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Abstract. For Description Logics (DLs), different approaches for ex-
tending the expressive power using numerical constraints have been in-
troduced. Here, we consider the logic ALCSCC, which can state powerful
numerical constraints on the number of role successors satisfying certain
properties, and logics of the form ALC(D), in which individuals can be
assigned numerical or other concrete values, which can be compared us-
ing predefined predicates of D. Instead of investigating the complexity
of reasoning in these logics, we are interested in characterizing their ex-
pressive power. We improve on our previous work in this direction in
several respects. For ALCSCC, we develop a method that can deal with
the finitely branching interpretations considered in the original paper on
this logic, rather than moving to the variant ALCSCC∞, where arbitrary
interpretations are allowed. The main idea is to employ, in the proof of
the characterization, locality properties of first-order logic over certain
restricted classes of models (such as finite and finitely branching models)
rather than compactness, which does not hold in the finitely branching
case. For logics of the form ALC(D), we consider a notion of expressive
power that takes the concrete values assigned to individuals into account,
rather than the abstract expressive power investigated in our previous
work. The characterization of the expressive power of ALC(D) obtained
this way works not only for arbitrary interpretations, but also for finite
and finitely branching ones.

1 Introduction

Description logics (DLs) [5,11] are a prominent family of logic-based knowl-
edge representation languages, which can be used to formalize the terminological
knowledge of an application domain in a machine-processable way. For instance,
the standard Web Ontology Language OWL3 is based on an expressive DL and
the large medical ontology SNOMED CT4 has been developed using a rather in-
expressive DL. The expressive power of a DL is determined by the constructors
3 https://www.w3.org/TR/owl2-overview/
4 https://www.snomed.org/
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that are available for building complex concept descriptions out of concept names
(unary predicates) and role names (binary predicates). For example, the concept
description Person ⊓ ∃pet.Dog, describing persons that have a dog as pet, uses
conjunction (⊓) and existential restriction (∃r.C) as constructors, where Person
and Dog are concept names and pet is a role name. To show that a given DL
L1 can be expressed by another DL L2 using the same concept and role names,
we can provide a semantic-preserving translation of L1 concept descriptions into
L2 concept descriptions. Proving inexpressivity is more challenging. The first
formal investigation of the expressive power of DLs was performed in [1], but in
a rather ad hoc manner. More fundamental characterizations of the expressive
power of various concept description languages up to the DL ALC based on the
model-theoretic notion of bisimulation are given in [18]. Basically, this approach
(pioneered by van Benthem [26] for the modal logic K, which is a syntactic vari-
ant of ALC) characterizes a given DL as the fragment of first-order logic (FOL)
that is invariant under an appropriate notion of bisimulation.

The expressive power of ALC can, for instance, be extended by enabling
the use of numerical constraints within concept descriptions. In the extension
ALCQ of ALC, qualified number restrictions [16] can be employed to constrain
the number of role successors belonging to a certain concept; e.g., Person ⊓
(≥ 3 child.Female) ⊓ (≤ 2 pet.Dog) describes persons that have at least 3 daugh-
ters and at most 2 dogs as pets. The DL ALCSCC [2] extends ALCQ with very
expressive counting constraints on role successors expressed in the logic QF-
BAPA [17]. Since QFBAPA only considers finite sets and their cardinalities, the
semantics of ALCSCC is restricted to finitely branching interpretations, where
each element can have only finitely many role successors. In ALCSCC one can,
e.g., describe persons that have more daughters than they have dogs as pets,
without using specific numbers as upper/lower bounds for the numbers of pet
dogs and daughters. Bisimulation-based characterizations of ALCQ (or its modal
logic variant of K extended with graded modalities) can be found in [24,20,23].
In [6,7], we have investigated the expressivity of DLs with expressive counting
constraints. However, to dispense with the requirement that interpretations be
finitely branching, we used an infinite variant QFBAPA∞ of QFBAPA to formu-
late these constraints, which yields the variant ALCSCC∞ of ALCSCC. We were
able to show that ALCSCC∞ is not a fragment of FOL and characterized the
first-order fragment of this logic (ALCCQU or equivalently ALCQt) using a form
of counting bisimulation [20]. The first major contribution of the present paper is
to prove the same results for ALCSCC, where only finitely branching interpreta-
tions are available. The proof techniques used in [6,7], which were inspired by the
ones in [20], cannot be employed in this setting since they depend on compact-
ness of FOL, which does not hold for the restriction of FOL to finitely branching
interpretations. Instead, we employ a proof technique inspired by [25,23], which
utilizes locality properties of FOL rather than compactness. Interestingly, this
approach can deal with arbitrary interpretations, finitely branching interpreta-
tions, and finite interpretations in a uniform way.
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An orthogonal approach for employing numerical constraints within concept
descriptions is the use of numerical concrete domains [19,12]. In a DL with a
concrete domain, concrete objects such as numbers or strings can be assigned
to individuals using partial functions called features. For example, the concept
description Person⊓∃child age, pet age.< describes persons that have a child that
is younger than one of their pets. Here, age is a feature that assigns a rational
number, their age, to some of the elements of the interpretation domain, and <
is the usual smaller relation between rational numbers. In [8,9], we have investi-
gated the abstract expressive power of DLs with concrete domains, which only
considers the abstract part of interpretations, i.e., ignores the values assigned
to features. We have shown that the abstract expressive power of ALC(D), i.e.,
ALC extended with the concrete domains D, is contained in FOL for certain
concrete domains, but have also exhibited a large class of concrete domains for
which this is not the case. The second major contribution of the present paper
is to introduce a notion of concrete expressive power for DLs with concrete do-
mains that also takes the feature values into account. For example, if we take
two concrete domains over the rational numbers, where one has as only pred-
icate +1 (relating q ∈ Q with q + 1) and the other +2 (relating q ∈ Q with
q + 2), then the extensions of ALC with these concrete domains have the same
abstract expressive power, but their concrete expressive power is incomparable.
Using proof techniques similar to the ones employed for ALCSCC we can charac-
terize ALC(D) as the fragment of FOL(D) (i.e., FOL extended with the concrete
domain D) that is invariant under an appropriate notion of bisimulation.

2 Preliminaries

We start by introducing the base logic ALC before defining its two orthogonal
extensions with numerical constraints. Since here we focus on the expressivity
of concept description languages, we do not introduce TBoxes, ABoxes, or rea-
soning problems (see [11] for more details on ALC and other classical DLs).

The classical DL ALC Given disjoint, at most countable sets NC and NR of
concept and role names, ALC concept descriptions (concepts for short) are built
from concept names using negation (¬C), conjunction (C ⊓D), and existential
restrictions (∃r.C), where r ∈ NR and C,D are ALC concept descriptions. As
usual, we define C ⊔ D := ¬(¬C ⊓ ¬D) (disjunction), ∀r.C := ¬∃r.¬C (value
restriction) and ⊤ := A ⊔ ¬A (top concept). An interpretation I consists of
a non-empty domain ∆I and a mapping ·I assigning a set AI ⊆ ∆I to A ∈
NC and a binary relation rI ⊆ ∆I × ∆I to r ∈ NR. For d ∈ ∆I , we define
rI(d) := {e ∈ ∆I | (d, e) ∈ rI}. We extend ·I to concepts by (¬C)I := ∆I \CI ,
(C⊓D)I := CI∩DI and (∃r.C)

I
:= {d ∈ ∆I | ∃e ∈ rI(d)∩CI}. In this DL, the

concept of a person not having a dog as pet can be written as Person⊓∀pet.¬Dog.

The DL ALCSCC This DL employs the logic QFBAPA [17] to state cardinal-
ity constraints on role successors that are more expressive than existential and
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value restrictions. In QFBAPA, set terms are built from set variables and the
constants ∅ and U using intersection ∩, union ∪ and complement c. A QFBAPA
formula is a Boolean combination of atomic formulae of the form

m0 +m1|s1|+ · · ·+mk|sk| ⩽ n0 + n1|t1|+ · · ·+ nℓ|tℓ| (1)

where each si, tj is a set term and each mi, nj is a natural number. A solution
σ of a QFBAPA formula ϕ assigns a finite set σ(U) to U , the empty set to ∅ and
subsets of σ(U) to set variables such that ϕ is satisfied by σ, in the standard way.
Checking if a QFBAPA formula has a solution is an NP-complete problem [17].
The logic QFBAPA∞ [6] has the same syntax as QFBAPA, but solutions may
assign infinite sets to U . Its satisfiability problem is also NP-complete [6].

ALCSCC extends the syntax of ALC with the new constructor role succes-
sor restriction (or succ-restriction) succ(con), where con is an atomic QFBAPA
formula with role names and ALCSCC concepts descriptions as set variables [2].
For instance, the concept of all persons that have more daughters than they have
dogs as pets can be expressed in ALCSCC as succ(|pet∩Dog| < |child∩Female|).
Note that existential restrictions ∃r.C are not needed as explicit constructors in
this DLs since they can be expressed as succ(|r ∩ C| ⩾ 1).

When defining the semantics of ALCSCC, interpretations I are required in [2]
to be finitely branching, i.e. such that the set of all role successors arsI(d) :=⋃

r∈NR
rI(d) is finite, for all d ∈ ∆I . Then, each d ∈ ∆I induces a QFBAPA

assignment σd, where σd(U) := arsI(d), σd(r) := rI(d) for r ∈ NR and σd(C) :=
CI ∩ arsI(d) for concepts C. The mapping ·I is extended to succ-restrictions by
defining d ∈ succ(con)I iff σd is a solution of con.

The DL ALCSCC∞ is defined in [6] with the same syntax as ALCSCC, but
in the semantics arbitrary interpretations are allowed. Consequently, the assign-
ment σd may be such that σd(U) is infinite, and thus satisfaction of the constraint
con by σd is evaluated in QFBAPA∞ rather that QFBAPA.

In the definitions of ALCSCC∞ and ALCSCC, we considered two classes of
first-order interpretations: the class Call of all interpretations and the class Cfb

of finitely branching interpretations. Later on, we will also consider the class
Cfin of all finite interpretations, which is also of interest in DL research [14,21].
Our results on the expressive power will be parameterized with a class C of
interpretations satisfying certain restrictions. Since the syntax of ALCSCC∞ and
ALCSCC coincide, we will in the following always talk about ALCSCC concepts.
However, if C contains interpretations that are not finitely branching, then the
semantics uses QFBAPA∞ rather that QFBAPA.

DLs with concrete domains Following [10,19,12], we use the term concrete
domain to refer to a relational structure D = (D, . . . , PD, . . . ) over a non-
empty, at most countable relational signature, where D is a non-empty set,
and each predicate P has an associated arity kP ∈ N and is interpreted by
a relation PD ⊆ DkP . An example is the structure Q := (Q, <,=, >) over
the rational numbers Q with standard binary ordering and equality relations.
Given a countable set V of variables, a constraint system over V is a set C of
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constraints P (v1, . . . , vk), where v1, . . . , vk ∈ V and P is a k-ary predicate of D.
We denote by V (C) the set of variables that occur in C. The constraint system C is
satisfiable if there is a mapping h : V (C) → D such that P (v1, . . . , vk) ∈ C implies
(h(v1), . . . , h(vk)) ∈ PD. The constraint satisfaction problem for D, denoted
CSP(D), asks if a given finite constraint system C over D is satisfiable. The
CSP of Q is decidable in polynomial time, by reduction to <-cycle detection: for
example, the system {x1 < x2, x2 < x3, x3 < x1} is unsatisfiable over Q.

When integrating such a concrete domain into the DL ALC, it needs to satisfy
certain restrictions to obtain a decidable DL. Without a TBox, admissibility is
required in [10] whereas in the presence of a TBox the stronger ω-admissibility
is required in [19,12]. In the context of our investigation of the expressive power
of DLs with concrete domains, it is sufficient to assume that negated constraints
can be expressed using one or more non-negated ones.

