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Abstract
In previous work it was shown that the logic ALCME,
which extends the description logic (DL) ALC with
probabilistic conditionals, has domain-lifted inference.
Here, we extend this result from the base logic ALC
to two logics that can count, the two-variable fragment
C2 of first-order logic (FOL) with counting quantifiers,
and the DL ALCSCC, which is not a fragment of FOL.
As an auxiliary result, we prove that model counting in
ALCSCC can be realized in a domain-liftable way.

1 Introduction
Description logics (DLs) (Baader et al. 2003; 2017) are a
well-investigated family of logic-based knowledge repre-
sentation formalisms, which can be used to formalize the
terminological knowledge of an application domain in a
machine-processable way. For instance, large medical on-
tologies such as SNOMED CT1 and Galen2 have been devel-
oped using an appropriate DL. While classical DLs are often
sufficient for formalizing certain knowledge like the defini-
tion of medical terminology, they cannot adequately express
uncertain knowledge, which may, e.g., be needed for med-
ical diagnosis. Using a non-medical example, the concept
of a father can be formalized by the concept inclusion (CI)
Father v Human u Male u 9child.Human, which says that
fathers are male humans that have a human child. However,
a statement like “Rich persons usually have rich children”
should not be expressed with a CI since it does not hold for
all rich persons. It is more appropriate to use a probabilistic
conditional (PC) of the form (8child.Rich |PersonuRich)[p],
where the probability p may be based on statistical knowl-
edge or express the degree of a subjective belief. The CI
and PC of our example can be phrased in the probabilis-
tic DL ALC

ME (Wilhelm et al. 2019; Baader et al. 2019;
Wilhelm and Kern-Isberner 2019), which extends the well-
known DL ALC with probabilistic conditionals that are in-
terpreted based on the aggregating semantics and the maxi-
mum entropy principle. Compared to other probabilistic ex-
tensions of DL (such as (Lukasiewicz 2008; Peñaloza and
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1https://www.snomed.org/
2https://bioportal.bioontology.org/ontologies/GALEN

Potyka 2017; Gutiérrez-Basulto et al. 2017)), ALC
ME has

the advantage that the aggregating semantics smoothly com-
bines the statistical and the subjective view on probabilities
and that the maximum entropy approach fulfills a number
of reasonable commonsense principles (Paris 1999; Kern-
Isberner and Thimm 2010; Beierle, Finthammer, and Kern-
Isberner 2015). Like other approaches for probabilistic rea-
soning in a first-order setting, the aggregating semantics as-
sumes that interpretations are built over a fixed finite domain
�. To be able to deal with large domain sizes, one needs
reasoning to be domain-lifted (Van den Broeck et al. 2011),
which means that inferences can be drawn in time polyno-
mial in the size of�. The main results of (Baader et al. 2019;
Wilhelm et al. 2019; Wilhelm and Kern-Isberner 2019) are
that ALC

ME allows for domain-lifted inference.
In the present paper we extend these results from the

base logic ALC to logics that can count. Number restric-
tions (Hollunder, Nutt, and Schmidt-Schauß 1990; Hollun-
der and Baader 1991) are DL concept constructors that can
express simple numerical constraints on the number of role
successors of an individual, such as that it has three children
that are rich, and only two that are not rich, whereas cardi-
nality restrictions on concepts (Baader, Buchheit, and Hol-
lunder 1996; Tobies 2000) can constrain the overall num-
ber of elements of a concept, e.g., expressing that there are
more than 500,000 rich people living in Florida. Descrip-
tion logics offering such counting features are contained in
C2, the two-variable fragment of FOL with counting quanti-
fiers, and are thus decidable (Grädel, Otto, and Rosen 1997;
Pacholski, Szwast, and Tendera 1997). In (Kuželka 2021;
Tóth and Kuželka 2024) it was recently shown that (ex-
tended versions of) model counting in C2 can be realized in
a domain-liftable way. We will use this result to prove that
C2ME allows for domain-lifted inference. The DL ALCSCC

(Baader 2017) offers more expressive counting constraints
on role successors, which in general cannot be expressed
in C2 or even full FOL (Baader and Bortoli 2019). For
example, in ALCSCC we can describe persons that have
more rich than non-rich children without specifying how
many children of each type the person actually has, and
in ALCSCC

ME we can say that, with a high probability
(say .8), rich persons have more rich than non-rich children.
We will show that (an extended version of) model counting
in ALCSCC can be realized in a domain-liftable way, and



use this result to prove that ALCSCC
ME allows for domain-

lifted inference.

2 The Logics C2 and ALCSCC

We briefly sketch syntax and semantics of these logics. More
detailed formal definitions can, e.g., be found in (Tóth and
Kuželka 2024; Baader and Bortoli 2019).

Two-Variable Logic with Counting To define C2, we
consider the two-variable fragment L2 of FOL, where only
two variables x, y are available for building formulas, but
in addition to quantifiers 9 and 8, we also allow the use of
counting-quantifiers 9�k and 9

k, where k is a non-negative
integer. The formula 9�k.�(x) (9k.�(x)) holds in an inter-
pretation I if its domain �I contains at least (at most) k
elements d such that �(d) is true in I . Note that counting
quantifiers can be expressed in FOL, but not in L2 since this
would require more than two variables.

