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Abstract. The EL family of description logics facilitates efficient 7

polynomial-time reasoning and has been standardized as the profile 8

OWL 2EL of the Web Ontology Language. EL can represent and reason 9

not only with symbolic knowledge but also with concrete knowledge ex- 10

pressed by numbers, strings, and other concrete datatypes. Such concrete 11

domains must be convex to avoid introducing disjunctions “through the 12

backdoor.” However, the hitherto existing concrete domains provide only 13

limited utility. In order to overcome this issue, we introduce a novel form 14

of concrete domains based on semi-lattices. They are convex by design 15

and can thus be integrated into Horn-DLs such as EL. Moreover, they 16

allow for FBoxes to express dependencies between concrete features. We 17

describe four instantiations concerned with real intervals, 2D-polygons, 18

regular languages, and graphs. 19

1 Introduction 20

Concrete domains can be integrated in description logics (DLs) in order to re- 21

fer to concrete knowledge expressed by numbers, strings, and other concrete 22

datatypes [8]. They have mainly been investigated with DLs that are not Horn, 23

such as ALC and its extensions, regarding decidability and complexity [15, 18, 24

20, 41, 42, 43], reasoning procedures [25, 26, 42, 43, 44, 48], an algebraic char- 25

acterization [13, 49], and their expressive power [4, 7]. 26

For computationally tractable description logics, such as the EL family, other 27

conditions on the concrete domains than above must be imposed. On the one 28

hand, it must not be possible to introduce disjunction through the concrete 29

domain into the logical domain so that the DL part retains its Horn character. 30

On the other hand, reasoning in the concrete domain itself should be tractable. 31

Both is guaranteed for p-admissible concrete domains [5]. Concrete domains have 32

also been integrated with DL-Lite [3]. 33

The hitherto existing p-admissible concrete domains for EL provide only 34

limited utility. Using the concrete domain DQ,diff [5], we could express with the 35

concept inclusions (sys≥140)⊑Hypertension and (dia≥90)⊑Hypertension that a 36

systolic blood pressure of 140 or higher indicates hypertension, as does a diastolic 37

blood pressure of at least 90. Since the opposite relations ≤ are not available to 38

ensure convexity, neither non-elevated blood pressure (dia. < 120 and sys. < 70) 39
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nor elevated blood pressure (dia. between 120 and 140, and sys. between 70 and40

90) are expressible. Mixed inequalities <, ≤, >, and ≥ may be used under certain41

limitations which of them may occur in left-hand sides and, respectively, in right-42

hand sides of concept inclusions [45]. While this retains convexity of the concrete43

domain, reasoning is then rather impaired since the usual completion procedure44

is only complete for consistency and classification, but not for subsumption.45

An algebraic characterization of p-admissible concrete domains has put forth46

a further concrete domain DQ,lin, which supports linear combinations of numeri-47

cal features [12, 14]. For instance, the concept inclusion ⊤⊑ (sys− dia− pp = 0)48

expresses that the pulse pressure is the difference between the systolic and49

the diastolic blood pressure. In the medical domain, the combined expressiv-50

ity of DQ,diff and DQ,lin would be useful since then with the concept inclusion51

ICUPatient⊓ (pp> 50)⊑NeedsAttention it could be expressed that intensive-care52

patients with a pulse pressure exceeding 50 need attention —but this combina-53

tion is not convex anymore [2].54

We introduce a novel form of concrete domains based on semi-lattices. A55

semi-lattice (L,≤,∧) consists of a set L, a partial order ≤, and a binary meet56

operation ∧. The elements of L are taken as concrete values, and ≤ is understood57

as an “information order,” i.e. p ≤ q means that p is more specific than q, like a58

subsumption order between concepts. The meet operation ∧ is used to combine59

two values p and q to their meet value p∧q, which is the most general value that60

is more specific than both p and q. For instance, real intervals form a semi-lattice61

with subset inclusion ⊆ as partial order and intersection ∩ as meet operation.62

With that, the statement NonElevatedBP≡ (sys⊆ [0, 120))⊓ (dia⊆ [0, 70)) defines63

non-elevated blood pressure.64

Our new hierarchical concrete domains are convex by design, simply because65

a general value of a feature (such as sys ⊆ [0, 120)) does not imply the dis-66

junction of all more specific feature values (such as sys ⊆ [0, 0], sys ⊆ [1, 1], . . . ,67

sys⊆ [119, 119]). Atomic feature values are supported nonetheless when these are68

available as atoms in the semi-lattice. For instance, specific numerical values can69

be represented by singleton intervals.70

In addition, we introduce FBoxes consisting of feature inclusions that de-71

scribe dependencies between features as well as aggregations of features. For72

instance, through the feature inclusion pp ⊆ sys − dia we can obtain an interval73

value of the pulse pressure given intervals of the systolic and the diastolic blood74

pressure. With the concept inclusion ICUPatient⊓(pp⊆(50,∞))⊑NeedsAttention75

we can now express that intensive-care patients having a pulse pressure above76

50 need attention and, unlike in the combination of DQ,diff and DQ,lin, computa-77

tionally reason with that in polynomial time.78

We provide four instantiations of hierarchical concrete domains based on real79

intervals, 2D-polygons, regular languages, and graphs. The former two are not80

only convex, but indeed p-admissible, i.e. equipping a DL from the EL family81

with them facilitates polynomial-time reasoning. In particular, we can employ82

linear programming for reasoning in the interval domain when the FBox is affine.83

The regular-language domain is also convex (again, by design) but requires ex-84



Reasoning in OWL 2EL with Hierarchical Concrete Domains 3

ponential time for reasoning. However, this only affects the concrete-domain 85

reasoning itself so that reasoning in the logical EL part still runs in polynomial 86

time. This holds similarly for the graph domain. 87

Of practical relevance is that our hierarchical concrete domains can be seam- 88

lessly integrated into the completion procedure and the ELK reasoner [5, 6, 35]. 89

We demonstrate this for the case where nominals must be used safely, i.e. nom- 90

inals must not occur in conjunctions and right-hand sides of concept inclusions 91

must not be single nominals. We conjecture that full support for nominals can 92

be achieved in the same way as without concrete domains [34]. 93

2 Preliminaries 94

We work with the description logic EL++[D] (OWL 2 EL) where D is a P- 95

admissible concrete domain (as defined below). Consider a set C of atomic con- 96

cepts, a set R of roles, a set I of individuals, a set F of features, and a set P 97

of predicates where each P ∈ P has an arity ar(P ) ∈ N. There are two special 98

concepts ⊥ and ⊤ with fixed meaning. A constraint is of the form ∃f1, . . . , fk.P 99

where P is a k-ary predicate and f1, . . . , fk are features. We may also denote it 100

by ∃f.P where f := (f1, . . . , fk) is a feature vector with the same arity as P . 101

Compound concepts are built by 102

C ::= ⊥ | ⊤ | {i} | A | ∃f.P | C ⊓ C | ∃r.C

where A ranges over all atomic concepts, r over all roles, i over all individuals, 103

and ∃f.P over all constraints. A knowledge base (KB) is a finite set of concept 104

inclusions (CIs) C⊑D concerning concepts C and D, role inclusions (RIs) R⊑s 105

involving role chains generated by R ::= ε | R1, R1 ::= r | R1 ◦ R1 and roles s, 106

and range inclusions Ran(r)⊑C referring to roles r and concepts C — but every 107

EL++[D] KB must satisfy an additional condition as explained in Section 4. 108

As syntactic sugar, we have concept assertions {i} ⊑ C (also written i : C), 109

role assertions {i}⊑∃r.{j} (also written (i, j) : r), domain inclusions ∃r.⊤⊑C 110

(also written Dom(r)⊑C), and role exclusions ∃r1. . . .∃rn.⊤⊑⊥ (also written 111

r1 ◦ · · · ◦ rn ⊑ ⊥). Statements C ⊑ ⊥ are also called concept exclusions. Each 112

KB K can be subdivided into an ABox A consisting of all concept and role 113

assertions, an RBox R consisting of all role inclusions and exclusions, and a TBox 114

T consisting of the remaining statements. The TBox together with the RBox is 115

also called an ontology O. Other authors do not use the denotation “knowledge 116

base” and call it “ontology” instead, i.e. they also consider the assertions as part 117

of the ontology. 118

The semantics are defined through the fixed concrete domain D and all inter- 119

pretations I. The concrete domain D := (Dom(D), ·D) consists of a set Dom(D) 120

of values and an interpretation function ·D that sends each predicate P ∈ P to 121

a relation over Dom(D) with arity ar(P ), i.e. PD ⊆ Dom(D)ar(P ). 122

An interpretation I := (Dom(I), ·I) consists of a non-empty set Dom(I), 123

called domain, and an interpretation function ·I that maps each atomic concept 124

A ∈ C to a subset AI of Dom(I), each role r ∈ R to a binary relation rI over 125
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Dom(I), each individual i ∈ I to an element iI of Dom(I), and each feature f ∈ F126

to a partial function fI from Dom(I) to Dom(D). The interpretation function ·I127

is extended to compound concepts as follows: ⊥I := ∅, ⊤I := Dom(I), {i}I :=128

{iI}, (∃f.P )I := {x | x ∈ Dom(fI) and fI(x) ∈ PD } where (f1, . . . , fk)
I(x) is129

defined if all fIj (x) are defined and then (f1, . . . , fk)
I(x) := (fI1 (x), . . . , f

I
k (x)),130

(C ⊓ D)I := CI ∩ DI , and (∃r.C)I := { x | there is y s.t. (x, y) ∈ rI and131

y ∈ CI }. Role chains are interpreted by εI := { (x, x) | x ∈ Dom(I) } and132

(R ◦S)I := { (x, z) | there is y s.t. (x, y) ∈ RI and (y, z) ∈ SI }, and role ranges133

are interpreted as Ran(r)I := { y | there is x s.t. (x, y) ∈ rI }.134

I satisfies a concept/role/range inclusion X ⊑ Y , written I |= X ⊑ Y , if135

XI ⊆ Y I . If I satisfies all inclusions in a KB K, then I is a model of K, written136

I |= K. If K has a model, then it is consistent, and otherwise inconsistent. K137

entails an inclusion X ⊑ Y if X ⊑ Y is satisfied by all models of K, written138

K |= X ⊑ Y or X ⊑K Y , and we then say that X is subsumed by Y w.r.t. K.139

Furthermore, K entails a KB L if K entails all inclusions in L, written K |= L.140

A constraint inclusion is of the form
d
Γ ⊑

⊔
∆ where Γ and ∆ are finite141

sets of constraints. I satisfies
d
Γ ⊑

⊔
∆, written I |=

d
Γ ⊑

⊔
∆, if

⋂
{αI | α ∈142

Γ } ⊆
⋃
{βI | β ∈ ∆ }. Moreover,

d
Γ ⊑

⊔
∆ is valid, written D |=

d
Γ ⊑

⊔
∆, if143

it is satisfied in all interpretations. It is easy to see that validity is independent144

of the concepts, roles, and individuals and that it suffices to consider only one145

domain element. To this end, a valuation is a partial function v from F to146

Dom(D), and it satisfies ∃f.P if (v(f1), . . . , v(fk)) ∈ PD. Now,
d
Γ ⊑

⊔
∆ is147

valid iff., for each valuation v, if v satisfies all α ∈ Γ , then v satisfies some β ∈ ∆.148

We say that D is P-admissible if satisfiability of constraint conjunctions as149

well as validity of constraint inclusions are decidable in polynomial time and,150

moreover, D is convex, i.e. for each valid constraint inclusion
d

Γ ⊑
⊔

∆, there is151

a constraint β ∈ ∆ such that
d
Γ ⊑β is valid. We can use multiple P-admissible152

concrete domains by forming their disjoint union, which is P-admissible too.153

The following P-admissible concrete domains involving numbers are known154

in the literature:155

1. DQ,diff with the constraints f=b, f>b, f−g=b for all features f, g and rational156

numbers b ∈ Q [5]. We write f=b instead of ∃f.P=b where (P=b)
DQ,diff := {b},157

and f > b instead of ∃f.P>b where (P>b)
DQ,diff := { q | q ∈ Q and q > b },158

and f − g= b instead of ∃f, g.P+b where (P+b)
DQ,diff := { (p, q) | p, q ∈ Q and159

p + b = q }. Thus, we obtain (f = b)I = { x | fI(x) = b }, (f > b)I = { x |160

fI(x) > b }, and (f − g = b)I = {x | fI(x)− gI(x) = b }.161

2. DQ,lin provides the constraints A · f = b for all rational matrices A ∈ Qm×n,162

feature vectors f ∈ Fm, and rational vectors b ∈ Qn of compatible arities163

[14]. We write A · f = b instead of ∃f.PA,b where (PA,b)
DR,lin := { q | q ∈ Qm

164

and A · q = b }, and therefore (A · f = b)I = {x | A · fI(x) = b }. There is a165

similar concrete domain DR,lin based on real numbers.166

3. There are 24 numerical concrete domains based on N, Z, Q, or R, and with167

the constraints f <b, f≤b, f=b, f≥b, f >b [45]. However, these constraints168

may not be used arbitrarily. Instead one uses two subsets P+ and P− of169

the predicate set P := { P<b, P≤b, P=b, P≥b, P>b | b ∈ R } consisting of170
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positive and, respectively, negative predicates.1 Then, a constraint ∃f.P is 171

positive if P ∈ P+ and negative if P ∈ P−. KBs may only contain CIs 172

C ⊑D for which each constraint in C is negative and every constraint in D 173

is positive. Convexity is now only required w.r.t. constraint inclusions of the 174

form α1 ⊓ · · · ⊓ αm ⊑ β1 ⊔ · · · ⊔ βn where the αi are positive constraints and 175

the βj are negative ones. For instance, with N we could use all constraints 176

negatively but only f = b positively, or all positively but only f <b and f ≤ b 177

negatively, among other choices. 178

It is straight-forward to generalize this to linear systems or regular expres- 179

sions instead of numerical comparisons. The downside of all this is, however, 180

that reasoning capabilities of the existing procedures are limited and it is 181

unclear how generalize them. For instance, they are still complete for classi- 182

fication but not for subsumption anymore. 183

3 Hierarchical Concrete Domains 184

A semi-lattice L := (L,≤,∧) consists of a set L, a partial order ≤ on L, and a 185

binary meet operation ∧ on L, i.e. the following hold for all p, q, p1, p2, p3 ∈ L: 186

