
Terminological knowledge representation

systems in a process engineering application

Von der Mathematisch-Naturwissenschaftlichen Fakult�at der

Rheinisch-Westf�alischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Diplom Informatikerin Ulrike Sattler

aus M�unchen

Referent: Universit�atsprofessor Dr.-Ing. F. Baader

Korreferent: Universit�atsprofessor Dr.-Ing. W. Marquardt

Tag der m�undlichen Pr�ufung: 29. Mai 1998



Contents

1 Introduction 1

1.1 Process Systems Engineering . . . . . . . . . . . . . . . . . . . . 1

1.2 Terminological Knowledge Representation Systems . . . . . . . 7

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 13

2 Process Modelling 16

2.1 Modeling chemical processes . . . . . . . . . . . . . . . . . . . . 16

2.2 VeDa, a chemical engineering data model . . . . . . . . . . . . 21

3 Part-whole relations 24

3.1 A well-de�ned taxonomy of part-whole relations . . . . . . . . . 26

3.1.1 Mereological collections . . . . . . . . . . . . . . . . . . . 27

3.1.2 Integral part-whole relations . . . . . . . . . . . . . . . . 29

3.1.3 Composed part-whole relations . . . . . . . . . . . . . . 30

3.2 Comparison with other part-whole relations . . . . . . . . . . . 32

4 Description Logics 36

4.1 A brief history of Description Logics . . . . . . . . . . . . . . . 36

4.2 The basic Description Logic ALC . . . . . . . . . . . . . . . . . 38

4.3 Knowledge representation based on Description Logics . . . . . 40

4.4 A tableau-based algorithm for ALC . . . . . . . . . . . . . . . . 45



ii CONTENTS

4.5 Extensions of ALC . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 ALC extended by Complex Roles . . . . . . . . . . . . . 52

4.5.2 ALC extended by Number Restrictions . . . . . . . . . . 54

4.5.3 Expressive power of the basic Description Logics . . . . . 55

5 Prototype Implementation 59

5.1 The modeling tool ModKit . . . . . . . . . . . . . . . . . . . . 59

5.2 The terminological knowledge representation system Crack . . 60

5.3 The integration of Crack into ModKit . . . . . . . . . . . . . 62

5.4 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Expressive Number Restrictions 68

6.1 Number Restrictions on Complex Roles . . . . . . . . . . . . . . 74

6.1.1 Undecidability results . . . . . . . . . . . . . . . . . . . . 74

6.1.2 A decidable extension . . . . . . . . . . . . . . . . . . . 84

6.2 Symbolic Number Restrictions . . . . . . . . . . . . . . . . . . . 97

6.2.1 An undecidability result . . . . . . . . . . . . . . . . . . 97

6.2.2 A decidability result . . . . . . . . . . . . . . . . . . . . 103

6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Transitive relations in Description Logics 111

7.1 ALC extended by the Transitive Closure of Roles . . . . . . . . . 112

7.2 ALC extended by Transitive Roles . . . . . . . . . . . . . . . . . 113

7.3 ALC extended by Transitive Orbits . . . . . . . . . . . . . . . . 122

7.4 Representation of part-whole relations . . . . . . . . . . . . . . 125

8 Conclusion 128

8.1 Consequences for the application . . . . . . . . . . . . . . . . . 130

A Appendix 132



CONTENTS iii

B Bibliography 134

C Index 144

D List of Figures 146



I would like to thank all those who helped me start, set up, and complete

this thesis|by providing scienti�c and technical support and guidance, co�ee,

laughter, friendship, dart games, well-being, optimism, fun, fuzz, and love.



Chapter 1

Introduction

This thesis is concerned with the question of how far terminological knowledge

representation sytems can support the development of mathematical models

of chemical processes. In this chapter, after a very brief description of the

goals of process systems engineering, it will be argued that the structuring

of the application domain is crucial for the development of process models.

Then the main ideas and features of terminological knowledge representation

sytems are sketched, and it is argued that the system services provided by a

terminological knowledge representation system can support the structuring

of an application domain. Furthermore, the reasons why the process systems

engineering application asks for the extension of the expressive power of the

formalism underlying terminological knowledge respresentation systems, so-

called Description Logics, will be discussed.

1.1 Process Systems Engineering

Process systems engineering is concerned with the construction of models of

chemical processes. We can think of these processes as the ones taking place

in possibly huge chemical plants, even though process systems engineering is

not restricted to those. With this image in mind, it should be clear that trial

and error methods for the design and optimisation of these processes are not

only too costly and time-consuming, but also too dangerous. Furthermore,

as the competition in the market of chemical products is very strong, the

developers of chemical processes aim at a high level of optimisation. This

does not only concern the quality and quantity of the process' product (that

is the substance the process is intended to produce), but also the resources



2 Chapter 1. Introduction

EO+H2O

     H2O
TC

TI

evaporator
EO 
H2O

EG
DIEG
TREG

H2O
EG
DIEG
TREG

H2O, EO
CSTR

�

cooling water

Figure 1.1: Flowsheet of the ethylene-glycol process.

the process needs for its production, the amount and composition of other

substances produced by the process, the level of safety, etc. Hence, instead of

trial and error methods, process engineers construct models whose purpose it is

to enable the (numerical) simulation, analysis, and understanding of chemical

processes.

Models of chemical processes come in di�erent shapes according to the speci�c

requirements of the model and the state of its development: They can be

natural language descriptions of the process, miniature plants in a laboratory,

ow sheets (graphics using some standard notations for reactors, pipes, valves,

thermometers, etc.) and other graphical models, or sets of equations describing

the behaviour of the process. For example, a owsheet representation of an

ethylene-glycol process can be found in Figure 1.1. It consists mainly of a

reactor|which is equipped with a stirring unit and a cooling jacket|and an

evaporator, and these two parts are connected via a pipe equipped with a valve.

In Figure 1.2, the same process can be found in the ModKit representation,

which is very close to the one used within VeDa. A graphical representation

in VeDa notation of the reactor in the ethylene-glycol process can be found

in Figure 1.3. In this representation, the connection between the reactor, or,

more precisely, the cooling jacket and the environment is emphasised. Finally,

the decomposition of the gas phase material balance equation describing the

behaviour of the evaporator can be found in Figure 1.4. It is denoted using a

so-called and-or graph in order to represent both the parts an equation consists

of (using and nodes), and alternatives one has for the description of a single

term in the equation (using or nodes).



1.1. Process Systems Engineering 3

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1.2: The ethylene-glycol process in ModKit representation.

Models can also be classi�ed according to the goal they are designed to achieve.

For example, there are models designed for the precise simulation of the be-

haviour of the process, models designed in order to get a better understanding

of the way in which the process functions and in which the parts of this process

interact, and there are decision support models, whose goal it is to support

decisions that are to be taken while working on an appropriate solution for the

design problem.

Mathematical models, namely sets of di�erential, integral, or algebraic equa-

tions and mixtures of these equations, are of a special interest since they are

the prerequisites for the analysis and simulation of the behaviour of a pro-

cess. A mathematical model consists, in general, of a huge number of equa-

tions (hundreds or thousands of equations, depending on the process and the

degree of detailing of the process model) and it can thus hardly be solved

exactly|neither by hand nor by a symbolic solver|but only approximately

by a numerical solver or simulation tool. To use such a tool, it is necessary to

transform the mathematical model into the input format of this tool. Then

the engineer can simulate the inuence which particular parameters, like the

inlet temperature to the reactor, have on the outcome of the process. Other

tools allow the optimisation of particular process parameters, like the time the

process needs for the production of the target substance or the ratio between



4 Chapter 1. Introduction

Reactor with
Cooling Jacket

Cooling JacketReactor

Thermo-

unit
Controller

Environment

Figure 1.3: Decomposition of the reactor of the ethylene-glycol process into

building blocks.

the target and the input substances.

There are mainly three factors contributing to the complexity of the construc-

tion of a precise mathematical model:

1. The possibly very high complexity of a process together with the great

variety of phenomena that can take place within a process.

2. The fact that the more precisely a mathematical model describes the

behaviour of a process, the more equations are contained in it.

3. The di�culties human beings have in the perception of facts and inter-

relationships that are denoted in mathematical formulae.

Thus, in general, di�erent graphical models serve as outlines for the construc-

tion of a mathematical model.

Summing up, we are confronted with various transitions from one representa-

tion formalism to another: From one graphical formalism to another one, from

a graphical formalism to a mathematical one, and from a mathematical one

into a language that is understood by a numerical solver or simulation tool.



1.1. Process Systems Engineering 5

j

i

= ak

i

(g

i

� c

i

)

k

i

�

�

Sc

m

i

= Re

n

MASS TRANSFER RATE j

i

MASS TRANSFER

COEFFICIENT k

i

SPECIFIC SURFACE

AREA a

EQUILIBRIUM

CONCENTRATION g

DENSITY �

SCHMIDT NUMBER Sc

REYNOLDS NUMBER Re

dm

i

dt

= _m

out

x

i

+ R

i

+ j

i

A

s

GAS PHASE MATERIAL BALANCE

and

and

or

or

or

and

or

g

i

=

c

i

P

j

a

j

c

i

Figure 1.4: Decomposition of the gas phase material balance equation.

Unfortunately, there is no software tool available that supports these tran-

sitions between representation formalisms. Furthermore, there is neither an

agreed methodology for the development of process models nor a description

of the objects these models can be viewed to consist of

[

Marquardt1996

]

. With-

out going into detail here, these objects will be called (basic) building blocks

and can be thought of as devices, connections, or descriptions of the behaviour

of devices or connections. Using these building blocks, a model could be char-

acterised by a description of the building blocks it consists of together with

a description of how these buildings blocks are interrelated. Until now, these

building blocks and their properties strongly depended on the representation

formalism used for a particular kind of model. As a consequence, during the

life-cycle of a process model, one has to build several models using several for-

malisms. First, one starts with natural language models, then moves to various

graphical formalisms, then designs a mathematical model and/or writes the

source code for a numerical solver or simulation tool. It is not possible to use

one single model while increasing its degree of detailing or possibly changing

the graphical representation of its building blocks according to the goal and

state of the model. This fact not only increases the cost of modeling chem-

ical processes, but it also makes the reuse of already developed models more



6 Chapter 1. Introduction

di�cult and is an additional source of errors.

To overcome this shortage, W. Marquardt and co-workers at the Lehrstuhl

f�ur Proze�technik of RWTH Aachen (Aachen University of Technology) are

developing such a description of the standard building blocks, the so-called

VeDa (\Verfahrenstechnisches Datenmodell", german for \chemical engineer-

ing data model"). It consists of three parts: (1) a frame-based formalism for

the representation of standard building blocks, (2) the description of these

standard building blocks within this formalism, and (3) the description of

modeling steps, i.e., the steps an engineer undertakes while building a process

model. VeDa is a step towards a model development environment supporting

the above mentioned transitions from one representation formalism to another

one: The standard building blocks are independent from the graphical repre-

sentation; they are generic in that they comprise all objects a process model

might comprise, and they are exible in that they can be changed according

to the speci�c requirements of a model.

Since the number of standard building blocks is relatively large, they must be

stored in a structured way|otherwise, the reuse of already de�ned building

blocks becomes di�cult because it is hard to �nd the ones one is looking for. In

VeDa, objects are grouped into classes, and classes are ordered with respect

to the inheritance relation which should, according to the intended semantics

of VeDa, coincide with the is-a-specialisation-of relation. That is to say that

if a class B inherited some of its properties from a class A, then B should also

be more speci�c than A. Now, due to the strong expressive power of VeDa,

this cannot always be guaranteed, and the consequence of this fact is shown

in the following example.

Example: A user of VeDa could de�ne a class reactor using inheritance

from a class tank and specify its properties by mistake in such a way that

an instance of reactor is not necessarily also an instance of tank. As a

consequence, the user (and possibly other users as well) might get confused

since the structure he or she thinks the classes have is di�erent from the one

they actually have. One can think of a situation where an engineer is searching

the instances of tank, expecting to �nd a certain t in it. Now, it is possible

that this t belongs to the \sub"-class reactor of tank and not to tank, and

that the engineer will not �nd t because he or she was looking for t in the

\wrong" place.

In order to avoid misunderstandings and to really pro�t from the structured

storage, it should always be kept consistent with the way the structure is

de�ned. More precisely, if classes are structured with respect to the is-a-

specialisation-of relation, then the system should guarantee that a class A



1.2. Terminological Knowledge Representation Systems 7

which is said to be more speci�c than a class B is really more speci�c than

B|that is, each object belonging to A also belongs to B.

The number of building blocks is continuously growing, hence the structure

should also be exible and allow for changes according to new building blocks.

This means that it should be possible to add a new, appropriate class for

objects that do not �t well into already existing ones, or to divide a class A

into subclasses if A has become too unspeci�c because of the growing number

of objects in it.

To guarantee the consistency of this structure and to help the engineers in

using and extending it, automatic reasoning services could be used. Whether

these automatic reasoning services are realizable or not depends only on the

formalism which is used to describe these building blocks: This formalism

has to allow for the computation of these reasoning services. For example,

these reasoning services and the above mentioned exibility are not provided

by standard data base systems|which have other features|but they are pro-

vided by some knowledge representation systems. In fact, the family of knowl-

edge representation systems based on Description Logics are equipped with a

powerful language to describe interesting properties of the objects in an appli-

cation domain and they provide the reasoning services necessary to guarantee

the consistency of the structured storage of these objects. Furthermore, for

a variety of these knowledge representation systems, questions concerning the

expressive power and the computational complexity of the according reasoning

services are already formulated and investigated.

In a nutshell, the motivation behind the cooperation between the developers of

VeDa at the Lehrstuhl f�ur Proze�technik and the Lehr- und Forschungsgebiet

Theoretische Informatik was the question: \Which representation formalism

has enough expressive power for describing the relevant properties of the build-

ing blocks of process models and allows for the automatic computation of the

reasoning services needed to guarantee consistency of their structured stor-

age?" The �rst results obtained within this cooperation are presented in this

thesis.

1.2 Terminological Knowledge Representation

Systems and Description Logics

Terminological Knowledge Representation Systems are based upon Descrip-

tion Logics, a formalism also known as Concept Languages, KL-One-based

knowledge representation languages, or Terminological Logics.



8 Chapter 1. Introduction

After a brief introduction of Description Logics, it is argued that terminological

knowledge representation systems (DL systems) are good candidates for tools

supporting the structured storage of building blocks.

Description Logics are a family of logic-based representation formalisms whose

origin can be found in semantic networks. Beside the pure formalism, there are

various implementations of knowledge representation systems that are based on

Description Logics

[

Patel-Schneider et al.1991; MacGregor1991; Baader et al.

1994; Bresciani et al.1995; Horrocks&Rector1996

]

. Starting in the late eight-

ies, a large variety of di�erent Description Logics has been de�ned and inves-

tigated, almost all of whom have the following properties in common:

� They are equipped with precise, well-de�ned semantics. This makes

the behaviour of the knowledge representation system independent of a

particular implementation and enables the precise de�nition of inference

problems and reasoning services.

� In most but not all cases, they allow only the use of unary predicates

(such as Device or Connection) and binary predicates (such as connec-

ted-to or has-part).

� System services of DL systems deduce implicit knowledge from the one

explicitly given by the user. Most Description Logics are built such that

they have decidable inference problems (see, for example,

[

Hopcroft&

Ullman1997

]

for an introduction to the theory of complexity and com-

putability). Hence the system services of a DL system are e�ectively

computable (even if most of them are of a relatively high computational

complexity). For an extensive overview on reasoning problems and tech-

niques see

[

Donini et al.1996

]

.

These properties, the last one in particular, lead to the assumption that De-

scription Logics are a good starting point for searching a representation for-

malism as described at the end of Section 1.1.

A Description Logic is mainly characterised by a set of constructors that can

be used to build complex concepts and roles from atomic concepts (unary pred-

icates) and roles (binary predicates). Throughout this thesis, to distinguish

more easily between concepts and roles, the latter start with lower case letters

whereas concepts start with upper case letters. For example, devices which

are only connected to pipes and have a cooling jacket can be described by the



1.2. Terminological Knowledge Representation Systems 9

following concept:

1

Device u (8connected-to:Pipe) u (9has-part:Cooling-jacket):

Devices having no cooling jacket as parts and at least 3 parts can be described

by

Device u (8has-part::Cooling-jacket) u (� 3 has-part):

Using these constructors, the terminology of an application domain can then

be de�ned in a so-called TBox by a set of concept- and role-de�nitions, as for

example the following two concept de�nitions describing cooled reactors and

cooled reactors equipped with a stirring unit:

CoolReactor := Reactor u (9has-part:Cooling-Jacket);

StCoolReactor := CoolReactor u (9has-part:Stirring-Unit);

where we assume that the concepts occurring in these de�nitions are already

de�ned. Referring to these concepts, concrete objects of a concrete \world"

are described in a so-called ABox . An example of which being:

REACTOR2 : Reactor;

REACTOR2 has-part COOL17;

COOL17 : Cooling-Jacket;

which states that the object REACTOR2 is an instance of Reactor and related

via the role has-part to the object COOL17, which is a Cooling-Jacket. Given

the above concept de�nitions, a knowledge representation system should then

be able to infer that REACTOR2 is a CoolReactor. This inference|classifying

objects with respect to the concepts de�ned in a TBox|is one of the system

services that are provided by DL systems. Other system services comprise, for

example,

� the computation of the implicit subsumption relation

2

between two con-

cepts, or, more generally, the computation of the taxonomy , i.e. the

hierarchy of concepts de�ned in a TBox with respect to the subsumption

relation,

� deciding whether a given concept is satis�able, i.e. whether it can ever

be instantiated,

1

Precise de�nitions of syntax and semantics of Description Logics are given in Section 4.2;

an overview can be found in the Appendix.

2

This relation is de�ned in De�nition 4.2. Roughly spoken, a concept D subsumes a

concept C if each instance of C is always also an instance of D.



10 Chapter 1. Introduction

� classi�cation of objects, i.e., enumerating the most speci�c concepts a

given object is an instance of, or

� retrieving all objects occurring in an ABox that are instances of a given

concept.

Given that objects are grouped into concepts that correspond to classes, the

subsumption relation on concepts is equivalent to the is-a-specialisation-of re-

lation on classes mentioned in Section 1.1. Thus, the automatic computation

of the subsumption relation and the automatic classi�cation of objects are the

reasoning services available in DL systems which can be used to guarantee the

consistency of the structured storage of objects.

Since the late eighties, numerous investigations concerning the expressive power

and the computational properties of various Description Logics have been car-

ried out

[

Donini et al.1991a; 1991b

]

. These investigation were often moti-

vated by the use of certain constructors in implemented systems

[

Nebel1988;

Borgida&Patel-Schneider1994

]

, or the need for these constructors in speci�c

applications

[

Baader&Hanschke1993; Franconi1994; Sattler1996

]

and the re-

sults inuenced the design of new systems

[

Horrocks1997

]

.

An important constructor for concepts in Description Logics are the so-called

number-restrictions. These allow to describe objects by restricting the num-

ber of objects which are related to them by some role. For example, (�

4 has-part) describes all those objects having at least 4 parts, i.e., those

objects having at least 4 objects related to them via the role has-part.

There are two main reasons why number restrictions are present in almost all

implemented systems. Firstly, human beings tend to describe objects using

number restrictions. Secondly, number restrictions can express information

concerning the way in which objects are interrelated by roles. This information

on the relation between objects is of great importance for a process systems

engineering application because process models strongly depend on the way in

which their buildings blocks are interrelated.

Unfortunately, most Description Logics only allow the use of atomic roles in-

side number restrictions|whereas complex roles are excluded from being used

in number restrictions. Complex roles are built using role-forming construc-

tors such as union, intersection, inverse and composition. For example, these

constructors can be used to describe the role connected-to as the union of

input-connected-to and output-connected-to, and the role is-part-of

as the inverse of has-part.



1.2. Terminological Knowledge Representation Systems 11

This restriction to atomic roles is unsatisfactory since (1) we must distinguish

roles that are also allowed inside number restrictions from those that can be

used in other places of concepts but not inside number restrictions. This makes

the syntax of Description Logics more complicated and more di�cult to learn

for the user, and (2) the expressive power of number restrictions increases

if complex roles built by the above mentioned role constructors can be used

inside them. Using composition of roles, for example, one could describe a

device such that all devices connected to it are controlled by the same control

unit by:

Device u (� 1 connected-to�controlled-by): (1.1)

The number restriction in (1.1) states that each of these devices is related to

at most one object via the role connected-to followed by controlled-by. To

ensure that the device itself is also controlled by the unit that controls the

devices connected to it, we additionally need union in the number restriction:

Device u (� 1 controlled-by t connected-to�controlled-by): (1.2)

Inversion of roles comes in if we need the role controls as well. An important

part of this thesis is concerned with the inuence complex roles in number re-

strictions have on the computational complexity of the corresponding inference

problems.

Another weakness of traditional number restrictions comes up if we try to

describe devices having fewer inputs than outputs (referred to by Output-devs

in the following) or devices whose parts have the same number of inputs and

outputs (referred to by Equal-parts-devs). If an upper bound n on the

number of inputs can be �xed, Output-devs can be described by the following

disjunction:

Device u (((= 0 input) u (� 1 output)) t

((= 1 input) u (� 2 output)) t

((= 2 input) u (� 3 output)) t

.

.

.

.

.

.

((= n input) u (� n+ 1 output))):

If we cannot �x this upper bound, it is not obvious how Output-devs can be

described since in�nite disjunction is not allowed in Description Logics.

To overcome this lack of expressiveness, we introduce numerical variables

�; �; : : : to be used in number restrictions. Thus, Output-devs can be de-

scribed by

Device u (= � input) u (> � output); (1.3)



12 Chapter 1. Introduction

where � stands for some nonnegative integer. Similarly, Equal-parts-devs

can be described by

Device u (8has-part:((= � input) u (= � output))): (1.4)

This concept reveals a certain ambiguity: It describes devices where each part

has the same number of inputs and outputs. However, it depends on the

reading whether di�erent parts can have di�erent numbers of inputs or not.

To overcome this ambiguity, we introduced explicit existential quanti�cation

of numerical variables (denoted by #�) to distinguish between (1.5) a device

where for each of its parts the number of its inputs equals the number of its

outputs,

Device u (8has-part : (#�:(= � input) u (= � output))); (1.5)

and (1.6) a device where, for some number n, all parts have n inputs and n

outputs,

Device u (#�:(8has-part : (= � input) u (= � output))): (1.6)

The investigation of these so-called symbolic number restrictions forms another

important part of this thesis. Finally, this application asks for the adequate

representation of composite objects: The high complexity of most process mod-

els asks for the possibility to model a process with di�erent degrees of detailing

by decomposing devices into their parts or aggregating parts of a model to a

device or to a connection. Hence the relation between parts and the whole they

belong to, the part-whole relation, plays an important rôle

3

for the adequate

representation of process models. Beside its other properties, the part-whole

relation is transitive. Thus, the adequate representation of complex objects

asks for a Description Logics that allows for transitive roles. A Description

Logic has been presented in

[

Baader1991

]

that allows the transitive closure

of roles inside concepts. Using this role-forming constructor, it is possible to

distinguish between objects having a (direct) part that is a valve connection,

Device u (9has-part:Valve-Connection);

and objects having at some (arbitrary but �nite) level of decomposition a valve

connection,

Device u (9has-part

+

:Valve-Connection);

where has-part

+

denotes the transitive closure of the role has-part. The rea-

soning services of DL systems allowing for the transitive closure constructor are

3

In this thesis, the spelling \rôle" is used to refer to roles in general in order to distinguish

them from \roles" in the context of Description Logics, where they denote binary relations.



1.3. Structure of the Thesis 13

still decidable, and there exist decision procedures for these reasoning services.

However, this constructor strongly increases the computational complexity of

these services. Looking for a possibility to evade this high complexity, other

ways of extending Description Logics by transitive roles were investigated. The

results of this investigation form another important part of this thesis.

The above mentioned part-whole relation has several subrelations, such as

the one between a whole and its ingredients or the one between a whole and

its components. Intuitively, these subrelations have di�erent properties and

interact in speci�c ways. Hence they are also of importance for the appropriate

representation of complex objects. In the literature, several characterisations

of these subrelations can be found

[

Simons1987; Winston et al.1987; Gerstl &

Pribbenow1993; Pribbenow1995

]

, but as none of these characterisations was

precise enough to decide which are the relevant part-whole relations for the

process systems engineering application, an investigation of these sub-part-

whole relations is also described within this thesis.

Besides these theoretical investigations, the assumption that DL systems are

appropriate for supporting the structured storage of process model building

blocks was tested empirically: The DL system Crack

[

Bresciani et al.1995

]

was integrated into the process modeling tool ModKit

[

Bogusch et al.1996

]

.

ModKit is developed under the real-time expert system shell G2

[

Gen1995

]

,

which is a powerful tool that lacks, however, means for the structured stor-

age of objects. As a consequence, in ModKit, classes of standard building

blocks were only poorly structured, and Crack was integrated to overcome

this shortcoming. A description of this integration as well as a r�esum�e of the

experience we had with this integration can be found in Chapter 5.

1.3 Structure of the Thesis

This thesis was written while I was a member of Postgraduate College \In-

formatics and Technology" (Graduiertenkolleg \Informatik und Technik") at

the RWTH Aachen. The aim of this Graduiertenkolleg is to establish a close

cooperation between computer science and technological applications in order

to both identify applications for new computer science techniques and to work

on and solve complex problems in engineering applications. Hence, this thesis

addresses both, engineers and computer scientists. I tried to write most parts

of all chapters except Chapters 6 and 7 in a way that they can also be read

by someone who is not a computer scientist. The computer science readers

are asked to apologise for the remarks which might be, in their eyes, unneces-



14 Chapter 1. Introduction

sary and redundant, and which were made for readers who are not computer

scientists.

The rest of this thesis is organised as follows:

� Chapter 2 discusses the problems one encounters while constructing mod-

els of chemical processes and sketches the process modeling methodology

developed within VeDa.

� In Chapter 3, a framework for the classi�cation of part-whole relations

is presented. These relations play an important rôle for the representa-

tion of aggregated object and had to be understood before designing a

representation formalism for process systems engineering.

� Chapter 4 contains an introduction to Description Logics in order to

make the thesis self-contained. Besides the de�nition of syntax and se-

mantics of the Description Logic the future investigations and extensions

are based on, it includes a sketch of how Description Logics are used

within a knowledge representation system and the idea of the basic in-

ference algorithm. Finally, it presents already existing extensions of this

basic Description Logic together with a discussion of their expressive

power.

� In Chapter 5, the integration of a DL system into a process modeling

tool is described. This integration was realised during my time at the

Postgraduate College and motivated by the wish to learn more about the

usefulness of DL systems from concrete scenarios, especially more about

the way in which the powerful inference services of these systems can be

used within such a process modeling tool.

� Chapter 6 describes the extensions of the basic Description Logics by

so-called expressive number restrictions. These extensions increase the

expressive power of Description Logics in a way that is useful for the

process systems engineering application. The �rst extension allows the

user to restrict the number of objects an object is related to via complex

relations. The second extension allows the user to state, for example, that

an object has the same number of inputs and output|without being

more precise on this number. Both extensions are motivated by the

process systems engineering application and investigated with respect to

the computational complexity of the relevant inference problems.

� In Chapter 7, three extensions of the basic Description Logic by transitive

relations are investigated. These extension are mainly motivated by the



1.3. Structure of the Thesis 15

need for an appropriate representation of aggregated objects. All three

extensions have decidable inference problems, and it is proved that one

is of a much lower computational complexity than the others. Then the

consequences of these results for the representation of aggregated objects

are described.

� Finally, Chapter 8 contains the conclusion and summary of the thesis.

After this chapter, the appendix contains a short summary of the syntax

and semantics of the Description Logics used within this thesis.



Chapter 2

Process Modelling

In this chapter, we describe the process systems engineering application and the

problems one encounters when modeling chemical processes. The development

of these models is a rather creative and complex task which is described in

the �rst part of this chapter. Methodologies of how to develop such a model

evolved only recently. One of these methodologies was developed withinVeDa

[

Marquardt1996

]

, and its main ideas are briey sketched in the second part of

this chapter.

2.1 Modeling chemical processes

Process systems engineering is concerned with setting up models of chemical

processes. Mostly, these processes take place in chemical plants that are run

by chemical industries for the production of chemical substances.

More precisely, a process is an amalgamation of physical, chemical, biological,

and informational events, which are undertaken in order to change substances

with respect to their nature, properties, and composition. A model is a goal-

driven simpli�cation of the reality obtained by abstraction. Hence a process

model is a model of a process, and its goal is to enable the simulation, analysis,

and understanding of a given process. This understanding is the prerequisite

for improving already developed processes and for designing new, high quality

processes.

As stated in Section 1.1, setting up a process model of some precision is a

complex task. This is mainly due to the following peculiarities of process

systems engineering:



2.1. Modeling chemical processes 17

� There is a great variety of di�erent chemical devices and connections

(such as reactors, pipes, valves, distillation columns, etc.) which have to

be considered on an abstract level.

� There is a great variety of di�erent physical phenomena (such as heat

transfer, reaction, evaporation, dispersion, mixing, etc.) which also have

to be considered on an abstract level.

� Abstracting from a physico-chemical phenomenon is nondeterministic:

Many phenomena can be viewed from di�erent angles and thus ab-

stracted by di�erent means, and their behaviour can be approximated

by various di�erent heuristics.

� The requirements with respect to the granularity and the precision of

the models is increasing with the state-of-the-art, the competition in

the market, and the standards concerning environmental and safety de-

mands.

The overall number of di�erent models is in�nite because the size of a model

(i.e., the number of the devices and connections it contains) is not bounded.

This large number of models would be of purely theoretical interest, but the

number of di�erent processes that are described by these models is also very

large. Moreover, even one particular process taking place in a speci�c plant

can be modeled in many di�erent ways|which di�er not only in their degrees

of detailing, but also in the way phenomena are abstracted. This freedom of

choice contributes tremendously to the complexity of building a process model.

Various software tools which support the development of process models help

the engineers to accomplish this task, increase the e�ciency of the modeled

processes, and contribute to an improvement of the security of chemical plants.

Typically, the �nal process model that is to be built is a mathematical model,

i.e., a set of di�erential, integral, and algebraic equations as well as mixtures

of these types of equations. Depending on the degree of detailing and the com-

plexity of the process, such a set can contain several thousands of equations.

The route that is taken to reach this model can be viewed as taking place in

a three dimensional space

[

Pohl1995; Jarke&Marquardt1995

]

:

1. The speci�cation dimension relates to the degree of understanding the

engineers have of the process and thus to the degree of detailing of the

model. In general, the engineers start the modeling at the plant level.

The model is then re�ned, possibly down to the level of physico-chemical

phenomena at the molecular level.



18 Chapter 2. Process Modelling

2. The representation dimension relates to the representation formalism

that is used to describe the current model. In the early stages, the

process can be described in a natural language speci�cation. Then semi-

formal graphical representation formalisms can be used for a more precise

description of the process. Next, the informal graphical formalism can be

replaced by a more formal graphical representation formalism. Finally,

the behaviour of the process is described by a mathematical model.

3. Following the agreement dimension, the degree of agreement among the

di�erent engineers involved in the development of a process model should

increase while setting up this model.

In general, process models can be viewed as being built from so-called building

blocks, which are the entities process models consist of. In the VeDa method-

ology, the central building blocks are devices, connections, entities describing

the behaviour of devices and connections, and entities describing the inter-

faces between devices and connections. By standard building blocks, we mean

generic building blocks commonly used. The following is a possible scenario of

the development of a process model:

1. The engineer chooses standard building blocks such as devices, connec-

tions, etc., from a catalogue. This is a well-structured collection of build-

ing blocks together with descriptions of their properties and possibly

equipped with powerful search facilities.

2. If necessary, these building blocks are modi�ed according to the require-

ments of the current model. These modi�cations can include both a more

detailed speci�cation of properties that are unspeci�ed so far as well as

complete changes of the properties of a building block.

3. The building blocks are connected to each other, possibly using their

already speci�ed interfaces.

4. The building blocks are broken down into their components until an

appropriate degree of detailing is reached.

5. The behaviour of the building blocks is speci�ed. First, for each building

block, the phenomena that are associated to it are �xed. Then process

quantities (i.e., variables standing for relevant process quantities) are

introduced for the basic phenomena. Equations relate these variables to

each other and might re�ne some of them. Finally, if necessary, initial

values are �xed for process variables.



2.1. Modeling chemical processes 19

6. The information speci�ed so far is used to automatically generate the

source code for a numerical solver which describes the behaviour of this

process.

7. If it is likely that parts of this model can be reused in other models, they

are stored as new building blocks in the catalogue.

To assist the engineer, each of these steps should be controlled by a mechanism

that guarantees the consistency of the model and the modi�cations that are

carried out by these steps. This means, for example, that adaptations of the

standard building blocks to the requirements of the current model (see Step 2)

are compared with the actual descriptions of the building blocks in order to

guarantee consistency of the model. If, for example, the engineer chooses

from the catalogue a building block that represents a stirred-reactor and then

removes the stirring unit, the system should notice that this building block

does no longer represent a stirred-reactor but a reactor.

Unfortunately, no modeling tool supporting the above scenario is available. In

fact, current modeling tools for chemical processes can be divided into two

groups

[

Marquardt1996

]

:

� Modeling using an equation-oriented tool (e.g., Speedup or Diva) con-

sists of either the implementation of a mathematical model using a

declarative programming language together with a model library, or its

implementation using a procedural programming language and a set of

subroutine templates. These tools are very exible in that they allow

for a large variety of di�erent models. The price one has to pay for this

exibility is the high e�ort required for modeling .

� Modeling using a block-oriented tool (e.g., Aspen Plus) takes place on

the ow-sheet level, where the engineer selects, speci�es and connects

standard building blocks, so-called process units, from a model library

using either a modeling language or a graphical editor. A severe restric-

tion of these tools is due to the fact that standard building blocks can

only be modi�ed in a restricted way to match the speci�c needs of a

modeling context. Hence, the degree of detailing of the models one can

construct using these tools is bounded, which restricts the applicability

of these tools. As a recompense, they are rather comfortable to use.

Even if these di�erent tools could be integrated into one general modeling tool,

points 2, 4, 6, and 7 of the above mentioned scenario would not automatically



20 Chapter 2. Process Modelling

be supported: The block oriented tools are restricted to the prede�ned building

blocks which cannot be broken down arbitrarily. Furthermore, a methodology

is still lacking which describes the behaviour of devices or connections in such

a precise way that the according set of mathematical equations and the com-

plying source code for numerical solvers can be generated automatically. First

attempts at the automatic generation of source code from models developed

using an object-oriented modeling tool were made withinModKit, a modeling

tool partially described in Chapter 5.

In order to realise the above scenario, the new building blocks have to be stored

in a way that enables the user to �nd a building block he or she is looking

for. This means that they must be arranged with respect to some meaningful

order|otherwise, it would be hard to �nd the building blocks one wants to

reuse. In the following, we will refer to a storage of building blocks with respect

to such a meaningful order by structured storage.

The more di�cult it is to �nd the building blocks one is looking for, the less

one will try to reuse already speci�ed blocks. Hence the structured storage of

building blocks will lead to a higher degree of e�ciency in the development of

process models.