Definition 1. A structure D is weakly closed under negation (WCUN) if for all
k ⩾ 1 and all k-ary relations P of D there are k-ary relations P1, . . . , PnP

such
that (d1, . . . , dk) /∈ PD iff (d1, . . . , dk) ∈

⋃nP

i=1 P
D
i for all d1, . . . , dk ∈ Dk.

It is easy to see that both admissible and ω-admissible concrete domains satisfy
this property. Examples of ω-admissible, and thus WCUN, concrete domains are
Allen’s interval algebra, RCC8 and Q [19,12]. For example the negated predicate
̸= in Q is obtained as the union of < and >.

To integrate a given concrete domain D into ALC, we complement NC and
NR with a finite set NF of feature names that connect individuals with values
in D [10]. A feature path p is of the form f or rf with r ∈ NR and f ∈ NF.
For instance, age is a feature name as well as a feature path, while child age is a
feature path including the role name child. The DL ALC(D) extends ALC with
concrete domain restrictions (or CD-restrictions) of the form ∃p1, . . . , pk.P and
∀p1, . . . , pk.P , where pi are feature paths and P is a k-ary predicate of D. An
interpretation I assigns to f ∈ NF a partial function fI : ∆I ⇀ D. A feature
path p is mapped to pI ⊆ ∆I ×D by defining5 pI(d) := {fI(d)} if p = f and
pI(d) := {fI(e) | e ∈ rI(d)} if p = rf . Then we can define

(∃p1, . . . , pk.P )I :=
{
d ∈ ∆I | some tuple in pI1 (d)× · · · × pIk (d) is in PD}

(∀p1, . . . , pk.P )I :=
{
d ∈ ∆I | every tuple in pI1 (d)× · · · × pIk (d) is in PD}.

For example, one can describe individuals having a child that is younger than
one of their pets using ∃child age, pet age.<.

3 The Expressive Power of ALCSCC

In this section, we first introduce a notion of bisimulation, called Presburger
bisimulation, such that ALCSCC concept descriptions are invariant under such
bisimulations, i.e., bisimilar elements belong to the same ALCSCC concept de-
scriptions. Next, we consider an approximate variant of Presburger bisimulation
5 In a slight abuse of notation, we view fI(d) both as a value and as a singleton set.
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and show that, while not all ALCSCC concept descriptions are invariant under
this notion, the ones that are expressible in first-order logic are. This shows that
there are ALCSCC concept descriptions that are not expressible in FOL. Finally,
we characterize the fragment of ALCSCC that is first-order definable as the logic
ALCQt, for which successor constraints have a restricted form.

Presburger bisimulation Assume that NC and NR are finite. We base our
definition of Presburger bisimulations on the notion of safe role types, which are
non-empty subsets of NR. Intuitively, such a role type stands for the intersection
of its elements intersected with the complements of the non-elements. For exam-
ple, if NR = {r, s, t}, then the safe role type {r, s} corresponds to the set term
r ∩ s∩ tc. More formally, safe role types τ are interpreted in an interpretation I
as the binary relation

τI := (
⋂

r∈τr
I \ (

⋃
r∈NR\τr

I)) ⊆
⋃

r∈NR
rI .

Then, for all d ∈ ∆I , the set τI(d) := {e ∈ ∆I | (d, e) ∈ τI} is a subset of
arsI(d), and every e ∈ arsI(d) belongs to τI(d) for exactly one safe role type τ .
The set NR must be finite, in order to encode safe role types as well-defined set
terms. For ALCSCC∞ it was shown in [6] that each set term s occurring within
a succ-restriction can be rewritten as the disjoint union of terms of the form
τ ∩C where τ is a safe role type and C an ALCSCC∞ concept [6]. The same also
holds for ALCSCC. Following [6], we modify the notion of counting bisimulation
from [20] by using safe role types in place of role names to obtain Presburger
bisimulations (called ALCQt bisimulations in [6]).

Definition 2. Let NC and NR be finite and C a class of interpretations. The
binary relation ρ ⊆ ∆I × ∆J is a Presburger (Pr) bisimulation between the
interpretations I and J if for all A ∈ NC and all safe role types τ over NR the
following properties are satisfied:

Atomic (d, e) ∈ ρ implies d ∈ AI iff e ∈ AJ ;
Forth if (d, e) ∈ ρ and D ⊆ τI(d) is finite, then there is a set E ⊆ τJ (e) such

that ρ contains a bijection between D and E;
Back if (d, e) ∈ ρ and E ⊆ τJ (e) is finite, then there is a set D ⊆ τI(d) such

that ρ contains a bijection between D and E.

We call d ∈ ∆I and e ∈ ∆J Pr bisimilar if (d, e) ∈ ρ for some Pr bisimulation ρ
between I and J . A concept C is C-invariant under Pr bisimulation if d ∈ CI

iff e ∈ CJ holds for all Pr bisimilar individuals d ∈ ∆I , e ∈ ∆J with I,J ∈ C.

In [6] we proved that ALCSCC∞ concepts are Call-invariant under Pr bisimula-
tion. A very similar proof (by induction on the structure of concept descriptions)
can be used to show the corresponding result for ALCSCC, where only finitely
branching interpretations are considered.

Theorem 1. Every ALCSCC concept is Cfb-invariant under Pr bisimulation.
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Proof. We proceed by structural induction over an ALCSCC concept C. The
cases where C is a concept name, a conjunction of concepts or the negation of
a concept are illustrated in later results for other notions of bisimulation, so
we omit them here. We focus on the case C = succ(con), where we inductively
assume that every subconcept of C is Cfb-invariant under Pr bisimulation. Let
I,J ∈ Cfb and ρ a Pr bisimulation relating d ∈ ∆I and e ∈ ∆J . We recall that
con is of the form (1), and provide for every ALCSCC concept C and safe role
type τ over NR an injective mapping from D := τI(d)∩CI to E := τJ (e)∩CJ

and vice versa, thus proving that these sets have the same size and thus that con
is evaluated equally w.r.t. d and e. This implies that d ∈ CI iff e ∈ CJ . Since
I and J are finitely branching, the sets D and E are both finite. Thanks to the
forth property, we find a set E′ ⊆ τJ (e) such that ρ contains a bijection between
D and E′. By our inductive hypothesis, the concept C is Cfb-invariant under Pr
bisimulation, so we obtain that E′ ⊆ CJ . Then, E′ ⊆ E holds, and the bijection
between D and E′ is the sought injective mapping from D to E. Using the back
property, we similarly prove that there is an injective mapping from E to D.

Together with the other cases, this concludes our proof, thus we conclude
that every ALCSCC concept is Cfb-invariant under Pr bisimulation. ⊓⊔

Since finite interpretations are finitely branching, this also implies Cfin-invariance
of ALCSCC concepts under Pr bisimulation.

Comparing DLs with bisimulations. To compare the expressive power of
DLs with and without concrete domains, we introduced the notion of abstract
expressive power [9] based on abstract models, obtained from models I that
interpret NF by “forgetting” the interpretation of NF. For DLs without concrete
domains, models and abstract models coincide. Then, two concepts C and D are
abstractly C-equivalent if the abstract models of C in C coincide with those of
D. Using Theorem 1 we show that for some instances of D we can find ALC(D)
concepts whose abstract expressive power cannot be captured in ALCSCC.

Theorem 2. There is an ALC(Q) concept that is not abstractly Cfb-equivalent
to any ALCSCC concept.

Proof. We show that D := ∃f, rf. < is the sought ALC(D) concept. Assume,
by contradiction, that there exists an ALCSCC concept C such that the finitely
branching abstract models of D coincide with the models of C. Let I be the
interpretation of NC and NR with ∆I := {a} and rI := {(a, a)} with r ∈ NR. Let
J be the interpretation of NC and NR whose domain is N and where n+ 1 is an
r-successor of n for n ∈ N. The relation ρ := {a} × N is then a Pr bisimulation,
and by Theorem 1 it follows that a ∈ CI iff n ∈ CJ for n ∈ N.

Clearly, J is an abstract model of D: by using fJ (n) := n for n ∈ N as
interpretation of f ∈ NF, we obtain that n ∈ DJ for n ∈ N. By abstract Cfb-
equivalence of C and D, then, n ∈ CJ and thus a ∈ CI must hold. Using
abstract Cfb-equivalence again, we deduce that there exists an interpretation of
feature names fI(a) such that a ∈ DI . This leads to a contradiction, because
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a ∈ DI can happen iff fI(a) < fI(a). Therefore, we conclude that C and D
cannot be abstractly Cfb-equivalent. ⊓⊔

We can also use Pr bisimulations to compare ALCSCC with other DLs with
expressive counting constraints. In [3], we introduced the logic ALCSCC++ where
we replace the restrictions succ(con) of ALCSCC with extended ones of the
form sat(con). The semantics of this DL is defined w.r.t. finite interpretations
I and restrictions sat(con) are interpreted using a QFBAPA assignment σd as
in ALCSCC, with the difference that here U is mapped to σd(U) := ∆I . We
show that the newly introduced restrictions cannot be expressed in ALCSCC.
To compare two concepts w.r.t. a class of interpretations C we define C and D
to be C-equivalent if CI = DI holds for all I ∈ C.

Theorem 3. There are ALCSCC++ concepts that are not Cfin-equivalent to any
ALCSCC concept.

Proof. Assume, by contradiction, that there is an ALCSCC concept D that is
Cfin-equivalent to C := sat(|A| ⩽ 1). Let I be the interpretation consisting of a
single individual d with d ∈ AI , and let J consist of two individuals e, e′ with
both e, e′ ∈ AJ . Clearly, d ∈ CI holds while e, e′ /∈ CJ . By the assumption of
Cfin-equivalence, we obtain that d ∈ DI and e, e′ /∈ DJ . However, the relation
ρ := {(d, e), (d, e′)} is a Pr bisimulation. This leads to a contradiction, since
by Theorem 1 it must hold that d ∈ DI iff e, e′ ∈ DJ . Therefore, we conclude
that C and D cannot be Cfin-equivalent. ⊓⊔

ALCSCC goes beyond FOL ALC and many other DLs are fragments of first-
order logic (FOL) [13], in the sense that for every concept description C of the
given DL there is a FOL formula ϕ(x) such that ϕI = CI for all interpretations
I, where ϕI := {d ∈ ∆I | I |= ϕ(d)}. This notion of definability of a concept
description by an FOL formula in one free variable can be relativized to a class of
models C in the obvious way. C-invariance of an FOL formula in one free variable
under a given notion of bisimulation is also defined in the obvious way.

In [6], we have shown that there are ALCSCC∞ concepts that are not FOL-
definable in this sense w.r.t. Call. However, since the semantics of ALCSCC is
defined w.r.t. a restricted class of interpretations, this result does not directly
transfer to ALCSCC. Our tool for showing non-FOL-definability for ALCSCC
(and incidentally also for ALCSCC∞ w.r.t. other classes of interpretations) is a
bounded version of Pr bisimulation where one makes only a bounded number ℓ of
steps into the interpretation and bounds the cardinalities of the sets considered
in the back and forth conditions by a number q. This notion of bisimulation
is obtained by adapting the bisimulation-based characterization of modal logic
with graded modalities w.r.t. finite models in [23] to our more expressive logic.

Definition 3. Let NC and NR be finite and q, ℓ ∈ N. The relation ρ ⊆ ∆I ×∆J

is a Pr (q,0)-bisimulation between the interpretations I and J if it satisfies the
(atomic) condition of Definition 2, and it is a Pr (q,ℓ+ 1)-bisimulation if it is a
Pr (q,ℓ)-bisimulation that satisfies the following for all safe role types τ :
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(q,ℓ)-forth if (d, e) ∈ ρ and D ⊆ τI(d) with |D| ⩽ q, then there are E ⊆ τJ (e)
and a Pr (q,ℓ)-bisimulation ρ′ that contains a bijection between D and E;

(q,ℓ)-back if (d, e) ∈ ρ and E ⊆ τJ (e) with |E| ⩽ q, then there are D ⊆ τI(d)
and a Pr (q,ℓ)-bisimulation ρ′ that contains a bijection between D and E.

