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CHAPTER 1

INTRODUCTION

Description Logics (DL) form a category of knowledge-representation formalisms used to
represent terminological knowledge of a given application domain in a structured and well-
defined way. As common characteristics, they employ concept-descriptions for the rep-
resentation of notions relevant in the application domain, and provide a model-theoretic
semantics closely related to first-order logics. Concept descriptions are built from atomic
concepts and atomic roles, i.e. from unary and binary predicates respectively, using con-
cept constructors provided by the DL language. Atomic concepts and concept descriptions
represent sets of individuals, whereas atomic roles represent binary relations between indi-
viduals [BN98a]. Consider the following example, which is inspired by [BN98a]. Assuming
an atomic concept Human representing human beings, an atomic concept Female for all fe-
male beings, and an atomic role hasChild specifying parent-child relations, we can represent
the general concepts of women and women having only daughters:

Woman = Human M Female
W = Woman M YhasChild. Woman

The symbol (M) stands for the conjunction of concept descriptions. Thus, a Woman is
a female human being and W denotes the concept of women such that all their children
are again women. The example also illustrates how concept descriptions are built up from
atomic concepts.

In this work we will be concerned with the DL language ALN, which also allows the
imposition of number restrictions on atomic roles. If a number restriction for some role
is included in a concept description, then certain limitations regarding the number of
successors in respect to this role are imposed on all instances of this concept description.
The idea is illustrated by extending the above example. In the definition of the concept
description W it is not stated that there actually are any daughters. When specifying the
general concept of a mother, however, we do not only require every child to be human,
but we especially want to ensure that at least one such child exists. Utilizing number
restrictions, this notion can be represented by the following concept description.

Mother := Woman N YhasChild.Human M (> 1 hasChild)
M := Mother M YhasChild.(< 0 hasChild)

Every individual represented by Mother therefore is in hasChild-relation to at least 1 other
individual represented by Human, i.e. there exists at least one daughter or son. The
definition of the concept description M is interesting, because here a number restriction
occurs inside a role restriction. M represents the concept of a mother who is not a grand-
mother. This holds, since all the children of individuals represented by M are required to
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have at most O children themselves, i.e. there are no children in the second generation.
Observe that the at-least restriction in M does not interfere with the at-most restriction
included in Mother, since it occurs on a different level in regard to the role hasChild. A
formal definition of the language ALN including all available constructs will be provided
in Chapter 3. The above examples may suffice at this point in order to give a rough
impression of the capabilities of DL languages.

Subsumption and equivalence are distinguished as relations between concept descriptions of
a DL language. If one concept description is subsumed by a second one, then these two are
in subconcept—superconcept relation. Thus, the second is a superconcept or generalization
of the first one. In this case, the individuals represented by the first concept description
always form a subset of those of the second one. For instance in the above example the
concept description M is subsumed by Mother, which itself is subsumed by Woman, since
every mother is a woman. Concept descriptions are regarded as equivalent if they always
represent the same set of individuals.

The subsumption-relation induces a hierarchy on the set of concept descriptions which
is desirable for structuring the notions relevant for an application domain. On the other
hand, identifying equivalent concept descriptions allows to avoid redundancies when aug-
menting an existing set of concept descriptions [BN98a]. Nevertheless, subsumption- and
equivalence-relations must be decidable in order to take advantage of them in DL sys-
tems. Deciding subsumption or equivalence of concept descriptions are standard inference
problems which have been examined for a variety of DL languages. For many of them,
upper and lower complexity bounds have been obtained and matching algorithms have
been proposed (e.g. [HNSS90, HB91, DLNN91]. See [BKBM99] for further references).

However, when DL languages are employed for large-scale knowledge bases, standard in-
ference algorithms do not perform satisfactory for building and maintaining purposes. It
has been shown in [MPS98] that non-standard inferences like learning and matching can
be used to improve this. In this work we will restrict our attention to the latter.

In order to address matching we need to introduce concept patterns. These extend the no-
tion of concept descriptions by allowing for variables, which can be substituted by concept
descriptions. Matching a concept pattern against a concept description means finding a
substitution for the occurring variables such that both expressions become equivalent. This
is called matching modulo equivalence. Matching modulo subsumption on the other hand
aims at merely making the concept pattern subsume the concept description. Consider
the following example of a concept pattern, which again refers to the concept descriptions
introduced above:

P := Woman M YhasChild. X

When matching (modulo equivalence) the concept pattern P against the concept descrip-
tion W of our example the variable X is substituted by an expression equivalent to Woman.
For matching modulo subsumption, assigning X with Human would already be sufficient.
We shall see later on that it is desirable to find substitutions which are minimal in respect
to subsumption, ensuring that the obtained result is as specific as possible.

The idea of matching can be refined by admitting side conditions which impose further
constraints on the substitution sought. Side conditions can be defined for every variable
occurring in a concept pattern and demand that the solution for this variable be subsumed
by another concept pattern. In this way, side conditions form a system of subsumption
conditions, which can either be acyclic or cyclic. We distinguish non-strict and strict side
conditions, depending on whether subsumption or strict subsumption is required. With
the help of side conditions it is possible to avoid trivial matches occurring as solutions to
matching problems or to find solutions at a certain position in the concept hierarchy.
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1.1 The motive for matching

Matching was motivated by the idea of pruning large concept descriptions which are likely
to occur in real-world knowledge representation systems based on DL languages. Pruning
means that, instead of printing concept descriptions in full length, only those aspects are
printed which are relevant under current circumstances. For this task matching algorithms
can be used, as the following example may illustrate.

Consider an application domain where description logics are employed to represent the
properties of certain components interacting with each other for some purpose. Under
certain circumstances only the dependency of a component on others might be of interest,
whereas all the other properties are irrelevant. Instead of manually retrieving the relevant
details in a concept description C' defining a certain type of component, one could match
C against a concept pattern D of the following form.

D := VdependsOnService.X M VprovidesService.Y

Provided that the dependency relations in such a context are represented by atomic roles
like dependsOnService and providesService the matching result returns exactly the relevant
aspects of the component C. It was pointed out that implementing pruning strategies on
user interface level of knowledge representation systems entails disadvantages in compar-
ison to including them in the underlying DL language. Especially, concept patterns like
D used to provide a pruned view of concept descriptions can be stored, organized, and
re-used [BKBM99].

As an extension of the above example, side-conditions could be used to restrict the solutions
obtained when matching the concept description C' against the concept pattern D. Assume
that the atomic concept ServiceTypeA represents a certain subclass of services provided by
our components. By including a non-strict side condition of the form

Y T’ ServiceTypeA

in the matching problem, only those services provided by C are returned, which are sub-
sumed by ServiceTypeA, i.e. we obtain only services of type A. In this case, side conditions
are used to obtain more specific results for matching problems. This is especially useful for
matching modulo subsumption, where trivial solutions exist for every solvable matching
problem. It should be noted, however, that side conditions can also be utilized to prevent
solutions to matching problems from becoming too specific. Consequently, side conditions
provide a powerful means for the refinement of matching problems.

Matching algorithms have already been employed successfully in professional and academic
knowledge representation systems. In the CrLassic system developed at AT&T [BMS*91],
matching is used to prune irrelevant information in the context of explanation facilities
designed to make deductions explicit to the user. Another example comes from the domain
of process engineering [BS96], where there are plans to utilize matching in order to avoid
introducing redundancies in very large knowledge bases maintained by several persons over
a longer period of time. Apart from these applications, matching can also be used when
integrating knowledge bases [BK00b].

In [BKBM99], Baader, Kiisters, Borgida, and McGuinness have proposed algorithms to
solve matching problems without side conditions in ALN and three of its sublanguages,
namely FLg, FL,, and FL_. These are introduced mainly for didactic reasons, allowing
to develop the solution for ALN step by step. It should be noted that positive results
in ALN are not automatically inherited by the sublanguages, which makes it necessary
to consider each sublanguage individually. The authors have also given proofs regarding
the computational complexity of these algorithms, showing that solutions are computed
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in polynomial time. Nevertheless, the properties of one construct used within these proofs
have been stated without proof.

The objective of this work is twofold. Firstly, we will confirm the results proposed for
matching without side conditions by giving a formal proof of the properties used infor-
mally in [BKBM99]. Secondly, we will show how matching problems with non-strict side
conditions can be solved in polynomial time as well. The following section will give a brief
overview of the respective chapters.

1.2 The structure of this work

Chapter 2 introduces basic notions related to formal languages and finite automata. Many
of the properties proposed in this context may appear very familiar, but are of crucial
importance for our reasoning in the following chapters. In Chapter 3, description logics
and matching problems are introduced formally.

Chapter 4 is concerned with the results on matching without side conditions obtained
in [BKBM99] in recourse to an intuitive definition of so-called “treelike automata”. We
propose a formal definition for them and examine their properties in detail. This will allow
us to confirm the respective results, i.e. matching problems without side conditions can
be solved in polynomial time in ALN and its sublanguages. In Chapter 5, side conditions
are taken into consideration. Two approaches are discussed to reduce matching problems
with acyclic side conditions to such without them. A straightforward strategy originally
mentioned in [BKBM99] is shown to fail, while an alternative one, utilizing finite automata,
will succeed. Both approaches, however, are limited to acyclic side conditions.

This is overcome in Chapter 6, where we present a solution comprising a fixed point
algorithm applicable to acyclic as well as cyclic side conditions. It will be shown that by
this approach matching problems with non-strict side conditions in ALAN as well as its
sublanguages can be solved in polynomial time. Proving these claims will be simplified
by the introduction of normal forms for concept descriptions, a representation which is
unique with respect to equivalence.

In the last chapter we give a summary and very briefly mention two open problems for
which the results of this work might be valuable. These problems are matching under
strict side conditions and matching in description logics other than ALN .



CHAPTER 2

PRELIMINARIES

In this chapter we introduce basic notions relating to sets, formal languages, and finite
automata. Furthermore, some properties of finite automata are discussed, which will prove
useful in the later chapters.

Let us first explain some typographic conventions throughout this work. The end of the
body of every definition, of every proof, and of every example is indicated by a box (O)
at the right-hand side of the column. The notions newly introduced in a definition are
set in italic type. If the assertion of a lemma comprises an enumeration of several claims,
then black triangles (») at the left-hand side of the column are used to structure the
proof accordingly. When several cases are distinguished in a proof, light triangles (B>) are
employed to indicate the beginning of every case. We hope that these visual markers make
reading more convenient.

Throughout this work, the word “iff” is used as an equivalent to “if and only if”. It
should also be noted that we include 0 in the set of natural numbers, i.e. N is defined
as N := {0,1,...}. Our first definition specifies our notation for the power set and the
cardinality of sets.

Definition 2.1 Notation for sets
For every set S, denote by PB(S) the power set of S, i.e. P(S) := {T|T C S}. The
cardinality of S is denoted by |S]|. O

2.1 Formal languages

We are now ready to introduce formal languages and discuss some of their properties. We
will make use of the notation introduced in [HU80], where the subject is studied in depth.

Definition 2.2 Formal languages

Let X be a finite nonempty set. ¥ is called alphabet and its elements are called characters,
which we regard as atomic symbols. A finite sequence of characters is called a word over
Y. The length of a word w is denoted by |w|. The word consisting of 0 characters is
denoted by ¢, the empty word. For two words w and w', w' is called a prefix of w iff there
exists another word w" such that w = w'w". In this case, w" is called a suffiz of w and w
is called a continuation of w'. The notion of prefixes induces a strict order over the set of
words over X in the following way: Two words w and v are in strict prefix order (denoted
by w <pr v), iff w is a prefix of v, and v is not equal to w.

Denote by ‘-’ the concatenation of words, i.e. the expression w-v represents the charac-
ter sequence wv for every word w and v. The empty word is neutral in respect to the
concatenation.
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A set of words over X is called a (formal) language over ¥. A language is called regular,
if it can be represented by a grammar of type 3 in the Chomsky Hierarchy. The notion
of concatenation is extended to languages in the following way: For languages L, L', the
concatenation L-I' is defined by concatenating all possible pairs of words, which yields
L-L' := {ww'|w € L,w' € L'}. For the iterated concatenation, the following notation is
defined inductively. For every language L and for n € N, define:

L0 :={e}
L =L-L"

For every language L, the expression L* is defined as L* := UneN L". Similarly, LT is
defined by excepting the case n = 0, i.e. LT := L*\ L°. The ¥*-closure of L is defined
by L-¥*. O

Note that the alphabet ¥ can be regarded as a language itself. Every word over ¥ is an
element of ¥* and every language over ¥ is a subset of ¥*.
For formal languages, the operations left and the right quotient are defined as follows:

Definition 2.3 Left and right quotients

Let L be a language over the alphabet X, let w € X* be a word over X. The left quotient
of L in respect to w is defined as w™!-L := {v € Z*|wv € L}. The right quotient of L in
respect to w is defined as L-w ™! := {v € ¥*|vw € L}. ]

Thus, if a word in a formal language L begins with w, then the remainder of this word is
an element of the left-quotient of w and L. The idea for the right-quotient is analogous.
The cardinality |L| denotes the number of words contained in a formal language L. To
include the length of words into a measure for L, we introduce the notion of the size of
formal languages:

Definition 2.4 Size of formal languages
Let |-| be the ordinary length-function for words over ¥. For every finite language L C ¥*,

define the size of S by:
L) =) | 0

weEL

The size ||L|| of a language L corresponds to the amount of storage necessary to represent L
explicitly. Thus, it is an appropriate measure when studying the computational complexity
of algorithms over formal languages.

2.2 Finite automata

Finite automata are well known constructs for the representation of regular languages.
We first address nondeterministic finite automata and then define the deterministic case
as a specialization. Finite automata are studied exhaustively in [HU80], where our basic
definitions originate.

2.2.1 Nondeterministic finite automata

Definition 2.5 Nondeterministic finite automata
Let ¥ be a finite alphabet. A nondeterministic finite automaton (NFA) B over ¥ is defined
as B :=(Q,%,0,qo, F), where

e (Q # () denotes a finite set of states,

e F C () is the set of accepting states,
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e g9 € ( denotes the initial state and
e 0: Q XX = P(Q) is a non-deterministic transition function.

The transition function is extended to words of arbitrary length by the notion of the
extended transition function 6. For every ¢ € @, w € ¥*, and for every s € X, define §
inductively as follows:

5:Q x T = P(Q)
q,e— {q}
q, ws — {p|3r€5(q,w):p€5(r,s)}

The language accepted by B now can be defined as L(B) = {w € *|§(go,w)NF # 0}. The
size |B| of an automaton B is defined by the number of states it has, i.e. |B| :=|Q]|. a

Since we will employ automata for the representation of formal languages, appropriate
operations are necessary to compute the complement, the intersection, and the union
of nondeterministic finite automata. Note that the complement cannot be computed
efficiently in the nondeterministic case. However, the other operations can be realized
in polynomial time. The following definition provides a construction for the intersection-
automaton of two given automatas:

Definition 2.6 Product automata

For nondeterministic finite automata B; := (Q;, ¥, qoi, d:, F;) (i € {1,2}) with disjoint sets
of states, define the product automaton of B; and By as follows:

B1N By :={(Q1 % Q2,(qo1,qo2), 9, F1 x Fy) with: For all (¢1,¢2) € @1 X Q2, and for every
s € ¥, the transition function ¢ is defined by: §((¢1,¢2),s) := (d1(q1, 5),d2(qa, 5)). ]

The product automaton simply runs both input automata in parallel and accepts the
input, iff both automata independently accept it. The correctness of this construction is
stated in the next lemma. We omit a proof, since the results below are probably well
known.

Lemma 2.7 Properties of product automata

Let 81,82 S NFA(E), where BZ = <Ql, E,qu,éi,Fi> fori € {1,2} Let Ql ﬂQQ = @ Then
1. L(Bl n Bz) = L(Bl) n L(Bg)
2. |By N By| is polynomial in |B;] and |Bs|.
3. Bi N By can be computed in polynomial time in |B;| und |Bs|.

Recall that computing the union of finite automata is particularly simple in the nondeter-
ministic case. Provided disjoint sets of states we can define the union of n automata by
merely adding a new initial state connected to the n former initial states by e-transitions.
This construction is employed in Kleene’s Theorem. The size of the resulting automaton
exceeds the sum of the sizes of the original automata only by a constant.

Automata are intended not only as a representation of formal languages, but also as a
means of deciding certain properties of them. Later on in this work, especially two ques-
tions must be answered efficiently. Firstly, is the language accepted by a given automaton
empty; and secondly, is a certain word contained in this language. Both problems in fact
can be decided in polynomial time for nondeterministic automata. The following lemma
is stated without proof, since its assertions are well known.
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Lemma 2.8 Decision problems
Let B € NFA(Y) be an NFA over ¥ and let w be a word over ¥. Then
1. L(B) =’ 0, i.e. the (-problem, can be decided in polynomial time in |B|.
2. w €’ L(B), i.e. the word-problem, can be decided in polynomial time in |B| and |w]|.

Regular languages can be represented by nondeterministic automata. We will now see
that such a representation can be computed in polynomial time. Given a finite language,
we can efficiently construct an appropriate nondeterministic automaton. This is solved
similar to the construction of Kleene’s Theorem. Nevertheless, we can avoid introducing
intermediate states in our construction which is briefly described in the next lemma.

Lemma 2.9 Accepting finite languages
Let L C ¥* be a finite language over ¥. Then there is a nondeterministic finite automaton
B € NFA(Y) with:

1. L(B) = L, i.e. B accepts L

2. |B| <||L|| + 1, i.e. the size of B exceeds the size of L only by one.

3. B can be constructed in polynomial time in ||L]|.

Proof.

For every w € L, generate an appropriate automaton to accept {w} only. Such automata
can be constructed easily by merely concatenating states in a linear fashion, labelling the
edges with the appropriate characters of the words to accept. The union of these automata
is then constructed by combining the initial states of all the automata constructed so far
to one inital state.

It is not difficult to see that the resulting automaton has the desired properties. O

2.2.2 Deterministic finite automata

In the deterministic case, the transition function of a finite automaton returns exactly one
state for every input. Therefore, we might simply define deterministic finite automata
by demanding that |§(q, s)| = 1 for every state ¢ and every character s. However, this
limitation can be utilized to simplify the definition of the accepted language. The next
definition therefore introduces a slightly different transition function.

Definition 2.10 Deterministic finite automata

Let ¥ be a finite alphabet. A deterministic finite automaton B := (Q, X, ,qo, F) over &
is defined analogous to a nondeterministic finite automaton except for the the transition
function ¢. Here, d(q, s) represents exactly one state in () and not a subset of it. Thus, the
deterministic transition function ¢ is of the form ¢: @ x ¥ — (). This entails a simplified
definition of the extended transition function 0. For every ¢ € @, w € ¥*, and for every
s € X, define ¢ by:

5:QxT 5 Q
q,€ = ¢
g, ws = 6(3(q,w),s)

The definition of the accepted language is defined analogous to the nondeterministic case.
The same holds for the size of B. O
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MATCHING IN
DESCRIPTION LOGICS

In this chapter, we introduce the framework necessary to formally express the subject of
this work. We need to define the description logics of interest and the classes of problems to
be examined within these logics. For this, the following sections start by merely repeating
the basic definitions given in [BKBM99].

3.1 Description logics

Throughout this work, we will refer to the following sets of atomic concepts, roles and
variables, which are necessary for the definition of description logics. Let C, R, and X be
mutually disjoint finite sets. Denote by C an arbitrary but fixed set of atomic concepts
and denote by R an arbitrary but fixed set of atomic roles. Every formal language L C R*
is referred to as role language.

The description logics ALN and three of its sublanguages, FLo, FL1, and FL_, are
now defined by specifying the syntax of its concept descriptions first and defining a model
theoretic semantics afterwards.

Definition 3.1 Syntax of concept descriptions

A (>)-number restriction is of the form (> nR), where n € N and R € R. Similarly,
a (<)-number restriction is of the form (< nR). Denote by N> an arbitrary but fixed
finite set of (>)-number restrictions, denote by N< an arbitrary but fixed finite set of
(<)-number restrictions. The set dom(ALN) of ALN -concept descriptions over C, R,
N>, and N< is inductively defined by the following rules.

1. Every atomic concept A € C and the symbol T (“top-concept”) are concept descrip-
tions.

2. If C and D are concept descriptions, then C' 1 D is as well.

3. If C is a concept description and R € R is an atomic role, then VR.C' is a concept
description.

4. The symbol L (“bottom-concept”) is a concept description.
5. For every atomic concept A € C, —A is a concept description.

6. Every number restriction in N> or N< is a concept description.
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The sets of FLo-, FL | - and F L_-concept descriptions are defined as subsets of dom (ALN).
For the set dom(FLy) of FLo-concept descriptions only rules (1)—(3) are admitted, for
dom(F L) only rules (1)-(4), and for dom(FL-) only rules (1)—(5). O

The model-theoretic semantics of ALN and its sublanguages is defined by specifying a
domain and an interpretation function mapping every concept description onto a subset
of this domain.

Definition 3.2 Semantics

Let AT be a non-empty set. Define an interpretation I by its domain AT and its interpre-
tation function L1 dom(ALN) — P(AT) UP(A! x AT) in such a way that AT C Al for
all A€ C and RT C AT x Al for all R € R. The interpretation function is then extended
to complex concept descriptions by the following rules.

o 1T:=0¢ TI:=AT (bottom,top)
o (mA)T = AT\ AT (atomic negation)
e (CND)Y :=C"nD’ (conjunction)
o (VR.O) :={de Al|Veec Al: (d,e) e R = ec C!} (role restriction)
e (<nR) :={de Al| |{ee€ Al|(d,e) € R}| <n} (<-number restricion)
e (>nR) :={de Al| |{e € Al|(d,e) € R}| > n} (>-number restriction)
where A€ C, Re R, C,D € dom(ALN), (> nR) € N>, and (< nR) € N<. O

In [BN98a], Baader and Narendran have introduced the concept centered normal form,
which can be used to represent concept descriptions in a standardized manner. It has
been refined further in [BKBM99], yielding the FLg-normal form, which is applicable to
ALN-concept descriptions as well as to any of its three sublaguages considered here. The
next definition introduces FLo-normal forms along with variable names used to denote
the occurring role languages.

Definition 3.3 FLp-normal form

Denote by L an arbitrary identifier. For every H € {L} UCU {-AJ|4A € CtUN< UN>,
let the decoration Lz of L denote a finite role language. Define the L-labelled F Ly-normal
form of an ALN -concept description C as follows:

C:=VL,.LN ADCVLA'A M ADCVLﬁA.—'A

N[l Vispr.CGnR)OD 1 VYiepr. (<nR
(ZnR)EN> np)-(2 nR) (<nR)EN< (<nR)-(S N

Define V{e}.D := D and V0.D := T for every ALN -concept description D. The L-
labelled FLg-normal form of an arbitrary FL_-concept description can now be defined by
requiring the role languages L(>,,r) and L(<,r) to be empty for every number restriction
(> mR) € N> and (< nR) € N<. For the L-labelled FLy-normal form of any FL -
concept description, we additionally demand that L_ 4 is empty for every atomic concept
A € C. Finally, for the L-labelled FLp-normal form of an FLg-concept descriptions, the
language L is empty as well. a

The above notation has the advantage that every atomic concept, every negated atomic
concept, and every number restriction from the specified sets occurs exactly once. It
should be noted that the absence of an atomic concept in a concept description easily can
be expressed by choosing ) for the respective role language. In this case, the respective
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expression becomes equivalent to the top-concept, the occurrence of which does not al-
ter the interpretation of any concept description. We can now define subsumption and
equivalence of concept descriptions.

Definition 3.4 Inference problems

Subsumption (C), equivalence (=), and strict subsumption (C) are defined as binary rela-
tions (C), (=), (C) C dom(ALN)?. For any C, D € dom(ALN) define:

e CC D (C “s subsumed by” D) iff CT C D' for all interpretations I;
e C =D (C “is equivalent to” D) iff CT = DT for all interpretations I;

e C C D (C “is strictly subsumed by” D) iff C — D and C # D
for all interpretations 1.

Since dom(FLy) C dom(FL,) C dom(FL-) C dom(ALN), the notion of (strict) sub-
sumption and equivalence is implicitly defined for the sublanguages of ALN. O

The F Ly-normal form as introduced in Definition 3.3 can be used to characterize subsump-
tion and equivalence of concept descriptions. We first introduce the notion of excluding
words, which is required for the characterization.

Definition 3.5 Excluding words
Let C be an ALN -concept description. Let D be an F/£_-concept description in U-labelled
FLy-normal form. The set of C-excluding words is defined by:

Ec:={weX"|CCVw.l}
For D, define the role language U, as follows:

UL =ULU (JUanU-4) m|
AeC

It can be shown that Ep = U 1 -X* for every FL_-concept description D in U-labelled
FLo-normal form. Thus, for F£_-concept descriptions in J Lg-normal form the notion of
excluding words can be characterized by U, . We shall see later on, that a characterization
of excluding words for ALN -concept descriptions in FLy-normal form is more complex.
Subsumption in ALN was characterized by Kiisters in [Kiis98], yielding the following
result:

Lemma 3.6 Characterization of subsumption in ALN
Let C, D be ALN -concept descriptions. Let C be in U-labelled FLy-normal. Let D be in
V-labelled FLy-normal form. Then C C D iff all of the following conditions hold.