As a consequence of the above observations, the need for a representation

formalism which can be used for both the description of the structural and be-

havioural aspects of building blocks arises. Additionally, this formalism should

be able to support the structured storage of building blocks. A promising can-

didate for the corresponding meaningful order is the \is-a-specialisation-of"

relation. More precisely, one unites similar building blocks into classes and

associates a description of the properties of its members to each class. Then

the resulting set of classes (and thus their instances) can be arranged with

respect to the \is-a-specialisation-of" relation. In order to avoid inconsisten-

cies, this specialisation relation should not be hand-coded by the engineers,

but it should be computed automatically using the descriptions of the classes.

Furthermore, class de�nitions should be tested automatically for inconsisten-

cies or contradictions. In order to enable the automatic computation of the

specialisation relation and the consistency test, the properties of a class (i.e.,

the properties of the objects belonging to this class) should be described in a

declarative way using a formalism with well-de�ned semantics. Furthermore,

the problem of whether one class is a specialisation of another class, or whether

a class is inconsistent, should be e�ectively decidable. In Chapter 4, a family

of knowledge representation formalisms having these properties, the so-called

Description Logics, is introduced. The integration of a knowledge represen-

tation system based on Description Logics into a modeling tool for chemical



2.2. VeDa, a chemical engineering data model 21

processes is then described in Chapter 5.

2.2 VeDa, a chemical engineering data model

VeDa is short for \Verfahrenstechnisches Datenmodel" (chemical engineering

data model). It was �rst developed by W. Marquardt

[

Marquardt1992

]

. VeDa

is a frame-based formalism (see

[

Baumeister1998

]

for a description of the un-

derlying formalism) designed for the formal representation of the modeling

methodology developed at the Lehrstuhl f�ur Proze�technik of RWTH Aachen.

Both the formalism and the methodology are described in

[

Marquardt1996

]

.

The main characteristics of this methodology are the following.

VeDa distinguishes two aspects of a process model: Its structural and its

behavioural aspects. This distinction is useful because of the following freedom

of choice: Firstly, the structure of a model is not uniquely determined by the

speci�c process it models and the degree of detailing of the model. Secondly,

having �xed the structure of a model, its behaviour can be mostly modeled

in various di�erent ways. This is due to the fact that both the modeling

of the behaviour and of the structure strongly depend on the goal and the

precision of the model. For example, the behaviour of a stirring reactor can

be modeled, in one model, by describing the kinetics of the reaction taking

place in this reactor. In this case, the equations describing these kinetics are

still not determined: In most cases, one can choose between several heuristics

found in literature, or carry out experiments to determine them. In another

model of the same process, one might neglect these phenomena and describe

only the generalised uxes in the reactor.

Furthermore, VeDa also includes a formalism for representing the steps the

engineer executes while building a model.

Structural aspects

[

Souza1998

]

: VeDa divides the set of objects repre-

senting structural aspects of a process model into devices (such as a reactor

or a distillation column) and connections (such as signal lines or valve connec-

tions). These classes can be further re�ned into more speci�c subclasses such

as heterogeneous-phase or directed-permeable-valve-connection. It is

not the case that each subclass is necessarily related to a speci�c function (such

as mixing, reacting, etc.) the instances of this class have or a concrete gadget

that can be found in chemicals plants. In most cases, subclasses are related to

certain abstraction mechanisms that are employed in process modeling such

as a heterogeneous, well-mixed, or homogeneous phases.



22 Chapter 2. Process Modelling

Objects representing structural aspects can be both atomic or aggregated.

In order to appropriately support the top-down or bottom-up modeling, ag-

gregated objects have to be described in such a way that, for example, the

properties of the aggregated object can be deduced from the properties of its

parts and from the way in which the interfaces of the parts match with the

interfaces of the whole.

Behavioural aspects

[

Bogusch1998

]

: The behaviour of an object is, in a

�rst place, described by the phenomena that are are associated to this object.

These phenomena lead to the introduction of associated process quantities,

which are related to each other by appropriate equations and which can be

re�ned by constitutive equations. Hence the behavioural part of the VeDa

class hierarchy contains classes for di�erent types of phenomena, equations

and variables.

Modeling steps

[

Lohmann1998; Krobb1997

]

: The development of a high-

quality process model is a strongly creative procedure, hence it cannot be

completely automated. However, it is possible to guide the engineer by, for

example, proposing possible next steps which can be executed in the current

state of the model. These steps as well as the description of modeling states

are also formalised within VeDa. A step is characterised by

� a goal (such as the introduction of a new device),

� preconditions which have to hold for the step to be activated,

� postconditions which are guaranteed to hold after the execution of a step,

and

� further properties.

An important property of this formalisation is that the syntax for the descrip-

tion of the pre- and postconditions was de�ned in such a way that (1) all

realistic conditions can be expressed, and (2) the reasoning services such as

checking whether a composite step is correctly decomposed into sub-steps, or

checking whether one step can be substituted by another one are e�ectively

computable.



2.2. VeDa, a chemical engineering data model 23

Implementation of VeDa

In order to evaluate the VeDa approach, the modeling toolModKit was de-

veloped and implemented at the Lehrstuhl f�ur Proze�technik of RWTH Aachen

[

Bogusch et al.1996

]

. It builds on the expert system shell G2 and is described

in more detail in Section 5.1.



Chapter 3

Part-whole relations

As already mentioned, the process engineering application asks for a Descrip-

tion Logic with enough expressive power to represent the relevant properties of

objects in the application domain, namely building blocks of process models.

For the adequate representation of aggregated objects, the part-whole relation

as well as those sub-part-whole relations relevant for the application have to

be represented appropriately. This appropriateness can only be achieved if the

properties of the part-whole relation and its sub-relations are known. In this

chapter, we investigate in detail the properties of the part-whole relation and

its subrelations, and present a general scheme for the classi�cation of di�erent

kinds of part-whole relations. This scheme was partially developed while I was

visiting A. Artale, N. Guarino, and E. Franconi at Ladseb-CNR in Padova,

Italy.

The importance of part-whole relations in general led to the development of a

philosophy based on the notion of parts and wholes, namely the classical ex-

tensional mereology as introduced in

[

Le�sniewski1929

]

(for an introduction and

exhaustive overview, see

[

Simons1987

]

). Classical extensional mereology is a

formalism quite similar to set theory, with the di�erence that instead of being

based on the membership relation, it is based on the part-whole relation. As

for set theory, various logical formalisms are based on mereology, and di�erent

ways of axiomatising \the world" based on these formalisms were presented|

di�ering, for example, in whether the world is supposed to be composed from

atoms or not (where atoms are objects having no parts). Furthermore, mereo-

logical logics were also extended to deal with modalities, actions, and processes.

Finally,

[

Simons1987

]

presents an exhaustive list of properties which can ad-

ditionally hold between parts and wholes such as a part belonging exclusively

to a whole.



25

Later, when the development in computer science gave rise to the �eld of knowl-

edge representation, researchers in this �eld realised that part-whole relations

have particular properties which have to be taken into account for the adequate

representation of complex objects. This observation led to a great variety of in-

vestigations of these properties of part-whole relations

[

Winston et al.1987; Iris

et al.1988; Gerstl &Pribbenow1993; Franconi1994; Padgham&Lambrix1994;

Artale et al.1994; Pribbenow1995

]

|all motivated by the goal of developing a

formalism for the adequate representation of complex objects.

A point of view supported by most of them is that there are di�erent part-whole

relations (such as component{aggregate and ingredient{object) with di�erent

properties, and that there is a general transitive part-whole relation contain-

ing all of these part-whole relations. Because of the particular properties of

the di�erent part-whole relations, the transitivity of the general part-whole

relation, and the interaction between di�erent speci�c part-whole relations,

the part-whole relations cannot be represented adequately by simple binary

relations. For example, consider a device d that has a part d

0

which, in turn,

has a carcinogenic part z. A system answering \no" when asked whether d

has a carcinogenic part can hardly be called adequate|but a system in which

the part-whole relation is not modeled by a transitive relation can only answer

with \no" to this question.

However, despite the fact that many authors believe in the relevance of di�er-

ent kinds of part-whole relations and underline the necessity to have a good

understanding of the interaction between them, to our knowledge there is no

\taxonomy" of part-whole relations.

[

Winston et al.1987

]

present di�erent

part-whole relations, but the authors only present examples to explain their

meaning, and no exact de�nitions are given. From counterexamples|which

strongly depend on the intuition of the reader|they infer that these di�erent

part-whole relations do not interact with each other. This is to say that from

the fact that x is a part of y with respect to one sub-part-whole relation, and

y is a part of z with respect to another sub-part-whole relation, one can only

conclude that x is a part of z with respect to the general part-whole relation.

It seems reasonable that this rather weak conclusion could be strengthened for

some sub-part-whole relations.

In the following, a \taxonomy" of part-whole relations together with de�nitions

of part-whole relations will be presented. From this framework, the way in

which the part-whole relations interact follows by de�nition.



26 Chapter 3. Part-whole relations

3.1 A well-de�ned taxonomy of part-whole re-

lations

Given the need for a better understanding of the di�erent part-whole relations,

we developed a scheme for the classi�cation of part-whole relations. The re-

sulting taxonomy of part-whole relations is given in Figure 3.1. It shows classes

of part-whole relations in a subclass/superclass hierarchy. At the top of this

hierarchy, the general part-whole relation � is found. It is even more general

than mereological collections in that the principles imposed on mereological

collections are stronger than the ones imposed on � which is the union of all

sub-part-whole relations. Hence � strongly depends on these sub-relations,

but the only property we want to impose on � is that it is a strict partial or-

der and thus transitive and irreexive. These two properties are axiomatised

by (A1) and (A2).

x � y ^ y � z ) x � z (A1)

:x � x (A2)

Mereological collections are presented in Section 3.1.1 whereas the other two

sub-relations of � are briey presented in this section and in more detail in

Section 3.1.2 and 3.1.3.

An integral part-whole relation is a subrelation of the general part-whole rela-

tion which involves some integrity condition on the parts. For x to be a part

of y with respect to an integral part-whole relation, x has to be a part of y,

and x has to satisfy the integrity condition associated with this relation. For

example, for the ingredient{mass relation to hold between x and y, x has to

be integral with respect to the substantial aspect. This means that y contains

some material such as our or oxygen and that x is exactly all of this material

in y. Another example to mention is the segment{entity relation, which holds

between z and d if z is a geometrically integral part of d. This means that z

forms some geometric body within d. It is important to note that all these

integrity conditions are imposed on the parts only, independent of the whole.

This independence is lacking for part-whole relations belonging to the second

specialisation of the general part-whole relation. A composed part-whole re-

lation is characterised by an additional relation which has to hold between a

part and its whole. For example, the component{aggregate relation holds be-

tween x and y if x is a part of y, x is an integral object (with respect to some

integrity condition) and x is functional for y, i.e., the functioning of y depends

on x. This additional relation (such as being functional for in the previous

example) is the reason why the composed part-whole relations are, in general,



3.1. A well-de�ned taxonomy of part-whole relations 27

not transitive. If the additional relation is not transitive, then the composed

part-whole relation cannot be transitive. For example, let a procedure be a

component of (thus functional for) a small program, which is a component of

a large program. If the procedure is never called by the large program because

the large program uses the small one in a restricted way, then this procedure

cannot be said to be a component of the large program.

All these relations can be specialised by re�ning the integrity conditions or the

additional relations which have to hold between a part and its whole. As a

consequence of the properties of integral and composed part-whole relations,

integral part-whole relations are transitive and interact in a transitive way

with other part-whole relations, whereas composed part-whole relations have,

in general, none of these properties. In the sequel, these relations are de�ned

in detail.

3.1.1 Mereological collections

From a mathematical point of view, a mereology is a partial order of a very

particular kind. In this section, only the basic properties of this order are

sketched. Most of the axioms given in the following that enforce these prop-

erties are taken from

[

Simons1987

]

. Let S be some bag

1

of individuals. Then

classical mereology is built around a primitive part-whole relation

�

, which

is axiomatised in the following using �rst-order logic with equality. The �rst

two axioms enforce that

�

is a strict partial order and (SA3) de�nes

�

as the

reexive closure of

�

.

x

�

y ) :y

�

x (SA1)

x

�

y ^ y

�

z ) x

�

z (SA2)

x

�

y , (x

�

y _ x = y) (SA3)

Still, this is axiomatisation is not su�cient. On the one hand, the supple-

mentation principle says that if a whole has a strict part, then it must have

another part di�erent from the �rst one; see (SF1). However, (SF1) does not

exclude ascending chains from being models. Axiom (SF2) enforces that each

composed object has at least two parts which are not part of each other.

x

�

y ) 9z(z

�

y ^ z 6= x) (SF1)

x

�

y ) 9z(z

�

y ^ :(z

�

x) ^ :(x

�

z)) (SF2)

1

We use the notion \bag" instead of \set" to underline the fact that, in the following,

notions like \subset" or \element" are not used in the set-theoretic sense.



28 Chapter 3. Part-whole relations

p-w relation

Integral

Topologic-

p-w relation

Integral

Geometric-

: : :

Perceptive-

p-w relation

Integral

: : :

Substantial-

p-w relation

Integral

: : :

(Integral+functional)

relation

Component-aggregate

General

p-w relation

: : :

Spatial-

p-w relation

Integral

Member-collection

relation

(Integral+additiv)

not transitive!

p-w relation

Integral

p-w relation

Composed

: : :

Di�erent integrity conditions on parts Additional relations between parts and wholes,

Mereological

collections

Figure 3.1: A taxonomy of part-whole relations.

Now, depending on the intuition one has of the relation

�

, these axioms are

still not su�cient. Thus other axioms are added according to the ontological

principles assumed. These principles determine the structures one accepts as

models and those one wants to exclude from being models. For example, the

weak supplementation principle says that if a whole has a part, then it has to

have another part disjoint from the �rst one. This principle is axiomatised in

(SA3), which, in contrast to (SF2), asks for an additional part z which has no

part in common with x.

x

�

y ) 9z(z

�

y ^ :(9w(w

�

z ^ w

�

x))) (SA3)

Furthermore, one can restrict the models to those where, if two objects x; y

have a part in common, then there exists another object which has x; y as

proper parts. Another principle, atomicity , excludes structures with in�nite



3.1. A well-de�ned taxonomy of part-whole relations 29

ascending chains from being models. It assumes the existence of indivisible

objects, so-called atoms, of which all other objects are composed. A last

principle to be mentioned here is the proper part principle, which is similar to

the extensionality principle of set theory. It assumes that no two composed

objects have exactly the same set of strict parts. In this spirit, many other

principles can be axiomatised, which lead to di�erent mereologies and whose

enumeration goes beyond the scope of this work; for details see

[

Simons1987

]

.

However, the strong restrictions made on the order

�

in all these mereologies

have as a consequence that

�

and its specialisations are specialisations of the

general part-whole relation �.

3.1.2 Integral part-whole relations

An entity x is an integral part of an entity y with respect to the integrity

condition Int if and only if x is a part of y (with respect to the general part-

whole relation �) and if the integrity condition Int holds on x:

x �

Int

y

def.

() x � y ^ Int(x):

The integrity condition Int is the most general integrity condition and simply

imposes that x is integral with respect to some criteria, as for example its

spatial extension (\the rectangle in the picture"), its substantial composition

(\the our in the cake"), the perception of an observer (\the nice part of

the house"), etc. Whether an object x satis�es an integrity condition or not is

independent of its context, hence from the transitivity of� follows immediately

that the integral part-whole relation is also transitive. Moreover, it interacts

in a transitivity-like manner with �, that is

x �

Int

y ^ y � z =) x � z ^ Int(x) =) x �

Int

z:

Re�ning the integrity conditions

The integral part-whole relation can be re�ned in a natural way by re�ning the

integrity condition Int. For example, three ways of re�nement are presented in

Figure 3.1, namely according to whether a part x is integral with respect to

� its spatial extension, which means that x forms a connected body. This

condition can be further re�ned by specifying whether a part is supposed



30 Chapter 3. Part-whole relations

to be integral with respect to topological conditions (\a convex segment

of a cake"), to geometrical conditions (\a cubic segment of a cake"),

whether it is allowed to contain holes or not, etc. The segment-entity

relation discussed in

[

Gerstl &Pribbenow1993

]

belongs to this class of

integral part-whole relations.

� its substantial composition. Again, we can re�ne this integrity condition

to whether the part is integral with respect to its chemical composition

(\the protein in a cake"), its physical state (\the ice cubes in a glass of

water"), its molecular structure (\the diamonds in a heap of carbon"),

etc.

� the perception of an observer. This condition can be further re�ned by

specifying, for example, the sense organs involved in the perception (\the

dark part of the room", \the loud part of the piece of music"), or whether

a part is supposed to be integral with respect to emotional criteria (\the

most beautiful moment in the holidays"), etc.

Let SpecInt be a re�ned integrity condition, i.e., SpecInt(x) ) Int(x). Then

the corresponding re�ned integral part-whole relation�

SpezInt

is de�ned similar

to �

Int

, namely

x �

SpezInt

y

def.

() x � y ^ SpecInt(x):

Again, as for the general integral part-whole relation, re�ned integral part-

whole relations interact in a transitivity-like manner with other part-whole

relations, namely

x �

SpezInt

y ^ y � z =) x � y ^ SpecInt(x) ^ y � z =) x �

SpezInt

z:

Furthermore, if SpecInt

0

implies SpecInt, then it is obvious that x �

SpecInt

0

y

implies x �

SpezInt

y, hence the re�nement of the integrity conditions yields a

re�nement of the integral part-whole relations in a straightforward way.

3.1.3 Composed part-whole relations

The third class of sub-relations of the general part-whole relation, composed

part-whole relations, are characterised by the fact that they impose additional

conditions which have to hold between a part and its whole. These additional

conditions can no longer be viewed as integrity conditions on the part because

they depend on both the part and its whole. One example for such an addi-

tional condition is functionality: A part engine can be both functional for a



3.1. A well-de�ned taxonomy of part-whole relations 31

whole car (which works properly only if engine is present and intact) and non-

functional for another whole garage (which has engine as its part, but works

also without it). In general, these part-whole relations are of the form

x �

Comp

y

def.

() x � y ^ x CompRel y:

where CompRel is a binary relation characterising�

Comp

. For example, CompRel

could be re�ned to Funct with the intended meaning that x Funct y holds if and

only if x is functional for y. There are no restrictions on the relation CompRel,

i.e., it has not to be transitive. As a consequence, composed part-whole rela-

tions are no longer transitive nor do they interact in a transitivity-like manner

with other part-whole relations.

Another example for a composed part-whole relation is the so-called member-

collection relation as described in

[

Winston et al.1987

]

. This relation holds,

for example, between a tree and a forest, or between a grain of salt and a

spoonful of salt. According to our understanding, an object x is a member of

a collection y if and only if the following conditions are satis�ed (see Figure 3.2

for a better intuition):

x is in fx

1

; x

2

; : : :g, a set of parts of y where each x

i

satis�es a predicateQ (such

as being a grain) which implies some kind of integrity condition. Furthermore,

y is the sum of the objects x

i

. This is to say that each part x

0

of y di�erent

from all x

i

is either a part of some x

i

or some x

i

is a part of x

0

(see (�) of the

formal de�nition below). Furthermore, these x

i

are supposed to be disjoint,

that is they do not have any parts in common.

The formalisation of these conditions is rather complicated and involves a

second-order variable Horizon which holds on the x

i

that sum up to y. Fur-

thermore, Overlap(z; w) is an abbreviation for 9v:v � z ^ v � w, and the

member collection relation depends on the predicate Q.

x �

Q

Member

y

def.

() x � y ^ Coll

Q

(x; y) where

Coll

Q

(x; y)

def.

()

9Horizon: Horizon(x) ^

8z:(Horizon(z))

Q(z) ^ z � y ^

8w:((w � y ^ (w � z _ z � w))) :Horizon(w)) ^

8w:((w � y ^ Horizon(w))) (:Overlap(z; w) _ z = w)) ^

8z:(z � y ) (9w:Horizon(w) ^ (z � w _ w � z _ w = z)))) (�)



32 Chapter 3. Part-whole relations

collection y

members x
i x

Horizon

Figure 3.2: Example of a collection y and members x

i

.

3.2 Comparison with other part-whole rela-

tions

In this section, the taxonomy of part-whole relations presented in

[

Winston et

al.1987

]

is compared with the taxonomy presented in this section.

Component{Integral Object This relation is a composed part-whole re-

lation with the additional condition that the part is functional for the whole.

Formally, according to the de�nition in

[

Winston et al.1987

]

, it can be writ-

ten as x � y ^ x Functional y; where x Functional y holds only if x is integral

with respect to some integrity conditions which is not speci�ed in

[

Winston

et al.1987

]

. Furthermore, the placement of the part within a whole might

be relevant for the functionality|but this condition is not explained in more

detail. The authors assume that this condition leads to a subrelation of the

Component{Integral Object relation.

Member{Collection The Member{Collection relation de�ned in

[

Winston

et al.1987

]

di�ers from the the one de�ned in Section 3.1.3 in that it does



3.2. Comparison with other part-whole relations 33

neither ask for any \similarity" between the members nor does it ensure dis-

jointness of the members|instead, it only asks for spatial proximity or social

connection. Hence the Member{Collection relation is also a composed part-

whole relation in that it holds whenever a part (as well as all other parts) can

be found in the same place or is \socially connected" to the whole. However,

this does not really match the intuition given by the examples in

[

Winston et

al.1987

]

such as tree-forest, ship-eet or juror-jury: These examples �t better

to the member-collection relation de�ned in Section 3.1.3 because the forest

(resp. jury, eet) is the sum of trees (resp. jurors, ships), and the forest (resp.

jury, eet) can be decomposed into trees (resp. jurors, ships) which are disjoint

from each other and similar to each other.

Portion{Mass The example given in

[

Winston et al.1987

]

for this relation

is \a slice of pie" and it is characterised by the fact that the part (called

piece here) is not functional for the whole, whereas it has to be similar to

other pieces as well as to the whole in being pie. The authors say that, if the

Portion{Mass relation holds between two objects x; y, then one can say \x is

some of y" as in \Could you please pass me some of the pie?", where it would be

incorrect to pass only the crust of the pie. Since this relation strongly depends

on the similarity between the portion and the whole, it is parametrised by a

predicate Q which, in the example, is being pie. The Portion{Mass relation can

be de�ned as follows and thus belongs to the composed part-whole relations.

x �

Q

Portion

y () x � y ^ Piece

Q

(x; y) where

Piece

Q

(x; y)() Q(x) ^Q(y) ^ 9z:(z � y ^Q(z) ^ :Overlap(x; z) ^

8w:(w � y ) (Overlap(x; w) _ Overlap(z; w))))

Stu�{Object According to

[

Winston et al.1987

]

, if this relation holds be-

tween x and y, one can say that \x is made of y", and y cannot be re-

moved without altering y's identity. Unfortunately, the authors do not explain

what a thing's identity is. Examples given are alcohol-martini, steel-bike, and

hydrogen-water. In the taxonomy presented in this chapter, Stu�{Object is

clearly a substantial-integral part-whole relation.

Feature{Activity The only di�erence between component{integral object

and feature{activity is that both the part and the whole of the latter have to

be actions. It appears that this di�erence were made only because the inverse

of the former translates in English to \has" whereas this translation does not

work for the latter.



34 Chapter 3. Part-whole relations

Place{Area This relation between special places and areas is said to be

similar to the portion{mass relation besides the fact that places cannot be

separated from the area they occupy in the sense a slice of pie can be taken away

from a pie. The authors distinguish between Place{Area and the topological

inclusion relation. The �rst one also demands that the place is part of the

area it can be found in whereas for being topologically included by something

it su�ces to be surrounded by it.

Consequences for knowledge representation issues

As we have seen in this section, there is a great variety of di�erent part-whole

relations with di�erent properties, and some of them are rather complicated,

such as the member-collection relation or the component-aggregate relation.

The �rst one is complicated since it describes a whole as the sum of disjoint

parts, all of them satisfying some additional integrity condition. The second

one is, at a �rst glance, less complicated, but the description or axiomatisation

of \functionality" is very complex: It requires the de�nition of \correctly func-

tioning". The expressive power of decidable formalisms such as Description

Logics is surely too weak to de�ne the member-collection or the component-

aggregate relation.

The inuences of the ontological principles on the required expressive power

are only sketched for two examples, namely the proper part and the atomicity

principle: If a Description Logic has the tree model property (see Section 4.5.3

for a de�nition of this property), then a concept C is satis�able i� C is satis-

�able in a model obeying the proper part principle: Each satis�able concept

has a tree model which obviously obeys the proper part principle. Other in-

ference problems (such as subsumption) are either likely to be reducible to

satis�ability|in this case they are also invariant under the assumption of the

proper part principle|or the corresponding inference algorithms can be easily

extended to obey the proper part principle (this is the case for ABox consis-

tency). Similarly, the atomicity principle comes for free in Description Logics

having the �nite tree model property: Satis�able concepts of such a Descrip-

tion Logic are always satis�able in a model that has no in�nite ascending

chain. If a Description Logic does not have the �nite tree model property,

then one can enforce in�nite ascending chains, and special techniques have to

be applied for testing satis�ability in a model obeying the atomicity principle.

Such a technique is described in

[

Calvanese1996

]

.

The investigations of the requirements made by all these principles for the ex-

pressive power of Description Logics goes beyond the scope of this work. We



3.2. Comparison with other part-whole relations 35

concentrated on di�erent possibilities to extend Description Logics by transi-

tive relations, and to relate transitive relations to other, possibly non-transitive

relations. The results of these investigations together with the consequences

of these results for the representation of part-whole relations can be found in

Chapter 7.



Chapter 4

Description Logics

In this section, the basic Description Logic ALC is formally introduced. Start-

ing with a short history of Description Logics, syntax and semantics of ALC are

introduced as well as a formal de�nition of the corresponding inference prob-

lems. For a better understanding of the inference algorithms presented later,

the reasoning techniques used within this work are �rst given for ALC. Then

it is explained how these reasoning techniques can be used within a knowl-

edge representation system based on Description Logics. The main ideas of

knowledge representation systems based on Description Logics are pointed out,

including the description of the main reasoning services of such systems. Next,

the extensions of ALC by (1) number restrictions and by (2) the transitive clo-

sure of roles are introduced. Finally, the expressive power and some model

theoretic properties of these basic languages are discussed.

4.1 A brief history of Description Logics

Since the late eighties, Description Logics play an important rôle in the �eld

of knowledge representation. The origin of Description Logics can be said

to lie in the necessity to formalise the semantics of semantic networks

[

Sowa

1987

]

: This is a vivid, graphical representation formalism where concepts and

individuals are related to each other via labelled edges. For example, the

semantic network given in Figure 4.1 states that elephants are a specialisa-

tion of mammals, and that Clyde is an elephant. Despite the vividness of

semantic networks, their lack in formal semantics became irritating especially

when trying to understand answers given by knowledge representation sys-

tems based on semantic networks

[

Brachman1983

]

. To overcome this problem,



4.1. A brief history of Description Logics 37

Cylinder
4

isa

Clyde Elephant

Gray

Mammal

isa

trunk leg

color

Figure 4.1: A semantic network.

a new graphical formalism, structured inheritance networks, was introduced

and implemented

[

Brachman et al.1991; Kaczmarek et al.1986

]

. Furthermore,

structured inheritance networks were provided with a well-de�ned semantics

which �xed the precise meaning of its graphical constructs|which led to the

de�nition of the �rst Description Logics

[

Brachman&Schmolze1985

]

.

Unfortunately, it turned out that the main inference problems of these �rst

Description Logics were undecidable

[

Patel-Schneider1989; Schmidt-Schauss

1989

]

. This insight and the fact that sound and complete inference algorithms

seem to be crucial for the tasks knowledge representation systems based on

Description Logics are applied to led to the restriction of the expressive power

of subsequent Description Logics and to numerous investigations concerning

their computational complexity

[

Hollunder et al.1990; Baader1991; Baader&

Hanschke1991; Donini et al.1991a; 1991b; Hollunder&Baader1991; Schmidt-

Schau�&Smolka1991; Hanschke1992; Baader et al.1993; Baader&Hanschke

1993; Baader&Sattler1996a; Sattler1996; Baader&Sattler1996b; De Giacomo

et al.1996

]



38 Chapter 4. Description Logics

In 1991, the close relationship between Modal Logics and Description Log-

ics was discovered and published

[

Schild1991; 1994; De Giacomo&Lenzerini

1994a

]

, which led to new complexity results especially in the �eld of Description

Logics

[

De Giacomo&Lenzerini1994b; De Giacomo1995

]

.

In a nutshell, these investigations revealed that a tractable Description Logic is

of rather low expressive power, and that extensions which add some more ex-

pressiveness lead at least to PSpace-completeness. However, all these results

only concern worst-case complexity. Several knowledge representation systems

based on intractable Description Logics are used in applications

[

Rychtyckyj

1996; Kirk et al.1995

]

, and tests were undertaken which have shown that De-

scription Logics with a high worst-case complexity behave quite well on real-

world or random knowledge bases

[

Bresciani et al.1995; Baader et al.1994;

Horrocks1997

]

.

The relationship between Description Logics and other class-based represen-

tation formalisms such as object-oriented databases, entity relationship dia-

grams, frame based systems has been investigated since 1991. On the one hand,

Description Logics can be viewed as a uni�ed framework for these formalism,

with the pro�t that the precise semantics of Description Logics is inherited to

these formalisms and that reasoning techniques developed for Description Log-

ics can be used for reasoning in these formalisms

[

Bergamaschi& Sartori1992;

Buchheit et al.1994; Calvanese et al.1994; Go~ni et al.1996; Lenzerini & Schaerf

1991; Levy et al.1996; Beeri et al.1997

]

. On the other hand, several exten-

sions of Description Logics were motivated by the necessity to capture some

aspects of the expressiveness of other formalisms

[

Calvanese&Lenzerini1994;

Calvanese et al.1995; De Giacomo&Lenzerini1995

]

.

4.2 The basic Description Logic ALC

The Description Logic underlying all investigations in this work is ALC, a well-

known Description Logic introduced and investigated in

[

Schmidt-Schau�&

Smolka1991

]

. Further investigations concerning extensions and restrictions of

ALC can be found, for example, in

[

Hollunder et al.1990; Donini et al.1991a;

1995

]

. In ALC, concepts can be built using

� propositional operators, i.e., and (u), or (t), and not (:),

� value restrictions on those individuals associated to an individual via a

certain role. This includes existential restrictions as in (9 has child:Girl)

as well as universal restrictions such as (8 has child:Human).



4.2. The basic Description Logic ALC 39

De�nition 4.1 Let N

C

be a set of concept names and let N

R

be a set of role

names. The set of ALC-concepts is the smallest set such that

1. every concept name is a concept and

2. if C and D are concepts and R is a role name, then (C uD), (C tD),

(:C), (8R:C), (9R:C) are concepts.

In order to �x the exact meaning of these concepts, their semantics is given in

a model-theoretic way.

De�nition 4.2 An interpretation I = (�

I

; �

I

) consists of a set �

I

, called the

domain of I, and a function �

I

which maps every concept to a subset of �

I

and every role to a subset of �

I

��

I

such that

(C uD)

I

= C

I

\D

I

;

(C tD)

I

= C

I

[D

I

;

:C

I

= �

I

nC

I

;

(9R:C)

I

= fd 2 �

I

j There exists an e 2 �

I

with (d; e) 2 R

I

and e 2 C

I

g;

(8R:C)

I

= fd 2 �

I

j For all e 2 �

I

, if (d; e) 2 R

I

, then e 2 C

I

g:

A concept C is called satis�able i� there is some interpretation I such that

C

I

6= ;. Such an interpretation is called a model of C. A concept D subsumes

a concept C (written C v D) i� C

I

� D

I

holds for each interpretation I. Two

concepts are said to be equivalent (written C � D) if they mutually subsume

each other.

For an interpretation I, an individual x 2 �

I

is called an instance of a concept

C i� x 2 C

I

. Finally, x is said to be an R-successor of an individual w 2 �

I

i� (w; x) 2 R

I

.

Additional propositional operators, such as implication, will be used as abbre-

viations: for example, A ) B stands for :A t B. In complex concepts (such

as those used in the reductions later), these abbreviations increase the read-

ability. Furthermore, > is used as an abbreviation for the universal concept,

i.e., > = At:A, and ? is used as an abbreviation for the empty concept, i.e.,

? = A u :A.

Remark 4.3 An alternative for the presentation of the semantics of ALC is

to translate concepts into �rst-order formulae with one free variable. This

translation can be de�ned in such a way that the resulting formulae involve



40 Chapter 4. Description Logics

only 2 variables x; y. The translation is given by two translation mappings

t

x

; t

y

from ALC-concepts into the set of �rst-order formulae over two variables.

For each concept name A, a unary predicate �

A

is introduced, and for each

role name R, a binary relation �

R

is introduced. For C;D possibly complex

concepts, the translation is de�ned as follows:

t

x

(A) = �

A

(x); t

y

(A) = �

A

(y);

t

x

(C uD) = t

x

(C) ^ t

x

(D); t

y

(C uD) = t

y

(C) ^ t

y

(D);

t

x

(C tD) = t

x

(C) _ t

x

(D); t

y

(C tD) = t

y

(C) _ t

y

(D);

t

x

(9R:C) = 9y:�

R

(x; y) ^ t

y

(C); t

y

(9R:C) = 9x:�

R

(y; x) ^ t

x

(C);

t

x

(8R:C) = 8y:�

R

(x; y)) t

y

(C); t

y

(8R:C) = 8x:�

R

(y; x)) t

x

(C):

Obviously, a concept C is satis�able i� its translation t

x

(C) is satis�able, and

a concept C is subsumed by a concept D i� t

x

(C ) D) is valid.

Remark 4.4 If a Description Logic allows for negation and conjunction of

concepts, such as ALC, subsumption and (un)satis�ability can be reduced to

each other:

� C v D i� C u :D is unsatis�able,

� C is unsatis�able i� C v A u :A (for some concept name A).

Since most Description Logics considered here are in fact propositionally closed,

this connection between satis�ability and subsumption will be heavily ex-

ploited: We may restrict our attention to one of these problems, both in the

decidability and in the undecidability proofs.

4.3 Knowledge representation based on De-

scription Logics

Until now, Description Logics were introduced without mentioning how these

Logics can be used for knowledge representation. In this section, the main

ideas concerning knowledge representation based on Description Logics are

introduced, as well as an example (for more details, see

[

Nebel1990

]

). Roughly

spoken, knowledge representation systems based on Description Logics (DL

systems for short) consist of 3 parts:

� a reasoner, often based on a tableau algorithm,



4.3. Knowledge representation based on Description Logics 41

� knowledge bases in which the user models the explicit knowledge of an

application domain, and

� interfaces to the functionalities of the system.

In most DL systems, there are two di�erent kinds of knowledge bases:

(1) The terminological knowledge of an application domain is stored in the so-

called TBox. To this purpose, the TBox contains a set of concept de�nitions,

which are, in their simple version, of the form A := C for a concept name

A 2 N

C

and a (possibly complex) concept C. Concepts occurring on the left-

hand side of a concept de�nition are called de�ned concept, and it depends on

the underlying Description Logic which constructors can be used to build the

concepts on the right-hand side.

(2) In addition to the terminological knowledge described in a TBox, concrete

situations can be described in the so-called ABox, possibly using the concepts

de�ned in the TBox. In order to describe concrete situations, individual names

a; b; : : : are used to refer explicitly to elements of an interpretation domain.

