
� �

� �

� �

� �

Mathing under Side Conditions

in Desription Logis

Diplomarbeitiplomarbeitiplomarbeit imimim Fahahah Informatiknformatiknformatik amamam

Lehr-ehr-ehr- undundund Forshungsgebietorshungsgebietorshungsgebiet Theoretisheheoretisheheoretishe Informatiknformatiknformatik derderder

Rheinish-heinish-heinish-Westf

�

alishenestf

�

alishenestf

�

alishen Tehnishenehnishenehnishen Hohshuleohshuleohshule Aahenahenahen

Professorrofessorrofessor Drrr.-Ingngng. Franzranzranz Baaderaaderaader

vorgelegtvorgelegtvorgelegt vonvonvon Sebastianebastianebastian Philipphilipphilipp Brandtrandtrandt

Aahenahenahen, imimim Augustugustugust 200020002000

Mathing under Side Conditions

in Desription Logis

Diplomarbeit

Ausgegeben und betreut von Professor Dr.-Ing. Franz Baader

Erstgutahter: Professor Dr.-Ing. Franz Baader

Zweitgutahter: Professor Dr. Wolfgang Thomas

Verfasser

Sebastian Philipp Brandt

Matrikelnummer 200553

Geboren am 25. April 1974

Satz: T

E

X/L

A

T

E

X

Erkl�arung

Hiermit versihere ih, da� ih die vor-

liegende Arbeit selbst�andig verfa�t und keine

anderen als die angegebenen Quellen und

Hilfsmittel benutzt, sowie Zitate kenntlih

gemaht habe. Aahen, den 21. August 2000.

Meiner Mutter und meinem Vater gewidmet.

Alles, was ih bin,

bin ih durh Euh.

A UN POETA MENOR DE 1899

Dejar un verso para la hora triste

Que en el onf��n del d��a nos aeha,

Ligar tu nombre a su doliente feha

De oro y de vaga sombra. Eso quisiste.

<Con qu�e pasi�on, al delinar el d��a,

Trabajar��as el extra~no verso

Que, hasta la dispersi�on del universo,

La hora de extra~no azul on�rmar��a!

No s�e si lo lograste ni siquiera,

Vago hermano mayor, si has existido,

Pero estoy solo y quiero que el olvido

Restituya a los d��as tu ligera

Sombra para este ya ansado alarde

De unas palabras en que est�e la tarde.

EINEM MINDEREN DICHTER VON 1899

Der Stunde, die uns trist am Tagesrand

belauert, eine Zeile hinterlassen,

deinen Namen an ihre siehe Zeit

aus Gold und Dunkel heften war dein Wunsh.

Mit welher Leidenshaft hast du an der Neige

des Abends an diesem sonderbaren Vers gefeilt,

da� er, bis zur Au�osung des Universums,

die sonderbare blaue Stunde berge!

Ih wei� niht, ob er dir gelang, niht einmal,

du ungewisser �alterer Bruder, ob du lebtest,

aber ih bin allein und w�unshte, das

Vergessen g�abe den Tagen deinen leihten

Shatten zur�uk f�ur diese m�ude Reihe

von W�ortern, da� in ihnen dieser Abend sei.

JORGE LUIS BORGES

Danksagung

Mit gro�er Freude versehe ih die Piht, hier all denen meinen Dank auszusprehen,

die Anteil hatten am Zustandekommen der vorliegenden Arbeit. Insbesondere danke ih

Professor Dr. Franz Baader f�ur seine Betreuung und f�ur das Vertrauen, das er in mih

und in das Gelingen dieser Arbeit gesetzt hat. Es wird mir ein Anliegen sein zu zeigen,

da� dieses Vertrauen niht unn�utz investiert war. Meinem Mentor Professor Dr. Klaus

Indermark verdanke ih, da� mein Studium einen siheren Weg genommen hat und da� die

RWTH Aahen sih mir von Beginn an von einer pers�onlihen und verantwortungsvollen

Seite gezeigt hat. F�ur die Geduld, f�ur die Unterst�utzung und f�ur die unz�ahligen Gespr�ahe

�uber mein Thema danke ih Dipl.-Inform. Ralf K�usters, dessen Engagement diese Arbeit

mitbestimmt hat.

Ih danke Neil Stewart M.A. f�ur seinen Rat als \native speaker" und f�ur seine Bereit-

shaft, auh einen so derart \o�-topi" gelegenen Aufsatz mit der Sorgfalt zu behandeln,

die ihn auszeihnet. Vielen Dank an Sebastian Niesen, der mir als Administrator den

Luxus erm�ogliht hat, mih g�anzlih auf diese Arbeit zu konzentrieren, ohne Betriebssys-

teme warten zu m�ussen. F�ur ihre gro�z�ugige Unterst�utzung danke ih au�erdem Mathias

Christoph Brandt und Young-Im Yang, ohne deren F�ursorge die zur�ukliegenden Monate

viel entbehrungsreiher verlaufen w�aren.

Sebastian Philipp Brandt

Contents

1 Introdution 1

1.1 The motive for mathing . 3

1.2 The struture of this work . 4

2 Preliminaries 5

2.1 Formal languages . 5

2.2 Finite automata . 6

2.2.1 Nondeterministi �nite automata . 6

2.2.2 Deterministi �nite automata . 8

3 Mathing in Desription Logis 9

3.1 Desription logis . 9

3.2 Mathing problems . 12

4 Solving Mathing Problems 17

4.1 Results from previous work . 17

4.2 Treelike automata . 20

4.2.1 Basi de�nitions . 20

4.2.2 Properties . 24

4.2.3 Operations on treelike automata . 27

4.3 Deiding solvability . 36

4.4 General result . 41

5 Eliminating Side Conditions 45

5.1 Reduing mathing problems . 45

5.2 Automata and ayli side onditions . 47

5.3 Restriting large languages . 49

5.4 Automata-theoreti solution . 51

5.4.1 Result for FL

?

. 51

5.4.2 Extension to FL

:

. 52

6 Fixed Points and Side Conditions 55

6.1 Pre�x free languages . 56

6.2 Redued normal forms . 58

6.2.1 Redued normal forms for FL

?

. 58

6.2.2 Redued normal forms for FL

:

. 60

6.2.3 Redued normal forms for ALN . 62

6.3 The algorithm . 67

ontents

6.4 Corretness and ompleteness . 69

6.5 Termination . 70

6.5.1 General result . 71

6.5.2 Termination onditions in FL

0

. 73

6.5.3 Termination onditions in FL

?

. 73

6.5.4 Termination onditions in FL

:

. 76

6.5.5 Termination onditions in ALN . 76

7 Conlusion 81

7.1 Summary . 81

7.2 Future goals . 81

Bibliography 83

hapter 1

Introdution

Desription Logis (DL) form a ategory of knowledge-representation formalisms used to

represent terminologial knowledge of a given appliation domain in a strutured and well-

de�ned way. As ommon harateristis, they employ onept-desriptions for the rep-

resentation of notions relevant in the appliation domain, and provide a model-theoreti

semantis losely related to �rst-order logis. Conept desriptions are built from atomi

onepts and atomi roles, i.e. from unary and binary prediates respetively, using on-

ept onstrutors provided by the DL language. Atomi onepts and onept desriptions

represent sets of individuals, whereas atomi roles represent binary relations between indi-

viduals [BN98a℄. Consider the following example, whih is inspired by [BN98a℄. Assuming

an atomi onept Human representing human beings, an atomi onept Female for all fe-

male beings, and an atomi role hasChild speifying parent-hild relations, we an represent

the general onepts of women and women having only daughters:

Woman := Human u Female

W := Woman u 8hasChild:Woman

The symbol (u) stands for the onjuntion of onept desriptions. Thus, a Woman is

a female human being and W denotes the onept of women suh that all their hildren

are again women. The example also illustrates how onept desriptions are built up from

atomi onepts.

In this work we will be onerned with the DL language ALN , whih also allows the

imposition of number restritions on atomi roles. If a number restrition for some role

is inluded in a onept desription, then ertain limitations regarding the number of

suessors in respet to this role are imposed on all instanes of this onept desription.

The idea is illustrated by extending the above example. In the de�nition of the onept

desription W it is not stated that there atually are any daughters. When speifying the

general onept of a mother, however, we do not only require every hild to be human,

but we espeially want to ensure that at least one suh hild exists. Utilizing number

restritions, this notion an be represented by the following onept desription.

Mother := Woman u 8hasChild:Human u (� 1 hasChild)

M := Mother u 8hasChild:(� 0 hasChild)

Every individual represented by Mother therefore is in hasChild-relation to at least 1 other

individual represented by Human, i.e. there exists at least one daughter or son. The

de�nition of the onept desription M is interesting, beause here a number restrition

ours inside a role restrition. M represents the onept of a mother who is not a grand-

mother. This holds, sine all the hildren of individuals represented by M are required to

2 hapter 111. introdution

have at most 0 hildren themselves, i.e. there are no hildren in the seond generation.

Observe that the at-least restrition in M does not interfere with the at-most restrition

inluded in Mother , sine it ours on a di�erent level in regard to the role hasChild. A

formal de�nition of the language ALN inluding all available onstruts will be provided

in Chapter 3. The above examples may suÆe at this point in order to give a rough

impression of the apabilities of DL languages.

Subsumption and equivalene are distinguished as relations between onept desriptions of

a DL language. If one onept desription is subsumed by a seond one, then these two are

in subonept{superonept relation. Thus, the seond is a superonept or generalization

of the �rst one. In this ase, the individuals represented by the �rst onept desription

always form a subset of those of the seond one. For instane in the above example the

onept desription M is subsumed by Mother, whih itself is subsumed by Woman, sine

every mother is a woman. Conept desriptions are regarded as equivalent if they always

represent the same set of individuals.

The subsumption-relation indues a hierarhy on the set of onept desriptions whih

is desirable for struturing the notions relevant for an appliation domain. On the other

hand, identifying equivalent onept desriptions allows to avoid redundanies when aug-

menting an existing set of onept desriptions [BN98a℄. Nevertheless, subsumption- and

equivalene-relations must be deidable in order to take advantage of them in DL sys-

tems. Deiding subsumption or equivalene of onept desriptions are standard inferene

problems whih have been examined for a variety of DL languages. For many of them,

upper and lower omplexity bounds have been obtained and mathing algorithms have

been proposed (e.g. [HNSS90, HB91, DLNN91℄. See [BKBM99℄ for further referenes).

However, when DL languages are employed for large-sale knowledge bases, standard in-

ferene algorithms do not perform satisfatory for building and maintaining purposes. It

has been shown in [MPS98℄ that non-standard inferenes like learning and mathing an

be used to improve this. In this work we will restrit our attention to the latter.

In order to address mathing we need to introdue onept patterns. These extend the no-

tion of onept desriptions by allowing for variables, whih an be substituted by onept

desriptions. Mathing a onept pattern against a onept desription means �nding a

substitution for the ourring variables suh that both expressions beome equivalent. This

is alled mathing modulo equivalene. Mathing modulo subsumption on the other hand

aims at merely making the onept pattern subsume the onept desription. Consider

the following example of a onept pattern, whih again refers to the onept desriptions

introdued above:

P := Woman u 8hasChild:X

When mathing (modulo equivalene) the onept pattern P against the onept desrip-

tionW of our example the variableX is substituted by an expression equivalent toWoman.

For mathing modulo subsumption, assigning X with Human would already be suÆient.

We shall see later on that it is desirable to �nd substitutions whih are minimal in respet

to subsumption, ensuring that the obtained result is as spei� as possible.

The idea of mathing an be re�ned by admitting side onditions whih impose further

onstraints on the substitution sought. Side onditions an be de�ned for every variable

ourring in a onept pattern and demand that the solution for this variable be subsumed

by another onept pattern. In this way, side onditions form a system of subsumption

onditions, whih an either be ayli or yli. We distinguish non-strit and strit side

onditions, depending on whether subsumption or strit subsumption is required. With

the help of side onditions it is possible to avoid trivial mathes ourring as solutions to

mathing problems or to �nd solutions at a ertain position in the onept hierarhy.

111.111. the motive for mathing 3

1.1 The motive for mathing

Mathing was motivated by the idea of pruning large onept desriptions whih are likely

to our in real-world knowledge representation systems based on DL languages. Pruning

means that, instead of printing onept desriptions in full length, only those aspets are

printed whih are relevant under urrent irumstanes. For this task mathing algorithms

an be used, as the following example may illustrate.

Consider an appliation domain where desription logis are employed to represent the

properties of ertain omponents interating with eah other for some purpose. Under

ertain irumstanes only the dependeny of a omponent on others might be of interest,

whereas all the other properties are irrelevant. Instead of manually retrieving the relevant

details in a onept desription C de�ning a ertain type of omponent, one ould math

C against a onept pattern D of the following form.

D := 8dependsOnServie:X u 8providesServie:Y

Provided that the dependeny relations in suh a ontext are represented by atomi roles

like dependsOnServie and providesServie the mathing result returns exatly the relevant

aspets of the omponent C. It was pointed out that implementing pruning strategies on

user interfae level of knowledge representation systems entails disadvantages in ompar-

ison to inluding them in the underlying DL language. Espeially, onept patterns like

D used to provide a pruned view of onept desriptions an be stored, organized, and

re-used [BKBM99℄.

As an extension of the above example, side-onditions ould be used to restrit the solutions

obtained when mathing the onept desription C against the onept patternD. Assume

that the atomi onept ServieTypeA represents a ertain sublass of servies provided by

our omponents. By inluding a non-strit side ondition of the form

Y v

?

ServieTypeA

in the mathing problem, only those servies provided by C are returned, whih are sub-

sumed by ServieTypeA, i.e. we obtain only servies of type A. In this ase, side onditions

are used to obtain more spei� results for mathing problems. This is espeially useful for

mathing modulo subsumption, where trivial solutions exist for every solvable mathing

problem. It should be noted, however, that side onditions an also be utilized to prevent

solutions to mathing problems from beoming too spei�. Consequently, side onditions

provide a powerful means for the re�nement of mathing problems.

Mathing algorithms have already been employed suessfully in professional and aademi

knowledge representation systems. In the Classilassilassi system developed at AT&T [BMS

+

91℄,

mathing is used to prune irrelevant information in the ontext of explanation failities

designed to make dedutions expliit to the user. Another example omes from the domain

of proess engineering [BS96℄, where there are plans to utilize mathing in order to avoid

introduing redundanies in very large knowledge bases maintained by several persons over

a longer period of time. Apart from these appliations, mathing an also be used when

integrating knowledge bases [BK00b℄.