1. Ec D Ep

2. UsUEs D V4UEpforall AeC

3. UoAUExDV_4UEpforall AeC

4. Um>n U(ZmR) UEc D Um>n V(ZmR) U Ep for all (< nR) € NS with n > 1

5. Um<n U(ng) UE«R™ 1D Um<n V(ng) U Ep-R~" for all (>nR) € NZ

Similar characterizations can be obtained for the sublanguages of ALN. The following
results for FLy, FL1 and FL_, can be obtained from [BKBM99].

Lemma 3.7 Characterization of subsumption in FLq
Let C' and D be FLy-concept descriptions. Let C' be in U-labelled FLp-normal form and
let D be in V-labelled FLg-normal form. Then C T D iff U4 D V4 for all A € C.

11
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Lemma 3.8 Characterization of subsumption in FL;
Let C' and D be FL | -concept descriptions. Let C be in U-labelled F Lg-normal form and
let D be in V-labelled FLp-normal form. Then C' C D iff the following two conditions
hold:

1. U, X*DV, -2+

2. UpUU_ - X*DVuuV - X*forall AeC

Lemma 3.9 Characterization of subsumption in FL_
Let C' and D be FL_-concept descriptions. Let C' be in U-labelled F Lg-normal form and
let D be in V-labelled FLg-normal form. Then C' C D iff the following two conditions
hold: R

LU YDV, R

2. UaUU - X* DV uV - E*forall He CU{-A|A e C}

It has to be noted that [BKBM99] actually characterize equivalence and not subsumption.
However, it can be shown with little effort that the above results are correct. Char-
acterizations of equivalence can be derived easily from the above results. According to
Definition 3.2, equivalence of concept descriptions is equivalent to mutual subsumption.
In order to characterize equivalence it is therefore sufficient to replace all (D)-relations by
(=) in the above four lemmae. The notion of subsumption is illustrated by the following
example.

Example 3.10 Subsumption in FL_,
Assume ¥ := {R,S} as the alphabet of roles. Consider the following ALN-concept
descriptions:

C :=V{R,S}.BUV{RR}.(> 25)

D :=VY{R,S}.LUV{RR}.(> 3S)

E :=Vv{e}.LUV{R,S}.A
Then FE is subsumed by all the other concept descriptions, because it is equivalent to the
bottom-concept. D is strictly subsumed by C, because it forbids R- and S-role successors

instead of requiring B for them and imposes stronger number restrictions on RR-role
successors. a

3.2 Matching problems

In order to define matching problems, we first need to introduce the notion of concept
patterns. Intuitively, concept patterns extend concept descriptions by admitting variables.
For this purpose, denote by X an arbitrary but fixed set of wvariables. For the sake of
consistent notation throughout this work, let X =: {X,..., X} for some £ € N.

Definition 3.11 Concept patterns
Let L € {FLo, FL,,FL., ACN}. The set domx (L) of L-concept patterns ist inductively
defined as follows:

1. Every concept description C' € dom(L£) is a concept pattern.
2. Every concept variable X € X is a concept pattern.

3. If C and D are concept patterns, then C'M D is as well.
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4. If C' is a concept pattern and R € R, then VR.C is a concept pattern. O

The FLp-normal form for concept descriptions can be extended to concept patterns by
treating variables as special atomic concepts.

Definition 3.12 FLg-normal form for concept patterns

Denote by L,L" arbitrary but distinct identifiers. For every j € {1,...,¢} and for every
H e {L}UCU{-A]A € C}UN<UN>, let decorations Ly and L) of L and L’ denote
a finite role language. Define the (L,L")-labelled FLo-normal form of an ALN-concept
pattern D as follows:

D:=VL,.1LnM AIQCVLA.A m AIEICVLﬁA_ﬁA

N1 VYiswr).GoR)N  [1  VYicp.(<nR
(ZnR)EN> (nr)-(2 nF) (<nR)EN< (<nm)-(< nE)

£
l_ljl:ll L;X] |

For the assignment of concept descriptions to concept variables, we introduce substitutions
over ALN and its sublanguages.

Definition 3.13 Substitution

Let £ € {FLy,FLL,FL.}. Define a substitution o over L as a mapping from the set of
variables X to dom(L). o is extended to a function & of the form 6: domx (L) — dom(L),
such that the following conditions hold for all C, D € domx (L), for all X € X, A € C,
R € R, and for all number restrictions (> nR) and (< nR).

e

(~A) = -4

=

I
oo
Q>

,0(T)=T

e 5(<nR)=(<nR), 6(>nR) = (>nR)

For a simpler notation, we will not distinguish between a substitution ¢ and its extension
& in the remainder of this work and denote both by o. For substitutions o and ¢’ sharing
the same domain X', we define the following relations.

e o Lo iff 0(X) C ¢'(X) for all concept variables X € X.
e o C o' iff 0 C o' and there is a variable X € X with o(X) C ¢'(X).

eoc=c¢iffeCo ando’ C 0. O

The purpose of these relations is to provide a means to determine whether the values
assigned by one substitution are more general (in respect to subsumption) than another.
We are now ready to define matching problems.

13
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Definition 3.14 Matching problems

Let £ € {FLo,FLL,FL,,ALN}. Let C denote an L-concept description. Let D denote
an L-concept pattern. Referring to Definition 3.4, we distinguish two different kinds of
matching problems.

e An L-matching problem modulo subsumption is of the form C T’ D. A solution to
this problem is a substitution o over £ with C' C o (D).

e An L-matching problem modulo equivalence is of the form C' C° D. A solution to
this problem is a substitution o over L with C' = o(D).

o A system of L-matching problems is of the form {P;|1 < i < n}, where n is a positive
integer and for every i, P; is an £L-matching problem modulo equivalence or modulo
subsumption. A solution to this system is a substitution which solves P; for every 1.

The notion of FLg-normal forms is extended to L£-matching problems as follows. An L-
matching problem is in (L, L', L")-labelled F Lo-normal form if and only if C is in L-labelled
FLo-normal form and D is in (L', L")-labelled FLg-normal form for distinct identifiers L,
L', and L". O

It is shown in [BKBM99] that matching problems modulo subsumption and systems of
matching problems can be reduced to matching modulo equivalence. The following lemma
merely summarizes the respective results and may therefore be stated without proof.

Lemma 3.15 Representation of matching problems
Let £ € {FLy, FLL,FL, ALN}. Then
1. For every L-matching problem modulo subsumption there is a polynomially large
L-matching problem modulo equivalence with the same set of solutions.
2. For every system of L-matching problems there is a polynomially large £-matching
problem modulo equivalence with the same set of solutions.
3. Both reductions can be computed in polynomial time.

The idea of combining a system of matching problems into a single matching problem
modulo equivalence is illustrated by the next example, where a simple system of matching
problems is considered.

Example 3.16 Representation of matching problems

Let C, E be L-concept descriptions and let D, F be L-concept patterns. Let Ry, Ry € &
be distinct atomic roles. Let P := {C =’ D,E C’ F} be a system of £-matching
problems. Then P has the same set of solutions as the following matching problem modulo
equivalence: VR,.C MYRy.E =" VR,.C NVR,.(ENF).

Due to the results of the above lemma it is sufficient to examine single matching problems
modulo equivalence. A matching problem can be specified further by stating additional
requirements for the solution. This leads to a definition central for this work.

Definition 3.17 Matching problems with side conditions

Let L € {FLy,FLL,FL,,ALN}. Let C denote an L-concept description. Let D denote
an L-concept pattern. For every j € {1,...,¢} let E; denote an ALN -concept pattern.
For the definition of matching problems with side conditions, we first need to introduce
the notion of subsumption conditions. Again, we define a strict and a non-strict version.

o An L-side condition for X € X is of the form X T’ D. A solution to this condition
is a substitution o over £ with o(X) C o(D).



3.2. MATCHING PROBLEMS

e A strict L-side condition for X € X is of the form X =7 D. A solution to this
condition is a substitution ¢ over £ with o(X) = o(D).

Matching problems with side conditions can now be defined as a tuple consisting of a
matching problem and a set of side conditions.

e An L-matching problem modulo equivalence with (non-strict) side conditions is of the
form (C' =" D,{X; C” E;|1 < j < (}). A solution to this problem is a substitution
o over £ with C = o(D) and o(X;) C o(E;) for every j € {1,...,(}.

e An L-matching problem modulo equivalence with strict side conditions is of the form
(C =" D, {X; p} Ej|1 < j < (}), where p; € {C,C} forall j € {1,...,/}. A solution
to this problem is a substitution ¢ over £ with C' = o(D) and o(X;) p; 0(E;) for
every j € {1,...,(}.

e Side conditions are called acyclic iff the variables X, ..., X, do not occur in E; for
every j € {1,...,(}.

An L-matching problem with side conditions is in (L, L', L")-labelled F Lo-normal form iff
for unique identifiers L, L', and L”, C is in L-labelled FLy-normal form, D is in (L',L")-
labelled 7 Lo-normal form, and Ej is in (L}, LY)-labelled FLo-normal form for every index

je{l,..., ¢} O

15






CHAPTER 4

SOLVING MATCHING
PROBLEMS

This chapter presents methods to solve matching problems modulo equivalence without
side conditions in ALN and its sublanguages. In the first section we give a summary of
results on this subject, which has been studied extensively in [BKBM99]. The solution
strategies proposed there rely on the informally introduced notion of “treelike automata”.
In the second section, we formally define treelike automata and discuss their complexity.
This allows a formal verification of the complexity results stated in [BKBM99], which will
be given in the third section. We will see that matching problems modulo equivalence in
fact can be solved in polynomial time.

4.1 Results from previous work

In [BKBM99] and [Kiis98], matching modulo equivalence in FL, , F£L-, and ALN is reduced
to solving equations over formal languages, which we will refer to as “solvability equations”.
The following four definitions and the following three lemmata summarize the results of
the respective articles.

Definition 4.1 Solvability equations in FL;
Let (C =° D) be an FL -matching problem in (U, V,W)-labelled FLg-normal form.
Define the following formal language equations:

4

ULS*=Ves o | wix; 5 (L)
j=1
l
UsUUL-S =V4UULS U WX (4)
j=1
for all A € C. O

Solvability of the above system of equations is decided by assigning appropriate formal
languages to the occurring variables. The following lemma specifies these formal languages.

Lemma 4.2 Testing solvability in FL;
Let (C =" D) be an FL | -matching problem in (U, V, W)-labelled F Ly-normal form. Then
the system of equations (L), ((4)|A € C) has a solution iff:

1. For every j € {1,...,¢}, replacing the expression X; | -X* by the set
Lj1 = Nyew, w '(UL-E*) solves equation (L).
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2. For every A € C and for every j € {1,...,(}, replacing the variable X; 4 by the set
Lja = Nyew, w '(Ua UUL-T¥) solves equation (A).

Similar results are obtained for F£_. Here, we have the following solvability equations.

Definition 4.3 Solvability equations in FL_,
Let (C =’ D) be an FL_-matching problem in (U,V,W)-labelled FLo-normal form.
Define the following formal language equations.

4

U2 =V u | WX, 050 U | Int(4,~4)-5* (L)
j=1 AeC
l
UsUULS = VauUL s U | WX (A)
j=1
4
U_.AU[/J\'L-E*Z _.AU[/J\'L-E*UUW]'-X~7_,A (=A)
j=1

for all A € C, where

L l
Int(A,—A) == (V4 U U W;-Xj4)N (Vaa U U W;-Xj-a) O

j=1 j=1

Though still only dependent on the set C of atomic concepts, the number of equations
has increased, because negated atomic concepts need to be dealt with separately. Observe
that in the solvability equations for F L, the equation (L) was completely independent
of role languages referring to atomic concepts A € C. For FL_, this is no longer the case,
because the conjunction of an atomic concept and its negation is inconsistent. For that
reason, the expression Int is included in equation (L). The following lemma provides a
test for solvability in FL_..

Lemma 4.4 Testing solvability in FL_
Let (C =* D) be an FL_-matching problem in (U, V, W)-labelled F Lo-normal form. Then
the system of equations (L), ((4)|4 € C), ((—A)|A € C) has a solution iff:

1. For every A € C and for every j € {1,...,¢}, replacing the variable X; 4 by the set
Lja = Nyew, w™"(Ua UUL-T*) solves equation (A).

2. For every A € C and for every j € {1,...,(}, replacing the variable X; -4 by the set
Lj-a = Nuew, w1 (U-4 U U, -X*) solves equation (A).

3. For every j € {1,...,(}, replacing the variables X; | -X* by the expression
Lj, := nweW]- w~ (U, -3*) together with the assignments proposed in (1) and (2)
solves equation (.L).

Note that condition three requires “together with the assignments proposed in (1) and
(2)”. This is necessary because of the expression Int, by which equation (L) becomes
dependent on the other assignments. For ALN, we have to introduce some notation first.
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Definition 4.5 Notation
Let (C =’ D) be an ALN-matching problem in (U, V, W)-labelled F Lo-normal form. The
following tuples of variables are defined for the sake of readability.

XJ_ = (X],J_|].S_]§£)

Xe=(X;ull<j<l,A€()

X = (X;-4ll<j<{tAeC)

X< = (X (<nm)ll <j <L (<nR) € N<)
Denote by «a an arbitrary assignment of finite languages to the variables contained in the
tuples, i.e. a(X;m) = L;gforallie {1,...,4} and H € { L}UCU{-A|A € CLUN<UN>.
Let o be the substitution corresponding to «, so that for every j € {1,...,£} we have:

0(X;) = Va(X; 1).L 1 ADC Va(Xja).AN ADC Va(Xj-a).nA

n Il X; (> n Il X; (<L
ahyens Va(Xj (>nr))-(> nR) (<nBIEN, V(X (<nr))-(< nR)

Denote by Ep(X 1, X¢, X-, X>, X<) the set of excluding words obtained for D relative to
the assignment «. Thus, let

ED(a(XL)’ Oé(Xc), Ol(X_.), Ol(XZ), O[(XS)) = Ea(D)a
yielding the set of o(D)-excluding words after assigning the occurring variables. O

The above construct is necessary, because the set of excluding words is defined only for
concept descriptions and not for concept patterns. Consequently, we must assume some
assignment of the concept variables occurring on the right-hand side of the matching
problem. With these preparations, the following solvability equations are provided.

Definition 4.6 Solvability equations in ALN
Let (C =’ D) be an ALN-matching problem in (U, V, W)-labelled FLg-normal form.
With the notation of the above definition, define the following formal language equations.

Ec = Ep(X1,Xc, X, X>, X<) (L)
l
UsUEg=VaUEcU|JW;-X;4 (A)
j=1
£
U-aUEc=VoaUEcU | W;Xj-a (—A)
=1
L
U Usmr UEe = Vismr) UEc U | Wi-X snr) (> nR)
m>n j=1
L
U Ucmmy UEc-R™ = Vicmry UEc-R U | WX snm) (< n'R)
m<n' Jj=1
forall AeC,neN\{0},n' €N, (>nR) e N>, and (<n'R) € N<. 0O

Here, the number of equations additionally depends on the number restrictions occurring
in the matching problem. Again, equation (L) takes into account role languages referring
to other concepts than the 1-concept. However, this property is syntactically hidden in
the constructs E¢ and Ep, which are defined as {w € £*|C' C Vw.L} and analogously for
Ep, as we know from Chapter 2.

19
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Lemma 4.7 Testing solvability in ALN

Let (C = D) be an ALN-matching problem in (U, V,W)-labelled FLo-normal form.
Furthermore, let L; | := ﬂweW]- w™'-Ec. Then there exists a finite set L;, | of polynomial
size in the input matching problem with L; | -¥* = L; ;. As mentioned previously, this is
shown in [BKBM99]. The system of equations (L), ((4)|A4 € C), ((—=A)|A € C),((> nR)|(>
nR) € N>), ((€ nR)|(< nR) € N<) then has a solution iff:

1. For every j € {1,...,¢} and A € C, replacing the variable X; 4 by the set
Lja = (Nyew, w (UaUEc))\ Lj,1 solves equation (A).

2. For every j € {1,...,¢} and A € C, replacing the variable X, _4 by the set
Lj-a = (Nyew, v '“(U-a U Ec)) \ Lj1 solves equation (~4).

3. For every j € {1,...,£} and (> nR) € N>, replacing the variable X; _4 by the set
Lj>nr) = (Nwew, W (Umsn Usnr) U Ec)) \ Lj, 1 solves equation (> nR).

4. For every j € {1,...,£} and (< nR) € N<, replacing the variable X; _4 by the set
Lj(<nr) = (ﬂwer w_l-(UmSn Ui<nry U Ec*R™1)) \ Lj 1 solves equation (< nR).

5. For every j € {1,..., ¢}, replacing the variable X; | by the set
L; | together with the assignments proposed in (1)—(4) solves equation (L).

Observe that in the above conditions a finite alternative to Ej, 1 is provided and that Zj, n
is subtracted from the other languages, thus producing polynomially large languages as
solutions to the equations. This is an immediate consequence of [BKBM99], where it was
shown that the above solution languages can be computed in polynomial time.

By inserting the languages specified in the previous lemmata into the referring solvability
equations, we obtain variable-free formal language equations, which are valid if and only
if the original matching problem is solvable. Note that this reduces the decision problem
from solvability to equality. Therefore, we only need a method to decide equality for
the equations obtained in this way. In [BKBM99], the notion of treelike automata is
introduced to facilitate this task. The next section formally defines them and discusses
their properties.

4.2 Treelike automata

We need to decide equality for the variable-free variants of the solvability equations in-
troduced in the last section. Why not employ ordinary finite automata for this decision?
In the general case, repeatedly intersecting deterministic finite automata may produce
exponentially large results [YZ91]. Nondeterministic finite automata, on the other hand,
cannot, be complemented efficiently. Since both intersection and complement are essential
operations for our decision problem, we need to define automata suiting our requirements
better—treelike automata. Their main objective is to support efficient operations for the
left quotient, the complement, the intersection, and the union.

4.2.1 Basic definitions

In order to define treelike automata as a special class of deterministic finite automata it
would be sufficient to restrict the set of states and the transition function in a certain way.
However, we want to stress the analogy to trees and therefore define treelike automata
inductively. Furthermore, this will enable us to define operations on treelike automata in
a particularly simple fashion.
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Definition 4.8 Syntax of treelike automata
Let ¥ be a finite alphabet and Type := {Nor, Fin} a set of labels. The set Treelike(X) of
treelike automata over ¥ is inductively defined by:

Treelike(X) := {Nil, Cyc} U (Type x (Treelike(2)*))

The inductive definition of Treelike(X) corresponds to the structure of a tree with nodes of
the form (Nor, (-)) and (Fin, (-)) respectively. The second component of a node is a tuple
of the dimension |X|, representing the list of successors of that node. Since we assume the
alphabet ¥ to be ordered, successors for certain elements of ¥ are simply inserted in the
appropriate places of the tuple. Thus, each node has one successor for every character of
Y. The idea is that having a successor for some character s; is analogous to a directed
edge labelled s; in an ordinary finite automaton.

There are two special constructors, Nil and Cyc. Nil is supposed to be the automaton
accepting no input whatsoever, Cyc the one accepting any input. In a tree representation,
Nil and Cyc appear as leaf-nodes. However, they deviate from this notion in one respect
which will become clear when defining the transition function. Both nodes have themselves
as successor for every character of .. In this respect treelike automata differ from the
intuition of trees. a

In an ordinary tree, leaf-nodes like Nil and Cyc pointing to themselves do not exist. It
might therefore appear negligent to refer to trees when illustrating the structure of treelike
automata. We will nevertheless do so for two reasons. Firstly, the existence of unusual
leaf-nodes does not violate the analogy to trees severely; secondly, the terminology existing
for trees will prove suitable to explain our ideas.

Let us first introduce some abbreviations for treelike automata.

Definition 4.9 Notation

b FOI' (M? (71777;1)) Write (ﬂa:ﬁl)Na
for (Fin,(Ti,...,Tn)) write (T1,...,Tn) p-

o Write (T1,...,Tn),, if (T1,...,Tn)y as well as (71, ..., Tn)p are referred to, i.e. (-)«

means “(-)y or ()p” in existentially quantified statements and “(-)ny and (-)g” in
for-all-quantified statements. a

For the rest of this chapter, we shall regard ¥ as an arbitrary but fixed finite alphabet
with n unique elements for some positive integer n. Therefore, let ¥ := {s1,...,sn}.
Like deterministic finite automata, treelike automata are equipped with a transition func-
tion and a set of accepting states. Unlike deterministic finite automata, both transition
function and accepting states will be defined identical for every treelike automaton. This
is possible, because the behaviour of the automaton is implicitly contained in its inductive
structure.

Definition 4.10 Semantics of treelike automata
For any treelike automata Ti,...,7, € Treelike(¥) and for any s; € ¥, the transition
function § is inductively defined by:

d: Treelike(X) x ¥ — Treelike(X)
Nil, s; — Nil
Cuyc, s; = Cyc
(Tiy- s Tn),, si = Ti
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Observe that Nil and Cyc point to themselves as successors, thus deviating from the idea
of tree-nodes. § is now generalized in the usual way to accept words of length greater than
one and the empty word e. For T € Treelike(X), for s; € ¥, and for any v € ¥*, define
inductively:

§: Treelike() x ©* — Treelike(Z)
T,e =T
T, siv = 6(8(T,si),v)

One can see that S(M, w) equals Nil for any word w. The same holds for Cyc. The
difference between Nil and Cyc becomes apparent when defining accepting conditions.
The set Acc of accepting states is the same for any treelike automaton. It is defined as
infinite set of the form:

Acc := {Cyc} U ({Fin} x (Treelike(S)™!))

Observe that for a given node T, membership in Acc can be tested in constant time. It
is sufficient to test whether or not 7 equals Cyc or begins with (Fin,...). The language
accepted by a treelike automaton 7 now can be defined as:

L(T) = {w € | §(T,w) € Acc}

Equivalence is defined as usual for automata. Treelike automata S and T are equivalent
(S =7T), iff they accept the same language, i.e. L(S) = L(T). O

The following example illustrates the structure of treelike automata in comparison to
deterministic finite automata.

Example 4.11 Treelike automata
Let ¥ := {s1, 52,53} and let A be a treelike automaton over ¥ such that:

A= (Fin, ((Fin, (Nil, Nil, Nil)), (Nor, (Cye, Nil, Nil)), Nil))

Then A can be represented by a transition tree as shown on the left-hand side below.
In this tree every node represents a state of the automaton. The upper half denotes the
label of the state, the lower half lists the successors for every character of . The topmost
state is the initial state. A directed edge labelled s; corresponds to a transition of the
automaton upon input s;. Cyclic edges at the leave-nodes apply to every character of X.

B
S1 S92

For instance, upon input sss1s3 the automaton A reaches the state Cyc. According to the
definition, the initial state, its leftmost direct successor, and the leaf-node labelled Cyc are
accepting states. We thus find that A accepts the language L(A) = {e,s1} U {s251}-E*.
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Observe that the size of A depends on the cardinality of ¥. On the right-hand side, we have
contrasted a deterministic finite automaton B accepting the same language. Obviously,
B is significantly smaller that A. When introducing operations on treelike automata,
however, we shall see that this overhead yields advantages. O

Exploiting the analogy to trees, we define some further notions for treelike automata:

Definition 4.12 Subtrees and trimmed automata
T,S € Treelike(X)

e Sis a subtree of T iff there is a word w € $* with §(7,w) = S.

e T is trimmed iff T has no subtree of the form (Nil, ..., Nil)n, i-e. all leave-nodes in
the tree represented by 7 are accepting states of the form (Nil, ..., Nil)r or Cyc. O

The notion of a subtree corresponds to the intuitive idea of a subtree in the tree represented
by a treelike automaton.

Trimming treelike automata aims at ruling out certain irregularities. Nodes of the form
(Nil, . .., Nil)y do not contribute to the language accepted by the automaton. In certain
contexts it will be necessary to modify automata in such a way that no leave-node accepts
only the empty set.

The canonical definition of the accepted language in Definition 4.10 makes it easy to see
the connection between treelike and deterministic finite automata. For practical purposes,
however, we can take advantage of the rather simple structure of treelike automata to
propose an alternative definition of the accepted language.

Definition 4.13 Language function
For treelike automata 71, ..., T, € Treelike(X) the function lang is inductively defined as
follows.
lang: Treelike(X) — P(T¥)
Nil —» 0
Cyc — ¥~

(This-- s To)p = {e} U lang((Th, ..., Ta) y) O

The function lang is intended to simplify the handling of treelike automata. Nevertheless,
we still have to prove that the above definition in fact is equivalent to the previous one.
This will be shown in the next section.

Since we will be concerned with complexity issues, a means of quantifying the size of a
treelike automaton is required. The next definition provides such a measure.

Definition 4.14 Size of treelike automata
For treelike automata 71, ..., T, € Treelike(X) the function || - || is inductively defined by:

|| - 1]: Treelike(¥X) — N
Nil — 1
Cyc— 1

(s To), = 1+ Y|l |
i=1
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[|T]| corresponds to the amount of space necessary to represent 7.