Then ABox-statements can express that an individual a is an instance of a

concept C (written a :C), or that two individuals a; b are related via a role

R (written aRb). The similarity between ABox statements and constraints of

the completion algorithm is not incidental. Constraint systems can be viewed

as special cases of ABoxes, where the specialisation is due to the fact that

constraint systems forALC and several extension do not contain cycles, whereas

ABoxes are not required to be acyclic.

1

It is straightforward to extend the notion of a model to a TBox T and an ABox

A: An interpretation I associates, additionally, each individual a occurring in

A to an element �(a) 2 �

I

. Then I; � satisfy A and T i� they satisfy each of

their statements. This is to say that I; � have the following properties:

for all A := C in T : A

I

= C

I

;

for all a : C in A : �(a) 2 C

I

;

for all aRb in A : (�(a); �(b)) 2 R

I

:

Such an interpretation is then called a model of A and T . Furthermore, a

concept C is said to be T -subsumed by a concept D (written C v

T

D) i�

C

I

� D

I

holds for all models I of T . An individual a is said to be an instance

of a concept C with respect to A and T i� a 2 C

I

for all models of A and T .

Finally, an ABox A is called consistent with a TBox T i� there exists a model

for both, A and T .

1

A cyclic ABox contains statements a

0

R

1

a

1

; a

1

R

2

a

2

; : : : ; a

n+1

R

n

a

0

.



42 Chapter 4. Description Logics

DL systems vary in whether they allow for cyclic concept de�nitions in a TBox

or not: A concept A is said to \use" a concept C if C occurs on the right hand

side of A's de�nition. If the transitive closure of \uses" contains a concept

that \uses" itself, this TBox is called cyclic. For acyclic TBoxes, reasoning

with respect to a TBox T can be reduced to reasoning with respect to the

empty TBox by unfolding (see

[

Nebel1990

]

). Unfolding means substituting all

concepts A

i

which are de�ned in the TBox by A

i

:= C

i

by their de�nition C

i

.

Applying these substitutions to the concepts occurring in an ABox, consistency

with respect to a TBox can thus be reduced to consistency with respect to the

empty TBox. Similar, subsumption and satis�ability of concepts, and the

problem whether an individual is an instance of a given concept with respect

to a TBox can be reduced to the corresponding problems with respect to the

empty TBox.

In general, DL systems employ the unique-name-assumption, which means that

a model has to interpret di�erent individual names of A as di�erent elements

of the interpretation domain. Furthermore, the open-world-assumption allows

that statements which are not implied by an ABox and a TBox may hold or

may not hold. This will become more clear in the next example.

Example 4.5 The TBox given in Figure 4.2 contains some basic concept def-

initions of the process engineering application. There, the behavioural aspects

of a device or a connection are separated from their structural aspects by stor-

ing the �rst one in its implementation and the second aspect in its interfaces:

This example is incomplete in that concepts such as device implementation

or atomic are not de�ned, hence there are models of this knowledge base which

are not conform to the engineer's intuition. It is easy to see that Device

subsumes both Atomic device and Comp device. A closer investigation re-

veals that Atomic device and Comp device are disjoint, which means that an

ABox containing a : Atomic device and a : Comp device is inconsistent with

this TBox. This is due to the fact that a device must be implemented by

an implementation, which must have a description of its behaviour, and that

this behaviour description is atomic for an instance of Atomic device and not

atomic for an instance of Comp device.

The ABox in Figure 4.3 describes some objects of a process model. Since the

concepts on the right hand side of a \:" are not restricted to de�ned concepts,

they can be complex concepts as in the �rst statement.

With respect to the above given knowledge base, the question \Is valve7 an

instance of Comp device?" must be answered with \no": One can construct a

model of this ABox and TBox, where valve7 has a third part which is neither



4.3. Knowledge representation based on Description Logics 43

Device := (9implemented by : Device implementation) u

(9interfaces : Device interface)

Connection := (9implemented by : Connection implementation) u

(9interfaces : Connection interfaces) u :Device

Comp device := Device u (8has part : (Device t Connection)) u

(8implemented by : Comp device implementation)

Atomic device := Device u :(9has part : Anything) u

(8implemented by : Atomic device implementation)

Device implementation

:= Implementation u (9behaviour : Behav descr)

Atomic device implementation

:= Device implementation u (8behaviour : Atomic)

Comp device implementation

:= Device implementation u (8behaviour : :Atomic)

Figure 4.2: Example TBox.

valve7 : Device u

(9implemented by : Valve implementation)

float01 : Device

chamber13 : Device

valve implementat03 : Comp device implementat

valve7 has part float01

valve7 has part chamber13

valve7 implemented by valve implementation03

Figure 4.3: Example ABox.

a connection nor a device. This is due to the above mentioned open-world-

assumption: Everything implied by the statements in a knowledge base has to

hold in each of its models, but propositions which are neither implied by these

statements nor contradicting them might hold or might not hold in its models.

The basic system services and inference problems of a DL system are the

following:

Classi�cation: Computes the ordering of the concepts de�ned in a TBox

with respect to the subsumption relation.



44 Chapter 4. Description Logics

Subsumption: Tests whether a given concept subsumes another given con-

cept, possibly with respect to a TBox.

Satis�ability: Checks whether a given concept can ever be interpreted as a

non-empty set, possibly with respect to a TBox.

Consistency: Tests whether a given ABox is consistent with respect to a

given TBox.

Retrieval: Finds all those individuals of a given ABox that are instances of

a given concept.

Most-speci�c-concepts: Given an individual, it computes the most speci�c

classes this individual is an instance of.

In the following, this work will focus on satis�ability problems for the follow-

ing reasons. Given that the Description Logics to be investigated are mostly

propositionally closed,

� undecidability of satis�ability of concepts implies that none of the above

mentioned system services are computable.

� subsumption can be reduced to satis�ability, hence algorithms deciding

satis�ability can be used for deciding subsumption; see Remark 4.4.

Furthermore, this process engineering application does not ask for cyclic def-

initions if transitive roles are present. Hence subsumption with respect to a

TBox can be reduced to subsumption, which can be reduced to satis�ability

for Description Logic that are propositionally closed.

Given that the TBox is acyclic, the only inference problems that can not

be reduced to concept satis�ability are the ones involving ABoxes, namely

consistency, retrieval and most-speci�c-concepts. Ignoring these problems was,

on the one hand, the only way to investigate several extensions relevant for

the process engineering application|including ABox reasoning to the set of

problems to be investigated would have gone beyond the scope of this work.

On the other hand, tableau-based algorithms deciding concept satis�ability

can be used as a basis for the development of algorithms for ABox inference

problems.

For many Description Logics, tableau-based satis�ability algorithms can be

easily modi�ed such that they are able to decide ABox consistency. This is

true for several extensions of ALC, namely for those by simple and qualifying



4.4. A tableau-based algorithm for ALC 45

number restrictions

[

Hollunder1994

]

, admissible concrete domains

[

Baader&

Hanschke1991

]

, admissible concrete domains and generalised existential and

universal value restrictions

[

Hanschke1992

]

, by inverse and boolean operators

on roles

[

De Giacomo1995

]

, and many more.

4.4 A tableau-based algorithm for ALC

In general, to show decidability of satis�ability of concepts of a Description

Logic D, one has two possibilities:

� One gives a translation from D-concepts to D

0

-concepts, where D

0

is a

Description Logic whose satis�ability problem is known to be decidable.

This translation has to be invariant for satis�ability, i.e., a D-concept C

is satis�able if and only if its translation C

0

is a satis�able D

0

-concept.

This technique is applied, for example, in

[

De Giacomo1995

]

.

� One presents an algorithm and shows that it decides satis�ability of D-

concepts. That is, started with some D-concept C, it always terminates,

and it answers with \C is satis�able" if and only if C is satis�able. Such

an algorithm is called sound and complete, where soundness refers to

the fact that all concepts said to be satis�able are indeed satis�able, and

completeness refers to the fact that all satis�able concepts are found to

be satis�able.

Throughout this work, the second possibility has always been chosen, and

several decision algorithms are presented. All of them are tableau-based, and

the techniques used to prove their termination, soundness, and completeness

are quite similar. In order to understand these techniques better and to make

their presentation easier, they are demonstrated �rst for ALC.

Please note that these algorithms are not thought to be implemented di-

rectly, but to serve as an implementation base. Several optimisation tech-

niques have already been developed and tested, and their impact on the per-

formance of these algorithms has been evaluated. In a nutshell, it turned out

that these techniques have an enormous inuence on the e�ciency of these

algorithms. Especially techniques for the e�cient treatment of the propo-

sitional part of Description Logics

[

Giunchiglia& Sebastiani1996

]

and several

techniques for early clash detection

[

Baader et al.1994; Bresciani et al.1995;

Horrocks1997

]

turned out to be extremely powerful. The algorithms presented



46 Chapter 4. Description Logics

here are designed in such a way that interesting properties such as soundness,

completeness, and termination can be proved in a rather elegant way.

The tableau-based algorithm presented in the following decides satis�ability

of ALC-concepts. Given an ALC-concept C

0

, it tries to build a model for C

0

.

It breaks C

0

down to its subconcepts and tries to satisfy C

0

by satisfying, step

by step, the constraints induced by subconcepts of C

0

. If all these attempts

fail, C

0

is unsatis�able, otherwise, one can easily build a model for C

0

from

the structures generated while breaking down C

0

.

For simplicity, all concepts are supposed to be in negation normal form (NNF

for short). This means that negation is applied to concept names only. An

ALC-concept can be transformed into an equivalent one in NNF by using the

following equivalences to push negation into concepts.

:(C tD) � :C u :D

:(C uD) � :C t :D

:(9R:C) � (8R::C)

:(8R:C) � (9R::C)

The basic data structure our algorithm works on are constraints. For ALC, we

use two di�erent kinds of constraints: For example, the constraint x connected-

to y ensures that the two individuals x and y stand for are related via the role

connected-to, and the constraint x : Device ensures that the individual x

stands for is an instance of the concept Device.

De�nition 4.6 Let � = fx; y; z; : : :g be a countably in�nite set of individual

variables. A constraint is either of the form

xRy, where R is a role name in N

R

and x; y 2 � ,

x :D for some ALC-concept D and some x 2 � .

A constraint system is a set of constraints. For a constraint system S, let

�

S

� � denote the individual variables occurring in S.

An interpretation I is a model of a constraint system S i� there is a mapping

� : �

S

! �

I

such that I; � satisfy each constraint in S, i.e.,

(�(x); �(y)) 2 R

I

for all xRy 2 S;

�(x) 2 D

I

for all x :D 2 S:



4.4. A tableau-based algorithm for ALC 47

1. Conjunction: If x :(C

1

u C

2

) 2 S and x :C

1

62 S or x :C

2

62 S, then

S ! S [ fx :C

1

; x :C

2

g

2. Disjunction: If x :(C

1

t C

2

) 2 S and x :C

1

62 S and x :C

2

62 S, then

S ! S

1

= S [ fx :C

1

g

S ! S

2

= S [ fx :C

2

g

3. Value restriction: If x :(8R:C) 2 S, y is an R-successor

of x in S and y :C 62 S, then

S ! S [ fy :Cg

4. Existential restriction: If x :(9R:C) 2 S, and there is no

R-successor y of x in S with y : C 2 S, then

S ! S [ fxRz; z : Cg for a new variable z 2 � n �

S

.

Figure 4.4: The completion rules for ALC.

For a constraint system S, individual variables x; y, and role names R

i

, we say

that y is an R

1

�: : :�R

m

-successor of x in S i� there are y

0

; : : : ; y

m

2 � such

that x = y

0

; y = y

m

, and fy

i

R

i+1

y

i+1

j 0 � i � m� 1g � S. S contains a clash

i� fx :A; x ::Ag � S for some concept name A and some variable x 2 �

S

. A

constraint system S is called complete i� none of the completion rules given

in Figure 4.4 can be applied to S.

Figure 4.4 introduces the completion rules that are used to test ALC-concepts

for satis�ability. The completion algorithm works on a tree where each node is

labelled with a constraint system. It starts with the tree consisting of a single

leaf, the root, labelled with S = fx

0

:C

0

g, where C

0

is the ALC-concept in NNF

to be tested for satis�ability. A rule can only be applied to a leaf labelled with

a clash-free constraint system. Applying a rule S ! S

i

, for 1 � i � n, to such

a leaf leads to the creation of n new successors of this node, each labelled with

one of the constraint systems S

i

. The algorithm terminates if none of the rules

can be applied to any of the leaves. In this situation, it answers with \C

0

is

satis�able" i� one of the leaves is labelled with a clash-free constraint system.

Example 4.7 If this algorithm tests

C

0

:= A u (8R:(C tD)) u (9R::C)



48 Chapter 4. Description Logics

for satis�ability, it starts with the constraint system fx :C

0

g, and after two

applications of Rule 1, we have

S

0

= fx :C

0

; x :(8R:(C tD))u (9R::C); x :A; x :(8R:(C tD)); x :(9R::C)g:

Next, only Rule 4 can be applied, which adds xRy and y ::C to S. Then

Rule 3 can be applied, which adds y :(C t D) and yields S

00

. Finally, Rule 2

yields

S

1

= S

00

[ fy :Cg;

S

2

= S

00

[ fy :Dg:

The constraint system S

1

contains a clash because fy :C; y ::Cg � S

1

. In

contrast, S

2

does not contain a clash, nor can any rule be applied to it. Hence it

is a complete, clash-free constraint system, and C

0

is satis�able. Furthermore,

S

2

can be used to build a model I of C

0

. The interpretation domain �

I

is

simply the set of variables occurring in S

1

, and concepts as well as roles are

interpreted according to the constraints in S

1

, i.e.,

�

I

= �

S

1

= fx; yg;

A

I

= fx 2 �

I

j x :A 2 S

1

g = fxg;

D

I

= fx 2 �

I

j x :D 2 S

1

g = fyg;

C

I

= fx 2 �

I

j x :C 2 S

1

g = ;;

R

I

= f(x; y) 2 �

I

��

I

j xRy 2 S

1

g = f(x; y)g:

In order to show that this completion algorithm really yields a decision proce-

dure for ALC, it su�ces to proof the following lemma.

Lemma 4.8 Let C

0

be an ALC-concept in NNF, and let S be a constraint

system obtained by applying the completion rules to fx

0

:C

0

g. Then

1. For each completion rule R that can be applied to S, and for each in-

terpretation I we have I is a model of S i� I is a model of one of the

systems S

i

obtained by applying R.

2. If S is a complete and clash-free constraint system, then S has a model.

3. If S contains a clash, then S does not have a model.

4. The completion algorithm terminates when applied to fx

0

:C

0

g.



4.4. A tableau-based algorithm for ALC 49

Remark 4.9 Indeed, Lemma 4.8 immediately implies decidability of satis�-

ability of ALC-concepts. When the completion algorithm terminates, it stops

with a tree whose leaves are all labelled with complete constraint systems. If

C

0

is satis�able, then fx

0

:C

0

g is also satis�able, and thus one of the complete

constraint systems is satis�able by (1). By (3), this system must be clash-free.

Conversely, if one of the complete constraint systems is clash-free, then it is

satis�able by (2), and because of (1) this implies that fx

0

:C

0

g is satis�able.

Hence the algorithm is a decision procedure for satis�ability of ALC-concepts.

Lemma 4.8 can be proved as follows:

(1) is proved by investigating all rules separately. Since all constraint systems

S

i

generated by a rule are supersets of their ancestor S, it follows immediately

that each model of S

i

is also a model of S. The other direction depends on

the respective rule, but is straightforward in most cases.

(2) can be proved by constructing a so-called canonical model for S from a

clash-free, complete constraint system S. In Example 4.7, this was realized as

follows: Variables in the constraint system became individuals of the canonical

model, and concepts and roles were interpreted according to the constraint

system. For other Description Logics, the construction of the canonical model

can be more complicated.

(3) is straightforward. It su�ces to show that no interpretation can satisfy a

constraint system containing fx :A; x ::Ag.

(4) can be proved by giving a termination order. This is a set A ordered

by some well-founded order �. Well-foundedness ensures that there is no

in�nite chain a

0

� a

1

� a

2

� : : : . Each constraint system S is associated

to size(S) 2 A in such a way that, if S

i

is obtained from S by application of

one of the completion rules, then size(S) � size(S

i

). This property together

with well-foundedness and the fact that each rule generates only �nitely many

constraint systems implies termination. For extensions of ALC, this technique

is applied in

[

Baader&Hanschke1991

]

and Section 6.1.2.

Intuitively, the following properties of the completion algorithm are responsible

for its termination.

� All concepts of constraints added by the completion rules are subconcepts

of the concept C

0

with which the algorithm started. It is not di�cult to

see that the number of subconcepts of a concept C is linear in the length

of C.



50 Chapter 4. Description Logics

� If a rule R can be applied to a constraint system S, then this is because

of the presence of a particular constraint a :C in S, and the application

of R adds constraints whose concepts are strictly shorter than C.

� The introduction of role successors is always triggered by a constraint

of the form x : 9R;C, hence each variable has only �nitely many role

successors.

� Once a variable is introduced, it is present in all subsequent constraint

systems, and constraints are never removed (these two properties prevent

the algorithm from looping).

Although the completion algorithm is sound and complete, it is far from being

optimal. For example, when started with the following concept C

n

(whose

length is quadratic in n), it generates a constraint system whose size is ex-

ponential in the length of C

n

, i.e., the variables introduced by the algorithm

together with the role successorship induced by constraints xRy build a binary

tree of depth n+ 1.

C

0

= 9R:A u 9R::A u

8R:(9R:A u 9R::A) u

8R:8R:(9R:A u 9R::A) u

8R:8R:8R:(9R:A u 9R::A) u

8R:8R:8R:8R:(9R:A u 9R::A) u

8R: : : : : : : : : : : : :8R:

| {z }

n times

(9R:A u 9R::A)

When started with C

n

, the completion algorithm needs space exponential in

the size of its input C

n

, which is more than necessary: In

[

Schmidt-Schau�&

Smolka1991; Donini et al.1991a

]

, a di�erent completion algorithm is presented

which needs space that is only polynomial in the length of the input concept,

and which works also for extensions of ALC. Indeed, it was shown that this

result is optimal since satis�ability of ALC-concepts is PSpace-complete.

Similar to the completion algorithm presented here, these PSpace algorithms

exploit the fact that for ALC-concepts, it is su�cient to try to build a tree

model for the input concept; see Section 4.5.3 for details. As a consequence

of this fact, the variables of a constraint system together with the role succes-

sorship induced by constraints of the form xRy build a tree. In contrast to

the completion algorithm presented here, the PSpace algorithms handle the

branches of this tree independently. Once a branch has been investigated, one



4.4. A tableau-based algorithm for ALC 51

a :(9R:A)

a :(� 1 R)

a :(8R:9R:A)

x

2

:(9R:A)

x

2

:A

a :(8R:9R:A)

a :(9R:A)

a :(� 1 R)

x

2

:A

x

1

:(9R:A)

x

1

:A

x

2

:A

x

1

:A

x

1

:(9R:A)

a :(� 1 R)

a :(9R:A)

a :(8R:9R:A)

x

1

:A

a :(8R:9R:A)

a :(9R:A)

a :(� 1 R)

a :(9R:A)

a :(� 1 R)

a :A

a :(8R:9R:A)

a :(9R:A)

a :(� 1 R)

a :(8R:9R:A)

a :A

Figure 4.5: A non-terminating application of the completion rules.

can forget about it and reuse the space where it was stored{provided one keeps

track of the results of these partial investigations.

As already mentioned at the end of Section 4.3, tableau-based algorithms like

the completion algorithm presented above for ALC that decide satis�ability of

concepts can be often modi�ed such that they decide ABox consistency. To

underline this fact, we have de�ned ABoxes and constraint systems in such a

way that the latter are a special case of the former. In most cases, it su�ces

to de�ne a strategy for the application of the completion rules in order to

guarantee termination of the completion algorithm. A strategy is mainly an

ordering in which the completion rules applied. For example, the following

ALC-ABox can lead to an in�nite application of completion rules|if the rules

are applied in the same ordering as in Figure 4.5. More precisely, the non-

termination of this example is due to the fact that generating and identifying

rules are applied in an arbitrary order. Termination for ALC-ABoxes can be

easily guaranteed by a simple strategy which prefers rules on \old" individuals

to rules on individual variables introduced by the completion algorithms.

A = f a :(8R:9R:A);

a :(9R:A)

a :(� 1 R);

aRag



52 Chapter 4. Description Logics

4.5 Extensions of ALC

In this section, several known extensions of ALC are introduced. They will

serve as a basis for further extensions which are described in the Chapters 6

and 7. The expressive power of ALC and these extensions are sketched in

Section 4.5.3.

4.5.1 ALC extended by Complex Roles

Transitivity in Description Logics came (until recently,

[

Sattler1996

]

) always

in the shape of the transitive closure of roles

[

Baader1991; Schild1991; De

Giacomo&Lenzerini1995; Calvanese et al.1995

]

. The �rst extension of ALC

by the transitive closure of roles was presented in

[

Baader1991

]

. The author

presents the Description Logic ALC

reg

, which extends ALC by allowing for regu-

lar expressions over role names in the place of role names. In

[

Baader1990a

]

, a

sound and complete tableau-based algorithm is given that decides satis�ability

of ALC

reg

-concepts. In the following, ALC

reg

as well as a restricted version of

this logic, ALC

+

, is presented.

De�nition 4.10 Starting with role names in N

R

, regular roles are built using

the role constructors composition (R�S), union (RtS), and transitive closure

(R

+

).

ALC

reg

is obtained from ALC by allowing, additionally, for regular roles inside

concepts.

ALC

+

is the extension of ALC obtained by allowing, additionally, for each role

R 2 N

R

, the use of its transitive closure R

+

inside concepts.

The extension of the semantics to these complex roles is straightforward.

De�nition 4.11 An interpretation I = (�

I

; �

I

) of an ALC

reg

-concept (resp.

ALC

+

-concept) is an interpretation of ALC-concepts that satis�es additionally

the following equations:

(R

1

t R

2

)

I

= R

1

I

[R

2

I

;

(R

1

�R

2

)

I

= R

I

1

�R

I

2

= f(d; f) 2 �

I

��

I

j There exists e 2 �

I

with

(d; e) 2 R

I

1

^ (e; f) 2 R

I

2

g;

(R

+

)

I

= [

i�1

(R

I

)

i

; where (R

I

)

n

= (R

I

�R

I

�: : :�R

I

)

| {z }

n times

:



4.5. Extensions of ALC 53

For a regular role R, an individual x said to be an R-successor of an individual

w in I i� (w; x) 2 R

I

.

Extending ALC by composition or disjunction of roles does not change the

expressive power of ALC because of the following equivalences:

9(R � S):C � 9R:(9S:C); 9(R t S):C � (9R:C) t (9S:C);

8(R � S):C � 8R:(8S:C) and 8(R t S):C � (8R:C) u (8S:C):

In contrast, extending ALC by the transitive closure of roles really increases

its expressive power (see

[

Baader1990b

]

for a formal de�nition of expressive

power). On one hand, ALC

+

- and ALC

reg

-concepts cannot be translated to

equivalent �rst-order formulae, whereas this is possible for ALC-concepts; see

Remark 4.3. This is due to the fact that the transitive closure of a relation

cannot be expressed in �rst-order logic, in contrast to transitivity. On the

other hand, ALC loses the �nite tree model property when extended by the

transitive closure of roles.

2

As a consequence of this second fact, algorithms (such as tableau-based algo-

rithms) that try to construct a model of a concept containing the transitive

closure of roles need special \cycle detection mechanisms"

[

Baader1991

]

that

prevent them from looping. For example, a naive modi�cation of the comple-

tion algorithm for ALC presented in Section 4.4 would introduce an in�nite

number of R

+

-successors when started with x :C

0

for

C

0

= A u (9R:A) u (8R

+

:9R:A):

A terminating modi�cation of this algorithm must notice that all these R

+

-

successors involve the same constraints and then stop the generation of new

successors. Moreover, this modi�cation must recognise cases where the sat-

isfaction of constraints is postponed in each step. This could happen, for

example, while trying to construct a model of

C

1

= A u (9R

+

::A) u (8R

+

:A):

A naive modi�cation of the completion algorithm for ALC would start with

fx

0

:C

0

g, and would run into an in�nite loop while trying to generate an R

+

-

successor of x

0

in :A. This is due to the fact that the constraint x

0

:(9R

+

::A)

can be satis�ed by any R

i

-successor of x

0

, and that the length i of this R-chain

2

A Description Logic has the �nite tree model property if each satis�able concept has

also a model that has the shape of a �nite tree; see Section 4.5.3 for details.



54 Chapter 4. Description Logics

is not �xed or bounded by C

0

in an obvious way. Summing up, a sound and

complete modi�cation of the completion algorithm for ALC has to distinguish

between cases where constraints on individuals propagated along some (possi-

bly in�nite) role chain are simply re-generated but satis�ed (as in the example

with C

0

) and cases where the satisfaction of constraints is always postponed

(as in the example with C

1

).

Unfortunately, these cycle detection mechanisms need to store a large amount

of information and this cannot be accomplished using polynomial space: As

stated in

[

Fischer&Ladner1979; Pratt1979

]

, satis�ability of Propositional Dy-

namic Logic (PDL) formulae is ExpTime-complete. A translation of this

result from PDL to the vocabulary of Description Logics, namely to ALC

reg

,

can be found in

[

Schild1991

]

. This translation is, beside others, satis�ability

preserving. That is, a PDL formula � is satis�able if and only if its translation

into an ALC

reg

-concept C

�

is satis�able. Since ALC

reg

is propositionally closed,

subsumption can be reduced to satis�ability and vice versa, and, since these re-

duction are linear, subsumption of ALC

reg

-concepts is also ExpTime-complete.

Finally, the hardness proof in

[

Fischer&Ladner1979

]

does not make any use

of composition or disjunction of roles, hence ALC

+

is also ExpTime-complete.

4.5.2 ALC extended by Number Restrictions

Since objects are often characterised by the number of objects they are related

to via some relation, number restrictions are present in almost all implemented

systems

[

Brachman&Schmolze1985; Patel-Schneider et al.1991; Peltason1991;

MacGregor&Brill1992; Baader et al.1994

]

. They occur in their most sim-

ple form in ALCN , an extension of ALC introduced in

[

Hollunder et al.1990;

Donini et al.1991a

]

. ALCN is obtained from ALC by allowing, additionally, for

constructs which describe, for example, that an individual has at least 7 parts

or at most 4 interfaces.

De�nition 4.12 ALCN (resp. ALC

+

N ) is obtained from ALC (resp. ALC

+

) by

allowing, additionally, for concepts of the form (� n R) and (� n

0

R), where

n; n

0

are nonnegative integers and R is a role name.

An interpretation I = (�

I

; �

I

) of an ALCN -concept (resp. ALC

+

N -concept)

is an interpretation of ALC-concepts that additionally satis�es the following

equations:

(� n R)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g � ng;

(� n R)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g � ng;



4.5. Extensions of ALC 55

where #M denotes the cardinality of a set M .

Similar, ALC

reg

N and ALC

+

N denote the extensions of ALC

reg

and ALC

+

by

number restrictions on role names. This is to say that inALC

reg

N and ALC

+

N ,

the complex roles available in ALC

reg

and ALC

+

are not allowed inside number

restrictions|here, only role names can be used.

Since ALC is propositionally closed, we can express all relations in f=; <;>g

inside number restrictions, for example (> n R) � :(� n R) and (= n R) �

((� n R) u (� n R)).

As shown in

[

Donini et al.1991a

]

, adding number restrictions to ALC does not

really increase its computational complexity: Satis�ability and subsumption

of concepts are PSpace-complete.

In

[

Hollunder&Baader1991

]

, a more expressive variant of number restrictions,

namely so-called qualifying number restrictions are presented and investigated.

Qualifying number restrictions are of the form (� n R:C) or (� n R:C), and

they are interpreted as the set of those individuals having at least (resp. at

most) n R-successors that are instances of C, i.e.,

(� n R:C)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g \ C

I

� ng;

(� n R:C)

I

= fd 2 �

I

j #fe 2 �

I

j (d; e) 2 R

I

g \ C

I

� ng:

As a consequence of the tableau-based algorithm presented in

[

Hollunder&

Baader1991

]

, adding qualifying number restrictions toALC preserves the �nite-

tree-model property.

4.5.3 Expressive power of the basic Description Logics

In general, logics can be classi�ed with respect to the form the models of

satis�able formulae have. Considering the form that models of satis�able con-

cepts of a certain Description Logic have is useful because this form is closely

related to its expressive power. For example, if a Description Logic has the

�nite-model property, then no concept can be built within this logic which

enforces an in�nite model.

More precisely, each satis�able concept of a logic having the �nite-model prop-

erty has a model with �nite interpretation domain. Given that model checking

is decidable, the �nite model property implies that the set of all satis�able

concepts is recursively enumerable. Furthermore, most Description Logics can

be viewed as fragments of �rst-order logic (see Remark 4.3 for a translation



56 Chapter 4. Description Logics

from ALC to �rst-order logic), for which unsatis�able formulae are known to

be recursively enumerable. Together, this yields decidability of satis�ability

of these logics: Deciding whether a concept C is satis�able can be done by

�rst translating C into a corresponding �rst-order formula �

C

(x), and then

testing in parallel whether �

C

(x) is unsatis�able and whether interpretations

I

j

are models of �

C

(x). Given that these interpretations are completely enu-

merated from small ones to larger ones, this yields a decision procedure for

(Description) logics having the �nite-model property. However, in general this

procedure is far from being optimal and does not provide any upper bounds for

the computational complexity of the satis�ability problem under consideration.

A language not having the �nite-model property is not necessarily undecidable

(see

[

Gr�adel et al.1997

]

for example), but a lack of this property is a good

hint that reasoning might be very di�cult. In fact, all Description Logics

investigated in this thesis which lack the �nite-model property turn out to

have undecidable satis�ability problems.

Satis�able concepts of a Description Logic having the tree-model property have

some model in the form of a tree: If C is satis�able, then it has a model I

such that

� there is some x

0

2 C

I

that has no R-predecessor in �

I

for all roles R,

� each element of �

I

can be reached from x

0

via a role chain

3

, and

� each y 6= x

0

in �

I

is an R-successor of exactly one y

0

2 �

I

for one role

name R.

Finally, if a Description Logic has the �nite-tree-model property , then each

satis�able concept has a �nite tree model.

In contrast to ALC

+

, ALCN has the �nite-tree-model property, which will not

be lost even when extended by allowing for quali�ed number restrictions. For

ALC

+

, the possibility to use the transitive closure of a role inside value restric-

tions is the reason for the lack of the �nite-tree-model property: For exam-

ple, the following concept describes instances of A having some R-successor

in A and where each individual reachable over some R-path has itself some

R-successor in A:

A u (9R:A) u (8R

+

:(9R:A)):

Obviously, this concepts is satis�able, but each of its models has either an

in�nite R-chain or it contains some R-cycle. Nevertheless, ALC

+

still has the

3

Role chains are roles of the form R

1

�: : :�R

n

.



4.5. Extensions of ALC 57

tree-model property, which means that each satis�able ALC

+

-concept has a (not

necessarily �nite) tree model.

The expressive power added by the transitive closure to ALC becomes also

apparent in the following example:

Device u (9has part

+

:(9is made of:Carcinogenic): (4.1)

Using the transitive closure of has part, one can refer to parts at some level

of decomposition not known in advance, without restricting this level a priori.

If this maximum level could be restricted to, say, n, those dangerous devices

can be described by

(9has part:9is made of:Carcinogenic) t

(9has part:9has part:9is made of:Carcinogenic) t

(9has part:9has part:9has part:9is made of:Carcinogenic) t : : :

(9has part: : : :9has part:

| {z }

n times

9is made of:Carcinogenic)

Unfortunately, beside the necessity of �xing an upper bound n, a large number

of disjunctions over complex concepts is involved which leads, in general, to

performance degradation of the inference algorithm. One can think of opti-

mising techniques which exploit the fact that these disjuncts are of a similar

structure, but it is probably more e�cient to directly use the transitive closure

of roles together with speci�c optimisation techniques.

When constructing an algorithm for testing satis�ability of concepts, tree-

model properties turn out to be very useful. Tableau-based algorithms, in

general, test satis�ability by trying to build a canonical model. For logics

having the (�nite-)tree-model property, one has only to consider models having

a (�nite) tree structure which makes the design of these algorithms easier: For

most of these logics, the attempt can be stopped when a tree is constructed

whose depth is (polynomially or exponentially) bounded by the length of the

input concept. Furthermore, it is easy to avoid the algorithm from looping and

thus to ensure termination while investigating tree structures{given that the

outdegree can be bounded, which is usually the case. In arbitrary structures,

special cycle detection techniques have to be applied to yield termination.

Additionally, to proof the algorithm's soundness is mostly easy if the canonical

model constructed for a satis�able concept C

0

has the form of a �nite tree: By

induction on the depth of this tree, it can be shown that the canonical model

satis�es all constraint on variables at this depth. In the presence of cycles or

in�nite chains, this is no longer possible, and the proof might become more

di�cult.



58 Chapter 4. Description Logics

Summing up, these model properties strongly inuence the reasoning tech-

niques one has to apply. As a rule of thumb, reasoning in tree models is

mostly easier than in arbitrary ones, and reasoning in �nite models is mostly

easier than in possibly in�nite ones. On the other hand, these model proper-

ties are closely related to the expressive power of a logic. For example, using

a Description Logic with the tree-model property, it is impossible to describe

devices where all those devices it is connected to are controlled by the same

control unit (see Chapter 1, concept 1.1), and that are connected to at least

two devices. A concept describing devices with these properties has clearly

no tree model since such a device is always related to a control unit via at

least two di�erent paths. For an application where it is crucial to describe and

reason about similar concepts, the expressive power of a Description Logic

having the tree-model property is not adequate. Similarly, if the application

asks for concepts describing in�nite structures only, a Description Logic having

the �nite model property is not expressive enough.



Chapter 5

Prototype Implementation

In this chapter, the integration of the DL system Crack

[

Bresciani et al.1995

]

into the process modeling toolModKit

[

Bogusch et al.1996

]

is motivated and

described. This integration is a part of the cooperation between the Lehrstuhl

f�ur Proze�technik and the Lehr- und Forschungsgebiet Theoretische Informatik

of RWTH Aachen and was realised with the support and involvement of R.

Bogusch and W. Ge�ers.

5.1 The modeling tool ModKit

ModKit was developed at the Lehrstuhl f�ur Proze�technik at the University

of Technology in Aachen in order to empirically evaluate the ideas formalised

within VeDa

[

Baumeister et al.1998

]

. It is implemented in G2, which is a

tool for developing and executing real-time expert systems

[

Gen1995

]

. G2 was

originally applied to process monitoring and control tasks within the chemical

and manufacturing industries. Its exible development environment has led to

many other application domains, not all of which are centred around real-time

processing.

G2 allows for the de�nition of classes, rules, and procedures activated by the

user or triggered by particular events. However, despite the fact that G2 allows

for multiple inheritance,

1

the possibilities to describe classes, respectively the

objects belonging to these classes, are rather restricted. For example, it is not

possible to re�ne the range of an attribute whose range is already speci�ed in a

1

This can be compared with the possibility to de�ne, in Description Logics, one concept

as a subconcept of more than one concept de�ned in the TBox.