(SL1) p ≤ p for each p ∈ L (reflexive) 187

(SL2) if p ≤ q and q ≤ p, then p = q (anti-symmetric) 188

(SL3) if p1 ≤ p2 and p2 ≤ p3, then p1 ≤ p3 (transitive) 189

(SL4) p1 ∧ p2 ≤ p1 and p1 ∧ p2 ≤ p2 190

(SL5) if q ≤ p1 and q ≤ p2, then q ≤ p1 ∧ p2. 191

The strict part < is defined by p < q if p ≤ q but q ̸≤ p, and we then say that p is 192

more specific than q. Thus p ≤ q iff. p < q or p = q, in which case we say that p is 193

more specific than or equal to q. And p∧ q is the meet of p and q. It follows from 194

the above conditions that ∧ is associative, commutative, and idempotent. The 195

finitary meet operation
∧

is obtained from the binary one by setting
∧
{p} := p, 196∧

{p, q} := p ∧ q, and
∧
{p1, . . . , pn} := p1 ∧

∧
{p2, . . . , pn} whenever n ≥ 3. 197

We say that L is computable if L and ≤ are decidable and ∧ is computable. 198

If all this is possible in polynomial time, then L is polynomial-time computable. 199

L is bounded if it has a greatest element ⊤, i.e. p ≤ ⊤ for every p ∈ L. Then we 200

can also define a nullary meet as
∧
∅ := ⊤. In order to express impossible com- 201

binations of values, it might be convenient to add an artificial smallest element 202

⊥ to the semi-lattice, i.e. ⊥ ≤ p for each p ∈ L. We then use ⊥ to represent 203

contradictory or ill-defined values. More specifically, p∧ q = ⊥ if it is impossible 204

to combine the values p and q. 205

Example 1. A semi-lattice representing grades could have the values Attended, 206

Passed, Failed, 1, 2, 3, 4, 5, 6, 1.0, 1.3, 1.7, 2.0, and so on. Its partial order ≤ 207

is defined by Passed ≤ Attended, Failed ≤ Attended, 1 ≤ Passed, 2 ≤ Passed, 208

3 ≤ Passed, 4 ≤ Passed, 5 ≤ Failed, 6 ≤ Failed, 1.0 ≤ 1, 1.3 ≤ 1, 1.7 ≤ 2, 2.0 ≤ 2, 209

1 P+ and P− need not be a partitioning of P, they can overlap, they can be equal, or
they can be disjoint, and their union need not be the whole of P.
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etc. Here we need to add a smallest element ⊥ since e.g. the meet of grades 1.0210

and 5.0 cannot be reasonably defined.211

For every KB K expressed in a decidable DL, the set of all concepts ordered212

by subsumption ⊑K and with conjunction ⊓ as meet operation is a computable,213

bounded semi-lattice.2 For each set M , (℘(M),⊆,∩,M) and (℘(M),⊇,∪, ∅) are214

bounded semi-lattices. In order to make them computable, it would at least be215

necessary to restrict them to finite or finitely representable subsets of M . In the216

following subsections we will introduce several application-relevant semi-lattices217

based on intervals, polygons, regular languages, and graphs.218

Definition 2. Given a bounded semi-lattice L := (L,≤,∧,⊤), the hierarchical219

concrete domain DL has values in Dom(DL) := L and supports only constraints220

of the form ∃f.P≤p, rather written as f ≤p, involving a feature f and a value p.221

The semantics are (P≤p)
DL := { q | q ∈ L and q ≤ p } and thus (f ≤ p)I = { x |222

fI(x) ≤ p }. Recall: this means that f ’s value is p or more specific, not smaller.223

We assume that ⊤ stands for an undefined value and thus all valuations are224

total, i.e. v(f) = ⊤ means that f has no value under v. In order to represent a225

most general value, L could contain a second-largest element □, i.e. □ < ⊤ and226

p ≤ □ for each p ∈ L \ {⊤}. Since ⊥ represents contradictory, ill-defined values,227

every valuation v must not assign ⊥ to any feature f , i.e. v(f) ̸= ⊥.228

Definition 3. A feature inclusion (FI) f ≤ H(g1, . . . , gn) consists of features229

f, g1, . . . , gn and a computable n-ary operation H : Ln → L that is monotonic in230

the sense that H(p1, . . . , pn) ≤ H(q1, . . . , qn) whenever p1 ≤ q1, . . . , and pn ≤ qn231

(i.e. applying H to more specific values yields more specific values). A valuation v232

satisfies this FI if v(f) ≤ H(v(g1), . . . , v(gn)), denoted as v |= f≤H(g1, . . . , gn).233

An FBox F is a finite set of FIs, and a valuation v satisfies F , written v |= F , if234

v satisfies every FI in F . We call F acylic if the graph (F, { (f, g1), . . . , (f, gn) |235

f ≤H(g1, . . . , gn) ∈ F }) is, and cyclic otherwise.236

The following example illustrates that FIs are “directed specifications” in237

the sense that values of the right-hand side features g1, . . . , gn yield, through238

the operation H, an upper bound for the value of the left-hand side feature f .239

However, this does not work in the other direction unless specified by other FIs.240

Example 4. We use three features with interval values over the non-negative241

integers: sys for the systolic and dia for the diastolic blood pressure, and pp for242

the pulse pressure, which is the difference between the systolic and the diastolic243

pressure. The FI pp ⊆ sys − dia allows us to infer a value for pp when values for244

both sys and dia are given. For instance, under this FI the constraint inclusion245

(sys⊆[110, 120])⊓(dia⊆[60, 70])⊑(pp⊆[40, 60]) is valid. In contrast, the constraint246

inclusion (sys ⊆ [110, 120]) ⊓ (pp ⊆ [40, 60]) ⊑ (dia ⊆ [60, 70]) is not valid w.r.t.247

the above FI. A countervaluation is v with v(sys) = [110, 120], v(dia) = [0,∞),248

v(pp) = [40, 60]. This is because [110, 120] − [0,∞) = [0, 120] and [40, 60] ⊆249

[0, 120], i.e. v satisfies the FI, but v does not satisfy the latter constraint inclusion.250

2 More precisely, this holds for the set of all equivalence classes of concepts, i.e. all
sets of the form {D | C ⊑K D and D ⊑K C } for all concepts C.
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Definition 5. The semantics of the concrete domain DL can be restricted w.r.t. 251

an FBox F by considering only valuations satisfying F . That is, a constraint 252

inclusion
d
Γ ⊑

⊔
∆ is valid in DL w.r.t. F , written DL,F |=

d
Γ ⊑

⊔
∆, if 253

this inclusion is satisfied in all valuations that satisfy F . Whenever we write 254

“w.r.t. F” in the following, only valuations satisfying F are considered. 255

Using this semantics restricted by an FBox, convexity and P-admissibility 256

are defined as before but the latter additionally takes the FBox F as part of the 257

input. The underlying semi-lattice L is taken into account through the computa- 258

tional complexity of its value set L, its partial order ≤, and its meet operation ∧. 259

Definition 6. DL is admissible w.r.t. F if DL is convex and satisfiability of 260

constraint conjunctions as well as validity of constraint inclusions are decidable, 261

all w.r.t. F . For a complexity class C, we say that DL is C-admissible w.r.t. F 262

if, all w.r.t. F , DL is convex and satisfiability of constraint conjunctions as well 263

as validity of constraint inclusions are in C when F is part of the input. 264

Next, we show that a hierarchical concrete domain DL is convex w.r.t. F if 265

the semi-lattice L is complete or well-founded or if the FBox F is acyclic. Note 266

that every finite semi-lattice is well-founded, i.e. convexity is guaranteed when 267

a non-acyclic FBox is used with only finitely many values. Convexity is also 268

ensured over non-well-founded semi-lattices when the FBox is empty (since it is 269

acyclic). There might be further conditions that ensure convexity even if L is 270

neither complete nor well-founded and F is not acyclic; we leave this for future 271

research. 272

Definition 7. Let L be a bounded semi-lattice and F be an FBox. Given a finite 273

set Γ of constraints over the concrete domain DL, a canonical valuation of Γ 274

w.r.t. F is a valuation vΓ,F such that 275

1. vΓ,F |= F and 276

2. vΓ,F |= α iff. DL,F |=
d
Γ ⊑ α for each constraint α. 277

Moreover, we say that DL has canonical valuations w.r.t. F if such a valuation 278

vΓ,F exists for every finite, w.r.t. F satisfiable Γ . 279

Since for each constraint α in Γ , the inclusion
d

Γ ⊑α is valid, we infer with 280

the second condition that vΓ,F satisfies Γ . 281

Lemma I. Let L be a bounded semi-lattice and F be an FBox. DL is convex 282

w.r.t. F if it has canonical valuations w.r.t. F . 283

Proof. Assume that DL,F |=
d
Γ ⊑

⊔
∆. Since vΓ,F |= F and vΓ,F |=

d
Γ , 284

it follows that vΓ,F |=
⊔
∆, i.e. vΓ,F |= α for some α ∈ ∆. We conclude that 285

DL,F |=
d
Γ ⊑ α. □ 286

A semi-lattice L is complete if every subset P ⊆ L has a meet
∧

P ∈ L, 287

i.e. such that
∧
P ≤ p for each p ∈ P and, if q ≤ p for each p ∈ P , then 288

q ≤
∧
P . Note that these two conditions generalize (SL4) and (SL5). Every 289

complete semi-lattice is a complete lattice since we can obtain the join operation 290

by
∨
P :=

∧
{ q | p < q for each p ∈ P }. 291
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Theorem 8. For each complete semi-lattice L and for every FBox F , the con-292

crete domain DL has canonical valuations and so is convex w.r.t. F .293

Proof. Completeness of L implies that L is also a complete lattice. It follows294

that LF is a complete lattice as well when equipped with the pointwise lifting of295

≤, i.e. v1 ≤ v2 iff. v1(f) ≤ v2(f) for each f ∈ F.296

The FBox F induces the function ΦF : L
F → LF that sends every as-297

signment v : F → L to the assignment ΦF (v) : F → L where ΦF (v)(f) :=298

v(f) ∧
∧
{H(v(g1), . . . , v(gm)) | f ≤H(g1, . . . , gm) ∈ F }.299

Since all operations H occurring in F are monotonic, also ΦF is mono-300

tonic. To see this, consider two valuations with v1 ≤ v2 (pointwise) and let301

f ∈ F be a feature. Then v1(f) ≤ v2(f), and v1(gi) ≤ v2(gi) for each FI302

f ≤H(g1, . . . , gm) ∈ F and each i ∈ {1, . . . ,m}. Monotonicity of each involved303

H yields H(v1(g1), . . . , v1(gm)) ≤ H(v2(g1), . . . , v2(gm)). Thus, ΦF (v1)(f) ≤304

ΦF (v2)(f). Since f is arbitrary, we conclude that ΦF (v1) ≤ ΦF (v2) (pointwise).305

It is easy to see that the fixed points of ΦF are exactly the satisfying valua-306

tions of F (ignoring for now that some might map features to ⊥), i.e. ΦF (v) = v307

iff. v |= F :308

v is a fixed point of ΦF309

iff. v = ΦF (v)310

iff. v(f) = ΦF (v)(f) for every feature f311

iff. v(f) = v(f) ∧
∧
{H(v(g1), . . . , v(gm)) | f ≤ H(g1, . . . , gm) ∈ F } for every312

feature f313

iff. v(f) ≤
∧
{H(v(g1), . . . , v(gm)) | f ≤H(g1, . . . , gm) ∈ F } for every feature f314

iff. v(f) ≤ H(v(g1), . . . , v(gm)) for each FI f ≤H(g1, . . . , gm) ∈ F315

iff. v is a satisfying valuation of F .316

Note that
∧
∅ = ⊤, i.e. the third-last line is trivially satisfied for all features not317

occurring as left-hand side of a FI in F .318

Now, the Knaster-Tarski Theorem [52] yields existence of a greatest fixed319

point vΓ,F : F → L among all fixed points of ΦF that are pointwise more specific320

than or equal to vΓ : F → L where vΓ (f) :=
∧
{ p | (f ≤ p) ∈ Γ } for all f .321

Obviously, we have w ≤ vΓ iff. w is a satisfying valuation of Γ . If vΓ,F (f) = ⊥322

for some feature f , then we conclude that w(f) = ⊥ for every valuation w323

satisfying F and Γ , i.e. there are no such valuations and thus Γ is unsatisfiable.324

Otherwise, vΓ,F is a valuation and it remains to verify that vΓ,F is canonical as325

per Definition 7. Convexity then follows by Lemma I.326

1. We have seen above that ΦF (v) = v iff. v |= F , and thus vΓ,F satisfies F .327

2. vΓ,F satisfies all constraints in Γ since vΓ,F ≤ vΓ . The if direction is therefore328

already shown. Regarding the only-if direction, assume vΓ,F |= (g ≤ q) and329

consider a valuation w such that w |= F and w |=
d

Γ . It follows that330

vΓ,F (g) ≤ q, ΦF (w) = w, and w ≤ vΓ . Since vΓ,F is the greatest fixed point331

≤ vΓ , we have w ≤ vΓ,F and thus w(g) ≤ q.332

It follows that Γ is satisfiable iff. vΓ,F (f) ̸= ⊥ for every feature f . □333
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Theorem 9. Let L be a computable, bounded semi-lattice and F be an FBox. If 334

L is well-founded or F is acyclic, then the concrete domain DL has computable 335

canonical valuations and is admissible w.r.t. F . 336

Proof. Given a finite set Γ of constraints over DL, we construct a mapping vΓ,F 337

as follows. 338

– First, we define a mapping v0 : F → L by v0(f) :=
∧
{ p | (f ≤ p) ∈ Γ } for 339

every feature f , and set i := 0. 340

– While there is an FI f ≤ H(g1, . . . , gn) in F such that vi(f) ̸≤ 341

H(vi(g1), . . . , vi(gn)), we initialize the next mapping vi+1 : F → L by 342

vi := vi+1 but set vi+1(f) := vi(f) ∧ H(vi(g1), . . . , vi(gn)), and increase i. 343

Otherwise, we terminate the while-loop and define vΓ,F := vi. 344

Since L is computable, each single step in the above procedure requires only a 345

finite amount of time. It is easy to see that the while-loop terminates if the semi- 346

lattice L is well-founded. Now assume that F is acyclic. We define a “before” 347

relation between FIs by (f ≤ H(g1, . . . , gn)) “before” (f ′ ≤ H ′(g′1, . . . , g
′
n)) if 348

f ∈ {g′1, . . . , g′n}. Then let ≺ be the transitive reduction (neighborhood relation) 349

of an arbitrary linearization of this “before” relation.3 During the above while- 350

loop we now go along ≺, and thus we are done after polynomially many steps 351

(w.r.t. F). 352

The returned mapping vΓ,F might assign ⊥ to features and thus might not 353

be a valuation. We ignore this for the time being. 354

vΓ,F satisfies F since it is obtained as the last valuation vi upon termination 355

of the while-loop, i.e. when vi satisfies all FIs in F . Moreover, by construction 356

v0(f) ≤ p for each constraint f ≤ p in Γ and further v0 ≥ v1 ≥ v2 ≥ · · · ≥ vΓ,F , 357

which yields vΓ,F (f) ≤ v0(f) ≤ p and thus vΓ,F satisfies Γ . 358

Next, we show that the above procedure has an invariant: w ≤ vi (pointwise) 359

for each valuation w such that w |= F and w |=
d
Γ . In the end, w ≤ vΓ,F 360

(pointwise). 361

– Since w satisfies Γ , we have w(f) ≤ p for every constraint f ≤ p in Γ , and 362

thus w(f) ≤ v0(f) for each feature f , i.e. w ≤ v0. 363

– Assume w ≤ vi and let f ≤H(g1, . . . , gn) be the FI not satisfied by vi and 364

used to obtain vi+1. Since w satisfies F , w(f) ≤ H(w(g1), . . . , w(gn)). The 365

assumption that w ≤ vi yields that w(g1) ≤ vi(g1), . . . , w(gn) ≤ vi(gn) 366

and thus H(w(g1), . . . , w(gn)) ≤ H(vi(g1), . . . , vi(gn)) as H is monotonic. 367