In [BKBM99℄, Baader, K�usters, Borgida, and MGuinness have proposed algorithms to

solve mathing problems without side onditions in ALN and three of its sublanguages,

namely FL

0

, FL

?

, and FL

:

. These are introdued mainly for didati reasons, allowing

to develop the solution for ALN step by step. It should be noted that positive results

in ALN are not automatially inherited by the sublanguages, whih makes it neessary

to onsider eah sublanguage individually. The authors have also given proofs regarding

the omputational omplexity of these algorithms, showing that solutions are omputed

4 hapter 111. introdution

in polynomial time. Nevertheless, the properties of one onstrut used within these proofs

have been stated without proof.

The objetive of this work is twofold. Firstly, we will on�rm the results proposed for

mathing without side onditions by giving a formal proof of the properties used infor-

mally in [BKBM99℄. Seondly, we will show how mathing problems with non-strit side

onditions an be solved in polynomial time as well. The following setion will give a brief

overview of the respetive hapters.

1.2 The struture of this work

Chapter 2 introdues basi notions related to formal languages and �nite automata. Many

of the properties proposed in this ontext may appear very familiar, but are of ruial

importane for our reasoning in the following hapters. In Chapter 3, desription logis

and mathing problems are introdued formally.

Chapter 4 is onerned with the results on mathing without side onditions obtained

in [BKBM99℄ in reourse to an intuitive de�nition of so-alled \treelike automata". We

propose a formal de�nition for them and examine their properties in detail. This will allow

us to on�rm the respetive results, i.e. mathing problems without side onditions an

be solved in polynomial time in ALN and its sublanguages. In Chapter 5, side onditions

are taken into onsideration. Two approahes are disussed to redue mathing problems

with ayli side onditions to suh without them. A straightforward strategy originally

mentioned in [BKBM99℄ is shown to fail, while an alternative one, utilizing �nite automata,

will sueed. Both approahes, however, are limited to ayli side onditions.

This is overome in Chapter 6, where we present a solution omprising a �xed point

algorithm appliable to ayli as well as yli side onditions. It will be shown that by

this approah mathing problems with non-strit side onditions in ALN as well as its

sublanguages an be solved in polynomial time. Proving these laims will be simpli�ed

by the introdution of normal forms for onept desriptions, a representation whih is

unique with respet to equivalene.

In the last hapter we give a summary and very briey mention two open problems for

whih the results of this work might be valuable. These problems are mathing under

strit side onditions and mathing in desription logis other than ALN .

hapter 2

Preliminaries

In this hapter we introdue basi notions relating to sets, formal languages, and �nite

automata. Furthermore, some properties of �nite automata are disussed, whih will prove

useful in the later hapters.

Let us �rst explain some typographi onventions throughout this work. The end of the

body of every de�nition, of every proof, and of every example is indiated by a box (�

�

�)

at the right-hand side of the olumn. The notions newly introdued in a de�nition are

set in itali type. If the assertion of a lemma omprises an enumeration of several laims,

then blak triangles (

I

) at the left-hand side of the olumn are used to struture the

proof aordingly. When several ases are distinguished in a proof, light triangles (

B

B

B

) are

employed to indiate the beginning of every ase. We hope that these visual markers make

reading more onvenient.

Throughout this work, the word \i�" is used as an equivalent to \if and only if". It

should also be noted that we inlude 0 in the set of natural numbers, i.e. N is de�ned

as N := f0; 1; : : :g. Our �rst de�nition spei�es our notation for the power set and the

ardinality of sets.

De�nition 2.1 Notation for sets

For every set S, denote by P(S) the power set of S, i.e. P(S) := fT jT � Sg. The

ardinality of S is denoted by jSj.

�

�

�

2.1 Formal languages

We are now ready to introdue formal languages and disuss some of their properties. We

will make use of the notation introdued in [HU80℄, where the subjet is studied in depth.

De�nition 2.2 Formal languages

Let � be a �nite nonempty set. � is alled alphabet and its elements are alled haraters,

whih we regard as atomi symbols. A �nite sequene of haraters is alled a word over

�. The length of a word w is denoted by jwj. The word onsisting of 0 haraters is

denoted by ", the empty word. For two words w and w

0

, w

0

is alled a pre�x of w i� there

exists another word w

00

suh that w = w

0

w

00

. In this ase, w

00

is alled a suÆx of w and w

is alled a ontinuation of w

0

. The notion of pre�xes indues a strit order over the set of

words over � in the following way: Two words w and v are in strit pre�x order (denoted

by w <

pr

v), i� w is a pre�x of v, and v is not equal to w.

Denote by `�' the onatenation of words, i.e. the expression w�v represents the hara-

ter sequene wv for every word w and v. The empty word is neutral in respet to the

onatenation.

6 hapter 222. preliminaries

A set of words over � is alled a (formal) language over �. A language is alled regular,

if it an be represented by a grammar of type 3 in the Chomsky Hierarhy. The notion

of onatenation is extended to languages in the following way: For languages L, L

0

, the

onatenation L�L

0

is de�ned by onatenating all possible pairs of words, whih yields

L�L

0

:= fw�w

0

jw 2 L;w

0

2 L

0

g. For the iterated onatenation, the following notation is

de�ned indutively. For every language L and for n 2 N, de�ne:

L

0

:= f"g

L

n+1

:= L�L

n

For every language L, the expression L

�

is de�ned as L

�

:=

S

n2N

L

n

. Similarly, L

+

is

de�ned by exepting the ase n = 0, i.e. L

+

:= L

�

n L

0

. The �

�

-losure of L is de�ned

by L��

�

.

�

�

�

Note that the alphabet � an be regarded as a language itself. Every word over � is an

element of �

�

and every language over � is a subset of �

�

.

For formal languages, the operations left and the right quotient are de�ned as follows:

De�nition 2.3 Left and right quotients

Let L be a language over the alphabet �, let w 2 �

�

be a word over �. The left quotient

of L in respet to w is de�ned as w

�1

�L := fv 2 �

�

jwv 2 Lg. The right quotient of L in

respet to w is de�ned as L�w

�1

:= fv 2 �

�

jvw 2 Lg.

�

�

�

Thus, if a word in a formal language L begins with w, then the remainder of this word is

an element of the left-quotient of w and L. The idea for the right-quotient is analogous.

The ardinality jLj denotes the number of words ontained in a formal language L. To

inlude the length of words into a measure for L, we introdue the notion of the size of

formal languages:

De�nition 2.4 Size of formal languages

Let j � j be the ordinary length-funtion for words over �. For every �nite language L � �

�

,

de�ne the size of S by:

kLk :=

X

w2L

jwj �

�

�

The size kLk of a language L orresponds to the amount of storage neessary to represent L

expliitly. Thus, it is an appropriate measure when studying the omputational omplexity

of algorithms over formal languages.

2.2 Finite automata

Finite automata are well known onstruts for the representation of regular languages.

We �rst address nondeterministi �nite automata and then de�ne the deterministi ase

as a speialization. Finite automata are studied exhaustively in [HU80℄, where our basi

de�nitions originate.

2.2.1 Nondeterministi �nite automata

De�nition 2.5 Nondeterministi �nite automata

Let � be a �nite alphabet. A nondeterministi �nite automaton (NFA) B over � is de�ned

as B := hQ;�; Æ; q

0

; F i, where

� Q 6= ; denotes a �nite set of states,

� F � Q is the set of aepting states,

222.222. finite automata 7

� q

0

2 Q denotes the initial state and

� Æ : Q� �! P(Q) is a non-deterministi transition funtion.

The transition funtion is extended to words of arbitrary length by the notion of the

extended transition funtion

^

Æ. For every q 2 Q, w 2 �

�

, and for every s 2 �, de�ne

^

Æ

indutively as follows:

^

Æ : Q� �

�

! P(Q)

q ; " 7! fqg

q ; ws 7! fp j 9r 2

^

Æ(q; w) : p 2 Æ(r; s)g

The language aepted by B now an be de�ned as L(B) = fw 2 �

�

j

^

Æ(q

0

; w)\F 6= ;g. The

size jBj of an automaton B is de�ned by the number of states it has, i.e. jBj := jQj.

�

�

�

Sine we will employ automata for the representation of formal languages, appropriate

operations are neessary to ompute the omplement, the intersetion, and the union

of nondeterministi �nite automata. Note that the omplement annot be omputed

eÆiently in the nondeterministi ase. However, the other operations an be realized

in polynomial time. The following de�nition provides a onstrution for the intersetion-

automaton of two given automata:

De�nition 2.6 Produt automata

For nondeterministi �nite automata B

i

:= hQ

i

;�; q

0i

; Æ

i

; F

i

i (i 2 f1; 2g) with disjoint sets

of states, de�ne the produt automaton of B

1

and B

2

as follows:

B

1

\ B

2

:= hQ

1

�Q

2

; (q

01

; q

02

); Æ; F

1

� F

2

i with: For all (q

1

; q

2

) 2 Q

1

�Q

2

, and for every

s 2 �, the transition funtion Æ is de�ned by: Æ((q

1

; q

2

); s) := (Æ

1

(q

1

; s); Æ

2

(q

2

; s)).

�

�

�

The produt automaton simply runs both input automata in parallel and aepts the

input, i� both automata independently aept it. The orretness of this onstrution is

stated in the next lemma. We omit a proof, sine the results below are probably well

known.

Lemma 2.7 Properties of produt automata

Let B

1

;B

2

2 NFA(�), where B

i

:= hQ

i

;�; q

0i

; Æ

i

; F

i

i for i 2 f1; 2g. Let Q

1

\Q

2

= ;. Then

1. L(B

1

\ B

2

) = L(B

1

) \ L(B

2

)

2. jB

1

\ B

2

j is polynomial in jB

1

j and jB

2

j.

3. B

1

\ B

2

an be omputed in polynomial time in jB

1

j und jB

2

j.

Reall that omputing the union of �nite automata is partiularly simple in the nondeter-

ministi ase. Provided disjoint sets of states we an de�ne the union of n automata by

merely adding a new initial state onneted to the n former initial states by "-transitions.

This onstrution is employed in Kleene's Theorem. The size of the resulting automaton

exeeds the sum of the sizes of the original automata only by a onstant.

Automata are intended not only as a representation of formal languages, but also as a

means of deiding ertain properties of them. Later on in this work, espeially two ques-

tions must be answered eÆiently. Firstly, is the language aepted by a given automaton

empty; and seondly, is a ertain word ontained in this language. Both problems in fat

an be deided in polynomial time for nondeterministi automata. The following lemma

is stated without proof, sine its assertions are well known.

8 hapter 222. preliminaries

Lemma 2.8 Deision problems

Let B 2 NFA(�) be an NFA over � and let w be a word over �. Then

1. L(B) =

?

;, i.e. the ;-problem, an be deided in polynomial time in jBj.

2. w 2

?

L(B), i.e. the word-problem, an be deided in polynomial time in jBj and jwj.

Regular languages an be represented by nondeterministi automata. We will now see

that suh a representation an be omputed in polynomial time. Given a �nite language,

we an eÆiently onstrut an appropriate nondeterministi automaton. This is solved

similar to the onstrution of Kleene's Theorem. Nevertheless, we an avoid introduing

intermediate states in our onstrution whih is briey desribed in the next lemma.

Lemma 2.9 Aepting �nite languages

Let L � �

�

be a �nite language over �. Then there is a nondeterministi �nite automaton

B 2 NFA(�) with:

1. L(B) = L, i.e. B aepts L

2. jBj � kLk+ 1, i.e. the size of B exeeds the size of L only by one.

3. B an be onstruted in polynomial time in kLk.

Proof.

For every w 2 L, generate an appropriate automaton to aept fwg only. Suh automata

an be onstruted easily by merely onatenating states in a linear fashion, labelling the

edges with the appropriate haraters of the words to aept. The union of these automata

is then onstruted by ombining the initial states of all the automata onstruted so far

to one inital state.

It is not diÆult to see that the resulting automaton has the desired properties.

�

�

�

2.2.2 Deterministi �nite automata

In the deterministi ase, the transition funtion of a �nite automaton returns exatly one

state for every input. Therefore, we might simply de�ne deterministi �nite automata

by demanding that jÆ(q; s)j = 1 for every state q and every harater s. However, this

limitation an be utilized to simplify the de�nition of the aepted language. The next

de�nition therefore introdues a slightly di�erent transition funtion.

De�nition 2.10 Deterministi �nite automata

Let � be a �nite alphabet. A deterministi �nite automaton B := hQ;�; Æ; q

0

; F i over �

is de�ned analogous to a nondeterministi �nite automaton exept for the the transition

funtion Æ. Here, Æ(q; s) represents exatly one state in Q and not a subset of it. Thus, the

deterministi transition funtion Æ is of the form Æ : Q� �! Q. This entails a simpli�ed

de�nition of the extended transition funtion

^

Æ. For every q 2 Q, w 2 �

�

, and for every

s 2 �, de�ne

^

Æ by:

^

Æ : Q� �

�

! Q

q ; " 7! q

q ; ws 7! Æ(

^

Æ(q; w); s)

The de�nition of the aepted language is de�ned analogous to the nondeterministi ase.

The same holds for the size of B.

�

�

�

hapter 3

Mathing in

Desription Logis

In this hapter, we introdue the framework neessary to formally express the subjet of

this work. We need to de�ne the desription logis of interest and the lasses of problems to

be examined within these logis. For this, the following setions start by merely repeating

the basi de�nitions given in [BKBM99℄.

3.1 Desription logis

Throughout this work, we will refer to the following sets of atomi onepts, roles and

variables, whih are neessary for the de�nition of desription logis. Let C, R, and X be

mutually disjoint �nite sets. Denote by C an arbitrary but �xed set of atomi onepts

and denote by R an arbitrary but �xed set of atomi roles. Every formal language L � R

�

is referred to as role language.

The desription logis ALN and three of its sublanguages, FL

0

, FL

?

, and FL

:

, are

now de�ned by speifying the syntax of its onept desriptions �rst and de�ning a model

theoreti semantis afterwards.