60 Chapter 5. Prototype Implementation

superclass. As a consequence, the class hierarchy in ModKit is poorly struc-

tured in that the description of a class contains mostly only the name of the

according superclasses, and no further information about what distinguishes

the instances of this class from the instances of its superclasses.

Apart from this weakness, process modeling using ModKit can be said to

be rather comfortable. In general, setting up a model in ModKit works

as follows. First, the structure of the model is speci�ed by choosing devices

and connections from a catalogue; see Figure 5.1. This is done by dragging

and dropping items representing devices or connections from the catalogue

into the current workspace. Next, these items are connected using prede�ned

connection posts, and their properties and behaviour is speci�ed using the

dialogues built for these purposes; see Figure 5.2. If composed items were

chosen, their components are speci�ed in a way similar to the one that is

trodden to specify a whole model. This procedure is strongly supported by on-

line help, and the documentation of the decisions taken and the choices made

during this procedure is supported by prede�ned forms attached to the objects

representing devices and connections. Once the model is completely speci�ed,

the simulation of its behaviour can easily be realised due to the integrated

simulation tools and source code generators. The latter automatically generate

the source code for the former from the speci�ed model. Finally, the whole

process of setting up a model is supported by the formalisation of the actions

undertaken on the way towards a process model

[

Lohmann1998; Krobb1997

]

.

However, the design of a model is a highly creative process, and can thus only

partially be guided.

5.2 The terminological knowledge representa-

tion system Crack

Crack, implemented at the Istituto per la Ricerca Scienti�ca e Tecnologica

(IRST) in Trento, Italy

[

Bresciani et al.1995

]

, is a DL system whose develop-

ment was driven by the need for a DL system

� that implements a Description Logic with high expressive power, namely

an extension of ALC by features (i.e., functional roles, which are a simple

form of number restrictions), inverse roles, the intersection of roles, and

individuals (which allow the user to enumerate concrete individuals and

state, for example, that objects are related to one of these via a speci�c

role by (9connected-to:(one of fvalve7; valve9; valve17g))),



5.2. The terminological knowledge representation system Crack 61

Figure 5.1: A ModKit screenshot showing the catalogue and the structure of

the ethylene-glycol process.

� whose algorithms are based on sound and complete tableau-based algo-

rithms, and

� that is modular, which means that it can easily be extended to more

expressive Description Logics, namely those encompassing new concept-

or role-forming constructors.

The implementation of Crack had to cope with two challenges: On the one

hand, the goal of being modular can only be achieved by a rather direct imple-

mentation of the completion rules of the tableau algorithm|which were not

designed for implementation purposes, but for proof purposes. On the other

hand, the implementation has to be highly optimised|otherwise, the high

computational complexity of the underlying Description Logic would prevent

any realistic application. Fortunately, the implementation reached both goals:



62 Chapter 5. Prototype Implementation

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5.2: AModKit screenshot showing the dialogue for the property spec-

i�cation of a reactor.

The optimisation techniques applied proved to be so e�cient that even large

knowledge bases can be classi�ed within an acceptable amount of time.

The authors of Crack and Fact

[

Horrocks&Gough1997

]

are working on a

descendant of both Crack and Fact. Fact is an implementation of an exten-

sion of ALC

R

+

introduced in Chapter 7 which was motivated by the promising

results concerning the computational complexity described there. We hope

to be able to replace Crack by this new DL system because it will be more

appropriate for the representation of aggregated objects; see the discussion at

the end of Section 7.4.

5.3 The integration of Crack into ModKit

The ideas concerning the integration of Crack into ModKit are results of

a fruitful cooperation with R. Bogusch. In order to use the system services



5.3. The integration of Crack into ModKit 63

provided by Crack for a better structuring of the classes and objects inMod-

Kit, these classes must be translated into Crack-concepts. Given that the

engineer should be supported when de�ning new classes, this translation has to

be generated automatically. In Figure 5.3, the architecture of the integration

is presented. The translator is a ModKit program which realises the above

mentioned translation of ModKit class descriptions into concepts in Crack

syntax. For the translation of a ModKit class C, besides the information

speci�ed in the de�nition of C explicitly, the translator takes also into account

information concerning instances of C that is available elsewhere. For example,

if a ModKit relation R is de�ned in such a way that its domain is C and its

range is another class D, then the translator explicitly states in the translation

of C that all objects related to instances of C via the relation R are instances

of D. While realising the integration, theModKit class de�nitions were mod-

i�ed in such a way that the ModKit class hierarchy and the taxonomy of the

corresponding concepts agree. This could be realised rather easily because the

number of classes was still small. In the following, we assume that, for already

de�ned classes, its place in the ModKit hierarchy is identical to the place of

its corresponding Crack concept in the taxonomy.

The communication between ModKit and Crack is realised by a bridge

process which was implemented in C by A. Beber of IRST in Trento, Italy,

when he was a guest at the Lehrstuhl f�ur Proze�technik of RWTH Aachen.

The bridge process is invoked via the GSI interface of ModKit using Unix

sockets. The bridge process and ModKit communicate via the GSI interface

ofModKit. This communication as well as the tailoring of the bridge process

to the speci�c requirements of the overall integration was accomplished by W.

Ge�ers of the Lehrstuhl f�ur Proze�technik.

For modularity reasons, Crack is not launched automatically together with

ModKit. Crack is launched and connected to ModKit by simply clicking

on a ModKit action button, and then the basic system services are called

across the bridge process. These system services are called automatically from

built-in routines in order to support the engineer in structuring bothModKit

classes as well as ModKit individuals.

ModKit classes have an attribute crack-description whose value, a string,

is generated automatically and set by the translator. The way actions trig-

ger the invocation of the translator guarantees that the translation of each

class is up-to-date before Crack system services are invoked. The attribute

crack-description contains, in Crack syntax, all the information concern-

ing the corresponding class that are available from ModKit. As a matter of

fact, this description cannot contain any knowledge concerning triggers, rules



64 Chapter 5. Prototype Implementation

translator

base

knowledge-

C-

bridge

Inference

System

TBox ABox

GSI-

interface

G2 Unix Lisp

ModKit

user

interface
Crack

API

Figure 5.3: The architecture of the integration of Crack into ModKit.

or procedures associated to a class. Hence the information concerning a class

that is visible to Crack is incomplete. As a consequence, no ModKit class

will be migrated in the class hierarchy automatically because Crack inferred

that the corresponding concept has a place in the taxonomy that is di�erent

from the place of the corresponding ModKit class.

The answers given by Crack are used as follows: The simplest way in which

Crack can be used is the visualisation of the taxonomy of the concepts that

are translations of ModKit classes. More sophisticated uses of Crack's sys-

tem services are described in the following.

Modifying and reclassifying prototypes

When creating models using ModKit, a common technique is to copy an ob-

ject o (a so-called prototype) representing a device or a connection from the

catalogue or from another model, and to modify it according to the speci�c

needs of the current model. If o was instance of class C when it was copied, it

continues to be an instance of C even if its properties are completely changed.

In ModKit, like in many object-oriented systems, an object continues be-

ing an instance of the class it was instantiated from until this relationship is

changed by hand. For example, when looking more closely at models that were

created using ModKit, we found an atomic device that was modi�ed in such



5.3. The integration of Crack into ModKit 65

a way that it had parts. For a better reuse of already de�ned objects and for

a better cooperation among several engineers, an object o should always be an

instance of one of the classes it \�ts best". The meaning of \�tting best" is

explained in the following. We assume that o's properties are possibly partially

given, that is, o has all the properties that are stated explicitly, plus possibly

other properties. Then a class C is said to \�t" if o could be an instance of C

without causing inconsistencies whatever additional properties o might have.

A class C is said to \�t best" an object o if no class that is more speci�c than C

also �ts o. For one object o, there might be several classes that �t best o. Like

other object-oriented systems, ModKit allows only for single instantiation,

that is, each object is an instance of exactly one class. As stated above, an

object o is not necessarily an instance of some class it �ts best, and it would

already be helpful if this could be ensured.

However, if the migration of objects to instances of classes they �t best is

realised by the engineer, it becomes costly, possibly incorrect, and can cause

inconsistencies. It can be supported by applying the system services ofCrack,

namely the retrieval of the most speci�c concepts for an object. The integration

of Crack into ModKit supports this migration as follows: Each time the

properties of an object are changed, Crack is automatically asked to compute

the most speci�c concepts the translation of this object is an instance of. The

corresponding classes are recommended to the user to migrate this object to.

He or she can then choose one of these classes as the new class the object under

consideration is an instance of.

De�ning a new class

For the de�nition of a new class O, Crack is used as follows. Roughly spoken,

the user sketches the class de�nition in a dialogue designed for this purpose.

Then this class de�nition is automatically translated into a Crack concept

and classi�ed into the already existing taxonomy. The results of this classi�-

cation are shown to the user, which can then investigate the subsumers and

subsumees of O's translation and change the de�nition of the class if its place

in the taxonomy does not match his or her intuition. Only when O's place

in the taxonomy is accepted by the user, O is added as a new class, having

the subsumers and subsumees proposed by Crackas super- and subclasses.

In this way, ModKit's class hierarchy and the corresponding taxonomy are

always kept identical.



66 Chapter 5. Prototype Implementation

5.4 Experiences

Following the argumentation of this thesis, the expressive power of Crack is

not high enough for this application. However, Crack was the most expressive

DL system with sound and complete inference algorithms available at the time

the integration started. Fortunately, all automatically deducible information

concerning ModKit classes and objects can be expressed in Crack. Hence

even a more sophisticated translator would only output concepts that can be

handled by Crack. On the other hand, there are properties of classes and

objects that cannot be deduced by any translator (for example those implied

by triggers or rules). As a consequence, no automatic changes of the class

hierarchy or objects are triggered by answers of Crack.

The �rst positive aspect of this integration showed up while realising the in-

tegration: The ModKit class hierarchy, which has grown constantly over the

last years, was examined in detail. Inconsistencies were detected and improve-

ments towards a better, deeper structure of this hierarchy were made. This

included the modi�cation ofModKit class descriptions: When the integration

was started, there were many classes for which the only information present in

ModKit was the set of their super- and subclasses. The motivation for the

introduction and the meaning of these classes could only be guessed from their

names. Translating these classes and arranging the corresponding concepts

with respect to the subsumption relation revealed this lack of description, led

to discussions among the process engineers, and to a better, declarative de-

scription of these classes. An obvious advantage of these modi�cations is that

new engineers working with ModKit can understand more easily the class

hierarchy.

The second positive e�ect is due to the support the integration of Crack

into ModKit provides for the migration of objects and classes. The system

services provided by Crack guide the user in the migration of objects whose

properties were modi�ed into classes that �t best, and in the de�nition of new

classes for new types of objects. This \cleaning up" has still to be done by

hand by the engineers, but they are now supported by the system services

of Crack. This supports both increases the motivation of the engineers to

do this cleaning up as well as decreases the risk of senseless migrations or

inconsistencies.

However, the system services available in current DL system can still be ex-

tended to provide an even better support: For example, given a set of objects,

a system service that automatically generates a class description for a possibly

new class that �ts best this set would be very useful. Furthermore, a system



5.4. Experiences 67

service that, given a set of objects, partitions this set into subsets of objects

which are relatively similar to each other would be useful: It could be used to

determine sets of objects for which it would be useful to introduce new classes.

These system services are not yet available in current DL systems. To provide

these services, a precise de�nition of their functionality is required, and ade-

quate algorithms have to be developed. These investigations will be part of

future work carried out in cooperation between the Lehr- und Forschungsgebiet

Theoretische Informatik and the Lehrstuhl f�ur Proze�technik at the University

of Technology in Aachen.



Chapter 6

Extending Description Logics by

Expressive Number Restrictions

There are two ways in which we increase the expressive power of traditional

number restrictions in Description Logics: First, we allow the use of complex

roles inside number restrictions. These constructors enable us, for example,

to express statements such as \for this object, we model at least 4 phenom-

ena that are also modeled for its neighbours" by using the number restriction

(� 4 ((connected-to�has-phenomena) u has-phenomena)). In this example,

composition (�) and conjunction (u) of roles are used inside a number restric-

tion. Other role-forming constructors investigated in this chapter are union

(t) and inversion (�

�1

). Second, in symbolic number restrictions, numerical

variables can be used in the place of nonnegative integers. Thus, one has

no longer to �x a number for the (lower or upper) bound of role successors,

but one can express statements such as \having the same number of inputs

and outputs" or \having less outputs than the objects connected-to it have

inputs".

Before investigating each of these Description Logics in detail, these extensions

of ALCN (resp. ALC

reg

N and ALC

+

N ) are introduced and their expressive

power is highlighted by some examples. In the following sections, the compu-

tational complexity of the corresponding inference problems is investigated.

ALC extended by Number Restrictions on Complex Roles

Several extensions of ALCN and ALC

+

N obtained by allowing di�erent kinds

of complex roles inside number restrictions will be investigated, and we start



69

by introducing a scheme for building these extensions. The name of such a

scheme consists of the name of the basic language followed by the set of role

constructors that are allowed inside number restrictions.

De�nition 6.1 Starting with atomic roles from a set N

R

of role names, com-

plex roles are built using the role constructors composition (R � S), union

(R t S), intersection (R u S), and inversion (R

�1

).

For a set M � ft;u; �;

�1

g of role constructors, we call a complex role R an

M-role i� R is built using only constructors from M .

The set of ALCN (M)-concepts (resp. ALC

+

N (M)-concepts and ALC

reg

N (M)-

concepts) is obtained fromALCN -concepts (resp. ALC

+

N - andALC

reg

-concepts)

by additionally allowing for M -roles inside number restrictions.

An interpretation I = (�

I

; �

I

) of an ALCN (M) -concept (resp. ALC

+

N (M)

-concept) is an interpretation of ALC

+

N -concepts that satis�es additionally

the following equations:

(R

1

t R

2

)

I

= R

1

I

[R

2

I

;

(R

1

u R

2

)

I

= R

1

I

\R

2

I

;

(R

1

�R

2

)

I

= f(d; f) 2 �

I

��

I

j 9e 2 �

I

: (d; e) 2 R

I

1

^ (e; f) 2 R

I

2

g;

(R

�1

)

I

= f(e; d) 2 �

I

��

I

j (d; e) 2 R

I

g:

Composition is present in all extensions investigated in this thesis: On the

one hand, composition strongly increases the expressive power in that it allows

to restrict the number of role-chain-successors. In simple cases, this can also

be realized using pure ALC. For example, using three disjoint concepts A

1

; A

2

,

and A

3

, the concept (� 3 R�S) can be rewritten as

(9R:9S:A

1

) u (9R:9S:A

2

) u (9R:9S:A

3

)

However, this does not always work: ALCN has the tree-model property, even

when extended by qualifying number restrictions. As a consequence, ALCN

is not able to express upper bounds for the number of role-chain-successors,

thus enforcing intermediate successors to share successors, which can easily be

expressed using ALCN (�). For example, the concept

D = (� 2 R) u (8R:(� 1 S)) u (� 1 R�S)

is obviously satis�able, but each of its instances x has an R�S-successor which

is connected to x via at least 2 di�erent role paths. This example shows that

ALCN (�) does not have the tree-model property. Furthermore, ALCN (�) can



70 Chapter 6. Expressive Number Restrictions

be said to be more expressive than ALCN because the fact that ALCN has the

tree-model property implies that no ALCN -concept is equivalent to D.

This kind of expressive power added by composition in number restrictions is of

strong interest for the process engineering application because the devices and

connections of a process model are, in general, not interrelated in a tree-like

way but in more complex structures. Hence the possibility to describe non-

tree structures is important for this application. Since composition in number

restrictions provides this possibility, this constructor will be investigated in

detail while looking for an Description Logic adequate for the representation

of the standard building blocks of process models.

On the other hand, decidability results for ALCN (M) without composition

follows immediately from results in

[

Gr�adel et al.1997

]

. They are discussed in

Section 6.3.

Intersection on roles inside number restrictions is needed if one wants to

express, for example, that a device is powered by something it is connected to,

i.e.

Device u (� 1 powered-by u connected-to):

Intersection in combination with composition comes in, for example, if we

want to describe devices that share at least 1 power supply with devices they

are connected to, i.e.

Device u (� 1 powered-by u (connected-to�powered-by)):

Union of roles is needed to restrict the total number of individuals that are

related via several, not necessarily disjoint roles. For example, connected-to

and has-part are not necessarily disjoint roles, and union can be used to

describe complex devices which are connected to or have as a part at least,

say, 7 objects, i.e.

Device u (� 7 connected-to t has-part):

The above concept could be rewritten by a disjunction of concepts involving

intersection of roles inside number restrictions, but only in a very complicated



71

concept, i.e.,

Device u (� 7 has-part) t

((� 1 connected-to) u (� 6 has-part) u (� 0 has-part u connected-to)) t

((� 2 connected-to) u (� 5 has-part) u (� 0 has-part u connected-to)) t

: : :

((� 2 connected-to) u (� 6 has-part) u (� 1 has-part u connected-to)) t

((� 3 connected-to) u (� 5 has-part) u (� 1 has-part u connected-to)) t

: : :

((� 6 connected-to) u (� 6 has-part) u (� 5 has-part u connected-to)) t

(� 7 connected-to);

Apart from the unreadability of the above concept, there is another argument

against the use of intersection instead of union inside number restrictions: As

we will see later, intersection leads to an even higher complexity than union.

Union in combination with composition comes in, for example, if we want to

describe a loosely connected part of a model. The following concept describes

a device that belongs to such a loosely connected part:

Device u (� 6 connected-to t

(connected-to�connected-to) t

(connected-to�connected-to�connected-to)):

Inversion of roles can be used to express, for example, that a power supply

supplies power for more than one device, i.e.

Power-supply u (� 2 powered-by

�1

):

Inversion in combination with composition is needed, for example, if we

want to express that all parts of a device belong exclusively to this device,

Device u (� 1 has-part�has-part

�1

):

In Section 6.1, the complexity of satis�ability and subsumption of these exten-

sions will be investigated.

ALC extended by Symbolic Number Restrictions

De�nition 6.2 Let N

V

= f�; �; : : :g be a set of numerical variables. Then

ALCN

S

is obtained from ALCN by additionally allowing for



72 Chapter 6. Expressive Number Restrictions

� symbolic number restrictions (� � R) and (� � R) for a role name R

and a numerical variable �, and

� the existential quanti�cation (#�:C) of numerical variables � where C is

an ALCN

S

-concept.

Since ALCN

S

allows for full negation of concepts, universal quanti�cation of

numerical variables can be expressed: In the following, we us ("�:C) as a

shorthand for :(#�::C).

Before giving the semantics of ALCN

S

-concepts, we have to de�ne what it

means that a numerical variable occurs free in a concept:

De�nition 6.3 The occurrence of a variable � 2 N

V

is said to be bound in C

i� � occurs in the scope C

0

of a quanti�ed subterm (#�:C

0

) of C. Otherwise, the

occurrence is said to be free. The set free(C) � N

V

denotes the set of variables

that occur free in C. A concept C is closed i� free(C) = ;. The concept

C[�=n] is obtained from a concept C by substituting all free occurrences of �

by n.

Note that, as usual, a variable can occur both free and bound in a concept,

as, for example, � in ((= � R) u (#�:(9R:(> � R)))).

Using this notation, we can de�ne the semantics of ALCN

S

-concepts.

De�nition 6.4 An interpretation of a closed ALCN

S

-concept is an interpre-

tation of an ALCN -concept which satis�es additionally

(#�:C)

I

=

[

n2IN

(C[�=n])

I

: (6.1)

If C is not closed and free(C) = f�

1

; : : : ; �

n

g for n � 1 then

C

I

:= (#�

1

: : : : #�

n

:C)

I

:

This de�nition reduces symbolic number restrictions to traditional ones, hence

their semantics is well-de�ned. Since ("�:C) is an abbreviation for :(#�::C),

we can give its semantics directly by

("�:C)

I

=

\

n2IN

(C[�=n])

I

:



73

Similar toALCN , it can be shown thatALCN

S

still has the tree-model property.

This can be proved by unravelling an arbitrary model I of C to a tree-model I

0

of C. This construction is similar to the one presented in

[

Thomas1992

]

. Let

x

0

2 C

I

be an instance of C in I. Then I

0

is obtained by unwinding (cyclic)

paths from x

0

to (in�nite) paths, that is each path < x

0

R

1

x

1

R

1

: : : R

n

x

n

> in

I corresponds to an individual in I

0

and vice versa. More precisely,

�

I

0

:= f< x

0

R

1

x

1

R

1

: : : R

n

x

n

>j (x

i

; x

i+1

) 2 R

I

i+1

for 0 � i � n� 1g;

A

I

0

:= f< x

0

R

1

x

1

R

1

: : : R

n

x

n

>2 �

I

0

j x

n

2 A

I

g for concept names A;

R

I

:= f(< x

0

R

1

x

1

R

1

: : : R

n

x

n

>;< x

0

R

1

x

1

R

1

: : : R

n

x

n

Ry >) 2 �

I

0

��

I

0

g:

By induction on the structure of concept, it can easily be shown that I

0

is

a tree-model of C. However, the resulting tree can be of in�nite outdegree.

In contrast to ALCN , ALCN

S

does not have the �nite-model property. For

example, the concept

("�:(� � R)) (6.2)

is satis�able, but each instance of (6.2) has in�nitely many R-successors. On

the one hand, the interpretation I where

�

I

:= fx; y

0

; y

1

; y

2

; : : : g

R

I

:= f(x; y

i

) j i 2 INg

is clearly a model of (6.2). On the other hand, each model of (6.2) satis�es

\

n2IN

(� n R)

I

6= ;; hence in �

I

there are in�nitely many R-successors of some

x.

This example shows that ALCN

S

can enforce in�nite models, which, intu-

itively, makes reasoning more complex. However, the attempt to construct a

satis�able concept that has only in�nite models and that involves only exis-

tential quanti�cation of numerical variables will fail|such a concept can only

be constructed using universal quanti�cation of numerical variables. Hence

we introduce ALUEN

S

, a sublanguage of ALCN

S

which is obtained by allowing

only for existential quanti�cation of numerical variables:

De�nition 6.5 ALUEN

S

-concepts are those ALCN

S

-concepts where negation

occurs only in front of concept names and number restrictions.

Since in ALCN

S

universal quanti�cation of numerical variables came only in as

an abbreviation of negated existential quanti�cation, all numerical variables in



74 Chapter 6. Expressive Number Restrictions

ALUEN

S

are therefore quanti�ed existentially. Nevertheless, it is still a super-

language of ALCN . Furthermore, all examples given in Section 1.2 to motivate

the introduction of symbolic number restrictions are ALUEN

S

-concepts. The

reason for introducing �rst ALCN

S

is that it is propositionally closed|which

enables the reduction of subsumption to satis�ability and makes the syntax of

ALCN

S

easier to use. The reason for restricting it to ALUEN

S

is that ALCN

S

can be shown to have undecidable inference problems|whereas satis�ability

of ALUEN

S

-concepts will be shown to be satis�able.

6.1 Number Restrictions on Complex Roles

The examples given in the beginning of this chapter already highlighted the

impact complex roles inside number restrictions have on the expressive power

of ALC. For a deeper insight into the expressiveness of these extensions, we

�rst give the undecidability results: The concepts used in the proofs reveal

the amount of expressive power added to ALCN by complex roles in number

restrictions.

6.1.1 Undecidability results

In this section, undecidability of ALC

+

N (�;t), ALCN (�;t;

�1

), ALCN (�;u),

and ALC

+

N (�) will be shown by a reduction of the domino problem. This

well-known, undecidable problem

[

Wang1963; Berger1966; Knuth1968

]

is used

for the proof of all undecidability results in this thesis, and this section starts

with its introduction.

The problem problem asks for the tiling of the (in�nite) plane using a �nite

set of domino types; see Figure 6.1. Intuitively, each domino is a square with

coloured edges. The tiling may not have any holes, edges of neighbouring

dominos must have the same colour on the touching edges, and dominos may

not be turned or ipped.

De�nition 6.6 A tiling system D = (D;H; V ) is given by a non-empty set

D = fD

1

; : : : ; D

`

g of domino types, and by horizontal and vertical matching

pairs H � D � D, V � D � D. The domino problem asks for a compatible

tiling of the �rst quadrant IN� IN of the plane, i.e., a mapping t : IN� IN! D

such that for all m;n 2 IN:

(t(m;n); t(m + 1; n)) 2 H and (t(m;n); t(m;n+ 1)) 2 V:



6.1. Number Restrictions on Complex Roles 75

����

����

����

����

��
�

��
�

����

����

��
�

��
�

���� ����

���� ����

���� ����

���� ����

��
�

��
� ��
�

��
�

��
�

��
� ��
�

��
�

��
�

��
� ��
�

��
�
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
������
������
������

������
������
������

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

������
������
������

������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����
�����
�����

�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����� �����

�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������

�����
�����

�����
�����
�����

������
������
������
������

������
������
������
������������

������
������

������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
����������
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

Figure 6.1: A set of domino types and a �rst part of a tiling.

The standard domino problem asks for a compatible tiling of the whole plane.

However, a compatible tiling of the �rst quadrant yields compatible tilings of

arbitrarily large �nite rectangles, which in turn yield a compatible tiling of the

plane

[

Knuth1968

]

. Thus, the undecidability result for the standard problem

[

Berger1966

]

carries over to this variant.

In order to reduce the domino problem to satis�ability of concepts, we must

show how a given tiling system D can be translated into a concept E

D

(of

the language under consideration) such that E

D

is satis�able i� D allows for

a compatible tiling. This task can be split into three subtasks, which will be

�rst explained on an intuitive level, before showing how they can be achieved

for the four Description Logics under consideration.

Task 1: It must be possible to represent a single \square" of IN � IN, which

consists of points (n;m); (n;m+1); (n+1; m), and (n+1; m+1). The idea

is to introduce roles X; Y , where X goes one step into the horizontal (i.e.

x-) direction, and Y goes one step into the vertical (i.e. y-) direction.

The concept language must be expressive enough to describe that an

individual (a point (n;m)) has exactly one X-successor (the point (n +



76 Chapter 6. Expressive Number Restrictions

1; m)), exactly one Y -successor (the point (n;m+1)), and that the X�Y -

successor coincides with the Y �X-successor (the point (n+ 1; m+ 1)).

Task 2: It must be possible to express that a tiling is locally compatible, i.e.,

that the X- and Y -successors of a point have an admissible domino type.

The idea is to associate each domino type D

i

with an atomic concept D

i

,

and to express the horizontal and vertical matching conditions via value

restrictions on the roles X; Y .

Task 3: It must be possible to impose the above local conditions on all points

in IN� IN. This can be achieved by constructing a \universal" role U and

a \start" individual such that every point is a U -successor of this start

individual. The local conditions can then be imposed on all points via

value restrictions on U for the start individual.

Task 2 is rather easy, and can be realized using the ALC-concept C

D

given

in Figure 6.2. The �rst conjunct expresses that every point has exactly one

domino type, and the value restrictions in the second conjunct express the

horizontal and vertical matching conditions. Disjunction occurs in both con-

juncts: In the �rst, disjunction is used to express that each point is associated

to a domino type D

1

or a domino type D

2

etc. In the second conjunct, disjunc-

tion is used to express the compatibility condition, which is of the form \if a

point is associated to a dominoD

i

, then its X-successor (resp. its Y -successor)

must be associated to a domino D

j

such that (D

i

; D

j

) 2 H (resp. 2 V )". In

contrast to this, Task 1 and Task 3 can be achieved without using disjunction

of concepts.

Task 1 can be achieved in any extension of ALCN (�) with either union or

intersection of roles in number restrictions: see the concepts C

u

and C

t

in

Figure 6.2.

Task 3 is easy for languages that extend ALC

reg

, and more di�cult for lan-

guages without at least the transitive closure. The general idea is that the

start individual s is an instance of the concept E

D

to be constructed. From

this individual, one can reach via U the origin (0; 0) of IN� IN, and each point

that is connected with the origin via some arbitrary X- and Y -path.

With the image of these tasks in mind, the reduction concepts are now ex-

plained in detail for each undecidable extension ofALCN ,ALC

reg

N , andALC

+

N

by complex number restrictions.



6.1. Number Restrictions on Complex Roles 77

C

D

:= t

1�i�m

(D

i

u ( u

1�j�m

i

6=j

:D

j

)) u

u

1�i�m

(D

i

) ((8X:( t

(D

i

;D

j

)2H

D

j

)) u (8Y:( t

(D

i

;D

j

)2V

D

j

))))

C

t

:= (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u

(= 1 Y �X tX�Y )

C

u

:= (= 1 X) u (= 1 Y ) u (= 1 X�Y ) u (= 1 Y �X) u

(= 1 Y �X uX�Y )

E

(1

0

)

D

:= (= 1 R) u (8R

+

:(C

t

u C

D

u (� 2 R) u (� 2 R tX t Y )))

E

(2)

D

:= (� 1 U) u (8U: (C

t

u C

D

u (= 1 X�U

�1

) u (= 1 Y �U

�1

)u

(� 1 U

�1

t Y �U

�1

tX�U

�1

)))

E

(3)

D

:= (� 1 R u R�T �R) u

(8R:8T:8R: (C

u

u C

D

u (� 1 T ) u

(8Y:(� 1 T )) u (8X:(� 1 T )) u

(= 1 T uX�T u Y �T )u

(= 1 X uX�T �R) u (= 1 Y u Y �T �R)))

where A) B is an abbreviation for :A tB and

(= n R) is an abbreviation for (� n R) u (� n R).

Figure 6.2: Concepts used in the proof of Theorem 6.7.

(1) We start with ALC

reg

N since here it is rather easy to reach all individuals

representing points in the plane from the start individual. In extensions of

ALC

reg

N , we can use the complex role (X t Y )

+

to reach every point. Thus,

for each tiling system D the ALC

reg

N (�)-concept

E

(1)

D

:= C

t

u C

D

u 8(X t Y )

+

:(C

t

u C

D

):

can be constructed which is obviously satis�able if and only if D admits a

compatible tiling.

The complex role in the value restriction can even be restricted to a simple

transitive closure of an atomic role. Intuitively, a starting point outside the

plane is used which is connected to each point in the plane via some R-path.

To achieve this, the concept E

(1

0

)

D

in Figure 6.2 makes sure that the X- and

the Y -successors of each point in the plane are also R-successors of this point.

Hence R

+

can be used in place of (X t Y )

+

as \universal" role and thus the

concept E

(1

0

)

D

is in ALC

+

N (�;t).



78 Chapter 6. Expressive Number Restrictions

(2) In ALCN (�;t;

�1

), a role name U for the \universal" role is explicitly

introduced, and number restrictions which involve composition, union, and

inversion of roles are used to make sure that the start individual is directly

connected via U with every point: see the concept E

(2)

D

in Figure 6.2. The

number restrictions inside the value restriction make sure that every point

p that is reached via U from the start individual satis�es the following: Its

X-successor and its Y -successor each have exactly one U -predecessor, which

coincides with the (unique) U -predecessor of p, i.e., the start individual. Thus,

the X-successor and the Y -successor of p are also U -successors of the start

individual.

(3) For ALCN (�;u), a similar construction is possible: Since inversion of roles

is not allowed in ALCN (�;u), two role names R and T are needed for the

construction of the universal role. The intuition is that T plays the rôle of the

inverse of R (except for one individual), and the \universal" role corresponds

to the compositionR�T�R: The start individual s (which is an instance of E

(3)

D

),

has at least one R-successor p

(0;0)

, which coincides with its R�T �R-successor.

The individual p

(0;0)

corresponds to the origin of IN � IN. Let s

0

be the R�T -

successor of s. The number restrictions of E

(3)

D

make sure that p

(0;0)

satis�es

the following: It has exactly one T -successor, namely s

0

, which coincides with

the (unique) T -successors of its X- and Y -successors. In addition, the (unique)

X-successor of p

(0;0)

is also an X�T�R-successor of p

(0;0)

, which makes sure that

the X-successor of p

(0;0)

is an R-successor of s

0

, and thus an R�T�R-successor

of s. The same holds for the Y -successor. One can now continue the argument

with the X-successor (resp. Y -successor) of p

(0;0)

in place of p

(0;0)

.

With the intuition given above, it is not hard to show for all i; 1 � i � 3, that

a tiling system D has a compatible tiling i� E

(i)

D

is satis�able.

Theorem 6.7 Satis�ability (and thus also subsumption) of concepts is unde-

cidable for ALC

+

N (�;t), ALCN (�;t;

�1

), and ALCN (�;u).

Proof: Since the other two cases are similar and easier, it will only be shown

that the ALCN (�;u)-concept E

(3)

D

is satis�able if, and only if, D admits a

compatible tiling.

The \if" direction: Let D be a tiling system, E

(3)

D

the corresponding concept,



6.1. Number Restrictions on Complex Roles 79

and t a compatible tiling. Then we de�ne a model I of E

(3)

D

as follows:

�

I

:= fsg [ fp

(n;m)

j n;m 2 INg

X

I

:= f(p

(n;m)

; p

(n+1;m)

) j n;m 2 INg

Y

I

:= f(p

(n;m)

; p

(n;m+1)

) j n;m 2 INg

R

I

:= f(s; p

(n;m)

) j n;m 2 INg

T

I

:= f(p

(n;m)

; s) j n;m 2 INg

D

I

i

:= fp

(n;m)

j t(n;m) = D

i

g for each D

i

2 D

Since each p

(n;m)

is both an R- and an R�T �R-successor of s, s obviously is

an instance of the �rst conjunct of E

(3)

D

. Furthermore, the value restriction

8R:8T:8R applies to each p

(n;m)

. Now, since t is compatible, each individual

p

(n;m)

is an element of exactly one D

I

i

, and both the vertical and horizontal

matching conditions are satis�ed. Hence each p

(n;m)

is an instance of C

D

.

Furthermore, X; Y are de�ned in such a way that each p

(n;m)

has exactly

one X-successor p

(n+1;m)

, one Y -successor p

(n;m+1)

, and one X �Y -successor

p

(n+1;m+1)

which coincides with its Y �X-successor. Hence each p

(n;m)

is an

element of C

I

u

.

Now, since s is the only T -successor, each p

(n;m)

is clearly an instance of

(� 1 T ) u (8Y:(� 1 T )) u (8X:(� 1 T )):

Furthermore, s is the common T -successor of all p

(n;m)

, hence each p

(n;m)

is

an instance of (= 1 T u X �T u Y �T ). Finally, since each p

(n;m)

has exactly

one X-successor p

(n+1;m)

and one Y -successor p

(n;m+1)

, and since p

(n+1;m)

and

p

(n;m+1)

are their own T �R-successors, each p

(n;m)

is clearly an instance of

(= 1 X uX�T �R) u (= 1 Y u Y �T �R):

The \only if" direction: Let I be some model of E

(3)

D

with s 2 E

(3)

D

, let p

(0;0)

be some R-successor of r which is also an R�T �R-successor s (because of the

�rst conjunct of E

(3)

D

, such a p

(0;0)

exists), and let s

0

be the R�T -successor of

s (which possibly coincides with s). Since each R�T �R-successor of s is an

instance of C

D

, p

(0;0)

is an instance of exactly one D

j

2 D. De�ne a compatible

tiling t by

t(0; 0) := D

j

t(n;m) := D

i

if p is an X

n

�Y

m

-successor of p

(0;0)

and p 2 D

I

i

It remains to be shown that (1) t is well-de�ned and (2) the horizontal and

the vertical matching conditions are satis�ed.



