition (RS2) we have Succ(S𝑎, 𝑟 , 𝑏) ≤ S𝑏 . Since
ℎ(𝑏) = 𝑏, it follows that repTunsat (∃𝑋 .A,S) contains the RA

(⟨⟨𝑎,S𝑎⟩⟩, ⟨⟨𝑏,S𝑏⟩⟩) : 𝑟 , which equals (𝑎, 𝑏) : 𝑟 . □

The above lemmas yield that every canonical unsaturated repair

satisfies Definition 4.3 and thus the part “unsaturated repair” of

their denotation is justified.

Proposition 4.4. repTunsat (∃𝑋 .A,S) is an unsaturated repair of
∃𝑋 .A for P w.r.t. T .

The canonical unsaturated repairs are complete in the sense that

they cover all unsaturated repairs, similarly to the saturated repairs.

Proposition 4.5. Each unsat. repair is entailed by a canonical one.

Proof. Consider an unsaturated repair ∃𝑌 .B of ∃𝑋 .A for P
w.r.t. T . Then, according to Condition (UR1), ∃𝑌 .B is entailed by

∃𝑋 .A ∪ P+ and so there is a homomorphism 𝑘 from ∃𝑌 .B to

∃𝑋 ′ .A′
. Similarly to the proof of Proposition 8 in [6], we define a

mapping F from objects of ∃𝑌 .B to subsets of Atoms(T ,P) by

F (𝑢) := Max{𝐶 | 𝐶 ∈ Atoms(T ,P), AT |= ℎ(𝑘 (𝑢)) :𝐶,
and B ̸|=T 𝑢 :𝐶 }.

Francesco Kriegel

Recall that ∃𝑋 T .AT
is the IQ-saturation of ∃𝑋 .A w.r.t. T .

We now verify that each set F (𝑢) is a repair type for ℎ(𝑘 (𝑢)).
(RT1) By the very definition of F the object ℎ(𝑘 (𝑢)) is an instance

of each atom in F (𝑢).
(RT2) For the Max operator each two atoms in F (𝑢) are

subsumption-incomparable.

(RT3) Let 𝐶 ∈ F (𝑢) and 𝐸 ⊑ 𝐹 ∈ T with AT |= ℎ(𝑘 (𝑢)) : 𝐸
and 𝐹 ⊑T 𝐶 . By definition of F we infer from 𝐶 ∈ F (𝑢)
that B ̸|=T 𝑢 : 𝐶 . With 𝐹 ⊑T 𝐶 and 𝐸 ⊑ 𝐹 ∈ T it further

follows that B ̸|=T 𝑢 : 𝐸. So there is a top-level conjunct

𝐸′ ∈ Conj(𝐸) such that B ̸|=T 𝑢 : 𝐸′. The assumption

AT |= ℎ(𝑘 (𝑢)) : 𝐸 implies that also AT |= ℎ(𝑘 (𝑢)) : 𝐸′.
We conclude that F (𝑢) contains either 𝐸′ itself or an atom

subsuming 𝐸′, and thus 𝐸 is subsumed by an atom in F (𝑢).
Restricting the mapping F to all INs yields a repair seed SF

, i.e.

where SF
𝑎 := F (𝑎) for each IN 𝑎, since the following conditions

are satisfied.

(RS1) Let +𝑎 :𝐶 ∈ P. Then ∃𝑌 .B |=T 𝑎 :𝐶 , and so ∃𝑌 .B |=T 𝑎 :𝐷

for each atom 𝐷 with 𝐶 ⊑T 𝐷 . It follows that F (𝑎) does
not contain any atom 𝐷 with 𝐶 ⊑T 𝐷 .

(RS2) Further let + (𝑎, 𝑏) : 𝑟 ∈ P. Then ∃𝑌 .B entails (𝑎, 𝑏) : 𝑟 and
thus also 𝑎 : ∃𝑟 . {𝑏}. It follows that F (𝑎) does not contain
∃𝑟 . {𝑏}.
Moreover, consider ∃𝑟 .𝐶 ∈ F (𝑎) with ∃𝑋 .A |=T 𝑏 : 𝐶 .

Then ∃𝑌 .B ̸|=T 𝑎 : ∃𝑟 .𝐶 . Since ∃𝑌 .B entails (𝑎, 𝑏) : 𝑟 , we
infer that ∃𝑌 .B ̸|=T 𝑏 :𝐶 . With ℎ(𝑘 (𝑏)) = 𝑏 it follows that

F (𝑏) contains an atom 𝐷 with 𝐶 ⊑∅ 𝐷 .

(RS3) Now consider −𝑎 :𝐶 ∈ P with ∃𝑋 .A |=T 𝑎 :𝐶 . By assump-

tion, ∃𝑌 .B ̸|=T 𝑎 :𝐶 . So there must be a top-level conjunct

𝐶′ ∈ Conj(𝐶) with ∃𝑌 .B ̸|=T 𝑎 :𝐶′
but ∃𝑋 .A |=T 𝑎 :𝐶′

.

Further recall that ℎ(𝑘 (𝑎)) = 𝑎. It follows that F (𝑎) con-
tains 𝐶′

itself or an atom subsuming 𝐶′
, and thus F (𝑎)

contains an atom subsuming 𝐶 .

(RS4) Let − (𝑎, 𝑏) : 𝑟 ∈ P with ∃𝑋 .A |=T (𝑎, 𝑏) : 𝑟 . By assumption,

∃𝑌 .B ̸|=T (𝑎, 𝑏) : 𝑟 . Since ℎ(𝑘 (𝑎)) = 𝑎 and (𝑎, 𝑏) : 𝑟 is

equivalent to 𝑎 : ∃𝑟 . {𝑏}, we conclude that F (𝑎) contains
∃𝑟 . {𝑏}.