De�nition 3.1 Syntax of onept desriptions

A (�)-number restrition is of the form (� nR), where n 2 N and R 2 R. Similarly,

a (�)-number restrition is of the form (� nR). Denote by N

�

an arbitrary but �xed

�nite set of (�)-number restritions, denote by N

�

an arbitrary but �xed �nite set of

(�)-number restritions. The set dom(ALN) of ALN -onept desriptions over C, R,

N

�

, and N

�

is indutively de�ned by the following rules.

1. Every atomi onept A 2 C and the symbol > (\top-onept") are onept desrip-

tions.

2. If C and D are onept desriptions, then C uD is as well.

3. If C is a onept desription and R 2 R is an atomi role, then 8R:C is a onept

desription.

4. The symbol ? (\bottom-onept") is a onept desription.

5. For every atomi onept A 2 C, :A is a onept desription.

6. Every number restrition in N

�

or N

�

is a onept desription.

10 hapter 333. mathing in desription logis

The sets ofFL

0

-, FL

?

- andFL

:

-onept desriptions are de�ned as subsets of dom(ALN).

For the set dom(FL

0

) of FL

0

-onept desriptions only rules (1){(3) are admitted, for

dom(FL

?

) only rules (1){(4), and for dom(FL

:

) only rules (1){(5).

�

�

�

The model-theoreti semantis of ALN and its sublanguages is de�ned by speifying a

domain and an interpretation funtion mapping every onept desription onto a subset

of this domain.

De�nition 3.2 Semantis

Let �

I

be a non-empty set. De�ne an interpretation I by its domain �

I

and its interpre-

tation funtion �

I

: dom(ALN) ! P(�

I

) [P(�

I

��

I

) in suh a way that A

I

� �

I

for

all A 2 C and R

I

� �

I

��

I

for all R 2 R. The interpretation funtion is then extended

to omplex onept desriptions by the following rules.

� ?

I

:= ;, >

I

:= �

I

(bottom,top)

� (:A)

I

:= �

I

nA

I

(atomi negation)

� (C uD)

I

:= C

I

\D

I

(onjuntion)

� (8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

) e 2 C

I

g (role restrition)

� (� nR)

I

:= fd 2 �

I

j jfe 2 �

I

j(d; e) 2 R

I

gj � ng (�-number restriion)

� (� nR)

I

:= fd 2 �

I

j jfe 2 �

I

j(d; e) 2 R

I

gj � ng (�-number restrition)

where A 2 C, R 2 R, C;D 2 dom(ALN), (� nR) 2 N

�

, and (� nR) 2 N

�

.

�

�

�

In [BN98a℄, Baader and Narendran have introdued the onept entered normal form,

whih an be used to represent onept desriptions in a standardized manner. It has

been re�ned further in [BKBM99℄, yielding the FL

0

-normal form, whih is appliable to

ALN -onept desriptions as well as to any of its three sublaguages onsidered here. The

next de�nition introdues FL

0

-normal forms along with variable names used to denote

the ourring role languages.

De�nition 3.3 FL

0

FL

0

FL

0

-normal form

Denote by L an arbitrary identi�er. For every H 2 f?g [C [f:AjA 2 Cg [N

�

[N

�

,

let the deoration L

H

of L denote a �nite role language. De�ne the L-labelled FL

0

-normal

form of an ALN -onept desription C as follows:

C := 8L

?

:? u u

A2C

8L

A

:A u u

A2C

8L

:A

::A

u u

(�nR)2N

�

8L

(�nR)

:(� nR) u u

(�nR)2N

�

8L

(�nR)

:(� nR)

De�ne 8f"g:D := D and 8;:D := > for every ALN -onept desription D. The L-

labelled FL

0

-normal form of an arbitrary FL

:

-onept desription an now be de�ned by

requiring the role languages L

(�mR)

and L

(�nR)

to be empty for every number restrition

(� mR) 2 N

�

and (� nR) 2 N

�

. For the L-labelled FL

0

-normal form of any FL

?

-

onept desription, we additionally demand that L

:A

is empty for every atomi onept

A 2 C. Finally, for the L-labelled FL

0

-normal form of an FL

0

-onept desriptions, the

language L

?

is empty as well.

�

�

�

The above notation has the advantage that every atomi onept, every negated atomi

onept, and every number restrition from the spei�ed sets ours exatly one. It

should be noted that the absene of an atomi onept in a onept desription easily an

be expressed by hoosing ; for the respetive role language. In this ase, the respetive

333.111. desription logis 11

expression beomes equivalent to the top-onept, the ourrene of whih does not al-

ter the interpretation of any onept desription. We an now de�ne subsumption and

equivalene of onept desriptions.

De�nition 3.4 Inferene problems

Subsumption (v), equivalene (�), and strit subsumption (�) are de�ned as binary rela-

tions (v); (�); (�) � dom(ALN)

2

. For any C;D 2 dom(ALN) de�ne:

� C v D (C \is subsumed by" D) i� C

I

� D

I

for all interpretations I ;

� C � D (C \is equivalent to" D) i� C

I

= D

I

for all interpretations I ;

� C � D (C \is stritly subsumed by" D) i� C � D and C 6� D

for all interpretations I .

Sine dom(FL

0

) � dom(FL

?

) � dom(FL

:

) � dom(ALN), the notion of (strit) sub-

sumption and equivalene is impliitly de�ned for the sublanguages of ALN .

�

�

�

The FL

0

-normal form as introdued in De�nition 3.3 an be used to haraterize subsump-

tion and equivalene of onept desriptions. We �rst introdue the notion of exluding

words, whih is required for the haraterization.

De�nition 3.5 Exluding words

Let C be anALN -onept desription. LetD be an FL

:

-onept desription in U -labelled

FL

0

-normal form. The set of C-exluding words is de�ned by:

E

C

:= fw 2 �

�

jC v 8w:?g

For D, de�ne the role language

b

U

?

as follows:

b

U

?

:= U

?

[

[

A2C

(U

A

\ U

:A

) �

�

�

It an be shown that E

D

=

b

U

?

��

�

for every FL

:

-onept desription D in U -labelled

FL

0

-normal form. Thus, for FL

:

-onept desriptions in FL

0

-normal form the notion of

exluding words an be haraterized by

b

U

?

. We shall see later on, that a haraterization

of exluding words for ALN -onept desriptions in FL

0

-normal form is more omplex.

Subsumption in ALN was haraterized by K�usters in [K�us98℄, yielding the following

result:

Lemma 3.6 Charaterization of subsumption in ALN

ALN

ALN

Let C;D be ALN -onept desriptions. Let C be in U -labelled FL

0

-normal. Let D be in

V -labelled FL

0

-normal form. Then C v D i� all of the following onditions hold.

1. E

C

� E

D

2. U

A

[E

C

� V

A

[E

D

for all A 2 C

3. U

:A

[E

C

� V

:A

[E

D

for all A 2 C

4.

S

m�n

U

(�mR)

[E

C

�

S

m�n

V

(�mR)

[E

D

for all (� nR) 2 N

�

with n � 1

5.

S

m�n

U

(�mR)

[E

C

�R

�1

�

S

m�n

V

(�mR)

[E

D

�R

�1

for all (� nR) 2 N

�

Similar haraterizations an be obtained for the sublanguages of ALN . The following

results for FL

0

, FL

?

and FL

:

an be obtained from [BKBM99℄.

Lemma 3.7 Charaterization of subsumption in FL

0

FL

0

FL

0

Let C and D be FL

0

-onept desriptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� U

A

� V

A

for all A 2 C.

12 hapter 333. mathing in desription logis

Lemma 3.8 Charaterization of subsumption in FL

?

FL

?

FL

?

Let C and D be FL

?

-onept desriptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� the following two onditions

hold:

1. U

?

��

�

� V

?

��

�

2. U

A

[U

?

��

�

� V

A

[V

?

��

�

for all A 2 C

Lemma 3.9 Charaterization of subsumption in FL

:

FL

:

FL

:

Let C and D be FL

:

-onept desriptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� the following two onditions

hold:

1.

b

U

?

��

�

�

b

V

?

��

�

2. U

A

[

b

U

?

��

�

� V

A

[

b

V

?

��

�

for all H 2 C [f:AjA 2 Cg

It has to be noted that [BKBM99℄ atually haraterize equivalene and not subsumption.

However, it an be shown with little e�ort that the above results are orret. Char-

aterizations of equivalene an be derived easily from the above results. Aording to

De�nition 3.2, equivalene of onept desriptions is equivalent to mutual subsumption.

In order to haraterize equivalene it is therefore suÆient to replae all (�)-relations by

(=) in the above four lemmae. The notion of subsumption is illustrated by the following

example.

Example 3.10 Subsumption in FL

:

FL

:

FL

:

Assume � := fR;Sg as the alphabet of roles. Consider the following ALN -onept

desriptions:

C :=8fR;Sg:B t 8fRRg:(� 2S)

D :=8fR;Sg:?t 8fRRg:(� 3S)

E :=8f"g:?t 8fR;Sg:A

Then E is subsumed by all the other onept desriptions, beause it is equivalent to the

bottom-onept. D is stritly subsumed by C, beause it forbids R- and S-role suessors

instead of requiring B for them and imposes stronger number restritions on RR-role

suessors.

�

�

�

3.2 Mathing problems

In order to de�ne mathing problems, we �rst need to introdue the notion of onept

patterns. Intuitively, onept patterns extend onept desriptions by admitting variables.

For this purpose, denote by X an arbitrary but �xed set of variables. For the sake of

onsistent notation throughout this work, let X =: fX

1

; : : : ; X

`

g for some ` 2 N.

De�nition 3.11 Conept patterns

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. The set dom

X

(L) of L-onept patterns ist indutively

de�ned as follows:

1. Every onept desription C 2 dom(L) is a onept pattern.

2. Every onept variable X 2 X is a onept pattern.

3. If C and D are onept patterns, then C uD is as well.

333.222. mathing problems 13

4. If C is a onept pattern and R 2 R, then 8R:C is a onept pattern.

�

�

�

The FL

0

-normal form for onept desriptions an be extended to onept patterns by

treating variables as speial atomi onepts.

De�nition 3.12 FL

0

FL

0

FL

0

-normal form for onept patterns

Denote by L; L

0

arbitrary but distint identi�ers. For every j 2 f1; : : : ; `g and for every

H 2 f?g [C [f:AjA 2 Cg [N

�

[N

�

, let deorations L

H

and L

0

j

of L and L

0

denote

a �nite role language. De�ne the (L; L

0

)-labelled FL

0

-normal form of an ALN -onept

pattern D as follows:

D := 8L

?

:? u u

A2C

8L

A

:A u u

A2C

8L

:A

::A

u u

(�nR)2N

�

8L

(�nR)

:(� nR) u u

(�nR)2N

�

8L

(�nR)

:(� nR)

u

`

u

j=1

L

0

j

:X

j

�

�

�

For the assignment of onept desriptions to onept variables, we introdue substitutions

over ALN and its sublanguages.

De�nition 3.13 Substitution

Let L 2 fFL

0

;FL

?

;FL

:

g. De�ne a substitution � over L as a mapping from the set of

variables X to dom(L). � is extended to a funtion �̂ of the form �̂ : dom

X

(L)! dom(L),

suh that the following onditions hold for all C;D 2 dom

X

(L), for all X 2 X , A 2 C,

R 2 R, and for all number restritions (� nR) and (� nR).

� �̂(X) = �(X)

� �̂(A) = A; �̂(:A) = :A

� �̂(?) = ?; �̂(>) = >

� �̂(C uD) = �̂(C) u �̂(D)

� �̂(8R:C) = 8R:�̂(C)

� �̂(� nR) = (� nR); �̂(� nR) := (� nR)

For a simpler notation, we will not distinguish between a substitution � and its extension

�̂ in the remainder of this work and denote both by �. For substitutions � and �

0

sharing

the same domain X , we de�ne the following relations.

� � v �

0

i� �(X) v �

0

(X) for all onept variables X 2 X .

� � � �

0

i� � v �

0

and there is a variable X 2 X with �(X) � �

0

(X).

� � � �

0

i� � v �

0

and �

0

v �.

�

�

�

The purpose of these relations is to provide a means to determine whether the values

assigned by one substitution are more general (in respet to subsumption) than another.

We are now ready to de�ne mathing problems.

14 hapter 333. mathing in desription logis

De�nition 3.14 Mathing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let C denote an L-onept desription. Let D denote

an L-onept pattern. Referring to De�nition 3.4, we distinguish two di�erent kinds of

mathing problems.

� An L-mathing problem modulo subsumption is of the form C v

?

D. A solution to

this problem is a substitution � over L with C v �(D).

� An L-mathing problem modulo equivalene is of the form C v

?

D. A solution to

this problem is a substitution � over L with C � �(D).

� A system of L-mathing problems is of the form fP

i

j1 � i � ng, where n is a positive

integer and for every i, P

i

is an L-mathing problem modulo equivalene or modulo

subsumption. A solution to this system is a substitution whih solves P

i

for every i.

The notion of FL

0

-normal forms is extended to L-mathing problems as follows. An L-

mathing problem is in (L; L

0

; L

00

)-labelled FL

0

-normal form if and only if C is in L-labelled

FL

0

-normal form and D is in (L

0

; L

00

)-labelled FL

0

-normal form for distint identi�ers L,

L

0

, and L

00

.

�

�

�

It is shown in [BKBM99℄ that mathing problems modulo subsumption and systems of

mathing problems an be redued to mathing modulo equivalene. The following lemma

merely summarizes the respetive results and may therefore be stated without proof.

Lemma 3.15 Representation of mathing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Then

1. For every L-mathing problem modulo subsumption there is a polynomially large

L-mathing problem modulo equivalene with the same set of solutions.

2. For every system of L-mathing problems there is a polynomially large L-mathing

problem modulo equivalene with the same set of solutions.

3. Both redutions an be omputed in polynomial time.

The idea of ombining a system of mathing problems into a single mathing problem

modulo equivalene is illustrated by the next example, where a simple system of mathing

problems is onsidered.

Example 3.16 Representation of mathing problems

Let C;E be L-onept desriptions and let D;F be L-onept patterns. Let R

1

; R

2

2 �

be distint atomi roles. Let P := fC �

?

D;E v

?

Fg be a system of L-mathing

problems. Then P has the same set of solutions as the following mathing problem modulo

equivalene: 8R

1

:C u 8R

2

:E �

?