The notions of Pr (q,ℓ)-bisimilarity and C-invariance w.r.t. Pr (q,ℓ)-bisimulation
are defined similarly to how it was done in Definition 2.

Theorem 1 states that all ALCSCC concepts are invariant under Pr bisimulation.
For Pr (q,ℓ)-bisimulation, this need not hold, as stated in the next theorem.

Theorem 4. There is an ALCSCC concept C such that, for all values of q and
ℓ, the concept C is not Cfb-invariant under Pr (q,ℓ)-bisimulation.

Proof. Consider the ALCSCC concept C := succ(|r ∩ A| = |r ∩ ¬A|), which has
been used in [6] to show that ALCSCC∞ is not a fragment of FOL. For n,m ∈ N,
let Im,n be the finitely branching interpretation containing individuals d and
di for i = 1, . . . ,m + n, where r is interpreted as the set of tuples (d, di) for
i = 1, . . . ,m+n, every di with i = 1, . . . ,m is in A and every other individual is
not in A. Given q ∈ N we consider Iq,q and Iq,q+1, and notice that d ∈ ∆Iq,q and
d ∈ ∆Iq,q+1 are Pr (q,ℓ)-bisimilar: the relation mapping d ∈ ∆Iq,q to d ∈ ∆Iq,q+1

and di ∈ ∆Iq,q to di ∈ ∆Iq,q+1 is a Pr (q,ℓ)-bisimulation for all ℓ ∈ N. However,
d ∈ CIq,q holds, whereas d /∈ CIq,q+1 . ⊓⊔

Our goal is now to show that this cannot happen for ALCSCC concepts that
are FOL-definable w.r.t. Cfb or Cfin (or more generally a class C of interpretations
satisfying certain closure properties). The proof of this result uses certain locality
properties of FOL formulae that are invariant under Pr bisimulation.

Definition 4. Let I be an interpretation. The distance of d and d′ in I is the
smallest value ℓ ∈ N for which there is a sequence of elements d1, . . . , dℓ+1 ∈ ∆I

where d1 = d, dℓ+1 = d′ and di is a role successor or predecessor of di+1 for
i = 1, . . . , ℓ, or ∞ if such a number does not exist. The ℓ-neighborhood N I

ℓ JdK
of d is derived from I by taking the substructure consisting of all individuals with
distance at most ℓ from d.

The class C of interpretations is closed under neighborhoods if N I
ℓ JdK ∈ C

for all I ∈ C, d ∈ ∆I and ℓ ∈ N. The FOL formula ϕ(x) is ℓ-local w.r.t. C if
for all I ∈ C and all d ∈ ∆I we have that I |= ϕ(d) iff N I

ℓ JdK |= ϕ(d).

We observed that every ALCSCC concept of depth ℓ is ℓ-local. Clearly, we cannot
argue the same for first-order formulae ϕ(x) of quantifier depth ℓ. As an exam-
ple, ϕ(x) = ∃y1.∃y2.r(x, y1) ∧ A(y2) is not 2-local, as any potential individual
replacing y2 need not be in the 2-neighborhood of the individual replacing x.
This formula is in particular not ℓ-local for all values of ℓ.

Interestingly, there is a close relationship between ℓ-locality of FOL formulae
and invariance under finite disjoint union.
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Definition 5 (Disjoint union). Given a finite index set I and a family of
interpretations (Iν)ν∈I ⊆ C, their finite disjoint union I is defined by:

∆I := {(d, ν) | ν ∈ I and d ∈ ∆Iν},
AI := {(d, ν) | ν ∈ I and d ∈ AIν} for all A ∈ NC,

rI := {((d, ν), (e, ν)) | ν ∈ I and (d, e) ∈ rIν} for all r ∈ NR.

The FOL formula ϕ(x) is C-invariant under finite disjoint unions if, for any
finite disjoint union constructed as above, Iν |= ϕ(d) iff I |= ϕ((d, ν)) holds for
every ν ∈ I and d ∈ ∆Iν . We say that C is closed under finite disjoint unions if
Iν ∈ C for all ν ∈ I implies that the disjoint union of (Iν)ν∈I also belongs to C
whenever the index set I is finite.

By proving that ρ := {(d, (d, ν)) | d ∈ ∆Iν , ν ∈ I} is a Pr bisimulation, we obtain
the following property for formulae that are C-invariant under Pr bisimulation.

Proposition 1. If the FOL formula ϕ(x) is C-invariant under Pr bisimulation,
then it is C-invariant under finite disjoint unions.

By Theorem 1, this implies that FOL formulae that are equivalent to ALCSCC
concepts are Cfb- and Cfin-invariant under disjoint union. Before we can state
the crucial lemma from [22], we must introduce one more notation. We call the
class C of interpretations localizable if it is closed under both neighborhoods and
finite disjoint unions.6 Note that our classes Call, Cfb and Cfin are localizable.

Lemma 1 ([22]). If C is localizable, then any FOL formula ϕ(x) of quantifier
depth q that is C-invariant under finite disjoint unions is (2q − 1)-local w.r.t. C.

Combining this lemma with Proposition 1, we can now link ℓ-locality with in-
variance under Pr bisimulation.

Corollary 1. If C is localizable, then any FOL formula ϕ(x) of quantifier depth
q that is C-invariant under Pr bisimulation is ℓ-local w.r.t. C for ℓ := 2q − 1.

Our next goal is now to show that, for FOL formulae, invariance under Pr
bisimulation is equivalent to invariance under Pr (q,ℓ)-bisimulation for some
q, ℓ ∈ N. In the proof of Theorem 4 we exhibit, for all values of q, two tree-
shaped interpretations whose roots are Pr (q,ℓ)-bisimilar for all values of ℓ, and
that are distinguished by the fact that one root satisfies a certain ALCSCC
concept C and the other does not. We prove that this cannot happen for FOL
formulae ϕ(x) that are ℓ-local and have quantifier depth q.

The notion of tree-shaped interpretation is based on paths of length ℓ in I
seen as sequences p := ⟨d0 · · · dℓ+1⟩ such that di+1 ∈ arsI(di) for i = 0, . . . , ℓ and
whose endpoint is end(p) := dℓ+1. Then, I is a tree of depth ℓ if there exists
d ∈ ∆I , called the root of I, such that every other element in I is connected to
d by exactly one path of length at most ℓ and d is not the endpoint of a path.
6 These conditions on C are not stated explicitly in [22], but are implicitly assumed.
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To prove that two trees of depth ℓ that have Pr (q,ℓ)-bisimilar roots d, e
are such that these roots satisfy the same formulae ϕ(x) of quantifier depth at
most q, we make use of the Ehrenfeucht-Fraïsse method, which is based on the
notion of q-isomorphism between d and e (see [15], Definition 1.2.1 of partial
isomorphism and Definition 1.3.1 of q-isomorphism).

Definition 6. A partial isomorphism between interpretations I, J of NC, NR

is an injective partial function p : ∆I ⇀ ∆J s.t. d ∈ AI iff p(d) ∈ AJ and
(d, d′) ∈ rI iff (p(d), p(d′)) ∈ rJ holds for all d, d′ ∈ ∆I for which p is defined,
A ∈ NC and r ∈ NR. A q-isomorphism between d ∈ ∆I and e ∈ ∆J is a
sequence I0, . . . , Iq of non-empty sets of partial isomorphisms between I and J
with {d 7→ e} ∈ Iq satisfying the following properties for all 0 ⩽ i < q:

i-forth if p ∈ Ii+1 and d′ ∈ ∆I then there exists p′ ∈ Ii that extends p and such
that p′(d′) = e′ for some e′ ∈ ∆J ;

i-back if p ∈ Ii+1 and e′ ∈ ∆J then there exists p′ ∈ Ii that extends p and such
that e′ = p′(d′) for some d′ ∈ ∆I .

We say that d, e are q-isomorphic if there is a q-isomorphism between d and e.

The following, fundamental result from finite model theory relates the existence
of a q-isomorphism between two individuals and the satisfiability of FOL formulae
of quantifier depth q w.r.t. these individuals (see [15], Theorem 1.3.2).

Theorem 5 (Ehrenfeucht-Fraïsse). The individuals d and e are q-isomorphic
iff they satisfy the same FOL formulae ϕ(x) of quantifier depth at most q.

We show that a Pr (q,ℓ)-bisimulation between the roots of two trees of depth ℓ
induces a q-isomorphism between these roots, leading to the following result.

Theorem 6. If I, J are trees of depth at most ℓ with roots d, e that are Pr (q,ℓ)-
bisimilar, then these roots satisfy the same FOL formulae ϕ(x) of quantifier depth
at most q.

Proof. If d and e are Pr (q,ℓ)-bisimilar we can define a q-isomorphism I0, . . . , Iq
between d and e such that for all p ∈ Iq−i and i = 0, . . . , q the following hold:

i-left if ⟨d0 · · · dm⟩ with d0 = d is a path in I and p(dm) is defined, then for
j = 0, . . . ,m there is ej ∈ ∆J such that dj , ej are Pr (q, ℓ− j)-bisimilar and
p(dj) = ej , and ⟨e0 · · · em⟩ with e0 = e is a path in J ;

i-right if ⟨e0 · · · em⟩ with e0 = e is a path in J and em = p(dm), then for
j = 0, . . . ,m there is dj ∈ ∆I such that dj , ej are Pr (q, ℓ− j)-bisimilar and
p(dj) = ej , and ⟨d0 · · · dm⟩ with d0 = d is a path in I;

i-branches p is defined on individuals belonging at most i different branches of
I and maps to individuals belonging to at most i diverging paths of J .

Two paths are diverging if their length is greater than 1 and neither of the
two is a prefix of the other. Clearly, p := {d 7→ e} satisfies all three properties
and is a partial isomorphism: d and e satisfy the same concept names by (q,ℓ)-
bisimilarity, and they vacuously agree on NR since trees do not contain role loops.
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Let Iq := {{d 7→ e}}. For 0 ⩽ i < q, we assume that Iq−i is defined and show
how to define Iq−(i+1) so that i-forth and i-back in Definition 6 are satisfied.

Let p ∈ Iq−i and d′ ∈ ∆I , consider the unique path ⟨d0, . . . , dm′⟩ with m′ ⩽ ℓ
between d0 := d and dm′ := d′ in I and let m with 0 ⩽ m < m′ be the greatest
value for which p(dm′) is defined. If m = m′, we simply add p to Iq−(i+1).
Otherwise, for m ⩽ j < m′ we assume that the partial isomorphism pj extending
p with values for dm, . . . , dj is defined and satisfies (i+ 1)-left, (i+ 1)-right and
(i+ 1)-branches, and show how to extend pj to pj+1 by adding a value ej+1 for
dj+1 so that pj+1 also satisfies these conditions.

Let τ be the unique safe role type s.t. (dj , dj+1) ∈ τI . Then, the set D′ of
τ -successors of dj for which pj is defined must contain at most i < q individuals:
for j = m, this is a clear consequence of i-branches, and for m < j < m′ the set
D′ must be empty as otherwise pj(dj) would already have been defined, and we
would contradict our definition of m. Since dj , ej must be Pr (q, ℓ− j)-bisimilar
due to i-left, i-right and their (i + 1)-versions, and D := D′ ∪ {dj+1} ⊆ τI(dj)
has size i + 1 ⩽ q, there exists a set E ⊆ τJ (ej) of i + 1 elements and a
bijection f : D 7→ E such that dx, f(dx) are Pr (q, ℓ − (j + 1))-bisimilar for
dx ∈ D. We notice that if dx ∈ D′ then pj(dx) ∈ τJ (ej) must hold because pj
is a partial isomorphism, and that dx, pj(dx) are (q, ℓ − (j + 1))-bisimilar by
our assumptions on pj , hence we can assume that f(dx) = pj(dx). Moreover,
ej+1 := f(dj+1) ∈ E cannot be in the image of pj : this is a direct consequence
of i-branches for j = m as pj would otherwise map to values over i+ 1 different
branches, and for m < j < m′ this would contradict the definition of m.