80 Chapter 6. Expressive Number Restrictions

(1) t is well-de�ned because (a) p

(0;0)

has, for each n;m 2 IN, exactly one

X

n

�Y

m

-successor which (b) is furthermore instance of exactly oneD

i

. (a) holds

because the value restriction 8R:8T:8R: : : : applies to p

(0;0)

, hence p

(0;0)

is an

instance of C

u

, which means that it has exactly one X-successor, one Y -

successor, and one X �Y -successor, which coincides with its unique Y �X-

successor. Furthermore, p

(0;0)

is an instance of

(� 1 T ) u (8Y:(� 1 T )) u (8X:(� 1 T )) u

(= 1 T uX�T u Y �T ) u (= 1 X uX�T �R) u (= 1 Y u Y �T �R):

Hence s

0

is also a T -successor of the X- and Y -successors p

(1;0)

; p

(0;1)

of p

(0;0)

,

and p

(1;0)

; p

(0;1)

are both R-successors of s

0

. Therefore p

(1;0)

; p

(0;1)

are both

R�T �R-successors of s, and thus the value restriction 8R:8T:8R: : : : applies

also to p

(1;0)

; p

(0;1)

. The same arguments as for p

(0;0)

can then be used on

p

(1;0)

; p

(0;1)

, hence for each n;m, there is exactly one X

n

�Y

m

-successor of p

(0;0)

.

(b) is due to fact that p

(0;0)

as well as all its X

n

�Y

m

-successors are an instance

of C

D

.

(2) Obviously, C

D

ensures that the horizontal and the vertical matching con-

ditions are satis�ed.

In the overview given in Figure 6.3, decidable extensions are hatched horizon-

tally, whereas undecidable ones are hatched vertically. Given

� the above results,

� the fact that, as a consequence of a result in

[

Gr�adel et al.1997

]

,

ALCN (

�1

;u;t) is decidable, and

� the fact that ALCN (�) is decidable (which will be proved in the next

section),

the only problems which remain open for the extensions of ALCN concern

ALCN (�;

�1

) and ALCN (�;t). Unfortunately, these problems must remain

open for the time being: neither a decision procedure for one of these extensions

nor a proof of their undecidability could be found.

Extensions of ALC

+

N

So far, (un)decidability of two extensions of ALC

+

N by complex roles was

proved: In

[

De Giacomo1995

]

, decidability of ALC

+

N (

�1

) is shown and Theo-

rem 6.7 is concerned with the undecidability of ALC

+

N (�;t). It will now be



6.1. Number Restrictions on Complex Roles 81

�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������

�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������
�������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

u; �; �

�1

u;t; �

�1

�

�1

t u �

u;t; �

u; �

�1

t; �

�1

u;t u; � �; �

�1

u;t; �; �

�1

ALC N

[Gr�adel et al.]

t; �; �

�1

t; �

Figure 6.3: (Un)decidability results for extension of ALCN .

shown that, in ALC

+

N , it su�ces to allow for composition in number restric-

tions in order to lose decidability. In Figure 6.4, an overview of these results is

given, again with decidable extensions hatched horizontally and undecidable

ones vertically.

Again, a reduction of the domino problem to concept satis�ability is used to

show undecidability of ALC

+

N (�). Since this reduction is rather di�erent from

the ones above and more complicated, it is treated separately. The (redundant)

reduction for ALC

+

N (�;t) was given since it served to give the intuition for

ALCN (�;t;

�1

) and ALCN (�;u). The concepts used for the reduction of the

domino problem to ALC

+

N (�)-concept satis�ability are given in Figure 6.6.

As neither C

u

nor C

t

is an ALC

+

N (�)-concept, Task 1 must be accomplished

di�erently. Instead of using a \horizontal" role X and a \vertical" role Y ,

only a single role X can be used|otherwise, one could not express that the

horizontal-vertical successor coincides with the vertical-horizontal successor of

a point.

The three tasks introduced in the beginning of Section 6.1.1 are then accom-

plished as follows.



82 Chapter 6. Expressive Number Restrictions

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������������������������������������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������

u; �; �

�1

u;t; �

�1

�

�1

t u �

t; �; �

�1

u;t; �

u; �

�1

t; �

�1

u;t t; � u; � �; �

�1

u;t; �; �

�1

ALC

+

N

[De Giacomo 1995]

Figure 6.4: (Un)decidability results for extension of ALC

+

N .

Task 1 The concept C

2

describes a square by using a single role X. Each

instance of C

2

has two X-successors that in turn each have two X-successors.

The conjunct (= 3 X�X) makes sure that the X-successors of an instance of

C

2

have one common X-successor.

Task 3 is easy because ALC

+

N (�) allows for the transitive closure of roles. If

s 2 E

(4)

D

I

, then s has exactly one X-successor, say p

(0;0)

, which is an instance

of A. Each point in the grid is an X

n

-successor of s. Thus the local conditions

on all points in the grid are imposed by 8X

+

(C

2

u C

prim

u C

diag

u C

D

).

Task 2 is di�cult because we must distinguish between the \horizontal" and

the \vertical" X-successor of a point. For this purpose, the concepts A, B,

and C are used in the following way (see Figure 6.5 for a better intuition):

The concept C

prim

enforces that each point is an instance of either A or B or

C, and that exactly one domino type D

i

is associated with each point. The

concept C

diag

makes sure that each instance of A has one X-successor in B

and one in C, and similar for instances of B and C. Without loss of generality,

when visualising the grid in Figure 6.5, we have drawn the X-successor of p

0;0

which is in C to its right and called it p

1;0

. The other X-successor of p

0;0

,



6.1. Number Restrictions on Complex Roles 83

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������
����������������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

B

C

A

BC

B

A

CA

B

C

AB

A

C

BC

A

B

CA

C

B

A

Figure 6.5: Visualisation of the grid as enforced by the ALC

+

N (�) reduction

concept.

which is in B, is called p

0;1

and is drawn above it. Then it is easy to see that

the remainder of the grid is determined in the sense that

� for each diagonal in the grid there is an E 2 fA;B;Cg such that all

points on this diagonal are instances of E,

� horizontal successors of points in A are always in C, of points in C are

always in B, and of points in B are always in A,

� vertical successors of points in A are always in B, of points in B are

always in C, and of points in C are always in A.

With these observations, C

D

expresses the horizontal and vertical matching

conditions.

With the intuition given above, it is not hard to show that a tiling system D

has a compatible tiling i� E

(4)

D

is satis�able.

1

1

This concept is, to make it easier to understand, longer than necessary. The subconcept

C

diag

can be omitted because it is subsumed by C

D

u C

prim

.



84 Chapter 6. Expressive Number Restrictions

C

2

:= (= 2 X) u (8X:(= 2 X)) u (= 3 X �X)

C

prim

:= (A t B t C) u t

1�i�m

(D

i

u ( u

1�j�m

i

6=j

:D

j

))

C

diag

:= (A) ((9X:B) u (9X:C))) u

(B ) ((9X:A) u (9X:C))) u

(C ) ((9X:A) u (9X:B)))

C

D

:= u

1�i�m

�

((A uD

i

)) (9X:(C u ( t

(D

i

;D

j

)2H

D

j

)) u

9X:(B u ( t

(D

i

;D

j

)2V

D

j

)))) u

((B uD

i

)) (9X:(A u ( t

(D

i

;D

j

)2H

D

j

)) u

9X:(C u ( t

(D

i

;D

j

)2V

D

j

)))) u

((C uD

i

)) (9X:(B u ( t

(D

i

;D

j

)2H

D

j

)) u

9X:(A u ( t

(D

i

;D

j

)2V

D

j

))))

�

E

(4)

D

:= (= 1 X) u (9X:A) u (8X

+

:(C

2

u C

prim

u C

diag

u C

D

))

where A;B and C are disjoint concepts. They are abbreviations for

A := A

1

; B := :A

1

u A

2

C := :A

1

u :A

2

Figure 6.6: Concepts used in the proof of Theorem 6.8.

Theorem 6.8 Satis�ability (and thus also subsumption) of concepts is unde-

cidable for ALC

+

N (�).

6.1.2 A decidable extension

In this section, a tableau-based algorithm for deciding satis�ability ofALCN (�)-

concepts is presented. The algorithm and the proof of its correctness are very

similar to existing algorithms and proofs for languages with number restrictions

on atomic roles

[

Hollunder et al.1990; Hollunder&Baader1991

]

. Please recall

that the presence of number restrictions on role chains has as a consequence

the loss of the tree-model property.

Nevertheless, the models generated by this algorithm are very similar to tree

models. When started with a concept C

0

, the algorithm generates a model of

C

0

where every element can be reached from an initial root element, which is

an instance of C

0

, via role chains. Furthermore, the root does not have a role

predecessor, and every role chain from the root to an element has the same

length|even though there may exist more than one such chain. This fact will



6.1. Number Restrictions on Complex Roles 85

become important in the proof of termination.

As usual, without loss of generality all concepts are supposed to be in negation

normal form (NNF); see Section 4.2. Similar to the algorithm presented in

Figure 4.4, the new algorithm works on constraints, but since it has to handle

number restrictions on role chains, we need an additional kind of constraints

and an extended de�nition of the notion a clash:

De�nition 6.9 Let � = fx; y; z; : : : g be a countably in�nite set of individual

variables. A constraint is either of the form

xRy, where R is a role name in N

R

and x; y 2 � ,

x :D for some ALCN (�)-concept D in NNF and some x 2 � , or

x 6= y for x; y 2 � .

2

As in De�nition 4.6, a constraint system is a set of constraints, and �

S

� �

denotes the individual variables occurring in a constraint system S.

An interpretation I is a model of a constraint system S i� there is a mapping

� : �

S

! �

I

such that I; � satisfy each constraint in S, i.e.,

(�(x); �(y)) 2 R

I

for all xRy 2 S;

�(x) 2 D

I

for all x :D 2 S;

�(x) 6= �(y) for all (x 6= y) 2 S:

Similar to De�nition 4.6, y is said to be an R

1

�: : :�R

m

-successors of x in S if

there exist y

1

; : : : ; y

m

2 �

S

with

xR

1

y

1

2 S;

for all 2 � i � m; y

i�1

R

i

y

i

2 S; and

y

m

= y:

S contains a clash i� fx :A; x ::Ag � S for some concept name A and some

variable x 2 �

S

, or x :(� n R

1

� : : :�R

m

) 2 S and x has ` > n R

1

� : : :�R

m

-

successors y

1

; : : : ; y

`

in S such that for all i 6= j we have y

i

6= y

j

2 S. A

constraint system S is called complete i� none of the completion rules given in

Figure 6.7 can be applied to S. In these rules, the constraint system S[y

2

=y

1

]

is obtained from S by substituting each occurrence of y

2

in S by y

1

.

2

We consider such inequalities as being symmetric, i.e., if x 6= y belongs to a constraint

system, then y 6= x (implicitly) belongs to it as well.



86 Chapter 6. Expressive Number Restrictions

Figure 6.7 introduces the completion rules that are used to test ALCN (�)-

concepts for satis�ability. Similar to the algorithm presented in Figure 4.4,

the completion algorithm works on a tree where each node is labelled with a

constraint system. It starts with the tree consisting of a root labelled with

S = fx

0

:C

0

g, where C

0

is the ALCN (�)-concept in NNF to be tested for

satis�ability. A rule can only be applied to a leaf labelled with a clash-free

constraint system. Applying a rule S ! S

i

, for 1 � i � n, to such a leaf

leads to the creation of n new successors of this node, each labelled with one

of the constraint systems S

i

. The algorithm terminates if none of the rules

can be applied to any of the leaves. In this situation, it answers with \C

0

is

satis�able" i� one of the leaves is labelled with a clash-free constraint system.

Soundness and completeness of this algorithm is an immediate consequence of

the following facts:

Lemma 6.10 Let C

0

be an ALCN (�)-concept in NNF, and let S be a con-

straint system obtained by applying the completion rules to fx

0

:C

0

g. Then

1. For each completion rule R that can be applied to S, and for each inter-

pretation I , (i) and (ii) are equivalent.

(i) I is a model of S.

(ii) I is a model of one of the systems S

i

obtained by applying R.

2. If S is a complete and clash-free constraint system, then S has a model.

3. If S contains a clash, then S does not have a model.

4. The completion algorithm terminates when applied to fx

0

:C

0

g.

Since Lemma 6.10 is the same as Lemma 4.8 (besides the di�erent logics), the

arguments which were used to show that Lemma 4.8 implies decidability of

satis�ability of ALC-concepts now yield decidability of ALCN (�):

Theorem 6.11 Subsumption and satis�ability of ALCN (�)-concepts is decid-

able.

It remains to prove Lemma 6.10.



6.1. Number Restrictions on Complex Roles 87

1. Conjunction: If x :(C

1

u C

2

) 2 S and x :C

1

62 S or x :C

2

62 S, then

S ! S [ fx :C

1

; x :C

2

g

2. Disjunction: If x :(C

1

t C

2

) 2 S and x :C

1

62 S and x :C

2

62 S, then

S ! S

1

= S [ fx :C

1

g

S ! S

2

= S [ fx :C

2

g

3. Value restriction: If x :(8R:C) 2 S for a role name R, y is an

R-successor of x in S and y :C 62 S, then

S ! S [ fy :Cg

4. Existential restriction: If x :(9R:C) 2 S for a role name R and

there is no R-successor y of x in S with y : C 2 S, then

S ! S [ fxRz; z : Cg for a new variable z 2 � n �

S

.

5. Number restriction: If x :(� n R

1

�: : :�R

m

) 2 S for role names

R

1

; : : : ; R

m

and x has less than n R

1

�: : :�R

m

-successors in S, then

S ! S [ fxR

1

y

2

; y

m

R

m

zg [ fy

i

R

i

y

i+1

j 2 � i � m� 1g [

fz 6= w j w is an R

1

�: : :�R

m

-successor of x in Sg

where z; y

i

are new variables in � n �

S

.

6. Number restriction: If x :(� n R

1

�: : :�R

m

) 2 S, x has more than

n R

1

�: : :�R

m

-successors in S, and there are R

1

�: : :�R

m

-successors y

1

; y

2

of x in S with (y

1

6= y

2

) 62 S, then

S ! S

y

1

;y

2

= S[y

2

=y

1

]

for all pairs y

1

; y

2

of R

1

�: : :�R

m

-successors of x with (y

1

6= y

2

) 62 S.

Figure 6.7: The completion rules for ALCN (�).

Proof of Part 1 of Lemma 6.10: We consider only the rules concerned

with number restrictions, since the proof for Rules 1{4 is just as for ALC.

5. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

), and that its application yields

S

0

= S [ fxR

1

y

2

; y

m

R

m

zg [ fy

i

R

i

y

i+1

j 2 � i � m� 1g

[ fz 6= w j w is an R

1

�: : :�R

m

-successor of x in Sg:

Since S is a subset of S

0

, any model of S

0

is also a model of S.

Conversely, assume that I is a model of S, and let � : �

S

! �

I

be the



88 Chapter 6. Expressive Number Restrictions

corresponding mapping of individual variables to elements of �

I

. On

the one hand, since I satis�es x :(� n R

1

�: : :�R

m

), �(x) has at least n

R

1

�: : :�R

m

-successors in I. On the other hand, since Rule 5 is applicable

to x :(� n R

1

�: : :�R

m

), x has less than n R

1

�: : :�R

m

-successors in S. Thus,

there exists an R

1

�: : :�R

m

-successor b of �(x) in I such that b 6= �(w) for

all R

1

�: : :�R

m

-successors w of x in S. Let b

2

; : : : ; b

m

2 �

I

be such that

(�(x); b

2

) 2 R

I

1

; (b

2

; b

3

) 2 R

I

2

; : : : ; (b

m

; b) 2 R

I

m

. We de�ne �

0

: �

S

0

! �

I

by �

0

(y) := �(y) for all y 2 �

S

, �

0

(y

i

) := b

i

for all i; 2 � i � m, and

�

0

(z) := b. Obviously, I; �

0

satisfy S

0

.

6. Number restriction: Assume that the rule can be applied to x :(� n R

1

�

: : :�R

m

) 2 S, and let I together with � be a model of S. On the one hand,

since the rule is applicable, x has more than n R

1

� : : :�R

m

-successors

in S. On the other hand, I; � satisfy x :(� m R

1

� : : :�R

m

) 2 S, and

thus there are two di�erent R

1

�: : :�R

m

-successors y

1

; y

2

of x in S such

that �(y

1

) = �(y

2

). Obviously, this implies that (y

1

6= y

2

) 62 S. Hence

S

y

1

;y

2

= S[y

2

=y

1

] is one of the constraint systems obtained by applying

Rule 6 to x :(� n R

1

� : : :�R

m

). In addition, since �(y

1

) = �(y

2

), I; �

satisfy S

y

1

;y

2

.

Conversely, assume that S

y

1

;y

2

= S[y

2

=y

1

] is obtained from S by applying

Rule 6, and let I together with the valuation � be a model of S

y

1

;y

2

. If

we take a valuation �

0

that coincides with � on the variables in �

S

y

1

;y

2

and satis�es �

0

(y

2

) = �(y

1

), then I; �

0

obviously satisfy S.

Proof of Part 2 of Lemma 6.10: Let S be a complete and clash-free con-

straint system that is obtained by applying the completion rules to fx

0

:C

0

g.

We de�ne a canonical model I of S as follows:

�

I

:= �

S

;

for all A 2 N

C

: x 2 A

I

i� x :A 2 S;

for all R 2 N

R

: (x; y) 2 R

I

i� xRy 2 S:

In addition, let � : �

S

! �

I

be the identity on �

S

. It remains to show that

I; � indeed satisfy each constraint in S.

By de�nition of I, a role constraint of the form xRy is satis�ed by I; � i�

xRy 2 S. More generally, y is an R

1

� : : :�R

m

-successor of x in S i� y is an

R

1

� : : :�R

m

-successor of x in I. Next, all constraints of the form x 6= y are

obviously satis�ed since � is the identity.

We show by induction on the structure of the concept C that every concept

constraint x :C 2 S is satis�ed by I; �. The induction base and the treatment



6.1. Number Restrictions on Complex Roles 89

of the propositional constructors and the value restrictions is just as for ALC:

I satis�es all constraints of the form x :A by de�nition. Since S is clash-free,

all constraints of the form x ::A are satis�ed. By induction, completeness of S

implies that S satis�es all constraints of the form x :CuD, x :CtD, x : 9R:C,

and x : 8R:C. Again, we go into detail only for constraints involving number

restrictions:

� Consider x :(� n R

1

�: : :�R

m

) 2 S. Since S is complete, Rule 5 cannot

be applied to x :(� n R

1

�: : :�R

m

), and thus x has at least n R

1

�: : :�R

m

-

successors in S, which are also R

1

� : : :�R

m

-successors of x in I. This

shows that I; � satisfy x :(� n R

1

�: : :�R

m

).

� Constraints of the form x :(� n R

1

� : : :�R

m

) 2 S are satis�ed because

S is clash-free and complete. In fact, assume that x has more than n

R

1

�: : :�R

m

-successors in I. Then x also has more than n R

1

�: : :�R

m

-

successors in S. If S contained inequality constraints y

i

6= y

j

for all

these successors, then we would have a clash. Otherwise, Rule 6 could

be applied.

Proof of Part 3 of Lemma 6.10: Assume that S contains a clash. If

fx :A; x ::Ag � S, then it is clear that no interpretation can satisfy both

constraints. Thus assume that x :(� n R

1

� : : :�R

m

) 2 S and x has ` > n

R

1

� : : :�R

m

-successors y

1

� : : :� y

`

in S with (y

i

6= y

j

) 2 S for all i 6= j.

Obviously, this implies that in any model I; � of S, �(x) has ` > n distinct

R

1

� : : :�R

m

-successors �(y

1

)� : : :��(y

`

) in I, which shows that I; � cannot

satisfy x :(� n R

1

�: : :�R

m

).

Proof of Part 4 of Lemma 6.10: In the following, we consider only

constraint systems S that are obtained by applying the completion rules to

fx

0

:C

0

g. For a concept C, we de�ne its and/or-size jCj

u;t

as the number of

occurrences of conjunction and disjunction constructors in C. The maximal

role depth depth(C) of C is de�ned as follows:

depth(A) := depth(:A) := 0 for A 2 N

C

;

depth(C

1

u C

2

) := maxfdepth(C

1

); depth(C

2

)g;

depth(C

1

t C

2

) := maxfdepth(C

1

); depth(C

2

)g;

depth(8R:C) := depth(9R:C) := 1 + depth(C);

depth(� n R

1

�: : :�R

m

) := m;

depth(� n R

1

�: : :�R

m

) := m:



90 Chapter 6. Expressive Number Restrictions

For the termination proof, the following observations, which are an easy con-

sequence of the de�nition of the completion rules, are important:

Lemma 6.12 Let S be a constraint system obtained by application of the

completion algorithm to fx

0

:C

0

g.

1. Every concept C that may occur in S is a subconcept of C

0

.

2. Every variable x 6= x

0

that occurs in S is an R

1

�: : :�R

m

-successor of x

0

for some role chain of length m � 1. In addition, every other role chain

that connects x

0

with x has the same length.

3. If x can be reached in S by a role chain of length m from x

0

, then for

each constraint x :C in S, the maximal role depth of C is bounded by

the maximal role depth of C

0

minus m. Consequently, m is bounded by

the maximal role depth of C

0

.

Proof:

1. is obvious.

2. Suppose the algorithm is started with fx

0

:C

0

g. Then each variable in-

troduced by the algorithm is generated by Rule 4 or 5 and thus connected

to its predecessor via some role. The second fact is due to Rule 6, which

identi�es only those variables that are both R

1

� : : :�R

m

-successors of

some y. Lemma 6.12.2 follows then by induction.

3. A constraint x :C can only be present in S if it was added by Rules 1-4.

If x :C was added by Rule 1 or 2, then the corresponding superconcept

x :C uD respectively x :C tD is also present in S, and it is of the same

depth. If it was added by Rule 3 or 4, it implies the presence of some

w

i

: 9R:C or w

i

:8R:C in S for some role name R and some R-predecessor

w

i

of x in S. In both cases, the role depth of the concepts occurring in

constraints on w

i

are at least 1+ the role depth of C. Hence the maximal

role depth of all constraints on all role-predecessors of x is at least 1+

the maximal role depth of all constraints on x. Finally, all variables in

�

S

are role successor of C

0

, and together with Lemma 6.12.2 this yields

Lemma 6.12.3.



6.1. Number Restrictions on Complex Roles 91

Let m

0

be the maximal role depth of C

0

. Because of the second fact, every

individual x in a constraint system S (reached from fx

0

:C

0

g by applying

completion rules) has a unique role level level(x), which is its distance from

the root node x

0

, i.e., the unique length of the role chains that connect x

0

with

x. Because of the third fact, the level of each individual is an integer between

0 and m

0

.

In the following, we de�ne a mapping � of constraint systems S to 5(m

0

+ 1)-

tuples of nonnegative integers such that S ! S

0

implies �(S) � �(S

0

), where

� denotes the lexicographic ordering on 5m

0

-tuples. Since the lexicographic

ordering is well-founded, this implies termination of our algorithm. In fact, if

the algorithm did not terminate, then there would exist an in�nite sequence

S

0

! S

1

! : : : , and this would yield an in�nite descending �-chain of tuples|

in contradiction to the well-foundedness of �.

Thus, let S be a constraint system that can be reached from fx

0

:C

0

g by

applying completion rules. We de�ne

�(S) := (�

0

; �

1

; : : : ; �

m

0

�1

; �

m

0

);

where �

`

:= (k

`;1

; k

`;2

; k

`;3

; k

`;4

; k

`;5

) and the components k

`;i

are obtained as

follows:

� k

`;1

is the number of individual variables x in S with level(x) = `.

� k

`;2

is the sum of the and/or-sizes jCj

u;t

of all constraints x :C 2 S such

that level(x) = ` and the conjunction or disjunction rule is applicable to

x :C in S.

� For a constraint x :(� n R

1

�: : :�R

m

), let k be the maximal cardinality of

all sets M of R

1

�: : :�R

m

-successors of x for which y

i

6= y

j

2 S for all pairs

of distinct elements y

i

; y

j

of M . We associate with x :(� n R

1

�: : :�R

m

)

the number r := n � k, if n � k, and r := 0 otherwise. k

`;3

sums up all

the numbers r associated with constraints of the form x :(� n R

1

�: : :�R

m

)

for variables x with level(x) = `.

� k

`;4

is the number of all constraints x :(9R:C) 2 S such that level(x) = `

and the existential restriction rule is applicable to x :(9R:C) in S.

� k

`;5

is the number of all pairs of constraints x :(8R:C), xRy 2 S such

that level(x) = ` and the value restriction rule is applicable to x :(8R:C),

xRy in S.

In the following, we show for each of the rules of Figure 6.7 that S ! S

0

implies

�(S) � �(S

0

).



92 Chapter 6. Expressive Number Restrictions

1. Conjunction: Assume that the rule is applied to the constraint x :C

1

uC

2

,

and let S

0

be the system obtained from S by its application. Let ` :=

level(x).

First, we compare �

`

and �

0

`

, the tuples respectively associated with the

level ` of x in S and S

0

. Obviously, the �rst components of �

`

and �

0

`

agree since the number of individuals and their levels are not changed.

The second component of �

0

`

is strictly smaller than the second compo-

nent of �

`

: jC

1

u C

2

j

u;t

is removed from the sum, and replaced by a

number that is not larger than jC

1

j

u;t

+ jC

2

j

u;t

(depending on whether

the top constructor of C

1

and C

2

is disjunction or conjunction, or some

other constructor). Since tuples are compared with the lexicographic

ordering, a decrease in this component makes sure that it is irrelevant

what happens in later components.

For the same reason, we need not consider tuples �

m

for m > `. Thus,

assume that m < `. In such a tuple, the �rst three components are

not changed by application of the rule, whereas the remaining two com-

ponents remain unchanged or decrease. Such a decrease can happen if

level(y) = m and S contains constraints yRx, y :(8R:C

i

) (or y :(9R:C

i

))

for some i 2 f1; 2g.

2. Disjunction: This rule can be treated similar to the conjunction rule.

3. Value restriction: Assume that the rule is applied to the constraints

x :(8R:C); xRy, and let S

0

be the system obtained from S by its ap-

plication. Let ` := level(x). Obviously, this implies that level(y) =

level(x) + 1 > `.

On level `, the �rst three components of �

`

remain unchanged; the

fourth remains the same, or decreases (if S contains constraints zSy

and z :(9S:C) for an individual z with level(z) = `); and the �fth de-

creases by at least one since the constraints x :(8R:C); xRy are no longer

counted. It may decrease by more than one if S contains constraints zSy

and z :(8S:C) for an individual z with level(z) = `.

Because of this decrease at level `, the tuples at larger levels (in particu-

lar, the one for level level(x)+1, where there might be an increase), need

not be considered.

The tuples of levels smaller than ` are not changed by application of the

rule. In particular, the third component of such a tuple does not change

since no role constraints or inequality constraints are added or removed.

4. Existential restriction: Assume that the rule is applied to the constraint

x :(9R:C), and let S

0

= S [ fxRy; y :Cg be the system obtained from

S by its application. Let ` := level(x). Obviously, this implies that



6.1. Number Restrictions on Complex Roles 93

level(y) = level(x) + 1 > `.

The �rst two components of �

`

obviously remain unchanged. The third

component may decrease (if y is the �rst successor which is introduced

for an at-least restriction (� n R)) or it stays the same. Since the fourth

component decreases, the possible increase of the �fth component is ir-

relevant.

For the same reason, the increase of the �rst component of �

`+1

is irrel-

evant.

Tuples of a level smaller than ` are not increased by the application of

this rule. All components of such a tuple remain unchanged, with the

possible exception of the third component, which may decrease.

5. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

) 2 S, let S

0

be the system obtained by rule application,

and let ` = level(x).

As for Rule 4, the �rst two components of �

`

remain the same. In

addition, there is a decrease in the third component of �

`

, since the new

individual z can now be added to the maximal sets of explicitly distinct

R

1

�: : :�R

m

-successors of x. Note that these sets were previously smaller

than n (because even the set of all R

1

�: : :�R

m

-successors of x was smaller

than n).

For this reason, the possible increase in the �fth component of �

`

and

in the �rst components of tuples of levels larger than ` are irrelevant.

Tuples of a level smaller than ` are either unchanged by application of

the rule, or their third component decreases.

6. Number restriction: Assume that the rule is applied to the constraint

x :(� n R

1

�: : :�R

m

) 2 S, let S

0

= S

y

1

;y

2

be the system obtained by rule

application, and let ` = level(x).

On level ` +m, the �rst component of the tuple �

`+m

decreases. Thus,

possible increases in the other components of this tuple are irrelevant.

Tuples associated with smaller levels remain unchanged or decrease. In

fact, since y

1

in S

0

has all its old constraints and the constraints of y

2

in

S, some value restrictions or existential restrictions for individuals of the

level immediately above level ` +m may become satis�ed (in the sense

that the corresponding rule no longer applies). Since no constraints are

removed, previously satis�ed value restrictions or existential restrictions

remain satis�ed. The third component of tuples of smaller level cannot

increase since the individuals y

1

; y

2

that have been identi�ed were not

related by inequality constraints.



94 Chapter 6. Expressive Number Restrictions

For languages where number restrictions may contain|in addition to com-

position|union or intersection of roles, an important property used in the

above termination proof is no longer given: It is not possible to associate each

individual generated by a tableau-based algorithm with a unique role level,

which is its distance to the \root" individual x

0

(i.e., the instance x

0

of C

0

generated by the tableau algorithm). Indeed, in the concept

C

0

:= (9R:9R:A) u (� 1 R t R�R);

the number restriction enforces that an R-successor of an instance of C

0

is

also an R�R-successor of this instance. For this reason, an R-successor of

the root individual must be both on level 1 and on level 2, and thus the

relatively simple termination argument that was used above is not available

for these larger languages. However, as we shall show in the next section, this

termination argument can still be used if union and intersection are restricted

to role chains of the same length. Without this restriction, satis�ability may

become undecidable: in Section 6.1.1, we have shown that satis�ability is in

fact undecidable for ALCN (�;u). For ALCN (�;t), decidability of satis�ability

is still an open problem.

An extension of the decidability result

The algorithm given in Section 6.1.2 can be extended such that it can also treat

union and intersection of role chains that have the same length. The proof of

soundness, completeness and termination of this extended algorithm is very

similar to the one for the basic algorithm, and will thus only be sketched.

In the remainder of this section, a complex role is

� a role chain R = R

1

�: : :�R

n

, or

� the intersection R = R

1

�: : :�R

n

u S

1

�: : :�S

n

of two role chains of the

same length, or

� the union R = R

1

�: : :�R

n

t S

1

�: : :�S

n

of two role chains of the same

length.

The satis�ability algorithm is extended by adding two new rules 5a and 5b to

handle number restrictions (� n R) for complex roles with union or intersec-

tion, and by substituting rule 6 by a new rule 6

0

that is able to handle the

new types of complex roles. To formulate the new rules, we must extend the

notion of a role successor in a constraint system appropriately. Building up on

the notion of a role successor for a role chain (see De�nition 4.11), we de�ne:



6.1. Number Restrictions on Complex Roles 95

5a. Number restriction: If x :(� n R

1

�: : :�

m

t S

1

�: : :�S

m

) 2 S and

x has less than n (R

1

�: : :�R

m

t S

1

�: : :�S

m

)-successors in S, then

S ! S

1

= S [ fxR

1

y

2

; y

m

R

m

zg [ fy

i

R

i

y

i+1

j 2 � i � m� 1g [

fz 6= w j w is an (R

1

�: : :�R

m

t S

1

�: : :�S

m

)-successor of x in Sg

S ! S

2

= S [ fxS

1

y

2

; y

m

S

m

zg [ fy

i

S

i

y

i+1

j 2 � i � m� 1g [

fz 6= w j w is an (R

1

�: : :�R

m

t S

1

�: : :�S

m

)-successor of x in Sg

where z; y

i

are new variables in � n �

S

.

5b. Number restriction: If x :(� n R

1

�: : :�R

m

u S

1

�: : :�S

m

) 2 S and

x has less than n (R

1

�: : :�R

m

u S

1

�: : :�S

m

)-successors in S, then

S ! S [ fxR

1

y

2

; xS

1

y

0

2

; y

m

R

m

z; y

0

m

S

m

zg [

fy

i

R

i

y

i+1

; y

0

i

S

i

y

0

i+1

j 2 � i � m� 1g [

fz 6= w j w is an (R

1

�: : :�R

m

u S

1

�: : :�S

m

)-successor of x in Sg

where z; y

0

i

; y

i

are new variables in � n �

S

.

6'. Number restriction: If x :(� n R) 2 S for some complex role R,

x has more than n R-successors in S, and there are R-successors y

1

; y

2

of

x in S with (y

1

6= y

2

) 62 S, then

S ! S

y

1

;y

2

= S[y

2

=y

1

]

for all pairs y

1

; y

2

of R-successors of x with (y

1

6= y

2

) 62 S.

Figure 6.8: The additional completion rules.

� y is an (R

1

�: : :�R

n

tS

1

�: : :�S

n

)-successor of x in S i� y is an R

1

�: : :�R

n

-

successor or an S

1

�: : :�S

n

-successor of x in S, and

� y is an (R

1

�: : :�R

n

uS

1

�: : :�S

n

)-successor of x in S i� y is an R

1

�: : :�R

n

-

successor and an S

1

�: : :�S

n

-successor of x in S.

Obviously, this de�nition is such that role successors in S are also role succes-

sors in every model of S: if I; � satisfy S, and y is an R-successor of x in S

for a complex role R, then �(y) is an R-successor of �(x) in I.

The new rules are described in Figure 6.8. The rules 5a, 5b are added to the

completion rules, whereas rule 6

0

substitutes rule 6 in Figure 6.7. To show

that the new algorithm obtained this way decides satis�ability of concepts for

the extended language, we must proof that all four parts of Lemma 6.10 still

hold. The observations presented in Lemma 6.12 still hold, only in the part 2

of Lemma 6.12 one has to substitute \due to Rule 6 which identi�es only those



96 Chapter 6. Expressive Number Restrictions

variables that are both R

1

�: : :�R

m

-successors of some y" by \due to Rule 6

0

which identi�es only those variables that are both successors of some y with

respect to role chains having the same length".

1. Local correctness of the rules 5a; 5b and 6

0

can be shown as in the proof

of Part 1 of Lemma 6.10 above.

2. The canonical model induced by a complete and clash-free constraint

system is de�ned as in the proof of Part 2 of Lemma 6.10. The proof

that this canonical model really satis�es the constraint system is also

similar to the one given there. Note that the notion of an R-successor of

a complex roleR in a constraint system was de�ned such that it coincides

with the notion of an R-successor in the canonical model I induced by

the constraint system.

3. The proof that a constraint system containing a clash is unsatis�able is

the same as the one given above. Note that this depends on the fact

that role successors in a constraint system are also role successors in

every model of the constraint system.