In the following, we want to view C2 as a DL. For this
purpose, we define C2 concepts to be C2 formulas with
free variable x. For such a concept C = �(x), its exten-
sion CI in an interpretation I is the set CI := {d 2 �I

|

�(d) is true in I}. To be consistent with DL notation, we
sometimes write the conjunction of C2 concepts as C u D
rather than C ^ D. A C2 terminology (TBox) is a C2 sen-
tence, i.e., a C2 formula without free variables.

The DL ALCSCC Our introduction of the DL ALCSCC

is based on the presentation in (Baader and Bortoli 2019)
since it is more streamlined than the one in (Baader 2017).
ALCSCC concepts are built from concept names and role
names using the concept constructors conjunction (C uD),
disjunction (CtD), negation (¬C), and successor constraint
(succ(Con)), where Con is a cardinality constraint. Cardi-
nality constraints are of the form

N0+N1|s1|+ · · ·+Nk|sk|  M0+M1|t1|+ · · ·+M`|t`|,

where the si, tj are set terms and the Ni,Mj are non-
negative integers. Finally, set terms are built from set vari-
ables using intersection (s \ t), union (s [ t), and comple-
ment (s), where role names and ALCSCC concepts can be
used as set variables. An interpretation I consists of a non-
empty domain �I and assigns sets AI

✓ �I to concept
names A and binary relations rI on �I to role names r.
The extension CI of compound concepts is defined by in-
duction, where conjunction, disjunction, and negation are in-
terpreted as intersection, union, and complement. To define
whether or not an element d of �I belongs to succ(Con)I ,
one considers the set of all role successors3 of d (i.e., ele-
ments e such that there is a role name r with (d, e) 2 rI )
as set universe Ud and interprets role names r as the set of
r-successors of d and concepts C as CI

\ Ud. The inter-
pretation of set terms as subsets of Ud and the validity of
Con, which is required for d to belong to succ(Con)I , are
then defined in the obvious way. For example, the ALCSCC

3In (Baader 2017), interpretations are restricted such that this
set is finite, whereas Baader and Bortoli (2019) also allow for in-
finite sets. Since we will only consider finite interpretations, this
difference is irrelevant here.

concept Personu succ(|child\¬Rich|+1  |child\Rich|)
describes persons that have more rich than non-rich children.

An ALCSCC terminology (TBox) is a finite set of CIs of
the form C v D, where C,D are ALCSCC concepts. The
interpretation I is a model of such a TBox T (I |= T ) if
CI

✓ DI holds for all elements C v D of T .

Model Counting Model counting usually asks how many
models over a given finite domain � a given sentence has.
Here, we consider a slightly extended version of this task,
called in the following concept-constrained model counting,
where the underlying logic is either C2 or ALCSCC. Let
T be a TBox, C1, . . . , Cn concepts, c1, . . . , c` non-negative
integers, and � a finite set. Then

ccmc(T , C1, . . . , C`, c1, . . . , c`,�)

is defined to be the number of models I of T with domain
� that satisfy |CI

i | = ci (1  i  `). We say that concept-
constrained model counting is domain-liftable if this number
can be computed in polynomial time in the size of the input
� (i.e., where the other inputs of the function ccmc are as-
sumed to be of constant size). We will show later that this
is the case for both C2 and ALCSCC, but first define our
probabilistic extensions of these two logics.

3 The Logics ALCSCC
ME and C2ME

In the following, let L be either ALCSCC or C2. In the logic
L
ME, we consider probabilistic conditionals (PCs) of the

form (D |C)[p], where C,D are L concepts and p is a ra-
tional number. An L knowledge base K = (T , C) consists
of an L TBox T together with a finite set C of PCs. To de-
fine the semantics of such a knowledge base K, we follow
(Wilhelm et al. 2019; Baader et al. 2019) and consider inter-
pretations over a fixed, finite domain � of the signature of
K. We denote the (finite) set of all these interpretations with
I
� and the set of probability distributions P : I� ! [0, 1]

over I
� with P�. The distribution P 2 P� is a model

of K = (T , C) if all interpretations I that are not models
of T satisfy P (I) = 0 and the following holds for all PCs
(Fi |Ei)[pi] in C:

P
I2I� P (I) · |EI

i | > 0 and
X

I2I�

P (I) · |EI
i \ F I

i | = pi ·
X

I2I�

P (I) · |EI
i |. (1)

This semantics for PCs is called aggregating semantics
(Kern-Isberner and Thimm 2010). A knowledge base with
at least one model is consistent. Under the assumption that
concept-constrained model counting for L is domain-lifted
(which will be shown for C2 and ALCSCC in the next sec-
tion), consistency checking for LME is also domain-lifted.
Theorem 3.1. Consistency of an L

ME knowledge base K for
a finite domain� can be checked in time polynomial in |�|.