We define pj+1 by extending pj with pj+1(dj+1) := ej+1 and verify that it
is a partial isomorphism. First, notice that pj is injective by assumption and
that pj+1(dj+1) ̸= pj+1(dx) if dx ̸= dj+1 by definition, hence pj+1 is injective.
Next, dx ∈ AI iff pj+1(dx) ∈ AJ holds if pj(dx) is defined, so it is sufficient to
notice that dj+1 ∈ AI iff pj+1(dj+1) ∈ AJ follows from the fact that dj+1 and
ej+1 are Pr (q,ℓ− (j + 1))-bisimilar thanks to the atomic condition to conclude
that pj+1 is a partial isomorphism w.r.t. NC. To check that (dx, dy) ∈ rI iff
(pj+1(dx), pj+1(dy)) ∈ rJ for all dx, dy for which pj+1 is defined, we consider
the cases not covered by pj . In the first case, dy = dj+1 with m ⩽ j < m′ and
so (dx, dj+1) ∈ rI may occur iff dx = dj , and since we chose pj+1(dj+1) to be
a τ -successor of pj+1(dj) iff dj+1 ∈ τI(dj) we conclude that (dx, dj+1) ∈ rI iff
(pj+1(dx), pj+1(dj+1)) ∈ rI . In the second case, dx = dj+1 and so (dj+1, dy) ∈ rI

may occur iff dy = d(j+1)+1 with m < j′ := j+1 < m′, and so we fall in the first
case applied to dy = dj′+1. We thus showed that pj+1 is a partial isomorphism
w.r.t. NR and we conclude that it is a partial isomorphism and add it to Iq−(i+1).

The process above shows that I0, . . . , Iq satisfies the i-forth condition for
i = 0, . . . , q. Using a similar strategy, we show, for a given e′ ∈ ∆J , how to add
p′ ∈ Iq−(i+1) that extends p ∈ Iq−i and such that p(d′) = e′ for some d′ ∈ ∆I ,
thus showing that I0, . . . , Iq satisfies the i-back condition for 0 ⩽ i < q. We
obtain a q-isomorphism between d and e and conclude by Theorem 5 that they
satisfy the same FOL formulae ϕ(x) of quantifier depth at most q. ⊓⊔
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While not all interpretations in a class C need to be tree-shaped, we show
that, for every interpretation in Call, Cfb or Cfin, it is possible to find a Pr bisimilar
interpretation in this class where the ℓ-neighborhood of a specific individual d is
a tree with root d. Normally, this is achieved by unravelling [11], but this may
yield an infinite interpretation, and is thus not suitable for our setting, where we
are also interested in the class Cfin. Instead, we introduce partial unravelling of
I, which preserves finiteness and (like unraveling) finite branching. Intuitively,
the ℓ-unravelling of an interpretation I at an element d ∈ ∆I applies unraveling
up to length ℓ, and then adds a copy of I at the end. The exact definition of this
operation, which is an adaptation of the unravelling operation described in [11],
is as follows.

Definition 7. Given an interpretation I with d ∈ ∆I and ℓ ∈ N, let Iu
ℓ be the

interpretation whose domain ∆Iu
ℓ is the set of all paths of I of length at most ℓ

starting in d, with the following interpretation of A ∈ NC and r ∈ NR:

AIu
ℓ := {p ∈ ∆Iu

ℓ | end(p) ∈ AI},
rI

u
ℓ := {(⟨d0, . . . , dk⟩, ⟨d0, . . . , dk, dk+1⟩) ∈ ∆Iu

ℓ ×∆Iu
ℓ | (dk, dk+1) ∈ rI}.

The ℓ-unravelling Id
ℓ of I at d is obtained as the union of I and Iu

ℓ where
we additionally add to rI

d
ℓ all (p, e) ∈ ∆Iu

ℓ × ∆I such that p has length ℓ and
(end(p), e) ∈ rI . Then, C is closed under partial unravelling if Id

ℓ ∈ C for all
I ∈ C, d ∈ ∆I and ℓ ∈ N.

As mentioned above, the ℓ-unravelling of I at d provides an element ⟨d⟩ that is
Pr bisimilar to d ∈ I and whose ℓ-neighborhood is tree-shaped.

Proposition 2. Let Id
ℓ be the ℓ-unravelling of the interpretation I at d ∈ ∆I ,

⟨d⟩ the element corresponding to d in Id
ℓ . Then,

1. The elements d ∈ ∆I and ⟨d⟩ ∈ ∆Id
ℓ are Pr bisimilar.

2. The ℓ-neighborhood N Id
ℓ

ℓ J⟨d⟩K of ⟨d⟩ in Id
ℓ is a tree of depth at most ℓ with

root ⟨d⟩.

Proof. Using the notation of Definition 7, we prove that

ρ := {(d, d) | d ∈ ∆I} ∪ {(d, p) ∈ ∆I ×∆Iu
ℓ | d = end(p)}

is the sought relation. Given that Pr bisimulations are closed under union, it
is enough to show that all (e, p) ∈ ρ satisfy the conditions of Definition 2 to
conclude that ρ is an Pr bisimulation, as the first relation in the union trivially
is an Pr bisimulation. For each (e, p) ∈ ρ, the (atomic) condition is implied by
definition of AIℓ for A ∈ NC.

Next, we show that ρ satisfies (forth). Let (e, p) ∈ ρ and D ⊆ τI(e) a finite
set for some safe role type τ over NR. If p is a directed path of length ℓ with
starting point d, then every τ -successor of p is an element of ∆I and in particular
it is a τ -successor of e. We define D′ := D and obtain a finite subset of τIℓ(p)
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such that ρ contains a bijection between D and D′. If, on the other hand, p
has length less than ℓ, all of its τ -successors in Iℓ are directed paths of the
form p′ = p⟨e′⟩ for which (end(p), e′) ∈ τI . Since end(p) = e, we deduce that
p′ := p⟨e′⟩ ∈ τIℓ(p) holds for all e′ ∈ τI(e). Since ρ contains all tuples (e′, p′)
of the form above, we conclude that it contains a bijection between D and the
finite subset D′ := {p⟨e′⟩ | e′ ∈ D} of τIℓ(p).

Finally, we show that the (back) direction holds. Let D′ ⊆ τIℓ(p) be a finite
set. If p has length ℓ, reusing our previous observations, we derive that D′ ⊆ ∆I .
In particular, from e = end(p) and the definition of rIℓ we derive that e′ ∈ τI(e)
for all e′ ∈ D′. Thus, D := D′ is a finite subset of τI(e) and, since (e′, e′) ∈ ρ
for all e′ ∈ ∆I , it follows that ρ contains a bijection between D and D′. If p has
length less than ℓ, then each element of D′ is a d-dipath p′ such that p′ = p⟨e′⟩
and (end(p), e′) ∈ τI . Since e = end(p), it follows that e′ ∈ τI(e). Moreover,
(e′, p′) ∈ ρ by definition of ρ. We deduce that D := {end(p′) | p′ ∈ D′} ⊆ τI(e)
and ρ contains a bijection between D and D′. We proved that ρ satisfies all
relevant conditions, hence it is a Pr bisimulation between I and Iℓ. ⊓⊔

The following result links invariance under Pr bisimulation with invariance
under Pr (q,ℓ)-bisimulation for FOL formulae.

Theorem 7. Let C be localizable and closed under partial unravelling. For all
FOL formulae ϕ(x), the following are equivalent:

1. ϕ(x) is C-invariant under Pr bisimulation.
2. ϕ(x) is C-invariant under Pr (q,ℓ)-bisimulation for some q, ℓ ∈ N.

Proof. The implication “2. ⇒ 1.” is an immediate consequence of the fact that
every Pr bisimulation is also a Pr (q,ℓ)-bisimulation for all q, ℓ ∈ N.

To prove the other direction, we assume 1. and that ϕ(x) has quantifier depth
q. By Corollary 1 we deduce that ϕ(x) is ℓ-local w.r.t. C for ℓ := 2q − 1. Given
I,J ∈ C and d ∈ ∆I , e ∈ ∆J , we know that the ℓ-unravellings Id

ℓ and J e
ℓ

and the ℓ-neighborhoods Nd := N Id
ℓ

ℓ J⟨d⟩K and Ne := NJ e
ℓ

ℓ J⟨e⟩K also belong to C.
Since ϕ(x) is C-invariant under Pr bisimulation and ℓ-local w.r.t. C we obtain

I |= ϕ(d) iff Id
ℓ |= ϕ(⟨d⟩) iff Nd |= ϕ(⟨d⟩) and

J |= ϕ(e) iff J e
ℓ |= ϕ(⟨e⟩) iff Ne |= ϕ(⟨e⟩).

(by Proposition 2)

If ρ is a Pr (q,ℓ)-bisimulation with (d, e) ∈ ρ, then combining this relation with
the Pr bisimulations linking d and ⟨d⟩ and e and ⟨e⟩ shows that there is a Pr (q,ℓ)-
bisimulation ρ′ between Id

ℓ and Ie
ℓ with (⟨d⟩, ⟨e⟩) ∈ ρ′. Since such a bisimulation

looks only ℓ steps into the interpretation, the restriction of ρ′ to the respective
ℓ-neighborhoods Nd and Ne is also a Pr (q,ℓ)-bisimulation. Proposition 2 says
that these neighborhoods are trees of depth at most ℓ, and thus we can apply
Theorem 6 to obtain Nd |= ϕ(⟨d⟩) iff Ne |= ϕ(⟨e⟩). ⊓⊔

Together with Theorem 4, this yields the desired non-definability results since
the classes Call, Cfb, and Cfin are localizable and closed under partial unravelling.
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Corollary 2. Let C be localizable and closed under partial unravelling. Then
there are ALCSCC concepts that are not FOL-definable w.r.t. C.

The first-order fragment of ALCSCC. In [6], we have established that the
FOL-definable subset of ALCSCC∞ corresponds to the DL ALCQt. This DL can
be seen both as the extension of ALCQ where safe roles types instead of just
role names can be used in qualified number restrictions, and as the restriction
of ALCSCC where only successor restrictions of the form succ(|τ ∩ C| ⩾ q) are
available, where τ is a safe role type, q ∈ N, and C is an ALCQt concept. To make
the relationship to qualified number restrictions clear, we write such successor
restrictions as (⩾ q τ.C), and call them qualified number restrictions. Saying that
this result was proved in [6] for ALCSCC∞ means that it was shown w.r.t. the
class Call. In the following we prove that it also holds for the classes Cfb and Cfin.

It is easy to see that every ALCQt concept can be translated into an equiv-
alent FOL formula with one free variable, and thus ALCQt is a FOL-definable
fragment of ALCSCC. We will show that all FOL-definable concepts of ALCSCC
are equivalent to one in ALCQt. We define the depth of an ALCQt concept to be
the maximal nesting of qualified number restrictions and the breadth to be the
maximal number occurring in a qualified number restriction. With ALCQtq,ℓ we
denote the set of ALCQt concepts of depth at most ℓ and breadth at most q.
The following results for ALCQtq,ℓ are established here.