The assumption further yields that w(f) ≤ vi(f). It follows that w(f) ≤ 368

vi(f) ∧ H(vi(g1), . . . , vi(gn)) = vi+1(f). For every other feature g ̸= f we 369

have w(g) ≤ vi(g) = vi+1(g). In the end, w ≤ vi+1. 370

Now, if vΓ,F (f) = ⊥ for some feature f , then we conclude from the above 371

invariant that w(f) = ⊥ for every valuation w satisfying F and Γ , i.e. there are 372

3 Given a partial order ≤, its transitive reduction is ≤ \ (≤ ◦ ≤), i.e. the set of all
pairs (x, y) ∈ ≤ such that there is no z with (x, z) ∈ ≤ and (z, y) ∈ ≤. Moreover,
a linearization of ≤ is a superset that is also a partial order but in which each two
elements are comparable, i.e. it contains either (x, y) or (y, x) for each two x, y.
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no such valuations and thus Γ is unsatisfiable. Otherwise, vΓ,F is a valuation373

and it remains to verify that vΓ,F is canonical as per Definition 7. Convexity374

then follows by Lemma I.375

1. We have already seen above that vΓ,F satisfies F .376

2. Given a constraint g ≤ q, we must show that vΓ,F |= (g ≤ q) iff. DL,F |=377 d
Γ ⊑ (g ≤ q). The if direction holds since vΓ,F |= F and vΓ,F |=

d
Γ .378

Assume vΓ,F |= (g ≤ q) and consider a valuation w such that w |= F and379

w |=
d
Γ . The former yields vΓ,F (g) ≤ q and the latter yields w ≤ vΓ,F380

(pointwise) by the invariant. In particular w(g) ≤ vΓ,F (g), and thus w(g) ≤381

q, i.e. w |= (g ≤ q) as required.382

It follows that Γ is satisfiable iff. vΓ,F (f) ̸= ⊥ for every feature f . Since we383

obtain vΓ,F in finite time, satisfiability of constraint conjunctions is decidable.384

Through Condition 2 in Definition 7 we can decide validity of constraint385

inclusion
d
Γ ⊑ α where α := (g ≤ q). To this end, we first compute vΓ,F by386

means of the above procedure, then check if vΓ,F (f) ̸= ⊥ for each f (i.e. Γ is387

satisfiable and vΓ,F is its canonical valuation), and finally check if vΓ,F (g) ≤ q388

(i.e. vΓ,F satisfies α), which can all be done in finite time. □389

Now, we want to determine the time requirement for computing a canonical390

valuation vΓ,F , which is measured w.r.t. the constraint set Γ and the FBox F .391

The semi-lattice L is only taken into account through the decision and compu-392

tation procedures for its value set L, partial order ≤, and meet operation ∧.393

Proposition 10. Consider a polynomial-time computable, bounded semi-lattice394

L such that its meet operation returns values of linear size. Further consider395

an acyclic FBox F in which all occurring operations are polynomial-time com-396

putable and return values of linear size. W.r.t. F , the concrete domain DL has397

polynomial-time computable canonical valuations and is P-admissible.398

Proof. We have already seen in the proof of Theorem 9 that the while-loop of the399

procedure there needs only one iteration per FI in the acyclic FBox F . Since L is400

polynomial-time computable and every operation occurring in F is polynomial-401

time computable, each single iteration requires only polynomial time w.r.t. its402

respective input (which is the intermediate assignment vi and the FBox F).403

Moreover since the meet operation of L and each operation in F return linear-404

size values, all intermediate assignments vi have linear size w.r.t. the input (which405

is the constraint set Γ and the FBox F). It follows that the canonical valuation406

vΓ,F can be computed in polynomial time. □407

The following example shows that Proposition 10 need not hold when the408

FBox F contains an operation computable in polynomial time but not returning409

values of linear size, basically because the size increases can accumulate to an410

exponential size.411

Example II. We consider words over the unary alphabet, say with letter a,412

partially ordered by equality =. The acyclic FBox F := { fi+1 = H(fi) |413
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i ∈ {0, . . . , n − 1} } uses the operation H where H(w) := w ◦ w. Obviously, 414

H is computable in quadratic time and its outputs have quadratic size. Now, 415

for the constraint set Γ := {f0 = a} we obtain the canonical valuation vΓ,F with 416

vΓ,F (fi) = a(2
i), which has exponential size and thus cannot be computed in 417

polynomial time. 418

A further example shows that already the constraint set Γ could enforce a 419

canonical valuation not computable in polynomial time if the meet operation 420

does not return linear-size values. 421

Example III. Take the semi-lattice consisting of all positive integers and partially 422

ordered by the “is divided by” relation (denoted as |−1). Its meet operation yields 423

the least common multiple. Given an increasing enumeration p1, p2, . . . of all 424

primes, the constraint set Γ := {f |−1 p1, . . . , f |−1 pn} has a canonical valuation 425

vΓ,F where vΓ,F (f) = p1 · · · · · pn. The size of vΓ,F (f) is exponential in the size 426

of Γ . 427

Without the assumption that all involved operations yield linear-size results, 428

with similar arguments as for Proposition 10 we obtain exponential complexity. 429

Proposition 11. For every polynomial-time computable, bounded semi-lattice L 430

and for every acyclic FBox F in which all occurring operations are polynomial- 431

time computable, the concrete domain DL has exponential-time computable 432

canonical valuations and is EXP-admissible w.r.t. F . 433

3.1 Intervals 434

Let N be a non-empty set of real numbers. The semi-lattice Int(N) consists of all 435

intervals over N , is partially ordered by set inclusion ⊆ and has set intersection 436

∩ as its meet operation. All types of intervals are supported, such as closed 437

intervals [p, q] := { o | p ≤ o ≤ q }, [p,+∞) := { o | p ≤ o }, (−∞, q] := { o | 438

o ≤ q }, (−∞,+∞) := N , open intervals (p, q), (p,+∞), (−∞, q), (−∞,+∞) 439

defined with < instead of ≤, and also half-open intervals (p, q], [p, q). Int(N) 440

is already bounded since its greatest element is N = (−∞,∞), but we rather 441

identify it with □ and add an artificial greatest element ⊤. It also has a smallest 442

element ∅ = (p, p) where p ∈ N is arbitrary, and we identify this smallest element 443

with the contradictory value ⊥. 444

The hierarchical concrete domain DInt(N) is called the interval domain over 445

N . Since for every number p ∈ N , the singleton {p} equals the interval [p, p], we 446

can specify the precise numerical value of a feature with the constraint f ⊆ {p}, 447

also written f = p. Moreover, instead of f ⊆ [p, q] we may also write p≤ f ≤ q. 448

Example 12. Through the interval domain over the non-negative 8-bit inte- 449

gers N := N ∩ [0, 28−1] we could express non-elevated blood pressure by 450

NonElevatedBP ≡ (sys ⊆ [0, 120)) ⊓ (dia ⊆ [0, 70)), elevated blood pressure 451

by ElevatedBP ≡ (sys ⊆ [120, 140)) ⊓ (dia ⊆ [70, 90)), and hypertension by 452

(sys ⊆ [140,∞)) ⊑ Hypertension and (dia ⊆ [90,∞)) ⊑ Hypertension. With the 453
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above syntactic sugar, the first statement can also be written as NonElevatedBP≡454

(0 ≤ sys < 120) ⊓ (0 ≤ dia < 70), and similarly for the other two. The concrete455

values of patient bob can be represented by the assertions bob : (sys = 114) and456

bob : (dia ⊆ [69, 69]). The KB consisting of all these aforementioned statements457

entails bob : NonElevatedBP.458

Each binary operation ∗ on N can be lifted to a binary operation on intervals459

by [p1, q1] ∗ [p2, q2] := { o1 ∗ o2 | o1 ∈ [p1, q1] and o2 ∈ [p2, q2] }, and similarly460

for other types of intervals. If ∗ is continuous on a domain containing [p1, q1]×461

[p2, q2], then the resulting set [p1, q1]∗ [p2, q2] is also an interval. Moreover, if ∗ is462

monotonic, then [p1, q1] ∗ [p2, q2] = [min(S),max(S)] where S := {p1 ∗ p2, p1 ∗ q2,463

q1 ∗ p2, q1 ∗ q2} [28]. For instance, addition +, subtraction −, and multiplication464

· are monotonic. We have [p1, q1]+ [p2, q2] = [p1+ p2, q1+ q2] as well as [p1, q1]−465

[p2, q2] = [p1, q1] + [−q2,−p2] = [p1 − q2, q1 − p2]. Products can be computed466

without min and max if none of the intervals contains 0 as an interior point. For467

instance, [p1, q1] · [p2, q2] = [p1 · p2, q1 · q2] if all interval bounds are non-negative.468

Division is technically more involved since one needs to distinguish if the second469

interval contains 0 or has 0 as an endpoint. We have470

– [p1, q1]/[p2, q2] = [p1, q1] · [1/q2, 1/p2] if 0 ̸∈ [p2, q2],471

– [p1, q1]/[p2, 0] = [p1, q1] · (−∞, 1/p2],472

– [p1, q1]/[0, q2] = [p1, q1] · [1/q2,+∞), and473

– [p1, q1]/[q1, q2] = [p1, q1] · ((−∞, 1/p2] ∪ [1/q2,+∞)) if 0 ∈ [p2, q2] but p2 ̸=474

0 ̸= q2.475

In the last case the result is a union of two intervals. In order to support such476

results, the semi-lattice Int(N) needs to be replaced by the semi-lattice UInt(N)477

consisting of all finite unions of pairwise separated4 intervals over N . It is also478

polynomial-time computable, but it is currently unclear w.r.t. which FBoxes F479

the concrete domain DUInt(N) is P-admissible. Inclusion of such interval unions480

can be decided in polynomial time since P1 ∪ · · · ∪ Pm ⊆ Q1 ∪ · · · ∪ Qn iff., for481

each i ∈ {1, . . . ,m}, there is j ∈ {1, . . . , n} such that Pi ⊆ Qj . Disjunctions482

cannot be emulated by the use of finite unions of intervals since, for instance,483

the constraint inclusion (f ⊆ [0, 1] ∪ [2, 3])⊑ (f ⊆ [0, 1]) ⊔ (f ⊆ [2, 3]) is not valid484

in DUInt(N) where N := N ∩ [0, 28−1]. For the sake of brevity and clarity we do485

not go into further details here.486

Lemma IV. For each binary operation ∗ on numbers, the lifted operation ∗ on487

intervals is monotonic, i.e. can be used in FIs.488

Proof. Consider intervals P, P ′, Q,Q′ such that P ⊆ Q and P ′ ⊆ Q′. We have489

P ∗ P ′ = { p ∗ p′ | p ∈ P and p′ ∈ P ′ } by definition. The assumption yields that490

the latter set is contained in { q ∗ q′ | q ∈ Q and q′ ∈ Q′ }, which by definition491

equals Q ∗Q′. That is, P ∗ P ′ ⊆ Q ∗Q′. □492

4 Two intervals are separated if each is disjoint with the other’s closure. For instance,
[0, 1) and (1, 2] are separated, but [0, 1] and (1, 2] are not.
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Example 13. Continuing Example 4, we can additionally consider the two FIs 493

dia ⊆ sys − pp and sys ⊆ dia + pp, which allow us to also infer interval values of 494

dia and sys given interval values of the respective other two. Importantly, this 495

does not destroy convexity. 496

This is in stark contrast to the concrete domain extending DQ,diff with con- 497

straints f ≥ b, f < b, f ≤ b, which allows to express interval values as well 498

(in a different way though). There, the constraint inclusion (sys − dia = 40) ⊑ 499

(sys ≤ 120) ⊔ (dia > 80) is valid, violating convexity. Additionally using the ex- 500

pressivity of DQ,lin, we could express that pp = sys − dia by the CI ⊤ ⊑ (sys − 501

dia − pp = 0) as in Example 3 in [2]. Under this CI, the constraint inclusion 502

(pp = 40)⊑ (sys ≤ 120) ⊔ (dia > 80) would be valid, also violating convexity. 503

In our interval domain over the non-negative integers and with the cyclic 504

FBox {pp⊆sys−dia, dia⊆sys−pp, sys⊆dia+pp}, the similar constraint inclusion 505

(pp⊆ [40, 40])⊑(sys⊆ [0, 120])⊔(dia⊆(80,∞)) is not valid. A countervaluation is 506

v where v(sys) = [40,∞), v(dia) = [0,∞), v(pp) = [40, 40]. It satisfies the first FI 507

since [40,∞)− [0,∞) = [0,∞) ⊇ [40, 40], the second FI since [40,∞)− [40, 40] = 508

[0,∞) ⊇ [0,∞), and the third FI since [0,∞) + [40, 40] = [40,∞) ⊇ [40,∞). 509

Recall that the interval semi-lattice Int(N) is defined for every non-empty 510

set N of real numbers. The set N is partially ordered by the usual ordering ≤ 511

and has the meet operation min, i.e. (N,≤,min) is itself a semi-lattice. It thus 512

makes sense to say that N is complete. The real numbers R, the non-negative 513

real numbers R+, all closed intervals over R, the integers Z, the natural numbers 514