The definitions stated so far make treelike automata appear fairly similar to deterministic
finite automata. It is the task of the next section to answer two questions: How much do
treelike automata and DFA have in common and what class of formal languages can be
represented by treelike automata.

4.2.2 Properties

At first, we have to verify the correctness of the alternative definition given in the previous
section for the language accepted by treelike automata. In most cases, using the function
lang will prove simpler than the original definition.

Lemma 4.15 Correctness of lang

Let 7 € Treelike(X) be a treelike automaton. Then L(T) = lang(T), i-e. lang is an
equivalent definition of the language accepted by 7.

Proof.

We prove the claim by induction over the structure of 7.

> 7 = Nil or T = Cyc: By Definition 4.10, L(Nil) = {w € £*|d(Nil,w) € Acc}. It holds
that S(N_zl, w) equals Nil for any word w. As Nil is no element of Acc, we have L(Nil) = 0.
By Definition 4.13, this equals lang(Nil). The case T = Cyc is similar. The only difference
is that Clyc € Ace, so that we gain ¥* as accepted language which matches the definition
of lang(Cuyc).

DT = (T, -, Tn)n: Then L((Ti,...,To)n) = {w € S*[6((Th,-.., Tn)yow) € Acc}.
Nodes of the form (-)n do not occur in Ace. Thus, € is not in L((71,...,7Ta)y). We
can thus rewrite L((71,...,7Tn)y) as {siv]s; € ¥,v € T*, S((T7, ... - Tn) N Siv) € Acc}. By
applying distributivity over the union we obtain

n
L((Ti, - Ta)y) = J{si}{o € S°|0((Ti, ..., To) y» si0) € Acc}.
i=1
According to Definition 4.10, the condition 6(8((7T3, ... »Tn) N> Si),v) € Acc is equivalent
to 5(7}, v) € Ace, which by induction is equivalent to v € lang(7;). Consequently, we have

L((Ty, . Ta)y) = ({si}-lang(T2),

i=1
which equals definition of lang((71,...,Tn) N)-

> 7 = (Ti,...,Tn)p: The argument for nodes marked Fin is similar to the previous case.
Here, the automaton will accept ¢, so that with the arguments from (3) above, we can
infer

L((Ti,- -+ Ta)p) = {e} U U{Si}-lang(ﬁ),

which equals definition of lang((71,...,Tn) r). ]

We will now show that—mnot surprisingly—every treelike automaton can be represented by
a deterministic finite automaton. The class Treelike(X) therefore is a special representation
of a subclass of DFA(Y).
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Lemma 4.16 Relation between treelike and finite automata

Let T € Treelike(X) be a treelike automaton. Then there is a deterministic finite automa-
ton A € DFA(X) with L(T) = L(A).

Proof.

Define A € DFA(X) as A :=(Q,%,d4,q7, F), where

e () :={qs| S subtree of T} is the set of states with initial state g,
o F:={qs € Q| S € Acc} is the set of finite states, and

e for gs € @ and s; € ¥ the transition function 4 is defined by:
64(as,5i) = Q5(5,s,)-
Observe that () is finite and closed under 4. d4 is a deterministic transition function.
For the extended transition function d4: @ X ¥* — @ we can derive by induction over the
length of w that: d4(gs,w) = 458 0)-
We now prove the equivalence of the DFA and the treelike automaton. According to

the common definition of DFA, the language accepted by A is {w € S*104(qT,w) € F}.
We have mentioned that d4(q7r,w) = 455 ,w) for any word w. Since F' is defined as

{gs € Q| S € Acc}, we obtain

L(A) = {w € 2|q55,,,) € {as € Q| S € Acc}}.

The condition for the set holds iff §(S,w) € Acc, which is equivalent to w € L(T). |

The directed graph representing the automaton introduced in the above lemma does not
necessarily form a tree. In treelike automata, identical subtrees can occur at different
positions in the tree. The definition of the set of states ) above automatically maps
identical states onto one state. Consequently, the size of the equivalent DFA may be smaller
than that of original treelike automaton. Note also that the deterministic finite automaton
B proposed in Example 4.11 is not obtained from the analogous treelike automaton A by
performing the construction of Lemma 4.16.

We now introcude auxiliary functions to simplify the construction of treelike automata for
the recognition of two simple classes of languages.

Definition 4.17 Induced treelike automata
The functions ind and ind' are inductively defined as follows.

ind: X% — Treelike(X)
e (Nil, .., Nil)
Siv — (Ma v 7M7 ind(v))Ma s 7M)N
[ —— —_

i—1 n—i

ind : $* — Treelike(X)

e — Cyc
siv = (Nil, .., Nil, ind' (v), Nil, . .., Nil) y O
N — N —
i—1 n—i

Given a word w, the function ind is supposed to return a treelike automaton accepting
the language {w}. Similarly, ind'(w) is supposed to accept {w}-£*. In the next lemma,
we will prove that the functions ind and ind’ in fact have the desired property.
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Lemma 4.18 Properties ind and ind’
Let w € ¥* be a word over ¥. Then

1. Lind(w) = {w} and Lind’(w) = {w}E*

2. The size ||ind(w)|| of ind(w) is linear in |w|. The execution of ind(w) requires linear
time in |w|.

3. The equivalent claim holds for ind’.

Proof.
» 1. Due to Lemma 4.15, it is sufficient to consider lang(7) instead of L(7). Proof by
induction over the length of w.

D> |w| = 0: Then: w = e. We have ind(e) = (Nil, ..., Nil)r according to Definition 4.17.
lang((Ma v 7M)F> equals {5} U la‘ng((Ma v 7M)N) and ﬁnaIIY7 la‘ng((Ma tee 7M)N)
equals | J;"_, {s;}-lang(Nil). By definition, lang(Nil) is empty. Thus, for lang(ind(¢)), we
end up with {e}.

The reasoning for ind'(¢) is similar. ind'(¢) returns Cyc and lang(Cyc) = ¥*. Since
¥* = {e}-¥*, this case is correct.

B> |w| > 0: Then there exist s; € ¥ and v € £* with w = s;v. By definition, lang(ind(s;v))
equals lang((Nil, ..., Nil, ind(v), Nil, ..., Nil) ). We have already seen in (Jw| = 0) that
all leave-nodes marked Nil do not contribute to the accepted language. Thus, he have
lang(ind(s;v)) = {s;}-lang(ind(v)). By induction, this equals {s;}-{v}, which completes
the argument.

For ind’ (s;v), the proof is identical except for the induction argument. Here we can assume
that lang(ind'(v)) equals {v}-$*. The rest of the conclusion remains the same.

» 2. Upon input w € ¥*, exactly one character of w is removed by ind in every step
of recursion. Simultaneously, the automaton to be assembled is expanded by a constant
amount of space. That amount is linear in the size || of the alphabet and is thus constant
in |w|. Therefore, the expansion of the automaton costs a constant amount of time in every
step. The number of steps is linear in |w|. Thus, we require only linear time in |w| to
assemble ind(w).

» 3. Analogous to (2). O

We have seen as a consequence of Lemma 4.16 that the language accepted by a treelike
automaton is regular, since one can always construct an equivalent DFA. We will now
examine further the structure of languages accepted by treelike automata and show that
there are regular languages which cannot be accepted by any of them.

Lemma 4.19 Structure of L(T)
1. For every treelike automaton 7 € Treelike(X) there exist finite languages L, L' C ¥*
with: Ly = LU L"-Z*.
2. For any finite languages L, L' C X* there is a treelike automaton T € Treelike(X)
with: Ly = LU L"-*.

Proof.
» 1. Because of 4.15 we can again resort to lang(7) instead of examining L(7). Proof
by structural induction over 7.
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> 7 = Nil or T = Cyc: Per definition, lang(Nil) = § = 0 U §-X*. Consequently, with
L = L' = () the claim holds. Similar for Cyc: lang(Cyc) = ¥* = U {e}-T*. By defining
L =0 and L' = {e}, we again have the desired result.

> T =(Ti,-...Ta)n: lang((Ti, ..., Tn)y) equals J;_,{si}-lang(T;). By induction, we
may assume that there exist finite languages L and L' with lang(T;) = (L; U L}-X*).
Applying distributivity over union then yields

lang((Ti, ..., Ta)y) = (J{sid L U (J{si}- L3

i=1 i=1
Therefore, by choosing L = |J;_,{s;}-L; and L' = |J;"_, {s;}-L} the argument is complete.

> 7 = (T1,...,Tn)p: This case is equivalent to the previous one. The only difference is
that now {¢} is included in lang((71, ..., Tn) ). thus, we can choose L = {e}UJ}", {s;}-L;
and L' = |JI_, {s;}-L} to succeed.

» 2. According to Lemma 4.18 for every w € ¥* there exist treelike automata 7, 7' with:
Ly = {w} and L7 = {w}-X*. The languages L and L’ are finite. Moreover, in the next
section we will show by Lemma 4.20 that Treelike(X) is closed under finite union. Taking
into account these two arguments, we can draw the proposed conclusion. O

So far we have no reasonable methods to construct more complex treelike automata. In the
last lemma, it became apparent that a scheme to construct the union of treelike automata
is desirable. In the next section, we will introduce appropriate operations for treelike
automata to facilitate this.

4.2.3 Operations on treelike automata

In Definition 4.12 the notion of trimmed treelike automata was introduced. Now we will
propose methods for actually trimming an automaton. However, there is a second class
of irregularities we seek to eliminate. Apart from nodes which contribute nothing to
the accepted language, it is possible in a treelike automaton that large subtrees merely
acccept every input whatsoever. In such a case, it would be appropriate to replace the
entire subtree by a Cyc-node, thus minimizing the automaton.

At this point it is not clear why minimized automata are considered important for our
reasoning. At last, we want to use treelike automata to establish an algorithm for solving
matching problems which meets certain complexity bounds. For that purpose we have to
guarantee that, when constructing a treelike automaton for a certain language, the size of
the automaton is limited in the size of the language to represent. The auxiliary functions
introduced next will prove to eliminate that problem.

For any treelike automata Ty, ..., 7T, the operations trim (¢rim) and simplify (simp) are
inductively defined as follows.

trim: Treelike(X) — Treelike(X)

Nil — Nil
Cyc — Cyc
T ) Nil if for all i: trim(T;) = Nil
b IniN (trim(Ty1), ..., trim(T,))n otherwise

(Ti, .., Tn)p = (trim(Th), ..., trim(7T,))F
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trim is intended to remove all nodes of the form (Nil, ..., Nil)n and replace them by Nil
which is equivalent in regard to the accepted language. However, this process has to be
done recursively. The replacement of one node by Nil may change the predecessor node
to (Nil, ..., Nil)n, which then has to be replaced as well. The idea is to remove all nodes
contributing nothing to the accepted language. Nodes of the form (-)r are never removed
because they accept {¢}.

Like trim, the purpose of simp is to remove subtrees and replace them by simple equiva-
lents. Nodes of the form (Clyc, ..., Cyc)r accept £* and can be replaced by Cyc. Again,
that modification is carried out recursively to eliminate all such cases.

simp: Treelike(X) — Treelike(X)
Nil — Nil
Cyc — Cyc
(Ti, - s Ta)n = (simp(T1),. .., stmp(Tn))N

Cyc if for all i: simp(T;) = Cyc
(T Ta)p = {(simp(ﬂ),...,simp(ﬁz))p otherwise

Taking advantage of these functions we can now introduce operations on treelike automata.
Most of them are intended to refer to set-theoretic operations on the sets represented by
treelike automata, i.e. the complement of a treelike automata A is intended to accept the
complemented language of A.

For any treelike automata Ty,...,7,,S1,...,S, € Treelike(¥) and w € ¥* the opera-

tions left quotient (w~'(-)), complement (c), trimmed complement (=), intersection (N'),
trimmed intersection (N), and union (U) are defined inductively.
w™: Treelike(X) — Treelike(X)
Ti = (T, w)

¢ : Treelike(X) — Treelike(X)
Nil — Cyc
Cyc — Nil
(Tis-- o Ta)y = (e(T1), -, c(To)) P
(T To)p = (c(T1), -y e(To))N
Let us first consider the unary operations. The left quotient is supposed to return the
subtree of a treelike automaton after reading a word w. The state of an automaton is
an automaton itself, so we just have to return the result of the transition function. The

complement also works recursively. Since Nor- and Fin-nodes differ in accepting € or not,
the labels of these nodes have to be exchanged.

For the sake of brevity, all binary operations are defined commutatively without explicitly
repeating symmetric patterns.
N': Treelike(3) x Treelike(X) — Treelike(X)
Nil, T — Nil
Cyc, T—T
(T, Ty s (S15--,8n)y = (TN Sty T N SN
(T, s Ta)ps (St Sn)p = (N Sty T NV S

When regarding Nor as “False” and Fin as “True”, the intersection takes the logical
conjunction as resulting label. The union operator, as defined below, takes the disjunction.
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This is not surprising, because in the intersection-automaton only those states may be
accepting states which have been accepting states in both input automata. An analogous
argument applies to the union-automaton.

U: Treelike(X) x Treelike(¥) — Treelike(X)

Nil, T—T

Cyc, T = Cyc
(Tiy s To)ps (S1y00 03 Sn), » (THUSL, .., TaUS)F
(T, s To)ns (St Sy = (M USL, - T USe)N

Observe that an explicit definition of the union is in fact not necessary because we have
introduced the complement and the intersection. The alternative proposed above, however,
may prove more efficient when actually implenting algorithms based on treelike automata.
The complexity class, as we will see, is not affected.

When intersecting trimmed automata, the trimming-property can get lost. The comple-
ment has the same disadvantage. To overcome this we introduce modified versions of these
operations.

N : Treelike(X) — Treelike(X)
N:=trimon'
= : Treelike(X) — Treelike(X)

(F):=trimoc

Thus, the correction is achieved by simply applying the trim operation at the end.

The left-quotient of a treelike automaton 7 is denoted as application of a function, i.e.
w1 (T), and not like a product. In this respect we deviate from the notation for the left
quotient of formal languages in Definition 2.3. A notation like w~!-7 could mislead to the
impression that there is a concatenation for treelike automata.

Observe that in most of the cases the operations defined above could be realized by merely
changing node labels in an appropriate way. Nevertheless, it has not been shown yet that
these operations yield the desired results. We will give a proof of correctness first and
then examine the complexity of the operations.

Lemma 4.20 Correctness of the operations
Let w € ¥* be a word. and let 7,S € Treelike(X) be treelike automata. Then

1. trim(T) is trimmed and L(trim(T)) = L(T).

3
3
I
=
3

2. L
3. L(
4. L(
5. L
6. L(

T)=L(T)
. L(TNS)=L(T)N L(S)
. L(TUS) =L(T)UL(S)
Proof.
» 1. Prove trimming-property: 7 is trimmed if and only if no subtree of 7 is of the
form (Nil, ..., Nil)ny. One can see, that trim recursively removes subtrees of that form,

replacing then with Nil. Thus, the resulting tree has the desired property.

Proof of the equality of the accepted languages by structural induction over 7.
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> 7 = Nil or T = Cyc: Trivial, because trim does not change Nil or Cyc.

7T =(Ti,....Ta)yor T =(Tq,...,Tn)p: First case: trim(7;) = Nil for all i. Then:
lang(trim((T1, ..., Ta)n)) = lang(Nil) = @ by definition of ¢rim. By induction, we obtain
lang(trim(T;)) = lang(T;), which equals lang(Nil) according to the assumption. Since
lang(Nil) = (0, we obtain by definition of lang: lang((T1,...,Tn) ) = Ui, {si}-0, which
simplifies to ().

Second case: There is an i with ¢rim(7;) # Nil. If not all 7; are trimmed to Nil, trim does
not affect the label of the root node. By induction, we have lang(trim(7;)) = lang(T;).
Consequently, trim does not change the accepted langauge.

If 7= (Ti,...,Tn)p, trim does not affect the root node by definition. Thus, the argument
of the second case applies again.

» 2. Taking advantage of the analogous definitions of ¢rim and simp, we can proof the
correctness of simp in the same fashion as for trim. Here the criterion is not evaluating
to NVil, but evaluationg to Cyc. Moreover, this time nodes marked Nor remain unchanged
by instead of Fin in the second case above.

» 3. For w = ¢, the left quotient has no effect. Furthermore, (wv)~!-L = v=1-(w~!-L) for
v € ¥* and for every language L. Consequently, left quotients for longer words w can be
obtained by successively applying the left quotient for only one character. It is therefore
sufficient to consider only words w of length 1 in our proof, i.e. w = s;. Then we have:
L(s; H(T)) = {v € £*|0(s; }(T),v) € Acc}. According to the definition of the left quotient,

5(3;1(7'),11) = 5(8(T, s:),v), which by definition of § equals §(7, s;v). Hence, taking all

A

words v for which 6(7T, s;v) € Acc is equivalent to taking the left quotient s~!-L(T).

» 4. Due to (1), it is sufficient to prove the proposition for the complement (¢) instead
of the trimmed complement. Proof by structural induction over 7.

> 7 = Nil or T = Cyc: According to lang, we have lang(Nil) =  and lang(Cyc) = T*.
Nil and Cyc are complementary with regard to (c), their languages are complementary
with regard to the complement of formal languages. Thus, ¢ is correct for Nil and Cyc.

T =T, ..., Ta)yor T =(Ti,...,Tn)p: (c) changes the node label and proceeds to
the successors. We thus obtain lang(c¢((T7,...,Tn)y)) = {e} U Ui, {si}-lang(c(T;)) by

definition of lang, which by induction can be replaced by {e} U ., {si}-lang(T;). We
now have to show that this equals lang((71,...,Tn)N)-

For a word w € ¥*, it holds that w & lang((T1,...,Tn)y) iff w & Ui {si}-lang(T;).
This is equivalent to w = & or, for some character s; € ¥ and v € ¥*, w = s;v such

that v & lang(7;). Therefore, w is an element of {e} U J;_,{si}-lang(T;), which is the
complement of lang((71,...,7n) ) according to the definition of (c¢).

The proof for T = (Ti,...,Tn)p is identical except for the empty word ¢ missing in the
accepted language.

» 5. Because of (1), we will consider the intersection (N') and not the trimmed intersection
(N). Proof by induction over the structure of 7 and S.

> 7 = Nil or T = Cyc: The intersection of lang(Nil) with any other language is empty.
By definition, Nil N S is Nil for any treelike automaton S, so that lang(Ni N S) is
empty as well. Similarly, intersecting lang(Cyc) with any other language yields ¥*. As
Cye' S = Cye, the language accepted by Cycn' S is also X*.
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> 7T =(T,...,Ta)y and S = (Si1,...,S,)y: By definition, we have that 7 N’ S is equal
to (71 ' Si,..., Tn N Sp)n. Therefore, lang(T N’ S) equals i, {si}-lang(T; 1" S;). By
induction, {s;}-lang(T; N' S;) equals {s;}-(lang(T;) N lang(S;)). The characters of the
alphabet ¥ are assumed to be unige. This allows us to apply distributivity over the
intersection, yielding | J;_, {s;}-lang(7;) N Ui, {si}-lang(S;), which matches the definition
of lang(T) N lang(S).

>T=(T,....,Tn)y and S = (S1,...,Sn) p: Similar to the previous case. Here ¢ is an
element of lang(S). It disappears when applying the intersection operation (N') as well as
when intersecting the actual accepted languages of 7 and S. Thus, the same argument
holds.

>7T=(T,..-,Ta)p, S=(S1,...,8n)p: Analogous to the previous cases. This time the
empty word e appears in the languages of both 7 and S.

» 6. Proof by induction over the structure of 7 and S. Due to the great similarity to
the intersection operation we will not give the proof in full detail. Whereas previously
the intersection with ¥* causes no change, here the union with () changes nothing. The
same analogy exists between intersecting with () an uniting with ¥*. Therefore, for case
T = Nil or T = Cyc, the same arguments hold.

The other cases are also obtained in the way seen above. Here, however, we do not even
require the argument of X consisting of distinct characters. Distributivity over the union
could be applied even without this. O

Let us now study the complexity of treelike automata. In the next lemma, we discuss the
effect of the above operations on the size of the resulting automata. We will see that the
size of the resulting automaton never exceeds the sum of the sizes of the original automata.

Lemma 4.21 Size of the constructed automata
Consider a word w € £* and treelike automata 7,S € Treelike(X). Then

L |[trim(T)|| < ||| and ||simp(T)I| < |||

2. lw™ (DI <7

3. TN <171

4TSI <TI + ISl and [T US| < I T + [IS]]
Proof.
» 1. Applied on Nil or Cyc, trim does not change anything. Applied on nodes of the
form (71,...,7T,), however, it replaces subtrees of size greater than 1 by Nil, which is of

size 1. Therefore, the size cannot increase when applying trim. The same argument holds
for simp.

» 2. The left quotient operation by definition returns a subtree of the automaton it is
applied to. Obviously, a treelike automaton is never of a smaller size than one of its
subtrees.

» 3. Because of the result of (1), it is sufficient to consider (¢) instead of (7). By induction
over the structure of 7, we prove that |¢(7)| = |T].

> 7 = Nil or T = Cyc: Nil and ¢ are complementary in regard to (¢). Moreover, the size
of both is the same which implies that it remains the same when applying (c¢).
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7T =(Ti,....Ta)yor T =(Ti,...,Tn) gt By definition of ¢, ||(T1,...,Tn) x|l is equal to
1(e(T2)s -, e(Ta)) I, which simplifies to 1437, [|e(7:)]|. By induction, [[c(75) | = |7,
so that ||¢(T)|| = 1 + Y./, |7:| which matches the definition of ||7|.

P> 4. Again, we only need to give a proof for the intersection (N') without trimming. Proof
by induction over the structure of 7.

> 7 = Nil or T = Cyc: Then TN'S € {T,S} according to the definition. Both ||7]| and
||S|| are integers greater than 0. Consequently, the size of the intersection automaton must
be smaller than the sum of the sizes of 7 and S.

7T =(T,...,Tn), and S = (S1,...,Sp),: Applying the definition of the intersection and
that of ||-||, we obtain that ||7N'S|| equals 143", ||7:"'S;]|. By induction, this is less than
1+5°0 (17 +11Si]]). Adding 1 and splitting the sum yields 1+, | || + 1+> 1, [ISill,
which is equivalent to || 7] + ||S]|-

Because of the symmetric definitions of the intersection and the union, the same argument
holds for the union of 7 and S. O

Regarding time complexity, we can establish similar results. The next lemma will show
that all operations take only linear time in the size of the input automata.

Lemma 4.22 Time complexity
Let w € ¥* be a word and let T, S € Treelike(X) be treelike automata. Then the following
operations require only linear time in the size of the input automata:

1. trim, simp, and (7),
2. the left quotient (w=!(")),

3. trimmed intersection (N) and union (U).

Proof.
» 1. Proof by induction over the structure of 7.

> 7 = Nil or T = Cyc: Upon input Nil or Cyc, the three functions trim, simp, and ¢
immediately return Nil or Cyc als result. For all of them it takes constant time to identify
the input automaton as one of Nil or Cyc. Generating and returning the result also requires
only constant time. The trimmed complement operation (7) is defined as concatenation
of trim and ¢ and therefore also is finished in constant time in the size of the input.

> 7 =(T1,...,Tn),: Consider trim(7). By induction, it requires only linear time in
[|7:]] to compute the results for ¢rim(7;), simp(7T;), and ¢(T;) respectively. The test for
trim(T;) = Nil requires only constant time for all 4. Since ¥ is assumed to be constant
and since the number of subtrees equals |X|, testing all 7; costs only constant time in
I(T1,-..,Tn),|l- The final result of ¢rim(7T) can be computed from the results of trim(7;)
in constant time. Altogether, we can infer linear time in the sum of all ||7;|| and thus
linear time in |[(71,..., 7). |-

For simp and ¢, the same argument holds.
» 2. For w € ¥*, the computation of §(7,w) costs only linear time in |w| and ||T7).

Returning the resulting subtree also requires only linear time. Altogether, we obtain
linear time complexity.

» 3. Taking advantage of (1), it is sufficient to consider (N') instead of (N). Proof by
induction over the structure of 7.
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> T =Nilor T = Cyc: Nil''S and Cycn' S return either Nil or Cyc. Since the test for
T = Nil or T = Cyc requires only constant time, the result can be computed in constant
time. The same argument applies to the union operation (U).

> 7 = (Ti,...,Tn),: By induction, for all 7 the results 7; "' S; can be computed in linear
time in ||7;|]| and ||S;]|]. The time necessary to assemble the final results from that is

linear in |¥| and therefore constant in ||(71,...,7»),||- Consequently, we obtain linear
time complexity in ||(71,-..,7»),|| for the intersection.
The same argument holds for the union (U). ]

The advantage of trim and simp is to provide a method for generating a better repre-
sentation for an automaton accepting some language. In the view of the rather simple
structure of treelike automata the question arises if there is a unique representation for
every automaton, i.e. a normal form which cannot be simplified further. The next lemma
shows that such a representation can be defined using ¢rim and simp.