Proposition 3. Let C be a class of interpretations, q, ℓ ∈ N, and assume that
NC and NR are finite. Then the following holds:

1. Every ALCQtq,ℓ concept is C-invariant under Pr (q,ℓ)-bisimulation.
2. Up to C-equivalence, there are only finitely many ALCQtq,ℓ concepts.
3. For every I ∈ C and d ∈ ∆I there is an ALCQtq,ℓ concept Bisimq

ℓ [d] such
that d ∈ Bisimq

ℓ [d]
I and e ∈ Bisimq

ℓ [d]
J for an interpretation J ∈ C and

d ∈ ∆J implies that d and e are (q,ℓ)-bisimilar.

First, we prove that the first point of Proposition 3 holds.

Theorem 8. For all classes C of interpretations and all q, ℓ ∈ N, every ALCQtq,ℓ
concept is C-invariant under Pr (q,ℓ)-bisimulation.

Proof. We fix q ⩾ 0 and prove that every ALCQtq,ℓ concept is invariant under Pr
(q,ℓ)-bisimulation by induction over ℓ. Let I,J ∈ C be interpretations related
by a Pr (q,ℓ)-bisimulation ρ with (d, e) ∈ ρ.

For ℓ = 0, the fact that all ALCQtq,0 concepts are Boolean combinations of
concept names and that d and e satisfy the same concept names thanks to the
atomic condition satisfied by ρ implies that they satisfy the same ALCQtq,0 con-
cepts, hence that ALCQtq,0 concepts are C-invariant under Pr (q,0)-bisimulation.

We assume inductively that every ALCQtq,ℓ concept is C-invariant under Pr
(q,ℓ)-bisimulation and show that this implies that all ALCQtq,ℓ+1 concepts are
C-invariant under Pr (q,ℓ+ 1)-bisimulation. Let ρ be a Pr (q,ℓ+ 1)-bisimulation
with (d, e) ∈ ρ. We show by structural induction over C an ALCQtq,ℓ+1 concept
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that d and e satisfy the same ALCQtq,ℓ+1 concepts. If C = A is a concept
name, this trivially follows from the fact that ρ satisfies the atomic condition.
We inductively assume that if a ALCQtq,ℓ concept D is a proper subconcept of
C, then d ∈ DI iff e ∈ DJ . Let C = (⩾ q′ τ.D) with D an ALCQtq,ℓ concept and
q′ ⩽ q. If d ∈ CI , then there is a set DC of size q′ ⩽ q of τ -successors of d such
that d′ ∈ DI for d′ ∈ DC . Thanks to the (q,ℓ)-forth condition, we find a set EC

of size q′ ⩽ q of τ -successors of e and a bijection h from DC to EC such that d′

and h(d′) are Pr (q,ℓ)-bisimilar for d′ ∈ DC . Using our inductive hypothesis on
ℓ, we deduce that e′ ∈ DJ for e′ ∈ EC and conclude that e ∈ CJ . Similarly, we
show that e ∈ CJ implies d ∈ CI , this time using the (q,ℓ)-back condition.

If C = ¬D, then the semantics of negation and our inductive hypothesis on
D imply that d ∈ (¬D)I iff d /∈ DI iff e /∈ DJ iff e ∈ (¬D)J . The treatment is
similar for C = D0 ⊓D1. We conclude that d and e satisfy the same ALCQtq,ℓ+1

concepts, hence that ALCQtq,ℓ+1 concepts are C-invariant under Pr (q,ℓ + 1)-
bisimulation. This concludes our proof by induction over ℓ. ⊓⊔

We prove that ALCQtq,ℓ, unlike ALCQt, only contains finitely many concepts
(up to C-equivalence) if we assume that NC and NR are finite. This is well-known
for ALC, i.e. the modal logic K [25] and for ALCQ, i.e. modal logic with graded
modalities [23] and the proof of these facts can be easily extended to ALCQt.
We observe that if we only restricted w.r.t. q, then for q ⩾ 1 we could define
concepts of arbitrary depth, and similarly if we only restricted w.r.t. ℓ we could
write concepts of arbitrary breadth for ℓ ⩾ 1, while restricting only w.r.t. ℓ is
sufficient in logics such as ALC and ALC(D) (as shown in the next section).

Proposition 4. If NC and NR are finite sets, then for all values of q and ℓ and
all classes of interpretations C the logic ALCQtq,ℓ, is finite (up to C-equivalence).

Proof. We fix q ⩾ 0 and proceed by induction over ℓ. For ℓ = 0, we notice that
every ALCQtq,0 concept is a Boolean combination of concept names. Since NC

is assumed to be finite, we conclude that ALCQtq,0 is finite up to C-equivalence.
Next, we inductively assume that ALCQtq,ℓ is finite. Then, there exist finitely
many qualified number restrictions (⩾ k τ.C) with k ⩽ q, C an ALCQtq,ℓ concept
description and τ a safe role type over NR (up to C-equivalence). This holds by
finiteness of NC and NR. Every ALCQtq,ℓ+1 concept description is equivalent to
a Boolean combination of ALCQtq,ℓ concepts and qualified number restrictions
of the form above. Since there are finitely many such combinations up to C-
equivalence, we conclude that ALCQtq,ℓ+1 is finite. ⊓⊔

We want to show that the “converse” of the first statement of this proposition
also holds, i.e., individuals that behave the same w.r.t. all ALCQtq,ℓ concepts
are Pr (q,ℓ)-bisimilar.
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Definition 8. Given an interpretation I with d ∈ ∆I , a safe role type τ over
NR and q, ℓ ∈ N we consider the mutually recursive ALCQtq,ℓ concepts

Atomic[d] :=
d
{A ∈ NC | d ∈ AI} ⊓

d
{¬A | A ∈ NC, d /∈ AI} (atomic)

Forthq,ℓτ [d] :=
d

d′∈τI(d)Forth
q,ℓ
τ,d′ [d] ((q,ℓ)-forth)

Backq,ℓτ [d] :=

{
¬(⩾ 1 τ.(

d
d′∈τI(d) ¬Bisim

q
ℓ [d

′])) if q ⩾ 1

⊤ otherwise
((q,ℓ)-back)

where, assuming that k ⩾ 1 is the number of τ -successors of d in (Bisimq
ℓ [d

′])I ,

Forthq,ℓτ,d′ [d] :=

{
(⩾ k τ.Bisimq

ℓ [d
′]) ⊓ ¬(⩾ k + 1 τ.Bisimq

ℓ [d
′]) if k < q,

(⩾ q τ.Bisimq
ℓ [d

′]) otherwise;

and finally

Bisimq
0[d] := Atomic[d]

Bisimq
ℓ+1[d] := Bisimq

ℓ [d] ⊓
d
{Backq,ℓτ [d] ⊓ Forthq,ℓτ [d] | τ safe role type over NR}.

We call Bisimq
ℓ [d] the (q,ℓ)-characteristic ALCQt concept of d.

If NC and NR are finite then Proposition 4 ensures that characteristic concepts
are well-defined, even if I is not finitely branching, since the conjunctions in
Forthq,ℓτ [d] and Backq,ℓτ [d] contain only finitely many non-equivalent conjuncts.
Using the fact that the concepts (atomic), ((q,ℓ)-forth) and ((q,ℓ)-back) in Def-
inition 8 encode the corresponding properties in Definition 3 we show that the
relation ρℓ := {(d, e) ∈ ∆I × ∆J | e ∈ (Bisimq

ℓ [d])
J } is a Pr (q,ℓ)-bisimulation

and obtain the following correspondence.

Theorem 9. Let NC, NR be finite and q, ℓ ∈ N. Then, d ∈ ∆I and e ∈ ∆J are
Pr (q,ℓ)-bisimilar iff they satisfy the same ALCQtq,ℓ concepts.

Proof. If d and e are Pr (q,ℓ)-bisimilar then they satisfy the same ALCQtq,ℓ
concepts by Theorem 8. We show by induction over ℓ that the relation ρℓ defined
above satisfies all the conditions stated in Definition 3, which implies that ρℓ
is a Pr (q,ℓ)-bisimulation. If d and e satisfy the same ALCQtq,ℓ concepts, then
d ∈ (Bisimq

ℓ [d])
I implies that e ∈ (Bisimq

ℓ [d])
J and so we conclude that (d, e) ∈ ρℓ.

For ℓ ∈ N, we observe that e ∈ (Atomic[d])I iff for all A ∈ NC it holds that
d ∈ AI iff e ∈ AJ ; since this concept occurs as a conjunct in Bisimq

ℓ [d], we
conclude that ρℓ fulfills the atomic condition. In particular, this implies that ρ0
is a Pr (q,0)-bisimulation.

Next, we inductively assume that ρℓ is a Pr (q,ℓ)-bisimulation and show that
ρℓ+1 is a Pr (q,ℓ + 1)-bisimulation. We start by showing that ρℓ+1 satisfies the
(q,ℓ)-forth condition. Assume that (d, e) ∈ ρℓ+1 and let D ⊆ τI(d) be a set of
size q′ ⩽ q for some safe role type τ over NR. We partition D into sets Dd′ for
d′ ∈ D with Dd′ := D ∩ (Bisimq

ℓ [d
′])I ; then, it holds that qd′ := |Dd′ | ⩽ q. In

particular, (⩾ q′ τ.(Bisimq
ℓ [d

′])) with q′ ⩾ qd′ is a conjunct of Forthq,ℓτ [d], so we
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conclude that e ∈ (⩾ q′ τ.(Bisimq
ℓ [d

′]))J , hence e ∈ (⩾ qd′ τ.(Bisimq
ℓ [d

′]))J . Thus,
there exists a set Ed′ ⊆ Bisimq

ℓ [d
′]J of τ -successors of e of size qd′ . Together with

the definition of ρℓ, we obtain that Dd′ ×Ed′ ⊆ ρℓ, and since the two sets are of
the same size we can find a bijection fd′ ⊆ ρℓ between them. By combining all
mappings fd′ with d′ ∈ D we are able to find a bijection f ⊆ ρℓ between D and
E :=

⋃
d′∈D Ed′ . Since ρℓ is inductively assumed to be a Pr (q,ℓ)-bisimulation,

we conclude that ρℓ+1 satisfies (q, ℓ)-forth.
Finally, we show that ρℓ+1 satisfies the (q,ℓ)-back condition. Assume that

(d, e) ∈ ρℓ+1 and let E be a subset of τJ (e) of cardinality q′ ⩽ q. Since e ∈
(Bisimq

ℓ+1[d])
J and Backq,ℓτ [d] is a conjunct of Bisimq

ℓ+1[d], we deduce that for
every e′ ∈ E there is some τ -successor d′ of d such that e′ ∈ Bisimq

ℓ [d
′]J . As

done in the previous paragraph, then, we define sets Ed′ := E ∩ (Bisimq
ℓ [d

′])J

with qd′ := |Ed′ | ⩽ q and use them to find a set D ⊆ τI(d) of size q′ and a
bijection f : E → D included in ρℓ, concluding that ρℓ+1 satisfies (q,ℓ)-back.

Since ρℓ+1 satisfies all the conditions of Definition 3, we conclude that it is a
Pr (q,ℓ+ 1)-bisimulation with (d, e) ∈ ρℓ+1. ⊓⊔

Combining these results with Theorems 1 and 7, we obtain the following
characterization of the FOL fragment on ALCSCC.

Theorem 10. Let C be localizable and closed under partial unravelling and NC,
NR be finite. For all FOL formulae ϕ(x), the following are equivalent:

1. ϕ(x) is C-equivalent to some ALCSCC concept.
2. ϕ(x) is C-invariant under Pr bisimulation.
3. ϕ(x) is C-invariant under Pr (q,ℓ)-bisimulation for some q, ℓ ∈ N.
4. ϕ(x) is C-equivalent to some ALCQt concept.

Proof. That 1. implies 2. follows from Theorem 1 and the equivalence between
2. and 3. is stated in Theorem 7. In addition, 4. trivially implies 1.