N, the n-bit integers, the n-bit floating-point numbers, the n-bit fixed-point 515

numbers, and all finite subsets of R are complete, but the rational numbers Q is 516

not — for instance, the infimum of { (1+1/n)n+1 | n ≥ 0 } is Euler’s number e, an 517

irrational number. It is easy to see that the semi-lattice Int(N) is complete if the 518

number set N is complete, and so we obtain the below corollary to Theorem 8. 519

Corollary 14. If the semi-lattice (N,≤,min) is complete, then the interval do- 520

main DInt(N) has canonical valuations and is convex w.r.t. every FBox F . 521

Proof. If N is complete, i.e. every subset P ⊆ N has an infimum
∧
P ∈ N 522

and thus also a supremum
∨
P ∈ N , then the interval semi-lattice Int(N) is 523

complete as well. We have
⋂

t∈T ⟨tpt, qt⟩t = ⟨p, q⟩ where 524

– p :=
∨

t∈T pt, 525

– q :=
∧

t∈T qt, 526

– if p ∈ ⟨tpt, qt⟩t for each t ∈ T , then ⟨ := [, else ⟨ := (, and 527

– if q ∈ ⟨tpt, qt⟩t for each t ∈ T , then ⟩ := ], else ⟩ := ). 528

In particular, the intersection of closed intervals is a closed interval, but the 529

intersection of open intervals need not be open, e.g.
⋂

n∈N(−1/n, 1) = [0, 1). The 530

claim now follows from Theorem 8. □ 531

An immediate consequence of Theorem 9 is that the interval domain DInt(R) 532

over all real numbers is admissible w.r.t. every acyclic FBox. Moreover, an ob- 533

vious corollary to Proposition 10 is as follows. 534
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Corollary 15. W.r.t. each acyclic FBox F in which all operations are polynomial-535

time computable and yield linear-size results, the interval domain DInt(R) has536

polynomial-time-computable canonical valuations and is P-admissible.537

Next, we employ linear programming to handle affine FBoxes, which might538

be cyclic. We call an FBox F affine if all operations in FIs in F are affine, i.e.539

all FIs are of the form f ⊆
∑n

i=1 Pi · gi +Qi where the Pi and Qi are intervals.540

For instance, the FI pp ⊆ sys − dia is affine, but bmi ⊆ bodyMass/bodyHeight2541

is not. Since each affine FI represents two linear inequalities (one for the lower542

bound of the interval value of f , and another one for the upper bound), we can543

transform affine FBoxes into linear programs, which can be solved in polynomial544

time [31]. We thus obtain the following result.545

Proposition 16. Let c, c ∈ R+ be non-negative real numbers such that c ≤ c.546

Restricted to closed intervals only, the interval domain DInt([c,c]) over the non-547

negative real numbers between c and c is P-admissible w.r.t. each affine FBox F ,548

i.e. all FIs are of the form f ⊆
∑n

i=1[ai, ai] · gi + [b, b].549

Proof. Since [c, c] is complete, Theorem 8 and Corollary 14 yield that DInt([c,c])550

has canonical valuations and is convex w.r.t. every FBox F . Now fix an affine551

FBox F as well as a constraint set Γ . We have seen in the proof of Theorem 8 that552

w ⊆ vΓ,F for each valuation w satisfying Γ and F , where vΓ,F is the canonical553

valuation.554

It remains to show that we can decide satisfiability of Γ w.r.t. F in polynomial555

time and compute the canonical valuation vΓ,F in polynomial time. With similar556

arguments as at the end of the proof of Theorem 9, it then follows that validity557

of constraint inclusions w.r.t. F is decidable in polynomial time.558

To this end, we translate Γ and F into a linear program LP(Γ,F) such that559

there is a correspondence between the solutions of LP(Γ,F) and the valuations560

satisfying Γ and F . For each feature f , we introduce two variables f and f such561

that [f, f ] represents the interval value of f .562

1. First, all these intervals [f, f ] should be non-empty, and to this end we563

introduce the inequality f ≤ f . These intervals should further be subsets of564

[c, c], and thus we have the inequalities c ≤ f and f ≤ c.565

2. Next, consider a constraint f ⊆ [p, p] in Γ . Replacing the feature with its566

variables yields [f, f ] ⊆ [p, p], and so we obtain the inequalities p ≤ f and567

f ≤ p.568

3. Last, consider a FI f⊆
∑n

i=1[ai, ai]·gi+[b, b] in F . Since no negative numbers569

are involved, the product of each coefficient interval [ai, ai] and the interval570

value of the feature gi can be computed without the non-linear functions571

min and max. Replacing the features with their variables yields [f, f ] ⊆572 ∑n
i=1[ai, ai] · [gi, gi]+[b, b], and thus [f, f ] ⊆ [

∑n
i=1 ai ·gi+b,

∑n
i=1 ai ·gi+b].573

We therefore obtain the inequalities
∑n

i=1 ai · gi + b ≤ f and f ≤
∑n

i=1 ai ·574

gi+ b. For the standard form we need to bring the linear combination of the575

variables to the left of ≤ and the number to the right.576
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LP(Γ,F) is the standard form and consists of the following inequalities: 577

f − f ≤ 0 for each feature f occurring in Γ or F
−f ≤ −c for each feature f occurring in Γ or F
f ≤ c for each feature f occurring in Γ or F

p− f ≤ 0 for each constraint f ⊆ [p, p] in Γ

f − p ≤ 0 for each constraint f ⊆ [p, p] in Γ∑n
i=1 ai · gi − f ≤ −b for each FI f ⊆

∑n
i=1[ai, ai] · gi + [b, b] in F

f −
∑n

i=1 ai · gi ≤ b for each FI f ⊆
∑n

i=1[ai, ai] · gi + [b, b] in F
f ≥ 0 for each feature f occurring in Γ or F
f ≥ 0 for each feature f occurring in Γ or F

A solution is an assignment of all variables f and f with numbers in R+. By 578

definition of LP(Γ,F), the following statements hold: 579

– From each valuation v satisfying Γ and F , we obtain a solution of LP(Γ,F) 580

by mapping f to the lower bound of the interval value v(f) and likewise 581

mapping f to the upper bound of v(f). 582

– From every solution s of LP(Γ,F), we obtain a valuation v that satisfies Γ 583

and F by defining v(f) := [s(f), s(f)]. 584

It follows that Γ is satisfiable w.r.t. F iff. LP(Γ,F) is solvable. 585

It remains to specify the objective function of LP(Γ,F). Recall that there 586

is a canonical valuation vΓ,F such that w ⊆ vΓ,F for each valuation w sat- 587

isfying Γ and F . Translated to solutions of LP(Γ,F), there is a solution 588

sΓ,F that corresponds to vΓ,F and such that, for every solution t, we have 589

[t(f), t(f)] ⊆ [sΓ,F (f), sΓ,F (f)] for all features f . In order to compute sΓ,F with 590

LP(Γ,F), we would thus need to maximize all interval lengths f −f as objective 591

functions. Since these are all non-negative, it is enough to maximize the sum of 592

all these lengths, which yields the single objective function
∑

f∈F(Γ,F)(f − f), 593

where F(Γ,F) is the set of all features occurring in Γ or F . We can therefore use 594

an ordinary LP solver — in particular with an interior-point method from linear 595

programming [31] we can decide in polynomial time if LP(Γ,F) is solvable and, 596

if so, we can further compute in polynomial time the maximal solution sΓ,F . □ 597

It remains an open problem, whether the interval domains DInt([c,c]) remain 598

P-admissible w.r.t. affine FBoxes when all interval types would be considered. 599

We conjecture that the interval bounds can be computed using the same linear 600

program, but determining the correct interval types (closed or open at the lower 601

bound, closed or open at the upper bound) could possibly lead to a combinatorial 602

explosion. It is further unclear whether, without the bounding interval [c, c], the 603

interval domain DInt(R+) would still be P-admissible w.r.t. affine FBoxes. The 604

canonical valuation could then send features to intervals with upper bound +∞, 605

in which case the polytope described by the inequations would be unbounded. 606

This requires an LP-solver with support for unbounded solution polytopes. 607
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We can also handle affine FBoxes together with negative numbers, but then608

need to restrict the coefficient intervals to singletons — as otherwise the non-609

linear functions min and max would be required to compute a product [ai, ai] ·gi,610

i.e. the system of inequalities would not be linear anymore and could therefore611

not be solved by linear-programming methods.612

Proposition 17. Let c, c ∈ R be real numbers such that c ≤ c. Restricted to613

closed intervals, the interval domain DInt([c,c]) over the real numbers in [c, c] is614

P-admissible w.r.t. each affine FBox F involving only singleton coefficients, i.e.615

all FIs are of the form f ⊆
∑n

i=1{ai} · gi + [b, b].616

Proof. The proof is similar to Proposition 16, except the following. In Step 3 in617

the definition of LP(Γ,F), the product of each singleton coefficient {ai} and the618

interval value of the feature gi can be computed without the non-linear functions619

min and max. We have {ai} · [gi, gi] = [ai ·gi, ai ·gi]. Thus in LP(Γ,F) we replace620

every occurrence of ai · gi by ai · gi and each occurrence of ai · gi by ai · gi.621

Since R contains negative numbers but linear programs in standard form622

yield non-negative solutions only, we would need to introduce slack variables623

f+, f−, f+, f− for all features f occurring in Γ or F , and then replace each624

occurrence of f by f+ − f− and likewise f by f+ − f− except in the last two625

inequalities of LP(Γ,F): these are rather replaced by f+ ≥ 0, f− ≥ 0, f+ ≥ 0,626

f− ≥ 0. In the end, we again maximize interval lengths by means of the single627

objective function
∑

f∈F(Γ,F)((f
+ − f−)− (f+ − f−)). □628

Linear programming becomes NP-hard when restricted to integers only [33].629

Unless P = NP, the integer interval domains DInt(Z), DInt(N), and DInt({0,1}) are630

thus not P-admissible w.r.t. affine FBoxes. Integer interval domains are rather631

suitable for integration into Horn logics that do not allow for polynomial-time632

reasoning, such as ELI, Horn-ALC, Horn-SROIQ, and existential rules.633

Example 18. Example 3 in [2] shows that the combination of the concrete do-634

mains DQ,diff and DQ,lin is not enough to express that intensive-care patients635

need attention if their pulse pressure is larger than 50 or their current heart rate636

exceeds their maximal heart rate. Moreover, this combination is not even convex.637

With our interval domain these statements can be expressed through the638

affine FIs pp⊆ sys−dia, and maxHR⊆220− age, and exceedHR⊆hr−maxHR, as639

well as the CIs ICUPatient⊑(hr⊆□)⊓(sys⊆□)⊓(dia⊆□), and ICUPatient⊓(pp⊆640

(50,∞))⊑NeedsAttention, and ICUPatient⊓(exceedHR⊆(0,∞))⊑NeedsAttention.641

3.2 2D-Polygons642

A 2D-polygon is a finite sequence of successively connected finite line segments643

in the real plane R2 such that the end vertex of the last segment equals the start644

vertex of the first. These line segments form a simple closed curve in R2, and645

by the Jordan Curve Theorem (Jordan, 1887) each 2D-polygon has an interior646

region (bounded by the curve) and an exterior region. In the following we identify647

each 2D-polygon with the subset of R2 consisting of its boundary and the interior648
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region. 2D-polygons are thoroughly studied in Computational Geometry and 649

frequently used in geographic information systems (GIS). 650

Deciding the set of all 2D-polygons is trivial if they are represented as finite 651

sequences of vertex coordinates in R2. Clipping algorithms allow for checking in 652

polynomial time if a polygon is a subset of another (i.e. polygon containment 653

without moving or scaling operations). All Boolean operations (union, inter- 654

section, difference, xor) can moreover be computed by clipping algorithms in 655

polynomial time, but the results can be of quadratic size and might consist of 656

unions of disjoint 2D-polygons [23, 46, 54]. In order to obtain a semi-lattice, 657

which must be closed under its meet operation, it would therefore be necessary 658

to take the set of all finite unions of separated 2D-polygons: we denote it by 659

UGon(R2), its partial order is containment ⊆, and its meet is intersection ∩. 660

According to the above references, UGon(R2) is polynomial-time computable 661

(w.r.t. arithmetic complexity). The hierarchical concrete domain DUGon(R2) is 662

called polygon domain over R2. A corollary to Proposition 11 is as follows. 663

Corollary 19. W.r.t. arithmetic complexity, the polygon domain DUGon(R2) has 664

exponential-time computable canonical valuations and is EXP-admissible w.r.t. 665

each acyclic FBox F in which all operations are polynomial-time computable. 666

To the best of the author’s knowledge, it is unclear whether the intersection 667

of n polygons might reach an exponential size. If this worst case would not 668

be possible and, moreover, all operations in F yield linear-size results, then 669

DUGon(R2) would even be P-admissible w.r.t. F (w.r.t. arithmetic complexity). 670

Example 20. Locations can be represented as polygons in the real plane R2. For 671

instance, we have “Nöthnitzer Straße 46, 01187 Dresden” ⊆ “01187 Dresden” ⊆ 672

“Dresden” ⊆ “Saxony” ⊆ “Germany” ⊆ “Europe” ⊆ “Earth”. 673

The situation is computationally easier with convex 2D-polygons, which con- 674

tain all line segments between each two of their points. One can think of convex 675

2D-polygons as two-dimensional generalizations of closed intervals. Both in lin- 676

ear time, we can decide the subset relation ⊆ and compute the intersection 677

operation ∩ for convex 2D-polygons [47, 50, 53]. However, deciding the set of all 678

convex 2D-polygons is not trivial anymore but needs linear time [50]. We denote 679

the semi-lattice of all convex 2D-polygons by CGon(R2), and it is linear-time 680

computable (w.r.t. arithmetic complexity). The hierarchical concrete domain 681

DCGon(R2) is called convex-polygon domain over R2. Obviously, convex poly- 682

gons are not closed under Boolean operations other than intersection and these 683

can thus not be used in FBoxes. Suitable monotonic operations besides intersec- 684

tion are translation, rotation, and scaling, and these can be computed in linear 685

time as well. Below is a corollary to Proposition 10. 686

Corollary 21. W.r.t. each acyclic FBox F in which all occurring operations 687

are polynomial-time computable and yield linear-size results, the convex-polygon 688

domain DCGon(R2) has polynomial-time computable canonical valuations and is 689

P-admissible (w.r.t. arithmetic complexity). 690
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Contrary to Int(R), neither UGon(R2) nor CGon(R2) are complete. The691

reason is that the unit circle can be obtained as the intersection of regular692

polygons (for each n ∈ N with n ≥ 3, take a smallest regular n-sided polygon693

that encloses the unit circle). The polygon semi-lattices are also not well-founded,694

and thus we cannot obtain corollaries to Theorems 8 and 9 w.r.t. cyclic FBoxes.695

3.3 Regular Languages696

Given a finite alphabet Σ, the semi-lattice Reg(Σ) consists of all regular lan-697

guages over Σ, is partially ordered by set inclusion ⊆, and its meet opera-698

tion is set intersection ∩. It is not complete since regular languages are not699

closed under arbitrary intersections (only under finite ones). More specifically,700

L =
⋂
{ Σ∗ \ {w} | w ̸∈ L } for each language L, and thus for two symbols701

a, b ∈ Σ the non-regular language { anbn | n ∈ N } is an intersection of regular702

languages. Thus, convexity does not follow from Theorem 8.703

In order to obtain a computable semi-lattice, we need to work with finite rep-704

resentations of regular languages. With regular expressions, binary intersections705

of regular languages can have exponential size even over a binary alphabet [24],706

i.e. the meet would not be computable in polynomial time. It is no alternative to707

instead use one-unambiguous/deterministic regular expressions since they can-708

not describe all regular languages and are not even closed under intersection,709

even though their inclusion problem is in polynomial time [19, 30, 40].710

Using finite automata as representations is preferred, on the one hand since711

to compute the meet/intersection of two regular languages we can compute the712

product of the respective finite automata in polynomial time [32]. On the other713

hand, a language inclusion L1 ⊆ L2 holds iff. the language equivalence L1∩L2 =714