4. The proof of termination is also very similar to the one given above. The

de�nition of the depth of a concept is extended in the obvious way to

concepts with number restrictions on complex roles:

depth(� n R

1

�: : :�R

m

u S

1

�: : :�S

m

) := m;

depth(� n R

1

�: : :�R

m

t S

1

�: : :�S

m

) := m;

depth(� n R

1

�: : :�R

m

u S

1

�: : :�S

m

) := m;

depth(� n R

1

�: : :�R

m

t S

1

�: : :�S

m

) := m:

Because the role chains in complex roles are of the same length, it is

easy to see that Lemma 6.12 still holds. Thus, we can de�ne the same

measure �(S) as above for all constraint systems obtained by applying

the extended completion rules to fx

0

:C

0

g. It is easy to see that the proof

that S ! S

0

implies �(S) � �(S

0

) can be extended to the new rules. It

should be noted that the proof given above is already formulated in a

more general way than it were necessary for ALCN (�). In fact, we have

only used the fact that all role chains connecting two individuals have the

same length (which is still satis�ed for the extended language), and the

fact that these role chains also have the same name was not mentioned

(which is only satis�ed for ALCN (�)).

The following theorem is an immediate consequence of these observations:



6.2. Symbolic Number Restrictions 97

Theorem 6.13 Subsumption and satis�ability is decidable for the language

that extends ALCN (�) by number restrictions on union and intersection of role

chains of the same length.

Given this decidability result, a natural question arising here is whether con-

sistency of ALCN (�)-ABoxes is also decidable. In Section 4.3, we already

mentioned that a tableau-based algorithm deciding satis�ability of concepts is

likely to be extendible such that it decides ABox consistency. Unfortunately,

this is not true forALCN (�)-ABoxes. In

[

Molitor1997

]

, the failure of several at-

tempts to design a decision procedure for the consistency of ALCN (�)-ABoxes

is described. All these attempts led either to non-termination or incomplete-

ness. A decidability result could only be obtained for ABoxes of a severely

restricted form. Roughly spoken, consistency of ALCN (�)-ABoxes can only be

decided for ABoxes which do not contain two individuals which are connected

via two roles chains of di�erent lengths.

6.2 Symbolic Number Restrictions

As in the last section, we �rst give the undecidability result: This yields a

better insight into the expressive power of ALCN

S

, and it motivates the inves-

tigation of the restricted language ALUEN

S

.

6.2.1 An undecidability result

As in Section 6.1.1, undecidability of satis�ability is shown by a reduction of

the domino problem to concept satis�ability. For ALCN

S

, however, the proof

is easier if we take another variant of the domino problem: Instead of asking

for a compatible tiling of the �rst quadrant of the plane, we ask now for a

compatible tiling of the \second eighth"

(IN� IN)

�

:= f(a; b) j a; b 2 IN and a � bg

of the plane. As a consequence, the compatibility condition of a tiling is less

strict than the one for a tiling of the �rst quadrant of the plane. More precisely,

a tiling t : (IN � IN)

�

� (IN � IN)

�

! D is now called compatible i� for all

m;n 2 IN:

m < n) (t(m;n); t(m + 1; n)) 2 H and (t(m;n); t(m;n + 1)) 2 V:



98 Chapter 6. Expressive Number Restrictions

As such a tiling yields compatible tilings of arbitrarily large �nite rectangles,

it also yields a compatible tiling of the plane

[

Knuth1968

]

.

In contrast to the reduction given in Section 6.1.1, in this reduction, the indi-

viduals representing points in the grid are not related to each other by roles|

there is nothing comparable to the \horizontal" and \vertical" roles X and Y .

Intuitively, the new reduction works as follows: First, we de�ne an ALCN

S

-

concept C

IN

such that, for each model of C

IN

with x 2 C

I

IN

, there is a natural

relationship between tuples (a; b) 2 (IN� IN)

�

and S-successors y

a;b

of x. The

point (a; b) is represented by an S-successor of x having a L-successors and b

R-successors. Second, for a given tiling system D, we construct a concept C

D

that

1. is subsumed by C

IN

,

2. ensures that every y

a;b

is associated to exactly one domino type, and

3. ensures that the horizontal and vertical matching conditions are satis�ed.

The formal de�nition of C

IN

is given in the upper part of Figure 6.9. Let I be a

model of C

IN

with x 2 C

I

IN

. Now, C

1

expresses that for every nonnegative integer

a, x has an S-successor having exactly a L-successors. The precondition of C

2

makes sure that a is smaller than b, and thus the whole implication says that

for each pair a; b of nonnegative integers, if a � b then x has an S-successor

having exactly a L-successors and b R-successors (there can be more than one

such S-successor). Finally, C

3

says that whenever an S-successor of x has a

L-successors and b R-successors, we have a � b. Thus, there is an obvious

correspondence between S-successors of x and points in the second eighth of

the plane: every S-successor corresponds to a point in (IN � IN)

�

and vice

versa. To be more precise, we will formally prove the following observations

concerning C

IN

. For a role name R and some x 2 �

I

, x

R

I

denotes the number

of role �llers of x with respect to R in I, i.e.

x

R

I

:= #fy 2 �

I

j (x; y) 2 R

I

g:

Lemma 6.14 1. C

IN

is satis�able.

2. Let I be a model of C

IN

with x 2 C

I

IN

and let

Y

x

= fy 2 �

I

j (x; y) 2 S

I

g:

(i) For each (a; b) 2 (IN� IN)

�

there exists y

a;b

2 Y

x

with (y

a;b

)

L

I

= a

and (y

a;b

)

R

I

= b.



6.2. Symbolic Number Restrictions 99

C

IN

:= ("�:"�:(C

1

u C

2

u C

3

)) where

C

1

:= (9S:(= � L))

C

2

:= ((9S:(= � L) u (� � L))) (9S:(= � L) u (= � R)))

C

3

:= (8S:((= � L) u (= � R))) (� � L))

Given a tiling system D = (fD

1

; : : : ; D

m

g; H; V ) and the subconcepts

C

1

; C

2

; C

3

of C

IN

as de�ned above, let

C

D

:= C

IN

u (8S:( t

1�i�m

(D

i

u ( u

1�j�m

i

6=j

:D

j

)))) u

("�:"�:

u

1�i�m

(9S:((= � L) u (= � R) uD

i

)))

(1) ((8S:((6= � L) t ( 6= � R) tD

i

)) u

(2) (":(<(�; �) u=(� + 1; )))

(8S:(((=  L) u (= � R))) t

(D

i

;D

j

)2H

D

j

))) u

(3) (":(=(� + 1; ))

(8S:(((= � L) u (=  R))) t

(D

i

;D

j

)2V

D

j

))))))

where the following abbreviations are used

<(�; �) := (9S:((= � L) u (= � R) u :(= � L)));

=(� + 1; �) := <(�; �) u (8S:((� � L) t (� � L))):

Figure 6.9: Reduction concepts used in the proof of Theorem 6.16.

(ii) If y 2 Y

x

and y

L

I

= a and y

R

I

= b, then (a; b) 2 (IN� IN)

�

.

3. If x 2 C

IN

I

, then there is an injective mapping � : (IN� IN)

�

! Y

x

from

the second eighth of the plane to the set of S-successors of x.

Proof: 1. De�ne I = (�

I

; �

I

) and x as follows:

�

I

= fxg ] fy

a;b

j (a; b) 2 (IN� IN)

�

g ] fl

a

; r

b

j a; b 2 INg;

S

I

= f(x; y

a;b

) j (a; b) 2 (IN� IN)

�

g;

L

I

= f(y

a;b

; l

a

0

) j (a; b) 2 (IN� IN)

�

and a

0

< ag;

R

I

= f(y

a;b

; r

b

0

) j (a; b) 2 (IN� IN)

�

and b

0

< bg:

I is an ALCN

S

-interpretation and L

I

; R

I

are de�ned such that, for all (a; b) 2

(IN� IN)

�

, we have (y

a;b

)

L

I

= a and (y

a;b

)

R

I

= b. We show that x 2 C

IN

I

:



100 Chapter 6. Expressive Number Restrictions

x 2 C

IN

I

i� for all a; b 2 IN: x 2 (C

1

[�=a][�=b])

I

, x 2 (C

2

[�=a][�=b])

I

and

x 2 (C

3

[�=a][�=b])

I

. If a; b 2 IN, then

� x 2 (C

1

[�=a][�=b])

I

since (x; y

a;b

0

) 2 S

I

for some (even all) b

0

with b

0

� a.

� x 2 (C

2

[�=a][�=b])

I

: If x 2 (9S:(= a L) u (� b L))

I

, then a � b and

(x; y

a;b

) 2 S

I

, which implies x 2 (9S:(= a L) u (= b R))

I

.

� x 2 (C

3

[�=a][�=b])

I

: Let (x; y) 2 S

I

. If y 2 ((= a L) u (= b R))

I

, then

y = y

a;b

with a � b, which implies y 2 (� b L)

I

.

2. (i) The subconcept C

1

makes sure that for each a 2 IN, there exists some

y 2 Y

x

with y

L

I

= a. C

2

ensures for all a; b 2 IN that, if y 2 Y

x

with y

L

I

= a

and y

L

I

� b (which holds for all b with a � b), then there is some y

0

2 Y

x

with

y

0

L

I

= a and y

0

R

I

= b.

2. (ii) The third subconcept C

3

enforces for all y 2 Y

x

that y

L

I

= a and

y

R

I

= b implies y

L

I

� b, which yields a � b.

3. For a; b 2 (IN � IN)

�

there can be more than one y 2 Y

x

with y

L

I

= a and

y

R

I

= b. Hence, in order to de�ne an injective mapping, we assume that Y

x

is

linearly ordered by some ordering �. Then � is de�ned as follows:

� : (IN� IN)

�

! Y

x

(a; b) 7! min

�

fy 2 Y

x

j y

L

I

= a and y

R

I

= bg

where, for M � Y

x

, min

�

M denotes the minimum of M with respect to �. �

is injective by de�nition, and it is a total mapping as a direct consequence of

2.

The de�nition of the concept C

D

associated with a tiling system D is also given

in Figure 6.9. In the de�nition, two abbreviations < and = are used. In the

context of the concept C

IN

, these abbreviations really express the relation <

and the successor relation on natural numbers: For x 2 C

IN

I

we have

\x 2 (<(�; �)[�=a][�=b])

I

i� a < b"

as an immediate consequence of Lemma 6.14.2. Furthermore, we have

\x 2 (=(� + 1; �)[�=a][�=b])

I

i� a + 1 = b"



6.2. Symbolic Number Restrictions 101

because x has some S-successor having a L-successors for each a 2 IN. The

de�nitions of the relation < and the successor relation on natural numbers are

so easy because we de�ned C

IN

in such a way that Y

x

corresponds to (IN� IN)

�

in the way mentioned in Lemma 6.14, namely because each S-successor y of x

has at most y

R

I

L-successors. Replacing (IN� IN)

�

by IN� IN (thus using the

�rst quadrant of the plane instead of the second octant) would have made the

de�nition of the successor relation on natural numbers far more complicated.

The �rst line in the de�nition of C

D

makes sure that C

IN

subsumes C

D

, and that

every S-successor of an instance x of C

D

has exactly one domino type. In the

remainder of the de�nition, we consider an S-successor y

a;b

of x with domino

type D

i

that has a L- and b R-successors. Now, the subconcept (1) of C

D

ensures that every S-successor with the same number of L- and R-successors

as y

a;b

has the same domino type D

i

. (2) takes care of the horizontal match-

ing condition. The conjunct <(�; �) is found in (2) because the horizontal

matching condition asks only for matching right neighbours of points (a; b)

with a < b, whereas the domino type associated to a point (a; a) does not

impose any constraints on the domino type associated to (a + 1; a). Finally,

(3) takes care of the vertical matching condition.

Lemma 6.15 C

D

is satis�able i� D allows for a compatible tiling.

Proof: From the de�nition of C

D

it follows immediately that C

D

is subsumed

by C

IN

.

\)" Given a model I of C

D

with x 2 C

D

I

, we de�ne a mapping t : (IN �

IN)

�

! D as follows:

t(a; b) = D

i

i� x 2 (9S:((= a L) u (= b R) uD

i

))

I

:

First, we show that t is well-de�ned: Let a; b 2 IN. Since

x 2 (8S:( t

1�i�m

(D

i

u ( u

1�j�m

i

6=j

:D

j

))))

I

;

each S-successor of x is an instance of exactly one D

i

2 D. Furthermore,

for each (a; b) 2 (IN� IN)

�

and for each D

i

2 D

x 2 ((9S:((= a L) u (= b R) uD

i

))) (8S:((6= a L) t ( 6= b R) tD

i

)))

I

;

hence all S-successors of x having the same number of L-successors and

the same number of R-successors are instances of the same D

i

2 D.

Finally, as a consequence of Lemma 6.14, x has an S-successor y with



102 Chapter 6. Expressive Number Restrictions

y

L

I

= a and y

R

I

= b for each (a; b) 2 (IN� IN)

�

. Thus t is well-de�ned,

and it remains to be shown that t is indeed compatible:

Let a; b 2 IN with a < b, let y be an S-successor of x with y

L

I

= a and

y

R

I

= b, and let y 2 D

i

(hence we have t(a; b) = D

i

). From x 2 C

D

I

it

follows that

x 2 (":((<(a; b) u=(a+ 1; ))) (9S:((=  L) u (= b R) uD

j

))))

I

for some D

j

with (D

i

; D

j

) 2 H. Hence x 2 (9S:((= a + 1 L) u (=

b R) uD

j

))

I

, which implies that t(a + 1; b) = D

j

with (D

i

; D

j

) 2 H.

The same arguments apply to the vertical matching condition, which

shows that t is indeed a compatible tiling.

\(" Given a compatible tiling t, a model I = (�

I

; �

I

) of C

D

can be de�ned

like the one for C

IN

in the proof of Lemma 6.14, i.e.,

�

I

:= fxg ] fy

a;b

j a; b 2 IN and a � bg ] fl

a

; r

b

j a; b 2 INg;

S

I

:= f(x; y

a;b

) j a; b 2 IN and a � bg;

L

I

:= f(y

a;b

; l

a

0

) j a; a

0

; b 2 IN and a

0

< a � bg;

R

I

:= f(y

a;b

; r

b

0

) j a; b; b

0

2 IN and a � b and b

0

< bg:

In addition,

D

I

i

:= fy

a;b

j t(a; b) = D

i

g:

Each S-successor of x is instance of exactly one D

i

2 D, hence

x 2 (8S:( t

1�i�m

(D

i

u ( u

1�j�m

i

6=j

:D

j

))))

I

:

The proof of Lemma 6.14 shows that x 2 C

I

IN

. Now let a; b; g 2 IN. Then

x 2 ((9S:((= � L)u(= � R)uD

i

))[�=a][�=b])

I

i� a � b and t(a; b) = D

i

.

If x 2 ((9S:((= � L) u (= � R) uD

i

))[�=a][�=b])

I

, then

� x 2 (8S:((6= � L)t( 6= � R)tD

i

)[�=a][�=b])

I

since x has only a sin-

gle S-successor y

a;b

2 �

I

having a L-successors and b R-successors,

and according to the assumption y

a;b

2 D

i

.

� if x 2 ((<(�; �) u =(� + 1; ))[�=a][�=b][=g])

I

, then a < b and

a+1 = g, and the de�nition of I implies that x 2 (9S:((=  L)u(=

� R) uD

j

)[�=b][=g])

I

for some D

j

with (D

i

; D

j

) 2 H. Hence

x 2

((<(�; �) u=(� + 1; ))) (9S:( (=  L) u (= � R) u

t

j2H(D

i

)

D

j

))[�=a][�=b][=g])

I

:



6.2. Symbolic Number Restrictions 103

� if x 2 (=(� + 1; ))[�=b][=g])

I

, then b + 1 = g, and the de�nition

of I implies that x 2 (9S:((= � L) u (=  R) uD

j

)[�=a][=g])

I

for

some D

j

with (D

i

; D

j

) 2 V . Hence

x 2

((=(� + 1; ))) (9S:( (= � L) u (=  R) u

t

j2V (D

i

)

D

j

))[�=a][�=b][=g])

I

:

Summing up, we have x 2 C

D

.

Thus, undecidability of the domino problem yields undecidability of the satis�-

ability problem for ALCN

S

-concepts. Since C is unsatis�able i� C v (Au:A),

this implies undecidability of subsumption.

Theorem 6.16 Satis�ability and subsumption of ALCN

S

-concepts are unde-

cidable.

6.2.2 A decidability result

In this section, it will be shown that satis�ability of ALUEN

S

-concepts is de-

cidable. In order to simplify our investigation of the satis�ability problem for

ALUEN

S

-concepts, we will restrict our attention to concepts in variable normal

form (VNF), this is to concepts where each variable is bound at most once

by #. Obviously, each ALUEN

S

-concept can be transformed to an equivalent

concept in VNF by renaming of variables which are bound more than once.

Decidability of satis�ability of ALUEN

S

-concepts will be shown by presenting

a tableau-based algorithm and showing that for each ALUEN

S

-concept C, this

algorithm is sound, complete, and terminating. Similar to the algorithm pre-

sented in Section 6.1.2, the algorithm works on constraints, but for ALUEN

S

-

concepts, we need additional variables �

x

: Suppose we have the constraint

y :(8R:(#�:C)). Then, for each R-successor x of y, we need a variable �

x

that

stand for � \in the context of x".

De�nition 6.17 We assume that we have a countably in�nite set � =

fx; y; z; : : :g of individual variables, and for each pair (�; x) 2 N

V

�� a new nu-

merical variable �

x

which may occur free in concepts. Constraints, constraint

systems and clashes are de�ned as for ALC in De�nition 4.6.

An interpretation I is a model of a constraint system S i� there is a mapping

� : � ! �

I

and a mapping � : N

V

� � ! IN such that I; �; � satisfy each

constraint in S, i.e., we have



104 Chapter 6. Expressive Number Restrictions

(�(x); �(y)) 2 R

I

for all xRy 2 S,

�(x) 2 �(D)

I

for all x :D 2 S,

where �(D) is obtained from D by replacing each variable �

y

by its �-image

�(�; y).

In the sequel, rel denotes any relation in f�;�g. A constraint system S is said

to be numerically consistent i� the conjunction of all numerical constraints in

S, i.e.,

S

num

:=

^

x :(reln R) 2 S

x 2 �; R 2 N

R

; n 2 IN

(x

R

reln) ^

^

x :(rel�

y

R) 2 S

x; y 2 �; R 2 N

R

; � 2 N

V

(x

R

rel�

y

);

is satis�able in (IN; <), where x

R

; �

y

are interpreted as variables for nonnega-

tive integers.

A constraint system S is called complete i� none of the completion rules of

Figure 6.10 can be applied to S.

The algorithm works exactly like the tableau-based algorithm presented for

ALC in Section 4.4 with the only di�erences that

� it uses the completion rules given in Figure 6.10, and

� it answers \C

0

is satis�able" only if it has generated a complete, clash-

free, and numerically consistent constraint system. The ALC-algorithm

asked only for a complete and clash-free constraint system.

Before showing that this completion algorithm yields a decision procedure for

satis�ability of ALUEN

S

-concepts, let us make some comments on the rules.

First, note that each of the completion rules adds constraints when applied

to a constraint system, none of the rules removes constraints, and individual

variables x 2 � are never identi�ed nor substituted. With respect to this last

property, our algorithm di�ers from the tableau-based algorithms for ALCN

described in

[

Donini et al.1991a

]

and for ALCN (�) presented in the previous

section. Unlike our Rule 4, these algorithms introduce for each constraint of

the form x : 9R:C a new R-successor of x. If x also has a constraint of the

form x :(� n R), and more than n R-successors have been introduced, then

some of these individuals are identi�ed. Our Rule 4 avoids identi�cation by

\guessing" the number of allowed R-successors of x before introducing these



6.2. Symbolic Number Restrictions 105

successors. In fact, since we have numerical variables beside explicit numbers,

and since restrictions on numerical variables �

y

in constraints x :(� �

y

R) can

derive from di�erent parts of the constraint system, a similar identi�cation on

demand would either lead to non-termination or incorrectness. The second new

feature is Rule 3. Given a constraint x :(#�:D), we substitute a new numerical

variable �

x

for � to make sure that the semantics of the existential quanti�er

#� is obeyed, i.e., that the valuation for � depends on x. If we would just use

�, the di�erence between #�:8R:D and 8R:(#�:D) would not be captured.

Decidability of satis�ability of ALUEN

S

-concepts is an easy consequence of the

following lemma.

Lemma 6.18 Let C

0

be anALUEN

S

-concept in VNF, and let S be a constraint

system obtained by applying the completion rules to fx

0

:C

0

g. Then

1. The completion algorithm terminates when applied to fx

0

:C

0

g.

2. For each completion rule R that can be applied to S, and for each inter-

pretation I , (i) and (ii) are equivalent.

(i) I is a model of S.

(ii) I is a model of one of the systems S

i

obtained by applying R.

3. If S is a clash-free, numerically consistent, and complete constraint sys-

tem, then S has a model.

4. If S contains a clash or is not numerically consistent, then S does not

have a model.

Proof:

1. The termination proof is similar to the one for the tableau-based algo-

rithm for ALCN

[

Donini et al.1991a

]

. In fact, termination is a conse-

quence of the following properties of the completion rules.

� As stated above, neither individual variables are substituted nor

constraints are removed by the rules. The application of a comple-

tion rule strictly increases a constraint system.

� All concepts occurring in S are subconcepts of C

0

.

� The maximal depth of constraints on an individual x 2 �

S

is bounded

by the maximal depth of C

0

minus the length of the (unique) role

path from x

0

to x.



106 Chapter 6. Expressive Number Restrictions

1. Intersection: If x :(C

1

u C

2

) 2 S and x :C

1

62 S or x :C

2

62 S

S !

u

S [ fx :C

1

; x :C

2

g

2. Union: If x :(C

1

t C

2

) 2 S and x :C

1

62 S and x :C

2

62 S

S !

t

S

1

= S [ fx :C

1

g

S !

t

S

2

= S [ fx :C

2

g

3. Numerical Existential Quanti�cation: If x :(#�:D) 2 S

and x :D[�=�

x

] 62 S

S !

#

S [ fx :D[�=�

x

]g

4. New Objects

If xRy 62 S for all y 2 � and m > 0, k � 0 are maximal such that

fx :(9R:E

1

); : : : ; x :(9R:E

m

); x :(8R:D

1

); : : : ; x :(8R:D

k

)g � S and Rules

1{3 cannot be applied to S, then for each n with 1 � n � m and for each

n-Partition P = ]

1�i�n

P

i

= f1; : : : ; mg of m let S

P

be de�ned as follows:

S !

R

S

P

= S [ fxRy

i

; j 1 � i � ng [ fx :(� n R)g [

fy

i

:E

j

j 1 � i � n; j 2 P

i

g [ fy

i

:D

j

j 1 � i � n; 1 � j � kg

where y

i

2 � are new variables (i.e., variables not occurring in S).

5. Prophylactic new objects

If xRy 62 S for all y 2 � and x :(= 0 R) 62 S and k maximal with

x :(8R:D

i

) 2 S for 1 � i � k, x :(relN R) 2 S for N 2 IN or N = �

y

for some y 2 �; � 2 N

V

and Rules 1{4 cannot be applied to S, then S

1

; S

2

are de�ned as follows:

S !

n

S

1

= S [ fx :(= 0 R)g

S !

n

S

2

= S [ fxRyg [ fy :D

i

j 1 � i � kg [ fx :(> 0 R)g

where y 2 � is a new variables (i.e., a variable not occurring in S).

Figure 6.10: The completion rules for ALUEN

S

.

� Finally, Rules 4 and 5 are applied at most once to each individual

and each role name, and they introduce only �nitely many direct

role successors for each individual.

2. We only consider Rules 3, 4 and 5 since Rules 1 and 2 are obvious. If S

0

is generated by the application of a completion rule to S, then S � S

0

,

hence each model of S

0

is clearly a model of S. Thus we only have to



6.2. Symbolic Number Restrictions 107

consider the other direction.

Numerical Existential Quanti�cation: Application of this rule adds

a constraint x :C[�=�

x

] to S, if x : #�:C is contained in S. If I; �; � satisfy

S, then we know that there exists an n 2 IN such that �(x) 2 �(C[�=n])

I

.

Since the variable �

x

does not occur in S (by our assumption that every

variable is bound only once in the input concept), we can assume without

loss of generality that �(�

x

) = n, and thus I; �; � satisfy x :C[�=�

x

].

New Objects: Let x;R; k;m be as speci�ed in the precondition of

Rule 5 and let I satisfy S. Then there exist some ` � m and z

1

; : : : ; z

`

2

�

I

such that

� (�(x); z

i

) 2 R

I

for all i with 1 � i � `,

� for all 1 � j � m there is some j

0

2 f1; : : : ; `g with z

j

0

2 E

j

I

, and

� for all 1 � j � k, for all 1 � i � ` it holds that z

i

2 D

j

I

.

Since m; k are maximal and Rules 1-3 cannot be applied to S, the con-

straints mentioned above on R-successors of x are the only ones implied

by S. Let P be the `-partition of m with j 2 P

j

0

i� z

j

0

2 E

j

I

. In the

corresponding constraint system S

P

, ` new variables y

i

are introduced.

Let �(y

i

) = z

i

for 1 � i � `. Then

� (�(x); �(y

i

)) 2 R

I

for all 1 � i � `,

� for each x :(9R:E

j

) 2 S holds (�(x); �(y

j

0

)) 2 R

I

and �(y

j

0

) 2 E

j

I

for j 2 P

j

0

,

� �(y

i

) 2 D

j

I

for all 1 � i � `, 1 � j � k, and

� x

R

I

� `.

Hence I satis�es S

P

.

Prophylactic New Objects: Let x;R; k be as speci�ed in the pre-

condition of rule 5 and let I satisfy S. Two cases are to be distin-

guished: If x

R

I

= 0, then clearly I satis�es S

1

. Now let x

R

I

> 0 with

(�(x); z) 2 R

I

for some z 2 �

I

. If we de�ne �(y) = z, then I satis�es

S

2

= S [ fxRyg [ fx

R

> 0g [ fy :D

i

j 1 � i � kg.

3. As usual, we construct the canonical interpretation I

S

induced by S:

�

I

S

consists of the individual variables occurring in S, (x; y) 2 R

I

S

i�

xRy 2 S, and x 2 A

I

S

i� x :A 2 S. This yields a tree-like interpretation,

which needs not to be a model of S, since some number restrictions might

not be satis�ed for the following reasons: Either (a) an individual does

not have any role successors, but their existence is implied by number



108 Chapter 6. Expressive Number Restrictions

restrictions, or (b) it has some, but not su�ciently many role successors.

Note that exact numerical restrictions on the number of role successors

are given by a solution in (IN; <) of the numerical constraints (which are

satis�able since S is numerically consistent). In the �rst case, S does

not contain any constraints on such role successors, and we can simply

generate an appropriate number of them. In the second case, the idea is

to add su�ciently many copies of some already existing role successor y

together with y's role successors. Proceeding like this from the leaves to

the root, we end up with a model of S. More precisely, we start with an

interpretation I

0

de�ned as follows:

�

I

0

:= �

S

;

R

I

0

:= f(x; y) 2 �

I

0

��

I

0

j xRy 2 Sg for role names R;

A

I

0

:= fx 2 �

I

0

j x :A 2 Sg for concept names A:

Since S is clash-free and complete, I

0

obviously satis�es all constraints

beside at-least number restrictions: This can be shown by induction on

the structure of concepts similar to the proof of Part 2 of Lemma 6.10.

Let �

I

0

x

; �

I

0

y

; : : : and x

I

0

R

; y

I

0

R

; : : : be a solution of S

num

. A model of S is

then recursively de�ned as follows:

(a) Let

m

R

x

:= maxfn j x :(� nR) 2 Sg [ f�

I

0

y

j x :(� �

y

R) 2 Sg:

If x

R

I

j

= 0 and m

R

x

� 1, then I

j+1

is obtained from I

j

by adding

m

R

x

new individuals a

xRi

with (x; a

xRi

) 2 R

I

j+1

for 1 � i � m

R

x

.

(b) If x 2 �

S

and I

j

satis�es all number restrictions on all role successors

of x, x

R

I

j

= ` > 0, and m

R

x

= ` + k for some k � 1 and m

R

x

as

de�ned above, then we choose an R-successor y of x. First we make

k copies of y and all its role-successors. Then the copies of y are

called a

xRi

, and I

j+1

is obtained from I

j

by adding all copies to �

I

j

and by de�ning

R

I

j+1

:= R

I

j

[

[

1�i�k

(x; a

xRi

):

If neither (a) nor (b) applies to I

n

, then I

n

is obviously a model of S: All

constraints that are not at-least number restrictions are already satis�ed

by I

0

, and they are still satis�ed after the execution of Step (a) because S

is complete and thus does not impose any constraints on the individuals

added by Step (a) (otherwise, Rule 5 could be applied to S). They are



6.2. Symbolic Number Restrictions 109

also still satis�ed after the execution of Step (b): The individuals added

by Step (b) are copies of already existing R-successors which already

satisfy all constraints that are imposed by S on R-successors. Finally,

I

n

satis�es also all at-least number restrictions in S.

Step (b) is so simple because ALUEN

S

has the tree-model property and

because the usage of a solution for S

num

makes sure that we do not intro-

duce more role successors than allowed by at-most number restrictions.

4. If S contains a clash, then it is obviously unsatis�able. If S is complete

and I is a model of S, then we can deduce a solution for S

num

in (IN; >)

as follows: We de�ne

x

R

:= x

R

I

;

�

x

:= �(�; x):

Since I satis�es all constraints in S, this obviously yields a solution for

S

num

and thus S is numerically consistent.

Theorem 6.19 Satis�ability of ALUEN

S

-concepts is decidable.

Proof: Again, since Lemma 6.18 is the same as Lemma 4.8 (besides the

di�erent logics), the same arguments which were used on in Remark 4.9 to

show that Lemma 4.8 implies decidability of satis�ability of ALC-concepts now

yield decidability of satis�ability of ALUEN

S

-concepts.

Unfortunately, since ALUEN

S

is not closed under negation, subsumption can-

not be reduced to satis�ability. A closer look at the speci�c form of the concept

C

D

introduced in Figure 6.9 reveals that it can be written as C

D

= D

1

u :D

2

for two ALUEN

S

-concepts D

1

; D

2

: In fact, D

1

is the �rst conjunct of C

D

and

D

2

is the negation of the remainder of C

D

. Note that D

1

does not contain

numerical variables. Furthermore, all numerical variables occurring in the re-

mainder of C

D

are universally quanti�ed, which shows that D

2

contains only

existential quanti�cation of numerical variables. SinceD

1

u:D

2

is unsatis�able

i� D

1

v D

2

, this implies:

Theorem 6.20 Subsumption of ALUEN

S

-concepts is undecidable.



110 Chapter 6. Expressive Number Restrictions

6.3 Related work

Certain Modal Logics and Description Logics can be translated into �rst-order

logic such that only two di�erent variable names occur in the formulae ob-

tained by this translation; see Remark 4.3. Thus, decidability of subsumption

and other inference problems for these languages follows from the known de-

cidability result for L

2

, i.e., �rst-order logic with two variables and without

function symbols

[

Mortimer1975

]

. Recently, this decidability result has been

extended to C

2

, i.e., �rst-order logic with 2 variables and counting quanti�ers

[

Gr�adel et al.1997

]

. Independently, it has been proved in

[

Pacholski et al.1997

]

that satis�ability of C

2

formulae can be decided in nondeterministic, doubly

exponential time. As an immediate consequence, satis�ability and subsump-

tion for ALCN (t;u;:;

�1

), the extension of ALC by number restrictions with

inversion and Boolean operators on roles, is still decidable. It should be noted,

however, that expressing composition of roles in predicate logic requires more

than two variables.

Using sophisticated techniques for translating Description Logic concepts into

formulae of Propositional Dynamic Logics, it has been shown in

[

De Giacomo&

Lenzerini1996

]

that deciding satis�ability and subsumption for a very expres-

sive extension of ALC

reg

N is ExpTime-complete. This extension allows for

qualifying number restrictions on atomic and inverse roles. The number restric-

tions on inverse roles together with value restrictions involving the transitive

closure of roles lead to the loss of the �nite model property, as the following

example shows:

(= 0 f

�1

:>) u (= 1 f:>) u (8f

+

:(= 1 f:>) u (= 1 f

�1

:>))

It is obviously satis�able (for example, 0 together with f interpreted as the

successor function on the nonnegative integers is surely an instance of this

concept), but it does not admit a �nite model.

To our knowledge, the only constructor available in other logics that has some

of the expressive power of (existential) symbolic number restrictions is in�nite

disjunction. As a consequence, the decidability result presented in this chapter

are not subsumed and do not subsume other results.



Chapter 7

Transitive relations in

Description Logics

As argued in Chapter 3, transitive relations play an important rôle in the

representation of aggregated objects. In the following, three di�erent ways of

extending Description Logics by transitive roles are investigated with respect

to their computational complexity. Finally, it is discussed in how far these

approaches are suitable for the representation of aggregated objects and which

of the demands made in Chapter 3 are satis�ed by these approaches.

Three extensions of the concept language ALC by di�erent kinds of transitivity

are discussed in this section:

� Transitive closure of roles: In ALC

+

, the operator

+

can be applied

to role names. The role R

+

is then interpreted as the smallest transitive

relation containing R.

� Transitive roles: In ALC

R

+

, certain roles must be interpreted as tran-

sitive roles, but without the possibility to relate them to a \generating"

role as in the �rst extension.

� Transitive orbits of roles: In ALC

�

, the operator

�

can be applied to

role names. The role R

�

is then interpreted as some (not necessarily the

smallest) transitive relation containing R.

As a consequence of the results given in

[

Fischer&Ladner1979; Pratt1979

]

,

the basic inference problems for ALC

+

, i.e., ALC extended by the transitive

closure of roles, are ExpTime-complete, whereas these problems are PSpace-

complete for pure ALC. Since one might not be able or willing to pay this



112 Chapter 7. Transitive relations in Description Logics

high price for transitivity, looking for alternatives to the transitive closure is a

quite natural step to undertake. Using results from Modal Logic

[

Ladner1977;

Halpern&Moses1992

]

, we show that these problems remain PSpace-complete

for ALC

R

+

. Finally, we prove that for ALC

�

these problems are as hard as for

ALC

+

, namely ExpTime-complete.

7.1 ALC extended by the Transitive Closure of

Roles

In Section 4.5.1, syntax and semantics of ALC

+

have already been introduced

and in Section 4.5.3, the expressive power added by the transitive closure

operator is described. We recall that ALC

+

does no longer have the �nite-

tree-model property, but the �nite-model and the tree-model property. As

mentioned above and in Section 4.5.1, satis�ability and subsumption of ALC

+

-

concepts are ExpTime-complete. These problems are in PSpace for ALC,

hence the source of this high computational complexity is the transitive closure

operator.