Thus, it is sufficient to show that 3. implies 4. To this purpose, we define
Cϕ :=

⊔
{Bisimq

ℓ [d] | I ∈ C, d ∈ ∆I and I |= ϕ(d)}. By 2. of Proposition 3, this
disjunction is finite (up to equivalence), and thus Cϕ is a well-formed ALCQtq,ℓ
concept. First, assume that I |= ϕ(d) with I ∈ C and d ∈ ∆I . Then, d ∈ CI

ϕ

trivially follows from the fact that Bisimq
ℓ [d] occurs as a disjunct in Cϕ.

Conversely, if d ∈ CI
ϕ , then d ∈ (Bisimq

ℓ [e])
I for some J ∈ C and e ∈ ∆J

such that J |= ϕ(e). By 3. of Proposition 3, this implies that d and e are Pr
(q,ℓ)-bisimilar. Hence, 3. of the present proposition implies that I |= ϕ(d). Thus,
we have shown that ϕ(x) and Cϕ are C-equivalent. ⊓⊔

Recall that the classes Call, Cfb or Cfin satisfy the assumptions of Theorem 10.

4 The Expressive Power of DLs with Concrete Domains

In [8,9] we have investigated the abstract expressive power of DLs with concrete
domains, which only considers the abstract part of interpretations, i.e., ignores
the values assigned to features. This allowed us to compare classical logics like
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ALC and FOL with DLs with concrete domains. Here, we want to compare ex-
tensions of ALC with different concrete domains using an appropriate notion of
bisimulation, called D bisimulation if D is the concrete domain under consid-
eration, and characterize ALC(D) as the fragment of FOL(D) that is invariant
under D bisimulation. The employed notion of bisimulation is the one for ALC
(see, e.g., [11]) extended with an additional clause that deals with feature val-
ues. As in the previous section, we show our results not only for the class of all
interpretations, but also for the restrictions to finitely branching and finite ones.

Definition 9. Let D be a concrete domain and I, J interpretations of NC, NR

and NF that assign elements of D to features from NF. The relation ρ ⊆ ∆I×∆J

is a D bisimulation between I and J if for all A ∈ NC, all r ∈ NR, all k-ary
relations P of D, and all feature paths p1, . . . , pk over NR and NF:

atomic if (d, e) ∈ ρ then d ∈ AI iff e ∈ AJ ;
forth if (d, e) ∈ ρ and d′ ∈ rI(d), then there is e′ ∈ rJ (e) such that (d′, e′) ∈ ρ;
back if (d, e) ∈ ρ and e′ ∈ rJ (e), then there is d′ ∈ rI(d) such that (d′, e′) ∈ ρ.
features if (d, e) ∈ ρ, then there is (v1, . . . , vk) ∈ PD with v1 ∈ pI1 (d), . . . ,

vk ∈ pIk (d) iff there is (w1, . . . , wk) ∈ PD with w1 ∈ pJ1 (e), . . . , wk ∈ pJk (e).

Bisimilarity between individuals and C-invariance w.r.t. D bisimulation are de-
fined similarly to how it was done in Definition 2 w.r.t. Pr bisimulation.

A result analogous to Theorem 1 holds for ALC(D) concepts if the concrete
domain D is weakly closed under negation.

Theorem 11. If D is WCUN and C is a class of interpretations of NC, NR and
NF that assign elements of D to features from NF, then every ALC(D) concept
is C-invariant under D bisimulation.

Proof. The proof by structural induction on the concept C proceeds like the
one for ALC in [11], except for the cases where C is a CD-restriction. We only
consider these cases explicitly here. Thus, let ρ be a D bisimulation between I
and J with (d, e) ∈ ρ. We show that d and e satisfy the same CD-restrictions.

If C := ∃p1, . . . , pk.P then d ∈ CI implies the existence of v1 ∈ pI1 (d),. . . ,vk ∈
pIk (d) such that (v1, . . . , vk) ∈ PD. Since ρ satisfies features, there must be w1 ∈
pJ1 (e), . . . , wk ∈ pJk (e) such that (w1, . . . , wk) ∈ PD, hence e ∈ CJ . Similarly,
we can show that e ∈ CJ implies d ∈ CI .

If C := ∀p1, . . . , pk.P , then d ∈ CI implies that (v1, . . . , vk) ∈ PD for all
values v1 ∈ pI1 (d), . . . , vk ∈ pIk (d). Since D is WCUN, this is the case iff there are
relations P1, . . . , PnP

of D such that (v1, . . . , vk) /∈ PD
i for i = 1, . . . , nP . Using

the features condition of ρ, we deduce that (w1, . . . , wk) /∈ PD
i for all w1 ∈ pJ1 (e),

. . . , wk ∈ pJk (e) and i = 1, . . . , nP . By WCUN it follows that (w1, . . . , wk) ∈ PD,
and we conclude that e ∈ CJ . The proof of the other direction is symmetric. ⊓⊔

A non-expressivity result. We can use the notion of D bisimulation to show
that ALC(D) cannot express certain concepts of the DL ALC(D′), where D′ has
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Fig. 1. A Q+2 bisimulation ρ between I (left) and J (right).

the same domain set as D, but different relations. Coming back to the example
in the introduction, we compare the expressive power of Q+1 and Q+2, both
having domain set Q, where the former has a binary relation +1 relating q ∈ Q
and q + 1 (and the complementary relation ̸=+1

) and the latter has a binary
relation +2 relating q and q + 2 (and the complementary relation ̸=+2

).
These two DLs have the same abstract expressive power. In fact, we can

interchange CD-restrictions using relations +1 and ̸=+1
with restrictions of the

same kind (existential or universal) using relations +2 and ̸=+2
. Abstract models

of a concept in one of these DLs are then the same as of the corresponding concept
in the other DL: in one direction, we just double the feature values, and in the
other we halve them. Nevertheless, we can show that their concrete expressive
power, which takes the feature values into account, is incomparable.

Proposition 5. Let C be Call, Cfb, or Cfin. There are ALC(Q+1
) concepts that

are not C-equivalent to any ALC(Q+2
) concept (and vice versa).

Proof. First, consider the ALC(Q+1
) concept C := ∃rf, rf.+1 and assume by

contradiction that it is Call-equivalent to some ALC(Q+2
) concept D. Let us

consider the interpretations I and J depicted in Figure 1. Then, a ∈ CI and by
equivalence a ∈ DI , while a1 /∈ CJ and so a1 /∈ DJ by equivalence. This leads
to a contradiction, since the relation ρ between I and J is a Q+2

bisimulation
relating a and a1, and by Theorem 11 this means that a ∈ DI iff a1 ∈ DJ .
Therefore, we conclude that C and D cannot be equivalent w.r.t. any class of
interpretations that contains the two interpretations of Figure 1. Vice versa,
we can show with a similar argument that ∃rf, rf.+2 cannot be expressed in
ALC(Q+1

), but this requires slightly different interpretations. ⊓⊔

We can also use D bisimulations to show that some extended CD-restrictions
cannot be simulated by normal CD-restrictions. Here, we show that ALC(Q)
is less expressive than its extension ALCpp(Q) where we allow CD-restrictions
of the form ∃p1, . . . , pk.ϕ(x1, . . . , xk) with ϕ(x1, . . . , xk) a conjunction of atomic
formulae P (y1, . . . , yn) where y1, . . . , yn ∈ {x1, . . . , xk} and P is a relation of Q.

Proposition 6. Let C be the class of all interpretations. There are ALCpp(Q)
concepts that are not equivalent to any ALC(Q) concept.
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Proof. Consider the ALCpp(Q) concept C := ∃rf, rf, rf.(x < y ∧ y < z) and
assume by contradiction that it is C-equivalent to some ALC(Q) concept D. Let
us consider the interpretations I and J depicted in Figure 1. Then, a ∈ CI

and by equivalence a ∈ DI , while a1 /∈ CJ and so a1 /∈ DJ by equivalence.
This leads to a contradiction, since the relation ρ between I and J is a D
bisimulation relating a and a1 and by Theorem 11 this means that a ∈ DI iff
a1 ∈ DJ . Therefore, we conclude that C and D are not C-equivalent. ⊓⊔

FOL with concrete domains and ALC(D). Since we are interested in char-
acterizing the concrete expressive power of ALC(D), which takes the feature
values into account, we cannot compare ALC(D) with FOL, where no such val-
ues are available. Instead, we consider the extension FOL(D) of FOL with the
concrete domain D as introduced in [8,9]. The logic FOL(D) is obtained from
FOL by adding definedness predicates Def(f)(t) with f ∈ NF and t a first-order
term, and concrete domain predicates P (f1, . . . , fk)(t1, . . . , tk) where P is a k-ary
relation of D, each ti is a first-order term and fi ∈ NF for i = 1, . . . , k.

The semantics of FOL(D) formulae is defined in terms of first order interpre-
tations I = (∆I , ·I) that additionally assign partial functions fI : ∆I ⇀ D to
f ∈ NF. The semantics of terms, Boolean connectives and first-order quantifiers
is defined as usual. Denoting the interpretation of a first-order term t w.r.t I and
a variable assignment w as tI,w, the new predicates are interpreted as follows:

– I |= Def(f)(tI,w) if fI(tI,w) is defined, and
– I |= P (f1, . . . , fk)(t

I,w
1 , . . . , tI,wk ) if (fI

1 (t
I,w
1 ), . . . , fI

k (t
I,w
k )) ∈ PD.

Note that if (fI
1 (t

I,w
1 ), . . . , fI

k (t
I,w
k )) ∈ PD then each fI

i (t
I,w
i ) must be defined.

It is easy to see (and explicitly shown in [8,9]) that ALC(D) is a fragment of
FOL(D). Our goal is to prove that it is the fragment of FOL(D) that is invariant
under D bisimulation, not just for the class of all interpretations, but also for
finite and finitely branching interpretations. For this, we use an approach that is
very similar to the one employed in Section 3. Recall that Lemma 1 turned out to
be an important model-theoretic tool in that approach since it provided us with
locality results for FOL formulae expressing ALCSCC concepts. The correspond-
ing result also holds for FOL(D). Note that the notions of finite disjoint union
and the corresponding C-invariance w.r.t. classes C of interpretations of NC, NR

and NF are obtained by extending Definition 5 to account for feature names in
the obvious way. For interpretations of NC, NR and NF we define ℓ-neighborhoods
by using the same notion of distance employed in Definition 4. This means that
the distance of two individuals is not determined by concrete domain predicates,
but only by role names. The notions of ℓ-locality of a FOL(D) formula and of
C-invariance w.r.t. classes C of interpretations of NC, NR and NF are obtained
by extending Definition 4 using this notion of neighborhood. In particular, the
extension of the classes Call, Cfb, and Cfin to interpretations taking feature names
into account are defined in the obvious way, and these classes are localizable.

Lemma 2. If C is localizable, then a FOL(D) formula ϕ(x) of quantifier depth
q that is C-invariant under disjoint unions is ℓ-local w.r.t. C for ℓ := 2q − 1.
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Proof. We adopt the same transformation used in [8,9] to map ϕ(x) to a FOL
formula ϕFOL(x) of the same quantifier depth and I ∈ C to a FOL interpreta-
tion IFOL. Formally, we replace every atom P (f1, . . . , fk)(t1, . . . , tk) in ϕ(x) with
P f1,...,fk(t1, . . . , tk), where P f1,...,fk is a fresh k-ary predicate symbol for all k-ary
relations P of D and all f1, . . . , fk ∈ NF, and every atom of the form Def(f)(t)
in ϕ(x) with Deff (t) where Deff is a new predicate symbol for f ∈ NF. No
newly quantified variable is introduced in this transformation, and so ϕFOL(x)
has quantifier depth q, like ϕ(x). We associate to I ∈ C an expansion IFOL by
the following interpretation of the newly introduced predicates:

– d ∈ (Deff )
IFOL

iff fI(d) is defined
– (d1, . . . , dk) ∈ (P f1,...,fk)I

FOL

iff (fI
1 (d1), . . . , f

I
k (dk)) ∈ PD.