Lemma 4.23 Normal forms
Let 7,8 € Treelike(X) be treelike automata. Then

1. T =S8 iff simp(trim(T)) = simp(trim(S))
2. Testing for equivalence requires only linear time in || 7| + ||S]].

Proof.
> 1. (“=”) Proof by induction over the structure of 7 and S.

> T,S € {Nil, Cyc}: Since simp(trim(Nil)) = Nil and simp(trim(Cyc)) = Cyc and since
lang(Nil) # lang(Cyc), the proposition follows immediately.

> 7= (Ti,...,Tn)y and S = Nil: Then T only accepts () and we can derive lang(7;) = 0
for every ¢, which means that all 7; are equivalent to Nil. By induction, we then obtain
simp (trim(T;)) = simp(trim(Nil)), which equals Nil by definition of simp and trim. If
simp (trim(T;)) = Nil, then already trim(Nil) must have been Nil. If this is the case, then
by definition trim((71,...,7T») ) is Nil and therefore simp(trim((T1,...,Ta)y)) is as well.
Utilizing that Nil = simp(trim(Nil)) we end up with simp(trim((T1,...,7Tn)y)) equal to
simp (trim(Nil)), which was to be shown.

>7 = (Ti,...,Tn)p and S = Cyc: Then lang(7T) = £* and so lang(7;) = ¥* for every i.
This implies that every 7; is equivalent to Cyc which by induction yields the equality of
simp (trim(T;)) and simp (trim(Cyc)). Thus, simp(trim(7;)) = Cyc for every i.

As T is labelled Fin, simp(trim(7T)) simplifies to simp((trim(71), ..., trim(7,))r). Since
always simp(trim(T;)) = Cyc, the whole expression simplifies to Cyc by definition of simp.
Exploiting again that Cyc = simp(trim(Cyc)) we obtain that simp(trim((Ti,...,Tn)p))
equals simp (trim(Cyc)).

>7T=(T,....,Tn)y and S = (S1,...,Sn) n: By definition of lang, we have that lang(7;)
equals lang(S;) for all ¢, implying 7; = S;. By induction, we can infer that simp(trim(7T;))
equals simp (trim(S;)) for all 4.

First case: for all ¢ it holds that ¢rim(7;) = Nil. Then simp(trim(T;)) = Nil, so that by the
above equation simp(trim(S;)) = Nil. Therefore, trim(S;) = Nil for all i as well. As both
T and S are labelled Nor, by definition of ¢trim this yields that simp(trim((T1,...,Tn)n))
equals simp(Nil) and analogously simp(trim((Si,...,Sn) ) is equal to simp(Nil). Con-
sequently, simp(trim(7T)) equals simp(trim(S)).
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Second case: there is an ¢ with trim(7;) # Nil. Then trim will reduce neither 7 nor S to
Nil. As simp by definition does not reduce nodes labelled Nor, the proposition is obtained
by merely applying the definitions of trim and simp: simp(trim((T1,...,7Tn)n)) equals
simp((trim(T1), ..., trim(7,))n) which equals (simp(trim(Ty)), ..., simp(trim(T,)))N-
This is equivalent to (simp(trim(St)), - . ., simp(trim(S,))) N, which can again be simplified
to simp((trim(Sy), ..., trim(S,)) ), resulting in simp(trim((Si,...,Sn)y))-

7 =(Ti,....Tn)p and S = (S1,...,Sp) ¢ This case is fairly analogous to the previous
one. We again can infer simp(trim(7;)) being equal to simp(trim(S;)) for all 7 and then
distinguish two cases.

First case: for all i : simp(trim(7T;)) = Cyc. As trim does not reduce nodes marked
Fin, simp(trim((T1,...,Tn)p)) simplifies to simp((trim(71), ..., trim(7,))r). Since al-
ways simp (trim(T;)) = Cyc, simp reduces the expression to Cyc. The same transformation
applies to S, so that we obtain equality.

Second case: there is an i with: simp(trim(7;)) # Cyc. In this case, neither ¢rim nor
simp reduce the root node. Similar to the second case above we can therefore prove the
proposition by merely applying the definitions of trim and simp.

BT = (T, ...,To)y and S = (S1,...,Sn): Then 7 and S cannot be equivalent because
they do not agree upon accepting € or not.

> 1. (“<”) Assume simp(trim(T)) = simp(trim(S)). According to Lemma 4.20, simp
and trim do not alter the accepted language, so that L(T) equals L(simp(trim(T))) and
L(S) equals L(simp(trim(S))). This implies L(T) = L(S), completing the proof.

» 2. According to Lemma 4.22, computing simp(trim (7)) and simp(trim(S)) requires
only linear time in ||7]| + ||S]|. Due to Lemma 4.21, treelike automata cannot increase
in size when trimming or simplifying them. It is therefore sufficient to find a strategy to
syntactically compare the automata in linear time in the size of the automata.

Such a strategy can be defined easily. For instance, a simultaneous depth-first search over
the trees corresponding to the automata has the required properties. O

Because of the properties shown in the previous lemma, simp(trim(7T)) could serve as a
normal-form for the automaton 7. It is particularly interesting that such a normal form
can be computed in linear time in the size of the automaton.

In the end we want to use treelike automata to represent regular languages occuring in
the solvability equations introduced in the first section of this chapter. We have already
seen that treelike automata can represent any language of the form L U L'-X*, where L
and L' are finite languages. We have not yet provided a scheme to actually construct such
an automaton, given languages L and L'. In the next lemma this will be provided.

Lemma 4.24 Representing languages by treelike automata
Let L,L' C ¥* be finite languages over . Then there is a automaton 7 € Treelike(X)
which accepts von L U L'-¥* with:

LTI e oIl + [11D-
2. The construction of T takes only linear time in ||L|| + ||L']|.

Proof.
Construct the automaton 7 for in the following way:

e For every w € L, construct ind(w) which accepts {w}, for every w’ € L’; analogously
construct ind’ (w') accepting {w'}-X*.
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e Construct the union over all automata ind(w) and ind'(w') constructed before.

Formally, 7 can be denoted as (e, ind(w)) U (U, er: ind' (w')). Taking advantage of
Lemma 4.18 and of Lemma 4.20 it is not difficult to see that 7 accepts L U L'-X* in
accordance with the proposition. We now show that 7 meets properties (1) and (2).

> 1. In Lemma 4.18 we have seen than for every word w € ¥* the size ||ind(w)|| and
|lind’ (w)]| of the induced automata are in O(|w|). From Lemma 4.21 we furthermore know
that for every treelike automata 7; and 7z, the size |71 U Tz|| of the unified automata is
less than the sum ||71|| + || 72]| of the original sizes. With these results we can infer the
following result for the size of T:

|T| by definition equals [|(U,,¢, ind(w)) U (U, cp ind'(w"))]]. Because of the properties
of the union, this is in O((}_, ¢, llind(W)|) + (3 cp [lind' (w')|])) which is limited by
O((Xwer W) + (X e lw'l)) according to the properties of ind. The definition of the
size of formal languages implies that this is equivalent to O(||L|| + ||L'|)-

» 2. For the time complexity, an argument similar to (1) can be devised. We know from
Lemma 4.18 that ind and ind’ require only linear time in the size of the input.

Unifying treelike automata can also be done in linear time, as shown in Lemma 4.22. Now
it is very important to take into account that after each unification the size of the resulting
automaton does not exceed the sum of the sizes of the input automata. This guarantees
that when repeatedly unifying automata the size of the arguments is always the sum of
all automata so far unified. With this we come to the following conclusion.

When executed naively, the union over all automata of the form ind(w) and ind'(w) costs
quadratic time in the size of L and L', as can be illustrated easily: unifying ind(w;)
and ind(wsy) costs linear time in |w;| 4 |we|. But then unifying the resulting automaton
with ind(ws) additionally requires linear time in |wq| + |wa| 4 |ws|, so that for the final
automaton the costs are 2 - (Jwi| + |wa|) + |ws|. This intuition implies a quadratic result
in ||L|| + ||L'|| for the overall time necessary to construct 7. It should be noted that this
result is sufficient for the argument in the following sections. We will in fact require no
more than polynomial time complexity.

However, a more efficient strategy can be found. Instead of unifying two automata in
every successive step, the union over all automata can be computed simultaneously. This
strategy avoids re-reading the resulting automaton in every step and can thus be realized
in linear time in the sum ||L|| + ||L']| of the sizes of the input languages. ]

Observe that the reverse task, i.e. reading off the language accepted by a given treelike
automaton, can be solved easily in linear time in the size of the automaton. We only need
to perform a depth-first traversal of the automaton and memorize the word read on the
path from the root-node to the current node. Whenever visiting a node marked Fin, the
current word is added to a first language L; whenever visiting Cyc, the current word is
added to a second language L'. Tt can be shown that then the automaton examined in
that way accepts the language L U L'-X*.

The complexity of standard automata-theoretic problems for treelike automata has not yet
been considered. For the purpose of verifying solvability equations, we need two of them
at most: the emptyness- and the word-problem. Both can be solved easily for treelike
automata, as we will see next.

Lemma 4.25 Decision problems
Let T € Treelike(X) be a treelike automata and let w € ¥* be a word. Then the following
problems are solvable in linear time in the size ||| of the automaton and in the size of w:

1. L(T) =’ 0, i.e. the (-problem
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2. w €’ L(B), i.e. the word-problem

Proof.
> 1. As seen in Lemma 4.23, the language accepted by T is empty if and only if the
normalized automaton simp(trim (7)) equals Nil.

Computing simp and trim does not increase the size of an automaton. These operations
also take only linear time in the size of the argument. We have seen this in Lemma 4.21
and Lemma 4.22. Furthermore, the test of equality to Nil costs only constant time. We
therefore end up with linear time complexity for the (-problem.

» 2. According to the definition of L(7), w is accepted by T iff 5(7', w) € Acc. By
definition of the left quotient, this is equivalent to w~!(7) € Acc. According to Lemma
4.22, computing the left quotient costs only linear time in || 7| and |w|. The left quotient
of T of course is not greater in size than 7. Finally, testing for w='(T) €’ Acc takes only
constant time, since the left quotient either has to be Cyc or it has to be labelled Fin.
Thus, the word problem is of linear time complexity as well. O

There are two operations occurring in our solvability equations which have not yet been
defined for treelike automata—concatenation and the right quotient. The right quotient
occurs in the equations referring to <-number restrictions for ALN . However, as can be
seen in Definition 4.6, it is applied only to sets of excluding words and it is applied only
for single atomic roles. We will see later on that in this case the right quotient can be
replaced by a simple expression requiring only known operations.

Nevertheless, treelike automata cannot be concatenated efficiently. When just linking
two treelike automata via e-transitions, the deterministic behaviour as well as the tree
structure might get lost. Merely copying the second automaton to every finite state would
also violate the tree structure if the first automaton contained inner nodes marked Fin.
In addition copying would be inefficient for successive concatenations (which do not occur
in the equations, though).

To solve the problem of concatenation, we have to resort to general nondeterministic
finite automata. These, however, cannot be complemented efficiently. Observe that no
solvability equation requires concatenation on both sides. This suggests the following
strategy: We can represent the left-hand side of an equation by a treelike automaton and
the right-hand side—requiring concatenation—by an NFA. We can then still compute the
complement treelike automaton and intersect it with the NFA. This strategy is successful
if two conditions hold. Firstly, the intersection of two NFA must be efficient. Secondly,
the (-problem for NFA must be decidable in polynomial time. We know from Lemma 2.8
that these conditions can be met.

In the next section, we will give strategies to decide solvability in FL,, FL-, and ALN.
Finally, we shall summarize the results on matching in the last section of this chapter.
Matching problems in FLy will not be examined in detail, because deciding solvability
and computing least solutions there is comparatively simple. When summarizing results,
however, we will briefly address this case.

4.3 Deciding solvability

We are now ready to actually decide the solvability of the solvability equations in FL; .
Thus, we insert the languages provided in Lemma 4.2 into the equations of Definition 4.1.
The resulting equations are then tested for equality using a strategy introduced in the
next lemma. Now is the time for deploying the capabilities of treelike automata we have
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taken so much care to specify in the last section. The possibility to efficiently compute
the complement of a treelike automaton will prove especially useful.

Lemma 4.26 Testing solvability in FL;
Let C' =’ D be an FL | -matching problem in (U, V, W)-labelled FLy-normal form. Then

1. Solvability of equation (L) as introduced in Definition 4.1 can be decided in poly-
nomial time in the size of the equation.

2. The same holds for equation (A) for every A € C.

Proof.
» 1. According to Definition 4.1 and Lemma 4.2, we have to decide if

4
Ust=vestu (Jwy () w0 . (L")
j=1 weW;

~ J
~~

j
For every j it can be shown that L} is a subset of U, -%* and is ¥*-closed. For the above
equation to hold the following conditions are therefore sufficient:

e V, CU, X"

e Forallue Uy: u €V, -X* or there exists a 7 with u € L;..

D> Testing V), C U, -¥*: The idea is to construct a nondeterministic finite automaton By
accepting the language V), NU-X*. The @-problem is then decided for By.

As shown in Lemma 4.24, we can construct a treelike automaton 7 for U, -X* which is
of polynomial size in ||U_ || and which can be obtained in polynomial time. According to
Lemmata 4.21 and 4.22, it furthermore takes only polynomial time in the size of A to
construct the complement automaton 7. Especially, the size of 7 does not exceed that
of 7. We can similarly construct a treelike automaton S for V. As the intersection of
two treelike automata takes only polynomial time (Lemma 4.22), we can easily produce
an intersection automaton 7 := 7 N'S. Lemma 4.21 again guarantees that 7 is of poly-
nomial size in the sizes of 7 and S. Finally, deciding the @-problem for treelike automata,
takes only polynomial time in the size of the automata. This was shown in Lemma 4.25
when introducing general nondeterministic automata. Altogether, we can decide the first
condition in polynomial time, since all the role languages involved are limited in size by
the input matching problem.

D> Testing the second condition: At first, observe that every L;. is of the form L-X%*, which
allows us to except the YX*-closure of U, when selecting elements u for our test. Since U
is part of the input matching problem, it is no problem to examine every u € U as long as
each requires only polynomial time. Thus, consider one such u. Testing whether v € V| -3*
can be realized similar to the first condition. We can compute an appropriate treelike
automaton to represent V) -X*. As seen in Lemma 4.25, solving the word problem then
costs only polynomial time. Thus, we still have to test if u is an element of W;-w = (U -X*)
for every j.

For a given j we can test this as follows. W; is part of the input and thus of polynomial
size. Consequently, we can construct a treelike automaton for U, -¥* and then compute
the left quotient for every w € W; in polynomial time. We can then establish the intersec-
tion automaton over all automata computed that way. The properties of the operations
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for treelike automata guarantee that this takes only polynomial time in the size of the
matching problem and results in a treelike automaton 7; of polynomial size.

Furthermore, we can construct a treelike automaton S; accepting W;. The concatenation,
however, is not available for treelike automata. We can nevertheless establish a nonde-
terministic finite automaton representing L by linking S; and 7; in the way proposed in
Kleene’s theorem for the concatenation automaton: Add e-transitions from every accept-
ing state of S; to the initial state of 7;. This operation obviously does not increase the
size of the resulting automaton severely. It results in an NFA B; accepting L;- which is
polynomial in the size of the matching problem. The treelike property, however, is lost
over that operation. This implies that we cannot compute the complement of B; efficiently.
Fortunately, we only have to solve the word problem for every j, which can be decided in
polynomial time. This is a result of Lemma 2.8.

Putting the above arguments together, we can decide in polynomial time in the size of the
input matching problem whether equation (') is valid or not.

» 2. Equation (A) for every A € C holds if and only if:

4

UsUULS" =V4uULS U W () w (UauULE") (4"
j=1 weW;
=VAUULE*U
U Wi () w'(Ua) U U W () w (UL-E%)
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For every j it holds that: L; C U4 und L; C U, -E*. For the validity of equation (A') the
following two conditions are therefore sufficient:

e V4CU,UU,-X*
e ForallueUs: u€VaUUL-E* or there exists a j mit v € L; or u € L;-.

The first condition is treated similarly to (1). We can construct in polynomial time a
treelike automaton of polynomial size representing V4 NU4 U U, -X*. For this automaton,
again the P-problem can be decided in polynomial time

For the second condition the strategy is almost identical to the one introduced in (1).
Especially, testing whether u € L; or u € L;- requires exactly the same steps as seen
above. O

We shall see in the following lemma that the above scheme can easily be generalized for
FL_. Here, additional equations for negated atomic concept have to be included in the
test. Their structure, however, is identical to the respective non-negated version except
for two new aspects. The occurrence of role languages of the form U, instead of U, and
the usage of the function Int in equation (L). We will see that both problems can be
solved without altering the overall decision strategy proposed in the last lemma.

Lemma 4.27 Testing solvability in FL_
Let C =7 D be an FL£_-matching problem in (U, V,W)-labelled FLg-normal form. Then

1. Solvability of equation (L) as introduced in Definition 4.3 can be decided in poly-
nomial time in the size of the equation.

2. The same holds for equations (A) and (—A) for every A € C.
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Proof.
» 1. Due to Definition 4.3 and Lemma 4.4, we obtain the following equation for the test
if equation (L) is solvable:

U -S*=V,.-2*U U Wi (] w ' (UL U | Int(4,-4).5* (L)
j=1 weW; AeC
N g . N _
=:L; =:L',

where inserting the languages specified in Lemma 4.4 into the definition of Int yields:

l
Int(A,-A VAUUW N w )UU - () wH(ULE)

weW; weW;

ﬁAuUW N w UW N v (UL

weW; weW;

Combining the above results, we end up with an equation considerably more complex than
that discussed for FL£, in Lemma 4.26. Nevertheless, we can follow a similar scheme to
verify the validity of equation (L') for F£_. We prove the inclusion from left to right (C)
by solving the word problem for an appropriate nondeterministic finite automaton and the
inclusion from right to left (D) by deciding the (-problem for the intersection of a treelike
and a nondeterministic finite automaton.

> (C): Like for FL£,, the entire right side of (L) is ¥*-closed. It is therefore again
sufficient to test if every word w € U, can be found in V| -X* or in the remaining expression
on the right side. Firstly, V| -3X* can be represented by a treelike automaton. Secondly,
following the strategy of Lemma 4.26, we can construct nondeterministic finite automata
for every L;. Thus, we only have to show that there are appropriate automata for deciding
the word problem for L';. In the above equation for Int(A,—A), two expressions of the
form VaUU W;-N,ew w~H(UAUU(-3*) are intersected. Following the construction for the
solvability equations (A) in F L , these expressions can be represented by nondeterministic
finite automata. The intersection automaton of these expressions is polynomial in the size
of the original automata, as can be seen in Definition 2.5. Thus, we have constructed an
NFA representing Int(A,—A). It takes only linear time compute the ¥*-closure of that
automaton—we just have to add edges from every accepting state pointing to themselves.
Consequently, we can provide a polynomially large NFA for the representation of L', for
every A € C.

> (D): We have already seen that we can represent U 1 -X* by a treelike automaton. The
idea now is to represent the entire right-hand side of equation (L) except the union of L;
by a nondeterministic automaton B. The complement of the treelike automaton for U, -z
can then be intersected with B. Testing the result of this for emptyness is equivalent to
the inclusion we want to decide.

We do not need to include the union of L; into the construction of B, since obviously
every L; is already a subset of U, -X*, which is a subset of the right-hand side of the
equation. We know from the previous part, that V| -¥* easily can be represented by a
treelike automaton as well as every L', can be represented by a polynomially large NFA.
The only step missing now is to compute the union of all these automata. We have
already seen that unifying nondeterministic finite automata only costs a constant amount,
of additional space and can be done in linear time. Therefore, we require only linear time
to obtain the desired automaton. We can now compute the complement automaton for the
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left-hand side of the equation and test the intersection automaton for emptyness. Since
the intersection automaton is polynomial in the size of the original automata according
to Definition 2.5 and since the @-problem can be decided in polynomial time in the size of
the automaton, we end up with polynomial time complexity for the decision.

» 2. For every A € C, inserting the appropriate languages into solvability equation (A)
yields the following equation:

l
UsUULS =VauULs U Wy () w ' (UaulL-5%) (A"
j=1 weW;

We have already mentioned, that U, can be represented by a treelike automaton. There-
fore, the above equation is merely a syntactic variant of the analogous equation for 7L .
In consequence, we can decide equality with exactly the same strategy as introduced for
equation (A') in Lemma 4.26. Due to the similarity of the equations, this argument also
applies to equation (—A") for every A € C. O

Most of the complexity of the solvability equations for ALA is hidden in the construct of
excluded words, occurring as Ec and Ep. Thanks to the results presented in [BKBM99]
and [Kiis98], we need not resolve their structure in detail. Instead, we can rely on the fact
that there exists an algorithm to compute the set of excluded words of a given concept
description in polynomial time. Nevertheless, we must ensure one condition: inserting the
languages proposed in Definition 4.7 into the right-hand side of equation (L) may not blow
up their size exponentially. On the other hand, once given a polynomial representation of
E¢, the argument for the other equations is very similar to the approaches seen before for
FLy and FL-,.

Lemma 4.28 Testing solvability in ALN
Let C' =7 D be an ALN -matching problem in (U, V, W)-labelled FLo-normal form. Then

1. Solvability of equation (L) as introduced in Definition 4.6 can be decided in poly-
nomial time in the size of the equation.

2. The same holds for equations (A4) and (=A) for every A € C as well as for equations
(< nR) and (> nR) for every (< nR) € N< and (> nR) € N>.

Proof.
» 1. According to Lemma 4.7, we have to decide if

Ec =Ep(X,X¢, X, X>,X<)

It is stated in [BKBM99] that it takes only polynomial time in the size of C' to compute
a finite set Ugp, with Ec = Ug,-X*. Therefore, it can be shown that we need only
polynomial time to compute the solution languages introduced in Lemma 4.7. It can be
shown further that these languages are only polynomially large in the size of the original
matching problem. Therefore, inserting these languages into D yields a an ALN -concept
description of polynomial size in the size of D. According to [BKBM99], we can then in
polynomial time compute a finite language Ug, such that Ec = Ug.-¥*. Thus, we can
construct treelike automata for the representation of both sides of the equation, which
are polynomial in the size of the original matching problem. Equivalence therefore can be
decided in two steps by testing mutual inclusion: Firstly, compute the complement of one
automaton and then test the intersection with the other for emptyness. Secondly, perform
the same test vice-versa with the automata exchanged.



4.4. GENERAL RESULT

» 2. Inserting the languages of Lemma 4.7 in the remaining solvability equations yields
equations of the following type:

4
UsUEc=VaUEcU|JW;- [ w (U4 U Ec) (A"
j=1 weWw;

4
U U(ZmR) UFEqc = V(sz) UFEcU U Wj- ﬂ wil( U U(ZnR) U Ec)

m>n j=1 weW; m>n

We have mentioned under (1) that for the representation of Ex and Ep polynomially
large treelike automata can be constructed in polynomial time. Therefore, the first type
of equations can be verified with the strategy introduced for the equations (A’) for FL
in Lemma 4.26. Taking into account that we can also compute treelike automata for the
representation of the union {J,,~,, Usmgr) and U,,~, Usnr) U Ec, the same scheme can
be employed for the equations referring to number restrictions. O

At this point, we know that matching problems modulo equivalence can be decided in
polynomial time for ALN and its sublanguages. We still have to discuss how to compute
the actual solution to a solvable matching problem. The next section gives a brief summary
on this subject.

4.4 General result

Apart from testing solvability, [BKBM99] also proposes solutions to be assigned to the
variables occurring in a matching problem and proves their correctness in detail. Using
our results on the complexity of operations on treelike automata, we will now furthermore
confirm that computing the actual solution to a solvable matching problem takes only
polynomial time. Additionally, we recall three other properties of the solution strategy.
Firstly, it is shown that it produces least solutions in regard to (C); secondly, it introduces
no new atomic concepts or number restrictions; and thirdly, it can handle systems of
matching problems as well.

Lemma 4.29 Solving matching problems

Let £ be a logic in {FLy, FL,,FL., ALN}. Let P be an L-matching problem modulo
equivalence as introduced in Definition 3.14. Then there exists an algorithm match, with
the following properties:

1. match,(P) decides in polynomial time, whether the input matching problem P has
a solution or not. If P is solvable, then match.(P) in polynomial time in the size of
P computes a solution o which is minimal in regard to (C).

2. match,y does not introduce atomic concepts or number restrictions which do not
occur in the input matching problem P.

3. match also accepts a system of matching problems as introduced in Definition 3.14.

Proof.

» 1. In the previous sections we have shown that there exist strategies for deciding solv-
ability of a given matching problem in polynomial time in the size of the problem. We
have seen that such strategies can be found for ALN as well as for its three sublanguages
considered here. We still have to make sure that computing the actual solution to a solv-
able matching problem also requires only polynomial time, which can be readlily inferred
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utilizing the results obtained so far. [BKBM99] provides us with strategies to specify ap-
propriate solution languages. Taking advantage of our results concerning the complexity
properties of treelike automata we will show that these languages can be computed in
polynomial time. We first give the prove for ALN and then consider its sublanguages
separately.