(RS5) If the nominal {𝑎} occurs in P, then it cannot be in SF
𝑎 since

𝑎 : {𝑎} is a tautology, which is entailed by B w.r.t. T .

Last, we will verify that the mapping

𝑢 ↦→ ⟨⟨𝑘 (𝑢), F (𝑢)⟩⟩

is a homomorphism from ∃𝑌 .B to repTunsat (∃𝑋 .A,SF).
• Consider a CA𝑢 :𝐴 ∈ B. Then 𝑘 (𝑢) :𝐴 ∈ A′

and𝐴 ∉ F (𝑢).
It follows that ⟨⟨𝑘 (𝑢), F (𝑢)⟩⟩ :𝐴 is contained in the matrix

of repTunsat (∃𝑋 .A,SF).
• Consider a RA (𝑢, 𝑣) : 𝑟 ∈ B. Then (𝑘 (𝑢), 𝑘 (𝑣)) : 𝑟 ∈

A′
. To show that (⟨⟨𝑘 (𝑢), F (𝑢)⟩⟩, ⟨⟨𝑘 (𝑣), F (𝑣)⟩⟩) : 𝑟 is con-

tained in the matrix of repTunsat (∃𝑋 .A,SF), we verify that
Succ(F (𝑢), 𝑟 , ℎ(𝑘 (𝑣))) is covered by F (𝑣). To this end, let

∃𝑟 .𝐶 ∈ F (𝑢) withAT |= ℎ(𝑘 (𝑣)) :𝐶 . Then B ̸|=T 𝑢 :∃𝑟 .𝐶
and thus B ̸|=T 𝑣 :𝐶 . It follows that𝐶 is subsumed by some

atom in F (𝑣).
We conclude that repTunsat (∃𝑋 .A,SF) entails ∃𝑌 .B. □

As next step, we determine the computational complexity of

query answering w.r.t. an unsaturated repair.

Theorem 4.6. W.r.t. the size of the input KB and repair request
only, deciding entailment of queries in IRQ by canonical unsaturated
repairs is in P, but is NP-complete if the TBox is taken into account
in the entailment. Hardness already holds without an addition part
and even if the TBox is cycle-restricted.

Proof. The first statement for CAs is a corollary to Lemma 4.C.

Moreover, deciding if a qABox entails a RA is trivial since one only

needs to look if the RA is contained in the matrix, even when the

TBox is taken into account. Thus, to determine if a RA is entailed,

one only needs to check Instruction (CUR2). Regarding the second

statement, we show that satisfiability of a 3-CNF can be reduced

to entailment of a CA by an unsaturated repair and a TBox in

polynomial time. NP-hardness is then inherited from the former

decision problem.

Let 𝛼 be a propositional formula in 3-CNF, i.e. 𝛼 is a conjunction

of disjunctions over clauses that consist of three literals each, say

𝛼 = 𝛽1 ∧ · · · ∧ 𝛽𝑛 where 𝛽𝑖 = 𝜆𝑖,1 ∨ 𝜆𝑖,2 ∨ 𝜆𝑖,3 for each index 𝑖

and each 𝜆𝑖, 𝑗 is either a propositional variable or a negation of a

propositional variable. We define the TBox T𝛼 consisting of the

following CIs:

• 𝑇𝛽1 ⊓ · · · ⊓𝑇𝛽𝑛 ⊑𝑇𝛼
• 𝑇𝜆𝑖,𝑗 ⊑𝑇𝛽𝑖 for all 𝑖, 𝑗

• 𝐹𝑝 ⊑𝑇¬𝑝 for each propositional variable 𝑝 occurring in 𝛼

• 𝐹𝑝 ⊓𝑇𝑝 ⊑𝐸 for each propositional variable 𝑝 occurring in 𝛼 .

We further take the qABox ∃{𝑥}. { (𝑎, 𝑥) : 𝑟, 𝑥 : 𝑇𝑝 , 𝑥 : 𝐹𝑝 | 𝑝 ∈
Var(𝛼) }, the repair request {𝑎 :∃𝑟 .𝐸}without addition part, and the
query 𝑎 :∃𝑟 .𝑇𝛼 . For this input, there is only the repair seed S where

S𝑎 := {∃𝑟 .𝐸}.10 We will show that the induced unsaturated repair

entails the query w.r.t. the TBox iff. the formula 𝛼 is satisfiable.

First let 𝛼 be satisfiable, certified by the variable assignment

𝑔 : Var(𝛼) → {𝑇, 𝐹 } under which 𝛼 evaluates to 𝑇 . By flipping the

values we obtain a repair type for 𝑥 , namely {𝑇𝑝 | 𝑔(𝑝) = 𝐹 } ∪
{ 𝐹𝑝 | 𝑔(𝑝) = 𝑇 } ∪ {𝐸}. In the unsaturated repair the copy of 𝑥

annotated with this repair type is an instance of 𝑇𝑝 iff. 𝑔(𝑝) = 𝑇

and of 𝐹𝑝 iff. 𝑔(𝑝) = 𝐹 , and this copy is an 𝑟 -successor of 𝑎 since

the repair type contains 𝐸. Inference with the TBox yields that this

copy is an instance of 𝑇𝛼 , and thus the query is entailed.

It remains to prove the only-if direction. To this end, assume

that the unsaturated repair induced by S entails 𝑎 : ∃𝑟 .𝑇𝛼 w.r.t. T
and is denoted by ∃𝑌 .B. Since the TBox does not introduce new

𝑟 -successors, the matrix B must contain a RA (𝑎,𝑦) : 𝑟 for which 𝑦
is an instance of 𝑇𝛼 w.r.t. T . The repair type that annotates 𝑦 must

contain 𝐸 since S𝑎 contains ∃𝑟 .𝐸, and thus this repair type must

contain 𝐹𝑝 or 𝑇𝑝 for each variable 𝑝 ∈ Var(𝛼). It follows that B
does not contain both𝑦 :𝐹𝑝 and𝑦 :𝑇𝑝 for any variable 𝑝 . We define a

variable assignment 𝑔 : Var(𝛼) → {𝐹,𝑇 } by 𝑔(𝑝) := 𝐹 if B contains

𝑦 : 𝐹𝑝 , and otherwise by 𝑔(𝑝) := 𝑇 . We show that 𝛼 evaluates to 𝑇

under 𝑔, which shows that 𝛼 is satisfiable.