8R

1

:C u 8R

2

:(E u F).

Due to the results of the above lemma it is suÆient to examine single mathing problems

modulo equivalene. A mathing problem an be spei�ed further by stating additional

requirements for the solution. This leads to a de�nition entral for this work.

De�nition 3.17 Mathing problems with side onditions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let C denote an L-onept desription. Let D denote

an L-onept pattern. For every j 2 f1; : : : ; `g let E

j

denote an ALN -onept pattern.

For the de�nition of mathing problems with side onditions, we �rst need to introdue

the notion of subsumption onditions. Again, we de�ne a strit and a non-strit version.

� An L-side ondition for X 2 X is of the form X v

?

D. A solution to this ondition

is a substitution � over L with �(X) v �(D).

333.222. mathing problems 15

� A strit L-side ondition for X 2 X is of the form X �

?

D. A solution to this

ondition is a substitution � over L with �(X) � �(D).

Mathing problems with side onditions an now be de�ned as a tuple onsisting of a

mathing problem and a set of side onditions.

� An L-mathing problem modulo equivalene with (non-strit) side onditions is of the

form (C �

?

D; fX

j

v

?

E

j

j1 � j � `g). A solution to this problem is a substitution

� over L with C � �(D) and �(X

j

) v �(E

j

) for every j 2 f1; : : : ; `g.

� An L-mathing problem modulo equivalene with strit side onditions is of the form

(C �

?

D; fX

j

�

?

j

E

j

j1 � j � `g), where �

j

2 f�;vg for all j 2 f1; : : : ; `g. A solution

to this problem is a substitution � over L with C � �(D) and �(X

j

) �

j

�(E

j

) for

every j 2 f1; : : : ; `g.

� Side onditions are alled ayli i� the variables X

j

; : : : ; X

`

do not our in E

j

for

every j 2 f1; : : : ; `g.

An L-mathing problem with side onditions is in (L; L

0

; L

00

)-labelled FL

0

-normal form i�

for unique identi�ers L, L

0

, and L

00

, C is in L-labelled FL

0

-normal form, D is in (L

0

; L

00

)-

labelled FL

0

-normal form, and E

j

is in (L

0

j

; L

00

j

)-labelled FL

0

-normal form for every index

j 2 f1; : : : ; `g.

�

�

�

hapter 4

Solving Mathing

Problems

This hapter presents methods to solve mathing problems modulo equivalene without

side onditions in ALN and its sublanguages. In the �rst setion we give a summary of

results on this subjet, whih has been studied extensively in [BKBM99℄. The solution

strategies proposed there rely on the informally introdued notion of \treelike automata".

In the seond setion, we formally de�ne treelike automata and disuss their omplexity.

This allows a formal veri�ation of the omplexity results stated in [BKBM99℄, whih will

be given in the third setion. We will see that mathing problems modulo equivalene in

fat an be solved in polynomial time.

4.1 Results from previous work

In [BKBM99℄ and [K�us98℄, mathing modulo equivalene in FL

?

, FL

:

and ALN is redued

to solving equations over formal languages, whih we will refer to as \solvability equations".

The following four de�nitions and the following three lemmata summarize the results of

the respetive artiles.

De�nition 4.1 Solvability equations in FL

?

FL

?

FL

?

Let (C �

?

D) be an FL

?

-mathing problem in (U; V;W)-labelled FL

0

-normal form.

De�ne the following formal language equations:

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�X

j;?

��

�

(?)

U

A

[U

?

��

�

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�X

j;A

(A)

for all A 2 C.

�

�

�

Solvability of the above system of equations is deided by assigning appropriate formal

languages to the ourring variables. The following lemma spei�es these formal languages.

Lemma 4.2 Testing solvability in FL

?

FL

?

FL

?

Let (C �

?

D) be an FL

?

-mathing problem in (U; V;W)-labelled FL

0

-normal form. Then

the system of equations (?); ((A)jA 2 C) has a solution i�:

1. For every j 2 f1; : : : ; `g, replaing the expression X

j;?

��

�

by the set

b

L

j;?

:=

T

w2W

j

w

�1

�(U

?

��

�

) solves equation (?).

18 hapter 444. solving mathing problems

2. For every A 2 C and for every j 2 f1; : : : ; `g, replaing the variable X

j;A

by the set

b

L

j;A

:=

T

w2W

j

w

�1

�(U

A

[U

?

��

�

) solves equation (A).

Similar results are obtained for FL

:

. Here, we have the following solvability equations.

De�nition 4.3 Solvability equations in FL

:

FL

:

FL

:

Let (C �

?

D) be an FL

:

-mathing problem in (U; V;W)-labelled FL

0

-normal form.

De�ne the following formal language equations.

b

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�X

j;?

��

�

[

[

A2C

Int(A;:A)��

�

(?)

U

A

[

b

U

?

��

�

= V

A

[

b

U

?

��

�

[

`

[

j=1

W

j

�X

j;A

(A)

U

:A

[

b

U

?

��

�

= V

:A

[

b

U

?

��

�

[

`

[

j=1

W

j

�X

j;:A

(:A)

for all A 2 C, where

Int(A;:A) := (V

A

[

`

[

j=1

W

j

�X

j;A

) \ (V

:A

[

`

[

j=1

W

j

�X

j;:A

): �

�

�

Though still only dependent on the set C of atomi onepts, the number of equations

has inreased, beause negated atomi onepts need to be dealt with separately. Observe

that in the solvability equations for FL

?

, the equation (?) was ompletely independent

of role languages referring to atomi onepts A 2 C. For FL

:

this is no longer the ase,

beause the onjuntion of an atomi onept and its negation is inonsistent. For that

reason, the expression Int is inluded in equation (?). The following lemma provides a

test for solvability in FL

:

.

Lemma 4.4 Testing solvability in FL

:

FL

:

FL

:

Let (C �

?

D) be an FL

:

-mathing problem in (U; V;W)-labelled FL

0

-normal form. Then

the system of equations (?); ((A)jA 2 C); ((:A)jA 2 C) has a solution i�:

1. For every A 2 C and for every j 2 f1; : : : ; `g, replaing the variable X

j;A

by the set

b

L

j;A

:=

T

w2W

j

w

�1

�(U

A

[

b

U

?

��

�

) solves equation (A).

2. For every A 2 C and for every j 2 f1; : : : ; `g, replaing the variable X

j;:A

by the set

b

L

j;:A

:=

T

w2W

j

w

�1

�(U

:A

[

b

U

?

��

�

) solves equation (A).

3. For every j 2 f1; : : : ; `g, replaing the variables X

j;?

��

�

by the expression

b

L

j;?

:=

T

w2W

j

w

�1

�(U

?

��

�

) together with the assignments proposed in (1) and (2)

solves equation (?).

Note that ondition three requires \together with the assignments proposed in (1) and

(2)". This is neessary beause of the expression Int , by whih equation (?) beomes

dependent on the other assignments. For ALN , we have to introdue some notation �rst.

444.111. results from previous work 19

De�nition 4.5 Notation

Let (C �

?

D) be an ALN -mathing problem in (U; V;W)-labelled FL

0

-normal form. The

following tuples of variables are de�ned for the sake of readability.

X

?

:= (X

j;?

j1 � j � `)

X

C

:= (X

j;A

j1 � j � l; A 2 C)

X

:

:= (X

j;:A

j1 � j � `; A 2 C)

X

�

:= (X

j;(�nR)

j1 � j � `; (� nR) 2 N

�

)

X

�

:= (X

j;(�nR)

j1 � j � `; (� nR) 2 N

�

)

Denote by � an arbitrary assignment of �nite languages to the variables ontained in the

tuples, i.e. �(X

i;H

) = L

i;H

for all i 2 f1; : : : ; `g and H 2 f?g[C[f:AjA 2 Cg[N

�

[N

�

.

Let � be the substitution orresponding to �, so that for every j 2 f1; : : : ; `g we have:

�(X

j

) := 8�(X

j;?

):? u u

A2C

8�(X

j;A

):A u u

A2C

8�(X

j;:A

)::A

u u

(�nR)2N

�

8�(X

j;(�nR)

):(� nR) u u

(�nR)2N

�

8�(X

j;(�nR)

):(� nR)

Denote by E

D

(X

?

; X

C

; X

:

; X

�

; X

�

) the set of exluding words obtained for D relative to

the assignment �. Thus, let

E

D

(�(X

?

); �(X

C

); �(X

:

); �(X

�

); �(X

�

)) := E

�(D)

;

yielding the set of �(D)-exluding words after assigning the ourring variables.

�

�

�

The above onstrut is neessary, beause the set of exluding words is de�ned only for

onept desriptions and not for onept patterns. Consequently, we must assume some

assignment of the onept variables ourring on the right-hand side of the mathing

problem. With these preparations, the following solvability equations are provided.

De�nition 4.6 Solvability equations in ALN

ALN

ALN

Let (C �

?

D) be an ALN -mathing problem in (U; V;W)-labelled FL

0

-normal form.

With the notation of the above de�nition, de�ne the following formal language equations.

E

C

= E

D

(X

?

; X

C

; X

:

; X

�

; X

�

) (?)

U

A

[E

C

= V

A

[E

C

[

`

[

j=1

W

j

�X

j;A

(A)

U

:A

[E

C

= V

:A

[E

C

[

`

[

j=1

W

j

�X

j;:A

(:A)

[

m�n

U

(�mR)

[E

C

= V

(�mR)

[E

C

[

`

[

j=1

W

j

�X

j;(�nR)

(� nR)

[

m�n

0

U

(�mR)

[E

C

�R

�1

= V

(�mR)

[E

C

�R

�1

[

`

[

j=1

W

j

�X

j;(�n

0

R)

(� n

0

R)

for all A 2 C, n 2 N n f0g, n

0

2 N, (� nR) 2 N

�

, and (� n

0

R) 2 N

�

.

�

�

�

Here, the number of equations additionally depends on the number restritions ourring

in the mathing problem. Again, equation (?) takes into aount role languages referring

to other onepts than the ?-onept. However, this property is syntatially hidden in

the onstruts E

C

and E

D

, whih are de�ned as fw 2 �

�

jC v 8w:?g and analogously for

E

D

, as we know from Chapter 2.

20 hapter 444. solving mathing problems

Lemma 4.7 Testing solvability in ALN

ALN

ALN

Let (C �

?

D) be an ALN -mathing problem in (U; V;W)-labelled FL

0

-normal form.

Furthermore, let

b

L

j;?

:=

T

w2W

j

w

�1

�E

C

. Then there exists a �nite set L

j;?

of polynomial

size in the input mathing problem with L

j;?

��

�

=

b

L

j;?

. As mentioned previously, this is

shown in [BKBM99℄. The system of equations (?); ((A)jA 2 C); ((:A)jA 2 C); ((� nR)j(�

nR) 2 N

�

); ((� nR)j(� nR) 2 N

�

) then has a solution i�:

1. For every j 2 f1; : : : ; `g and A 2 C, replaing the variable X

j;A

by the set

L

j;A

:= (

T

w2W

j

w

�1

�(U

A

[E

C

)) n

b

L

j;?

solves equation (A).

2. For every j 2 f1; : : : ; `g and A 2 C, replaing the variable X

j;:A

by the set

L

j;:A

:= (

T

w2W

j

w

�1

�(U

:A

[E

C

)) n

b

L

j;?

solves equation (:A).

3. For every j 2 f1; : : : ; `g and (� nR) 2 N

�

, replaing the variable X

j;:A

by the set

L

j;(�nR)

:= (

T

w2W

j

w

�1

�(

S

m�n

U

(�nR)

[E

C

)) n

b

L

j;?

solves equation (� nR).

4. For every j 2 f1; : : : ; `g and (� nR) 2 N

�

, replaing the variable X

j;:A

by the set

L

j;(�nR)

:= (

T

w2W

j

w

�1

�(

S

m�n

U

(�nR)

[E

C

�R

�1

)) n

b

L

j;?

solves equation (� nR).

5. For every j 2 f1; : : : ; `g, replaing the variable X

j;?

by the set

L

j;?

together with the assignments proposed in (1){(4) solves equation (?).

Observe that in the above onditions a �nite alternative to

b

L

j;?

is provided and that

b

L

j;?

is subtrated from the other languages, thus produing polynomially large languages as

solutions to the equations. This is an immediate onsequene of [BKBM99℄, where it was

shown that the above solution languages an be omputed in polynomial time.

By inserting the languages spei�ed in the previous lemmata into the referring solvability

equations, we obtain variable-free formal language equations, whih are valid if and only

if the original mathing problem is solvable. Note that this redues the deision problem

from solvability to equality. Therefore, we only need a method to deide equality for

the equations obtained in this way. In [BKBM99℄, the notion of treelike automata is

introdued to failitate this task. The next setion formally de�nes them and disusses

their properties.

4.2 Treelike automata

We need to deide equality for the variable-free variants of the solvability equations in-

trodued in the last setion. Why not employ ordinary �nite automata for this deision?

In the general ase, repeatedly interseting deterministi �nite automata may produe

exponentially large results [YZ91℄. Nondeterministi �nite automata, on the other hand,

annot be omplemented eÆiently. Sine both intersetion and omplement are essential

operations for our deision problem, we need to de�ne automata suiting our requirements

better|treelike automata. Their main objetive is to support eÆient operations for the

left quotient, the omplement, the intersetion, and the union.

4.2.1 Basi de�nitions

In order to de�ne treelike automata as a speial lass of deterministi �nite automata it

would be suÆient to restrit the set of states and the transition funtion in a ertain way.

However, we want to stress the analogy to trees and therefore de�ne treelike automata

indutively. Furthermore, this will enable us to de�ne operations on treelike automata in

a partiularly simple fashion.

444.222. treelike automata 21

De�nition 4.8 Syntax of treelike automata

Let � be a �nite alphabet and Type := fNor ;Fing a set of labels. The set Treelike(�) of

treelike automata over � is indutively de�ned by:

Treelike(�) := fNil ;Cyg [(Type � (Treelike(�)

j�j

))

The indutive de�nition of Treelike(�) orresponds to the struture of a tree with nodes of

the form (Nor ; (�)) and (Fin ; (�)) respetively. The seond omponent of a node is a tuple

of the dimension j�j, representing the list of suessors of that node. Sine we assume the

alphabet � to be ordered, suessors for ertain elements of � are simply inserted in the

appropriate plaes of the tuple. Thus, eah node has one suessor for every harater of

�. The idea is that having a suessor for some harater s

i

is analogous to a direted

edge labelled s

i

in an ordinary �nite automaton.