B> Solutions in ALN: To show this for ALA -matching problems, we only need to combine
results we have already obtained. In [BKBM99] it is shown that the languages L.. used
for the solvability test in Lemma 4.7 in fact are least solutions to the matching problem.
Therefore, a solution o with the desired properties can be defined by assigning

X;— VL;.L 1 AI;IC VLj4.AN AI;IC VLj-a.-A

I (<nR|_)|e,/\/'< VL]7(SHR)(S nR) I (>n|R:|EN> VL],(ZnR)(Z TLR)

for every j € {1,...,¢}. It can be shown that the assigned concept descriptions are of
polynomial size in the size of the original matching problem. Since every role language of
the form L. . can be represented by a treelike automaton, it takes only polynomial time to
read off the languages represented by these automata, i.e. to actually return the computed
result.

D> Solutions in F£, and FL-: For these sublanguages of ALN, we must first restrict the
languages used in the solvability test to finite ones. The rest of the argument then is
identical to that for ALN. For FL, and FL-, [BKBM99] again provides us with the
necessary results: Finite solution languages L; 4 can be obtained in the following way.
Since Lj,1 can be represented by a treelike automaton for every j, we read off a finite
language Lj with L; -X* = Lj,. Analogous to the languages defined for ALN in
Lemma 4.7 we now define languages L; a by subtracting L; | from L; 4. We can then
assign to the variable X; the conjunction

X]’ — VLJ"J_.J_ M AClC VL]',A.A M A@C VLj’_.A.—'A

for every j € {1,...,f}. Again, we yield a solution of polynomial size in polynomial
time. The argument for F£, is identical except for negated atomic concept missing in
the concept descriptions finally assigned.

D> Solutions in FLy: Two arbitrary FLy-concept descriptions are equivalent if and only
if their FLo-normal forms agree on all role languages involved. Therefore, infinite sets
are not necessary at any step when solving matching problems. It can be shown that the
solvability equation and solution languages for F L, are equivalent to those for FL | after
removing any constructs relating to the bottom-concept or its role languages. The task
of deciding solvability and computing solutions to a given matching problem then quite
apparently turns out to be of polynomial complexity.

» 2. It is shown in [BKBM99], that the solution specified above already has the desired
property. Especially, this implies that the solution of a matching problem can be repre-
sented with the same set of role languages as the matching problem.

» 3. In Lemma 3.15, we have already seen that systems of matching equations can be
represented by a single matching problem modulo subsumption which is polynomial in
the size of the original system. Thus, with the results from (1) the proposition follows
immediately. O



4.4. GENERAL RESULT

Our examination of matching problems modulo equivalence without side conditions is
complete. We can decide and solve matching problems without side conditions in polyno-
mial time. Furthermore, we can find minimal solutions without introducing new atomic
concepts or number restrictions and we can admit systems of matching problems as input.
The results obtained here will be of eminent importance for Chapter 5, where a solution
strategy for matching problems with side conditions is introduced.
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CHAPTER 5

ELIMINATING SIDE
CONDITIONS

In the previous chapter, an efficient solution strategy for matching problems without side
conditions has been proposed. We now approach matching problems with acyclic non-
strict side conditions. The idea is to reduce a matching problem with side conditions
to an equivalent one without by augmenting the original matching equation by additional
constraints. A strategy for this is discussed in [BKBM99]. However, it is also demonstrated
that this might result in exponentially large matching equations. In the first section, we
will briefly introduce the relevant reduction strategy. Moreover, we will show that an
intuitive strategy to represent the resulting matching problem more compactly fails to
avoid the exponential blow-up of role languages. In the second section, these problems
are overcome by employing nondeterministic finite automata for the representation of role
languages. It will be shown then that the matching algorithm introduced in the previous
chapter can be modified to accept role languages represented by automata. The solution
proposed in this chapter, however, is limited to acyclic side-conditions.

5.1 Reducing matching problems

The idea of reducing a matching problem with side conditions to an equivalent one without
side conditions is introduced in [BKBM99]. The following substitution is defined to facil-
itate this reduction. In spite of syntactic similarity we call it “generalized substitution”
because substitutions in Definition 3.13 have been defined to map concept patterns onto
concept descriptions and not onto concept patterns again.

Definition 5.1 Generalized substitutions
Let P := (C =" D,{X; C" E;|1 < j < {}) be an FL, -matching problem in (U, V,W)-
labelled F Lo-normal form. The generalized substitution 6 is inductively defined as follows:

H(Xl) = Yi [l E1
0(X]) ZY}HQ(E]) a

It is shown in [BKBM99] that a matching problem with acyclic side conditions of the form
(C =" D,{X; C" Ej|1 < j < €}) is equivalent to (C =" (D)), which is free of side
conditions. Equivalent in this context means having the same solution. It is also shown
that this modification can result in exponentially large role languages in the modified
matching problem. The remedy suggested in this context is a “compact representation”
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for role languages, which avoids making concatenations explicit. The following definition
extends this idea to the notion of product form languages.

Definition 5.2 Product form languages
For all role languages U and V' over X, product form languages are defined as follows:

e Every role language U is a product form language.
e If U and V are product form languages, so are U-V and {U,V}.

The semantics of product form languages is inductively defined over their structure. For
product form languages U and V', the expression U-V represents the concatenation of the
languages represented by U and V. Similarly, {U,V} yields the union of the respective
languages. A formal definition of the semantics of product form languages is omitted. O

The above definition does not only allow for a product representation, but also admits
nested product forms by including the case {U,V}. The following example shows that
product form languages in fact yield a more compact representation for formal languages.

Example 5.3 Product representation I
The language {RR, RS, SR,SS} can be represented in product form by {R,S}{R,S}.
However, the concatenation may not only occur at the outermost level. For instance, the

language {RR, RSR, RSS,S} can be represented in by {{R}-{R,{S}{R,S}},{S}}. 0O

However, problems may arise when employing product form languages for the elimination
of side conditions. Consider the next example, where role languages produced by the
generalized substitution # are represented by product form languages.

Example 5.4 Product representation II
Let P := (C =° D,{X; C? Ej|1 < j < {}) be an FL, -matching problem in (U, V,W)-
labelled FLy-normal form. For P, we specify the following side conditions:

Eli X1 E? A

Ey: X5 C'V{R, S}.X,

Ej: X; C° V{R}.X; 1 NV{Q,5}.X; »
where j € {3,...,¢}. We have seen that the side conditions can be eliminated by replacing
D with §(D). The role languages of the resulting concept pattern are represented by
product form languages. In the following, we restrict our attention to role languages

referring to the atomic concept A. For the first four variables, we obtain according to the
definition of 6:

(X)) =...MNA

0(X>) = ...NV{R,S}.A

0(Xs) = ...NV{{R}{R,S},{Q,S}}.A

0(Xa) = . nV{{R}{R} R, S}, {Q, S} {Q, SH{R, S} A

L1 Lo

It is easy to see that the product form representation of the languages is indeed more
compact. For instance, the resulting role language referring to the atomic concept A in
0(X,4) in explicit form is:

0(Xy) = ...NVY{RRR,RRS,RQ, RS,QR,QS,SR,SS}.A
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However, product form role languages do not prevent the above concept patterns from
growing exponentially large, as we will now see. In the above example, the sublanguage
L is identical to the respective result for X5 and similarly, L; is identical to the result for
X3. This expansion carries on for all j € {1,...,£}. Thus, the size of the product form
language referring to A for every concept variable X is greater than the sum of the sizes
of the previous two results. This implies that the size of the product form representation
of 6(X;) increases faster than the Fibonacci Sequence which constitutes an exponential
growth. a

It might be possible for every §(X;) to find another representation on the basis of product
form languages, which is more compact than the one immediately produced by 6. The sim-
plifications necessary for this, however, are greatly dependent on the individual structure
of the side conditions and cannot be realized in an intuitive way. It is not clear whether
an appropriate simplification can always be achieved in polynomial time.

5.2 Automata and acyclic side conditions

We have seen that it is difficult to find appropriate compact representations avoiding an
exponential blow-up when eliminating acyclic side conditions. In this section, we will
employ finite automata for the representation of role languages. To this end we study
the structure of the role languages produced by the generalized substitution #. The result
will provide us with a strategy to compute appropriate nondeterministic finite automata.
It is essential in this context to find a strategy which avoids copying identical structures
when synthesizing an automaton. We have seen in Example 5.4 how language-related
representation techniques are flawed by structure copying. Automata-theoretic approaches
would be affected by the same problem.

Here, we therefore share or re-use sub-automata appearing at several positions in the
construction, i.e. instead of using several instances of a sub-automaton only one instance is
introduced, linked with all necessary states by appropriate edges. Since the side conditions
are acyclic, we can use an inductive argument to find an appropriate construction.

Lemma 5.5 Automata and side conditions
Let P := (C =" D,{X; C" E;|1 < j < {}) be an FL, -matching problem in (U, V,W)-
labelled FLp-normal form with non-strict acyclic side conditions. Then:

1. The role languages occurring in #(X;) can be represented by nondeterministic finite
automata, which size is polynomial in the size of P and which can be computed in
polynomial time. This holds for every j € {1,...,¢}

2. The same holds for the role languages occurring in 6(D).

Proof.
> 1. It is sufficient to prove the assertion for o(X,). For smaller values of j, remove the
side conditions for {X,i1,...,X¢}. Due to the acyclic nature of the side conditions, the

following argument can be employed for o(X;) as well. Proof by induction over £.

> ¢ = 1: Trivial. Due to acyclic side conditions, it holds that: 6(X;) =Y; N ADC VVia.A.

The size of the role languages Vi 4 do not exceed the size of the input problem P. There-
fore, according to Lemma 2.9 only polynomial time in the size of P is necessary to construct
appropriate nondeterministic automata By 4 € Treelike(X) for the representation of V; 4.

D> ¢ > 1: Due to induction, we may assume that the assertion holds for every j < £. Thus,
for every j € {1,...,£— 1}, for every j' € {1,...,j — 1} and for every A € C there exist
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polynomially large automata Bj 4, C; v € NFA(X) such that (X;) can be respresented as

follows:
j—1

H(XJ) = Y; nrl VL(BJ"A).AH [ VL(C]',J'/).Y}V
Aec jr=1
Consider 6(X,). According to the definition, this equals Y; M0(E;). We may then expand
E; according to Defintion 3.14 and apply the definition of #. Due to induction, we obtain:
=1 j=1
0(X0) =¥en [1,9Vea.AN (1917 (Yj N [1VL; AN T VL(CM).Y]-,)

By sorting the role languages occurring in the above expression by respecting atomic
concept or variable, we yield the FLo-normal of o(X;):

0(Xe) = [1V({Vea} U{We-L(Bja) 1 <j<—1}).A

M4
—1
N V(W } U W, LGl + 1< S =115
v,

It has to be shown that for all A and j' there exist automata By a,Cp ;v € NFA(X) of

polynomial size in the size of P, such that L(Br,a) = M and L(Cq,j) = Mj,.

The role languages Vp 4 and W, ; do not exceed the size of the input matching problem.
We know from Lemma 2.9 that we can construct appropriate nondeterministic finite au-
tomata for their representation, which exceed their respective language in size only by a
constant. According to the induction hypothesis there exist polynomially large automata
Bj,a and Cjj for the representation of L(Bj;a) and L(Cj ;) respectively. Incidentally,
these automata have already been constructed in the previous steps of the induction. For
the representation of Wy ;-L(B; 4) we therefore merely construct an automaton represent-
ing Wy ; and link it to the already existing instance of 5; 4 by an appropriate e-transition.
From this an automaton representing M 4 is easily obtained. It suffices to introduce a new
initial state which non-deterministically branches to the automaton for V3 4 on the one
hand and to that for W, ; on the other. An analogous procedure can be used to construct
an automaton for the representation of M J’.,.

Following this strategy, we finally end up with polynomially large automata having the
desired properties. As we use nondeterministic finite automata, the above construction
takes only polynomial time. Especially the union of several NFA can be computed in
polynomial time in the sum of the sizes of the original automata and results in an union-
automaton of polynomial size in the size of the input matching problem.

» 2. For the concept pattern D, it holds due to the definition of # that:
!
9(D) = AI;IC VV4. AN jl:ll YW;.0(X;)

We have seen in (1) that appropriate automata for the representation of all role languages
occurring in 6(X;) can be computed in polynomial time for all j. Including the remaining
role languages requires a concatenation with the language W; and—in some cases—a union
with V4. Both operations can be accomplished by the same scheme proposed in the above
part. O

Due to this lemma, acyclic non-strict side conditions can be eliminated without an ex-
ponential blow-up of the resulting matching problem. The next sections are concerned
with the question if the matching algorithms introduced in Lemma 4.29 can be modified
to cope with the modifications introduced here.
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5.3 Restricting large languages

Before modifying the original matching algorithm, we will prove that there is a strategy to
avoid considering all words of the role languages occuring in an input matching problem.
Note that the algorithm introduced in Lemma 4.29 in fact relies on this ability. Since the
reduction by the generalized substitution € only affects the right-hand side of the matching
problem, it is not necessary to find a strategy for all role languages. We will see that only
the intersection of left quotients appearing in the algorithm requires special attention.
The following definition introduces some auxiliary notions. The intention behind their
introduction will become clear in the next lemma.

Definition 5.6 Auxiliary languages
Let U, W be languages over ¥. Define the prefix closure pre(U) and the auxiliary sets
pre(U)w, pre(U)w, post(U)w, and neg(U)w as follows:

pre(U) :=={w e £*|Fs € " : ws € U}

pre(U)w = pre(U)NW

pre(U)w = pre(U) N W

post(U)w :=U-Z*NW

neg(U)w := pre(U)UU-Z* N W ]

Observe that U can be expressed in terms of the above languages. It can be shown
that W = pre(U)w U post(U)w U neg(U)w, and similarly W = pre(U)w U pre(U)w.
For example, consider ¥ := {R,S}, U := {RS}, and W := {R, RR}. Then we have
pre(U)w = {R}, post(U)w = 0, and neg(U)w = {RR}. In the following lemma it is
shown that these auxiliary languages can be used to simplify intersections of left quotients:

Lemma 5.7 Properties
Let U,W C ¥* be languages. Then
L nprost(U)W wil'(U'E*) =X
2. If neg(U)w # 0, then (), oy w™'-(U-*) =0
3. If neg(U)w =0, then (), oy w™'-(U-X%) = Nuwepre()w w™(U-X¥)
4. it pre(U)w # 0, then N,y v -(U) =0
5. If W(U)W = @, then ﬂwEW w (U) = nwepre(U)W wil'(U)
Proof.
» 1. Consider an arbitrary w € post(U)w . We prove that w=!-(U-X*) = ¥*. By defini-
tion of the left quotient, there exists a word u € U and aword v € ¥*, with w = uwv C U-¥*.
Consequently, any continuation of w lies in the same set: ws € U-X* for every word s € X*.
This is equivalent to w—!-(U-£*) = £*, completing the argument.

[

» 2. It is sufficient to show that there exists a word w € W such that w=!-(U-X*¥) is
empty. According to the assumption, we may assume a word w € neg(U)w, which by
definition means that w € pre(U) UU-X* N W. Therefore, w € W, but neither is w an
element of pre(U), nor of U-X*. Hence, w is no prefix of a word v € U and w ¢ U-X*.
This implies for every word s € Y¥* that ws ¢ U-X*. Consequently, the left quotient
w~-(U-T*) is empty.

» 3. We have mentioned in Definition 5.6 that W can be expressed as the following union:
pre(U)w Upost(U)w Uneg(U)w. As neg(U)w is assumed to be empty, we may split up the
intersection [, ey w™'-(U-X*) into one intersection over all w € pre(U)w and another
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over all w € post(U)w. We have seen in (1), that the intersection over all w € post(U)w
is equal to ¥*, which implies the assertion.

» 4. and 5. The argument for pre(U)w is analogous to the cases (2) and (3) above.
It holds that W can be expressed as the union pre(U)w U pre(U)w and for every word
w € pre(U)w it holds that w=!-(U) is empty. O

It is not yet clear why the above assertions yield a desirable modification. This is clarified
in the following lemma, when discussing the complexity of the involved languages.

Lemma 5.8 Decidable Problems
Let U C X* be a finite language and let B € NFA(X) be a nondeterministic finite automa-
ton. Denote the accepted language as L(B) = W Then:

L [lpre(U)]| < [T

2. pre(U)w can be computed in polynomial time in [B] and ||U]|

3. neg(U)w = 0 is decidable in polynomial time in |B| und ||U||
4. pre(U)w = 0 is decidable in polynomial time in |B| and ||U]].
Proof.

» 1. Every word u € U has at most |u| different prefixes, all of which are shorter than u.
This implies that the size ||pre(U)|| does not exceed ), ¢ |u|-|ul, which is obviously less
or equal to ||U]|?>. Observe that consequently, pre(U)w is also quadratic in the size ||U]|,
since pre(U)w is a subset of pre(U).

» 2. pre(U) can be computed easily from U. For every word u € U, we simply add every
prefix of u to the result. This obviously takes only polynomial time. To construct pre(U)w
from pre(U), we now only have to decide the word problem in respect to B. We have seen
in Lemma 2.8, that deciding the word problem costs only polynomial time. Due to (1), we
know that the word problem only has to be decided for polynomially many words, which
completes our argument.

» 3. According to Lemma 4.24, it costs only linear time in the size ||U]| to construct a
treelike automation A;, such that A; accepts U-E* and the size of A; is linear in ||U||. We
can analogously define an automaton Ay € Treelike(X) for the representation of pre(U).

For treelike automata, the operations union and complement take only linear time and
produce a resulting automaton, which in size does not exceed the sum of the sizes of the
original automata. Consequently, we can use the operations on treelike automata to define
an automaton A := A; U As. Obviously, A accepts the language pre(U) U U-X*. The size
of A is quadratic in ||U]|.

Next we construct a nondeterministic finite automaton C as the product automaton of
A and B. Due to the definition of the product automaton, it holds that C accepts the
intersection of pre(U) U U-X* and W, which is equal to neg(U)w. Furthermore, the size
of C is polynomial in the size of A and B. Finally, the @-problem for C can be decided in
polynomial time, as shown in Lemma 2.8.

» 4. The argument for pre(U)w is identical to (3). We merely have to except the au-
tomaton A, from the scheme proposed in the above case. O

If we can represent the language W by a nondeterministic finite automaton, then pre(U)w
is only of polynomial size. Moreover, the validity of the prerequisites in Lemma 5.7 can be
verified in polynomial time. With these preliminaries, we can specify a modified matching
algorithm in the next section.
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5.4 Automata-theoretic solution

We have seen in the previous section that it takes only polynomial time to transform a
matching problem with acyclic side conditions into an equivalent one without side condi-
tions, where the occurring role languages are represented by finite automata. In Chapter
4, algorithms have been proposed to solve ordinary matching problems. These algorithms
are now extended to admitting finite automata for the representation of role languages in
the input matching problem. At first we discuss an approach for 7L and then very briefly
address the case of FL_. We will not address a strategy for FLq explicitly here because
for this case, a strategy analogous to that for F£, can be specified without difficulty.

5.4.1 Result for FL

In analogy to Lemma 4.26, we again examine testing solvability for £, matching prob-
lems. Now the role languages of the form V; and W; occurring in the input matching
problem are assumed to be represented by nondeterministic finite automata. We will find
that the general scheme of the solvability test of Lemma 4.26 can still be applied.

Lemma 5.9 Testing solvability in FL;
Let C'=° D be an FL£-matching problem in (U, V,W)-labelled FLo-normal form. For
every H € {L}UC and for every j € {1,...,¢}, let Vg, W; € NFA(X) be nondeterministic
finite automata such that every automaton Vg accepts the language Vg and every W;
accepts W;. Then

1. Equation (1) as introduced in Definition 4.1 can be verified in polynomial time in |C|

and the size of all automata Vg and W;.
2. The same holds for Equation (A) for every A € C.

Proof.

P> 1. Let us first recall the strategy used previously to decide solvability for equation (L).
In Lemma 4.26, deciding the following conditions proves sufficient: For every j € {1,...,¢},
define L} := W; - (), e, w™'+(UL-X*). Then equation (1) is solvable iff

eV CU, -
e Forallu e U : u € V| -¥* or there exists a j with u € L;.

Suppose verifying the above conditions with the former strategy of Lemma 4.26, which
problems would occur? The scheme for the first condition still holds, only we already have
an NFA accepting V| and do not need to construct it. On the contrary, we even positively
abandon constructing it anew from V|, because the language V, might be exponentially
large in |V;|. Thus, we test V, N U -X* =" ), using the automaton V, already given for
V..

For the second condition, testing v € V| -X* again remains feasible. The automaton V|
can be modified in linar time to accept V| -X*, we just have to add cycles to every accepting
state. This modification does not enlarge the automaton significantly, so that the word
problem is still decidable in polynomial time.

The test for u € L;-, however, must be modified to remain efficient in our new setting. In
the former case, we could afford to construct a treelike automaton for the representation of
w™-(UL-E*) for every w € W;. Now the language W; might be exponentially large, thus
ruling out the possibility to consider every word in W; separately. Lemma 5.7 provides
us with a means to avoid this. If neg(Uy)w;, is not empty, then L’ is empty. Moreover,
if neg(UL)w; is empty, then we may restrict the intersection in the definition of L} to
all words in pre(UL)w, instead of ;. We have seen in Lemma 5.8 that emptyness of
neg(UL)w; is decidable in polynomial time. Furthermore, pre(UL)w; is of polynomial
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size in ||U || and can be computed in polynomial time in ||U|| and |Wj]|, so that after
restricting the intersection to all words in neg(UL)w,, the former strategy for testing
u € L;- becomes applicable again: for every u € U, it takes only polynomial time to test
if u is an element of V| -X* or an element of W;-w™"-(Uy-X*) for some j € {1,...,¢} and
w € pre(UL)w,.

» 2. The scheme for equation (A) is similar to the previous one. Because of Lemma 4.26,
(A) can be decided by the following conditions. Define L; := W;-(, ¢y, wt(U,) and

again L} := W;:(),cy, w™"+(U1-E*). Then (A) has a solution if and only if:

e Vy CUAUU,-X*
e Forall u € Ua: uw € V4 UU,_-X* or there exists a j with u € L;j or u € L;..

The strategy proposed for testing the first condition again requires modification only in so
far as constructing an automaton for the representation of V4 is not necessary, since Vj4 is
already given. For the second condition, we can employ the same arguments as proposed
in (1). The only issue remaining is the test for v € L;. According to Lemma 5.7, the
intersection over all w € W in the definition of L; can be restricted to w € pre(Ua)w;,
if pre(Ua)w;, is empty. If pre(Ua)w, is not empty, then L; is empty itself. We know
from Lemma 5.8, that deciding emptyness for pre(Ua)w, requires only polynomial time.
Furthermore, the language pre(Ua)w, is of polynomial size in ||[U4|| and can be computed
in polynomial time in ||U4|| and |Wj;|. Thus, with these modifications we can decide u € L;
in the way formerly described in lemma 4.26. O

By the above lemma solvability can be tested for matching problems, whose right-hand
side role languages are represented by nondeterministic finite automata. The question of
how to compute the actual solutions under these circumstances has not yet been attended
to. We can convince ourselves in Definition 4.26 that the only difficulty imposed by the
automata representation is the intersection of left quotients over all elements of the—
possibly large—role languages W;. We have seen in the previous lemma how especially
this detail can be handled. The scheme employed there similarly can be used to compute
the actual solution languages in polynomial time.

5.4.2 Extension to FL.

In Lemma 4.27, we have seen that only little additional effort is necessary to extend the
solution strategy for £, to matching problems in FL£_. We will see that the same holds
for the modified matching algorithm proposed in the previous section. When comparing
the equations (L') and (A’) in Lemmata 4.26 and 4.27 we find that exactly the same prob-
lems arise due to right-hand side role languages represented by automata. It is therefore
sufficient to employ again the strategy proposed previously for FL£ . It should be noted
that the constructs Int(A4,—A) occurring in equation (L) do not introduce new problems
in this context. Our results on simplifying the intersection of left quotients are sufficient
to re-use the strategy originally proposed to compute them.

For ALN, the most interesting part of the matching algorithm comprises the computation
of the excluding words. In analogy to the situation for F £, it is fairly simple to see that
the rest of the algorithm proposed in Lemma 4.28 can be extended by the same strategy
as seen above. To modify the computation of excluding words accordingly, the respective
algorithm, which is provided in [Kiis98], would have to be considered in detail. We omit this
step, because the overall approach proposed here is weaker than the one to be introduced
in Chapter 6.
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The generalized substitution introduced in Definition 5.1 is bound to acyclic side condi-
tions. It is not yet clear whether a similar approach can be devised for the acyclic case.
For cyclic side conditions, however, we will see in the next chapter that a more intuitive
solution strategy exists.






CHAPTER 6

FI1XED POINTS AND
SIDE CONDITIONS

Judging by its objective, the present chapter might be seen as belonging to the previous
one. We present yet another approach to solve matching problems modulo equivalence with
non-strict side conditions in polynomial time. This approach, however, aims at providing a
satisfactory scheme for both ALAN and its three sublanguages. Contrary to the strategies
discussed previously, it is furthermore intended to cope with cyclic side conditions as well
as with acyclic ones.