We denote with CFOL the resulting class of interpretations. By the semantics of
FOL(D), we obtain that for all FOL(D) formula ϕ(x), all I ∈ C and all d ∈ ∆I

I |= ϕ(d) iff IFOL |= ϕFOL(d). (⋆)

We fix d ∈ ∆I and consider the ℓ-neighborhood N of d. Let M be the disjoint
union of q copies I1, . . . , Iq of I and q copies N1, . . . ,Nq of N . We define I⋆ as
the disjoint union of I0 := I and M, and N⋄ as the disjoint union of N0 := N
and M. For each e ∈ ∆I , i = 0, . . . , q and j = 1, . . . , q we denote with (e, Ii)⋆
the individual in I⋆ corresponding to e ∈ ∆Ii and with (e, Ij)⋄ the individual
in N⋄ corresponding to e ∈ ∆Ij . Similarly, if e ∈ ∆N then we introduce the
notation (e,Ni)⋄ and (e,Nj)⋆.

Since C is localizable, we deduce that I⋆,N⋄ ∈ C. By C-invariance under
disjoint union of ϕ(x) we obtain that

I |= ϕ(d) iff I⋆ |= ϕ((d, I0)⋆) and N |= ϕ(d) iff N⋄ |= ϕ((d,N0)⋄),

and using (⋆) we observe that

I⋆ |= ϕ((d, I0)⋆) iff IFOL
⋆ |= ϕFOL((d, I0)⋆),

N⋄ |= ϕ((d,N0)⋄) iff N FOL
⋄ |= ϕFOL((d,N0)⋄).

We show that (d, I0)⋆ and (d,N0)⋄ are q-isomorphic. By Theorem 5, this
implies that they satisfy the same FOL formulae of quantifier depth at most q
and in particular that

IFOL
⋆ |= ϕFOL((d, I0)⋆) iff N FOL

⋄ |= ϕFOL((d,N0)⋄),

which together with all our previous observations implies that I |= ϕ(d) iff
N |= ϕ(d), hence that ϕ(x) is ℓ-local.

Note that in this case, a partial isomorphism p between IFOL
⋆ and N FOL

⋄ must
be defined not only in terms of NC and NR but also according to the newly
introduced definedness and concrete predicates:

IFOL
⋆ |= Deff (e) iff N FOL

⋄ |= Deff (p(e)) and

IFOL
⋆ |= P f1,...,fk(e1, . . . , ek) iff N FOL

⋄ |= P f1,...,fk(p(e1), . . . , p(ek))
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must hold for all feature names f, f1, . . . , fk and e, e1, . . . , ek in IFOL
⋆ . Neverthe-

less, we consider the distance of two individuals in IFOL
⋆ and N FOL

⋄ as introduced
in Definition 4, i.e. in terms of elements connected by roles in NR and thus
consider neighborhoods in IFOL

⋆ and N FOL
⋄ according to this notion of distance.

Following Otto’s construction in [22], we build a q-isomorphism I0, . . . , Iq
such that for i = 0, . . . , q, p ∈ Iq−i and all elements e := (e′,K)⋆ of IFOL

⋆ for which
p is defined we have that, having defined ℓi := (2q−i − 1), the ℓi-neighborhoods
of e and p(e) are equal (up to renaming of the elements) and in particular that
p(e) = (e′,K′)⋄, where K and K′ are any of the interpretations considered in the
construction of I⋆ and N⋄. First, we set Iq := {{(d, I0)⋆ 7→ (d,N0)⋄}}. Since N
is assumed to be the ℓ-neighborhood of d in I and ℓ = ℓ0, it is clear that the
mapping in Iq satisfies our requirement of equality of the neighborhoods. It is
also trivial to see that this is a partial isomorphism w.r.t. NC, NR and the newly
introduced predicates, as a consequence of the fact that fI(d) = fN (d) holds
for all f ∈ NF. Assuming that we have defined Iq−i with 0 ⩽ i < q, we show how
to define Iq−(i+1) so that i-forth Definition 6 is satisfied.

Let p ∈ Iq−i and e an individual in IFOL
⋆ . We show how to define a mapping

p′ that extends p by adding a value p′(e) for e. First, we consider the case where
every element e′ for which p(e′) is defined has distance greater than ℓi+1 + 1
from e. If e is of the form (d′,Nj)⋆, we choose p′(e) to be of the form (d′,Nk)⋄
for a value 1 ⩽ k ⩽ q such that no other element of the form (d′′,Nk)⋄ is in the
image of p. This is always possible, since N⋄ contains q copies of N . Similarly,
we treat the case where e is of the form (d′, Ij)⋆. Next, we consider the case
where e has distance at most ℓi+1 + 1 from some element e′ for which p(e′) is
defined. By construction of Iq−i and the fact that p ∈ Iq−i, we deduce that e′

and p(e′) have the same ℓi-neighborhoods up to renaming. Assuming that e′ is
of the form (d′,K)⋆ with K of the form Ij or Nj , we know that e is of the form
(d′′,K)⋆. Moreover, we know that p(e′) is of the form (d′′,K′)⋄ with K′ of the
form Ij or Nj , and we thus choose p′(e) to be (d′′,K′)⋄.

We verify that the ℓi+1-neighborhoods of e and p′(e) are equal. Since for all
other elements for which p′ is defined this is a trivial consequence of p ∈ Iq−i,
this is sufficient to conclude that p′ satisfies this property for all the individuals
on which is it defined. We distinguish two cases. In the first case, this is trivially
a consequence of choosing the same individual w.r.t. the same original interpre-
tation (either N or I). In the second case, we have chosen the same individual
(up to renaming) w.r.t. the identical ℓi-neighborhoods of two elements e′ and
p(e′) and both individuals have distance at most ℓi+1 + 1 from e′ and p(e′) (re-
spectively), which means that the ℓi+1-neighborhoods of e and p′(e) are fully
enclosed in the larger ℓi-neighborhoods of e′ and p(e′) and thus are identical.

What is left is to prove that p′ is a partial isomorphism w.r.t. NC, NR and the
newly introduced predicates. It is clear that p′ is injective, because of the way we
choose p′(e) and by inductive hypothesis on p. It is also clear that, by this choice,
e ∈ AIFOL

⋆ iff p′(e) ∈ AN FOL
⋆ holds for all A ∈ NC. Since p is a partial isomorphism

w.r.t. NC by inductive hypothesis this is sufficient to conclude that p′ is a partial
isomorphism w.r.t. NC. Next, we show that p′ is a partial isomorphism w.r.t. NR.
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We notice that for all e′, e′′ ∈ IFOL
⋆ the fact that (e, e′) ∈ rI

FOL
⋆ iff (p′(e), p′(e′)) ∈

rN
FOL
⋆ holds follows from the fact that in this case, e′ and e′′ must have distance

1 ⩽ ℓi+1 in IFOL
⋆ , which means that the corresponding values of p′(e′) and

p′(e′′) also have distance 1 and moreover are respectively equal to e′ and e′′

up to renaming. Finally, we show that p′ is a partial isomorphism w.r.t. the
newly introduced predicates. By construction of N , N⋄ and I⋆ we know that
fN (e′) = fI(e′) for all e′ ∈ ∆N and all f ∈ NF. Using the definition of disjoint
union, we then obtain that fI⋆((e′,Nj)⋆) = fI(e′) and fN⋄((e′,Nk)⋄) = fI(e′)
for all j = 1, . . . , q and k = 0, . . . , q. Clearly, for all e′ ∈ ∆I and all f ∈ NF it also
holds that fI⋆((e′, Ik)⋆) = fI(e′) and fN⋄((e′,Nj)⋄) = fI(e′) for j = 1, . . . , q
and k = 0, . . . , q. In other words, the feature values of each individual in I and
N are duplicated over all copies. This clearly implies that IFOL

⋆ |= Deff (e) iff
N FOL

⋄ |= Deff (p
′(e)), and this property is already satisfied for all other elements

for which p′ is defined by inductive hypothesis on p. Finally, we show that

IFOL
⋆ |= P f1,...,fk(e1, . . . , ek) iff N FOL

⋄ |= P f1,...,fk(p′(e1), . . . , p
′(ek)) (†)

Assuming that ej = (e′j ,Kj) for j = 1, . . . , k, we have that p′(ej) = (e′j ,K′
j) by

construction of p′ and the inductive hypothesis on p. Combined with the above,
we obtain that

IFOL
⋆ |= P f1,...,fk(e1, . . . , ek) iff I |= P (f1, . . . , fk)(e

′
1, . . . , e

′
k)

and

N FOL
⋄ |= P f1,...,fk(p′(e1), . . . , p

′(ek)) iff I |= P (f1, . . . , fk)(e
′
1, . . . , e

′
k)

so we conclude that (†) holds.
We thus showed that p′ is a partial isomorphism, and that Iq−(i+1) satisfies

the i-forth condition. Similarly, we show how to use p ∈ Iq−i and e′ ∈ N FOL
⋄ to

add a partial isomorphism p′ to Iq−(i+1) such that p′(e) = e′ for some e ∈ IFOL
⋆ ,

and therefore prove that Iq−i satisfies the i-back condition. Overall, we conclude
that I0, . . . , Iq is a q-isomorphism.

As mentioned in the first part of the proof, this implies that I |= ϕ(d) iff
N |= ϕ(c) and thus that ϕ(x) is ℓ-local w.r.t. C. ⊓⊔

In the following, we assume that the concrete domain D is WCUN and has
finitely many relations; both conditions are always satisfied by ω-admissible con-
crete domains [19,12]. Following the approach employed in the previous section,
we introduce a bounded version of D bisimulation, where now only the depth is
bounded since there are no cardinality constraints.

Definition 10. Let I, J be interpretations of NC, NR and NF and ℓ ∈ N. The
relation ρ ⊆ ∆I ×∆J is a D 0-bisimulation if ρ satisfies the atomic condition
of Definition 9 and for all k-ary relations P of D and f1, . . . , fk ∈ NF:

values if (d, e) ∈ ρ then (fI
1 (d), . . . , f

I
k (d)) ∈ PD iff (fJ

1 (e), . . . , fJ
k (e)) ∈ PD.
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The relation ρ is a D (ℓ+ 1)-bisimulation if it is a D ℓ-bisimulation that addi-
tionally satisfies the features conditions of Definition 9, and for all r ∈ NR the
following are satisfied:

ℓ-forth if (d, e) ∈ ρ and d′ is an r-successor of d, then there exist an r-successor
e′ of e and a D ℓ-bisimulation ρ′ such that (d′, e′) ∈ ρ′;

ℓ-back if (d, e) ∈ ρ and e′ is an r-successor of e, then there exist an r-successor
d′ of d and a D ℓ-bisimulation ρ′ such that (d′, e′) ∈ ρ′.

The notions of bisimilarity and C-invariance w.r.t. D ℓ-bisimulation are defined
similarly to how it was done in Definition 2.

We show that, under the assumption that the concrete domain D is WCUN
and has finitely many relations, results analogous to Proposition 1, Corollary 1,
Theorem 6, Proposition 2, Theorem 7, and Proposition 3 also hold for FOL(D)
and ALC(D), where ALC(D) plays both the role of ALCSCC and of ALCQt.
Since we can prove that every FOL(D) formula that is C-invariant under D
bisimulation is C-invariant under finite disjoint unions similarly to what is done
in Proposition 1 for FOL formulae w.r.t. Pr bisimulation, we obtain the following
corollary which is analogous to Corollary 1.

Corollary 3. If C is localizable, a FOL(D) formula ϕ(x) of quantifier depth q
that is C-invariant under D bisimulation is ℓ-local w.r.t. C for ℓ := 2q − 1.