Recall that 𝛼 is a conjunction of clauses 𝛽𝑖 = 𝜆𝑖,1 ∨ 𝜆𝑖,2 ∨ 𝜆𝑖,3.

By the very definition of the TBox T𝛼 , and since B |=T 𝑦 :𝑇𝛼 , at

10
This is also the reason why the RN 𝑟 is used, namely to ensure that there is only one

repair seed. Had we instead assigned the truth values to the IN 𝑎, and used the repair

request {𝑎 :𝐸} and the query 𝑎 :𝑇𝛼 , then there would have been multiple repair seeds.

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

least one of the assertions 𝑦 :𝑇𝜆𝑖,𝑗 with 𝑗 ∈ {1, 2, 3} must be entailed

by B for each clause 𝛽𝑖 .

• If the literal 𝜆𝑖, 𝑗 is a variable 𝑝 , then B |=T 𝑦 :𝑇𝑝 requires

that the matrixB already contains this assertion𝑦 :𝑇𝑝 . Since

B ̸|=T 𝑦 : 𝐸, it cannot contain the assertion 𝑦 : 𝐹𝑝 as well,

and thus 𝑔(𝑝) = 𝑇 .

• Otherwise, the literal 𝜆𝑖, 𝑗 is a negated variable ¬𝑝 . Since
the matrix B can only contain CAs involving the CNs 𝐹𝑞
and𝑇𝑞 for variables 𝑞 ∈ Var(𝛼), the consequence𝑦 :𝑇¬𝑝 can

only be produced by means of the CI 𝐹𝑝 ⊑𝑇¬𝑝 and therefore

the matrix B must contain the assertion 𝑦 : 𝐹𝑝 . It follows

that 𝑔(𝑝) = 𝐹 , and so ¬𝑝 evaluates to 𝑇 under 𝑔.

It now easily follows that each clause 𝛽𝑖 evaluates to𝑇 under 𝑔, and

thus the whole formula 𝛼 as well.

Last, we show that IRQ-query answering is in NP. According to

Theorem 2 in [7], the given query is entailed iff. there is a homo-

morphism from the query (seen as qABox) to the saturation of the

unsaturated repair. Since the unsaturated repair has exponential

size in the worst case, it should not be fully computed. Instead, such

a homomorphism has polynomial size since it sends the polynomi-

ally many objects in the qABox representation of the query to the

objects in the saturation, which are either of the form ⟨⟨𝑢,Φ⟩⟩ (in
the unsaturated repair) or of the form 𝑥𝐶 for a CD 𝐶 that occurs

in the TBox T (added by saturation), and thus these objects need

polynomial size only. It thus suffices to guess a polynomial-size

mapping from the objects in the qABox representation of the query

to such objects, and then check whether it is a homomorphism,

which would certify the entailment. For the latter, note that to check

if an assertion (⟨⟨𝑢,Φ⟩⟩, 𝑥𝐶) : 𝑟 is present boils down to checking if

the saturation rule can be applied at ⟨⟨𝑢,Φ⟩⟩ in order to generate this

successor 𝑥𝐶 . To this end, it is enough to guess polynomially many

assertions in the neighborhood of ⟨⟨𝑢,Φ⟩⟩ since the TBox consists
of polynomially many CIs, each of which has a polynomial-size

premise. Checking for presence of the other assertions can be done

in polynomial time in the obvious way. □

Like with the saturated repairs, the covers relation ≤IRQ is con-

nected to the entailment relation |=IRQ .

Lemma 4.E. If S ≤IRQ S′, then repTunsat (∃𝑋 .A,S) |=IRQ
repTunsat (∃𝑋 .A,S′).

Proof. The proof of Lemma 2.D works here similarly. □

4.2 Computing Disputable Consequences from
Unsaturated Repairs

As last step we show how the disputable consequences can be

efficiently computed with one particular unsaturated repair.

Lemma 4.7. The canonical unsaturated repair induced by S1 is
the only IRQ-optimal unsaturated repair for P1.

Proof. The proof is similar to Proposition 3.2. Consider an un-

saturated repair ∃𝑌 .B for P1
. According to Proposition 4.5 it is

entailed by the canonical unsaturated repair induced by some repair

seed SF
. In order to show that repTunsat (∃𝑋 .A,S1) IRQ-entails

repTunsat (∃𝑋 .A,SF) and thus also ∃𝑌 .B, we use Lemma 4.E and

will verify the following two claims:

(1) S1

𝑎 ≤ SF
𝑎 for each IN 𝑎.

(2) Succ(SF
𝑎 , 𝑟 , 𝑏) ≤ SF

𝑏
implies Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏
for each

RA (𝑎, 𝑏) : 𝑟 in ∃𝑋 .A.

We start with the first claim. To this end, consider an atom 𝐶 ∈ S1

𝑎 ,

i.e. the assertion 𝑎 :𝐶 is in P1

− . Since ∃𝑌 .B is a repair for P1
, it does

not entail this assertion w.r.t. T . Furthermore, this assertion 𝑎 :𝐶

is entailed by the input qABox ∃𝑋 .A w.r.t. T , since otherwise it

would not have been considered as a query by the smart interaction

strategy and could then not be in P1

− . According to the definition

of F in the proof of Proposition 4.5, F (𝑎) contains 𝐶 itself or an

atom subsuming 𝐶 . Since this holds for all 𝐶 and since F (𝑎) = SF
𝑎 ,

we conclude that S1

𝑎 ≤ SF
𝑎 for every IN 𝑎.