There are two speial onstrutors, Nil and Cy. Nil is supposed to be the automaton

aepting no input whatsoever, Cy the one aepting any input. In a tree representation,

Nil and Cy appear as leaf-nodes. However, they deviate from this notion in one respet

whih will beome lear when de�ning the transition funtion. Both nodes have themselves

as suessor for every harater of �. In this respet treelike automata di�er from the

intuition of trees.

�

�

�

In an ordinary tree, leaf-nodes like Nil and Cy pointing to themselves do not exist. It

might therefore appear negligent to refer to trees when illustrating the struture of treelike

automata. We will nevertheless do so for two reasons. Firstly, the existene of unusual

leaf-nodes does not violate the analogy to trees severely; seondly, the terminology existing

for trees will prove suitable to explain our ideas.

Let us �rst introdue some abbreviations for treelike automata.

De�nition 4.9 Notation

� For (Nor ; (T

1

; : : : ; T

n

)) write (T

1

; : : : ; T

n

)

N

;

for (Fin ; (T

1

; : : : ; T

n

)) write (T

1

; : : : ; T

n

)

F

.

� Write (T

1

; : : : ; T

n

)

�

, if (T

1

; : : : ; T

n

)

N

as well as (T

1

; : : : ; T

n

)

F

are referred to, i.e. (�)

�

means \(�)

N

or (�)

F

" in existentially quanti�ed statements and \(�)

N

and (�)

F

" in

for-all-quanti�ed statements.

�

�

�

For the rest of this hapter, we shall regard � as an arbitrary but �xed �nite alphabet

with n unique elements for some positive integer n. Therefore, let � := fs

1

; : : : ; s

n

g.

Like deterministi �nite automata, treelike automata are equipped with a transition fun-

tion and a set of aepting states. Unlike deterministi �nite automata, both transition

funtion and aepting states will be de�ned idential for every treelike automaton. This

is possible, beause the behaviour of the automaton is impliitly ontained in its indutive

struture.

De�nition 4.10 Semantis of treelike automata

For any treelike automata T

1

; : : : ; T

n

2 Treelike(�) and for any s

i

2 �, the transition

funtion Æ is indutively de�ned by:

Æ : Treelike(�)� � ! Treelike(�)

Nil ; s

i

7! Nil

Cy ; s

i

7! Cy

(T

1

; : : : ; T

n

)

�

; s

i

7! T

i

22 hapter 444. solving mathing problems

Observe that Nil and Cy point to themselves as suessors, thus deviating from the idea

of tree-nodes. Æ is now generalized in the usual way to aept words of length greater than

one and the empty word ". For T 2 Treelike(�), for s

i

2 �, and for any v 2 �

�

, de�ne

indutively:

^

Æ : Treelike(�)� �

�

! Treelike(�)

T ; " 7! T

T ; s

i

v 7!

^

Æ(Æ(T ; s

i

); v)

One an see that

^

Æ(Nil ; w) equals Nil for any word w. The same holds for Cy. The

di�erene between Nil and Cy beomes apparent when de�ning aepting onditions.

The set A of aepting states is the same for any treelike automaton. It is de�ned as

in�nite set of the form:

A := fCyg [(fFing � (Treelike(�)

j�j

))

Observe that for a given node T , membership in A an be tested in onstant time. It

is suÆient to test whether or not T equals Cy or begins with (Fin ; : : :). The language

aepted by a treelike automaton T now an be de�ned as:

L(T) := fw 2 �

�

j

^

Æ(T ; w) 2 Ag

Equivalene is de�ned as usual for automata. Treelike automata S and T are equivalent

(S � T), i� they aept the same language, i.e. L(S) = L(T).

�

�

�

The following example illustrates the struture of treelike automata in omparison to

deterministi �nite automata.

Example 4.11 Treelike automata

Let � := fs

1

; s

2

; s

3

g and let A be a treelike automaton over � suh that:

A := (Fin ; ((Fin ; (Nil ;Nil ;Nil)); (Nor ; (Cy;Nil ;Nil));Nil))

Then A an be represented by a transition tree as shown on the left-hand side below.

In this tree every node represents a state of the automaton. The upper half denotes the

label of the state, the lower half lists the suessors for every harater of �. The topmost

state is the initial state. A direted edge labelled s

i

orresponds to a transition of the

automaton upon input s

i

. Cyli edges at the leave-nodes apply to every harater of �.

Nor

Nil Nil Nil Cy Nil Nil

Nil

s

1

s

2

Fin

Fin

BA

s

1

s

2

s

3

s

1

s

2

s

3

s

1

s

2

s

3

s

1

For instane, upon input s

2

s

1

s

3

the automaton A reahes the state Cy. Aording to the

de�nition, the initial state, its leftmost diret suessor, and the leaf-node labelled Cy are

aepting states. We thus �nd that A aepts the language L(A) = f"; s

1

g [fs

2

s

1

g��

�

.

444.222. treelike automata 23

Observe that the size of A depends on the ardinality of �. On the right-hand side, we have

ontrasted a deterministi �nite automaton B aepting the same language. Obviously,

B is signi�antly smaller that A. When introduing operations on treelike automata,

however, we shall see that this overhead yields advantages.

�

�

�

Exploiting the analogy to trees, we de�ne some further notions for treelike automata:

De�nition 4.12 Subtrees and trimmed automata

T ;S 2 Treelike(�)

� S is a subtree of T i� there is a word w 2 �

�

with

^

Æ(T ; w) = S.

� T is trimmed i� T has no subtree of the form (Nil ; : : : ;Nil)

N

, i.e. all leave-nodes in

the tree represented by T are aepting states of the form (Nil ; : : : ;Nil)

F

or Cy.

�

�

�

The notion of a subtree orresponds to the intuitive idea of a subtree in the tree represented

by a treelike automaton.

Trimming treelike automata aims at ruling out ertain irregularities. Nodes of the form

(Nil ; : : : ;Nil)

N

do not ontribute to the language aepted by the automaton. In ertain

ontexts it will be neessary to modify automata in suh a way that no leave-node aepts

only the empty set.

The anonial de�nition of the aepted language in De�nition 4.10 makes it easy to see

the onnetion between treelike and deterministi �nite automata. For pratial purposes,

however, we an take advantage of the rather simple struture of treelike automata to

propose an alternative de�nition of the aepted language.

De�nition 4.13 Language funtion

For treelike automata T

1

; : : : ; T

n

2 Treelike(�) the funtion lang is indutively de�ned as

follows.

lang : Treelike(�) ! P(�

�

)

Nil 7! ;

Cy 7! �

�

(T

1

; : : : ; T

n

)

N

7!

n

[

i=1

fs

i

g�lang(T

i

)

(T

1

; : : : ; T

n

)

F

7! f"g [lang((T

1

; : : : ; T

n

)

N

) �

�

�

The funtion lang is intended to simplify the handling of treelike automata. Nevertheless,

we still have to prove that the above de�nition in fat is equivalent to the previous one.

This will be shown in the next setion.

Sine we will be onerned with omplexity issues, a means of quantifying the size of a

treelike automaton is required. The next de�nition provides suh a measure.

De�nition 4.14 Size of treelike automata

For treelike automata T

1

; : : : ; T

n

2 Treelike(�) the funtion k � k is indutively de�ned by:

k � k : Treelike(�)! N

Nil 7! 1

Cy 7! 1

(T

1

; : : : ; T

n

)

�

7! 1 +

n

X

i=1

kT

i

k �

�

�

24 hapter 444. solving mathing problems

kT k orresponds to the amount of spae neessary to represent T .

The de�nitions stated so far make treelike automata appear fairly similar to deterministi

�nite automata. It is the task of the next setion to answer two questions: How muh do

treelike automata and DFA have in ommon and what lass of formal languages an be

represented by treelike automata.

4.2.2 Properties

At �rst, we have to verify the orretness of the alternative de�nition given in the previous

setion for the language aepted by treelike automata. In most ases, using the funtion

lang will prove simpler than the original de�nition.

Lemma 4.15 Corretness of lang

Let T 2 Treelike(�) be a treelike automaton. Then L(T) = lang(T), i.e. lang is an

equivalent de�nition of the language aepted by T .

Proof.

We prove the laim by indution over the struture of T .

B

B

B

T = Nil or T = Cy : By De�nition 4.10, L(Nil) = fw 2 �

�

j

^

Æ(Nil ; w) 2 Ag. It holds

that

^

Æ(Nil ; w) equals Nil for any word w. As Nil is no element of A, we have L(Nil) = ;.

By De�nition 4.13, this equals lang(Nil). The ase T = Cy is similar. The only di�erene

is that Cy 2 A, so that we gain �

�

as aepted language whih mathes the de�nition

of lang(Cy).

B

B

B

T = (T

1

; : : : ; T

n

)

N

: Then L((T

1

; : : : ; T

n

)

N

) = fw 2 �

�

j

^

Æ((T

1

; : : : ; T

n

)

N

; w) 2 Ag.

Nodes of the form (�)

N

do not our in A. Thus, " is not in L((T

1

; : : : ; T

n

)

N

). We

an thus rewrite L((T

1

; : : : ; T

n

)

N

) as fs

i

vjs

i

2 �; v 2 �

�

;

^

Æ((T

1

; : : : ; T

n

)

N

; s

i

v) 2 Ag. By

applying distributivity over the union we obtain

L((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�fv 2 �

�

j

^

Æ((T

1

; : : : ; T

n

)

N

; s

i

v) 2 Ag:

Aording to De�nition 4.10, the ondition

^

Æ(Æ((T

1

; : : : ; T

n

)

N

; s

i

); v) 2 A is equivalent

to

^

Æ(T

i

; v) 2 A, whih by indution is equivalent to v 2 lang(T

i

). Consequently, we have

L((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�lang(T

i

);

whih equals de�nition of lang((T

1

; : : : ; T

n

)

N

).

B

B

B

T = (T

1

; : : : ; T

n

)

F

: The argument for nodes marked Fin is similar to the previous ase.

Here, the automaton will aept ", so that with the arguments from (3) above, we an

infer

L((T

1

; : : : ; T

n

)

F

) = f"g [

n

[

i=1

fs

i

g�lang(T

i

);

whih equals de�nition of lang((T

1

; : : : ; T

n

)

F

).

�

�

�

We will now show that|not surprisingly|every treelike automaton an be represented by

a deterministi �nite automaton. The lass Treelike(�) therefore is a speial representation

of a sublass of DFA(�).

444.222. treelike automata 25

Lemma 4.16 Relation between treelike and �nite automata

Let T 2 Treelike(�) be a treelike automaton. Then there is a deterministi �nite automa-

ton A 2 DFA(�) with L(T) = L(A).

Proof.

De�ne A 2 DFA(�) as A := hQ;�; Æ

A

; q

T

; F i, where

� Q := fq

S

j S subtree of T g is the set of states with initial state q

T

,

� F := fq

S

2 Qj S 2 Ag is the set of �nite states, and

� for q

S

2 Q and s

i

2 � the transition funtion Æ

A

is de�ned by:

Æ

A

(q

S

; s

i

) := q

Æ(S;s

i

)

.

Observe that Q is �nite and losed under Æ

A

. Æ

A

is a deterministi transition funtion.

For the extended transition funtion Æ

A

: Q��

�

! Q we an derive by indution over the

length of w that: Æ

A

(q

S

; w) = q

^

Æ(S;w)

.

We now prove the equivalene of the DFA and the treelike automaton. Aording to

the ommon de�nition of DFA, the language aepted by A is fw 2 �

�

jÆ

A

(q

T

; w) 2 Fg.

We have mentioned that Æ

A

(q

T

; w) = q

^

Æ(S;w)

for any word w. Sine F is de�ned as

fq

S

2 Qj S 2 Ag, we obtain

L(A) = fw 2 �

�

jq

^

Æ(S;w)

2 fq

S

2 Qj S 2 Agg:

The ondition for the set holds i�

^

Æ(S; w) 2 A, whih is equivalent to w 2 L(T).

�

�

�

The direted graph representing the automaton introdued in the above lemma does not

neessarily form a tree. In treelike automata, idential subtrees an our at di�erent

positions in the tree. The de�nition of the set of states Q above automatially maps

idential states onto one state. Consequently, the size of the equivalent DFAmay be smaller

than that of original treelike automaton. Note also that the deterministi �nite automaton

B proposed in Example 4.11 is not obtained from the analogous treelike automaton A by

performing the onstrution of Lemma 4.16.

We now introude auxiliary funtions to simplify the onstrution of treelike automata for

the reognition of two simple lasses of languages.

De�nition 4.17 Indued treelike automata

The funtions ind and ind

0

are indutively de�ned as follows.

ind : �

�

! Treelike(�)

" 7! (Nil ; : : : ;Nil)

F

s

i

v 7! (Nil ; : : : ;Nil

| {z }

i�1

; ind(v);Nil ; : : : ;Nil

| {z }

n�i

)

N

ind

0

: �

�

! Treelike(�)

" 7! Cy

s

i

v 7! (Nil ; : : : ;Nil

| {z }

i�1

; ind

0

(v);Nil ; : : : ;Nil

| {z }

n�i

)

N

�

�

�

Given a word w, the funtion ind is supposed to return a treelike automaton aepting

the language fwg. Similarly, ind

0

(w) is supposed to aept fwg��

�

. In the next lemma,

we will prove that the funtions ind and ind

0

in fat have the desired property.

26 hapter 444. solving mathing problems

Lemma 4.18 Properties ind and ind

0

Let w 2 �

�

be a word over �. Then

1. L

ind(w)

= fwg and L

ind

0

(w)

= fwg��

�

2. The size kind(w)k of ind(w) is linear in jwj. The exeution of ind(w) requires linear

time in jwj.

3. The equivalent laim holds for ind

0

.

Proof.

I

1. Due to Lemma 4.15, it is suÆient to onsider lang(T) instead of L(T). Proof by

indution over the length of w.