Proof. Let K = (T , C) and C = {(Di |Ci)[pi] | 1  i 
n}. We must check whether there is a distribution P such
that P (I) = 0 if I 6|= T , and the (in)equations defining the
semantics of PCs are satisfied. Note that we cannot directly
build and solve this system of linear (in)equations since |I�|
is exponential in |�|. However, interpretations that behave



the same for E1, . . . , En, E1uF1, . . . , EnuFn in the sense
that the cardinalities of the extensions of these concepts co-
incide in these interpretations need not be treated separately.
Instead, we only need to count how many such interpreta-
tions that are models of T there are. Thus, let C be the
tuple of concepts E1, . . . , En, E1 u F1, . . . , En u Fn. For
i = 1, . . . , n, we consider the linear equations

X

ccmc(T ,C,c,�) 6=0

xc · cn+i = pi ·
X

ccmc(T ,C,c,�) 6=0

xc · ci,

where c = (c1, . . . , cn, cn+1, . . . , c2n) ranges over all tuples
of numbers in {0, . . . , |�|}

2n and the expressions xc are the
variables. In addition, we require xc � 0 for these variables
and add the (in)equations

X

ccmc(T ,C,c,�) 6=0

xc = 1 and
X

ccmc(T ,C,c,�) 6=0

xc · ci > 0.

A solution xc = qc for the variables in this system of linear
(in)equations yields a model P of K as follows. For I 2 I

�,
let c be defined by setting ci := |EI

i | and cn+i := |EI
i \F I

i |

(1  i  n). Then we set P (I) := 0 if ccmc(T ,C, c,�) =
0 and P (I) := qc/ccmc(T ,C, c,�) otherwise. It is easy to
see that P is indeed a model of K. Conversely, it is also easy
to see that a model of K can be used to construct a solution
of the above system of linear (in)equations.

Finally, note that this system can be constructed and
solved in time polynomial in |�| since the cardinality of
{0, . . . , |�|}

2n is polynomial in |�| and (as we will show
in the next section) ccmc(T ,C, c,�) can be computed in
time polynomial in |�|.

Instead of reasoning w.r.t. all models of a consistent
knowledge base, we use the maximum entropy distribution
as preferred model. In fact, as pointed out by Wilhelm et
al. (2019), according to Paris (1999), this distribution is the
most appropriate choice of model in this setting. The entropy
of a probability distribution P is

�

X

I2I�

P (I) · log2 P (I),

where we use the convention 0 ·1 = 0. For every consistent
knowledge base K = (T , C), there is exactly one model of
K with maximal entropy, i.e., the optimization problem

�

X

I2I�

P (I) · log2 P (I)
!
= max with the conditions

X

I2I�

P (I) = 1,
X

I2I�

P (I)|EI
| > 0 for (F |E)[p] 2 C,

X

I2I�

P (I)|EI
\ F I

| = p
X

I2I�

P (I)|EI
| for (F |E)[p] 2 C,

8I 2 I
� : P (I) � 0 and P (I) = 0 if I 6|= T ,

has exactly one solution PME
K (Kern-Isberner and Thimm

2010). Instead of solving this optimization problem directly,
one usually considers the dual optimization problem, whose
solutions represent PME

K in a compact way.

Assume that C = {(Fi |Ei)[pi] | i = 1, . . . , n} and de-
fine the functions fi (1  i  n) as fi(I) := |EI

i \ F I
i | �

pi|EI
i |. An application of the Lagrange multiplier method

to the above optimization problem then yields PME
K (I) = 0

if I 6|= T and PME
K (I) = ↵0↵

f1(I)
1 · · ·↵fn(I)

n if I |= T ,
where the values ↵i > 0 are solutions to the equationsP

I2I�,I|=T fi(I)↵
f1(I)
1 · · ·↵fn(I)

n = 0, i = 1, . . . , n, and

↵0 =
⇣P

I2I�,I|=T ↵f1(I)
1 · · ·↵fn(I)

n

⌘�1
is a normalization

constant.
Since the numbers ↵i are solutions of a non-linear opti-

mization problem, they can in general only be approximated
(e.g., using Newton’s method). Following (Wilhelm et al.
2019), we do not investigate this approximation process
here, but assume that a rational approximation � 2 Qn

>0
of the exact solution ↵ = (↵1, . . . ,↵n) 2 Rn

>0 is given. For
such an approximation � = (�1, . . . ,�n), the induced prob-
ability distribution P�

K on I
� is defined by Wilhelm et al.

(2019) as

P�
K (I) =

(
�0�

f1(I)
1 · · ·�fn(I)

n if I |= T ,
0 else,

where the normalization constant �0 is defined analogously
to ↵0. Our goal is to show that domain-lifted inference w.r.t.
P�
K is possible.
For a vector � 2 Qn

>0 and given L concepts E,F , we
consider the problem of computing the probability p such
that P�

K |= (F |E)[p], i.e., (F |E)[p] holds in P�
K w.r.t. the

aggregating semantics. For the base logic ALC, it is claimed
in (Wilhelm et al. 2019) that p is always a rational number
and can be computed in time polynomial in |�|. Unfortu-
nately, the former claim is not true (see the appendix for
an example): due to a faulty calculation, certain roots are
canceled out by Wilhelm et al., which actually cannot be re-
moved. For this reason, our correction and extension of this
result has a more involved formulation.