We obtain the notions of tree and partial unravelling to interpretations of NC,
NR and NF by extending Definition 7 to feature names in the obvious way. For
trees of depth ℓ, the corresponding version of Theorem 6 for D ℓ-bisimulation is
simplified to the following, where q-isomorphism is replaced by D bisimilarity.

Lemma 3. If I, J are trees of depth ℓ with roots d, e that are D ℓ-bisimilar,
then these roots are D bisimilar.

Proof. We show that a D ℓ-bisimulation ρ between d and e induces a D bisimu-
lation ρ′ such that if (d′, e′) ∈ ρ′ then d′ and e′ have the same distance 0 ⩽ ℓ′ ⩽ ℓ
from d and e and are D (ℓ− ℓ′)-bisimilar.

We begin by setting ρ′ := {(d, e)}. Clearly, the tuple (d, e) satisfies the prop-
erty above with ℓ′ = 0. Assuming that (d′, e′) ∈ ρ′ are D (ℓ − ℓ′)-bisimilar, for
every r-successor d′′ of d′ we add to ρ′ a tuple (d′′, e′′) where e′′ is an r-successor
of e′ that is D (ℓ − (ℓ′ + 1))-bisimilar to d′′. This is always possible: if ℓ′ < ℓ
then this is guaranteed by the (ℓ− ℓ′)-forth condition, and if ℓ′ = ℓ then d′ has
no r-successors in I and so the above is vacuously true. In the first, both d′′

and e′′ have distance ℓ′ + 1 ⩽ ℓ from d and e. Similarly, for every r-successor
e′′ of e′ we add to ρ′ a tuple (d′′, e′′) where d′′ is an r-successor of d′ that is D
(ℓ− (ℓ′ + 1))-bisimilar to e′′.

We show that the relation ρ′ obtained by exhaustively repeating the process
above for ℓ′ = 0, . . . , ℓ is a D bisimulation. Since (d′, e′) ∈ ρ′ implies that d′

and e′ are D ℓ′-bisimilar with ℓ′ ⩾ 0, it clearly holds that ρ′ satisfies the atomic
condition. By construction of ρ′, the forth and back conditions are also clearly
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satisfied. To see that features is satisfied by ρ′, let p1, . . . , pk be feature paths
over NR and NF. If pi = fi holds for i = 1, . . . , k, then the values condition of D
ℓ-bisimulations applied to d′ and e′ implies that features is satisfied for p1, . . . ,
pk. Otherwise, pi = rifi holds for some 1 ⩽ i ⩽ k. If (v1, . . . , vk) ∈ PD with
v1 ∈ pI1 (d

′), . . . , vk ∈ pIk (d
′) then d′ has some role successors, which means d′

and e′ are D ℓ′-bisimilar with ℓ′ > 0 and so we use the features property of D
ℓ′-bisimulation to derive that there are w1 ∈ pJ1 (e′), . . . , wk ∈ pJk (e′) such that
(w1, . . . , wk) ∈ PD. The other implication is proved similarly, and we conclude
that ρ′ satisfies the features property. Therefore, ρ′ is a D bisimulation. ⊓⊔

Similar to the case of Pr (q,ℓ)-bisimulation and q-isomorphism in ??, we obtain
the following for D ℓ-bisimulation on trees of depth ℓ.

Corollary 4. If C is closed under partial unravelling and I,J ∈ C contain
d ∈ ∆I , e ∈ ∆J that are D ℓ-bisimilar, then ⟨d⟩ ∈ ∆Iℓ and ⟨e⟩ ∈ ∆Jℓ satisfy the
same ℓ-local FOL(D) formulae ϕ(x) that are C-invariant under D bisimulation.

By adapting the proof of Theorem 7 to use Corollary 4 instead of ?? and Corol-
lary 3 instead of Corollary 1, we obtain the following analogous of Theorem 7
for D bisimulation.

Theorem 12. Let C be localizable and closed under partial unravelling. Then,
a FOL(D) formula ϕ(x) is C-invariant under D bisimulation iff it is C-invariant
under D ℓ-bisimulation for some value of ℓ.

To conclude, we will show that for FOL(D) formulae ϕ(x) C-invariance under
D ℓ-bisimulation implies C-equivalence to some ALC(D) concept C, where C is
in particular a concept of depth ℓ. Similarly to what was done earlier for ALCQt,
we define ALC(D)ℓ as the subset of ALC(D) whose concepts have nesting level
at most ℓ, where the depth of a CD-restriction ∃p1, . . . , pk.P is 1 if pi = rifi for
some i = 1, . . . , k and 0 otherwise. As in the case of ALCQtq,ℓ we observe that
ALC(D)ℓ is finite, up to C-equivalence.

Proposition 7. If D has finitely many relations and NC, NR, NF are finite, then
ALC(D)ℓ has finitely many concepts (up to C-equivalence) for all ℓ ∈ N.

Proof. If NC, NR and NF are finite then there are only finitely many k-tuples of
feature paths over NR and NF for all values of k; since D has finitely many rela-
tions, this means that there are only finitely many CD-restrictions in ALC(D)ℓ.

We prove that our claim holds by induction over ℓ. For ℓ = 0, this trivially
holds because NC is finite and by our observation regarding CD-restrictions. For
the inductive step, we assume that the claim holds for ℓ and show that the same
applies for ℓ+1. Every concept in ALC(D)ℓ+1 is a Boolean combination of CD-
restrictions, ALC(D)ℓ concepts and role restrictions ∃r.C with r ∈ NR and C a
ALC(D)ℓ concept. By inductive hypothesis, there can be only finitely many role
restrictions of this form and ALC(D)ℓ concepts (up to C-equivalence). Together
with our observation above on the number of CD-restrictions, we deduce that
there can only be finitely many non-equivalent Boolean combinations of the
described form. Therefore, we conclude that the claim holds for ALC(D)ℓ+1. ⊓⊔
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Moreover, under our assumptions on D, we obtain the invariance of ALC(D)ℓ
under D ℓ-bisimulation.

Proposition 8. If D is WCUN and has finitely many relations, then ALC(D)ℓ
concepts are invariant under D ℓ-bisimulation.

It is again possible, as in the case of Pr (q,ℓ)-bisimulation and ALCQtq,ℓ, to
define a characteristic ℓ-concept in ALC(D)ℓ that describes all individuals that
are D ℓ-bisimilar to d ∈ ∆I . Assuming that f̂I(d) := (fI

1 (d), . . . , f
I
k (d)) with

f1, . . . , fk ∈ NF and that p1, . . . , pk are feature paths over NR, NF we define

Values∃[d] :=
d
{∃f1,. . . ,fk.P | f̂I(d) ∈ PD}

Values∀[d] :=
d
{∀f1,. . . ,fk.P | if fI

1 (d),. . . ,f
I
k (d) are defined then f̂I(d) ∈ PD}

Features∃[d] :=
d
{∃p1,. . . ,pk.P | some tuple in pI1 (d)× · · · × pIk (d) is in PD}

Features∀[d] :=
d
{∀p1,. . . ,pk.P | every tuple in pI1 (d)× · · · × pIk (d) is in PD}

By Proposition 7, these concepts are well-defined. Next, we define

Forthℓ[d] :=
d

r∈NR

d
e∈rI(d)∃r.Bisimℓ[e]

Backℓ[d] :=
d

r∈NR
∀r.(

⊔
e∈rI(d)Bisimℓ[e])

and finally introduce the concepts

Bisim0[d] := Values∃[d] ⊓ Values∀[d] ⊓ Atomic[d]

Bisimℓ+1[d] := Bisimℓ[d] ⊓ Features∃[d] ⊓ Features∀[d] ⊓ Forthℓ[d] ⊓ Backℓ[d]

where the concept Atomic[d] is defined as in Definition 8.

Theorem 13. If D is WCUN and has finitely many relations and NC, NR, NF

are finite then d ∈ ∆I , e ∈ ∆J are D ℓ-bisimilar iff they satisfy the same
ALC(D)ℓ concepts.

Proof. The proof is similar to that of Theorem 9, where we additionally need to
test that ρℓ := {(d, e) ∈ ∆I×∆J | e ∈ (Bisimℓ[d])

J } satisfies the values condition
and additionally the features condition if ℓ > 0. To prove that ρℓ satisfies values,
assume that for f1, . . . , fk ∈ NF and a k-ary relation P of D it holds that
(fI

1 (d), . . . , f
I
k (d)) ∈ PD. Then, ∃f1, . . . , fk.P is a conjunct of Values∃[d], and

since e ∈ Bisimℓ[d]
J we derive that (fJ

1 (e), . . . , fJ
k (e)) ∈ PD. Vice versa, if

(fI
1 (d), . . . , f

I
k (d)) /∈ PD, then by WCUN we find k-ary predicates P1, . . . , PnP

such that if fI
j (d) is defined for j = 1, . . . , k then (fI

1 (d), . . . , f
I
k (d)) ∈ PD

i holds
for some 1 ⩽ i ⩽ nP . This means that ∀f1, . . . , fk.Pi is a conjunct of Values∀[d].
Then, either fJ

j (e) is undefined for some 1 ⩽ j ⩽ k or (fJ
1 (e), . . . , fJ

k (e)) ∈ PD
i

holds, and by WCUN this implies that (fJ
1 (e), . . . , fJ

k (e)) /∈ PD. We conclude
that ρℓ satisfies values. Similarly, we verify that ρℓ satisfies features if ℓ > 0,
taking care of replacing tuples f1, . . . , fk ∈ NF with tuples p1, . . . , pk of feature
paths and replacing Values∃[d], Values∀[d] with Features∃[d], Features∀[d]. ⊓⊔
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Similarly to the proof of Theorem 7, these results can be combined to show
the following characterization of ALC(D) as the fragment of FOL(D) that is
invariant under D bisimulation.

Theorem 14. Let C be localizable and closed under partial unravelling, D be
WCUN and have finitely many relations, and NC, NR, NF be finite. Then the
following are equivalent for all FOL(D) formulae ϕ(x):

1. ϕ(x) is C-invariant under D bisimulation.
2. ϕ(x) is C-invariant under D ℓ-bisimulation for some ℓ ∈ N.
3. ϕ(x) is equivalent to an ALC(D) concept.

Recall that the classes Call, Cfb and Cfin satisfy the assumptions of Theorem 14.
We further remark that, in contrast to the case of ALCSCC, where there are con-
cepts that are not FOL-definable, every ALC(D) concept is FOL(D)-definable.

5 Conclusion

We have investigated the expressive power of concept description languages that
allow their users to employ numerical constraints when defining concepts in two
orthogonal ways. In contrast to our previous results on the expressive power of
such languages [6,7,8,9], the approach employed here also works for restricted
classes of interpretations such as finitely branching or finite ones. In [7], we have
characterized the expressive power of TBoxes and cardinality boxes of ALCSCC∞

(where arbitrary interpretations are considered) using global Pr bisimulations.
It is at the moment not clear to us whether the results obtained there can be
extended to the restricted classes of interpretations considered in the present
paper. Another interesting topic for future research is to study the expressive
power of ALCOSCC(D), a joint extension of both ALCSCC and ALC(D), whose
complexity has recently been analyzed in [4]. The DLs ALCSCC and ALC(D)
are closed under all Boolean operations, whereas Kurtonina and de Rijke [18]
characterize the expressive power of sub-Boolean fragments of ALC. It would
be interesting to see whether their results can be extended to the corresponding
fragments of ALCSCC and ALC(D). Like most bisimulation-based characteri-
zations of the expressive power of logics, we assume here that the concept D
in the DL L2 expressing the concept C in the DL L1 must be built over the
same signature as C, i.e., no auxiliary symbols may be used. It would again be
interesting to see whether inexpressivity results such as the one in Proposition 5
still hold if the use of auxiliary symbols is allowed, as for instance in [1].
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