B

B

B

jwj = 0: Then: w = ". We have ind(") = (Nil ; : : : ;Nil)

F

aording to De�nition 4.17.

lang((Nil ; : : : ;Nil)

F

) equals f"g [lang((Nil ; : : : ;Nil)

N

) and �nally, lang((Nil ; : : : ;Nil)

N

)

equals

S

n

i=1

fs

i

g�lang(Nil). By de�nition, lang(Nil) is empty. Thus, for lang(ind (")), we

end up with f"g.

The reasoning for ind

0

(") is similar. ind

0

(") returns Cy and lang(Cy) = �

�

. Sine

�

�

= f"g��

�

, this ase is orret.

B

B

B

jwj > 0: Then there exist s

i

2 � and v 2 �

�

with w = s

i

v. By de�nition, lang(ind (s

i

v))

equals lang((Nil ; : : : ;Nil ; ind(v);Nil ; : : : ;Nil)

N

). We have already seen in (jwj = 0) that

all leave-nodes marked Nil do not ontribute to the aepted language. Thus, he have

lang(ind (s

i

v)) = fs

j

g�lang(ind (v)). By indution, this equals fs

j

g�fvg, whih ompletes

the argument.

For ind

0

(s

i

v), the proof is idential exept for the indution argument. Here we an assume

that lang(ind

0

(v)) equals fvg��

�

. The rest of the onlusion remains the same.

I

2. Upon input w 2 �

�

, exatly one harater of w is removed by ind in every step

of reursion. Simultaneously, the automaton to be assembled is expanded by a onstant

amount of spae. That amount is linear in the size j�j of the alphabet and is thus onstant

in jwj. Therefore, the expansion of the automaton osts a onstant amount of time in every

step. The number of steps is linear in jwj. Thus, we require only linear time in jwj to

assemble ind(w).

I

3. Analogous to (2).

�

�

�

We have seen as a onsequene of Lemma 4.16 that the language aepted by a treelike

automaton is regular, sine one an always onstrut an equivalent DFA. We will now

examine further the struture of languages aepted by treelike automata and show that

there are regular languages whih annot be aepted by any of them.

Lemma 4.19 Struture of L(T)

L(T)

L(T)

1. For every treelike automaton T 2 Treelike(�) there exist �nite languages L;L

0

� �

�

with: L

T

= L [L

0

��

�

.

2. For any �nite languages L;L

0

� �

�

there is a treelike automaton T 2 Treelike(�)

with: L

T

= L [L

0

��

�

.

Proof.

I

1. Beause of 4.15 we an again resort to lang(T) instead of examining L(T). Proof

by strutural indution over T .

444.222. treelike automata 27

B

B

B

T = Nil or T = Cy : Per de�nition, lang(Nil) = ; = ; [;��

�

. Consequently, with

L = L

0

= ; the laim holds. Similar for Cy : lang(Cy) = �

�

= ; [f"g��

�

. By de�ning

L = ; and L

0

= f"g, we again have the desired result.

B

B

B

T = (T

1

; : : : ; T

n

)

N

: lang((T

1

; : : : ; T

n

)

N

) equals

S

n

i=1

fs

i

g�lang(T

i

). By indution, we

may assume that there exist �nite languages L and L

0

with lang(T

i

) = (L

i

[L

0

i

��

�

).

Applying distributivity over union then yields

lang((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�L

i

[

n

[

i=1

fs

i

g�L

0

i

��

�

Therefore, by hoosing L =

S

n

i=1

fs

i

g�L

i

and L

0

=

S

n

i=1

fs

i

g�L

0

i

the argument is omplete.

B

B

B

T = (T

1

; : : : ; T

n

)

F

: This ase is equivalent to the previous one. The only di�erene is

that now f"g is inluded in lang((T

1

; : : : ; T

n

)

F

). thus, we an hoose L = f"g[

S

n

i=1

fs

i

g�L

i

and L

0

=

S

n

i=1

fs

i

g�L

0

i

to sueed.

I

2. Aording to Lemma 4.18 for every w 2 �

�

there exist treelike automata T ; T

0

with:

L

T

= fwg and L

T

0

= fwg��

�

. The languages L and L

0

are �nite. Moreover, in the next

setion we will show by Lemma 4.20 that Treelike(�) is losed under �nite union. Taking

into aount these two arguments, we an draw the proposed onlusion.

�

�

�

So far we have no reasonable methods to onstrut more omplex treelike automata. In the

last lemma it beame apparent that a sheme to onstrut the union of treelike automata

is desirable. In the next setion, we will introdue appropriate operations for treelike

automata to failitate this.

4.2.3 Operations on treelike automata

In De�nition 4.12 the notion of trimmed treelike automata was introdued. Now we will

propose methods for atually trimming an automaton. However, there is a seond lass

of irregularities we seek to eliminate. Apart from nodes whih ontribute nothing to

the aepted language, it is possible in a treelike automaton that large subtrees merely

aept every input whatsoever. In suh a ase, it would be appropriate to replae the

entire subtree by a Cy-node, thus minimizing the automaton.

At this point it is not lear why minimized automata are onsidered important for our

reasoning. At last, we want to use treelike automata to establish an algorithm for solving

mathing problems whih meets ertain omplexity bounds. For that purpose we have to

guarantee that, when onstruting a treelike automaton for a ertain language, the size of

the automaton is limited in the size of the language to represent. The auxiliary funtions

introdued next will prove to eliminate that problem.

For any treelike automata T

1

; : : : ; T

n

the operations trim (trim) and simplify (simp) are

indutively de�ned as follows.

trim : Treelike(�)! Treelike(�)

Nil 7! Nil

Cy 7! Cy

(T

1

; : : : ; T

n

)

N

7!

(

Nil if for all i : trim(T

i

) = Nil

(trim(T

1

); : : : ; trim(T

n

))

N

otherwise

(T

1

; : : : ; T

n

)

F

7! (trim(T

1

); : : : ; trim(T

n

))

F

28 hapter 444. solving mathing problems

trim is intended to remove all nodes of the form (Nil ; : : : ;Nil)

N

and replae them by Nil

whih is equivalent in regard to the aepted language. However, this proess has to be

done reursively. The replaement of one node by Nil may hange the predeessor node

to (Nil ; : : : ;Nil)

N

, whih then has to be replaed as well. The idea is to remove all nodes

ontributing nothing to the aepted language. Nodes of the form (�)

F

are never removed

beause they aept f"g.

Like trim , the purpose of simp is to remove subtrees and replae them by simple equiva-

lents. Nodes of the form (Cy; : : : ;Cy)

F

aept �

�

and an be replaed by Cy. Again,

that modi�ation is arried out reursively to eliminate all suh ases.

simp : Treelike(�)! Treelike(�)

Nil 7! Nil

Cy 7! Cy

(T

1

; : : : ; T

n

)

N

7! (simp(T

1

); : : : ; simp(T

n

))

N

(T

1

; : : : ; T

n

)

F

7!

(

Cy if for all i : simp(T

i

) = Cy

(simp(T

1

); : : : ; simp(T

n

))

F

otherwise

Taking advantage of these funtions we an now introdue operations on treelike automata.

Most of them are intended to refer to set-theoreti operations on the sets represented by

treelike automata, i.e. the omplement of a treelike automata A is intended to aept the

omplemented language of A.

For any treelike automata T

1

; : : : ; T

n

;S

1

; : : : ;S

n

2 Treelike(�) and w 2 �

�

the opera-

tions left quotient (w

�1

(�)), omplement (), trimmed omplement (�), intersetion (\

0

),

trimmed intersetion (\), and union ([) are de�ned indutively.

w

�1

: Treelike(�)! Treelike(�)

T

1

7!

^

Æ(T

1

; w)

 : Treelike(�)! Treelike(�)

Nil 7! Cy

Cy 7! Nil

(T

1

; : : : ; T

n

)

N

7! ((T

1

); : : : ; (T

n

))

F

(T

1

; : : : ; T

n

)

F

7! ((T

1

); : : : ; (T

n

))

N

Let us �rst onsider the unary operations. The left quotient is supposed to return the

subtree of a treelike automaton after reading a word w. The state of an automaton is

an automaton itself, so we just have to return the result of the transition funtion. The

omplement also works reursively. Sine Nor - and Fin-nodes di�er in aepting " or not,

the labels of these nodes have to be exhanged.

For the sake of brevity, all binary operations are de�ned ommutatively without expliitly

repeating symmetri patterns.

\

0

: Treelike(�)� Treelike(�)! Treelike(�)

Nil ; T 7! Nil

Cy ; T 7! T

(T

1

; : : : ; T

n

)

N

; (S

1

; : : : ;S

n

)

�

7! (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

N

(T

1

; : : : ; T

n

)

F

; (S

1

; : : : ;S

n

)

F

7! (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

F

When regarding Nor as \False" and Fin as \True", the intersetion takes the logial

onjuntion as resulting label. The union operator, as de�ned below, takes the disjuntion.

444.222. treelike automata 29

This is not surprising, beause in the intersetion-automaton only those states may be

aepting states whih have been aepting states in both input automata. An analogous

argument applies to the union-automaton.

[: Treelike(�)� Treelike(�)! Treelike(�)

Nil ; T 7! T

Cy ; T 7! Cy

(T

1

; : : : ; T

n

)

F

; (S

1

; : : : ;S

n

)

�

7! (T

1

[S

1

; : : : ; T

n

[S

n

)

F

(T

1

; : : : ; T

n

)

N

; (S

1

; : : : ;S

n

)

N

7! (T

1

[S

1

; : : : ; T

n

[S

n

)

N

Observe that an expliit de�nition of the union is in fat not neessary beause we have

introdued the omplement and the intersetion. The alternative proposed above, however,

may prove more eÆient when atually implenting algorithms based on treelike automata.

The omplexity lass, as we will see, is not a�eted.

When interseting trimmed automata, the trimming-property an get lost. The omple-

ment has the same disadvantage. To overome this we introdue modi�ed versions of these

operations.

\ : Treelike(�)! Treelike(�)

\ := trim Æ \

0

� : Treelike(�)! Treelike(�)

(�) := trim Æ

Thus, the orretion is ahieved by simply applying the trim operation at the end.

The left-quotient of a treelike automaton T is denoted as appliation of a funtion, i.e.

w

�1

(T), and not like a produt. In this respet we deviate from the notation for the left

quotient of formal languages in De�nition 2.3. A notation like w

�1

�T ould mislead to the

impression that there is a onatenation for treelike automata.

Observe that in most of the ases the operations de�ned above ould be realized by merely

hanging node labels in an appropriate way. Nevertheless, it has not been shown yet that

these operations yield the desired results. We will give a proof of orretness �rst and

then examine the omplexity of the operations.

Lemma 4.20 Corretness of the operations

Let w 2 �

�

be a word. and let T ;S 2 Treelike(�) be treelike automata. Then

1. trim(T) is trimmed and L(trim(T)) = L(T).

2. L(simp(T)) = L(T)

3. L(w

�1

(T)) = w

�1

�L(T)

4. L(T) = L(T)

5. L(T \ S) = L(T) \ L(S)

6. L(T [S) = L(T) [L(S)

Proof.

I

1. Prove trimming-property: T is trimmed if and only if no subtree of T is of the

form (Nil ; : : : ;Nil)

N

. One an see, that trim reursively removes subtrees of that form,

replaing then with Nil . Thus, the resulting tree has the desired property.

Proof of the equality of the aepted languages by strutural indution over T .

30 hapter 444. solving mathing problems

B

B

B

T = Nil or T = Cy : Trivial, beause trim does not hange Nil or Cy.

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: First ase: trim(T

i

) = Nil for all i. Then:

lang(trim((T

1

; : : : ; T

n

)

N

)) = lang(Nil) = ; by de�nition of trim . By indution, we obtain

lang(trim(T

i

)) = lang(T

i

), whih equals lang(Nil) aording to the assumption. Sine

lang(Nil) = ;, we obtain by de�nition of lang : lang((T

1

; : : : ; T

n

)

N

) =

S

n

i=1

fs

i

g�;, whih

simpli�es to ;.

Seond ase: There is an i with trim(T

i

) 6= Nil . If not all T

i

are trimmed to Nil , trim does

not a�et the label of the root node. By indution, we have lang(trim(T

i

)) = lang(T

i

).

Consequently, trim does not hange the aepted langauge.

If T = (T

1

; : : : ; T

n

)

F

, trim does not a�et the root node by de�nition. Thus, the argument

of the seond ase applies again.

I

2. Taking advantage of the analogous de�nitions of trim and simp, we an proof the

orretness of simp in the same fashion as for trim. Here the riterion is not evaluating

to Nil , but evaluationg to Cy. Moreover, this time nodes marked Nor remain unhanged

by instead of Fin in the seond ase above.

I

3. For w = ", the left quotient has no e�et. Furthermore, (wv)

�1

�L = v

�1

�(w

�1

�L) for

v 2 �

�

and for every language L. Consequently, left quotients for longer words w an be

obtained by suessively applying the left quotient for only one harater. It is therefore

suÆient to onsider only words w of length 1 in our proof, i.e. w = s

i

. Then we have:

L(s

�1

i

(T)) = fv 2 �

�

j

^

Æ(s

�1

i

(T); v) 2 Ag. Aording to the de�nition of the left quotient,

^

Æ(s

�1

i

(T); v) =

^

Æ(

^

Æ(T ; s

i

); v), whih by de�nition of

^

Æ equals

^

Æ(T ; s

i

v). Hene, taking all

words v for whih

^

Æ(T ; s

i

v) 2 A is equivalent to taking the left quotient s

�1

�L(T).

I

4. Due to (1), it is suÆient to prove the proposition for the omplement () instead

of the trimmed omplement. Proof by strutural indution over T .

B

B

B

T = Nil or T = Cy : Aording to lang , we have lang(Nil) = ; and lang(Cy) = �

�

.

Nil and Cy are omplementary with regard to (), their languages are omplementary

with regard to the omplement of formal languages. Thus, is orret for Nil and Cy.

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: () hanges the node label and proeeds to

the suessors. We thus obtain lang(((T

1

; : : : ; T

n

)

N

)) = f"g [

S

n

i=1

fs

i

g�lang((T

i

)) by

de�nition of lang , whih by indution an be replaed by f"g [

S

n

i=1

fs

i

g�lang(T

i

). We

now have to show that this equals lang((T

1

; : : : ; T

n

)

N

).

For a word w 2 �

�

, it holds that w 62 lang((T

1

; : : : ; T

n

)

N

) i� w 62

S

n

i=1

fs

i

g�lang(T

i

).