Theorem 3.2. Let E,F be L concepts, K = (T , C) with
C = {(Di |Ci)[pi] | 1  i  n} a consistent L knowl-
edge base where pi = si/ti for natural numbers si, ti,
and let P�

K be an approximation of the maximum entropy
distribution, as defined above. Then we can compute (in
time polynomial in |�|) a polynomial P (X1, . . . , Xn) in
n indeterminates and with rational coefficients such that
p := P ( t1

p
�1, . . . , tn

p
�n) satisfies P�

K |= (F |E)[p].

Proof. Let C be the tuple of concepts E1, . . . , En, E1 u

F1, . . . , En u Fn, E,E u F . By the aggregating semantic,
the desired probability p can be obtained as follows:

p =

P
I2I� |EI \ F I |P�

K (I)
P

I2I� |EI |P �
K(I)

=

P
I2I� |EI \ F I |�0�

f1(I)
1 · · ·�fn(I)

n
P

I2I� |EI |�0�
f1(I)
1 · · ·�fn(I)

n

=



P
I2I� |EI \ F I | ·

Qn
i=1

ti
p
�i

ti|EI
i \F I

i |�si|EI
i |

P
I2I� |EI | ·

Qn
i=1

ti
p
�i

ti|EI
i \F I

i |�si|EI
i |

=

P
I2I� |EI \ F I | ·

Qn
i=1

ti
p
�i

ti|EI
i \F I

i |�si|EI
i |+si|�|

P
I2I� |EI | ·

Qn
i=1

ti
p
�i

ti|EI
i \F I

i |�si|EI
i |+si|�|

=

P
c ccmc(T ,C, c,�) · c2n+2 ·

Qn
i=1

ti
p
�i

ticn+i�sici+si|�|

P
c ccmc(T ,C, c,�) · c2n+1 ·

Qn
i=1

ti
p
�i

ticn+i�sici+si|�| ,

where c = (c1, . . . , cn, cn+1, . . . , c2n, c2n+1, c2n+2) in the
last quotient ranges of all tuples in {0, . . . , |�|}

2n+2. Note
that this yields a quotient of polynomials (with the roots
as indeterminates), which can be constructed in time poly-
nomial in |�| since the numbers ccmc(T ,C, c,�) can
be computed time polynomial in |�| and the cardinality
of {0, . . . , |�|}

2n+2 is also polynomial in |�|. The time
needed for checking whether the denominator of this quo-
tient is 0 is also polynomial in |�| (see Lemma 3.3 below).
If this is the case, then there is no p 2 [0, 1] such that
P�
K |= (D |C)[p] holds. Otherwise, it is a well-known fact

from the theory of algebraic field extensions that the above
quotient of polynomials in ti

p
�i can be rewritten as a poly-

nomial in ti
p
�i, i = 1, . . . , n, with rational coefficients (see,

e.g., (Jacobson 1974), Theorem 4.1). For this purpose, one
needs to solve a system of linear equations whose size does
not depend on |�|. In addition, all numbers encountered in
the necessary calculations are exponentially bounded in |�|,
and thus the sizes of their binary representations are bounded
by a polynomial in |�|.

As a consequence of this theorem, we can prove that cer-
tain inferences from P�

K are domain-lifted. To show this, we
need the following lemma (see the appendix for a proof).
Lemma 3.3. Let P (X1, . . . , Xn) be a polynomial in n inde-
terminates and with rational coefficients, t1, . . . , tn be nat-
ural numbers � 1, and q,�1, . . . ,�n be rational numbers.
Then we can decide whether q = P ( t1

p
�1, . . . , tn

p
�n) in

time that is polynomial in the degree and the size of the bi-
nary representation of the coefficients of P (X1, . . . , Xn).

Note that, for the polynomials constructed in the proof of
Theorem 3.2, the degree and the size of the binary represen-
tation of the coefficients is polynomially bounded by |�|.
Thus, the above lemma yields a time bound that is polyno-
mial in |�|.
Corollary 3.4. Let E,F be L concepts, q 2 [0, 1] a ratio-
nal number, K = (T , C) a consistent L knowledge base, and
P�
K a rational approximation of the maximum entropy distri-

bution. Then P�
K |= (F |E)[q] and P�

K |= E v F can be
decided in time polynomial in |�|.

Proof. Consider the quotient constructed in the proof of
Theorem 3.2. We can use Lemma 3.3 to decide whether
the denominator is equal to zero or not. If it is zero, then
P�
K |= (F |E)[q] does not hold according to the aggregation

semantics. However, P�
K |= E v F does hold since then

EI = ; for all worlds I with P�
K (I) 6= 0. If the denomi-

nator is not zero, then we can turn the quotient into a poly-
nomial in the indeterminates ti

p
�i, i = 1, . . . , n, as pointed

out in the proof of Theorem 3.2. We can then decide whether
P�
K |= (F |E)[q] holds by checking whether the polynomial

evaluates to q. To decide whether P�
K |= E v F holds it is

enough to check whether the polynomial evaluates to 1.

Note that it would also be interesting to know, for a given
rational number q, whether q is larger or smaller than the
probability p for which P�

K |= (F |E)[p] holds. However,
while we know how to decide this problem (see the ap-
pendix), it is not clear to us whether deciding the problem
can be done in time polynomial in |�|.