It remains to verify the second claim. Assume that (𝑎, 𝑏) :𝑟 is a RA
in ∃𝑋 .A with Succ(SF

𝑎 , 𝑟 , 𝑏) ≤ SF
𝑏
. According to Definition 4.3,

repTunsat (∃𝑋 .A,SF) contains the RA (𝑎, 𝑏) : 𝑟 (recall that ⟨⟨𝑎,SF
𝑎 ⟩⟩

and 𝑎 are synonyms, and likewise for𝑏). Since repTunsat (∃𝑋 .A,SF)
is a repair for P1

, this RA is not contained in P1

− . By Lemma 3.A

we infer that Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏
. □

The above lemma now allows us to formulate a more efficient

variant of Condition (DC3).

Proposition 4.8. For each query 𝛾 ∈ IRQ , Condition (DC3) in
Corollary 3.5 is equivalent to the following:

(DC3∗) 𝛾 is not entailed w.r.t. T by the unsat. repair induced by S1.

Proof. Among the following statements, the first two are equiv-

alent by Definition 3.4, the next two are equivalent by standard

equivalence-preserving transformations of logical formulas, and

the last two by Definition 4.1.

• For every substantiationJ of𝛾 , we have thatJ does not en-

tail w.r.t. T all accepted queries in P1

+ , or J entails w.r.t. T
some rejected query in P1

− .
• For each qABox ∃𝑌 .B, if ∃𝑋 .A ∪ P1

+ |= ∃𝑌 .B and

∃𝑌 .B |=T 𝛾 , then ∃𝑌 .B ̸|=T 𝛼 for some 𝛼 ∈ P1

+ or

∃𝑌 .B |=T 𝛽 for some 𝛽 ∈ P1

− .
• For every qABox ∃𝑌 .B, if ∃𝑋 .A ∪ P1

+ |= ∃𝑌 .B, and

∃𝑌 .B |=T 𝛼 for every 𝛼 ∈ P1

+ , and ∃𝑌 .B ̸|=T 𝛽 for each

𝛽 ∈ P1

− , then ∃𝑌 .B ̸|=T 𝛾 .

• 𝛾 is not entailed w.r.t.T by any unsaturated repair of ∃𝑋 .A
for P1

w.r.t. T .

It remains to show that the last statement is equivalent to (DC3∗).
Consider a query 𝛾 ∈ IRQ and an unsaturated repair ∃𝑌 .B
for P1

such that ∃𝑌 .B |=T 𝛾 . Since repTunsat (∃𝑋 .A,S1) is

the only IRQ-optimal unsaturated repair for P1
by Lemma 4.7,

repTunsat (∃𝑋 .A,S1) |=IRQ ∃𝑌 .B. By Lemma 2.C we obtain

repTunsat (∃𝑋 .A,S1) |=T
IRQ ∃𝑌 .B and it thus follows that

repTunsat (∃𝑋 .A,S1) |=T 𝛾 . The converse direction is trivial. □

This Condition (DC3∗) is much easier to check than (DC3) as we

only need to compute (the optimized variant of) a single unsatu-

rated repair and then determine which queries it entails. Unfortu-

nately, this cannot be done by only looking at the repair seed as for

saturated repairs, and we will prove that deciding disputable conse-

quences is coNP-complete. Even though such a complexity result

Francesco Kriegel

seems to prohibit a practical use, our implementation works sur-

prisingly fast even with large TBoxes such as (the EL fragment of)

SNOMED CT. Since saturated repairs can be computed in practice

[6], the same holds for unsaturated repairs as they are constructed

similarly but directly from the input qABox. Therefore disputable

consequences can be computed in practice as well.

Theorem 4.9. Deciding disputable consequences at the end of
Phase 1 is coNP-complete.

Proof. We use the same input as in the proof of Theorem 4.6,

without any modifications. No queries need to be decided by the

experts in Phase 1 and we obtain P1

+ = ∅ and P1

− = {𝑎 : ∃𝑟 .𝐸},
which is the given repair request. Further recall that there is only

one repair seed, namely with S𝑎 = {∃𝑟 .𝐸}, and that the formula 𝛼

is satisfiable iff. the induced unsat. repair entails the query 𝑎 :∃𝑟 .𝑇𝛼 .
Now, since the query 𝑎 : ∃𝑟 .𝑇𝛼 is entailed by the input qABox

and TBox and since it has not been decided by the experts nor by

inheritance within Phase 1, we conclude by Proposition 4.8 that

the formula 𝛼 is satisfiable iff. the query 𝑎 : ∃𝑟 .𝑇𝛼 is not disputable.

It follows that recognizing disputable consequences is coNP-hard.
It remains to prove containment in coNP. Conditions (DC1)

and (DC2) can be checked in polynomial time since, more generally,

entailment of queries in IRQ by ABoxes and qABoxes has this com-

plexity. Furthermore, Conditions (DC3) and (DC3∗) are equivalent
by Proposition 4.8 and the negation of the latter can be decided in

non-deterministic polynomial time, see Theorem 4.6. □

Surprisingly, it suffices to restrict attention to disputable CAs.

Proposition 4.10. There are no disputable RAs at the
end of Phase 1.

Proof. Let 𝛾 = (𝑎, 𝑏) : 𝑟 be a RA that satisfies Conditions (DC1)

and (DC2). We will show that it cannot satisfy Condition (DC3∗)
and thus is no disputable consequence. We first observe that:

𝛾 does not fulfill (DC3∗)
iff. repTunsat (∃𝑋 .A,S1) |=T 𝛾

iff. the matrix of repTunsat (∃𝑋 .A,S1) contains 𝛾
By (DC1) the input KB entails 𝛾 and thus its matrix A contains 𝛾 .