L2 holds, and thus it suffices to check if the product of both finite automata is715

equivalent to the second automaton. For deterministic automata this is possible716

in polynomial time [16, 29], but otherwise needs polynomial space [51].717

The semi-lattice DFA(Σ) consists of all deterministic finite automata over Σ,718

is partially ordered by automata inclusion ⪯ where A ⪯ B if L(A) ⊆ L(B),719

and its meet operation is the product ×, which satisfies L(A × B) = L(A) ∩720

L(B). It is thus polynomial-time computable. Furthermore, FA(Σ) comprises721

all finite automata and is polynomial-space computable. Since finite automata722

and deterministic ones have equal power in the sense that they both describe all723

regular languages, both semi-lattices can serve as representations of Reg(Σ).724

The hierarchical concrete domains DDFA(Σ) and DFA(Σ) are called the725

regular-language domains over Σ. Since single words are regular languages, pre-726

cise string values are supported: we may write (f = w) instead of (f ⪯ A) when727

L(A) = {w}. Further note that □ is the automaton that accepts every string, ⊥728

accepts no string at all, and ⊤ is an artificial greatest element.729

Example 22. Let Σ be an alphabet containing all Latin letters, e.g. The Unicode730

Standard. We use a feature hasTitle to represent the title string of a research731

paper. Further take a DFA A such that L(A) = Σ∗ ◦ {description logic} ◦ Σ∗.732

With that, the CI ScientificArticle⊓ (hasTitle⪯A)⊑DLPaper expresses that the733
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concept of all DL papers subsumes the concept of all scientific articles with a 734

title containing “description logic” as substring. 735

Even without an FBox, the regular-language domains DDFA(Σ) and DFA(Σ) 736

are in general not P-admissible. In a nutshell, meets need not be of linear size, 737

and thus accumulating all upper bounds of the same feature could yield an expo- 738

nentially large automaton. More specifically, if a constraint set Γ contains several 739

constraints f ≤A for the same feature f , then computing the value vΓ,F (f) boils 740

down to computing the intersection of all these automata A. Since emptiness of 741

intersections of finite automata is PSpace-hard [36] and graph reachability is NL- 742

complete, vΓ,F (f) cannot be computed in polynomial time, unless P = PSpace. 743

We obtain, however, the following corollary to Proposition 11. 744

Corollary 23. W.r.t. each acyclic FBox F in which all occurring operations 745

are polynomial-time computable, the regular-language domain DDFA(Σ) has 746

exponential-time computable canonical valuations and is EXP-admissible. 747

The DFA operations corresponding to the language operations union ∪, in- 748

tersection ∩, and complement − are polynomial-time computable. DDFA(Σ) is 749

thus EXP-admissible w.r.t. each acyclic FBox involving these operations only. 750

In contrast, concatenation ◦, Kleene-star ∗, mirror/reversal ←, left-quotients 751

\, and right-quotients / on DFAs are exponential-time computable but not 752

polynomial-time computable [55]. However on FAs, all operations but comple- 753

ment are polynomial-time computable, and union, concatenation, Kleene-star, 754

and mirror/reversal even with linear-size results. DFA(Σ) is EXPSpace-admissible 755

w.r.t. acyclic FBoxes using these polynomial-time operations. 756

It is worth mentioning that, if we have at most one inclusion (i.e. constraint 757

or FI) per feature, then in the procedure in the proof of Theorem 9 neither the 758

automata product operation nor the automata inclusion relation needs to be 759

used, and so we have the following corollary. 760

Corollary 24. Let F be an acyclic FBox in which all occurring operations are 761

polynomial-time computable and return values of linear size. Further let Γ be 762

a constraint set. If F ∪ Γ contains, for each feature f , at most one inclusion 763

with f on the left, then the canonical valuation of Γ w.r.t. F can be computed 764

in polynomial time. 765

Example 25. Assume the features givenName, familyName, and name are used to 766

represent persons’ names. Then for instance, the concept Male⊓(givenName⪯A) 767

where L(A) = {F} ◦Σ∗ describes all males whose given name starts with ‘F’. 768

Moreover, the FI name ⪯ givenName ◦ {_} ◦ familyName allows to infer a 769

regular language value of name when values of givenName and familyName are 770

available (i.e. both are not ⊤). If the latter two are precise values (languages 771

consisting of a single word), then also name gets a precise value through the FI. 772

Note that ‘_’ stands for a white space. The FI shortName⪯ initial(givenName) ◦ 773

{._} ◦ familyName generates a shortened form of a name that only contains the 774

initial of the given name followed by a dot, where the function initial is defined 775

by L(initial(A)) := { s | s ∈ Σ and there is w ∈ Σ∗ such that s ◦ w ∈ L(A) }. 776
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The semi-lattices Reg(Σ), DFA(Σ), and FA(Σ) are not well-founded since,777

already over the unary alphabet {a}, the regular languages Li := { aj | i ≤ j }778

where i ∈ N form an infinite descending chain L0 ⊃ L1 ⊃ L2 ⊃ · · · . These semi-779

lattices are also not complete (see above). W.r.t. cyclic FBoxes, we can thus not780

conclude convexity by Theorems 8 and 9.781

For a restricted class of FBoxes, however, we obtain systems of language782

inclusions known to be solvable in exponential time [11]. An n-ary operation H783

on DFA(Σ) is left-linear if H(X1, . . . ,Xn) = X1 ◦ A1 ∪ · · · ∪ Xn ◦ An ∪ B and784

right-linear if H(X1, . . . ,Xn) = A1 ◦X1 ∪ · · · ∪An ◦Xn ∪B, where A1, . . . ,An,B785

are DFAs. An FBox F is linear if the operations in its FIs are either all left-linear786

or all right-linear.787

Proposition 26. The regular-language domain DDFA(Σ) has exponential-time788

computable canonical valuations and is EXP-admissible w.r.t. each linear FBox.789

Proof. Fix a left-linear FBox F and a constraint set Γ . The union F ∪ Γ is a790

system of left-linear inclusions. Now, we can translate between inclusions and791

equations since X ⊆ Y iff. X ∪ Y = Y . Let (F ∪ Γ )= be the so obtained system792

of left-linear equations. Its satisfiability can be decided in exponential time and,793

more importantly, it has a largest solution, which consists of regular languages,794

and a representation by DFAs is computable in exponential time [11]. It is easy795

to see that there is a one-to-one correspondence between solutions of (F ∪ Γ )=796

and valuations satisfying F and Γ . It remains to verify that the largest solution797

yields the canonical valuation as per Definition 7.798

1. Each solution of (F ∪ Γ )= satisfies F , and thus also the largest.799

2. Each solution satisfies Γ , and thus also the largest, which yields the if direc-800

tion. For the only-if direction, let g ⪯B be satisfied in the largest solution801

of (F ∪ Γ )=, and consider a valuation satisfying F and Γ , which is another802

solution of (F ∪ Γ )=. The latter is thus contained in the largest solution,803

and thus it also satisfies g ⪯B.804

Last, right-linear systems (from right-linear FBoxes) can be treated by their805

mirrors/reversals, which are left-linear [11]. Their largest solutions must be mir-806

rored again to obtain the canonical valuations. □807

When the coefficient languages are finite, then satisfiability of systems of808

linear inclusions or equations follows from a more general work on set constraints809

[1]. It further seems to be possible to add support for left-quotients in left-linear810

systems and for right-quotients in right-linear systems, at least for finite prefix811

and, respectively, suffix languages [21, 22]. Recall that the left-quotient of L1812

w.r.t. prefix L2 is L2\L1 := { v | u ◦ v ∈ L1 for some u ∈ L2 }, and its right-813

quotient w.r.t. suffix L2 is L1/L2 := { v | v ◦ w ∈ L1 for some w ∈ L2 }. As a814

further side note, systems of linear language inclusions have a largest solution815

even if only the coefficient languages on the right-hand sides are regular, and816

this largest solution is regular and effectively computable [39].817

If precise values (single words) are sufficient for the application, we could also818

use the semi-lattice (Σ∗∪{⊥,⊤},≤,∧) where ≤ is the smallest partial order such819
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Fig. 1: Three graphs representing chemical compounds

that ⊥ < w < ⊤ for each w ∈ Σ∗. The meet operation ∧ thus satisfies ⊤∧w = w, 820

w∧w = w, and w∧⊥ = ⊥ for each w ∈ Σ∗∪{⊥,⊤}, and w1∧w2 = ⊥ whenever 821

w1, w2 ∈ Σ∗ with w1 ̸= w2. This semi-lattice is complete and, by Theorem 8, 822

its hierarchical concrete domain is convex w.r.t. every FBox. Since during the 823

computation of a canonical valuation each feature value can be refined at most 824

two times (from ⊤ to some w, and then possibly to ⊥), this concrete domain 825

is P-admissible w.r.t. each FBox in which all operations are polynomial-time 826

computable. The disadvantage is, however, that string search like in Example 22 827

is not possible anymore. On the other hand, this suggests that in DDFA(Σ) and 828

DFA(Σ) everything involving only precise values is possible in polynomial time. 829

3.4 Graphs 830

All finite, labeled graphs constitute a semi-lattice Graph, where the partial order 831

≤ is defined by G ≤ H if there is a homomorphism from H to G. It is well-known 832

that ≤ is NP-complete, but in P for acyclic graphs. The meet of two graphs is 833

their disjoint union and can be computed in linear time, and the greatest element 834

in this semi-lattice is the empty graph. Obviously, Graph is neither complete 835

nor well-founded, and so we cannot apply Theorems 8 and 9. It thus remains 836

unclear whether the graph domain DGraph is convex w.r.t. cyclic FBoxes. 837

Corollary 27. The graph domain DGraph has computable canonical valuations 838

w.r.t. acylic FBoxes. Moreover, it is NP-admissible w.r.t. every acyclic FBox in 839

which all operations are polynomial-time computable and yield linear-size results, 840

and it is EXP-admissible w.r.t. every acyclic FBox in which all operations are 841

polynomial-time computable. 842

Proof. The argumentation is similar to Propositions 10 and 11. 843

Example 28. Structural formulas of molecules can be represented as labeled 844

graphs. Each node is labeled with the atom it represents, and the edges are 845

labeled with the binding type (e.g. single bond, double bond, etc.). Figure 1 846

shows three exemplary graphs.5 Graph (c) represents L-leucine,6 and we can 847

5 Graphs (a) and (b) are molecule parts whereas Graph (c) is a complete molecule,
which cannot be a part of another molecule. The lower left node in (a) and all outer
nodes in (b) can match any element in a larger molecule, be it partial or complete.

6 In Graph (c) the skeletal formula is shown, where labels are optional for carbon
atoms (C) and the hydrogen atoms (H) attached to them.



22 Francesco Kriegel

integrate it into a KB with the statement L-Leucine ≡ (hasMolecularStructure ≤848

GL-leucine). Moreover, the statement AminoAcid ≡ (hasMolecularStructure ≤849

Gcarboxylic acid group)⊓(hasMolecularStructure≤Gamino group) expresses that amino850

acids are organic compounds that contain both amino and carboxylic acid func-851

tional groups. If K is the KB consisting of the aforementioned statements, then852

K |= L-Leucine⊑AminoAcid since GL-leucine ≤ Gcarboxylic acid group ∧ Gamino group.853

4 Reasoning in EL++ with Hierarchical Concrete Domains854

Like other convex concrete domains, a hierarchical concrete domain DL can855

be integrated into EL++ but, in addition, every EL++[DL] KB may contain856

finitely many FIs. Of course, a model of such a KB must also satisfy all FIs857

in it. In order to guarantee that reasoning is decidable, a restriction on the858

interplay of RIs and range inclusions must be fulfilled by every EL++[D] KB [6].859

To this end, we define the range set of a role r in K by Range(r,K) := { C |860

there is a role s s.t. R |= r ⊑ s and Ran(s) ⊑ C ∈ K }, where R is the subset of861

all RIs in K. All such range sets can be computed in polynomial time by first862

transforming each RI r1◦· · ·◦rn⊑s into a context-free grammar rule s→r1 . . . rn,863

see Lemma IV in [10] for details, and then deciding the word problem for this864

grammar, e.g. with the Cocke–Younger–Kasami algorithm.865

Definition 29. Consider a bounded semi-lattice L. An EL++[DL] knowledge866

base (KB) K is a finite set of CIs, RIs, range inclusions, and FIs such that867

1. Range(s,K) ⊆ Range(rn,K) for every RI r1 ◦ · · · ◦ rn ⊑ s in K with n ≥ 2,868

2. and the hierarchical concrete domain DL is convex w.r.t. all FIs in K.869

For a complexity class C we say that DL is C-admissible w.r.t. K if DL is C-870

admissible w.r.t. the FBox consisting of all FIs in K.871

For Condition 1 range inclusions on s must not imply further concept member-872

ships than already implied by the range inclusions on rn; otherwise emptiness of873

intersections of two context-free grammars could be reduced to subsumption [6].874

Since Range(s,K) ⊆ Range(r,K) already for each RI r⊑ s in K, it above suffices875

to require that n ≥ 2.876

Reasoning in EL++[D] can be done by means of a rule-based calculus [5, 6,877

35], and a hierarchical concrete domain DL can be seamlessly integrated into878

this calculus. It is only necessary to take the FIs into account, i.e. we replace879

the rules responsible for the interaction between concrete reasoning and logical880

reasoning, see Section 4.2 for details. However, we restrict attention to safe nom-881

inals, i.e. nominals {i} must not occur in conjunctions and each right-hand side882

of a concept or range inclusion must not be a single nominal {i}. Full support883

for nominals in EL++[D] is technically quite involved and makes reasoning more884

expensive: the degree of the polynomial describing the worst-case reasoning time885

would then be larger by 1 [34]. We conjecture that the same works in EL++[DL].886

Range inclusions are not natively supported by the rule-based calculus, but887

they must rather be eliminated [6]. This transformation was originally described888
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for KBs in normal form only, but can now be done without prior transformation 889

to normal form, see Section 4.1 for details. 890

Assume that K is an EL++[DL] KB with safe nominals only. Without loss 891

of generality we assume in the following that K contains only CIs of the form 892

C ⊑D or {i} ⊑ C, where C and D are built with the following syntax: 893

C ::= ⊥ | C1

C1 ::= ⊤ | C2 | C2 ⊓ C2 | C2 ⊓ C2 ⊓ C2 | . . .
C2 ::= A | f ≤ p | ∃r.C1 | ∃r.{i}
R ::= ε | R1

R1 ::= r | R1 ◦R1.