This is equivalent to w = " or, for some harater s

i

2 � and v 2 �

�

, w = s

i

v suh

that v 62 lang(T

i

). Therefore, w is an element of f"g [

S

n

i=1

fs

i

g�lang(T

i

), whih is the

omplement of lang((T

1

; : : : ; T

n

)

N

) aording to the de�nition of ().

The proof for T = (T

1

; : : : ; T

n

)

F

is idential exept for the empty word " missing in the

aepted language.

I

5. Beause of (1), we will onsider the intersetion (\

0

) and not the trimmed intersetion

(\). Proof by indution over the struture of T and S.

B

B

B

T = Nil or T = Cy : The intersetion of lang(Nil) with any other language is empty.

By de�nition, Nil \

0

S is Nil for any treelike automaton S, so that lang(Nil \

0

S) is

empty as well. Similarly, interseting lang(Cy) with any other language yields �

�

. As

Cy \

0

S = Cy, the language aepted by Cy \

0

S is also �

�

.

444.222. treelike automata 31

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

N

: By de�nition, we have that T \

0

S is equal

to (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

N

. Therefore, lang(T \

0

S) equals

S

n

i=1

fs

i

g�lang(T

i

\

0

S

i

). By

indution, fs

i

g�lang(T

i

\

0

S

i

) equals fs

i

g�(lang(T

i

) \ lang(S

i

)). The haraters of the

alphabet � are assumed to be uniqe. This allows us to apply distributivity over the

intersetion, yielding

S

n

i=1

fs

i

g�lang(T

i

) \

S

n

i=1

fs

i

g�lang(S

i

), whih mathes the de�nition

of lang(T) \ lang(S).

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

F

: Similar to the previous ase. Here " is an

element of lang(S). It disappears when applying the intersetion operation (\

0

) as well as

when interseting the atual aepted languages of T and S. Thus, the same argument

holds.

B

B

B

T = (T

1

; : : : ; T

n

)

F

; S = (S

1

; : : : ;S

n

)

F

: Analogous to the previous ases. This time the

empty word " appears in the languages of both T and S.

I

6. Proof by indution over the struture of T and S. Due to the great similarity to

the intersetion operation we will not give the proof in full detail. Whereas previously

the intersetion with �

�

auses no hange, here the union with ; hanges nothing. The

same analogy exists between interseting with ; an uniting with �

�

. Therefore, for ase

T = Nil or T = Cy, the same arguments hold.

The other ases are also obtained in the way seen above. Here, however, we do not even

require the argument of � onsisting of distint haraters. Distributivity over the union

ould be applied even without this.

�

�

�

Let us now study the omplexity of treelike automata. In the next lemma, we disuss the

e�et of the above operations on the size of the resulting automata. We will see that the

size of the resulting automaton never exeeds the sum of the sizes of the original automata.

Lemma 4.21 Size of the onstruted automata

Consider a word w 2 �

�

and treelike automata T ;S 2 Treelike(�). Then

1. ktrim(T)k � kT k and ksimp(T)k � kT k

2. kw

�1

(T)k � kT k

3. kT k � kT k

4. kT \ Sk < kT k+ kSk and kT [Sk < kT k+ kSk

Proof.

I

1. Applied on Nil or Cy , trim does not hange anything. Applied on nodes of the

form (T

1

; : : : ; T

n

)

�

however, it replaes subtrees of size greater than 1 by Nil , whih is of

size 1. Therefore, the size annot inrease when applying trim. The same argument holds

for simp.

I

2. The left quotient operation by de�nition returns a subtree of the automaton it is

applied to. Obviously, a treelike automaton is never of a smaller size than one of its

subtrees.

I

3. Beause of the result of (1), it is suÆient to onsider () instead of (�). By indution

over the struture of T , we prove that j(T)j = jT j.

B

B

B

T = Nil or T = Cy : Nil and are omplementary in regard to (). Moreover, the size

of both is the same whih implies that it remains the same when applying ().

32 hapter 444. solving mathing problems

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: By de�nition of , k(T

1

; : : : ; T

n

)

N

k is equal to

k((T

1

); : : : ; (T

n

))

N

k, whih simpli�es to 1+

P

n

i=1

k(T

i

)k. By indution, k(T

i

)k = kT

i

k,

so that k(T)k = 1 +

P

n

i=1

jT

i

j whih mathes the de�nition of kT k.

I

4. Again, we only need to give a proof for the intersetion (\

0

) without trimming. Proof

by indution over the struture of T .

B

B

B

T = Nil or T = Cy : Then T \

0

S 2 fT ;Sg aording to the de�nition. Both kT k and

kSk are integers greater than 0. Consequently, the size of the intersetion automaton must

be smaller than the sum of the sizes of T and S.

B

B

B

T = (T

1

; : : : ; T

n

)

�

and S = (S

1

; : : : ;S

n

)

�

: Applying the de�nition of the intersetion and

that of k�k, we obtain that kT \

0

Sk equals 1+

P

n

i=1

kT

i

\

0

S

i

k. By indution, this is less than

1+

P

n

i=1

(kT

i

k+kS

i

k). Adding 1 and splitting the sum yields 1+

P

n

i=1

kT

i

k+1+

P

n

i=1

kS

i

k,

whih is equivalent to kT k+ kSk.

Beause of the symmetri de�nitions of the intersetion and the union, the same argument

holds for the union of T and S.

�

�

�

Regarding time omplexity, we an establish similar results. The next lemma will show

that all operations take only linear time in the size of the input automata.

Lemma 4.22 Time omplexity

Let w 2 �

�

be a word and let T ;S 2 Treelike(�) be treelike automata. Then the following

operations require only linear time in the size of the input automata:

1. trim, simp, and (�),

2. the left quotient (w

�1

(�)),

3. trimmed intersetion (\) and union ([).

Proof.

I

1. Proof by indution over the struture of T .

B

B

B

T = Nil or T = Cy : Upon input Nil or Cy , the three funtions trim, simp, and

immediately return Nil or Cy als result. For all of them it takes onstant time to identify

the input automaton as one of Nil or Cy. Generating and returning the result also requires

only onstant time. The trimmed omplement operation (�) is de�ned as onatenation

of trim and and therefore also is �nished in onstant time in the size of the input.

B

B

B

T = (T

1

; : : : ; T

n

)

�

: Consider trim(T). By indution, it requires only linear time in

kT

i

k to ompute the results for trim(T

i

), simp(T

i

), and (T

i

) respetively. The test for

trim(T

i

) = Nil requires only onstant time for all i. Sine � is assumed to be onstant

and sine the number of subtrees equals j�j, testing all T

i

osts only onstant time in

k(T

1

; : : : ; T

n

)

�

k. The �nal result of trim(T) an be omputed from the results of trim(T

i

)

in onstant time. Altogether, we an infer linear time in the sum of all kT

i

k and thus

linear time in k(T

1

; : : : ; T

n

)

�

k.

For simp and , the same argument holds.

I

2. For w 2 �

�

, the omputation of

^

Æ(T ; w) osts only linear time in jwj and kT k.

Returning the resulting subtree also requires only linear time. Altogether, we obtain

linear time omplexity.

I

3. Taking advantage of (1), it is suÆient to onsider (\

0

) instead of (\). Proof by

indution over the struture of T .

444.222. treelike automata 33

B

B

B

T = Nil or T = Cy : Nil \

0

S and Cy\

0

S return either Nil or Cy. Sine the test for

T = Nil or T = Cy requires only onstant time, the result an be omputed in onstant

time. The same argument applies to the union operation ([).

B

B

B

T = (T

1

; : : : ; T

n

)

�

: By indution, for all i the results T

i

\

0

S

i

an be omputed in linear

time in kT

i

k and kS

i

k. The time neessary to assemble the �nal results from that is

linear in j�j and therefore onstant in k(T

1

; : : : ; T

n

)

�

k. Consequently, we obtain linear

time omplexity in k(T

1

; : : : ; T

n

)

�

k for the intersetion.

The same argument holds for the union ([).

�

�

�

The advantage of trim and simp is to provide a method for generating a better repre-

sentation for an automaton aepting some language. In the view of the rather simple

struture of treelike automata the question arises if there is a unique representation for

every automaton, i.e. a normal form whih annot be simpli�ed further. The next lemma

shows that suh a representation an be de�ned using trim and simp.

Lemma 4.23 Normal forms

Let T ;S 2 Treelike(�) be treelike automata. Then

1. T � S i� simp(trim(T)) = simp(trim(S))

2. Testing for equivalene requires only linear time in kT k+ kSk.

Proof.

I

1. (\)") Proof by indution over the struture of T and S.

B

B

B

T ;S 2 fNil ;Cyg: Sine simp(trim(Nil)) = Nil and simp(trim(Cy)) = Cy and sine

lang(Nil) 6= lang(Cy), the proposition follows immediately.

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = Nil : Then T only aepts ; and we an derive lang(T

i

) = ;

for every i, whih means that all T

i

are equivalent to Nil . By indution, we then obtain

simp(trim(T

i

)) = simp(trim(Nil)), whih equals Nil by de�nition of simp and trim. If

simp(trim(T

i

)) = Nil , then already trim(Nil) must have been Nil . If this is the ase, then

by de�nition trim((T

1

; : : : ; T

n

)

N

) is Nil and therefore simp(trim((T

1

; : : : ; T

n

)

N

)) is as well.

Utilizing that Nil = simp(trim(Nil)) we end up with simp(trim((T

1

; : : : ; T

n

)

N

)) equal to

simp(trim(Nil)), whih was to be shown.

B

B

B

T = (T

1

; : : : ; T

n

)

F

and S = Cy : Then lang(T) = �

�

and so lang(T

i

) = �

�

for every i.

This implies that every T

i

is equivalent to Cy whih by indution yields the equality of

simp(trim(T

i

)) and simp(trim(Cy)). Thus, simp(trim(T

i

)) = Cy for every i.

As T is labelled Fin , simp(trim(T)) simpli�es to simp((trim(T

1

); : : : ; trim(T

n

))

F

). Sine

always simp(trim(T

i

)) = Cy, the whole expression simpli�es to Cy by de�nition of simp.

Exploiting again that Cy = simp(trim(Cy)) we obtain that simp(trim((T

1

; : : : ; T

n

)

F

))

equals simp(trim(Cy)).

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

N

: By de�nition of lang , we have that lang(T

i

)

equals lang(S

i

) for all i, implying T

i

� S

i

. By indution, we an infer that simp(trim(T

i

))

equals simp(trim(S

i

)) for all i.

First ase: for all i it holds that trim(T

i

) = Nil . Then simp(trim(T

i

)) = Nil , so that by the

above equation simp(trim(S

i

)) = Nil . Therefore, trim(S

i

) = Nil for all i as well. As both

T and S are labelled Nor , by de�nition of trim this yields that simp(trim((T

1

; : : : ; T

n

)

N

))

equals simp(Nil) and analogously simp(trim((S

1

; : : : ;S

n

)

N

)) is equal to simp(Nil). Con-

sequently, simp(trim(T)) equals simp(trim(S)).

34 hapter 444. solving mathing problems

Seond ase: there is an i with trim(T

i

) 6= Nil . Then trim will redue neither T nor S to

Nil . As simp by de�nition does not redue nodes labelled Nor , the proposition is obtained

by merely applying the de�nitions of trim and simp: simp(trim((T

1

; : : : ; T

n

)

N

)) equals

simp((trim(T

1

); : : : ; trim(T

n

))

N

) whih equals (simp(trim(T

1

)); : : : ; simp(trim(T

n

)))

N

.

This is equivalent to (simp(trim(S

1

)); : : : ; simp(trim(S

n

)))

N

, whih an again be simpli�ed

to simp((trim(S

1

); : : : ; trim(S

n

))

N

), resulting in simp(trim((S

1

; : : : ;S

n

)

N

)).

B

B

B

T = (T

1

; : : : ; T

n

)

F

and S = (S

1

; : : : ;S

n

)

F

: This ase is fairly analogous to the previous

one. We again an infer simp(trim(T

i

)) being equal to simp(trim(S

i

)) for all i and then

distinguish two ases.

First ase: for all i : simp(trim(T

i

)) = Cy. As trim does not redue nodes marked

Fin, simp(trim((T

1

; : : : ; T

n

)

F

)) simpli�es to simp((trim(T

1

); : : : ; trim(T

n

))

F

). Sine al-

ways simp(trim(T

i

)) = Cy, simp redues the expression to Cy. The same transformation

applies to S, so that we obtain equality.

Seond ase: there is an i with: simp(trim(T

i

)) 6= Cy. In this ase, neither trim nor

simp redue the root node. Similar to the seond ase above we an therefore prove the

proposition by merely applying the de�nitions of trim and simp.

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

F

: Then T and S annot be equivalent beause

they do not agree upon aepting " or not.

I

1. (\(") Assume simp(trim(T)) = simp(trim(S)). Aording to Lemma 4.20, simp

and trim do not alter the aepted language, so that L(T) equals L(simp(trim(T))) and

L(S) equals L(simp(trim(S))). This implies L(T) = L(S), ompleting the proof.

I

2. Aording to Lemma 4.22, omputing simp(trim(T)) and simp(trim(S)) requires

only linear time in kT k + kSk. Due to Lemma 4.21, treelike automata annot inrease

in size when trimming or simplifying them. It is therefore suÆient to �nd a strategy to

syntatially ompare the automata in linear time in the size of the automata.

Suh a strategy an be de�ned easily. For instane, a simultaneous depth-�rst searh over

the trees orresponding to the automata has the required properties.

�

�

�

Beause of the properties shown in the previous lemma, simp(trim(T)) ould serve as a

normal-form for the automaton T . It is partiularly interesting that suh a normal form

an be omputed in linear time in the size of the automaton.

In the end we want to use treelike automata to represent regular languages ouring in

the solvability equations introdued in the �rst setion of this hapter. We have already

seen that treelike automata an represent any language of the form L [L

0

��

�

, where L

and L

0

are �nite languages. We have not yet provided a sheme to atually onstrut suh

an automaton, given languages L and L

0

. In the next lemma this will be provided.

Lemma 4.24 Representing languages by treelike automata

Let L;L

0

� �

�

be �nite languages over �. Then there is a automaton T 2 Treelike(�)

whih aepts von L [L

0

��

�

with:

1. kT k 2 O(kLk+ kL

0

k).