4 Concept-Constrained Model Counting
We prove here that concept-constrained model counting for
C2 and ALCSCC is domain-lifted. For C2, this is an easy
consequence of the results by Kuželka (2021), whereas for
ALCSCC we show this from scratch.

Concept-Constrained Model Counting in C2 In Defini-
tion 4 of his 2021 paper, Kuželka introduces the following
model-counting task: given a sentence �, a finite domain�,
a list  = (R1, . . . , Rm) of m predicates, and an m-tuple
n = (n1, . . . , nm) of non-negative integers, MC ,�,�(n)
counts the number of models I of � over the domain� such
that |RI

i | = ni for i = 1, . . . ,m. He shows that a weighted
version of this task, which has the unweighted one as a spe-
cial case, is domain-liftable for C2 (Proposition 4 together
with Theorem 4 of (Kuželka 2021)).

Our concept-constrained model counting task
ccmc(T , C1, . . . , C`, c1, . . . , c`,�) can be seen as special
case. In fact, let A1, . . . , A` be fresh unary predicates
(i.e., ones not occurring in T or C1, . . . , C`), and let
� be obtained from the sentence T by conjoining the
sentences 8x.(Ai(x) $ Ci) for i = 1, . . . , `. Then
ccmc(T , C1, . . . , C`, c1, . . . , c`,�) = MC ,�,�(n), where
 = (A1, . . . , A`) and n = (c1, . . . , c`).
Theorem 4.1. Concept-constrained model counting in C2

is domain-liftable.

This result covers concept-constrained model counting for
quite a number of expressive DLs since the constructors
of ALC as well as qualified number restrictions, nominals,
inverse roles, role hierarchies, concept and role assertions,
and even cardinality constraints on concepts are express-
ible in C2. Note, however, that DLs with transitive roles are
not covered since expressing transitivity requires three vari-
ables. In fact, it is even open whether counting the number
of transitive relations on a finite domain� is domain-liftable
(see, e.g., (Pfeiffer 2004; Mala 2022) for research in this di-
rection).

Concept-Constrained Model Counting in ALCSCC We
use the type-based approach employed by Wilhelm et al.
(2019) for ALC, but need to extend it considerably due to
the more expressive constraints on role successors.

For a given concept-constrained model counting task
ccmc(T , C1, . . . , C`, c1, . . . , c`,�), let S = {A1, . . . , AL}

be the set of all concept names and T = {D1, . . . , DM} the
set of all concepts of the form succ(. . . ) occurring in T or



C1, . . . , C`. A type for S and T (simply called type in the
following) is of the form

⌧p1,...,pL,p0
1,...,p

0
M := Ap1

1 u . . . uApL

L uD
p0
1

1 u . . . uD
p0
M

M ,

where pi 2 {0, 1} for all i 2 {1, . . . , L} and A1
i := Ai

and A0
i := ¬Ai (and analogously for p0i and Di). It is easy

to see that (⌧p)I \ (⌧q)I = ; holds for all distinct tuples
p, q 2 {0, 1}L+M and interpretations I . In addition, for any
concept F containing only concept names from S and suc-
cessor constraints in T , there is a set WF ✓ {0, 1}L+M such
that F I =

S
p2WF

(⌧p)I holds for all interpretations I . This
set can be computed from F in time not depending on |�|.
By a slight abuse of notation we write ⌧p 2 F to indicate
that p 2 WF . The following lemma is easy to see for all
such concepts F and interpretations I .
Lemma 4.2. |F I

| =
P

⌧p2F |(⌧p)I |.
The CIs in T force certain types to be empty in all models.

Let FT :=
F

CvD2T C u ¬D. We call a type ⌧p forbidden
by T (or simply forbidden) if ⌧p 2 FT . The forbidden types
can again be computed in time not depending on |�|.
Lemma 4.3. The interpretation I is a model of T iff
|(⌧p)I | = 0 for all types ⌧p forbidden by T .

Instead of solving the concept-constrained model count-
ing task for C1, . . . , C`, we consider this task for
the sequence of all types, i.e., show how to compute
ccmc(T ,⇥,k,�), where ⇥ ranges over all types ⌧p for
p 2 {0, 1}L+M and k is an 2L+M -tuple of numbers kp
whose sum is |�| satisfying kp = 0 if the corresponding
type ⌧p is forbidden by T . We call this the type-constrained
model counting task. Domain-liftability of the latter task im-
plies domain-liftability of the former.
Lemma 4.4. ccmc(T , C1, . . . , C`, c1, . . . , c`,�) can be ob-
tained as the sum of all numbers ccmc(T ,⇥,k,�), where
in addition to the conditions on the inputs for the type-
constrained model counting task we require that k satisfies
ci =

P
⌧p2Ci

kp for i = 1, . . . , `.
In the following, let k be an admissible input tuple for the

type-constrained model counting task ccmc(T ,⇥,k,�). To
construct a model of T with domain �, we must assign the
elements of � to the types such that the cardinality con-
straints given by k are satisfied. However, note that we do
not really construct all such assignments (since there are
exponentially many of them in |�|), but rather count their
number. Obviously, there are

|�|!Q
p2{0,1}L+M kp!