This disallows concepts with ⊥ as subconcept, since these are equivalent to ⊥ 894

anyway. It further disallows ⊤ in conjunctions and, likewise, ε in non-empty role 895

chains, since these occurrences of ⊤ or, respectively, ε can be removed without 896

changing the meaning. Moreover, it explicitly allows conjunctions of all arities, 897

so that we do not need to use binary conjunctions and a lot of braces. 898

A subconcept of K is a concept that occurs as a subexpression in K. More 899

formally, we define the set Sub(K) of all subconcepts of K as follows: 900

– Sub(K) :=
⋃
{Sub(C) ∪ Sub(D) | C ⊑D ∈ K} 901

– Sub(⊥) := {⊥} 902

– Sub(⊤) := {⊤} 903

– Sub({i}) := {{i}} 904

– Sub(A) := {A} 905

– Sub(f ≤ p) := {f ≤ p} 906

– Sub(C1 ⊓ · · · ⊓ Cn) := {C1 ⊓ · · · ⊓ Cn} ∪ Sub(C1) ∪ · · · ∪ Sub(Cn) 907

– Sub(∃r.C) := {∃r.C} ∪ Sub(C) 908

4.1 Eliminating Range Inclusions 909

We first transform K into a KB K−Ran without range inclusions. 910

1. We copy all statements from K to K−Ran except the range inclusions. 911

2. For each role r, we choose a fresh atomic concept Rr not occurring in K, and 912

then we add the following CIs to K−Ran: 913

– Rr ⊑ C for each range inclusion Ran(r)⊑ C ∈ K. 914

– Rr ⊑Rs for each two roles r, s such that R |= r ⊑ s.7 915

– ⊤⊑Rr for each reflexivity statement ε⊑ r ∈ K. 916

–
d

Range(r,K)⊑Rr for each role r. 917

3. Last, in every CI in K−Ran we recursively replace each existential restriction 918

∃r.C by ∃r.(C ⊓Rr), i.e. we replace each C⊑D in K−Ran with C⊑D where 919

– ⊥ := ⊥ 920

– ⊤ := ⊤ 921

7 Recall that R consists of all RIs in K.



24 Francesco Kriegel

– {i} := {i} for each individual i922

– A := A for each atomic concept A923

– f ≤ p := f ≤ p for each concrete constraint f ≤ p8
924

– C1 ⊓ · · · ⊓ Cn := C1 ⊓ · · · ⊓ Cn925

– ∃r.C := ∃r.(C ⊓Rr)926

However, we need to be cautious with the existential restrictions ∃r.{i} since927

nominals are not allowed in conjunctions (safe nominals). We instead exclude928

nominals the last case above and additionally define ∃r.{i} := ∃r.{i}. However,929

whenever such an existential restriction is encountered, we need to find out930

whether i is an r-successor of some object — if yes, then i is in the range of931

r and we should add the CI {i} ⊑ Rr to K−Ran to ensure complete reasoning932

results.933

Instead of checking each time whether i is in the range of r and to keep the934

reasoning procedure simpler, we rather extend the notion of nominal safety by935

an additional condition, which is decidable in polynomial time:936

– If the KB contains a subconcept ∃r.{i} and a range inclusion Ran(r) ⊑ C,937

then ∃r.{i} must be reachable from ⊤ or a nominal {j} in the following938

sense: there are CIs C0 ⊑D0, . . . , Cn ⊑Dn in the KB such that C0 = ⊤ or939

C0 = {j} for some j ∈ I, ∃r.{i} ∈ Sub(Dn), and for each k ∈ {1, . . . , n},940

there is a subconcept Ek ∈ Sub(Dk−1) with Ek ⊑∅ Ck. This ensures that941

the individual i is in the range of r, so that it must be an instance of C.942

In the end, K−Ran can be computed in polynomial time.943

Lemma V. K−Ran |= Rr ⊑
d

Range(r,K) for each role r.944

Proof. Consider a role r and let C ∈ Range(r,K), i.e. there is a role s such that945

R |= r⊑ s and Ran(s)⊑C ∈ K. Therefore K−Ran contains Rr ⊑Rs and Rs ⊑C,946

and so K−Ran entails Rr ⊑ C. □947

Lemma VI. Each model I of K can be extended to a model J of K−Ran such948

that CJ = CI for each nominal-safe concept C in which the atomic concepts Rr949

do not occur.950

Proof. Given a model I of K, we extend it to the interpretation J by additionally951

defining RJr := (
d

Range(r,K))I . We show by structural induction that CI =952

CJ for every concept C in which the atomic concepts Rr do not occur. The only953

interesting cases are concerned with existential restrictions, the other cases are954

trivial or follow easily from the induction hypothesis.955

– Let x ∈ (∃r.D)I , i.e. there is y with (x, y) ∈ rI and y ∈ DI . The former956

yields (x, y) ∈ rJ and, since I satisfies all range inclusions in K, also y ∈957

(
d

Range(r,K))I , i.e. y ∈ RJr . By induction hypothesis the latter yields958

y ∈ DJ , and so x ∈ (∃r.(D ⊓Rr))
J .959

8 This works analogously for concrete constraints ∃f.P in general.
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– Conversely, assume x ∈ (∃r.(C ⊓ Rr))
J , i.e. there is y with (x, y) ∈ rJ 960

and y ∈ CJ ∩ RJr . Then (x, y) ∈ rI by definition of J and the induction 961

hypothesis yields y ∈ CI . Thus, x ∈ (∃r.C)I . 962

Next, we verify that J satisfies all statements in K−Ran. 963

– We first consider a CI Rr ⊑ C where Ran(r)⊑ C ∈ K. Assume y ∈ RJr , i.e. 964

y ∈ (
d

Range(r,K))I . Since C ∈ Range(r,K), we obtain y ∈ CI and thus 965

y ∈ CJ . 966

– Assume R |= r⊑s. We need to show that RJr ⊆ RJs . To this end, let y ∈ RJr , 967

i.e. y ∈ (
d

Range(r,K))I . Since Range(r,K) ⊇ Range(s,K), it follows that 968

y ∈ (
d

Range(s,K))I and so y ∈ RJs . 969

– Next, we consider a CI ⊤⊑Rr, i.e. K contains ε⊑ r. For each x ∈ Dom(J ) 970

we thus have (x, x) ∈ rI . Since I satisfies all range inclusions in K, it follows 971

that x ∈ (
d

Range(r,K))I , and so x ∈ RJr . 972

– Consider the CI
d

Range(r,K)⊑Rr and let x ∈
d

Range(r,K)J . The above 973

yields x ∈ (
d

Range(r,K))I , i.e. x ∈ RJr . 974

– Now we are concerned with each CI C ⊑D where K contains C ⊑D. Since 975

I |= K, we have CI ⊆ DI . With CJ = CI and DI = DJ it follows that 976

CJ ⊆ DJ . 977

– Consider a CI {i} ⊑ Rr in K−Ran. By nominal safety, there are CIs C0 ⊑ 978

D0, . . . , Cn ⊑ Dn in K such that C0 = ⊤ or C0 = {j} for some j ∈ I, 979

∃r.{i} ∈ Sub(Dn), and for each k ∈ {1, . . . , n}, there is a subconcept Ek ∈ 980

Sub(Dk−1) with Ek ⊑∅ Ck. Thus, we have the following: 981

• CI0 ̸= ∅ 982

• CIk ⊆ DIk for each k ∈ {0, . . . , n} 983

• DIk−1 ̸= ∅ implies EIk ̸= ∅ for all k ∈ {1, . . . , n} 984

• EIk ⊆ CIk for each k ∈ {1, . . . , n} 985

• DIn ̸= ∅ implies (∃r.{i})I ̸= ∅ 986

Putting all together yields (∃r.{i})I ̸= ∅, i.e. there is some x ∈ Dom(I) 987

such that (x, iI) ∈ rI . Since I satisfies all range inclusions in K, we have 988

iI ∈ (
d

Range(r,K))I . Since iI = iJ , it follows that iJ ∈ RJr , as required. 989

– Last, since every role and every feature has the same extensions in I and J , 990

both interpretations satisfy the same RIs and FIs. □ 991

Lemma VII. For each model J of K−Ran, there is a model I of K such that 992

CJ = CI for every nominal-safe concept C without any occurrence of Rr. 993

Proof. Let J be a model of K−Ran. From it we obtain the interpretation I by 994

redefining rI := { (x, y) | (x, y) ∈ rJ and y ∈ RJr } for every role r. 995

We first show by induction that CI ⊆ CJ for each concept C not containing 996

any atomic concept Rr. This is obvious for ⊥, ⊤, nominals, atomic concepts, and 997

constraints. For conjunctions, the claim follows easily by induction hypothesis. 998

– Assume C = ∃r.{i}, and let x ∈ CI , i.e. (x, iI) ∈ rI . By definition of rI and 999

since iI = iJ we have (x, iJ ) ∈ rJ . Thus x ∈ CJ since ∃r.{i} = ∃r.{i}. 1000
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– It remains to consider C = ∃r.D where D is no nominal. Then C =1001

∃r.(D ⊓ Rr). Now let x ∈ CI , i.e. there is y such that (x, y) ∈ rI and1002

y ∈ DI . By definition of rI the former yields (x, y) ∈ rJ and y ∈ RJr , and1003

by induction hypothesis the latter yields y ∈ DJ . It follows that x ∈ CJ .1004

In the converse direction, we show CJ ⊆ CI by induction. This is obvious for1005

⊥, ⊤, nominals, atomic concepts, and constraints. For conjunctions, the claim1006

follows easily by induction hypothesis.1007

– Consider C = ∃r.{i}. Then C = C and K−Ran contains the CI {i} ⊑Rr. As1008

a model of K−Ran, J satisfies {i} ⊑ Rr, i.e. iJ ∈ RJr . Now, if x ∈ CJ , then1009

(x, iJ ) ∈ rJ . With iJ = iI we conclude that (x, iI) ∈ rI , i.e. x ∈ CI .1010

– Last, let x ∈ (∃r.(D ⊓ Rr))
J where D is no nominal. Then (x, y) ∈ rJ1011

for some y ∈ DJ ∩ RJr . The induction hypothesis yields y ∈ DI , and by1012

definition of rI we have (x, y) ∈ rI . So x ∈ (∃r.D)I .1013

It remains to prove that I satisfies all statements in K.1014

– First let C⊑D be a CI in K. Then K−Ran contains C⊑D and thus CJ ⊆ DJ .1015

As shown above, CI = CJ and DJ = DI . It follows that CI ⊆ DI , i.e. I1016

satisfies C ⊑D.1017

– Consider a range inclusion Ran(r)⊑C in K, and let (x, y) ∈ rI , i.e. (x, y) ∈ rJ1018

and y ∈ RJr . Since K−Ran contains the CI Rr⊑C, we have y ∈ CJ , and thus1019

y ∈ CI .1020

– Now consider a RI ε ⊑ r in K and let x ∈ Dom(I). Since J |= K−Ran and1021

ε ⊑ r ∈ K−Ran, we have (x, x) ∈ rJ . Since ⊤ ⊑ Rr ∈ K−Ran, we also have1022

x ∈ RJr . It follows that (x, x) ∈ rI .1023

– Next, consider a RI r⊑ s in K and assume (x, y) ∈ rI . Then (x, y) ∈ rJ and1024

y ∈ RJr . Since J is a model of K−Ran and r ⊑ s is also in K−Ran, we have1025

(x, y) ∈ sJ . Moreover, since Rr ⊑ Rs ∈ K−Ran, we infer that y ∈ RJs , and1026

thus (x, y) ∈ sI .1027

– Further consider a RI r1◦· · ·◦rn⊑s in K with n ≥ 2, and let (x0, x1) ∈ rI1 , . . . ,1028

(xn−1, xn) ∈ rIn. It follows that (x0, x1) ∈ rJ1 , . . . , (xn−1, xn) ∈ rJn and xn ∈1029

RJrn . Since the RI is also contained in K−Ran and thus satisfied by J , we infer1030

(x0, xn) ∈ sJ . Since K−Ran |= Rrn ⊑
d

Range(rn,K) by Lemma V, it follows1031

that xn ∈
d

Range(rn,K)J . Recall from Condition 1 in Definition 29 that1032

Range(s,K) ⊆ Range(rn,K), and thus xn ∈
d

Range(s,K)J . Since K−Ran
1033

contains
d

Range(s,K)⊑Rs, we obtain xn ∈ RJs . In the end, (x0, xn) ∈ sI .1034

– Last, the extensions of every feature in I and J are equal, and so I and J1035

satisfy the same FIs. □1036

Regarding an implementation, it is easy to see that we can dispense with1037

each additional atomic concept Rr when Range(r,K) = ∅, but it would have1038

been too tedious to make this distinction in the above proofs.1039

Proposition VIII. For each nominal-safe EL++[DL] KB K, the following1040

statements hold.1041

1. K and K−Ran are equi-consistent, i.e. K is consistent iff. K−Ran is consistent.1042
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2. K and K−Ran have the same classification. 1043

3. K |= C ⊑D iff. K−Ran |= C ⊑D for each two nominal-safe concepts C,D in 1044

which the atomic concepts Rr do not occur. 1045

Proof. Lemmas VI and VII yield Statement 1. Statement 2 follows from State- 1046

ment 3, which we show next. 1047

Assume K−Ran |= C⊑D and consider a model I of K where x ∈ CI . Accord- 1048

ing to Lemma VI, we can extend I to a model J of K−Ran. Recall that CI = CJ 1049

and so x ∈ CJ , which further yields x ∈ DJ . Since also DJ = DI , we conclude 1050

that x ∈ DI . 1051

Conversely, let K |= C ⊑ D and further let J be a model of K−Ran. By 1052

Lemma VII, there is a model I of K with DI = DJ and CJ = CI . It follows 1053

that CJ = CI ⊆ DI = DJ , i.e. J satisfies C ⊑D. □ 1054

4.2 The Completion Procedure 1055

Now, we assume that K is an EL++[DL] KB that does not contain any range 1056

inclusions. In the following, we construct the set Sat(K,S), called the saturation 1057

of K w.r.t. S, by means of rules of the form 1058

[γ1, . . . , γℓ]; α1, . . . , αm ⇝ β1, . . . , βn.