We conclude that:

the matrix of repTunsat (∃𝑋 .A,S1) contains 𝛾
iff. Succ(S1

𝑎 , 𝑟 , 𝑏) ≤ S1

𝑏

iff. for every −𝑎 : ∃𝑟 .𝐶 ∈ P1
with ∃𝑋 .A |=T 𝑏 : 𝐶 , there is

−𝑏 : 𝐷 ∈ P1
with 𝐶 ⊑∅ 𝐷 .

The last statement is satisfied. To see this, assume that 𝑎 : ∃𝑟 .𝐶
was a rejected query with ∃𝑋 .A |=T 𝑏 :𝐶 . Then Instruction (SIS1)

would have added the two queries 𝛾 and 𝑏 : 𝐶 to Q, but this is a
contradiction since, on the one hand, Phase 1 does not end until

all queries in Q have been decided and, on the other hand, 𝛾 is

undecided at the end of Phase 1 by (DC2) (i.e. it could not have

been added to Q). Thus, there is no rejected query 𝑎 : ∃𝑟 .𝐶 with

∃𝑋 .A |=T 𝑏 : 𝐶 , and so the last statement in the above chain of

equivalences is vacuously satisfied. We conclude that 𝛾 does not

fulfill (DC3∗). □

The disputable consequences are exactly the CAs in the “entail-

ment difference” between the saturated and the unsaturated repair

induced by S1
, i.e. those CAs entailed by the saturated repair but

not by the unsaturated repair. Our implementation is based on this.

Lemma 4.11. 𝛾 is a disputable consequence at the end of Phase 1 iff.

(DC4) repTIRQ (∃𝑋 .A,S1) |=T 𝛾 and

(DC3∗) repTunsat (∃𝑋 .A,S1) ̸|=T 𝛾 .

Proof. Regarding the only-if direction, let 𝑎 :𝐶 be disputable.

Proposition 4.8 yields (DC3∗), and we now show that (DC1) and

(DC2) yield (DC4). We have ∃𝑋 .A |=T 𝑎 : 𝐶 by (DC1). Since ac-

cording to (DC2) P1

+ ∪ {𝑎 :𝐶} does not entail w.r.t. T any query in

P1

− , there is no 𝑎 : 𝐷 ∈ P1

− with 𝐶 ⊑T 𝐷 . It follows that there is

no 𝐷 ∈ S1

𝑎 with𝐶 ⊑T 𝐷 , and thus repTIRQ (∃𝑋 .A,S1) |=T 𝑎 :𝐶 by

Lemma XII in the erratum to [4].

In the converse direction, (DC3∗) is already there. By (DC4)

and since repTIRQ (∃𝑋 .A,S1) is entailed by ∃𝑋 .A, we infer that

∃𝑋 .A |=T 𝑎 :𝐶 , which is (DC1). By Lemma 3.1, S1
is a repair seed

for P1
and so it induces a repair for P1

. Thus repTIRQ (∃𝑋 .A,S1)
entails P1

+ w.r.t. T , and also 𝑎 : 𝐶 by (DC4). We conclude that

P1

+ ∪ {𝑎 : 𝐶} does not entail any query in P1

− since neither does

repTIRQ (∃𝑋 .A,S1). Furthermore, (DC3∗) implies that P1

+ ̸ |=T 𝑎 :𝐶 .

So (DC2) is fulfilled as well. □

A Small Example
For instance, the ABox {mike : ∃drives.Porsche} expresses that
Mike drives a Porsche. The TBox {Porsche⊑SportsCar, SportsCar≡
Car⊓Fast⊓Loud} states that every Porsche is a sports car, and that
every sports car is a fast and loud car and vice versa. When asked

how fast his car can go, Mike answers that he actually does not

drive a fast car. Thus, the ontology should be repaired for the faulty

consequence mike : ∃drives. (Car ⊓ Fast). With the classical repair

method we could only delete the single statement from the ABox,

and no knowledge is preserved at all. Our interactive method would

instead identify an ideal repair as follows. First, the saturation is

determined: ∃{𝑥}. {(mike, 𝑥) : drives, 𝑥 : Porsche, 𝑥 : SportsCar,
𝑥 : Car, 𝑥 : Fast, 𝑥 : Loud}.

Since the consequence mike : ∃drives. (Car ⊓ Fast) is rejected,
the variable 𝑥 representing Mike’s Porsche is split into two copies:

the first copy is fast and loud but no car anymore, and the second

copy is a loud car but not fast. Both copies are not unrealistic since

he might drive a sports bike instead, and his car might only be loud

for a manipulated exhaust system and not for a powerful engine. To

find out which copy indeed exists and should occur in the repair, the

two subsequent queriesmike :∃drives.Fast andmike :∃drives.Car
are generated. The first copy is eliminated iff. the first query is

rejected, and similarly for the second copy. Obviously, such a copy

must not be a Porsche nor a sports car anymore as both would

restore the removed information.

With the additional CI∃drives.SportsCar⊑CoolGuy in the TBox
the consequencemike :CoolGuy is disputable. It could be that Mike

is a cool guy for another reason and then we would like to keep

this information. Assuming that only the second query above was

accepted, we obtain the repair ∃{𝑦}. {(mike, 𝑦) : drives, 𝑥 : Car,
𝑥 : Loud, mike :CoolGuy}, or equivalently {mike : ∃drives. (Car⊓
Loud), mike : CoolGuy}. Compared to the classical repair much

more consequences are preserved.

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

The Protégé Plugin
An implementation of the underlying repair construction as well as

the smart interaction strategy is available.
L10

It comes in form of

a plug-in for the KB editor Protégé.
L11

As programming language

we chose Scala.
L12

It can thus be used on any operating system for

which a Java virtual machine (JVM) is available, which includes

the major systems Unix, Linux, MacOS, and Windows. It is rec-

ommended to use a modern JVM like GraalVM
L13

since it offers

faster code execution (often approximately twice as fast as a stan-

dard JVM). Furthermore, the implementation employs the currently

fastest EL reasoner: ELK.
L9

OnMacOS, the easiest way to try out the implementation is to use

the installer script.
L14

For other operating systems this script can be

easily adapted. More details are explained on the start page of the

GitHub repository.
L10

Once installed, the plug-in can be activated

in Protégé from the menu: Window→ Tabs→ Interactive Optimal

Repair. A new tab is then opened. After loading an EL KB, just

switch to this tab and then click the “Start” button.