The idea here is to reduce matching problems with side conditions to such without side
conditions. We have already seen that this idea does not bear fruit when pursued in a
straight-forward fashion. In Chapter 5, it is shown that the approach of merely syntacti-
cally including side conditions into the original matching equation may produce exponen-
tially large matching problems—even when employing intuitive strategies to represent the
result in a compact way.

Here, we handle the reduction differently. The transformation of the original matching
problem with side conditions into an equivalent one without will not be performed in
a single step. On the contrary, we will propose an algorithm to compute a solution by
iteratively improving an intermediate result. Every step of this algorithm comprises solving
a certain matching problem without side conditions. This approach directly relies on the
ability to solve matching problems without side conditions, as addressed in Chapter 4.

In order to prove termination we must make sure that equivalent concept descriptions
cannot, become arbitrarily large. The FLp-normal form does not meet this requirement
for concept descriptions in F£,, FL-, and ACN. In the Section 2, we therefore specify
“reduced normal forms” for these logics. In order to do so, we first need to examine
the properties of prefix-free languages in Section 1. The actual algorithm is introduced
in Section 3. It will be defined uniformly for all four logics. Thanks to this, the proof
of correctness and completeness also can be given simultaneously for all four logics in
Section 4. Finally, termination of the algorithm is proved in the last section of this chapter.
In order to show termination the properties of reduced normal forms are necessary as
prerequisites.

Finally, we will find that the algorithm in fact provides us with an efficient method to
solve matching problems with non-strict acyclic or cyclic side conditions in ALN as well
as in its sublanguages. Due to that result, the present chapter may be regarded as the
heart of our work.
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6.1 Prefix free languages

We define prefix free languages as a specialization of formal languages by introducing a
unary function to make a given formal language prefix free.

Definition 6.1 Prefix free languages

pfr P(E7) = P(E7)
L L\ (L-s)

A language U C ¥* is called prefiz free if and only if U = pf (U). O

Intuitively, pf(L) for every word w € L removes all nontrivial continuations of w. The
result is that for every word w € pf(L), all nontrivial prefixes of w are missing in pf(L).
To examine the properties of prefix free sets in greater detail, we must first introduce an
appropriate order over finite languages. The definition of multiset orders is taken from
[BN98b], where their properties are discussed in depth. However, we employ multiset
orders over formal languages and do not need to introduce multisets, which generalize the
notion of sets by admitting multiple occurrences of elements.

Definition 6.2 Multiset order for finite languages
Define (>) as a multiset order with (>,,) on ¥£*. Thus, for finite languages U,V C ¥* it
holds that V' > U if and only if there exist finite languages X,Y C ¥* such that:

1L.OAXCV
2. U=(V\X)uY

3. VyeYIreX:z <,y (]

According to the definition, finite languages U and V' are in prefix order, i.e. U = V, if and
only if U can be transformed into V' by performing a modification of the following type
one or more times: remove a word u from U and replace it by a finite number of words
from {u}-XT. Thus, u is replaced by a finite number of (nontrivial) continuations of wu.
Note that in this modification, © may be removed without substituting any words. This
is allowed because in the definition above, the language ¥ may be empty. The following
example illustrates this.

Example 6.3 Multiset order

Let ¥ := {a,b,c} Then {a,ab,c} = {ab,ac,caa,cab,ccc}. The definition of the multiset
order is satisfied by taking X := {a,c} and Y := {ac, caa, cab, ccc}. On the other hand,
we also obtain {a,ab,c} > {ca} by taking X := {a,ab,c} and Y := {ca}. Observe that
the relation U = V does not imply an obvious relation for the cardinality of the languages
or for the length of the longest word contained in them. O

The multiset order can be used to simplify comparing the ¥*-closure of two given lan-
guages. This is addressed by the following lemma.
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Lemma 6.4 Y*-closures and prefix free languages
Let U,V C X¥* be finite languages over ¥. Then

1. U-X* = pf(U)-X*

2. U-X* C V-X* iff pf(U) < pf(V)

3. U-S* = V-5* iff pf(U) = pf(V).
Proof.
For the sake of brevity, denote pf(U) by U’ throughout this lemma. Analogously, denote
pf(V) by V'
» 1. Since U’ is a subset of U and since the sets on both sides of the equation are ¥*-
closed, it is sufficient to show that U \ U’ is a subset of U’-X*. Thus, consider w € U\ U".
Then, by definition of prefix free sets, w € U-X*. This implies, that in U there exists
a word v € U of minimal length and a word v € T so that w = wv. Consequently,
u € U-X7T, because in this case the length of u would not be minimal. So we have u € U’,
implying that w = uv € U'-X*.

> 2. (“<”) I U' < V' then, by Definition 6.1, there exist finite sets X,Y C ¥* with:

1.O0AXCV!
2. U =(V'\X)UuY
3. VYyeYdr e Xz < y.

We first prove the non-strict version of the claim, i.e. U-X* C V-¥X*, and then show that
the inclusion is strict.

> Nonstrict inclusion: As U’ equals (V' \ X)UY, it is sufficient to show that Y C V'-X*.
Thus, consider an arbitrary y € Y. Because of property 3 of multiset orders it holds
that there is an z € X C V' so that = <,, y. Being less in regard to the prefix order
implies, that we obtain y = xw for an appropriate w € ¥*. Since x € V', this yields
y = zw € V'-¥* completing the proof.

D> Strictness of the inclusion: Consider an arbitrary z € X C V'. According to property
1 of multiset orders, such an z in fact exists. z is no element of (V' \ X), because V' is
prefix free and thus contains no prefix of . Now, if x € Y then property 3 demands that
there is another word 2’ € X so that 2’ <,, X. This would be a contradiction to V' being
prefix free, and therefore: z ¢ U'-X*.

> 2. (“=7) Assume U'-X* C V'-X*. Taking advantage of (1), this is equivalent to the
original proposition. Define finite languages X,Y in the following way: X := V' \ U’ and
Y :=U"\ V'. We will show that these languages match conditions 1, 2, and 3 stated in
the definition of multiset orders.

D> Property 1: Trivial. X is obviously defined as a subset of V'. If X is empty, then
U' D V', which would rule out U'-X* C V'-X*, conflicting with the assumption above.

D> Property 2: Applying the definitions of X and y, we can expand (V'\ X)UY to the
expression (V' \ (V' \U")) U U'\ V', which simplifies to (U' N V') U U'\ V'. This is
obviously equivalent to U’.

> Property 3: Consider an arbitrary y € Y = U’ \ V'. From property 2 of the multiset
order we know that Y C U’ € V'-X*. Thus, there are words v € V' and w € ¥* such that
y = vw. This implies w # &, because otherwise y, being equal to v, would be an element
of V'. If w is not empty, then v and y are in prefix relation: v <,, y. Consequently, v
is no element of U’, because then U’ would not be prefix free. This implies v € V' \ U’,
which by definition is equivalent to v € X.
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> 3. (“<”) This is an immediate consequence of (1). If U’ equals V', then obviously
U'-¥* = V'-£*, which implies U-X* = V-¥*, as shown in (1). (“=") Reversely assume
that U'-X* = V'-£*. According to (1), this is equivalent to the original proposition. It is
sufficient to prove the inclusion U’ C V', since the reverse inclusion follows by symmetry.

Consider an arbitrary u € U'. According to the above assumption we have U’ C V'-X*,
which implies the existence of words v € V' and w € ¥* with v = vw. It reversely holds
that V! C U'-¥*, again implying words v’ € U’ and w' € ¥* so that v = u/w’. Therefore,
we yield u = vw = v'w'w. This implies w = w' = ¢, because otherwise U’ would not be
prefix free, containing a prefix of u. With w equal to e, we finally obtain u € V', which
had to be shown. O

Observe, that the X*-closure of a language L is uniquely defined by the prefix free version of
L. We can also use prefix free languages to guarantee a suffix condition when representing
the left quotient of the X*-closure of a language:

Lemma 6.5 Left quotients and prefix free languages
Let U C ¥* be a finite language and let w € ¥*. Then there exists a finite language
L C ¥* such that

1. L. =w Y (U-£*) and

2. L is prefix free and

3. L contains only suffixes of words in U.

Proof.

According to [BKBM99], there exists a finite language L' with L'-¥* = w=!.(U-X*). Due
to Lemma, 6.4, we know that this also holds for L := pf (L'). We now show that L contains
only suffixes of U, which is sufficient for our claim. Assume a word v € L, which is no suffix
of any word in U. Observe, that this implies v # € because otherwise v would be a trivial
suffix of any word in U. By definition of L, we know that v is an element of w—!-(U-$*).
Thus, there exists a word v € U and a word z € T such that wv = uzr € U-Z*. We
exclude x = ¢, because then v would be a suffix of u. Denote by s the last character of v,
i.e. take s € ¥ and v’ € ¥* such that v = v's. Analogously, let z = z's for an appropriate
' € ¥*. Then we can conclude that v’ € L, because wv' = uz’ is an element of U-X*.
This implies a contradiction to the language L being prefix free. a

6.2 Reduced normal forms

In FL,, FL-, and ALN, equivalent concept descriptions in FLg-normal form can differ
in size to an arbitrary extent. For instance, ¥{e}.L MVU4.A is equivalent to V{e}.L for
every role language U,4. For our algorithm to work, we require normal forms which impose
stronger limitations on the size of concept descriptions equivalent to or subsuming each
other. For this purpose, reduced normal forms for F£,, FL-, and ALN are introduced.
These are not necessary for F Ly, since here the FLy-normal is already sufficient.

6.2.1 Reduced normal forms for FL

Let us now define the first reduced normal form. As done for prefix free sets, we define
it by specifying an operation to transform a given concept description into its reduced
normal form.
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Definition 6.6 Reduced normal form
Let C' be an FL, -concept description in U-labelled F Ly-normal form. Its corresponding
Ut-labelled reduced normal form C* is defined as follows:

Ct:=vUL. LN i YUY A

where for A € C: .
UL = pf(UL)

Uk :=Us \UL-B*

A concept description C' is called reduced, if C' is in FLy-normal form and if it coincides
with C* in every occurring role language. The notion of reduction can be extended to
substitutions. For a substitution o, the reduced substitution ot is established by defining
o4 (X) := o(X)* for every variable X in the domain of o. ]

The above definition implies as immediate consequences the following simple properties,
which are stated without proof.

Corollary 6.7 Properties
Let C be an FL -concept descriptions in U-labelled FLy-normal form. Then
1. Uj is prefix free and Uj N Ui-E* is empty for every A € C
2. The reduced normal form C* can be computed in polynomial time in the size of C.

It will be particularly useful that there is no overlap between the role language Ui and
the X*-closure of Uj‘. The role languages for C* can be constructed in polynomial time
using treelike automata, for which the complement and the ¥*-closure can be computed
in linear time. It also takes only polynomial time to make a given finite role language
prefix free. The ability to compute reduced normal forms in polynomial time will not be
required in the remainder of this chapter. Nevertheless, it might be an important property
in the context of presenting the output of matching algorithms in a compact way.

Recall that pf in Chapter 2 was defined to make the input language prefix free. The
purpose of reduced normal forms is to simplify the characterization of subsumption and
equivalence. One can see that in the above definition exactly those languages are made
prefix free, whose Y. *-closure appears in the characterization of the subsumption proposed
in Lemma 3.8. Furthermore, by subtracting the ¥*-closure from the other role languages,
we make sure that all unions in the characterising conditions are disjoint. In the next
lemma we will see that this is sufficient to reduce equivalence to equality.

Lemma 6.8 Properties
Let B,C,D be FL, -concept descriptions. Let B be in W-labelled F Ly-normal form, let
C be in U-labelled reduced normal form, and D in V-labelled reduced normal form. Then:
1. B=DB*
2.C=Diff Uy =Vy forall He {L}UC
3. C C D iff one of the following conditions holds:
(a) UL >V, and V4 CULUU, -X* forall Ae A
(b) U, =V, and Us D V4 for all A € C and there exists an A € C with Uy D Vjy.
Proof.
» 1. We have seen in Lemma 3.8 that it is sufficient to prove the following two conditions:

o« W, -T*=W!.x*
o W4UW,_-B* =W UW?}-Z* for all A €C.
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The first condition was shown as a property of prefix free languages in Lemma 6.4. For
the second condition, we can therefore conclude for every A that Wj‘ U Wi-E* is equal
to Wj U W, -X*. We may add (W4 N W, -£*), which is a subset of W -3X*, thus yielding
Wj UWaNW,-2*)UW,-2* According to the definition of reduced normal forms, W4
equals WU (W4 NW,-E*). Therefore, W} U(W4NW_-T*)UW, -5* equals W4 UW  -T*.

> 2. (“«<”)is trivial. (“=”) Assume C' = D. Due to Lemma 3.8, this again is equivalent
to U :X* =V - X*and U, UU_'X* =V, UV, -3* for all A € C. Since C and D are
assumed to be reduced, this implies U, = V| , according to the properties of prefix free sets.
Furthermore, due to the definition of reduced normal forms, Uy and U, -3* are disjoint
for every A. The same applies to V4 and V| -X*. Therefore, U4 UU - X* =V, UV, -X*
implies U4 = V4 for all A, which was to be shown.

> 3. (“=”) Assume C C D. Then we again have U, -X* D V| -X*. We distinguish two
cases depending on whether the inclusion is strict or not.

D> Strict inclusion: If U -X* D V| -X*, we can infer U, > V), as shown in Lemma 6.4.
We know from the characterization of the subsumption that U4 U U, -X* D V4 UV, -X*
for all A € C. We may remove V, -X* from the right-hand side of the inclusion, yielding
the assertion for case (a), V4 C U4 U U -Z*.

> Equality: If U, -X* = V| -¥*, we have U, = V|, because C and D are reduced and
therefore U, and V| are prefix free. The subsumption C' — D also implies that U4 U
U,-¥* DV4UV,-X* for every A. The unions on both sides of the inclusion are disjoint,
as stated in Corollary 6.7. Taking advantage of the equality of U -¥* and V| -X*, we
obtain Uy D Vy for every A € C. There has to be one A with a strict inclusion U4 D Vjy.
Otherwise, C' and D would agree on all role languages, implying equivalence as shown in
(2). Thus, the assertion for case (b) holds.

» 3. (“«<”) We have to show that both conditions for the subsumption as stated in
Lemma 3.8 are met. Assuming case (b), this can be seen immediately. Consider case
(a). If U, > V| holds, the first condition for the subsumption is met as a consequence of
Lemma 6.4, obtaining U, -3* D V| -3*. We have assumed that V4 C U, UU-¥*. Adding
V1 -X* on both sides yields VA4 UV, - X* CU,UU - X*UV, -X*, As V| -¥* is a subset of
U, -X*, this is equivalent to V4 UV, -X* C Uy UU,-X*. Thus, the second condition of
the subsumption is met for every A € C. We yield strict subsumption C' C D, because
otherwise U| = V. (|

In part (3) of the lemma a complete characterization of strict subsumption is provided for
the sake of completeness. For our purposes we do not require the equivalence in full detail.
It would have been suficient to prove that if C' C D, then either we have U, > V| or
condition (b) holds. It might be interesting that condition (a) can be put a little stricter,
stating: Uy = V) and Vy C U4 U (UL-X*\ V-E*) for all A € A. For the remainder of
this chapter, however, this will not be required.

6.2.2 Reduced normal forms for FL_

For FL_, we follow the same pattern as seen in the previous section. Firstly, the reduction
operation is expanded in such a way that it works with negated atomic concepts as well.
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Definition 6.9 Reduced normal form
Let C be an FL_-concept description in U-labelled FLg-normal form. Like in Defini-
tion 6.6, define its corresponding reduced normal form C* by modifying the role languages:

Cct:=vUt.1n s VUL AN s YU . —A
€ €

where for A € C:

Ut :=pf(ULU | UanNU-4)
AeC

Uk :==Us\ULE*

Again, if C is reduced, then its role languages are identical to those of C*. We extend the
notion of reduction to substitutions as in Definition 6.6. a

Observe that in this definition the role language U referring to the bottom concept may
increase in size when normalized. Contrary to FLg, it is possible to have inconsistencies
without involving the bottom concept. The reduced normal form for F£_, aims at making
all implicit inconsistencies explicit, i.e. whenever an expression like Vw.(AM—A4) occurs, w
is removed from the role languages referring to A and = A and is included in the language
for the bottom concept. The definition of excluding words again implies some inportant
properties, which are stated below without proof.

Corollary 6.10 Properties
Let C be an FL_-concept descriptions in U-labelled F Ly-normal form. Then:
1. Uj_ is prefix free and Ut = (Uj_)A.
2. Uy N (Ui)A-E* is empty for every H € CU {—A|A € C}.
3. Uj NU? , is empty for every A € C.
4. The reduced normal form C* can be computed in polynomial time in the size of C.

Since (Ui)A is defined as Uj_ U UAGC(Uj NU* ,), the above assertions are readily obtained
from the definition of reduced normal forms. Computing the reduced normal form in
polynomial time can again be accomplished by employing treelike automata. By virtue of
these properties, we again achieve the desired simplification for the characterization of the
subsumption. In the next lemma it is shown that the results obtained for F£_, resemble
those for FL£ | seen in the last section.

Lemma 6.11 Properties
Let B,C, D be FL_-concept descriptions. Let B be in W-labelled FLy-normal form, let
C be in U-labelled reduced normal form, and D in V-labelled reduced normal form. Let
H:=CU{-AJA € C}. Then
1. B=DB*
2.C=Diff Uy =Vy forall He {L}UH
3. C C D iff one of the following conditions holds:
(a) U, =Viand Vg CUgUU, -X* forall HE H
(b) U, =V, and Uy D Vg for all H € H and there exists an H € H with Ugq D V4.
Proof.
» 1. Due to Lemma 3.9, it is sufficient to prove that the following conditions hold:

o« W.-TF= Wiy -z
o« Wy UW,-5* =W}, U (W)Y -S* for all H € .
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D> First condition: By definition, /WL-E* equals (W1 U Uyce Wa N Woy4)-X*, which is
equivalent to the prefix free version pf(W,. U cc Wa NW-4)-Z*, as we have seen in
Lemma 6.4. Applying the definition of reduced normal forms, this is equivalent to Wi-E*.
The intersection of Wj and WfA is empty for every A € C, as stated in Corrolary 6.10.
We may therefore add (|J,cc Wj N W*,) to the expression, so that we end up with
(W}UU e WiNW?,)-E*. This equals (W})™-5*, as can be verified from the definition.

B> Second condition: Taking advantage of (1), we can see that Wﬁl U (Wi)A-E* is equal
to Wﬁ,- uw 1 -%* for every H € ‘H. We may add a subset of the second term, yielding the
expression Wﬁ,- U(Wgn WL-E*) U WL-E*. The language Wﬁ,- is defined as Wiy \ Wj_-E*.
As stated in Corollary 6.10, this equals Wy \ (Wi)A-E*, which in (1) is shown equal to
Wi\ WL-E*. The expression W}{ U(Wgn /WL-E*) U WLE* can therefore be simplified
to Wy U W 1 -¥*, yielding the desired result.

> 2. (“«<”) Trivial. (“=”) According to Corollary 6.10, we have U, = U, and V| = V.
When replacing these role languages, the proposition and the characterization of the sub-
sumption are analogous to those for F£ . Consequently, the proof is identical to (2) in
the previous Lemma 6.8.

» 3. Again, taking into account that ﬁl =U, and VL =V, we can prove the proposition
in the same way as seen in (3) in the previous lemma. ]

One can see that the additional complexity of concept descriptions in FL£— is hidden
completely by the reduced normal form. It should be noted that, same as for FL,, we
will not require the full characterization of the strict subsumption for our reasoning. It
is therefore sufficient to keep in mind that C' = D implies that either U; = V| holds or
condition (b) applies. However, the result enables us to discover that the size of the role
languages V4 and V-4 occurring in D is limited.

6.2.3 Reduced normal forms for ALN

When introducing reduced normal forms for ALN -concept descriptions, we have to face
two additional problems. Firstly, the set of all inconsistencies explicitly occurring or
implicitly included in a concept description cannot be obtained in such a straightforward
way as in the previous two logics. Secondly, we also have to cope with number restrictions.
In the following definition, we utilize the notion of excluding words, which have been
introduced in the context of ALN -concept descriptions in Definition 3.3.

Definition 6.12 Reduced normal form

Let C be an ALN -concept description in U-labelled F Lg-normal form. Define the reduced
normal form of C' by modifying its role languages. It has been stated in [BKBM99] that
there exists a finite language Ug, with Ec = Ug,-X*. Using this language, define C* as:

Ct=vui.Ln [T vugan [ vol, -4
€ €

n I vU*

e 1O nmy (2 )T REVAL

(<nR)EN< (<nm)- (S NR)
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where for A € C, (< nR) € N<, and (> nR) € N>:

Ut = pf(Ug.)
Uii = UA \ EC
Uy = U4\ Ec

1 —
U(an) = U Umr) \ Ec

m>n

U}SnR) = | J U<mr) \ Ec-R™*

m<n
Analogous to the previous cases, the notion of reduction is extended to substitutions. O

In spite of the formally more complex definition, the objective of the above normal form
is equal to those seen before. Inconsistencies are made explicit by augmenting the role
language of the bottom concept and the other role languages are minimized as much as
possible. Observe that the reduced role language Uj_ in fact is well-defined, because for
languages of the form L-X* the set pf(L) is unique. The definition of reduced normal
forms again implies some basic properties, which are presented in the corollary below.

Corollary 6.13 Properties
Let C be an ALN -concept descriptions in U-labelled FLy-normal form. Then:
1. Uj is prefix free
2. U}, N Eq.y is empty for every H :=CU{-A|A € C}UN5.
Furthermore, U(lSnR) N Eq.-R™" is empty for every (< nR) € N<
3. Umsn U(isz) = U(ian) for all (> nR) € N> and analogously for all (< nR) € N<

4. The reduced normal form C* can be computed in polynomial time in the size of C.

As stated in [BKBM99], a role language Ug, with Ec = Ug,-X* can be computed in
polynomial time. With the aid of treelike automata, it therefore takes only polynomial
time to compute the reduced normal form of C'. In order to examine the properties of our
normal form closer, we have to procure a better characterization for the set of excluding
words from [Kiis98]. The following definition is necessary as a preparation.

Definition 6.14 Required words

Let C' be an ALN-concept description in U-labelled FLg-normal form. Let v and v’ be
words over X. Let [v] =: m and |vv'| =:n and v' =: Ry41 ... Ryp. Then vv' is required by
C starting from v iff for all i € {m,...,n — 1} there exist positive integers k; 1 > 1 such

that ’URmJ,_l ce Rl € U(Zki+1Ri+1)- O

Intuitively, the continuation vv' is required by a concept description C starting from v, iff
there is a sequence of (>)-number restrictions for every prefix of vv’ between v and vv'
demanding the presence of the respective following prefix. We give a small example to
clarify this.

Example 6.15 Required words
Assume ¥ := {R, S} and let C := ANV{RS,RSR}.(> 1R) NV{RSR}.(> 2S). Then the
words RSRR and RSRS are required by C starting from RS. O

With the notion of required words we can characterize excluding words for ALN-concept
descriptions by the following lemma.

63



64

CHAPTER 6. FIXED POINTS AND SIDE CONDITIONS

Lemma 6.16 Characterization of excluding words
Let C be an ALN -concept description in U-labelled FLg-normal form. Let w be a word
over .. Then w € E¢ iff
1. there exists a prefix v € ¥* of w and a word v' € X* such that vv' is required by C
starting from v and
(a) v’ €Uy, or
(b) there is an atomic concept A € C with vv' € Ug NU- 4, or
(c) there are number resttrictions (> IR) € N> and (< rR) € N> such that I > r
and v € U(ZlR) N U(STR); or
2. there exists a prefix vR of w (with v € ¥*, R € ¥) such that v € U<qr).

Now we are set to examine reduced normal forms in detail. Before addressing the stan-
dard questions of correctness, equivalence, and subsumption, however, we first introduce
one auxiliary result regarding the notion of excluding words, which will be required in
Lemma 6.19. In the next lemma, it is shown that transforming a concept description into
reduced normal forms does not change its properties in respect to required words.

Lemma 6.17 Required words and reduced normal forms

Let C be an ALN-concept description in U-labelled FLy-normal form and let v,v’ be
words over ¥. Then, if vv' is required by CV starting from v then vv' is required by C
starting from v.

Proof.

To simplify notation, denote |v| =: s, |vv'| =: ¢, and vv' =: RiRa ... R;. If vv' is required
by C* starting from v, then by definition it holds for all i € {s,...,#— 1} that there exists
a positive integer k > 1, so that Ry ... R; € U* . By definition of reduced normal

>kR;i1
forms, this implies that Ry ... R; € U, 5}, U(an(;l) \+E)o. No n under the union is smaller
than k. Consequently, there exists an integer k' > k so that Ry ...R; is an element of
Utk Riy) \ Ec. Obviously, we can include all the words subtracted by E¢, thus obtaining
that Ry ... R; € Ui R,,,)- This is equivalent to vv’ being required by C' starting from v,
which was to be shown O

A simplified characterization for the set of excluding words is now proposed for concept
descriptions in reduced normal form. It is shown by the next lemma that only case (1a)
of the characterization given in Lemma 6.16 is relevant for the reduced normal form of
concept descriptions.