Such a rule is applicable if the side conditions γ1, . . . , γℓ are satisfied and there is 1059

an assignment σ of the rule’s variables to concepts such that Sat(K,S) contains 1060

all premises σ(α1), . . . , σ(αm) but not all conclusions σ(β1), . . . , σ(βn). The rule 1061

application then adds all conclusions σ(β1), . . . , σ(βn) to Sat(K,S). In the be- 1062

ginning, Sat(K,S) is initialized as the empty set. Then, all rules are applied until 1063

no rule is applicable anymore. 1064

To formulate the side conditions, we assume that S is a set of concepts that 1065

contains ⊤ and ⊥ as well as all subconcepts of K and is closed under subconcepts. 1066

Unless specified otherwise, we will work in the following with the smallest such 1067

set S. The saturation rules are as follows, where F is the FBox consisting of all 1068

FIs in K: 1069

R0 : [C ∈ S]⇝ C ⊑ C 1070

R⊤ : [C ∈ S]⇝ C ⊑⊤ 1071

R−⊓ : C ⊑D1 ⊓ · · · ⊓Dn ⇝ C ⊑D1, . . . , C ⊑Dn 1072

R+
⊓ : [D1 ⊓ · · · ⊓Dn ∈ S, n ≥ 2]; C ⊑D1, . . . , C ⊑Dn ⇝ C ⊑D1 ⊓ · · · ⊓Dn 1073

R∃ : [∃r.E ∈ S]; C ⊑ ∃r.D, D ⊑ E ⇝ C ⊑ ∃r.E 1074

R∃,⊥ : C ⊑ ∃r.D, D ⊑⊥⇝ C ⊑⊥ 1075

R⊥ : [D ∈ S]; C ⊑⊥⇝ C ⊑D 1076

R⊑ : [D ⊑ E ∈ K]; C ⊑D ⇝ C ⊑ E 1077

Rε : [C ∈ S, ε⊑ r ∈ K]⇝ C ⊑ ∃r.C 1078

R◦ : [r1 ◦ · · · ◦ rn ⊑ s ∈ K, n ≥ 1]; C0 ⊑ ∃r1.C1, . . . , Cn−1 ⊑ ∃rn.Cn ⇝ 1079

C0 ⊑ ∃s.Cn 1080

RD : [DL,F |= (f1≤p1)⊓· · ·⊓ (fm≤pm)⊑ (g≤q), (g≤q) ∈ S]; C⊑ (f1≤p1), 1081

. . . , C ⊑ (fm ≤ pm)⇝ C ⊑ (g ≤ q) 1082
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RD,⊥ : [(f1 ≤ p1)⊓ · · · ⊓ (fm ≤ pm) unsatisfiable in DL w.r.t. F ]; C ⊑ (f1 ≤ p1),1083

. . . , C ⊑ (fm ≤ pm)⇝ C ⊑⊥1084

Proposition IX. Consider a bounded semi-lattice L and let K be a nominal-1085

safe EL++[DL] KB without range inclusions. Further let S be a finite set of1086

concepts with Sub(K) ⊆ S and ⊤,⊥ ∈ S and that is closed under subconcepts.1087

1. K is consistent iff. ⊤ ⊑ ⊥ ̸∈ Sat(K,S) and {i} ⊑ ⊥ ̸∈ Sat(K,S) for each1088

{i} ∈ S.1089

2. If K is consistent, then K |= C ⊑D iff. C ⊑D ∈ Sat(K,S) for all concepts1090

C,D ∈ S.1091

Proof. It is easy to verify that each rule applied to CIs entailed by K produces1092

CIs also entailed by K. By an induction along the applications of the above rules1093

it follows that every CI in Sat(K,S) is entailed by K. This yields the if direction1094

of Statement 2. We further conclude that, if ⊤⊑⊥ ∈ Sat(K,S), then K entails1095

⊤⊑⊥. Since no interpretation satisfies the latter CI, there are no models of K,1096

i.e. K is inconsistent. If Sat(K,S) contains a CI {i} ⊑ ⊥ with {i} ∈ S, then we1097

can argue similarly. So also the only-if direction of Statement 1 holds.1098

Regarding the if direction of Statement 1, assume that ⊤ ⊑ ⊥ ̸∈ Sat(K,S)1099

and {i}⊑⊥ ̸∈ Sat(K,S) for each {i} ∈ S. Then the following interpretation IK,S,1100

called canonical model of K w.r.t. S, is well-defined.1101

– Dom(IK,S) := {xC | C ∈ S and C ⊑⊥ ̸∈ Sat(K,S) }1102

– iIK,S :=

{
x{i} if {i} ∈ S, and
x⊤ otherwise, for each individual i

1103

– AIK,S := { xC | xC ∈ Dom(IK,S) and C ⊑ A ∈ Sat(K,S) } for each atomic1104

concept A1105

– rIK,S := { (xC , xD) | xC , xD ∈ Dom(IK,S) and C ⊑ ∃r.D ∈ Sat(K,S) } for1106

each role r1107

It remains to interpret the features. If the concrete domain DL has canonical1108

valuations, then we define:1109

– fIK,S(xC) := vΓC ,F (f) for each feature f and for each xC ∈ Dom(IK,S),1110

where vΓC ,F is the canonical valuation of the constraint set ΓC := { f ≤ p |1111

C ⊑ (f ≤ p) ∈ Sat(K,S) }.1112

The valuation vΓC ,F exists since ΓC is satisfiable —otherwise Rule RD,⊥ would1113

have produced C ⊑ ⊥, a contradiction to xC ∈ Dom(IK,S). Further recall that1114

vΓC ,F |= (f ≤ p) iff. DL,F |=
d
ΓC ⊑ (f ≤ p) and, since the Rule RD has been1115

applied exhaustively, the latter holds iff. C ⊑ (f ≤ p) ∈ Sat(K,S).1116

Otherwise, we interpret the features similarly to Claim 2 in Lemma 7 in1117

[5]. Consider some xC ∈ Dom(IK,S), i.e. Sat(K,S) does not contain C ⊑ ⊥.1118

As otherwise Rule RD,⊥ would have produced C ⊑ ⊥, the conjunction
d
ΓC1119

where ΓC := { f ≤ p | C ⊑ (f ≤ p) ∈ Sat(K,S) } is satisfiable in DL w.r.t.1120

F (all FIs in K). Now, if every interpretation/valuation satisfying F and this1121

conjunction
d
ΓC also satisfied another constraint in ∆C := { g≤q | C⊑(g≤q) ̸∈1122
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Sat(K,S) but (g ≤ q) ∈ S }, then the constraint inclusion
d
ΓC ⊑

⊔
∆C would 1123

be valid in DL w.r.t. F . Since DL is convex w.r.t. F , some g ≤ q in ∆C would 1124

be implied by
d
ΓC , but then Rule RD would have produced C ⊑ (g ≤ q), a 1125

contradiction. There is thus a valuation vC : F → Dom(DL) that satisfies F and 1126

such that, for each constraint f ≤ p in S, C ⊑ (f ≤ p) ∈ Sat(K,S) iff. vC satisfies 1127

f ≤ p. With all these valuations vC we can now define: 1128

– fIK,S(xC) := vC(f) for every feature f and for each xC ∈ Dom(IK,S). 1129

We continue with proving that xC ∈ DIK,S iff. C ⊑ D ∈ Sat(K,S) for each 1130

xC ∈ Dom(IK,S) and for each D ∈ S. We show this claim by structural induction 1131

on D. (This is possible since S is closed under subconcepts.) 1132

– If D = ⊤, then xC ∈ ⊤IK,S by the very definition of semantics and C ⊑⊤ ∈ 1133

Sat(K,S) by Rule R⊤. 1134

– Let D = ⊥. Since xC ̸∈ ⊥IK,S by the very definition of semantics, the only-if 1135

direction holds. Conversely, if C ⊑ ⊥ was in Sat(K,S), then xC would not 1136

be in Dom(IK,S), a contradiction, and thus the if direction also holds. 1137

– Assume D = {i}. If xC ∈ {i}IK,S , then C = {i} as well, and thus C ⊑ {i} ∈ 1138

Sat(K,S) by Rule R0. 1139

In the opposite direction, if C ⊑ {i} ∈ Sat(K,S), then this CI can only have 1140

been created by Rule R0, i.e. C = {i} and thus xC ∈ {i}IK,S . To see this, note 1141

that Rules R⊤, R+
⊓ , R∃, R∃,⊥, Rε, R◦, RD, and RD,⊥ never produce CIs with 1142

nominals as conclusion. Moreover, C ⊑ {i} could not have been created by 1143

Rule R−⊓ since {i} cannot occur in any conjunction (safe nominals). C ⊑ {i} 1144

could not have been created by Rule R⊥ since xC ∈ Dom(IK,S) requires that 1145

C⊑⊥ ̸∈ Sat(K,S). Last, C⊑{i} could not have been introduced by Rule R⊑ 1146

since {i} cannot be the conclusion of any CI in K (safe nominals). 1147

– If D = A, then xC ∈ AIK,S iff. C ⊑A ∈ Sat(K,S) by definition of IK,S. 1148

– In the case where D is a constraint f ≤ p, the claim follows from the above 1149

definition of the feature interpretations fIK,S . If this was done with the 1150

canonical valuations vΓC ,F , then xC ∈ (f ≤ p)IK,S iff. vΓC ,F |= (f ≤ p) iff. 1151

C ⊑ (f ≤ p) ∈ Sat(K,S). Otherwise, it similarly holds that xC ∈ (f ≤ p)IK,S 1152

iff. vC |= (f ≤ p) iff. C ⊑ (f ≤ p) ∈ Sat(K,S). 1153

– For D = D1 ⊓ · · · ⊓Dn we have: 1154

xC ∈ (D1 ⊓ · · · ⊓Dn)
IK,S 1155

iff. xC ∈ D
IK,S

1 , . . . , xC ∈ D
IK,S
n by definition of semantics 1156

iff. {C ⊑D1, . . . , C ⊑Dn} ⊆ Sat(K,S) by induction hypothesis 1157

iff. C ⊑D1 ⊓ · · · ⊓Dn ∈ Sat(K,S) by Rules R+
⊓ and R−⊓ 1158

– Last, assume D = ∃r.E. Recall that xC ∈ (∃r.E)IK,S iff. there is xF with 1159

(xC , xF ) ∈ rIK,S and xF ∈ EIK,S . The former holds iff. C⊑∃r.F ∈ Sat(K,S) 1160

by definition of IK,S, and the latter implies F ⊑E ∈ Sat(K,S) by induction 1161

hypothesis. Rule R∃ ensures that C ⊑ ∃r.E ∈ Sat(K,S). 1162

It remains to show the opposite direction. If C ⊑∃r.E ∈ Sat(K,S), then we 1163

also have E ⊑ E ∈ Sat(K,S) by Rule R0. The element xE is in Dom(IK,S) 1164

since otherwise xC would not be in Dom(IK,S) by Rule R∃,⊥, a contradiction. 1165

So (xC , xE) ∈ rIK,S , and xE ∈ EIK,S by induction hypothesis. It follows that 1166

xC ∈ (∃r.E)IK,S , as required. 1167
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Next, we show that IK,S is a model of K.1168

– Consider a CI D⊑E ∈ K and an element xC ∈ DIK,S . By the above claim, the1169

latter implies C⊑D ∈ Sat(K,S), and thus Rule R⊑ yields C⊑E ∈ Sat(K,S).1170

With the above claim we conclude that xC ∈ EIK,S .1171

– Assume a RI ε ⊑ r ∈ K and an element xC ∈ Dom(IK,S). Then C ∈ S and1172

Rule Rε adds the CI C ⊑ ∃r.C to Sat(K,S). The definition of IK,S ensures1173

that (xC , xC) ∈ rIK,S .1174

– Take a RI r1 ◦ · · · ◦ rn ⊑ s ∈ K with n ≥ 1 and a pair (xC0
, xCn

) ∈ (r1 ◦ · · · ◦1175

rn)
IK,S . Then there are intermediate elements xCi

with (xC0
, xC1

) ∈ r
IK,S

1 ,1176

. . . , (xCn−1
, xCn

) ∈ r
IK,S
n . By definition of IK,S we have {C0 ⊑ ∃r1.C1, . . . ,1177

Cn−1 ⊑ ∃rn.Cn} ⊆ Sat(K,S). Rule R◦ yields C0 ⊑ ∃s.Cn ∈ Sat(K,S), i.e.1178

(xC0 , xCn) ∈ sIK,S .1179

– If the feature extensions are defined through the canonical valuations vΓC ,F ,1180

IK,S satisfies all FIs since all canonical valuations satisfy F (the FIs in K).1181

Otherwise, the instead used valuations vC satisfy F and thus IK,S satisfies1182

every FI as well.1183

Since IK,S |= K, we conclude that K is consistent.1184

Last, it remains to verify the only-if direction of Statement 2. To this end,1185

assume that K is consistent and let K |= C ⊑D for concepts C,D ∈ S.1186

– If Sat(K,S) contains C⊑⊥, then the CI C⊑D was added by an application1187

of Rule R⊥ to Sat(K,S).1188

– Now let C ⊑⊥ ̸∈ Sat(K,S), i.e. xC ∈ Dom(IK,S). Since K is consistent, IK,S1189

is a model of K and thus satisfies the CI C ⊑D. Since C ⊑C ∈ Sat(K,S) by1190

Rule R0, the above claim yields xC ∈ CIK,S and thus xC ∈ DIK,S . Another1191

application of the above claim shows that C ⊑D ∈ Sat(K,S). □1192

Lemma X. Sat(K,S) can be computed in polynomial time.1193

Proof. All rules but R◦ only yield CIs C⊑D in which both concepts C and D are1194

contained in S, i.e. the size of all CIs produced by these rules is at most quadratic1195

in the size of S and the total number of rule applications is at most quadratic1196

too. The Rule R◦ instead produces CIs C0 ⊑ ∃s.Cn where C0 and Cn are both1197

in S but ∃s.Cn need not always be in S. Thus, the overall number of produced1198

CIs in Sat(K,S) is bounded by k2 · ℓ, where k is the number of concepts in S1199

and ℓ is the number of RIs in K. A single rule application needs only polynomial1200

time. Finally, finding the next applicable rule is possible in polynomial time as1201

follows. One tries the rules in the order given. For Rule R+
⊓ , one goes through1202

all conjunctions D1 ⊓ · · · ⊓Dn ∈ S, which are polynomially many, and for each1203

of them one checks if CIs C ⊑ D1, . . . , C ⊑ Dn have already been produced.1204

(Naïvely checking all subsets of already produced CIs would need exponential1205

time instead.) One similarly checks for applicability of Rule R◦. For the other1206

rules it is obvious that applicability can be checked in polynomial time. □1207

By putting Propositions VIII and IX together we obtain the following.1208
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Corollary XI. Assume that L is a bounded semi-lattice and let K be a nominal- 1209

safe EL++[DL] KB. Further consider a finite set S of concepts in which the 1210

atomic concepts Rr do not occur, that is closed under subconcepts, and such that 1211

⊤,⊥ ∈ S and Sub(K) ⊆ S. Then let S := {C | C ∈ S }. 1212

1. K is consistent iff. ⊤⊑⊥ ̸∈ Sat(K−Ran,S) and {i} ⊑ ⊥ ̸∈ Sat(K−Ran,S) for 1213

each {i} ∈ S. 1214

2. If K is consistent, then K |= C⊑D iff. C⊑D ∈ Sat(K−Ran,S) for all concepts 1215

C,D ∈ S. 1216

4.3 Computational Complexity 1217

Next, we determine the computational complexity of the saturation procedure. 1218