When started, the plug-in first determines if the loaded KB is

within EL and thus supported. It then initializes the reasoner. Af-

ter clicking the “Next” button the repair request containing the

unwanted consequences to be repaired for as well as the wanted

consequences to be retained must be specified. After another click

on the “Next” button the smart interaction strategy starts to run.

At any time point, the shown list contains all currently undecided

questions. For each of them, the expert can accept or reject them,

depending on the validity in the domain of interest, by clicking

the respective button. As soon as there are no undecided queries

anymore, the “Next” button becomes available again. Clicking it

allows to specify for which query language the repair is to be com-

puted (IRQ or CQ). A last click on the “Compute” button triggers

the actual computation of the identified repair, by which the loaded

KB is finally overwritten.

Even though Theorem 4.9 seems to indicate that computing the

disputable consequences for Phase 2 is intractable, the implementa-

tion works sufficiently fast even with large TBoxes such as (the EL
fragment of) SNOMED CT,

11
which contains more than 360,000

concept names. Interactively identifying a repair of an ABox repre-

senting data on a patient having a common cold and then computing

this repair completes within about four to five minutes. More specif-

ically, in this experiment we used an ABox containing a single CA

stating that a particular person has a common cold; the user inter-

action then amounted to about 30 questions only (as the interaction

process is local to the statements to be repaired for). This compu-

tation time can surely be further improved with optimizations or

faster programming languages such as C++.

5 Summary and Future Prospects
We have delved into the topic of identifying and computing a prac-

tically relevant repair of a given knowledge base consisting of a

quantified ABox and a static EL TBox, where the consequences

repaired for are concept and role assertions. To this end, we intro-

duced the smart interaction strategy to the optimal-repair frame-

work, with which experts can interactively determine a suitable

11
To obtain the EL fragment of SNOMED CT one merely needs to delete a few role

inclusions.

repair in polynomial time. Each such repair can be constructed

by means of three operations (copying, deleting, and saturation)

and the strategy allows us to efficiently control them. Moreover,

we considered disputable consequences. Since the optimal repairs

retain all disputable consequences but none of their substantiations

within the input knowledge base, it might not be desirable to keep

each of them but these decisions need to be made by the experts.

An implementation in form of a plug-in for the knowledge-base

editor Protégé is provided.
L10

As future work, we want to extend the strategy to optimal re-

pairs in more expressive DLs, e.g. Horn-ALCROI [9]. In order to

increase support for wanted consequences in the repair request, we

also want to combine it with interaction strategies for existing or

novel abduction methods.

Acknowledgements
This work was supported by Deutsche Forschungsgemeinschaft

(DFG) in Projects 430150274 (Repairing Description Logic Ontolo-

gies) and 389792660 (TRR 248: Foundations of Perspicuous Soft-

ware Systems), and has further been supported by the Saxon State

Ministry for Science, Culture, and Tourism (SMWK) by funding

the Center for Scalable Data Analytics and Artificial Intelligence

(ScaDS.AI).

References
[1] Franz Baader, Sebastian Brandt, and Carsten Lutz. 2005. Push-

ing the EL envelope. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI). Professional
Book Center, 364–369. http://ijcai.org/Proceedings/05/Papers/0

372.pdf.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. 2008. Push-

ing the EL envelope further. In Proceedings of the 4th OWLED
Workshop on OWL: Experiences and Directions (CEUR Work-

shop Proceedings). Vol. 496. CEUR-WS.org. http://ceur-ws.org

/Vol-496/owled2008dc%5C_paper%5C_3.pdf.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler.

2017.An Introduction to Description Logic. Cambridge University

Press. doi: 10.1017/9781139025355.

[4] Franz Baader, Patrick Koopmann, and Francesco Kriegel. 2023.

Optimal repairs in the description logic EL revisited. In Pro-
ceedings of the 18th European Conference on Logics in Artifi-
cial Intelligence (JELIA) (Lecture Notes in Computer Science).

Vol. 14281. Springer, 11–34. doi: 10.1007/978-3-031-43619-2_2.

See the erratum https://doi.org/10.5281/zenodo.10276270.

[5] Franz Baader, Patrick Koopmann, and Francesco Kriegel. 2023.

Optimal Repairs in the Description Logic EL Revisited (Ex-

tended Version). LTCS-Report 23-03. Chair of Automata Theory,

Institute of Theoretical Computer Science, Technische Univer-

sität Dresden, Dresden, Germany. doi: 10.25368/2023.121.

[6] Franz Baader, Patrick Koopmann, Francesco Kriegel, and

Adrian Nuradiansyah. 2021. Computing optimal repairs of

quantified ABoxes w.r.t. static EL TBoxes. In Proceedings of the
28th International Conference on Automated Deduction (CADE)
(Lecture Notes in Computer Science). Vol. 12699. Springer, 309–

326. doi: 10.1007/978-3-030-79876-5_18.

http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ceur-ws.org/Vol-496/owled2008dc%5C_paper%5C_3.pdf
http://ceur-ws.org/Vol-496/owled2008dc%5C_paper%5C_3.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-031-43619-2_2
https://doi.org/10.5281/zenodo.10276270
https://doi.org/10.25368/2023.121
https://doi.org/10.1007/978-3-030-79876-5_18

Francesco Kriegel

[7] Franz Baader, Patrick Koopmann, Francesco Kriegel, and

Adrian Nuradiansyah. 2021. Computing Optimal Repairs of

Quantified ABoxes w.r.t. Static EL TBoxes (Extended Version).