Lemma 6.18 Excluding words and reduced normal forms

Let C be an ALN -concept description in U-labelled FLg-normal form. Let w be a word
over X.. Then, w € E, iff there exists a prefix v € ¥* of w and a word v’ € ¥* with: vv'
is required by C* starting from v and vv' € U, .

Proof.

Consider a word w € Eq.. Tt is sufficient to prove that the cases (1b), (1¢), or (2) specified
in the characterization of E-. do not apply.

D> Case (1b): Then there exists a prefix v € ¥* of w, a word v’ € ¥£*, and an atomic concept
A € C, so that vv' is required by C* starting from v and vv’ € (Uj1 NU?,). Applying the
definition of reduced normal forms, this implies that vv’ is an element of U4 NU- 4, but no
element of E¢. By Definition of the semantics of ALAN -concept descriptions, this implies
C C Vuv'.L. As a consequence of Definition 3.5, this implies vv' € E¢, in contradiction
to the above finding that vv' € E¢.

B> Case (1c): Then we have an analogous word vv’ and nonnegative numbers I > r with
' € Uisip)NU(<rr)- Again by definition of reduced normal forms, we conclude that vv' is
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an element of the intersection {J;, <, U1 ryNU, <, U<, R), but it is not in E¢. Therefore,
we can find integers I’ > [ and 7' < r such that vo’ € Uspg) NUi<, ). Analogous to case
(1b), the semantics of ALN then implies C' C Voo'. 1. Due to Definition 3.5, this entails
vv' € E¢, contradicting the above statement.

> Case (2): We prove that in the reduced normal form C* the role language U(¢<0R) is
empty for every atomic role R € . As 0 is the least nonnegative integer, for every atomic

role R € X the definition of U(¢<0R) can be simplified to U<og) \ Ec-R™!, omitting the
. <

union. Therefore, if U( <o0R) is not empty, it contains an element of U<opg). Thus, assume
w € Ui<or)y for a word ‘w. According to the definition of number restrictions, this implies
that w has no successors in regard to R. Consequently, wR € Ex. Obviously, we can infer

w € Ec-R™'. In the definition of U(¢<0R), the set Ec-R™! is subtracted from the rest,

implying w & Ui(SOR). Case (2) does therefore not apply to C'*. O

The above result suggests a simpler proof of the correctness of the normal form. The
standard questions, correctness and modified characterizations for equivalence and sub-
sumption, are addressed in the next lemma.

Lemma 6.19 Properties
Let B,C,D be ALN -concept descriptions. Let B be in W-labelled F£y-normal form, let
C be in U-labelled reduced normal form, and D in V-labelled reduced normal form. Let
H:=CU{-AlA € C}UN<UN>. Then
1. B=DB*
2.C=Diff Uy =Vy forall He {L}UH
3. C C D iff one of the following conditions holds:
(a) U, =V,and Vg CUgUU,-X* forall H € /H\NS and
Vg CUgUU - Z*UU -R for all (KnR):=H € N<
(b) UL =V, and Uy D Vg for all H € H and there exists an H € H with Ugq D V.
Proof.
» 1. In Lemma 3.6, equivalence of ALN -concept decriptions was is characterized by the
following conditions. For A € C, (< mR) € N<, and (> mR) € N>:

].. EB.L = EB

2. WiUEg. =W UEg

3. W UEg =W_,UEp

4. UmZn W(JIZmR) U EB‘L = UmZn W(ZmR) U Ep

5. Umgn W(JVSmR) U EB‘L'R_l = Umgn W(SmR) U EB.R_l

B> Condition 1: Prove Eg. C Ep. Consider an arbitrary w € Eg.. Due to the simplified
characterization of exclusion for reduced normal forms, this implies that there exists a
prefix v € ¥* of w and a word v’ € ¥* such that vv' is required by B starting from v
and vv' € Wi According to Definition 6.9, this implies that vv' is in pf (Wg,) C Ep for
an appropriate finite language Wg, with Egp = Wg,-X*. Due to Lemma 6.17, we know
that vv' is required by B starting from v. Since vv' € Ep, this implies v € Eg. As Ep is
¥*-closed and as v is a prefix of w, we obtain w € Epg.

Prove Eg C Ep.. If w € Ep then there exists a prefix w’ of w and a word w"” € ¥*, so that
w = w'w" and w' is an element of pf(Wg,). Applying the definition of reduced normal
forms, we have w' € Wi This implies BY C Vw'.L, which is subsumed by Vw'w".L,
according to the semantics of 1. Due to the definition of Eg, this yields w'w" = w € Eg..

Combining the above two results, we obtain Eg, = Ep, which was to be shown.
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> Condition 2 and 3: Taking into account the result of (1), it holds that WU Eg. is
equal to Wj U Ep for every A € C. Applying the definition of Wj yields the expression
(Wa \ Eg) U Ep, which is obviously equal to W4 U Eg. The same argument holds for
negated atomic concepts —A.

> Condition 4 and 5: Again, the result of (1) and the definition of W}

(>mR
m>n W(isz p>m Wipr) \ EB) U Ep. By

applying distributivity over the union, we obtain ({J,,~,, U pom Wisp r)) \ Ep U Epg, which
can be simplified to (U,,>, W(>mr)) \ Ep U Ep. We can omit subtracting Ep before
adding it again, so that we finally have (|J Wi>mnr)) U EB.

) enable us to

expand |J ) U Epu to the expression U,,>,(U

m>n
In (1) we have seen that Eg. = Ep. This implies Eg.-R™! = Eg-R™! for every atomic
role R. Consequently, the above argument applies to condition 5 as well.

P> 2. (“«”) Trivial. (“=”) If C = D, then the characterization of the subsumption allows
us to conclude the following conditions again:
1. Ec =Ep
2. UsUEc=V4UEp
3. UsaUE =V_AUEp
Umzn Uemr U Ee = Upsn Vieme) U Ep
5 Umen Ugmry UEc- R = U, Vi<mr) U Ep-R™!

=

Taking advantage of Lemma 6.4, we can infer from condition 1 that pf(Ug.) = pf VE,),
which is equivalent to U; = V|, since both concept descriptions are assumed to be reduced.
Due to reduction, it also holds that Us = U4 \ E¢ and analogously V4 = V4 \ Ep.
Therefore, the unions in condition 2 are disjoint. Because of condition 1 we may replace
Ep by E¢ in condition 2, which yields Uy = V4. The same argument applies to condition
3. Because C' and D are reduced, the role languages U<, g) and U>nr) already contain
the union over all lesser and the union over all greater numbers respectively, as stated in
Corollary 6.13. In condition 4 and 5, we may therefore ommit the unions over m. Moreover,
the role languages in condition 4 and 5 are defined as disjoint to E¢ and Ep respectively,
so that finally the argument for conditions 2 and 3 also applies, yielding U<,r) = V(<nr)
for every number restriction (< nR) € N< and analogously Uisnr) = Vi>nr) for every
(>nR) € ./\/'2.

> 3. (“=”) If C = D, then from the characterization of subsumption we know that
Ec DO Ep. We first consider the case that this inclusion is strict, then the case of equality
of the languages.

> Ec D Ep: Then, as stated in [BKBM99], there are finite languages Ug, and Vg, such
that pf(Ug.)-X* D pf(Ve,)-X*. Due to the definition of reduced normal forms, this
is equivalent to the inclusion U, -¥* D V| -¥*. According to Lemma 6.4, we can then
infer U, > V.. Since C C D, we know from the characterization of subsumption that
UgUEc D Vg UEp for all H € CU{-A|A € C}. As mentioned above, this inclusion is
equivalent to Uz UU 1 -¥* D Vx5 UV -¥*. We may drop the term V| -3* on the right-hand
side, obtaining the desired result for all H € C U {-A|A € C}.

For (> nR) € N>, we similarly yield |J,,,~,, U<mr) UUL-E* = U,,<, Vi<mr) UVL-E*. As
mentioned before, the union over all m > n can be omitted. Dropping the term V, -X* on

the right-hand side of the inclusion afterwards analogously produces Vg C Uy U U, -3*,
which was to be shown.
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This analogy does not hold for <-number restrictions, where we need to cope with the
right quotient (-R™') in the respective equations: For every (< nR) := H € N<, we
obtain Ug UU-Y*-R~! D Vg UV, -*-R~!. We may drop the expression V| -S*-R~!
on the right-hand side of the inclusion. Furthermore, as stated in [BKBM99], U-X*-R~!
equals U-* U U-R~! for every finite language U over ¥ and R € ¥. Consequently, the
inclusion can be simplified to Ug UU | -3* UU | -R~! D Vi, which we wanted to show.

> Ec = Ep: As shown in (2), the reduced normal form of C' and D then allows us to
infer U, -¥* = V) -¥*, which yields U, = V, as both languages are prefix free. The
characterization of the subsumption furthermore allows us to conclude that Ug D Vg for
every H € H. Obviously, C and D cannot agree on all role languages, since this would
imply C' = D, in contradiction to the assumption. Consequently, there is one H € H such
that Ug D V.

> 3. (“<”) In case (b), it is not difficult to verify that the conditions for subsumption
stated in Lemma 3.6 are met. Assume case (a). From U, > V| we can infer by Lemma
6.4 that U -X* D V,-¥*. Since C' and D are reduced, this implies Ec D Ep, matching
the first condition for subsumption. As assumed, for every H € H \ N< it holds that
Vg C Uy UU_-X*. We have already seen in (3) that U, -X* equals Ex. Therefore, after
adding the language Ep on both sides of the inclusion we have Vg UEp C Ug UE-UEDp.
Since Ep is a subset of E¢, we obtain Vg U Ep C Uy U Ec. For H € CU{—A|A € C},
this equals conditions 2 and 3 for the subsumption as stated in Lemma 3.6.

According to Corollary 6.13, for all (> nR) € N> the language U>nr) is equal to the
union J,,~,, U>nr), so that the inclusion Vg U Ep C Upg U E¢ can be expanded to
Umsn Vismr) UED C Umsn Usmr) U Ec, which meets condition 4 for the subsumption.

For (< nR) € N<, we have assumed Vi<,r) C U<,r) UUL-Z*UU-R™'. As mentioned
above for the reverse direction of (3), we can replace U, -X*UU, -R~! by U, -¥*-R~!, which
is equal to Ec-R~!. Following a similar line as for the >-number restrictions, Ep-R~! is
added on both sides of the inclusion, yielding V(<) UEp-R™' C Ui<nr) UEc«-R 'UED-
R™'. As E( is a superset of Ep and as also both languages are of the form L-X* for some
finite language L, it is easy to see that Ec-R™! is a superset of Ec-R™! for every R € .
The inclusion therefore simplifies to Vi<,p) U Ep-R™' C Ui<npry U Ec-R™!. Exploiting
Corollary 6.13, the languages U<, r) and V(<,p) can be replaced by the respective unions
over all m < n, thus matching condition 5 of the subsumption conditions of Lemma 3.6.
Consequently, all conditions for subsumption are met. We obtain strict subsumption,
because (2) would otherwise imply U, = V|, contradicting U, > V. O

The characterization of strict subsumption in (3) can be expressed in a slightly stricter
form, stating for case (a) that U, > V| and Vg C UgU(U-X*\V-X*) forall H € H\N<
and Vg CUgx U (UJ_ \ VJ_)'Ril U (UJ_'E* \ (VJ_‘E* U VJ_-Ril)) for all (S TLR) =H e NS'
Nevertheless, this will not be required here.

Observe, however, that the characterizations of equivalence and subsumption derived for
FL, and FL- are of similar structure. The only difference regards <-number restrictions
in the characterization of the subsumption. Therefore, one advantage of the normal forms
proposed in this section is the ability to exploit structural similarities between the logics,
allowing a uniform handling.

6.3 The algorithm

We are now prepared to introduce the actual algorithm for solving matching problems
modulo equivalence with non-strict side conditions. Its idea is to simulate solving matching
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problems with side conditions in a single step by solving a series of matching problems
without them in several steps. Hence, this approach is based on the ability to solve
matching problems without side conditions in a logic £. An appropriate algorithm for this
task has been proposed under the name match, in Lemma 4.29. The new algorithm is
specified in an imperative fashion by the following definition.

Definition 6.20 Algorithm

Let £ be a logic in {FLo, FL,FL, ALN}. Let P:= (C =" D,{X; C° E;|1 <j <{})
be a (U, V, W)-labelled £-matching problem modulo equivalence with non-strict side con-
ditions. The algorithm A, (P) is defined as follows:

1. t:=0, 0o := match {C =’ D}
2. o441 1= match ({C =" D} U {oy(X;) C° E;|1 < j < n})

3. If 0441 is undefined: return “no solution”.
If 04 = 0441: return oy.
Otherwise: ¢ :=t + 1, continue at (2). ]

At first glance, we find that upon input P the algorithm starts by merely ignoring the side
conditions included in the matching problem and solves it without them. Thus, it yields a
first result oo, which might be too specific for P. By solving certain matching problems,
the algorithm then improves the intermediate solution g iteratively until a fixed point is
reached in respect to equivalence. Taking a closer look, we will see that the fixed point
iteration exhibits four underlying properties:

e No possible solution to the input matching problem P is more specific than the initial
substitution oyg.

e The same holds for every subsequent substitution oy.
e Every substitution 041 is more general than its respective predecessor o;.

e If two consecutive substitutions o; and ;41 are equivalent, then they are valid
solutions of P.

Before dealing with the question in terms of a formal proof, let us discuss intuitively
why the above properties hold. The substitution oq lies below every possible solution to
the input matching problem, since match, by definition always returns the least solution.
Thus, for every solution o, of P and for every j € {1,..., ¢} it holds that oo (X;) C or.(X}),
which in turn implies that 0o (X;) C or,(E;). Consequently, every substitution ¢; produced
in step 2 of the iteration also lies below every solution to P, i.e. oy C op. Since additional
constraints are included, it is easy to see that o; is never more specific than o, i.e.
o9 C o1. Consequently, we find by induction that o, C o441 for every ¢, meaning that
the substitutions produced by the iteration become more general in every step. In case of
equivalence, i.e. o, = 0441, it holds that C' = 6,(D) as well as o,(X;) C o,(E;) for every
j, implying that o; solves P.

In the next section we will find that proving the algorithm to be correct and complete is
particularly simple when following the above lines. Nevertheless, it is not yet clear whether
the iteration always reaches a solution in a finite number of steps provided there exists
one. Analogously, we have to ascertain that the algorithm returns “no solution”, whenever
there exists no solution to the input matching problem. This issue, i.e. the question of
termination, is addressed in Section 6.5.
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6.4 Correctness and completeness

Here two properties have to be shown. Firstly, if our algorithm terminates with a certain
solution, then this solution solves the input matching problem. Secondly, if it terminates
without finding a solution, then in fact no solution exists. To show this, we will begin by
formally proving the properties discussed at the end of the previous section.

Lemma 6.21 Correctness and completeness
Let £ be a logic in {FLo, FL,FL, ALN}. Let P:=(C =" D,{X; C? E;|]1 <j < (})
be a (U, V, W)-labelled £-matching problem modulo equivalence with non-strict side con-
ditions. Then:
1. For every solution o, to the input matching problem P and for every substitution oy
occuring during the execution of the algorithm A, (P), it holds that o; C o7,.
2. For all substitutions o, and o441 occuring during the execution of the algorithm
AL(P) it holds that: gt E Ot41-
3. If Az (P) returns a substitution o, then o solves the input matching problem P.
4. If Az (P) returns “no solution”, then the input matching problem P has no solution.

Proof.
» 1. Proof by induction over the number of iterations ¢ the algorithm takes.

> t = 0: We know from the properties of match, that then oy is the least solution for the
matching problem C' =7 D . Every solution o7, to P especially solves C' =’ D with respect
to (E). Therefore, we always obtain o¢ C oy,.

D> ¢t > 0: Assume that oy exists. By the indiction hypothesis we know that o, C op.
Thus, for all j € {1,...,¢} we have 0¢(X;) C or(X;). We now show that this implies

matchs({C =" D} U {oy(X;) C° Ej|1 < j <n})
C matche({C =" DYU {o1(X;) C° E;|1 <j <n}).

Every solution to the—more general—matching problem of the right-hand side is especially
a solution to the matching problem of the left-hand side of the equation. As match, always
computes minimal solutions for both sides, the above conclusion is valid. Applying the
definition of A, the above yields 0,41 C o, which was to be shown.

» 2. Analogous to (1). Due to the properties of match ., we similarly have oo C 01. The
induction is identical to (1): If o;—; C o then we can infer by the same scheme as above
that gt E Ot41-

» 3. By definition of the algorithm, C' = o,(D) for every substitution o;. Hence, o; is a
valid solution to the matching problem without side conditions. It remains to be shown
that the final solution meets the side conditions as well. Thus, assume that A, (P) = oy
for some nonnegative integer t. Then by definition, oy = 6441, which implies that for every
je{1,...,£} we have 0,(X;) C 0441(E;j) = 0+(E;). The subsumption holds by definition
of o441, the equivalence by the assumption above. Thus, the side conditions are met.

» 4. If match fails in step 1 of the algorithm then no solution exists for the matching
problem without side conditions. This obviously implies that there is no solution for the
matching problem with side conditions as well.

If the algorithm fails in step 2 for some positive integer ¢, then the matching problem
C =" D is solvable, but there is a j € {1,...,¢} such that 0;(X;) C* F; does not have a
solution. This implies that o+(X;) is an assignment too general for the i-th side condition.
Taking into account the results of (1), this consequently applies to any possible solution
o1, to the original matching problem with side conditions. a
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As an immediate consequence of the above lemma, we can derive an important property
of the algorithm A,, which is stated in the following corollary: The solutions returned by
A, are minimal.

Corollary 6.22 Minimal solutions

Let L € {FLy, FLL,FL,, ALN}. Let P be an L-matching problem modulo equivalence
with non-strict side conditions. Then, if Az (P) returns a solution o, this solution is the
least solution to P in respect to subsumption.

We have seen in the previous lemma that no substitution o; is more general than any
solution o7, to P. Provided the fixed-point iteration terminates it is therefore obvious
that the obtained solution is minimal. Observe that the main argument in the above
proof of correctness and completeness is the property of the matching algorithm match,
to produce minimal solutions in respect to subsumption. Reduced normal forms and their
characteristics have not been required so far.

6.5 Termination

In this section, we will show that the algorithm A, terminates in polynomial time in the
size of any input matching problem. The objective is to avoid giving analogous proofs of
termination iteratively for every logic. Therefore, we identify three conditions as sufficient
to permit a general proof of termination. We then only have to ensure that these conditions
hold in all four logics.

Two steps are necessary in preparation. Firstly, a uniform notation is needed to denote
all role languages produced by the algorithm during the fixed point iteration. Secondly,
we will assume that every concept description occuring in the algorithm is in reduced
normal form. Naturally, it has to be clarified beforehand why such an assumption can be
made without loss of generality. But let us first take care of the notation problem. It was
shown in Lemma 4.29, that match, does not introduce new atomic concepts or number
restrictions for its solution. Moreover, the solutions are presented in FLg-normal form.
For a uniform notation, we therefore only need to specify three things. Firstly, the set of
all indices t occuring during the computation of A, (P); secondly; the set of all concept
names and role restrictions occuring in the input problem; and thirdly, an appropriate
notation for the FLy-normal forms of all substitutions:

Definition 6.23 Notation

Let £ be a logic in {FLo, FL,FL, ALN}. Let P:= (C =" D,{X; C° E;|1 <j <{})
be a (U, V, W)-labelled £L-matching problem modulo equivalence with non-strict side con-
ditions. Upon Input P, the algorithm A, generates substitutions o;, where ¢ € N.

e Denote by T(Ag, P) the set of indices ¢ occurring during the fixed point itera-
tion for Ag(P). Formally, T(Az, P) := N iff Az upon input P does not termi-
nate, T'(Ag, P) := {0,...,t + 1} iff it terminates in step 3 with o, as solution and
T(Ag,P) :={0,...,t} iff 0441 is undefined.

e Define H as the set of all concept names and number restricions occurring in the
input matching problem, i.e. for ACN, define H := { L}UCU{-A|A € C}UN<UN>.
For FL-,, we require N< and N> to be empty. For FL |, negated atomic concepts
are omitted as well. For FLgy, we simply have H = C.

e For every occurring index ¢t € T'(Ag, P) and for every j € {1,...,/}, denote 0,(X})
in U;-labelled F Lg-normal form. O
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With the above notation, every concept description oy (X;) occurring in the the fixed point
iteration can be represented by a set of role languages {U; j g|H € H}.

We want to identify certain conditions in order to simplify the proof of termination of
algorithm A, for all four cases of L. For these conditions to hold, it is necessary that
every concept description occurring during the execution of the A, is in reduced normal
form, i.e. for every input matching problem P := (C =7 D,{X; C? E;|1 < j < }), for
every t € T(Ag, P) and for every j € {1,...,¢}, C as well as 0;(X};) are in reduced normal
form. The definition of A,, however, does not include this. Why can such an assumption
be made without loss of generality? We know from Lemmata 6.8, 6.11, and 6.19 that
transforming a concept description into reduced normal form conserves equivalence. Thus,
the results computed by match in steps 1 and 2 of the algorithm are not altered in respect
to equivalence by assuming reduced normal forms. The termination criterion in step 3 of
the algorithm also refers only to equivalence and not to equality. Consequently, the reduced
version of the algorithm terminates if and only if the non-reduced version does. Hence,
we may safely assume reduced normal forms.

We are now prepared to introduce the termination conditions.

Definition 6.24 Termination conditions

Let £L € {FLy,FLL,FL,, ACLN}. Let P be an L-matching problem modulo equivalence
with non-strict side conditions as introduced in Definition 3.17. Define the following
conditions for the matching algorithm A..

1. Representation condition
Apr operates on a fixed set of role languages for the representation of the substitutions
0+(X;) occuring during the execution of Az (P). Therefore, no new (negated) atomic
concepts or role restrictions are introduced.

2. Suffiz condition
For every H € H there exists a role language My of polynomial size in the size of
P such that for all t € T and j € {1,...,¢} the role languages U; ; i contain only
suffixes of words from Mpg.

3. Deletion condition
If a word occuring in a role language Uy j, g assigned by o; is missing in the role
language Uzt 5, i assigned by o441, then this word is missing in every role language
Uy ;i assigned by further substitutions oy with ¢ > ¢. (]

Observe that the representation condition in our case is only relevant for ALN'. In the
sublanguages the problem does not arise. For ALN, however, it is stated in Lemma 4.29
that actually already match 4on respects the representation condition. This condition
is nevertheless mentioned explicitly here, because we want to emphasize that it is an
essential prerequisite for the proof of correctess. The next subsection provides a general
proof of termination, presupposing the validity of the termination conditions. The last
four subsections are devoted to verifying these conditions in our four logics.

6.5.1 General result

We have to show that by virtue of the termination conditions we can prove termination
of the algorithm 4, simultaneously for all four cases of £. The following lemma performs
this step.
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Lemma 6.25 Termination

Let £ be a logic in {FLo, FL,FL., ALN}. Let P:= (C =" D, {X; C? E;|1 <j < {})
be a (U, V, W)-labelled £L-matching problem modulo equivalence with non-strict side con-
ditions. Then A, (P) terminates in polynomial time in the size of P.

Proof.

It is sufficient to show that two properties hold for A,. Firstly, the number ¢ of steps
the execution of A (P) takes is polynomially limited in the size of P; secondly, the time
required for a single step is polynomially bounded in the size of P as well.

D> Limit for ¢: It is shown in Lemma 6.21 that o; C o411 for every t € T(Ag, P). Since
the fixed point iteration in A, terminates in case oy = o441, we have oy C 0441 for every
t as long as the iteration does not terminate. The strict subsumption of the substitutions
implies that for every ¢ there is an j € {1,...,¢} such that 0¢(X;) C o¢41(X;).

Due to the characterization of strict subsumption for reduced normal forms (Lemmata 6.8,
6.11, and 6.19), this implies that there is an H € #, such that at least one word in the
role language Uy j g occurring in o(X;) is deleted at the transition to Uiy1 j g occurring
in 0441(X;). Now on the one hand, the deletion condition guarantees that no word can
reappear once it has been deleted at such a transition. On the other hand, the suffix
condition ensures for every H € H that every word deleted from a role language Uy ; g is
a suffix of some word in the polynomially large language Mpg.

We now have obtained three facts sufficient to prove the existence of a polynomial upper
bound for ¢. Firstly, at the transition from ¢ to ¢ + 1 some word has to be deleted from
some role language; secondly, once deleted, no word will reappear later on; and thirdly,
the choice of words to delete is polynomially limited and independent of ¢t. Consequently, ¢
cannot exceed the sum of the number of all suffixes of the words of all role languages M.
‘H is immediately limited by the input matching problem. Furthermore, My is required
by the suffix condition to be polynomial in the size of the input problem. Finally, the
number of suffixes of a word is quadratic in the length of the word. We therefore end up
with a polynomial upper bound for ¢.