To this end, we show that each EL++[D] KB has at most polynomially many 1219

subconcepts, and that the size of Sub(K) is polynomial in the size of K. The size 1220

is defined recursively: 1221

– |K| :=
∑

( |C ⊑D| | C ⊑D ∈ K ) 1222

– |C ⊑D| := |C|+ |D|+ 1 1223

– |⊥| := 1 1224

– |⊤| := 1 1225

– |{i}| := 1 1226

– |A| := 1 1227

– |∃f1, . . . , fk.P | := k + 2 1228

– |C1 ⊓ · · · ⊓ Cn| := |C1|+ · · ·+ |Cn|+ (n− 1) 1229

– |∃r.C| := |C|+ 2 1230

We show by induction on the structure of C that the size of Sub(C) is polynomial 1231

in the size of C. 1232

– Recall that Sub(C) = {C} if C is ⊥, ⊤, a nominal {i}, or a atomic concept 1233

A. In these cases the size of Sub(C) is obviously linear in the size of C. 1234

– Regarding conjunctions. Since Sub(C1⊓· · ·⊓Cn) = {C1⊓· · ·⊓Cn}∪Sub(C1)∪ 1235

· · · ∪ Sub(Cn), the size of Sub(C1 ⊓ · · · ⊓Cn) is the size of C1 ⊓ · · · ⊓Cn plus 1236

the sizes of Sub(C1), . . . , Sub(Cn). By induction hypothesis, the size of each 1237

Sub(Ci) is polynomial in the size of Ci. Since the size of each Ci is bounded 1238

by the size of C1 ⊓ · · · ⊓ Cn, it follows that the size of Sub(C1 ⊓ · · · ⊓ Cn) is 1239

polynomial in the size of C1 ⊓ · · · ⊓ Cn. 1240

– For existential restrictions, we have Sub(∃r.C) = {∃r.C}∪Sub(C). Thus the 1241

size of Sub(∃r.C) is the size of ∃r.C plus the size of Sub(C). By induction 1242

hypothesis, the latter size if polynomial in the size of C, which is bounded 1243

by the size of ∃r.C. We conclude that the size of Sub(∃r.C) is polynomial 1244

in the size of ∃r.C. 1245

Finally, since for each CI C ⊑D in K the size of C and the size of D are both 1246

bounded by the size of K, we conclude that the size of Sub(K) is polynomial in 1247

the size of K. 1248
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Theorem 30. Let L be a bounded semi-lattice. For all nominal-safe EL++[DL]1249

KBs w.r.t. which the hierarchical concrete domain DL is P-admissible, the follow-1250

ing reasoning tasks can be done in polynomial time: consistency, classification,1251

subsumption checking, instance checking, and concept satisfiability.1252

Proof. According to Corollary XI, KB consistency and subsumption checking1253

can be done by first computing K−Ran and S (both in polynomial time), then1254

computing Sat(K−Ran,S) (in polynomial time by Lemma X), and finally looking1255

up whether it contains particular CIs, where for checking a subsumption C ⊑1256

D the set S must contain both C and D. Instance checking is a special form1257

of subsumption checking since CAs can be expressed by means of nominals.1258

Obviously also concept satisfiability is a special form of subsumption checking.1259

Finally, Sat(K−Ran,S) contains a classification of K. □1260

Currently the fastest ELR⊥ reasoner is ELK [35], which is a highly optimized,1261

multi-threaded implementation of the polynomial-time saturation algorithm. It1262

can classify SNOMED CT, a large medical ontology with more than 360,0001263

atomic concepts, in a few seconds on a modern laptop. ELR⊥ is EL++[D] without1264

range restrictions, nominals, and concrete domains. It might be useful to extend1265

ELK with support for range restrictions, safe nominals, and hierarchical concrete1266

domains.1267

In the proof of the above result, we build a canonical model of the input KB1268

iff. it is consistent. Now with the hierarchical concrete domains we can use the1269

canonical valuations for this. The benefit is that the canonical model is complete1270

for all assertions {i} ⊑ C, before it was only complete for such assertions where1271

C contains no concrete constraints. Our canonical models are thus appropriate1272

for computing optimal repairs [9, 10, 37, 38] of KBs involving concrete domains.1273

We can also use NP- or EXP-admissible concrete domains in EL++. Reason-1274

ing works in the very same way, i.e. the logical reasoning can still be done in1275

polynomial time, but the concrete reasoning is more expensive.1276

Theorem 31. Fix a bounded semi-lattice L. For all nominal-safe EL++[DL]1277

KBs w.r.t. which the hierarchical concrete domain DL is NP-admissible, the fol-1278

lowing reasoning problems are in NP: consistency, concept satisfiability, sub-1279

sumption checking, and instance checking. They are in EXP if DL is EXP-1280

admissible. In both cases, the classification can be computed in exponential time.1281

4.4 The Canonical Model1282

Definition XII. Let L be a bounded semi-lattice such that the hierarchical con-1283

crete domain DL has canonical valuations, and assume that the signature con-1284

tains only finitely many individuals. Further consider a consistent, nominal-safe1285

EL++[DL] KB K and define S := {⊥,⊤} ∪ Sub(K) ∪ { {i} | i is an individual }1286

and S := {C | C ∈ S }. The canonical model IK is obtained from the canonical1287

model IK−Ran,S in the proof of Proposition IX by redefining role extensions as in1288

Lemma VII.1289
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It follows from Lemma X that the canonical model IK can be computed in 1290

polynomial time. 1291

We will show that IK is universal w.r.t. nominal-safe assertions, i.e. K |= i:C 1292

iff. IK |= i : C for each individual i and for each nominal-safe concept C. 1293

The above canonical models are thus suitable for computing optimal repairs 1294

of ABoxes w.r.t. static ontologies. More generally, we will show that K |= C⊑D 1295

iff. IK |= C ⊑D for each C ∈ S and for each nominal-safe concept D. Therefore 1296

these canonical models are also appropriate for computing optimal fixed-premise 1297

repairs of KBs (where the ontology is not considered static but can be modified). 1298

Definition XIII. A nominal-safe simulation from an interpretation I to an- 1299

other interpretation J is a relation S ⊆ Dom(I)× Dom(J ) such that 1300

1. (iI , iJ ) ∈ S for every individual i 1301

and the following hold for each pair (x, y) ∈ S: 1302

2. For each atomic concept A, if x ∈ AI , then y ∈ AJ . 1303

3. For every role r, if (x, x′) ∈ rI , then there is y′ such that (x′, y′) ∈ S and 1304

(y, y′) ∈ rJ . 1305

4. For each constraint f ≤ p, if x ∈ (f ≤ p)I , then y ∈ (f ≤ p)J . 1306

5. For every individual i, if (x, iI) ∈ rI , then (y, iJ ) ∈ rJ . 1307

Lemma XIV. If S is a nominal-safe simulation from I to J with (x, y) ∈ S, 1308

and C is a nominal-safe concept with x ∈ CI , then y ∈ CJ . 1309

Proof. We show the claim by induction on C. The cases where C is ⊥ or ⊤ are 1310

trivial, and those where C is an atomic concept, a constraint, or of the form 1311

∃r.{i} follow directly from Definition XIII. When C is a conjunction, then the 1312

claim follows easily from the induction hypothesis. 1313

It remains to investigate the case C = ∃r.D. To this end, let x ∈ (∃r.D)I , 1314

i.e. there is x′ such that (x, x′) ∈ rI and x′ ∈ DI . Definition XIII yields some y′ 1315

such that (x′, y′) ∈ S and (y, y′) ∈ rJ . So we infer that y′ ∈ DJ by induction 1316

hypothesis, and thus y ∈ (∃r.D)J , as required. □ 1317

Lemma XV. Consider a bounded semi-lattice L such that DL has canonical 1318

valuations, and let K be a consistent nominal-safe EL++[DL] KB. 1319

1. A concept C ∈ S is satisfiable w.r.t. K iff. xC ∈ Dom(IK). 1320

2. K |= C ⊑D iff. xC ∈ DIK for each K-satisfiable concept C ∈ S and for each 1321

nominal-safe concept D.9 1322

Proof. We begin with the first claim. Recall that S := {⊥,⊤} ∪ Sub(K) ∪ { {i} | 1323

i is an individual }, and let C ∈ S. 1324

C is satisfiable w.r.t. K. 1325

iff. K ̸|= C ⊑⊥ 1326

9 D is an arbitrary nominal-safe concept and need not be in S.
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iff. C ⊑⊥ ̸∈ Sat(K−Ran,S) (by Corollary XI)1327

iff. xC ∈ Dom(IK−Ran,S) (see proof of Proposition IX)1328

iff. xC ∈ Dom(IK) (by Definition XII)1329

Next, we show the second claim. Let K |= C⊑D. Since C ∈ S, Rule R0 adds1330

C⊑C to Sat(K−Ran,S), and thus the claim in the proof of Proposition IX yields1331

xC ∈ CIK−Ran,S . Lemma VII yields that xC ∈ CIK and that IK is a model of K.1332

We therefore conclude that xC ∈ DIK .1333

In the converse direction, assume xC ∈ DIK and further consider a model I1334

of K such that y ∈ CI . By Lemma VI we obtain from I a model J of K−Ran
1335

such that CI = CJ . We will show that the relation S := { (xE , y) | y ∈ EI } is a1336

simulation from IK−Ran,S to J . Then, y ∈ CI implies (xC , y) ∈ S. Furthermore,1337

xC ∈ DIK implies xC ∈ DIK−Ran,S by definition of IK and Lemma VII, and so1338

y ∈ DJ by Lemma XIV. Finally, Lemma VI yields y ∈ DI , and we are done.1339

It remains to verify that S is a nominal-safe simulation.1340

1. Consider an individual i. It is trivial that iI ∈ {i}I , and so (x{i}, i
I) ∈ S.1341

Since {i} ∈ S, we have iIK−Ran,S = x{i}. Moreover, iI = iJ by definition1342

of J . We conclude that (iIK−Ran,S , iJ ) ∈ S.1343

For the other conditions we consider a pair (xE , y) ∈ S, i.e. y ∈ EI .1344

2. Let xE ∈ AIK−Ran,S for an atomic concept A, i.e. E ⊑ A ∈ Sat(K−Ran,S).1345

Proposition IX yields that K−Ran |= E⊑A. With J being a model of K−Ran
1346

we infer EJ ⊆ AJ . According to Lemma VI, we have EI = EJ , and thus1347

y ∈ AJ .1348

3. Assume (xE , xF ) ∈ rIK−Ran,S for a role r, i.e. E ⊑ ∃r.F ∈ Sat(K−Ran,S).1349

With Proposition IX we infer K−Ran |= E ⊑ ∃r.F and thus EJ ⊆ (∃r.F )J .1350

Since y ∈ EI and EI = EJ by Lemma VI, there is z with (y, z) ∈ rJ and1351

z ∈ FJ . Since FJ = F I by Lemma VI, the latter implies (xF , z) ∈ S, and1352

we are done.1353

4. Consider xE ∈ (f ≤ p)IK−Ran,S for a constraint f ≤ p. Since DL has canonical1354

valuations, we have fIK−Ran,S(xE) = vΓE ,F (f), and thus vΓE ,F (f) ≤ p or1355

rather vΓE ,F |= (f ≤ p). It follows that DL,F |=
d

ΓE ⊑ (f ≤ p). Recall that1356

ΓE = { g ≤ q | E ⊑ (g ≤ q) ∈ Sat(K−Ran,S) }.1357

Since F ⊆ K−Ran, we have J |= F . Since y ∈ EI , we have y ∈ EJ . Recall1358

from the proof of Proposition IX that K−Ran |= Sat(K−Ran,S), i.e. J |=1359

Sat(K−Ran,S). It follows that y ∈ (
d
ΓE)

J and thus y ∈ (f ≤ p)J .1360

5. Last, assume (xE , i
IK−Ran,S) ∈ rIK−Ran,S for an individual i. Recall that1361

{i} ∈ S, and therefore iIK−Ran,S = x{i} and E⊑∃r.{i} ∈ Sat(K−Ran,S). Since1362

J is a model of Sat(K−Ran,S) and EI = EJ , it follows that y ∈ (∃r.{i})J ,1363

i.e. (y, iJ ) ∈ rJ .10 □1364

10 Here we need that S contains all nominals. Otherwise, when {i} ̸∈ S, we would have
i
IK−Ran,S = x⊤ and thus E ⊑ ∃r.⊤ ∈ Sat(K−Ran,S). Thus, we could only infer that
y ∈ (∃r.⊤)J , but not that (y, iJ ) ∈ rJ .
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Proposition XVI. K |= C ⊑D iff. IK |= C ⊑D for each C ∈ S and for each 1365

nominal-safe concept D. 1366

Proof. Let K |= C ⊑D and xE ∈ CIK . Then K |= E ⊑ C by Lemma XV, and 1367

thus K |= E ⊑D. Again by Lemma XV we obtain that xE ∈ DIK , as required. 1368

Now let IK |= C ⊑ D. Since K |= C ⊑ C, Lemma XV yields xC ∈ CIK . It 1369

follows that xC ∈ DIK , and thus K |= C ⊑D by Lemma XV. □ 1370

5 Future Prospects 1371

An interesting question for future research is whether non-local feature inclusions 1372

f≤H(R1◦g1, . . . , Rn◦gn) would lead to undecidability or could be reasoned with, 1373

where the Ri are role chains. The operator must then be defined for lists of values, 1374

like in the non-local feature inclusion combinedWealth⊆
∑

(hasAccount◦balance)+ 1375∑
(holdsAsset ◦ value) over the interval domain, which computes the aggregated 1376

wealth of a person or company. At first sight, it seems that the undecidability 1377

proof for EL(DQ2,aff) [14] cannot be adapted to this setting. (Mind the braces: 1378

(D) instead of [D] allows for role chains in front of features.) The computation 1379

of canonical valuations must then take into account the graph structure induced 1380

by the role assertions entailed by the knowledge base. 1381

In order to get rid of the global bounds c and c in Propositions 16 and 17, 1382

linear-program solvers that can work with solution polytopes over the extended 1383

reals R+ ∪ {∞} would be helpful. 1384

It is currently unclear whether the graph domain is admissible w.r.t. cyclic 1385

FBoxes. Approaches to solving systems of equations or inequations involving 1386

graphs would be necessary to tackle this question. 1387

Since the hierarchical concrete domains are convex by design, they are also 1388

appropriate for other Horn logics such as ELI, Horn-ALC, Horn-SROIQ, and 1389

existential rules. It would thus be interesting to extend the chase procedure with 1390

support for such domains. 1391
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