LTCS-Report 21-01. Chair of Automata Theory, Institute of

Theoretical Computer Science, Technische Universität Dres-

den, Dresden, Germany. doi: 10.25368/2022.64.

[8] Franz Baader, Patrick Koopmann, Francesco Kriegel, and

Adrian Nuradiansyah. 2022. Optimal ABox repair w.r.t. static

EL TBoxes: from quantified ABoxes back to ABoxes. In Pro-
ceedings of the 19th Extended Semantic Web Conference (ESWC)
(Lecture Notes in Computer Science). Vol. 13261. Springer, 130–

146. doi: 10.1007/978-3-031-06981-9_8.

[9] Franz Baader and Francesco Kriegel. 2022. Pushing optimal

ABox repair from EL towards more expressive Horn-DLs. In

Proceedings of the 19th International Conference on Principles
of Knowledge Representation and Reasoning (KR), 22–32. doi:
10.24963/kr.2022/3. See the addendum https://doi.org/10.5281

/zenodo.8060198.

[10] Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah.

2022. Error-tolerant reasoning in the description logic EL
based on optimal repairs. In Proceedings of the 6th International
Joint Conference on Rules and Reasoning (RuleML+RR) (Lecture
Notes in Computer Science). Vol. 13752. Springer, 227–243. doi:

10.1007/978-3-031-21541-4_15.

[11] Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah.

2024. Inconsistency- and error-tolerant reasoning w.r.t. op-

timal repairs of EL⊥
ontologies. In Proceedings of the 13th

International Symposium on Foundations of Information and
Knowledge Systems (FoIKS) (Lecture Notes in Computer Sci-

ence). Vol. 14589. Springer, 3–22. doi: 10.1007/978-3-031-5694

0-1_1.

[12] Franz Baader, Francesco Kriegel, and Adrian Nuradiansyah.

2023. Treating role assertions as first-class citizens in re-

pair and error-tolerant reasoning. In Proceedings of the 38th
ACM/SIGAPP Symposium on Applied Computing (SAC). Associ-
ation for Computing Machinery, 974–982. doi: 10.1145/355577

6.3577630.

[13] Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and

Rafael Peñaloza. 2020. Computing compliant anonymisations

of quantified ABoxes w.r.t. EL policies. In Proceedings of the
19th International Semantic Web Conference (ISWC) (Lecture
Notes in Computer Science). Vol. 12506. Springer, 3–20. doi:

10.1007/978-3-030-62419-4_1.

[14] Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and

Rafael Peñaloza. 2020. Computing Compliant Anonymisations

of Quantified ABoxes w.r.t. EL Policies (Extended Version).

LTCS-Report 20-08. Chair of Automata Theory, Institute of

Theoretical Computer Science, Technische Universität Dresden,

Dresden, Germany. doi: 10.25368/2022.263.

[15] Franz Baader, Francesco Kriegel, Adrian Nuradiansyah, and

Rafael Peñaloza. 2018. Making repairs in description logics

more gentle. In Proceedings of the 16th International Conference
on Principles of Knowledge Representation and Reasoning (KR).
AAAI Press, 319–328. https://aaai.org/ocs/index.php/KR/KR18

/paper/view/18056.

[16] E. Di Sciascio, F.M. Donini, M. Mongiello, and G. Piscitelli.

2002. Meeting in the agora: a description logic approach to peer-

to-peer e-commerce. In Proceedings of the 24th International
Conference on Information Technology Interfaces (ITI), 319–324
vol.1. doi: 10.1109/ITI.2002.1024693.

[17] Fajar Haifani, Patrick Koopmann, Sophie Tourret, and

Christoph Weidenbach. 2022. Connection-minimal abduc-

tion in EL via translation to FOL. In Proceedings of the 11th
International Joint Conference on Automated Reasoning (IJCAR)
(Lecture Notes in Computer Science). Vol. 13385. Springer,

188–207. doi: 10.1007/978-3-031-10769-6_12.

[18] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.

2010. Foundations of Semantic Web Technologies. Chapman and

Hall/CRC Press. http://www.semantic-web-book.org/.

[19] Yevgeny Kazakov, Markus Krötzsch, and František Simančík.

2012. Practical reasoning with nominals in the EL family of

description logics. In Proceedings of the 13th International Con-
ference on Principles of Knowledge Representation and Reasoning
(KR). AAAI Press. http://www.aaai.org/ocs/index.php/KR/KR1
2/paper/view/4540.

[20] Yevgeny Kazakov, Markus Krötzsch, and František Simančík.

2014. The incredible ELK – from polynomial procedures to

efficient reasoning with EL ontologies. J. Autom. Reason., 53,
1, 1–61. doi: 10.1007/s10817-013-9296-3.

[21] Patrick Koopmann. 2021. Signature-based abduction with

fresh individuals and complex concepts for description log-

ics. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI). ijcai.org, 1929–1935. doi: 10.2496
3/IJCAI.2021/266.

[22] Patrick Koopmann, Warren Del-Pinto, Sophie Tourret, and

Renate A. Schmidt. 2020. Signature-based abduction for expres-

sive description logics. In Proceedings of the 17th International
Conference on Principles of Knowledge Representation and Rea-
soning (KR), 592–602. doi: 10.24963/KR.2020/59.

[23] Francesco Kriegel. 2022. Optimal fixed-premise repairs of EL
TBoxes. In Proceedings of the 45th German Conference on Ar-
tificial Intelligence (KI) (Lecture Notes in Computer Science).

Vol. 13404. Springer, 115–130. doi: 10.1007/978-3-031-15791-2

_11.

[24] Francesco Kriegel. 2023. Optimal fixed-premise repairs of EL
TBoxes (extended abstract). In Recently Published Research (RPR)
track of the 20th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR). doi: 10.5281/zenodo.8
341194.