This increase in computational complexity is due to the fact that, using uni-

versal value restrictions on transitive roles, one can propagate constraints on

all role-chain successors. For example, the concept

C

0

:= A u (9R:A) u (8R

+

:9R:A)

makes sure that each individual reachable over an R-path of arbitrary but �nite

length has itself an R-successor. To prevent a tableau-based algorithm from

generating all these R-successors (and thus looping), cycle detection mecha-

nisms are necessary. In Section 4.5.1, these cycle detection mechanisms were

already motivated. We recall that one has to check, for each individual that is

generated by the algorithm, whether its constraints are the same as those on

one of its role predecessor. If this is the case, one has furthermore to distin-

guish between cases where constraints on individuals propagated along some

role chain are simply re-generated but satis�ed and cases where the satisfac-

tion of constraints is always postponed. Beside others, these cycle detection

mechanisms require the storage of all constraints on all role predecessors of an

individual whose constraints are tested for satis�ability. When started with

the constraint system fx

0

:C

0

g, the constraints on a role successor of x

0

can

involve any subset of the subconcepts of C

0

. Let n be the length of C

0

. Then

the number of subconcepts of C

0

is linear in n, but the number of subsets

of subconcepts of C

0

is exponential in n. Intuitively, ExpTime-hardness of



7.2. ALC extended by Transitive Roles 113

ALC

+

is due to the fact that there are satis�able ALC

+

-concepts where every

model has a role chain of length exponential in the length of the input concept,

that the storage of the constraints along this chain is necessary, and that this

storage needs space exponential in the length of the input concept. For ex-

ample, replacing � by + in the ALC

�

-concept D de�ned in Section 7.3 yields

an ALC

+

-concepts D

0

whose smallest models have an R-path whose length is

exponential in the length of D

0

.

In Sections 7.2 and 7.3, it will be shown that the source of ExpTime-hardness

is not transitivity of roles per se, but the interaction between an ordinary

relation R and a transitive superrelation, here R

+

.

7.2 ALC extended by Transitive Roles

When the correspondence between Modal Logics and Description Logics was

discovered, results from the �eld of Modal Logic gave new insight into problems

concerning Description Logics

[

De Giacomo&Lenzerini1994a; 1994b; Schild

1994; De Giacomo1995

]

: For example, it is well-known

[

Schild1991

]

that ALC

is a notational variant of the propositional Multi-Modal Logic K

n

. Results for

the Modal Logic K4

n

, which is a Multi-Modal Logic with n so-called agents

extending propositional logic, gave the impetus to look closer at transitive

roles as a di�erent (and hopefully cheaper) way to extend Description Logics

by transitive relations. The results will be given in this section.

If ALC-interpretations are restricted to those where all role names are inter-

preted as transitive relations, then there is a 1-1 correspondence between K4

n

-

formulae andALC-concepts such that aK4

n

-formula � is satis�able i� its trans-

lation into an ALC-concept is satis�able with respect to the restricted seman-

tics. However, this restricted semantics is too restricted: As we have argued in

Chapter 3, adequate representation of aggregated objects requires transitive

relations, but this does not mean that all relations should be transitive. In

this Section, we will investigate ALC extended with transitive roles|beside

ordinary roles.

In

[

Halpern&Moses1992

]

it is shown that satis�ability of K4

n

formulae is

PSpace-complete. We will extend this result to mixed K4

`

+K

m

formula, or,

in Description Logics vocabulary, to ALC with transitive and ordinary roles.

This extension is straightforward but not trivial: For example, the Modal Logic

of one equivalence relation, S5

1

, is NP-complete, whereas the combination of

two of these logics, S5

1

+S5

1

, is PSpace-complete.



114 Chapter 7. Transitive relations in Description Logics

De�nition 7.1 ALC

R

+

is an extension of ALC obtained by allowing the use of

transitive roles inside concepts. The set of role names N

R

is a disjoint union of

role names N

P

= fP

1

; P

2

; : : : g and role names N

+

= fR

1

; R

2

; : : : g. In addition

to what holds for ALC-interpretations, an interpretation I = (�

I

; �

I

) has to

interpret role names R

i

2 N

+

as transitive roles, i.e., an interpretation has to

satisfy the additional condition

if (d; e) 2 R

i

I

and (e; f) 2 R

i

I

, then (d; f) 2 R

i

I

for each role R

i

2 N

+

.

In this section, a tableau-based algorithm is presented which tests for the

satis�ability of ALC

R

+

-concepts. The algorithm extends and combines those

presented in

[

Halpern&Moses1992

]

for Multi-Modal Logics in order to deal

with the simultaneous use of both ordinary and transitive roles. It will be

shown that this algorithm uses space polynomial in the length of the input

concept.

The tableau-based algorithm given below is similar to the one given in Sec-

tion 4.4|except for the modi�cations that were necessary for the correct han-

dling of transitive roles, and the modi�cations that came in because this al-

gorithm should use only polynomial space. One di�erence can be found in

the nondeterminism of Rule 2 which handles disjunction. Another di�erence

is that the role-successorship between two variables x; y is no longer repre-

sented by a constraint xRy, but by the fact that a node y|which contains

all constraints concerning y|is an R-successor of the node x|which contains

all constraints concerning x. The canonical model of a satis�able concept is

constructed by using the whole tree generated by the completion algorithm

(instead of just using a clash-free leaf). Again, all concepts are supposed to

be in negation normal form.

De�nition 7.2 Constraints are of the form x :C for an ALC

R

+

-concept C in

NNF and a variable x 2 � . When started with an ALC

R

+

-concept C

0

, the

completion algorithm starts with a tree consisting of a single node, the root

x

0

, labelled with the constraint system fx

0

:C

0

g. Using the rules given in

Figure 7.1, the completion algorithm expands this tree by adding either new

nodes labelled with constraint systems or new constraints to labels of nodes.

Such a tree, namely a tree where each node x is labelled with a set of constraints

S

x

and whose edges are labelled with role names in N

R

, is called a completion-

tree. A node y that is a successor of a node x is called a P -successor of x if

the edge between them is labelled with P . For a transitive role R 2 N

+

, y is



7.2. ALC extended by Transitive Roles 115

called an R-successor of x if there is a path from x to y where each edge is

labelled with R. A node x is called an ancestor of a node y if there is a path

from x to y regardless of the labels of its edges. The set of variables occurring

in a completion tree T is the same as the set of its nodes and is denoted by �

T

.

An interpretation I is a model of a completion-tree T i� there is a mapping

� : �

T

! �

I

that maps all nodes of T to individuals in �

I

such that

� I satis�es all constraints in all constraint systems that label nodes in T ,

i.e., �(x) 2 C

I

for all nodes x and all constraints x :C 2 S

x

, and

� (�(x); �(y)) 2 R

I

for all x; y 2 �

T

where y is an R-successor of x.

The rules given in Figure 7.1 are applied only to leafs labelled with clash-free

constraint systems. The completion algorithm terminates if no more rules can

be applied. A tree is called complete if no more rules can be applied to it, and

clash-free if all nodes are labelled with clash-free constraint systems. When

started with a constraint system fx

0

:C

0

g, the completion algorithm answers

with \C

0

is satis�able" if and only if the rules can be applied in such a way

that they generate a complete and clash-free tree.

To present the rules in a uni�ed way the following abbreviations are introduced:

De�nition 7.3 Let x; y 2 � , P 2 N

P

and R 2 N

+

be (transitive) role names,

and let S

x

be the label of a node in a completion tree. Then the x-consequences

S

x

=Py (resp. S

x

=Ry) for y via P (resp. R) are de�ned as follows:

S

x

=Py := fy :C j x : 8P:C 2 S

x

g

S

x

=Ry := fy :C j x : 8R:C 2 S

x

g [ fy : 8R:C j x :8R:C 2 S

x

g

Similar to Lemma 4.8, the proof of soundness and completeness can be split

into 4 subtasks.

Lemma 7.4 Let C

0

be an ALC

R

+

-concept in NNF, let T be a tree obtained

by applying the completion rules to fx

0

:C

0

g. Then

1. For each completion rule R that can be applied to T , and for each

interpretation I, (i) and (ii) are equivalent.

(i) I is a model of T .

(ii) R can be applied in such a way that it yields some T

0

satis�ed by I.



116 Chapter 7. Transitive relations in Description Logics

1. Conjunction: If x :(C

1

u C

2

) 2 S

x

and x :C

1

62 S

x

or x :C

2

62 S

x

, then

S

x

! S

x

[ fx :C

1

; x :C

2

g

2. Disjunction: If x :(C

1

t C

2

) 2 S

x

and x :C

1

62 S

x

and x :C

2

62 S

x

, then

S

x

! S

x

[ fx :Dg for D 2 fC

1

; C

2

g

3. Value and existential restriction:

If Rule 1 and Rule 2 cannot be applied to S

x

, then

� for each x :9P:C 2 S

x

with P 2 N

P

create a P -successor y

labelled with

S

y

:= fy :Cg [ S

x

=Py for a new y 2 �:

� for each x : 9R:C 2 S

x

with R 2 N

+

, if there is no ancestor y

of x where fy :Cg [ S

x

=Ry � S

y

, then create an R-successor y

labelled with

S

y

:= fy :Cg [ S

x

=Ry for a new y 2 �:

Figure 7.1: The completion rules for ALC

R

+

.

2. If T is a complete and clash-free completion tree, then T has a model.

3. If T contains a clash, then T does not have a model.

4. The completion algorithm terminates when applied to fx

0

:C

0

g.

Proof of Lemma 7.4.1: The \if" direction: All rules expand a completion

tree, hence if I is a model of the tree T

0

obtained from T by applying R, then

it is clearly also a model of T .

The \only if" direction: Let I be a model of T . If Rule 1 can be applied to a

leaf x, then x :C

1

u C

2

2 S

x

and I clearly satis�es T

0

. If Rule 2 is applicable

to a leaf x, then x :C

1

t C

2

2 S

x

and I satis�es either x :C

1

or x :C

2

, hence

Rule 2 can be applied in such a way that I is a model of the tree T

0

generated

by Rule 2 from T . Now, let Rule 3 be applicable to a leaf x in T . It has to be

shown that I satis�es all constraint systems S

y

generated by Rule 3.

Let � : �

T

! �

I

be the corresponding mapping of individual variables to

elements of �

I

, and let S

y

:= fy : Cg [ S

x

=Py be the label of one of the new

nodes generated by Rule 3. Then x : 9P:C 2 S

x

and �(x) has at least one



7.2. ALC extended by Transitive Roles 117

P -successor b 2 �

I

with b 2 C

I

and b 2 D

I

for all D with x : 8P:D 2 S

x

.

Hence I with �(y) = b clearly satis�es S

y

.

Now, let S

y

:= fy : Cg [ S

x

=Ry for some R 2 N

+

be the label of one of the

new nodes generated by Rule 3. Then x :9R:C 2 S

x

and �(x) has at least one

R-successor c 2 �

I

with c 2 C

I

. Since I satis�es T , all constraints of the form

x : 8R:D are also satis�ed, and c 2 D

I

for allD with x : 8R:D 2 S

x

. Finally,R

I

is a transitive relation. Hence if c has an R-successor d, this individual is also

an R-successor of �(x), and thus d 2 D

I

for all D with x :8R:D 2 S

x

. Hence

I also satis�es all constraints of the form y :8R:D 2 S

y

for x :8R:D 2 S

x

, and

thus satis�es the whole constraint system S

y

.

As a consequence, I satis�es each constraint system that label a node added

by Rule 3. Since the label S

y

of a new node y contains only constraints

concerning y, namely those of the form y :C, the extension of the mapping

� to y is independent from the extension of � to other nodes y

0

, and thus I

satis�es all constraint systems labelling nodes added by Rule 3. Finally, Rule 3

does not change the labels of nodes in T . Summing up, we have that I satis�es

the tree T

0

generated by Rule 3.

Proof of Lemma 7.4.2: Let T be a complete and clash-free completion tree

with variables �

T

, and let r

+

be the transitive closure of a binary relation r,

i.e.,

r

+

:=

[

n2IN; n�1

r

n

:

We de�ne a model I as follows: For concept names A and role names P 2 N

P

and R 2 N

+

we de�ne

�

I

:= �

T

;

A

I

:= fx 2 �

I

j x is a node in T and x :A 2 S

x

g;

P

I

:= f(x; y) 2 �

I

��

I

j y is an P -successor of x in T g;

R

I

:=

�

f(x; y) 2 �

I

��

I

j y is an R-successor of x in T g [

f(x; y) 2 �

I

��

I

j x : 9R:C 2 S

x

for some C and y is an an-

cestor of x in T with fy :Cg [ S

x

=Ry � S

y

g

�

+

:

T is a completion tree. Hence all constraint systems labelling nodes in I are

on di�erent variables. It remains to show by induction on the structure of

concepts that I is indeed a model of T :

� First, by de�nition, I satis�es all constraints of the form x :A in T for

concept names A.



118 Chapter 7. Transitive relations in Description Logics

� T is clash-free, hence I satis�es by de�nition all constraints of the form

x ::A.

� Since T is complete, it follows by induction on the structure of concepts

that constraints of the form x :C

1

u C

2

, x :C

1

t C

2

are also satis�ed.

� Next, I obviously interprets all P -successors in T as P

I

-successors in I.

Transitive role names R 2 N

+

are interpreted by de�nition by transitive

relations, i.e., by the transitive closure of a binary relation.

� For role names P 2 N

P

, it follows immediately from the completeness of

T and by induction that I satis�es all constraints of the form x : 9P:C.

� Furthermore, value restrictions of the form x : 8P:D are taken into ac-

count by S=Py, and since neither Rule 1 nor Rule 2 can be applied

when a P -successor y of x is generated by Rule 3, all value restrictions

concerning P -successors of x are taken care of.

� We now consider existential value restrictions on transitive roles. If an

R-successor y was generated for some x : 9R:C, then x : 9R:C is surely

satis�ed by I. If no R-successor was generated for x : 9R:C, then there

exists an ancestor y of x with fy :Cg [ S

x

=Ry � S

y

. According to the

de�nition of R

I

, (x; y) 2 R

I

for such an R-successor. In both cases, I

satis�es constraints of the form x : 9R:C by induction.

� Finally, suppose there exists some x 2 �

T

such that I does not satisfy

a constraint x : 8R:D 2 S. This is only possible if there exists some

y 2 �

I

with (x; y) 2 R

I

and y 62 D

I

. According to the de�nition of R

I

,

this y is either (1) an R-successor of x in T or (2) an ancestor of x with

fy :Cg [ S

x

=Ry � S

y

, or (3) an R-successor of such an ancestor. In all

three cases, due to the de�nition of Rule 3, y :D 2 S

y

. By induction,

y 2 D

I

in contradiction to the assumption.

Proof of Lemma 7.4.3: If T contains a clash, there is some leaf x in T with

fx :A; x ::Ag � S

x

. Hence no interpretation can satisfy S

x

, and thus T is

unsatis�able.



7.2. ALC extended by Transitive Roles 119

Proof of Lemma 7.4.4: For a constraint system S

x

, the maximum role depth

of S

x

, depth(S

x

), is the maximum of nested (9R:C); (8R:C) concepts of the

concepts occurring in S

x

, i.e.,

depth(S) := maxfdepth(C) j C 2 Sg;

where depth(C) is already de�ned in the proof of Part 4 of Lemma 6.10.

Furthermore, sub(C) denotes the set of subconcepts of C:

sub(A) := fAg for all concept names A 2 N

C

sub(:C) := f:Cg [ sub(C)

sub(C uD) := fC uDg [ sub(C) [ sub(D)

sub(C tD) := fC tDg [ sub(C) [ sub(D)

sub(9R:C) := f9R:Cg [ sub(C)

sub(8R:C) := f8R:Cg [ sub(C)

We recall that the number of subconcepts of C

0

is linear in the length of C

0

. In

the following, we assume that sub(C

0

) is linearly ordered and that fP

1

; : : : ; P

`

;

R

1

; : : : ; R

n

g is the set of role names occurring in C

0

, where P

i

is a role name

in N

P

and R

i

a role name in N

+

.

Now let m = jsub(C

0

)j. Then depth(S

x

) � m for all nodes x in T . Since all

nodes in T are labelled with subsets of sub(C

0

), jS

x

j � m for all nodes x.

Besides showing termination, an upper bound for the space needed by the

algorithm will be given, hence the depth of the tree constructed is investigated

more closely.

Fact 1: If y is a P

i

-successor of x, then depth(S

y

) < depth(S

x

). If y is an

R

i

-successor of x, C 2 S

y

and C is not of the form (8R

i

:C

1

), then

depth(C) < depth(S

x

).

Fact 2: If z is a P

i

- or an R

i

-successor of y, y is a P

j

- or an R

j

-successor of x

for i 6= j, then depth(S

z

) < depth(S

x

).

Fact 3: The only way that the depth of the labels does not decrease is along

someR

i

-path. Let x

0

; : : : ; x

k

be nodes on such a path labelled with clash-

free constraint systems S

x

j

such that each x

j+1

is an R

i

-successor of x

j

.

Then each S

x

j+1

can be divided into three parts S1

j+1

; S2

j+1

and S3

j+1

:

The �rst, S1

j+1

, consists of S

x

j

=R

i

x

j+1

. The second is S2

j+1

= fx

j+1

:Cg

where x

j

:(9R

i

:C) led to the creation of x

j+1

. The third consists of all

those constraints that were added to S

x

j+1

by Rule 1 or 2.



120 Chapter 7. Transitive relations in Description Logics

By de�nition, we have S1

j

� S1

j+1

and #S2

j

= 1 for all 1 � j � k. If

S2

j+1

= fx

j+1

:Cg, then for all ancestors w of x

j+1

(thus for all x

`

with

` < j), we have

(S1

j+1

[ S2

j+1

)[x

j+1

=w] = S

x

j

=Rw [ fw :Cg 6� S

w

by de�nition of Rule 3. There are at mostm di�erent choices for S2

j

and

at most m di�erent choices for S1

j

along this R

i

-path. Rule 3 tests only

whether S1

j+1

[ S2

j+1

is not contained in the labelling of an ancestor

of x

j

before creating a new node x

j+1

. Hence the number of di�erent

choices for subsets S3

j+1

do not contribute to the length of this R

i

-path

and we thus have k � m

2

.

Collecting these facts, we have that along one path in the completion tree,

the depth of the constraints labelling nodes on this path may not decrease for

at most m

2

consecutive nodes, and that the depth can decrease at most m

times. Hence the length of paths in the completion tree is bounded by m

3

.

Furthermore, it is of bounded out-degree.

1

Hence its construction terminates.

As a consequence of the facts in the proof of Lemma 7.4, the completion algo-

rithm yields not only a decision procedure for satis�ability of ALC

R

+

-concepts,

but also a PSpace decision procedure.

Theorem 7.5 Satis�ability of ALC

R

+

-concepts is PSpace-complete.

Proof: As a consequence of results in

[

Savitch1970

]

, for showing that a prob-

lem is in PSpace, it su�ces to give a nondeterministic decision procedure

that uses only polynomial space. The completion algorithm handles disjunc-

tion in a nondeterministic way: In contrast to other completion algorithms

presented within this thesis which test both possibilities for constraints of the

form x :C tD, it chooses nondeterministically between x :C and x :D.

As stated in the proof of Lemma 4, the tree T constructed by the tableau

construction algorithm for C

0

is of depth at most m

3

where jsub(C

0

)j = m.

Once this algorithm has visited all successors of a node without detecting a

clash, it can forget about the subtree below this node and reuse the space

where it was memorised. Each S

x

is a subset of sub(C

0

), hence each S

x

can

be stored in m bits|given that we have a table that can be used to associate

1

An upper bound for the outdegree is m.



7.2. ALC extended by Transitive Roles 121

binary m-vectors with subsets of sub(C

0

). Such a table can be stored easily in

m times the space that is needed to store C

0

. There are less than m concepts

of the form (9R:C) in sub(C

0

), hence there are less than m subtrees directly

below a node x, and we can memorise in m bits which of them still have to be

investigated.

Summing up, at each moment the algorithm is running, it has to store the

following information for its actual node x at depth h:

� S

x

,

� which of the subtrees below x still have to be investigated, and

� these two pieces of information for each of its h ancestors.

This information can be stored in m+m+ h(m +m) = (1 + h)2m bits. The

above mentioned table can be stored in m

2

bits. Since h � m

3

, the tableau

construction algorithm needs at most c +m

2

+ 2m + 2m

4

bits of storage for

some constant c.

As a consequence, satis�ability of ALC

R

+

-concepts is in PSpace. Finally,

PSpace-hardness follows from the facts that ALC

R

+

is an extension of ALC,

and that satis�ability of ALC was shown to be PSpace-complete in

[

Schmidt-

Schau�&Smolka1991

]

.

As we have seen, worst-case complexity of ALC

R

+

is lower than the one of

ALC

+

. The price in expressive power one has to pay for this lower complexity

is illustrated by the following example: Suppose devices, signal-lines and pipe-

connections are three disjoint concepts and we want to describe devices whose

direct parts are either signal-lines or devices. Furthermore, these devices must

have, as a possibly indirect part, a pipe-connection. In ALC

+

, these devices

can be described by the following concept:

V Device := Device u

(8has part:(Device t Signal Line)) u

(9has part

+

:(Pipe Connection)):

These devices cannot be described if only a transitive role has some part is

available without the possibility to relate this transitive role to a (possible

non-transitive) subrole. In ALC

R

+

, we can only refer to parts without the

possibility to distinguish between direct and indirect parts. Replacing in the

above example has part

+

and has part by has some part yields an unsatis-

�able concept.



122 Chapter 7. Transitive relations in Description Logics

7.3 ALC extended by Transitive Orbits

The gap in expressive power and in computational complexity separatingALC

+

and ALC

R

+

motivated the search for a compromise between these two ways of

extending Description Logics by transitive roles. As it turned out, there is one

natural candidate for this compromise, which will be called transitive orbits.

It allows one to relate a role to a transitive superrole, called the transitive

orbit of the role. Since the relationship between a role and its transitive orbit

is less strong than the one between a role and its transitive closure, one might

hope that transitive orbits lead to a lower computational complexity than the

transitive closure of roles.

De�nition 7.6 ALC

�

is the extension of ALC obtained by allowing the use of

transitive orbits of roles inside concepts. The transitive orbit of a role R is

denoted R

�

and interpreted as a transitive role containing R

I

, i.e., an ALC

�

-interpretation has to satisfy the additional conditions

R

I

� (R

�

)

I

and (R

�

)

I

is transitive.

A small example is given to highlight the di�erence between ALC

+

and ALC

�

concepts. Let

Carc Device := Device u (9has part

�

:Carcinogenic);

and let I be a model of Carc Device. Then d 2 Carc Device

I

even if there

is no has part

I

chain from d to some c 2 Carcinogenic

I

: For d being an

instance of Carc Device it is su�cient that there is some c 2 Carcinogenic

I

with (d; c) 2 (has part

�

)

I

.

As a consequence, transitive orbits are easier to handle by tableau-based al-

gorithms than the transitive closure of roles. When trying to build a model,

value restrictions of the form (9R

�

:C) can be treated by simply introducing

an R

�

-successor y which does not need to be an R

n

-successor for any n. Hence

for y, beside C, we have to take care only of universal value restrictions on R

�

and not of universal value restrictions on R. In contrast to this, for value re-

strictions of the form (9R

+

:C), in principle, we have to guess an n for that this

value restriction is satis�ed by some R

n

-successor, and we have thus to take

care also of universal value restrictions on R. For transitive orbits, it is neither

necessary to guess such an n nor to take care of universal value restrictions on

R.

In general, each model of an ALC

+

-concept D is also a model of its ALC

�

-

counterpart, which is obtained by replacing each R

+

in D by R

�

. If C

0

v D

0



7.3. ALC extended by Transitive Orbits 123

holds for two ALC

�

concepts C

0

; D

0

, then clearly C v D holds for their ALC

+

-

counterparts C;D. The converse does not hold:

(8R:(A u :A)) v (8R

�

:(A u :A))

holds if � is replaced by + (if x has no R

I

-successors, then it has clearly no

R

+

I

-successors), but it does not hold if � is replaced by � (x can have an

R

�

I

-successor without having an R

I

-successor).

Now the computational complexity of ALC

�

is investigated. The completion

algorithm given in Section 7.2 can easily be modi�ed to handleALC

�

-concepts:

It su�ces to modify the de�nition of the x-consequences S

x

=Ry (resp. S

x

=R

�

y)

for y via R (resp. R

�

)

S

x

=Ry := fy :C j x : 8R:C 2 Sg [

fy :C j x : 8R

�

:C 2 Sg [ fy : 8R

�

:C j x : 8R

�

:C 2 Sg

S

x

=R

�

y := fy :C j x : 8R

�

:C 2 Sg [ fy : 8R

�

:C j x : 8R

�

:C 2 Sg;

and to distinguish between R and R

�

-successors|where the �rst ones are

generated for constraints of the form x : 9R:C and the latter ones for constraints

of the form x : 9R

�

:C. Furthermore, the test whether there already exists some

predecessor labelled with a superset of the constraints to be generated has to

be performed before creating any successor.

It can easily be seen that these modi�cation yield soundness and completeness

for ALC

�

-concepts. An important point to note is that R-successors generated

by Rule 3 are labelled with consequences from value restrictions on R as well

as on R

�

, whereas R

�

-successors are pure R

�

-successors. This is to say that

their labels do not include any constraints y :C for value restrictions x : 8R:C.

This is possible because an R

�

-successor does not need to be an R

n

-successor

for any n.

In contrast to the depth of the trees constructed forALC

R

+

-concepts, the depth

of trees constructed by this modi�ed algorithm can no longer be bounded

polynomially in the length of the concept. For example, if

~

A

i

is de�ned as

given below, each model of the concept

D = (9R:(:A

1

u :A

2

u : : ::A

n

))u

(8R

�

:((9R:>) u (

~

A

1

u

~

A

2

u : : : u

~

A

n

)))

has paths of length 2

n

: The individuals on this path can be viewed as the

representations of the binary encoding of the numbers from 0 to 2

n

� 1. Let I

be an interpretation with x 2 D

I

. The concept D is de�ned such that



124 Chapter 7. Transitive relations in Description Logics

� each R

�

-successor of x can be viewed as the representation of a number

between 0 to 2

n

� 1,

� no R

�

-successor of x can represent both k and ` for 0 � k < ` � 2

n

� 1,

� x has an R-successor representing 0, and

� for each of its R

�

-successors y, if y represents k, then it has an R-

successor representing k + 1 mod 2

n

.

In order to ensure this, each

~

A

i

expresses the correct switching of the i-th bit

when counting from 0 up to 2

n

� 1. If y is an R

k+1

I

-successor of x, we have

that y 2 A

I

i

i� the i-th bit in the binary encoding of k is equal to 1. More

precisely,

~

A

1

= (A

1

u (8R::A

1

)) t (:A

1

u (8R:A

1

))

~

A

i

= ( u

1�j<i

A

j

u ((A

i

u 8R::A

i

) t (:A

i

u 8R:A

i

)))t

(: u

1�j<i

A

j

u ((A

i

u 8R:A

i

) t (:A

i

u 8R::A

i

))):

The length of D is quadratic in n whereas each model I of D has an R

I

-path

of length in O(2

n

).

Hence there are ALC

�

-concepts whose smallest models are of a relatively

large depth, namely exponential in the size of the concept. This property is

a good hint that satis�ability of ALC

�

-concepts cannot be decided using only

polynomial space. As the following theorem shows, this is indeed true.

Theorem 7.7 Satis�ability of ALC

�

-concepts is ExpTime-complete.

Proof: Satis�ability of ALC

�

-concepts is in ExpTime because it can be

decided by the modi�ed tableau construction algorithm. It is easy to see that

for an ALC

�

-concept C

0

, this modi�ed algorithm creates a tree whose depth

is exponentially bounded by the length of C

0

because a successor of a node x

labelled with S

y

is only generated if no ancestor is labelled with a superset of

S

y

.

To show that satis�ability of ALC

�

-concepts is indeed ExpTime-hard, we can

modify the proofExpTime-hardness of the satis�ability of PDL formulae given

in

[

Fischer&Ladner1979

]

. The proof gives, for an alternating Turing Machine

M and an input word x, a PDL formula f

M(x)

such that f

M(x)

is satis�able i�

x is accepted by a simpli�ed trace of M . A translation of PDL formulae into

ALC

+

-concepts can be found in

[

Schild1991

]

. This translation is satis�ability



7.4. Representation of part-whole relations 125

preserving and yields a concept whose length is linear in the length of the input

concept. If this translation is applied to f

M(x)

, it yields anALC

+

-conceptD

M(x)

using a single role R and its transitive closure R

+

. This concept is of the form

D

M(x)

= C

1

u C

2

u (8R

+

:C

2

);

where R is the only role name occurring in C

M(x)

. Furthermore, R

+

occurs

neither in C

1

nor in C

2

. Because of this special form, D

M(x)

is satis�able i�

its ALC

�

-counterpart D

0

M(x)

= C

1

u C

2

u (8R

�

:C

2

) is satis�able:

Each model of D

M(x)

is clearly a model of D

0

M(x)

. Now, let I

0

be a model of

D

0

M(x)

with x 2 D

0

M(x)

I

0

. Then x 2 C

I

0

1

u C

I

0

2

and for all y with (x; y) 2 R

�

I

0

it holds that y 2 C

I

0

2

. Let I be an interpretation of D

M(x)

which is equal to I

0

for concept and role names in C

1

; C

2

and where R

+

I

is the transitive closure of

R

I

0

. Hence we have that (x; y) 2 R

+

I

implies (x; y) 2 R

�

I

0

for all x; y 2 �

I

.

It follows that y 2 C

I

2

for all (x; y) 2 R

+

I

, which yields x 2 D

I

M(x)

. Hence I

is a model of D

M(x)

.

7.4 Representation of part-whole relations

In this section, the general observations concerning part-whole relations made

in Chapter 3 are related to the results concerning expressive power and compu-

tational complexity of transitive relations in Description Logics in this chapter.

As discussed in Chapter 3, the minimal prerequisite for the adequate repre-

sentation of part-whole relations is the possibility to express that a certain

relation|the general part-whole relation �|is transitive. This possibility is

given in all extensions of ALC investigated in this chapter. Hence, if only

this general part-whole relation is needed, the \cheapest" kind of transitivity,

namely transitive roles, is su�cient. If ALC is chosen as the basic Description

Logic, this means that ALC

R

+

is the appropriate extension for the application

under consideration.

In case the application asks for the distinction between di�erent part-whole

relations, the question arises which Description Logic has enough expressive

power for an adequate representation of these part-whole relations. At the

same time, the according inference problems should be of a computational

complexity that is as low as possible. We will �rst consider integral part-

whole relations. Given an integrity condition Int(:), the according integral

part-whole relation �

Int

was de�ned in Section 3.1.2 as

x �

Int

y

def.

() x � y ^ Int(x):



126 Chapter 7. Transitive relations in Description Logics

In ALC

R

+

, given a transitive role part of, integral part-whole relations can be

represented as follows: First, introduce a role name intpw and a concept Int

for the integral part-whole relation �

Int

. Then the following substitutions will

force all value restrictions to be interpreted in the appropriate way, namely to

address exactly those parts which are integral with respect to Int.

9intpw:C ; Int u 9part of:C

8intpw:C ; :Int t 8part of:C

In this solution, the concept Int introduced for an integrity condition can

be atomic or complex. Hence, concepts representing integrity conditions can

be ordered with respect to the subsumption relation, which induces a natural

hierarchy on the corresponding integral part-whole relations: For example,

let �

0

Int

��

Int

. If the corresponding integrity conditions are modeled in an

appropriate way, i.e., Int

0

v Int, it follows immediately that (9intpw

0

:C) v

(9intpw:C). Furthermore, integral part-whole relations inherit transitivity

from the general part-whole relation. This is to say that

8intpw:C v 8intpw:(8intpw:C)

(which is a translation of the axiom for transitive frames in Modal Logic,

see

[

Halpern&Moses1992

]

).

As a consequence, ALC

R

+

is also expressive enough for the adequate representa-

tion of the general part-whole relation together with a hierarchically structured

set of integral part-whole relations|provided that the integrity conditions can

be expressed in ALC

R

+

. Hence ALC can be extended by the general part-whole

relation together with an important class of part-whole relations without losing

PSpace-completeness of the relevant inference problems.

In contrast to this, composed part-whole relations as subrelations of the general

part-whole relation ask for more expressive power. In Section 3.1.3, these

composed part-whole relations were de�ned as

x �

Comp

y

def.

() x � y ^ x CompRel y:

To represent a single composed part-whole relation �

Comp

, it su�ces to use, as

the general part-whole role, the transitive orbit CompRel

�

of a role CompRel

representing the additional condition CompRel.

If more than one composed part-whole relation must be represented, transi-

tive orbits or the transitive closure are no longer su�cient because they allow

only to relate one transitive role to one subrole. To overcome this problem, one

could use ALC

reg

instead of ALC

+

and represent the general part-whole relation



7.4. Representation of part-whole relations 127

as the transitive closure of the union of all its sub-part-whole relations. Alter-

natively, one could use ALCH

R

+

, a Description Logic introduced in

[

Horrocks&

Gough1997

]

, which was designed to overcome the above mentioned lack in ex-

pressive power: It extends ALC

R

+

by role-hierarchies, that is the possibility

to specify inclusion axioms R v S on roles|regardless of whether they are

transitive or not. For example, to represent two non-transitive composed part-

whole relations �

Comp

;�

0

Comp

, one introduces two non-transitive role names

CompRel; CompRel

0

and one transitive role name part of and adds the inclu-

sion axioms

CompRel v part of and CompRel

0

v part of:

A model of these axioms interprets both �

Comp

and �

0

Comp

as subroles of the

transitive role part of. Although the extension of ALC by inclusion axioms

on possibly transitive roles leads to ExpTime-hardness of the corresponding

inference problems (since transitive orbits can be expressed), the authors of

[

Horrocks&Gough1997

]

claim that the algorithm behaves quite well in prac-

tice, that it is much simpler than the algorithms for ALC

+

, and that it is

amenable to optimisation techniques.

Summing up, there are mainly two alternatives for the representation of part-

whole relations in Description Logics:

1. If the application does not ask for the representation of composed part-

whole relations, then ALC

R

+

is expressive enough, even if hierarchically

structured integral part-whole relations are needed. In this case, the

inference problems are still in PSpace.

2. If the application asks for composed part-whole relations besides the gen-

eral part-whole relation, then ALC

�

or ALCH

R

+

are the least expressive

propositionally closed Description Logic able to represent arbitrary roles

together with transitive superroles. Unfortunately, even for ALC

�

, the

relevant inference problems are ExpTime-hard.



Chapter 8

Conclusion

This thesis reports the investigations that were made to �nd out which knowl-

edge representation system based on Description Logics is best suited for sup-

porting the design of process models. To be well-suited for the process engi-

neering application, a Description Logic has to provide the expressive power

to describe relevant properties of the building blocks process models consist of.

Furthermore, this Description Logic has to support the structured storage of

these building blocks. To satisfy the latter requirement, the relevant inference

problems should be of an acceptable computational complexity, namely at least

decidable. The goal of these investigations was not to implement a complete

DL system, but to extend already existing Description Logics such that they

provide the expressive power required for the process engineering application,

and to investigate the computational properties of these Description Logics.

As a matter of fact, no such \best suited" DL system could be chosen. This is

not only due to the limited amount of time available for these investigations,

but also due to the fact that such a best suited DL system does not need

to exist: Roughly spoken, the process engineering application asks for a DL

system with rather high expressive power and decidable inference problems.

Now, the expressive power of a DL system is proportional to the computational

complexity of its relevant inference problems. Additionally, expressive power

is a multi-dimensional property and thus there are several candidates for a

best suited DL system. The most important of these candidates were de�ned

and investigated with respect to the computational complexity of the relevant

inference problems and expressive power.