(2)

many possible ways of making such an assignment. A given
assignment determines to what concept names the elements
d 2 � belong in the interpretation I to be constructed:
d 2 AI

i iff Ai occurs positively in the type to which d was
assigned.

It remains to construct the role successors in a way such
that the successor constraints Di or ¬Di occurring in the
type ⌧p assigned to d are satisfied. The set terms occurring in
such constraints are Boolean combinations of concept names

in S, successor constraints in T , and role names r1, . . . , rK
occurring in T or C1, . . . , C`. Analogously to types, we
define Venn regions (or simply regions) as in (Baader
2017): given a tuple (p̃1, . . . , p̃L, p̃01, . . . , p̃0M , q̃1, . . . , q̃K) 2
{0, 1}L+M+K , the associated Venn region is

Ap̃1
1 \ . . . \Ap̃L

L \D
p̃0
1

1 \ . . . \D
p̃0
M

M \ rq̃11 \ . . . \ rq̃KK ,

where Ap̃i
i , D

p̃0
i

i are defined as before, and r1i = ri and
r0i = ri. We denote such a region as ⇢

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
.

Again, regions associated with different tuples are disjoint
and any set term can be written as a union of certain regions.
For this reason, the cardinality |s| of a set term s occurring
in a successor constraint can be written as the sum of car-
dinalities of certain regions. Thus, we can assume without
loss of generality that the cardinality constraints inside the
successor constraints Di are linear inequations between car-
dinalities of regions.

We now introduce symbolic names (later used as vari-
ables) for these cardinalities. For a prototypical element
d of � with assigned type ⌧p, let µp̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
(with

p̃1, . . . , p̃01, . . . , q̃1, . . . 2 {0, 1}) stand for the number of
role successors of d with assigned type ⌧ p̃1,...,p̃L,p̃0

1,...,p̃
0
M

that are rj-successors of d iff q̃j = 1 (for j = 1, . . . ,K).
Note that, to have a role successor, at least one q̃j must
be 1, which means that µ

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

0,...,0 = 0. Let us
now investigate what additional conditions the cardinalities
µ
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
must satisfy. These are given by the (pos-

sibly negated) successor constraints in ⌧p, where we replace
each cardinality |⇢

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
| of a region with the cor-

responding µ-variable. For each successor constraint Di =
succ(Coni), let i  �i be the linear inequation obtained
from Coni by replacing all cardinalities |⇢

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
|

with the corresponding variable µ
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
. Corre-

spondingly, for ¬Di we obtain i > �i. In order to satisfy
the successor constraints in ⌧p, the values chosen for the
variables µ

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
must thus satisfy the following

conditions (⇤):

•
P

q̃1,...,q̃K2{0,1} µ
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
 kp̃1,...,p̃L,p̃0

1,...,p̃
0
M

,

• µ
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

0,...,0 = 0 for all p̃1, . . . , p̃L, p̃01, . . . , p̃0M 2

{0, 1},

• i  �i if Di is a conjunct in ⌧p,

• i > �i if ¬Di is a conjunct in ⌧p.

The first condition is due to the fact that one cannot have
more role successors of a certain type than this type has ele-
ments, and we have already explained the second condition.
The other two conditions ensure that the assignment of role
successors is such that all successor constraints required by
the type ⌧p are satisfied.

The following formula states how many possible assign-
ments of role successors there are for a fixed element d 2 �



h
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

µ =
kp̃1,...,p̃L,p̃0

1,...,p̃
0
M
!

Q
q̃1,...,q̃K2{0,1} m

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
! · (kp̃1,...,p̃L,p̃0

1,...,p̃
0
M

�
P

q̃1,...,q̃K2{0,1} m
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
)!

ccmc(T ,⇥,k,�) =
|�|!Q

p2{0,1}L+M kp!

Y

p2{0,1}L+M

0

BB@
X

µ satisfies (⇤)

Y

p̃1,...,p̃L2{0,1}
p̃0
1,...,p̃

0
M2{0,1}

h
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

µ

1

CCA

kp

Figure 1: The final formula for type-constrained model counting in ALCSCC

of type ⌧p:
X

µ satisfies (⇤)

Y

p̃1,...,p̃L2{0,1}
p̃0
1,...,p̃

0
M2{0,1}

h
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

µ (3)

where µ ranges over all assignments of non-negative in-
tegers 0  m

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

q̃1,...,q̃K
 |�| to the variables

µ
p̃1,...,p̃L,p̃0

1,...,p̃
0
M

q̃1,...,q̃K
and h

p̃1,...,p̃L,p̃0
1,...,p̃

0
M

µ counts the number
of ways for populating the respective regions with the appro-
priate number of elements of the respective type (see Fig. 1).
The number in (3) is concerned with a single element d of
type ⌧p. Taking into account all elements of this type (of
which there are kp many) means that we must take this num-
ber to the power of kp since the choices can be made inde-
pendently for each element. The number obtained this way
is with respect to a single type. To take all types into ac-
count, we need to multiply the numbers obtained for each
type with each other. Finally, this must be considered for
all possible type assignments, of which there are as many
as described by the formula (2). These considerations yield
the overall formula for the type-constrained model counting
task shown in Fig. 1.
Proposition 4.5. Type-constrained model counting in
ALCSCC is domain-liftable.