[25] Markus Krötzsch. 2011. Efficient rule-based inferencing for

OWL EL. In Proceedings of the 22nd International Joint Confer-
ence on Artificial Intelligence (IJCAI). IJCAI/AAAI, 2668–2673.
doi: 10.5591/978-1-57735-516-8/IJCAI11-444.

[26] Carsten Lutz and Frank Wolter. 2010. Deciding inseparability

and conservative extensions in the description logic EL. J.
Symb. Comput., 45, 2, 194–228. doi: 10.1016/j.jsc.2008.10.007.

[27] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. 2008.

All elephants are bigger than all mice. In Proceedings of the
21st International Workshop on Description Logics (DL) (CEUR
Workshop Proceedings). Vol. 353. CEUR-WS.org. https://ceur-

ws.org/Vol-353/RudolphKraetzschHitzler.pdf.

https://doi.org/10.25368/2022.64
https://doi.org/10.1007/978-3-031-06981-9_8
https://doi.org/10.24963/kr.2022/3
https://doi.org/10.5281/zenodo.8060198
https://doi.org/10.5281/zenodo.8060198
https://doi.org/10.1007/978-3-031-21541-4_15
https://doi.org/10.1007/978-3-031-56940-1_1
https://doi.org/10.1007/978-3-031-56940-1_1
https://doi.org/10.1145/3555776.3577630
https://doi.org/10.1145/3555776.3577630
https://doi.org/10.1007/978-3-030-62419-4_1
https://doi.org/10.25368/2022.263
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1109/ITI.2002.1024693
https://doi.org/10.1007/978-3-031-10769-6_12
http://www.semantic-web-book.org/
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4540
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4540
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.24963/IJCAI.2021/266
https://doi.org/10.24963/IJCAI.2021/266
https://doi.org/10.24963/KR.2020/59
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.1007/978-3-031-15791-2_11
https://doi.org/10.5281/zenodo.8341194
https://doi.org/10.5281/zenodo.8341194
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-444
https://doi.org/10.1016/j.jsc.2008.10.007
https://ceur-ws.org/Vol-353/RudolphKraetzschHitzler.pdf
https://ceur-ws.org/Vol-353/RudolphKraetzschHitzler.pdf

Beyond Optimal: Interactive Identification of Better-than-optimal Repairs (Extended Version)

[28] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. 2008.

Cheap boolean role constructors for description logics. In Pro-
ceedings of the 11th European Conference on Logics in Artifi-
cial Intelligence (JELIA) (Lecture Notes in Computer Science).

Vol. 5293. Springer, 362–374. doi: 10.1007/978-3-540-87803-2

_30.

[29] Jingchuan Shi, Jiaoyan Chen, Hang Dong, Ishita Khan, Lizzie

Liang, Qunzhi Zhou, ZheWu, and IanHorrocks. 2023. Subsump-

tion prediction for e-commerce taxonomies. In Proceedings of
the 20th Extended Semantic Web Conference (ESWC) (Lecture
Notes in Computer Science). Vol. 13870. Springer, 244–261. doi:

10.1007/978-3-031-33455-9_15.

[30] Dongzhuoran Zhou, Baifan Zhou, Zhuoxun Zheng, Egor V.

Kostylev, Gong Cheng, Ernesto Jiménez-Ruiz, Ahmet Soylu,

and Evgeny Kharlamov. 2022. Enhancing knowledge graph

generation with ontology reshaping - Bosch case. In Satellite
Events of the 19th Extended Semantic Web Conference (ESWC)
(Lecture Notes in Computer Science). Vol. 13384. Springer, 299–

302. doi: 10.1007/978-3-031-11609-4_45.

Links
L1

https://www.snomed.org

L2
https://finregont.com

L3
https://spec.edmcouncil.org/fibo

L4
https://github.com/edmcouncil/fibo

L5
https://geneontology.org

L6
https://www.w3.org/standards/semanticweb

L7
https://www.w3.org/TR/owl2-overview

L8
https://www.w3.org/TR/owl2-profiles

L9
https://github.com/liveontologies/elk-reasoner

L10
https://github.com/francesco-kriegel/interactive-optimal-

repairs

L11
https://protege.stanford.edu

L12
https://www.scala-lang.org

L13
https://www.graalvm.org

L14
https://raw.githubusercontent.com/francesco-kriegel/intera

ctive-optimal-repairs/main/install-macos.sh

https://doi.org/10.1007/978-3-540-87803-2_30
https://doi.org/10.1007/978-3-540-87803-2_30
https://doi.org/10.1007/978-3-031-33455-9_15
https://doi.org/10.1007/978-3-031-11609-4_45
https://www.snomed.org
https://finregont.com
https://spec.edmcouncil.org/fibo
https://github.com/edmcouncil/fibo
https://geneontology.org
https://www.w3.org/standards/semanticweb
https://www.w3.org/TR/owl2-overview
https://www.w3.org/TR/owl2-profiles
https://github.com/liveontologies/elk-reasoner
https://github.com/francesco-kriegel/interactive-optimal-repairs
https://github.com/francesco-kriegel/interactive-optimal-repairs
https://protege.stanford.edu
https://www.scala-lang.org
https://www.graalvm.org
https://raw.githubusercontent.com/francesco-kriegel/interactive-optimal-repairs/main/install-macos.sh
https://raw.githubusercontent.com/francesco-kriegel/interactive-optimal-repairs/main/install-macos.sh

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Smart Interaction Strategy
	3.1 Fundamentals of the Strategy and Phase 1
	3.2 Induced Repairs after Phase 1
	3.3 Control of the Copy Operation
	3.4 Disputable Consequences and Phase 2

	4 Computing Disputable Consequences
	4.1 Unsaturated Repairs
	4.2 Computing Disputable Consequences from Unsaturated Repairs

	5 Summary and Future Prospects