To cope with the high complexity of process models, aggregated objects are

widely used while building process models. As a consequence, the part-whole

relation, which relates parts to aggregated objects, plays an important rôle for



129

the description of (aggregated objects in) process models. The part-whole re-

lation has some inherent properties which ask for an adequate representation,

the most important of which is transitivity. Beside the general part-whole re-

lation, it seems natural to use various sub-part-whole relations, whose meaning

is mostly only given by intuitive examples in literature. For the adequate rep-

resentation of the general part-whole relation and its sub-part-whole relations,

exact de�nitions of their properties and the way in which they interact are

necessary. Since these exact de�nitions were, to our knowledge, lacking, we

established a taxonomy of part-whole relations which gives a precise scheme

for the classi�cation of sub-part-whole relations. This scheme implies both the

main properties of the sub-part-whole relations de�ned within this scheme as

well as the way in which they interact. With this taxonomy in mind, three

ways of extending Description Logics by transitive relations were investigated,

namely transitive roles, transitive orbits, and the transitive closure of roles.

Transitive roles per se, without referring to an underlying subrole, are algo-

rithmically easier to handle than the transitive closure or transitive orbits of

roles. Hence, when using a Description Logic system for an application that

asks for the adequate representation of aggregated objects, it is worth ask-

ing which kind of sub-part-whole relations are important in this application:

We could show that if, beside the general part-whole relation, only integral

part-whole relations are needed, then transitive roles are expressive enough.

However, the adequate representation of composed part-whole relations asks

for transitive orbits or hierarchies of possibly transitive roles|which both in-

crease the complexity of the relevant inference problems. All solutions enable

us to de�ne concepts or describe individuals by referring to parts at a level of

decomposition not known and not bounded in advance. As a by-product, all

solutions provide the expressive power to refer to ancestors, friends or relatives

in any generation or in any degree of relationship.

The complexity results hold for the case where ALC is extended by transitive

roles, the transitive closure, or the transitive orbits. An interesting question

arising from these observations is whether these results hold for extensions of

other Description Logics as well, but its investigation goes beyond the scope

of this work.

Expressive number restrictions: Since a process model strongly depends

on the way in which its building blocks are interconnected, the process engi-

neering application asks for a Description Logic that has the expressive power

to describe this structural information. Expressive number restrictions can

provide this expressive power. This can be seen in the fact that, for exam-

ple, ALCN (�) does not have the tree model property. Within this thesis, two



130 Chapter 8. Conclusion

approaches to make number restrictions more expressive were investigated.

Symbolic number restrictions turned out to be very expressive. For exam-

ple, they allow to describe symmetry conditions or the dependency between

the number of an objects connections and the number of the connections of

its parts. Unfortunately, this high amount of expressive power makes all rele-

vant inference problems undecidable. However, a slight restriction of this logic

could be shown to have a decidable satis�ability problem|even though the

according subsumption problem is still undecidable.

Number restrictions on complex roles proved also to be very expressive,

but, in contrast to symbolic number restrictions, it was possible to design a

new, expressive, and decidable Description Logic, namely ALCN (�). This does

not hold for other extensions by either more complex roles inside number re-

strictions (than those built using composition only) or by a more expressive

underlying Description Logic, namely ALC

+

. Within this thesis, a variety of

open problems could be solved concerning the e�ects complex roles inside num-

ber restrictions have on the computational complexity of the relevant inference

problems.

In order to evaluate the suitability of DL system as a means to structure the

storage of process model building blocks, the DL system Crack was integrated

into the process modeling tool ModKit. This integration is realized in such

a way that browsing the class hierarchy, de�ning new classes, and migrating

modi�ed prototypes are supported by the system services provided by Crack.

The fact that the expressive power of Crack is high enough for providing this

support is due to the fact that all information concerning objects and classes in

ModKit that can be deduced automatically from their speci�cations can be

expressed in Crack. A process modeling tool where more of this information

could be deduced could pro�t from the integration of a more expressive DL

system.

8.1 Consequences of the complexity results for

the process modeling application

The results of the investigations of the computational complexity of Descrip-

tion Logics can be summarised as follows: (a) Complex roles inside number

restrictions lead to the undecidability of the relevant inference problems for

some combinations of the role-forming constructors that include composition,

whereas the basic Description Logic ALC extended by composition inside num-



8.1. Consequences for the application 131

ber restrictions still has decidable inference problems; for an overview see Fig-

ure 6.3. (b) If ALC is extended by symbolic number restrictions of the form

motivated by the examples, it still has a decidable satis�ability problem. Un-

fortunately, subsumption of this extension by symbolic number restrictions

turned out to be undecidable. (c) Transitive relations|which are needed for

the adequate representation of aggregated objects|can be added to ALC with-

out strongly increasing the computational complexity of the relevant inference

problems. In contrast, di�erent ways of using a transitive superrole together

with a possibly non-transitive subrole strongly increasing this complexity.

For the representation of process model building blocks, this means that we

have gained a better insight into \di�cult" properties (those that necessitate

constructors which lead to a dramatical increase of the computational com-

plexity) of building blocks we would like to describe and \well-behaved" ones

(those that can be expressed using constructors which lead to an acceptable

computational complexity). Two examples for di�cult properties and exam-

ples of well-behaved ones will follow.

If we de�ne a class by restricting the number of objects related to its in-

stances via complex roles involving conjunction and composition of roles, such

as, for example, in the concept (� 4 ((connected-to � has-phenomena) u

has-phenomena)), then either the computation of the taxonomy runs into an

in�nite loop, or this information is simply ignored. Hence this property is an

example for a di�cult property. A second example for di�cult properties are

symmetry properties that must hold for instances of a speci�c class which can

only be expressed using symbolic number restrictions. Then this information

concerning symmetry can be taken into account for testing whether this class

can ever be instantiated, but it has to be ignored for the computation of the

taxonomy. This shortcoming of the inference services of a DL system are not

due to an unwilling software developer or a slow computer, but they were

proved to be a consequence of the theory of computation.

It turned out that properties of aggregated objects that are described by re-

ferring to its parts can be expressed using a Description Logic for which the

complexity of the relevant inference problems is rather low|provided that

we are not too demanding with respect to the di�erent kinds of part-whole

relations we would like to use to refer to these parts. Hence, these proper-

ties belong to the well-behaved ones, even though their description may refer

to parts that are in a level of decomposition neither known nor bounded in

advance.



Appendix A: Syntax rules

Complex concepts and possibly complex roles of the di�erent concept languages

referred to in this paper are built according to the following syntax rules where

C;C

1

; C

2

denote concepts, A stands for a concept name or a number restriction,

R;R

1

; R

2

denote roles, n stands for a nonnegative integer and � is a numerical

variable.

ALCN :

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

) j (� n R) j (� n R)

ALC

+

:

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

)

R �! R j R

+

1

ALC

reg

:

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

)

R �! R

1

t R

2

j R

1

�R

2

j R

+

1

ALCN

S

:

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

) j (#�:C

1

) j

(� n R) j (� n R) j (� � R) j (� � R)

ALUEN

S

:

C �! C

1

u C

2

j C

1

t C

2

j :A j

(8R:C

1

) j (9R:C

1

) j (#�:C

1

) j

(� n R) j (� n R) j (� � R) j (� � R)

ALCN (M) :

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

) j (R is a role name )

(� n R

0

) j (� n R

0

) j (R

0

is built according to M)

ALC

+

N (M) :

C �! C

1

u C

2

j C

1

t C

2

j :C

1

j

(8R:C

1

) j (9R:C

1

) j (R is a regular role)

(� n R

0

) j (� n R

0

) j (R

0

is built according to M)



Semantics

The following table contains a short description of the semantics of the most

important role- and concept forming constructors for an interpretation I =

(�

I

; �

I

). The letter n stands for a nonnegative integer.

Syntax Semantics

Role names R R

I

� �

I

��

I

Concept names C C

I

� �

I

> �

I

? ;

:C �

I

n C

I

C uD C

I

\D

I

C tD C

I

[D

I

9R:C fd 2 �

I

j For some e 2 �

I

, (d; e) 2 R

I

and e 2 C

I

g

8R:C fd 2 �

I

j For all e 2 �

I

if, (d; e) 2 R

I

then e 2 C

I

g

(� n R) fd 2 �

I

j There are at least n elements e 2 �

I

with (d; e) 2 R

I

g

(� n R) fd 2 �

I

j There are at most n elements e 2 �

I

with (d; e) 2 R

I

g

(R

1

�R

2

)

I

R

I

1

�R

I

2

= f(d; f) 2 �

I

��

I

j There exists e 2 �

I

with (d; e) 2 R

I

1

and (e; f) 2 R

I

2

g

(R

+

)

I

[

i�1

(R

I

)

i

; where (R

I

)

n

= (R

I

�R

I

�: : :�R

I

)

| {z }

n times



Bibliography

[

Artale et al. 1994

]

A. Artale, F. Cesarini, E. Grazzini, F. Pippolini, and

G. Soda. Modelling composition in a terminological language environment.

In Workshop Notes of the ECAI Workshop on Parts and Wholes: Concep-

tual Part-Whole Relations and Formal Mereology, pages 93{101, Amster-

dam, 1994.

[

Baader et al. 1993

]

F. Baader, M. Buchheit, and B. Hollunder. Cardi-

nality restrictions on concepts. Technical Report RR-93-48, Deutsches

Forschungszentrum f�ur K�unstliche Intelligenz (DFKI), Kaiserslautern, Ger-

many, 1993.

[

Baader et al. 1994

]

F. Baader, E. Franconi, B. Hollunder, B. Nebel, and

H. Pro�tlich. An empirical analysis of optimization techniques for termi-

nological representation systems, or: Making KRIS get a move on. Applied

Arti�cial Intelligence, 4:109{132, 1994.

[

Baader 1990a

]

F. Baader. Augmenting concept languages by transitive clo-

sure of roles: An alternative to terminological cycles. Technical Report

RR-90-13, Deutsches Forschungszentrum f�ur K�unstliche Intelligenz (DFKI),

Kaiserslautern, Germany, 1990. An abridged version appeared in Proc. of

the 12th Int. Joint Conf. on Arti�cial Intelligence IJCAI-91, pp. 446{451.

[

Baader 1990b

]

F. Baader. A formal de�nition for expressive power of knowl-

edge representation languages. In Proceedings of the 9th European Confer-

ence on Arti�cial Intelligence, ECAI-90, pages 53{58, Stockholm (Schwe-

den), 1990.

[

Baader 1991

]

F. Baader. Augmenting concept languages by transitive clo-

sure of roles: An alternative to terminological cycles. In Proceedings of the

Twelfth International Joint Conference on Arti�cial Intelligence (IJCAI-

91), 1991.



BIBLIOGRAPHY 135

[

Baader&Hanschke 1991

]

F. Baader and P. Hanschke. A schema for integrat-

ing concrete domains into concept languages. In Proceedings of the Twelfth

International Joint Conference on Arti�cial Intelligence (IJCAI-91), pages

452{457, Sydney, 1991.

[

Baader&Hanschke 1993

]

F. Baader and P. Hanschke. Extensions of concept

languages for a mechanical engineering application. In Proc. of the 16th Ger-

man AI-Conference, GWAI-92, volume 671 of Lecture Notes in Computer

Science, pages 132{143, Bonn, Germany, 1993. Springer-Verlag.

[

Baader& Sattler 1996a

]

F. Baader and U. Sattler. Description logics with

symbolic number restrictions. In W. Wahlster, editor, Proceedings of the

Twelvth European Conference on Arti�cial Intelligence (ECAI-96). John

Wiley & Sons Ltd, 1996.

[

Baader& Sattler 1996b

]

F. Baader and U. Sattler. Number restrictions on

complex roles in description logics. Technical Report 96-02, LuFg Theoret-

ical Computer Science, RWTH Aachen, 1996. Available via www: http://

www-lti.informatik.rwth-aachen.de/Forschung/Papers.html.

[

Baader& Sattler 1996c

]

F. Baader and U. Sattler. Number restrictions on

complex roles in description logics. In Proceedings of the Fifth International

Conference on the Principles of Knowledge Representation and Reasoning

(KR-96). Morgan Kaufmann, Los Altos, 1996.

[

Baumeister et al. 1998

]

M. Baumeister, R. Bogusch, B. Lohmann, U. Sattler,

and D. Souza. The Chemical Engineering Data Model Veda. Technical

report, Lehrstuhl f�ur Proze�technik RWTH Aachen, 1998. To appear.

[

Baumeister 1998

]

M. Baumeister. Ein exibles und abstrahierendes Objekt-

modell f�ur die Modellierung chemischer Prozesse. PhD thesis, Lehrstuhl

f�ur Proze�technik, Lehrstuhl f�ur Informatik V, RWTH Aachen, 1998. To

appear.

[

Beeri et al. 1997

]

C. Beeri, A. Y. Levy, and M.-C. Rousset. Rewriting queries

using views in description logics. In Proceedings of the Sixteenth ACM

SIGACT SIGMOD Symposium on Principles of Database Systems (PODS-

97), Tucson, Arizona,, May 1997.

[

Bergamaschi& Sartori 1992

]

S. Bergamaschi and C. Sartori. On taxonomic

reasoning in conceptual design. ACM Transactions on Database Systems,

17(3):385{422, 1992.

[

Berger 1966

]

R. Berger. The undecidability of the dominoe problem. Memoirs

of the American Mathematical Society, 66, 1966.



136 BIBLIOGRAPHY

[

Bogusch et al. 1996

]

R. Bogusch, B. Lohmann, and W. Marquardt.

Computer-aided process modeling with MODKIT. In Proceedings of Chem-

puters Europe III, pages 29{30, Frankfurt, Germany, October 1996.

[

Bogusch 1998

]

R. Bogusch. Repr�asentation mathematischer Modelle f�ur die

rechnergest�utzte Modellierung verfahrenstechnischer Prozesse. PhD thesis,

Lehrstuhl f�ur Proze�technik, RWTH Aachen, 1998. To appear.

[

Borgida&Patel-Schneider 1994

]

A. Borgida and P. Patel-Schneider. A se-

mantics and complete algorithm for subsumption in the CLASSIC descrip-

tion logic. Journal of Arti�cial Intelligence Research, 1:277{308, 1994.

[

Brachman et al. 1991

]

R. J. Brachman, D. McGuinness, P. Patel-Schneider,

L. Resnick, and A. Borgida. Living with CLASSIC: When and how to use

a KL-ONE-like language. In J. F. Sowa, editor, Principles of Semantic

Networks. Morgan Kaufmann, Los Altos, 1991.

[

Brachman 1983

]

R. J. Brachman. What IS-A is and isn't: An analysis of tax-

onomic links in semantic networks. IEEE Computer, 16(10):30{36, October

1983.

[

Brachman&Schmolze 1985

]

R. J. Brachman and J. Schmolze. An overview of

the KL-ONE knowledge representation system. Cognitive Science, 9(2):171{

216, 1985.

[

Bresciani et al. 1995

]

P. Bresciani, E. Franconi, and S. Tessaris. Implement-

ing and testing expressive description logics: A preliminary report. In

A. Borgida, M. Lenzerini, D. Nardi, and B. Nebel, editors, Proceedings of

the International Workshop on Description Logics, Rome, 1995.

[

Buchheit et al. 1994

]

M. Buchheit, M. A. Jeusfeld, W. Nutt, and M. Staudt:.

Subsumption of queries over object-oriented databases. Information Sys-

tems, 19(1), 1994.

[

Calvanese et al. 1994

]

D. Calvanese, M. Lenzerini, and D. Nardi. A uni�ed

framework for class based representation formalisms. In J. Doyle, E. Sande-

wall, and P. Torasso, editors, Proceedings of the Fourth International Con-

ference on the Principles of Knowledge Representation and Reasoning (KR-

94), pages 109{120, Bonn, 1994. Morgan Kaufmann, Los Altos.

[

Calvanese et al. 1995

]

D. Calvanese, G. De Giacomo, and M. Lenzerini. Struc-

tured objects: Modeling and reasoning. In Proceedings of the Fourth Interna-

tional Conference on Deductive and Object-Oriented Databases (DOOD-95),

volume 1013 of Lecture Notes in Computer Science, pages 229{246, 1995.



BIBLIOGRAPHY 137

[

Calvanese 1996

]

D. Calvanese. Finite model reasoning in description logics.

In Proceedings of the Fifth International Conference on the Principles of

Knowledge Representation and Reasoning (KR-96). Morgan Kaufmann, Los

Altos, 1996.

[

Calvanese&Lenzerini 1994

]

D. Calvanese and M. Lenzerini. Making object-

oriented schemas more expressive. In Proceedings of the Thirteenth ACM

SIGACT SIGMOD Symposium on Principles of Database Systems (PODS-

94), pages 243{254, Minneapolis, 1994. ACM Press and Addison Wesley.

[

De Giacomo et al. 1996

]

G. De Giacomo, F. Donini, and F. Massacci. Exp-

time tableaux for ALC. In Padgham et al.

[

1996

]

.

[

De Giacomo 1995

]

G. De Giacomo. Decidability of Class-Based Knowledge

Representation Formalisms. PhD thesis, Universit�a degli Studi di Roma

\La Sapienza", 1995.

[

De Giacomo&Lenzerini 1994a

]

G. De Giacomo and M. Lenzerini. Boosting

the correspondence between description logics and propositional dynamic

logics (extended abstract). In Proceedings of the Twelfth National Confer-

ence on Arti�cial Intelligence (AAAI-94), 1994.

[

De Giacomo&Lenzerini 1994b

]

G. De Giacomo and M. Lenzerini. Concept

language with number restrictions and �xpoints, and its relationship with

mu-calculus. In Proceedings of the Eleventh European Conference on Arti�-

cial Intelligence (ECAI-94), 1994.

[

De Giacomo&Lenzerini 1995

]

G. De Giacomo and M. Lenzerini. What's in

an aggregate: Foundations for description logics with tuples and sets. In

Proceedings of the Fourteenth International Joint Conference on Arti�cial

Intelligence (IJCAI-95), 1995.

[

De Giacomo&Lenzerini 1996

]

G. De Giacomo and M. Lenzerini. Tbox and

Abox reasoning in expressive description logics. In Proceedings of the Fifth

International Conference on the Principles of Knowledge Representation and

Reasoning (KR-96), pages 316{327. Morgan Kaufmann, Los Altos, 1996.

[

Donini et al. 1991a

]

F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The

complexity of concept languages. In Proceedings of the Second International

Conference on the Principles of Knowledge Representation and Reasoning

(KR-91), Boston, MA, USA, 1991.

[

Donini et al. 1991b

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt.

Tractable concept languages. In Proceedings of the Twelfth International



138 BIBLIOGRAPHY

Joint Conference on Arti�cial Intelligence (IJCAI-91), pages 458{463, Syd-

ney, 1991.

[

Donini et al. 1995

]

F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The

complexity of concept languages. Technical Report RR-95-07, Deutsches

Forschungszentrum f�ur K�unstliche Intelligenz (DFKI), Kaiserslautern, Ger-

many, 1995.

[

Donini et al. 1996

]

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf.

Reasoning in description logics. In G. Brewka, editor, Foundation of Knowl-

edge Representation. CSLI Publication, Cambridge University Press, 1996.

[

Fischer&Ladner 1979

]

M. J. Fischer and R. E. Ladner. Propositional dy-

namic logic of regular programs. Journal of Computer and System Science,

18:194{211, 1979.

[

Franconi 1994

]

E. Franconi. A treatment of plurals and plural quanti�ca-

tions based on a theory of collections. Minds and Machines, 3(4):453{474,

November 1994.

[

Gen 1995

]

Gensym Corporation, 125 Cambridge Park Drive, Cambridge, MA.

G2 Reference Manual for G2 version 4.0., 1995.

[

Gerstl &Pribbenow 1993

]

P. Gerstl and S. Pribbenow. Midwinters, end games

and bodyparts. In N. Guarino and R. Poli, editors, International Workshop

on Formal Ontology-93, pages 251{260, 1993.

[

Giunchiglia& Sebastiani 1996

]

F. Giunchiglia and R. Sebastiani. Building de-

cision procedures for modal logics from propositional decision procedures

- the case study of modal K. In Proceedings of the 13th Conference on

Automated Deduction (CADE-96), Lecture Notes in Mathematics, New

Brunswick, NJ, USA, 1996.

[

Go~ni et al. 1996

]

A. Go~ni, J. Berm�udez, J. M. Blanco, and A. Illarramendi.

Using reasoning of description logics for query processing in multidatabase

systems. In Working Notes of the ECAI-96 Workshop on Knowledge Rep-

resentation Meets Databases (KRDB-96), 1996.

[

Gr�adel et al. 1997

]

E. Gr�adel, M. Otto, and E. Rosen. Two-variable logic

with counting is decidable. In Proceedings of the Twelfth Annual IEEE

Symposium on Logic in Computer Science (LICS-97), 1997. Available via

http://speedy.informatik.rwth-aachen.de/WWW/papers.html.



BIBLIOGRAPHY 139

[

Halpern&Moses 1992

]

J. Y. Halpern and Y. Moses. A guide to completeness

and complexity for modal logic of knowledge and belief. Arti�cial Intelli-

gence, 54:319{379, 1992.

[

Hanschke 1992

]

P. Hanschke. Specifying Role Interaction in Concept Lan-

guages. In Proceedings of the Second International Conference on the Prin-

ciples of Knowledge Representation and Reasoning (KR-91), 1992.

[

Hollunder et al. 1990

]

B. Hollunder, W. Nutt, and M. Schmidt-Schauss. Sub-

sumption algorithms for concept description languages. In ECAI-90, Pitman

Publishing, London, 1990.

[

Hollunder 1994

]

B. Hollunder. Algorithmic Foundations of Terminological

Knowledge Representation Systems. PhD thesis, Universit�at des Saarlan-

des, 1994.

[

Hollunder&Baader 1991

]

B. Hollunder and F. Baader. Qualifying number

restrictions in concept languages. In Proceedings of the Second International

Conference on the Principles of Knowledge Representation and Reasoning

(KR-91), pages 335{346, Boston, MA, USA, 1991.

[

Hopcroft&Ullman 1997

]

J. E. Hopcroft and J. D. Ullman. Introduction to

automata theory, languages, and computation. Addison Wesley Publ. Co.,

Reading, Massachussetts, 1997.

[

Horrocks 1997

]

I. Horrocks. Optimisation techniques for expressive descrip-

tion logics. Technical Report UMCS-97-2-1, University of Manchester, De-

partment of Computer Science, February 1997.

[

Horrocks&Gough 1997

]

I. Horrocks and G. Gough. Description logics with

transitive roles. In M.-C. Rousset, R. Brachmann, F. Donini, E. Franconi,

I. Horrocks, and A. Levy, editors, Proceedings of the International Workshop

on Description Logics, pages 25{28, Gif sur Yvette, France, 1997. Universit�e

Paris-Sud.

[

Horrocks&Rector 1996

]

I. Horrocks and A. Rector. Using a description logic

with concept inclusions. In Padgham et al.

[

1996

]

, pages 132{135.

[

Iris et al. 1988

]

M. A. Iris, B. E. Litowitz, and M. Evans. Problems of the

part-whole relation. In M. W. Evans, editor, Relational models of the lexicon,

pages 261{288. Cambridge University Press, Studies in Natural Language

Processing, 1988.



140 BIBLIOGRAPHY

[

Jarke&Marquardt 1995

]

M. Jarke and W. Marquardt. Design and evaluation

of computer-aided process modeling tools. In J. Davis, G. Stephanopoulos,

and V. Venkatasubramanian, editors, Intelligent Systems in Process Engi-

neering, AIChE Symposium, pages 97{109, Snowmass, CO, USA, 1995.

[

Kaczmarek et al. 1986

]

T. Kaczmarek, R. Bates, and G. Robins. Recent de-

velopments in NIKL. In T. Kehler and S. Rosenschein, editors, Proceedings

of the Fifth National Conference on Arti�cial Intelligence (AAAI-86), pages

978{985, CA, USA, 1986. Morgan Kaufmann, Los Altos.

[

Kirk et al. 1995

]

T. Kirk, A. Y. Levy, Y. Sagiv, and D. Srivastava. The in-

formation manifold. In Proceedings of the AAAI Spring Symposium on In-

formation Gathering in Distributed Heterogeneous Environments, CA, USA,

1995.

[

Knuth 1968

]

D. Knuth. The Art of computer programming, volume 1. Addi-

son Wesley Publ. Co., Reading, Massachussetts, 1968.

[

Krobb 1997

]

C. Krobb. Entwicklung einer Spezialisierungshierarchie f�ur Mod-

ellierungsschritte im objekt-orientierten Datenmodell VeDa. Diploma thesis,

RWTH Aachen, Germany, 1997.

[

Ladner 1977

]

R. Ladner. The computational complexity of provability in sys-

tems of modal propositional logic. SIAM Journal of Computing, 6(3):467{

480, 1977.

[

Lenzerini & Schaerf 1991

]

M. Lenzerini and A. Schaerf. Concept languages

as query languages. In Proceedings of the Ninth National Conference on

Arti�cial Intelligence (AAAI-91), pages 471{476, 1991.

[

Le�sniewski 1929

]

S. Le�sniewski. Grundz�uge eines neuen Systems der Grund-

lagen der Mathematik. Fundamenta Mathematicae, 14:1{81, 1929.

[

Levy et al. 1996

]

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying

heterogeneous information sources using source descriptions. In Proceedings

of the 22. International Conference on Very Large Data Bases (VLDB-96),

Bombay, India, 1996.

[

Lohmann 1998

]

B. Lohmann. Ans�atze zur Unterst�utzung des Model-

lierungsablaufes bei der rechnerbasierten Modellierung verfahrenstechnischer

Prozesse. PhD thesis, Lehrstuhl f�ur Proze�technik, RWTH Aachen, 1998.

[

MacGregor 1991

]

R. MacGregor. Inside the LOOM description classi�er.

SIGART Bulletin, 2(3):88{92, 1991.



BIBLIOGRAPHY 141

[

MacGregor&Brill 1992

]

R. MacGregor and D. Brill. Recognition algorithms

for the LOOM classi�er. In Proceedings of the Tenth National Conference

on Arti�cial Intelligence (AAAI-92), pages 774{779, 1992.

[

Marquardt 1992

]

W. Marquardt. An object-oriented representation of struc-

tured process models. In R. Gani, editor, Proceedings of the European Sym-

posium on Computer Aided Process Engineering, Supplement to Comput.

Chem. Engng. 16, pages 329{336. Elsinore, Denmark, 1992.

[

Marquardt 1996

]

W. Marquardt. Trends in computer-aided process modeling.

Computers and Chemical Engineering, 20(6/7):591{609, 1996.

[

Molitor 1997

]

R. Molitor. Konsistenz von Wissensbasen in Beschrei-

bungslogiken mit Rollenoperatoren. Diploma thesis, RWTH Aachen, Ger-

many, 1997.

[

Mortimer 1975

]

M. Mortimer. On languages with two variables. Zeitschr. f.

math. Logik u. Grundlagen d. Math., 21:135{140, 1975.

[

Nebel 1988

]

B. Nebel. Computational complexity of terminological reasoning

in BACK. Arti�cial Intelligence, 34(3):371{383, 1988.

[

Nebel 1990

]

B. Nebel. Reasoning and Revision in Hybrid Representation Sys-

tems. Lecture Notes in Mathematics. Springer-Verlag, 1990.

[

Pacholski et al. 1997

]

L. Pacholski, W. Szwast, and L. Tendera. Complexity

of two-variable logic with counting. In Proceedings of the Twelfth Annual

IEEE Symposium on Logic in Computer Science (LICS-97), 1997.

[

Padgham et al. 1996

]

L. Padgham, E. Franconi, M. Gehrke, D. L. McGuin-

ness, and P. F. Patel-Schneider, editors. Proceedings of the International

Workshop on Description Logics, Cambridge (Boston), MA, U.S.A., 1996.

AAAI Press/The MIT Press.

[

Padgham&Lambrix 1994

]

L. Padgham and P. Lambrix. A framework for

part-of hierarchies in terminological logics. In J. Doyle, E. Sandewall, and

P. Torasso, editors, Proceedings of the Fourth International Conference on

the Principles of Knowledge Representation and Reasoning (KR-94), pages

485{496, 1994.

[

Patel-Schneider et al. 1991

]

P. Patel-Schneider, D. McGuinness, R. Brach-

man, L. Resnick, and A. Borgida. The CLASSIC knowledge representa-

tion system: Guiding principles and implementation rationale. SIGART

Bulletin, 2(3):108{113, 1991.



142 BIBLIOGRAPHY

[

Patel-Schneider 1989

]

P. F. Patel-Schneider. Undecidability of subsumption

in NIKL. Arti�cial Intelligence Journal, 39:263{272, 1989.

[

Peltason 1991

]

C. Peltason. The BACK System - an Overview. SIGART

Bulletin, 2(3):114{119, 1991.

[

Pohl 1995

]

K. Pohl. A process centered requirements engineering environment.

PhD thesis, Lehrstuhl f�ur Informatik V, RWTH Aachen, 1995.

[

Pratt 1979

]

V. R. Pratt. Models of program logics. In Proceedings of the 20th

Annual Symposium on Foundations of Computer Science, San Juan, Puerto

Rico, 1979.

[

Pribbenow 1995

]

S. Pribbenow. Modeling physical objects: Reasoning about

(di�erent kinds of) parts. In Time, Space, and Movement Workshop 95,

Bonas, France, 1995.

[

Rychtyckyj 1996

]

N. Rychtyckyj. DLMS: An evaluation of KL-ONE in the

automobile industry. In Proceedings of the Fifth International Conference

on the Principles of Knowledge Representation and Reasoning (KR-96),

Boston, MA, USA, 1996. Morgan Kaufmann, Los Altos.

[

Sattler 1996

]

U. Sattler. A concept language extended with di�erent kinds

of transitive roles. In G. G�orz and S. H�olldobler, editors, 20. Deutsche

Jahrestagung f�ur K�unstliche Intelligenz, volume 1137 of Lecture Notes in

Mathematics. Springer-Verlag, 1996.

[

Savitch 1970

]

W. J. Savitch. Relationsship between nondeterministic and de-

terministic tape complexities. Journal of Computer and System Science,

4:177{192, 1970.

[

Schild 1991

]

K. Schild. A correspondence theory for terminological logics:

Preliminary report. In Proceedings of the Twelfth International Joint Con-

ference on Arti�cial Intelligence (IJCAI-91), pages 466{471, Sydney, 1991.

[

Schild 1994

]

K. Schild. Terminological cycles and the propositional �-

calculus. In J. Doyle, E. Sandewall, and P. Torasso, editors, Proceedings

of the Fourth International Conference on the Principles of Knowledge Rep-

resentation and Reasoning (KR-94), pages 509{520, Bonn, 1994. Morgan

Kaufmann, Los Altos.

[

Schmidt-Schauss 1989

]

M. Schmidt-Schauss. Subsumption in KL-ONE is un-

decidable. In Proceedings of the First International Conference on the Prin-

ciples of Knowledge Representation and Reasoning (KR-89), pages 421{431,

Boston (USA), 1989.



BIBLIOGRAPHY 143

[

Schmidt-Schau�&Smolka 1991

]

M. Schmidt-Schau� and G. Smolka. Attribu-

tive concept descriptions with complements. Arti�cial Intelligence, 48(1):1{

26, 1991.

[

Simons 1987

]

P. M. Simons. Parts. A study in Ontology. Oxford: Clarendon,

1987.

[

Souza 1998

]

D. Souza. VeDa - part 2: Structural Modeling Objects. Technical

report, Lehrstuhl f�ur Proze�technik RWTH Aachen, 1998. To appear.

[

Sowa 1987

]

J. F. Sowa. Semantic networks. In S. C. Shapiro, editor, Ency-

clopedia of Arti�cial Intelligence 2. John Wiley & Sons, New York, 1987.

[

Thomas 1992

]

W. Thomas. Automata on in�nite objects. In J. van Leeuwen,

editor, Handbook of theoretical computer science, volume B. Elsevier Science

Publishers (North-Holland), Amsterdam, 1992.

[

Wang 1963

]

H. Wang. Dominoes and the AEA case of the Decision Problem.

Bell Syst. Tech. J., 40:1{41, 1963.

[

Winston et al. 1987

]

M. Winston, R. Cha�n, and D. Herrmann. A taxonomy

of part whole relations. Cognitive Science, 11:417{444, 1987.



Index

ALC

�

, 113

ALCN (M), 60

ALCN , 54

ALC

reg

, 52

ALCN

S

, 62

ALC

+

, 52

ALC

+

N (M), 60

ALC

R

+

, 104

ABox, 12

atomic roles, 59

atomicity, 28

building blocks, 19

clash, 42, 76

complete, 41, 42

completion algorithm, 42

completion rules, 42

completion-tree, 105

clash-free, 106

complete, 106

concept, 39

consistent, 47

constraint, 42

constraint system, 42, 75

Constraints, 105

cyclic, 47

domino problem, 65

�nite-model property, 55

�nite-tree-model property, 56

individual, 47

instance, 39, 47

interpretation, 39

mereology, 27

model, 39

of a completion-tree, 106

of a constraint system, 42, 76

number restrictions

qualifying, 55

with composition, 60

with intersection, 61

with inversion, 62

with union, 61

open-world-assumption, 48

part-whole relation, 15

composed, 30

integral, 29

proper part principle, 29

regular roles, 52

role-hierarchies, 118

satis�able, 39

sound, 41

structured storage, 21

subconcepts, 45

subsumption, 39

successor, 42

taxonomy, 12

TBox, 11

transitive orbit, 113

transitive role, 105

tree-model property, 56



INDEX 145

unfolding, 47

unique-name-assumption, 48

unravelling, 63

variable normal form, 94

variables

for individuals, 42

numerical, 62



List of Figures

1.1 Flowsheet of the ethylene-glycol process. . . . . . . . . . . . . . 2

1.2 The ethylene-glycol process in ModKit representation. . . . . . 3

1.3 Decomposition of the reactor of the ethylene-glycol process into

building blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Decomposition of the gas phase material balance equation. . . . 5

3.1 A taxonomy of part-whole relations. . . . . . . . . . . . . . . . . 28

3.2 Example of a collection y and members x

i

. . . . . . . . . . . . . 32

4.1 A semantic network. . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Example TBox. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Example ABox. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 The completion rules for ALC. . . . . . . . . . . . . . . . . . . . 47

4.5 A non-terminating application of the completion rules. . . . . . 51

5.1 AModKit screenshot showing the catalogue and the structure

of the ethylene-glycol process. . . . . . . . . . . . . . . . . . . . 61

5.2 A ModKit screenshot showing the dialogue for the property

speci�cation of a reactor. . . . . . . . . . . . . . . . . . . . . . 62

5.3 The architecture of the integration of Crack into ModKit. . . 64

6.1 A set of domino types and a �rst part of a tiling. . . . . . . . . 75

6.2 Concepts used in the proof of Theorem 6.7. . . . . . . . . . . . . 77

6.3 (Un)decidability results for extension of ALCN . . . . . . . . . . . 81



LIST OF FIGURES 147

6.4 (Un)decidability results for extension of ALC

+

N . . . . . . . . . . 82

6.5 Visualisation of the grid as enforced by the ALC

+

N (�) reduction

concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Concepts used in the proof of Theorem 6.8. . . . . . . . . . . . . 84

6.7 The completion rules for ALCN (�). . . . . . . . . . . . . . . . . 87

6.8 The additional completion rules. . . . . . . . . . . . . . . . . . . 95

6.9 Reduction concepts used in the proof of Theorem 6.16. . . . . . 99

6.10 The completion rules for ALUEN

S

. . . . . . . . . . . . . . . . . . 106

7.1 The completion rules for ALC

R

+

. . . . . . . . . . . . . . . . . . . 116