Proof. This is an easy consequence of the following facts.
First, the number of types and regions does not depend on
|�| and all computations related to them (e.g., representing
a set term as a union of regions) can be performed in time not
depending on |�|. Second, the number of assignments µ in
the sum is polynomially bounded by |�|. Finally, the values
of the numbers considered in calculations are exponentially
bounded by |�|, and thus their binary representations are of
size polynomial in |�|.

Together with Lemma 4.4, this proposition yields the
main result of this subsection. Note that the polynomial
specifying the time bound in the above proposition and the
following theorem does not depend on the specific cardinal-
ity vector used as an input.
Theorem 4.6. Concept-constrained model counting in
ALCSCC is domain-liftable.

As an easy consequence we obtain that model counting in
ALCSCC is domain-liftable. In fact, we can just use a triv-
ially satisfied concept constraint (such as that the concept

Au¬A must have cardinality zero) to count all models. The
result of the theorem can also be extended to the extension
of ALCSCC with nominals, i.e., concepts that must be in-
terpreted as singleton sets. In fact, we can introduce a new
concept name for each nominal, and then use concept con-
straints to require that the concepts representing nominals
must have cardinality 1. In particular, this shows that we can
also deal with knowledge bases that, in addition to a TBox,
also contain an ABox.

5 Conclusion
In (Wilhelm et al. 2019; Baader et al. 2019), the extension
ALC

ME of the prototypical DL ALC by probabilistic con-
ditionals has been introduced, and it was shown there that
certain inferences in this logic are domain-liftable, i.e., can
be solved in time polynomial in the size of the finite domain
used to evaluate conditionals. Both papers mention the ex-
tension to more expressive DLs as an interesting topic for
further research. In the present paper, we show that these
results can indeed be extended to two very expressive (at
least from the DL point of view) logics that can formulate
counting constraints: the two-variable fragment C2 of first-
order logic with counting quantifiers, which is a decidable
fragment of FOL that has many first-order expressible DLs
as sub-fragments, and the DL ALCSCC, for which classical
reasoning has the same complexity as for ALC, but whose
counting constraints are so powerful that they can in general
not be expressed in FOL.

The domain-liftable approach developed in this paper for
reasoning in ALCSCC

ME and C2ME to a certain model
counting task, which we call concept-constrained model
counting. We then show domain-liftability of this task both
for C2 and for ALCSCC. For C2, this is an easy conse-
quence of known results for weighted model counting in
C2 (Kuželka 2021), but for ALCSCC we show this from
scratch. For this purpose, we use a type-based approach that
is similar to the one employed by Wilhelm et al. (2019) for
ALC. But the high expressivity of the counting constraints
of ALCSCC necessitates the use of more involved construc-
tions and makes the final counting formula (see Fig. 1) more
complicated.

Future work in this direction could, on the one hand, in-
vestigate extensions of ALCSCC, for instance, by replac-
ing the CIs in TBoxes with more expressive cardinality con-
straints on concepts (Baader 2019). On the other hand, as



mentioned before, C2 does not cover DLs with transitive
roles, such as SROIQ (Horrocks, Kutz, and Sattler 2006).
It would be interesting to see whether it is possible to de-
velop domain-liftable model counting approaches for such
DL. However, this appears to be a very hard problem since
it is even open whether counting the number of transitive
relations on a finite domain � is domain-liftable (see, e.g.,
(Pfeiffer 2004; Mala 2022) for research in this direction).
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A Appendix
We start with an example that shows that the probabil-
ity p considered in Theorem 3.2 can be irrational, even
for the base logic ALC, which is a fragment of both C2

and ALCSCC. Then, we prove an extended version of
Lemma 3.3 that also takes the decidability results mentioned
at the end of Section 3 into account.
Example A.1. To obtain an example with an irrational
probability, it is sufficient to consider a single conditional in
C and a domain of cardinality 1, i.e., n = 1 and � = {d}.
Consider three concept names A, B, C, no role names,
and let T := {C v C} and C := {(F1|E1)[p1]}, where
E1 := A, F1 := B, and p1 = 1

3 .
In this case, we get, depending on whether or not the ele-

ment d 2 � belongs to AI , BI and CI , exactly 8 interpre-
tations, which are all models of T . By definition, we have
f1(I) = |EI

1 \ F I
1 | � p1|EI

1 | for every interpretation I .
Hence, a simple calculation yields

(a) f1(I) = 0 for the four interpretations I with EI
1 = ;,

(b) f1(I) = �
1
3 for the two interpretations I with EI

1 = �,
F I
1 = ;,

(c) f1(I) = 2
3 for the two interpretations I with EI

1 = �,
F I
1 = �.

The dual optimization problem for the maximum entropy dis-
tribution is of the form

X

I

↵f1(I)
1 f1(I) = 0.

This is equivalent to

�
1

3
↵
� 1

3
1 �

1

3
↵
� 1

3
1 +

2

3
↵

2
3
1 +

2

3
↵

2
3
1 = 0,

i. e. ↵1 = 1
2 . Since this is a rational number, we can take

it as its own approximation. The normalization constant is

then ↵0 =
⇣
4 + 2 3

p
2 + 2

3p4

⌘�1
.