B> Limit for a single step: The reduced normal form of concept descriptions can be com-
puted in polynomial time. According to the properties of match%, we can solve L-matching
problems in polynomial time in the size of the input. The matching problem solved in
every single step in A, (P) is always of polynomial size in the size of P. This fact is guar-
anteed by the representation condition and the suffix condition which we have shown valid
for every logic £ considered here. Therefore, a single step costs only polynomial time. O

Tt should be stressed that, as a consequence of the above result, the algorithm A, itself
does terminate correctly even without the assumption of reduced normal forms. Only
the proof of termination is simplified significantly by this additional requirement. As an
immediate consequence of the termination of the algorithm A4, we obtain the following
corollary.

Corollary 6.26 Minimal solutions
Solvable matching problems modulo equivalence with non-strict side conditions in FLg,
FL,, FL-, and ALN have a minimal solution in respect to subsumption.

This claim holds, because the algorithm terminates successfully if and only if the input
matching problem has a solution and the solution returned is minimal in respect to sub-
sumption. Let us now verify the validity of the termination conditions in our four logics.
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6.5.2 Termination conditions in FL,

For F Ly, proving the conditions is particularly easy because of the simple characterization
of the subsumption obtained by Lemma 3.7. The characterization immediately implies the
desired results, as shown in the next lemma.

Lemma 6.27 Termination in FLg

Let P:= (C =" D,{X; C’ E;|1 < j < (}) be an FLy-matching problem modulo equiv-
alence with non-strict side conditions in (U, V, W)-labelled FLp-normal form. Then the
termination conditions introduced in Definition 6.24 hold for Az, (P).

Proof.

> Representation: We have seen in Lemma 4.29 that match, already meets the represen-
tation condition. As a consequence, it also holds for Az, .

> Suffix: Due to Lemma 6.21, for every t € T(Arc,, P) occuring during the execution
of Arz,(P) it holds that: ¢, C oy41. In FLo, this implies Uy j g O Upyr,j,m for every
j€{1,...,£} and for every H € M. Thus, we can infer Uy j g C Uy, ;,  for every j and H.

The role language Uy j, g occurs in step 1 of the algorithm in the soluion to the matching
problem C' =7 D. Tn [BKBM99], it is shown that for the FLg-normal form of the solution
to C =" D it holds that Uy u equals UweW]- w1 (Ug) for every j and H. Therefore,
every role language Uy j g contains only suffixes of Uy. Since Uy is part of the input
matching problem P, the set of its suffixes serve as an appropriate upper bound. Thus,
the suffix condition is met by chosing My as the set of all suffixes of words in Up.

D> Deletion: We have seen above that o; C 0441 for every ¢, j, and H implies a superset
relation U j g D Uit1,5,m. This relation entails that words cannot reappear after they
have been deleted at the transition from Uy j g to Ust1,j,H. O

6.5.3 Termination conditions in FL |

Reduced normal forms were not necessary for the termination conditions to hold in FLg.
We will see for FL,, FL_, and ALN that they are essential for the proof of the suffix-
and deletion property. We shall also see that the bottom-concept contributes most to the
greater effort necessary to prove the termination conditions. At first, the validity of the
suffix condition is shown. The idea is to use the solution languages introduced in Definition
4.2 to derive a recursive relationship with respect to ¢ between the role languages occuring
in consecutive substitutions ;. We can then infer the desired properties from oy upwards
by induction.

Lemma 6.28 Suffix condition in FL,
Let P := (C =" D,{X; C? E;|l < j < {}) be an FL -matching problem with non-
strict side conditions in (U, V, W)-labelled FLy-normal form. Denote the role languages
occuring during the execution of Ax., (P) as specified in Definition 6.23. Then for all
t€T(Arc,,P) and for all j € {1,...,¢} it holds that

1. U j,1 contains only suffixes of U, .

2. Uy,j,m contains only suffixes of Uy for all H € H.
Proof.
» 1. When performing step ¢ of the algorithm Az, , (P), the following system of matching
problems must be solved.

YU,.Ln AI;IC VU4 A="VV, . L1 AI;IC VV4.ATI ClVWj.Xj

YU; 1L Algc YU; ;4. AC VYV LN AE'C YV AT Ij‘,lvwm, X
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where the second line represents one equation for every j € {1,...,¢}. As stated in
Lemma 3.15, this system can be combined into a single matching problem modulo equiv-
alence with little difficulty. The exact strategy is omitted here, but its idea has been
illustrated in Example 3.16. For the resulting matching problem, setting up the solvabil-
ity equations proposed in Definition 4.1 and applying Lemma 4.2, we yield the following
solution language for the bottom-concept.

Uprj 3= () w ' (ULS)N() () w ' (Uy) (%)
weW; 3 weEW; ;i

]A)ue to the notation introduced for the solutions oy, here Uyy1,j, 1 -X* takes the place of
L; | used in Lemma 4.2 to denote the solution language for the L-concept. We have to
show that the U;y1 ;1 contains only suffixes of U .

According to Lemma 6.5, for every finite language U and for every word w there exists a
finite prefix free language L such that firstly, L-X* = w1 (U-X*); and secondly, L contains
only suffixes of U. Using this result we now show the proposition for Uy ; 1 by induction
over the number of steps ¢ the algorithm Az, (P) takes.

B> (t =0): According to equation (), it holds that

Uoj 8% = () w ' (UL-E"). (')
weW;

At first, we show that the suffix condition does not get lost when intersecting languages
of the form L-X* having that property. It is shown in [BKBM99] that for finite languages
L and L' the intersection L-X* N L'-£* is equal to (LN L'-¥*) U (L' N L-£*))-X*.

Obviously, (LN L-¥£*) U (L' N L-£*) is a subset of the union L U L'. This implies that
the intersection L-X* N L'-X* can be represented as L”-X* such that every element of L"
comes from L or from L'.

Because of Lemma 6.5, it holds for every j € {1,...,¢} and for every w € W; that the
language w— (U, -£*) can be represented as L-X*, where L contains only suffixes of U .
We have just seen that the suffix condition is respected by the intersection. Thus, the
entire right-hand side of equation (x) is of the form L-X*, where L contains only suffixes
of U,. pf(L) is a subset of L and therefore contains only suffixes as well. pf(L)-Z* also
represents the right-hand side of (x'), as we know from Lemma 6.4. From the definition
of reduced normal forms in F£ | we also know that Up ;o is prefix free. Lemma 6.4 now
implies that Uy ;o is equal to pf(L), completing our argument.

B> (¢ > 0): Due to induction, we may assume that all role languages on the right-hand side
of equation (*) contain only suffixes of U, . Analogous to the argument for the case t = 0,
the suffix property is valid for U4y 5,1 as well.

» 2. Consider U, ; g for an arbitrary H € H. Starting again with the system of matching
equations proposed in (1) and taking into account the definition of the solution languages
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in Lemma 4.29, we obtain the following result for U ; r.

U jm = [ w ' ({UpUUL-EY) mﬂ (\ w '(Ujm VU . -5")
weW; JjweW; o

\ Utt1,5,1.-2*

= ﬂ (UhUULE ﬂﬂ ﬂ w Ut,]HUUt,]lE)
weW; 7’ wEW’/

J

\ () w(ULE mﬂ ﬂ w™! (Uy,j,1-5%)

weW; JjweW;
Mo
¢ Y wrwnol U o)
weW; JweW; o

The equality to M; \ M, is obtained by replacing Uy11,;, 1 -£* with the right-hand side
of equation (x). The last step in the above sequence remains to be shown. Consider an
arbitrary word v in Uyt1 ;g = My \ M>. Since v is not an element of Mo, there exists a
word w € W; or a word w' € W j such that v is no element of w=' (U -X*) or no element
of w™H(Uy;,1-E*). Assume the first case, i.e. v € w™' (U -E*). As v is an element of Mj,
obviously v € w1 (U, UU_-X*), which implies v € w™*(U}). Thus, v is a suffix of a word
in Up,. The second case is analogous, yielding that v is a prefix of a word in Uy ; g. Thus,
the inclusion claimed above holds.

Since Uy and all Uy j, g are finite languages, it is not difficult to see that the left quotients
w™ ' (Ug) and w=" (Uy, ;i) for every word w only contain suffixes of Uy and Uy ; i respec-
tively. We still have to ensure that the suffix condition is respected by the union. This
can be shown inductively similar to the proof seen in (1) for the intersection. In case of
the union, however, the induction argument is by far simpler, since for finite languages
L, L' the union L-X* U L"-X* is equal to (L U L')-X*. ]

For the proof of the deletion condition, the characterization of the subsumption for re-
duced normal forms can be utilized to rule out words reappearing after being deleted.
A subsumption argument, of course, can only be used since we know from the proof of
correctess, that the solutions o; in fact are subsumed by its respective successors oy 1.

Lemma 6.29 Deletion condition in FL

Include P and Axg, (P) from above. Again, we refer to the notation introduced in
Definition 6.23 for the execution of the algorithm. Then Az, (P) meets the deletion
condition specified in Definition 6.24 for all occurring role languages.

Proof.

We first prove the deletion condition for role languages referring to the L-concept and
then consider those referring to atomic concepts A € C.

D> |-concept: Assume that contrary to our claim a word w can reappear for greater values
of t after being deleted from a role language at a certain point during the execution of
the algorithm. Thus, assume for w € ¥* that w € U 1 and w ¢ Uy ;1 but finally
w € Upya,5,1 for some j € {1,...,¢} and for nonnegative integers t < t' € T

We know from Lemma 6.21 that o; C oy C opy1. As all substitutions are reduced we
further know due to our assumption, that o:(X;) # o (X;) # op41(X;). From this we
can infer by means of Lemma 6.8 that Uy j, 1 > Up j1 > Upt1,j,1.
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We have assumed that w € Uy y1,j,1. The above relation then for Uy j | demands that
Uy ;1 contains a prefix w' of w. As w is no element of Uy ; 1, this is a nontrivial prefix.
Similarly we find that Uy ;1 contains a prefix of w' or w' itself. The language U, j, 1,
however, initially was assumed to contain w as well, yielding a contradiction to Uy ; 1
being prefix free.

D> A-concept: Assume similarly for a word w € ¥* that w € Uy ;g and w ¢ Uy ; g but
finally w € Up1 5 for some j € {1,...,¢}, for H € H, and for nonnegative integers
t <t €T. Since g4 C oy C opy1 and as also all substitutions are reduced we obtain as a
consequence of lemma, 6.8:

Utjar QU X" 2 Up jar OUp 508" 2 Ui jm UUpg 57

We have assumed that w € Up 41 . Since w is no element of Uy j 1, the subset relation
implies that w € Uy ; -X*. From the characterization of the subsumption we know that
Utj,1-X* 2 Uy j1-X", which in our case implies w € Uy ;1 -¥*. This contradicts the
disjointedness of the union with U; ; g, which was shown in Lemma 6.8. O

6.5.4 Termination conditions in F/L_

For FL_,, a separate proof of termination is omitted, because we can exploit the analogy to
FL . Verifying the termination conditions again yields a positive result, which is stated
below without proof.

Lemma 6.30 Termination conditions in FL-,

Let P:= (C =" D,{X; C? E;|1 < j < (}) be an FL_-matching problem modulo equiv-
alence with non-strict side conditions. Then Az, _(P) meets the termination conditions
introduced in Definition 6.24.

Let us discuss briefly why we can expect to gain the same result for F£_, in exactly the
same way as seen for F £ . The idea is to show that due to the reduced normal form of all
substitutions o; occurring during the execution of Az, _(P), the validity of the termination
conditions can be shown analogous to the proof for £, . Recall that the prerequisites
for the existence of a solution in FL_ are stronger than in FL,. Nevertheless, once
the matching problem is solvable, the solution assigned by o; is syntactically similar to
F L —the only difference being the construct U instead of U. This can be found when
comparing Lemma 4.2 and Lemma 4.4, where the solution languages are introduced. In
the presence of reduced normal forms the difference between languages of the form U and
U disappears, as stated in Corollary 6.10. Furthermore, a comparison of Lemma 6.8 and
Lemma 6.11 yields the same characerization of equivalence and subsumption for reduced
normal forms in F£; and FL_. Hence the results obtained for FL_ are analogous to
those for FL | .

6.5.5 Termination conditions in ALN

The overall task of solving matching problems in ALN is significantly more complex than
in the preceding logics. However, most of the additional complexity is hidden in the notion
of excluding words, which has been studied in depth in [Kiis98]. Once we know that sets
of excluding words are of the form L-X* for some finite language L, we do not need to
introduce new ideas to prove the termination conditions. By virtue of the reduced normal
forms we again find a situation analogous to FL | , though consisting of considerably larger
equations.
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Lemma 6.31 Suffix condition in ALN
Let P := (C =" D,{X; C" E;|l < j < (}) be an ACN-matching problem with non-
strict side conditions in (U, V, W)-labelled FLp-normal form. Denote the role languages
occuring during the execution of A4,n (P) as specified in Definition 6.23. Then for all
t €T and for all j € {1,...,£} it holds that:

1. Uy, j,1 contains only suffixes of U, .

2. Uy,j,4 contains only suffixes of Uy for every A € C and Uy j,—a contains only suffixes

of U4 for every A € C.
3. Uy j,>nr contains only suffixes of U>,g) for every (> nR) € N>.
4. Uy j <nr contains only suffixes of U<nry UUL-R™ L for every (< nR) € N<

Proof.
> 1. At step t of the algorithm A 4. (P), the following system of matching problems has
to be solved:

YU,.L 1M ADCVUA.A [l ADCVU_.A.—!A

N [ VUspr.CnR)N 1 YUicpm.(<nR
(znRpen, MR (2nF) (<nRjeng =) (snR)

?

YV, .1 AI;IC YV4. AT AI_I VYV 4. A

n [l YWeaur.(>nR)N I_Ivvn<R
(>nR)EN> (2nR) (_n ) (<nR)EN. (= R)( " )

n
M |_| VW]X]
Jj=1
and for every j € {1,...,n}:

VU, 1. LN AIZIC VU j,4-AT AI;IC VU, j—amA

N M VUieer.CoR)N 1 VU, (<up).(<nR
(snRyeNs  biEnB) (2 nE) (<nRyeNy | tISnR) (< nR)

E?
YV . L1 AI;IC YV 4.AN AI;IC VVja.mA

I (>nR|_)|Ej\/'> V‘/}7(ZnR)(Z TLR) I (<nR|_)|e,/\/'< VV],(SnR)(S nR)

n
[l 'l_ll VWJ’]’ .Xj/
7'=

This system can be combined into a single matching problem modulo equivalence. For
the solution to this problem, Lemma 4.7 provides us with appropriate solution languages.
Regarding the L-concept, we obtain the following result for the solution language U1 5,1
assigned by 041 (X;):

Ut+1,j’J_‘E* = m EC’ ﬂﬂ ﬂ w Et,]C’ (*)

weW; ' weW; o

Again, due to our notation Uy;,; 1-X* takes the place of ./L\j’J_ as used in Lemma 4.7.
Furthermore, Ec denotes the set of C-excluding words and analogously E; ;¢ the set of
excluding words for the j-th matching problem in the above system of matching problems.

We may assume C' to be in reduced normal form. Consequently, it holds that U, -3¥* = E¢,
as seen in Definition 6.12. As oy is also in reduced normal form, we furthermore obtain

7
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that Uy ;1 -X* = E; j ¢ for every t € T. In equation (x), we may therefore replace Ec by
U.-X* and E j ¢ by Ugj,1-X*. This reveals the inductive relation of the role languages:

Upp1,j, 08" = [ w™ ' (UL-B* ﬁﬂ N v (UejE") (+')

weW; JjweW;

It is to prove that U411 contains only suffixes of U, . Equation (') is only a syntactic
variant of equation (x) established in Lemma 6.28. As U4 ;1 is prefix free, we can prove
the claim exactly following the same pattern as seen for £, in Lemma 6.28.

» 2. From the system of matching problems introduced in (1), we now derive solutions
for role languages of the form U;yq 5,4 referring to the atomic concept A in o441 (X;). By
virtue of Lemma 4.7 we obtain:

Uisrja= [ w ' (UaUEC) mﬂ (| w ' (UijaUEwc)
weW; JweW; o
\ Utgr,,1-"

Taking into account that U, -¥* = Eg and that U;; | -¥* = E;;c, we can apply the
argument of Lemma 6.28 and replace the expression Uz;q 5 1 -X* with the right-hand side
of equation (*'). Again, we can obtain an upper bound for the resulting expression, yielding

that:
Upt1,5,4 C U YU) UU U w™ (U j,4) -
weW; JweW; o

Because U4 and every Uz11,;, 4 is finite, it is not difficult to prove that w=' (U4) and every
w™ " (Uts1,5,4) contain only suffixes of Us. We know from Lemma 6.28, that this property
is respected by the union, thus completing the proof. For role languages Uy ;4 referring
to negated atomic concepts —A, exactly the same argument holds.

» 3. We already know that o; is in reduced normal form for every ¢t € T. Thus, we have
for every number restriction (> nR) € N> that (J,,~, Urj,(>mr) is equal to Uy j (>nr),
i.e. the union can be omitted. The same holds for C, which is in reduced normal form
as well. Therefore, the expression |J,,~,, Usmp) similarly can be replaced by Uspp)-
This observation enables us to simplify the solution language derived from the system of
matching problems proposed in (1). By means of Lemma 4.7, we can infer for Uy 11 j (>np)
that:

Uppiionm = [ w7 (U Usmm UE)N[) [ w ' (U UVijemm YU Ewic)

weW; m>n JjweW; o m>n
\ Utg1,5,0-5"
= ﬂ ' (Usnr) U Ec) N ﬂ ﬂ w™ (Ut j,(>nr) U Bt j.0)
weW; JweW; o
\ Upy1,5,1-5"

We can see that after removing the unions for the number restrictions, the above equation
is syntactically identical to the one derived for A € C in (2). The rest of the argument
therefore is identical to what has been proposed there.

» 4. For (<)-number restrictions, we can again remove the union-operator in the same
fashion as done in (3). However, we obtain slightly different results for the solution lan-
guages derived from the system of matching problems introduced in (1). For Uyy1 j (<nR)
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we can infer that:

Uit1,j(<nR) = ﬂ w U U<mr) U Ec-R™")

weW; m>n

n () » (U Uiigmr U ELjc-R™)
JweW; o m>n

\ Uy1,5,0-Z"

= ﬂ wil(U(SnR) U (UJ_-E*)-Ril)

weW;

n ﬂ ﬂ w Ut7j (<nR) (Ut,j,L‘E*)'Ril)
3’ w€W‘ ’

\ ﬂ D ﬂ ﬂ w (U j,1-5%)
weW; JweW;

~ J
~~

=:M>

Observe, that in the second step we could replace Ec by U, -X* and E; j ¢ by Uy 1-X*.
This replacement is valid because C' and o; are in reduced normal form. However, the
result deviates from the pattern seen in the previous cases of this proof—the right-quotients
of U,.-¥* and Uy j 1 -X* occur instead of the original languages. Nevertheless, we can
simplify the right quotient thanks to the finiteness of U, and Uy ;,1: (U, -$*)-R™! equals
U, -R7'UU,-£* and similarly (U;;, (-$*)-R™" can be simplified to Uz ; | -R~'UU; ;1 -X*
for all £ and j. Since after this transformation all right quotients refer to finite languages,
we can subtract My and follow the argument familiar from Lemma 6.28. Consequently,
we obtain:

Uit1,5,(<nR) C U w™ ' (Ui<pry UUL-RTY)

weW;
U U U w Ut ,J,(EnR) U Ut,] 1R )
JweW; o

Finally, we can again employ an induction argument to prove that every Ujii j (<nRr)
contains only suffixes of U<, g UUL-R™". O

After eliminating the union over number restrictions and the right-quotient for (<)-number
restrictions in the above equations, the resulting situation appeared very similar to the
analogous problems for 7L, . Recalling the characterizations of equivalence and subsump-
tion for reduced normal forms in F£, and ALN, this is not surprising. By comparing
Lemma 6.8 and 6.19, we find almost the same conditions for subsumption. Observe,
that we again assumed C' to be in reduced normal form. This is legitimate, since in the
definition of A 4rn7, C is only referred to in reduced normal form.

Lemma 6.32 Deletion condition in ALN

Let P := (C =" D,{X; C? E;|l < j < (}) be an ACN-matching problem with non-
strict side conditions in (U, V, W)-labelled FLy-normal form. Denote the role languages
occuring during the execution of A4z (P) as specified in Definition 6.23 Then A 42 (P)
meets the deletion condition specified in Definition 6.24 for all occurring role languages.

Proof.

At first, the assertion is proved for role languages referring to the L-concept and then for
the remaining cases.
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D> | -concept: Assume that a word w can appear in a role language for greater ¢ after
having been deleted, i.e. there exists a word w € ¥*, and indices ¢ < t' € T and a
j€{l,...,0} such that w € Uy ;1 and w & Uy j,1 but w € Up41,5,1. We can now infer a
contradiction to Uy ;1 being prefix free, as already done for F£, in Lemma 6.29.

As the substitutions oy, oy and op 41 are reduced, we can infer from the assumptions by
virtue of the properties of reduced normal forms in ALN that Ui joo = Upj1>=Upyrj1.
The rest of the argument is analogous to Lemma 6.29. We apply the definition of the
multiset order (>) and infer that Uy j | must contain a nontrivial prefix of w as well as w
itself.

D> Other cases: Assume similarly for a word w € £* that w € Uy j a4 and w € Uy j a, but
w € Upy1,5,4 for an atomic concept A € C, for some j € {1,...,¢}, and for nonnegative
integers t < t' € T. Since again o; C oy C opy1 and since all substitutions are reduced,
we yield by Lemma 6.19:

Ut j,aUUgj %" D Up jaUUp j1-5" D Upyi j,a UUp 1 515"

Now we can follow the argument employed in Lemma 6.29 to infer a contradiction to the
disjointness of the unions. It is shown in Lemma 6.19 that the argument of disjoint unions
also applies for negated atomic concept and number restrictions. O

This section completes our discussion on matching problems modulo equivalence with non-
strict side conditions. It should be noted that our proofs strongly rely on the assumption of
reduced normal forms. Nevertheless, we have pointed out in Section 6.5 that the algorithm
A, has the same behaviour without this requirement. The results obtained here therefore
apply to the algorithm as introduced in Definition 6.20. It might be worth emphasizing
that the algorithm proposed here is applicable to both acyclic and cyclic side conditions.
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CONCLUSION

7.1 Summary

In this work the computational complexity of matching algorithms has been discussed
for four common description logics—ALN and three of its sublanguages. Three different
problems have been considered in this context: Matching modulo equivalence without
side conditions, the approach of eliminating side conditions and the use of fixed point
algorithms for solving matching problems with side conditions.

The article [BKBM99] by Baader, Kiisters, Borgida, and McGuinness formed the basis for
our work, providing a characterization of subsumption for our logics and algorithms for
matching problems without side conditions. Regarding the computational complexity of
these algorithms, only one minor gap had to be closed. In order to formally verify that
the algorithms are efficient, the properties of treelike automata had to be examined. This
gap is closed by Chapter 4, where treelike automata have been discussed in depth. In
consequence, the results of [BKBM99] have been confirmed—matching problems without
side conditions can be solved in polynomial time. This has been our first main topic.

It was shown in [BKBM99] that matching problems with non-strict side conditions cannot
be solved efficiently by straightforwardly eliminating side conditions. It has been our sec-
ond main topic in Chapter 5 to discuss how the approach of eliminating side conditions can
be carried out successfully. Eventually, we have seen that structure sharing is required for
compact representations of role languages in order to gain an efficient solution. However,
the result proposed here is limited to acyclic side conditions. It is not clear whether this
idea can be extended to the cyclic case.

Finding a solution applicable to matching problems with acyclic as well as cyclic side
conditions has been the third main issue in this work (covered in Chapter 6). Here a
fixed point algorithm has been developed solving this problem. In this context, reduced
normal forms have been introduced in order to simplify the proof of termination for that
algorithm. Nevertheless, reduced normal forms might also be interesting in FL£,, FL-,
and ALN, because they reduce equivalence to equality in these logics. FLg-normal forms
do not suit this purpose.

7.2 Future goals
In addition to the non-strict case, in [BKBM99] also matching problems with strict side

conditions are examined. It was shown by a reduction to 3SAT ([GJ79]) that matching un-
der strict side conditions is NP-hard even in F L. Nevertheless, an appropriate matching
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algorithm has not yet been proposed. It seems worthwhile utilize the efficient match-
ing algorithm for non-strict side conditions proposed here in the context of a matching
algorithm for strict side conditions.

For matching under non-strict side conditions, the fixed-point algorithm proposed in Chap-
ter 6 comprises a strategy built on top of a matching algorithm already existing for ALN
or its sublanguages studied here. It might be promising to apply a similar approach to
other description logics, where standard matching algorithms have already been found.
One such example could be the logic ALE, which allows for existential role restrictions
instead of number restrictions. Matching in ALE has already been studied in [BK00a].
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