Using the formula PME
R (I) = ↵0↵

f1(I)
1 , the maximum en-

tropy probabilities of the interpretations are thus
(a) PME

R (I) = ↵0 for the four interpretations I with EI
1 =

AI = ;,
(b) PME

R (I) = 3
p
2↵0 for the two interpretations I with EI

1 =
AI = �, F I

1 = BI = ;,
(c) PME

R (I) = 1
3p4

↵0 for the two interpretations I with EI
1 =

AI = �, F I
1 = BI = �.

Now, we consider the concepts E := B u C and F := A
and compute the probability p such that PME

R |= (F |E)[p].
According to the aggregating semantics, this probability sat-
isfies

p =

P
I |E

I
\ F I

|PME
R (I)P

I |E
I |PME

R (I)

=

P
I |B

I
\ CI

\AI
|↵0↵

f1(I)
1P

I |B
I \ CI |↵0↵

f1(I)
1

.

There are only two interpretations for which |BI
\CI

| 6= 0,
and they have the following probabilities:

• if AI = ;, then we have case (a), and thus the probability
of this interpretation is ↵0,

• if AI = �, then we have case (c), and thus the probability
of this interpretation is 1

3p4
.

Therefore, we obtain

p =

1
3p4

↵0

↵0 +
1
3p4

↵0
=

1
3
p
4 + 1

,

which is an irrational number.

The following is an extended version of Lemma 3.3.

Lemma A.2. Let P (X1, . . . , Xn) be a polynomial in n in-
determinates and with rational coefficients, t1, . . . , tn be
natural numbers � 1, and q,�1, . . . ,�n be rational num-
bers. Then, the following holds:

1. We can decide whether q = P ( t1
p
�1, . . . , tn

p
�n) in time

that is polynomial in the degree and the size of the binary
representation of the coefficients of P (X1, . . . , Xn).

2. It is decidable whether q < P ( t1
p
�1, . . . , tn

p
�n) and

whether q > P ( t1
p
�1, . . . , tn

p
�n).

Proof. Recall that the field extension Q( t1
p
�1, . . . , tn

p
�n)

of Q, which is equal to the ring extension
Q[ t1

p
�1, . . . , tn

p
�n] is a finite-dimensional vector

space over Q (see Theorem 4.1 in (Jacobson 1974)).
There is a basis B of this vector space over Q con-
taining 1 and consisting only of the elements of the
form t1

p
�1

u1 t2
p
�2

u2 . . . tn
p
�n

un for natural numbers
u1, u2, . . . , un ranging over 0  ui  gi for appropriate
natural numbers gi  ti, i 2 {1, . . . , n} (see the proofs
of Theorem 4.1 and 4.2 in (Jacobson 1974)). Such a basis
can be computed using methods described in Section 4.5.4
of (Cohen 1993), in time that does not depend on the
polynomial P (X1, . . . , Xn).

(1) To show the first statement of the lemma, we repre-
sent P ( t1

p
�1, . . . , tn

p
�n) as a linear combination of the el-

ements of the basis by calculating the coefficients in Q of
basis elements in the linear combination. This is possible in
time polynomial in the degree of P (X1, . . . , Xn) and in the
number of bits used to encode the integer numerators and
denominators of the coefficients of P (X1, . . . , Xn). Finally,
to decide whether q = P ( t1

p
�1, . . . , tn

p
�n), check whether

the coefficient of the basis element 1 is q and whether the
coefficients of the other basis elements are 0.

(2) Using the first statement of the lemma, we can ex-
clude the case q = P ( t1

p
�1, . . . , tn

p
�n). Now, suppose that

q 6= P ( t1
p
�1, . . . , tn

p
�n). Write P ( t1

p
�1, . . . , tn

p
�n), as in

(1), as a linear combination of elements of B with coef-
ficients in Q. The task of comparing P ( t1

p
�1, . . . , tn

p
�n)

with q hence reduces in an obvious way to the question
whether an expression of the form

p̂ = �1b1 + · · ·+ �MbM

(with �1, . . . ,�M 2 Q, b1, . . . , bM 2 B) such that p̂ 6= 0 is
smaller or greater than zero.



It is well-known that one can approximate roots tj
p
�j

(e.g., using Newton’s method or the analytical method de-
scribed in (Murugesan and Ramasamy 2011)) calculating
rational values rjm, r̃jm such that

rjm 
tj
p
�j  r̃jm and r̃jm � rjm  2�m

for m 2 N, and thus limm!1 rjm = tj
p
�j = limm!1 r̃jm.

Due to the way the elements of B are constructed from such
roots, we can also approximate the basis elements bj from
above and below in an arbitrarily close way. Finally, this al-
lows us to obtain such upper and lower approximations for
the expression p̂. In the lower approximation of p̂, we use the
lower approximation of bj if �j is positive and the upper ap-
proximation if �j is negative. The upper approximation of p̂
is constructed symmetrically. Both the upper and the lower
approximation converges to p̂. If p̂ < 0, then after finitely
many steps, the upper approximation will become smaller
than zero. Otherwise, if p̂ > 0, then after finitely many steps,
the lower approximation will become larger than zero. Thus,
in both cases we find out what case holds after finitely many
steps.