2. The onstrution of T takes only linear time in kLk+ kL

0

k.

Proof.

Construt the automaton T for in the following way:

� For every w 2 L, onstrut ind(w) whih aepts fwg, for every w

0

2 L

0

; analogously

onstrut ind

0

(w

0

) aepting fw

0

g��

�

.

444.222. treelike automata 35

� Construt the union over all automata ind(w) and ind

0

(w

0

) onstruted before.

Formally, T an be denoted as (

S

w2L

ind(w)) [(

S

w

0

2L

0

ind

0

(w

0

)). Taking advantage of

Lemma 4.18 and of Lemma 4.20 it is not diÆult to see that T aepts L [L

0

��

�

in

aordane with the proposition. We now show that T meets properties (1) and (2).

I

1. In Lemma 4.18 we have seen than for every word w 2 �

�

the size kind(w)k and

kind

0

(w)k of the indued automata are in O(jwj). From Lemma 4.21 we furthermore know

that for every treelike automata T

1

and T

2

, the size kT

1

[T

2

k of the uni�ed automata is

less than the sum kT

1

k + kT

2

k of the original sizes. With these results we an infer the

following result for the size of T :

jT j by de�nition equals k(

S

w2L

ind (w)) [(

S

w

0

2L

0

ind

0

(w

0

))k. Beause of the properties

of the union, this is in O((

P

w2L

kind(w)k) + (

P

w

0

2L

0

kind

0

(w

0

)k)) whih is limited by

O((

P

w2L

jwj) + (

P

w

0

2L

0

jw

0

j)) aording to the properties of ind . The de�nition of the

size of formal languages implies that this is equivalent to O(kLk+ kL

0

k).

I

2. For the time omplexity, an argument similar to (1) an be devised. We know from

Lemma 4.18 that ind and ind

0

require only linear time in the size of the input.

Unifying treelike automata an also be done in linear time, as shown in Lemma 4.22. Now

it is very important to take into aount that after eah uni�ation the size of the resulting

automaton does not exeed the sum of the sizes of the input automata. This guarantees

that when repeatedly unifying automata the size of the arguments is always the sum of

all automata so far uni�ed. With this we ome to the following onlusion.

When exeuted naively, the union over all automata of the form ind(w) and ind

0

(w) osts

quadrati time in the size of L and L

0

, as an be illustrated easily: unifying ind (w

1

)

and ind(w

2

) osts linear time in jw

1

j + jw

2

j. But then unifying the resulting automaton

with ind(w

3

) additionally requires linear time in jw

1

j + jw

2

j + jw

3

j, so that for the �nal

automaton the osts are 2 � (jw

1

j+ jw

2

j) + jw

3

j. This intuition implies a quadrati result

in kLk+ kL

0

k for the overall time neessary to onstrut T . It should be noted that this

result is suÆient for the argument in the following setions. We will in fat require no

more than polynomial time omplexity.

However, a more eÆient strategy an be found. Instead of unifying two automata in

every suessive step, the union over all automata an be omputed simultaneously. This

strategy avoids re-reading the resulting automaton in every step and an thus be realized

in linear time in the sum kLk+ kL

0

k of the sizes of the input languages.

�

�

�

Observe that the reverse task, i.e. reading o� the language aepted by a given treelike

automaton, an be solved easily in linear time in the size of the automaton. We only need

to perform a depth-�rst traversal of the automaton and memorize the word read on the

path from the root-node to the urrent node. Whenever visiting a node marked Fin , the

urrent word is added to a �rst language L; whenever visiting Cy, the urrent word is

added to a seond language L

0

. It an be shown that then the automaton examined in

that way aepts the language L [L

0

��

�

.

The omplexity of standard automata-theoreti problems for treelike automata has not yet

been onsidered. For the purpose of verifying solvability equations, we need two of them

at most: the emptyness- and the word-problem. Both an be solved easily for treelike

automata, as we will see next.

Lemma 4.25 Deision problems

Let T 2 Treelike(�) be a treelike automata and let w 2 �

�

be a word. Then the following

problems are solvable in linear time in the size kT k of the automaton and in the size of w:

1. L(T) =

?

;, i.e. the ;-problem

36 hapter 444. solving mathing problems

2. w 2

?

L(B), i.e. the word-problem

Proof.

I

1. As seen in Lemma 4.23, the language aepted by T is empty if and only if the

normalized automaton simp(trim(T)) equals Nil .

Computing simp and trim does not inrease the size of an automaton. These operations

also take only linear time in the size of the argument. We have seen this in Lemma 4.21

and Lemma 4.22. Furthermore, the test of equality to Nil osts only onstant time. We

therefore end up with linear time omplexity for the ;-problem.

I

2. Aording to the de�nition of L(T), w is aepted by T i�

^

Æ(T ; w) 2 A. By

de�nition of the left quotient, this is equivalent to w

�1

(T) 2 A. Aording to Lemma

4.22, omputing the left quotient osts only linear time in kT k and jwj. The left quotient

of T of ourse is not greater in size than T . Finally, testing for w

�1

(T) 2

?

A takes only

onstant time, sine the left quotient either has to be Cy or it has to be labelled Fin.

Thus, the word problem is of linear time omplexity as well.

�

�

�

There are two operations ourring in our solvability equations whih have not yet been

de�ned for treelike automata|onatenation and the right quotient. The right quotient

ours in the equations referring to �-number restritions for ALN . However, as an be

seen in De�nition 4.6, it is applied only to sets of exluding words and it is applied only

for single atomi roles. We will see later on that in this ase the right quotient an be

replaed by a simple expression requiring only known operations.

Nevertheless, treelike automata annot be onatenated eÆiently. When just linking

two treelike automata via "-transitions, the deterministi behaviour as well as the tree

struture might get lost. Merely opying the seond automaton to every �nite state would

also violate the tree struture if the �rst automaton ontained inner nodes marked Fin.

In addition opying would be ineÆient for suessive onatenations (whih do not our

in the equations, though).

To solve the problem of onatenation, we have to resort to general nondeterministi

�nite automata. These, however, annot be omplemented eÆiently. Observe that no

solvability equation requires onatenation on both sides. This suggests the following

strategy: We an represent the left-hand side of an equation by a treelike automaton and

the right-hand side|requiring onatenation|by an NFA. We an then still ompute the

omplement treelike automaton and interset it with the NFA. This strategy is suessful

if two onditions hold. Firstly, the intersetion of two NFA must be eÆient. Seondly,

the ;-problem for NFA must be deidable in polynomial time. We know from Lemma 2.8

that these onditions an be met.

In the next setion, we will give strategies to deide solvability in FL

?

, FL

:

, and ALN .

Finally, we shall summarize the results on mathing in the last setion of this hapter.

Mathing problems in FL

0

will not be examined in detail, beause deiding solvability

and omputing least solutions there is omparatively simple. When summarizing results,

however, we will briey address this ase.

4.3 Deiding solvability

We are now ready to atually deide the solvability of the solvability equations in FL

?

.

Thus, we insert the languages provided in Lemma 4.2 into the equations of De�nition 4.1.

The resulting equations are then tested for equality using a strategy introdued in the

next lemma. Now is the time for deploying the apabilities of treelike automata we have

444.333. deiding solvability 37

taken so muh are to speify in the last setion. The possibility to eÆiently ompute

the omplement of a treelike automaton will prove espeially useful.

Lemma 4.26 Testing solvability in FL

?

FL

?

FL

?

Let C �

?

D be an FL

?

-mathing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdued in De�nition 4.1 an be deided in poly-

nomial time in the size of the equation.

2. The same holds for equation (A) for every A 2 C.

Proof.

I

1. Aording to De�nition 4.1 and Lemma 4.2, we have to deide if

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)

| {z }

=:L

0

j

: (?

0

)

For every j it an be shown that L

0

j

is a subset of U

?

��

�

and is �

�

-losed. For the above

equation to hold the following onditions are therefore suÆient:

� V

?

� U

?

��

�

� For all u 2 U

?

: u 2 V

?

��

�

or there exists a j with u 2 L

0

j

.

B

B

B

Testing V

?

� U

?

��

�

: The idea is to onstrut a nondeterministi �nite automaton B

0

aepting the language V

?

\ U

?

��

�

. The ;-problem is then deided for B

0

.

As shown in Lemma 4.24, we an onstrut a treelike automaton T for U

?

��

�

whih is

of polynomial size in kU

?

k and whih an be obtained in polynomial time. Aording to

Lemmata 4.21 and 4.22, it furthermore takes only polynomial time in the size of A to

onstrut the omplement automaton T . Espeially, the size of T does not exeed that

of T . We an similarly onstrut a treelike automaton S for V

?

. As the intersetion of

two treelike automata takes only polynomial time (Lemma 4.22), we an easily produe

an intersetion automaton I := T \ S. Lemma 4.21 again guarantees that I is of poly-

nomial size in the sizes of T and S. Finally, deiding the ;-problem for treelike automata

takes only polynomial time in the size of the automata. This was shown in Lemma 4.25

when introduing general nondeterministi automata. Altogether, we an deide the �rst

ondition in polynomial time, sine all the role languages involved are limited in size by

the input mathing problem.

B

B

B

Testing the seond ondition: At �rst, observe that every L

0

j

is of the form L��

�

, whih

allows us to exept the �

�

-losure of U

?

when seleting elements u for our test. Sine U

?

is part of the input mathing problem, it is no problem to examine every u 2 U

?

as long as

eah requires only polynomial time. Thus, onsider one suh u. Testing whether u 2 V

?

��

�

an be realized similar to the �rst ondition. We an ompute an appropriate treelike

automaton to represent V

?

��

�

. As seen in Lemma 4.25, solving the word problem then

osts only polynomial time. Thus, we still have to test if u is an element ofW

j

�w

�1

(U

?

��

�

)

for every j.

For a given j we an test this as follows. W

j

is part of the input and thus of polynomial

size. Consequently, we an onstrut a treelike automaton for U

?

��

�

and then ompute

the left quotient for every w 2W

j

in polynomial time. We an then establish the interse-

tion automaton over all automata omputed that way. The properties of the operations

38 hapter 444. solving mathing problems

for treelike automata guarantee that this takes only polynomial time in the size of the

mathing problem and results in a treelike automaton T

j

of polynomial size.

Furthermore, we an onstrut a treelike automaton S

j

aepting W

j

. The onatenation,

however, is not available for treelike automata. We an nevertheless establish a nonde-

terministi �nite automaton representing L

0

j

by linking S

j

and T

j

in the way proposed in

Kleene's theorem for the onatenation automaton: Add "-transitions from every aept-

ing state of S

j

to the initial state of T

j

. This operation obviously does not inrease the

size of the resulting automaton severely. It results in an NFA B

j

aepting L

0

j

whih is

polynomial in the size of the mathing problem. The treelike property, however, is lost

over that operation. This implies that we annot ompute the omplement of B

j

eÆiently.

Fortunately, we only have to solve the word problem for every j, whih an be deided in

polynomial time. This is a result of Lemma 2.8.

Putting the above arguments together, we an deide in polynomial time in the size of the

input mathing problem whether equation (?

0

) is valid or not.

I

2. Equation (A) for every A 2 C holds if and only if:

U

A

[U

?

��

�

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

[U

?

��

�

) (A

0

)

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

)

| {z }

=:L

j

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)

| {z }

=:L

0

j

For every j it holds that: L

j

� U

A

und L

0

j

� U

?

��

�

. For the validity of equation (A

0

) the

following two onditions are therefore suÆient:

� V

A

� U

A

[U

?

��

�

� For all u 2 U

A

: u 2 V

A

[U

?

��

�

or there exists a j mit u 2 L

j

or u 2 L

0

j

.

The �rst ondition is treated similarly to (1). We an onstrut in polynomial time a

treelike automaton of polynomial size representing V

A

\U

A

[U

?

��

�

. For this automaton,

again the ;-problem an be deided in polynomial time

For the seond ondition the strategy is almost idential to the one introdued in (1).

Espeially, testing whether u 2 L

j

or u 2 L

0

j

requires exatly the same steps as seen

above.

�

�

�

We shall see in the following lemma that the above sheme an easily be generalized for

FL

:

. Here, additional equations for negated atomi onept have to be inluded in the

test. Their struture, however, is idential to the respetive non-negated version exept

for two new aspets. The ourrene of role languages of the form

b

U

?

instead of U

?

, and

the usage of the funtion Int in equation (?). We will see that both problems an be

solved without altering the overall deision strategy proposed in the last lemma.

Lemma 4.27 Testing solvability in FL

:

FL

:

FL

:

Let C �

?

D be an FL

:

-mathing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdued in De�nition 4.3 an be deided in poly-

nomial time in the size of the equation.

2. The same holds for equations (A) and (:A) for every A 2 C.

444.333. deiding solvability 39

Proof.

I

1. Due to De�nition 4.3 and Lemma 4.4, we obtain the following equation for the test

if equation (?) is solvable:

b

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)��

�

| {z }

=:L

j

[

[

A2C

Int(A;:A)��

�

| {z }

=:L

0

A

(?

0

)

where inserting the languages spei�ed in Lemma 4.4 into the de�nition of Int yields:

Int(A;:A) = (V

A

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

) [

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

b

U

?

��

�

))

\ (V

:A

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

:A

) [

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

b

U

?

��

�

))

Combining the above results, we end up with an equation onsiderably more omplex than

that disussed for FL

?

in Lemma 4.26. Nevertheless, we an follow a similar sheme to

verify the validity of equation (?

0

) for FL

:

. We prove the inlusion from left to right (�)

by solving the word problem for an appropriate nondeterministi �nite automaton and the

inlusion from right to left (�) by deiding the ;-problem for the intersetion of a treelike

and a nondeterministi �nite automaton.

B

B

B

(�): Like for FL

?

, the entire right side of (?

0

) is �

�

-losed. It is therefore again

suÆient to test if every word w 2

b

U

?

an be found in V

?

��

�

or in the remaining expression

on the right side. Firstly, V

?

��

�

an be represented by a treelike automaton. Seondly,

following the strategy of Lemma 4.26, we an onstrut nondeterministi �nite automata

for every L

j

. Thus, we only have to show that there are appropriate automata for deiding

the word problem for L

0

A

. In the above equation for Int(A;:A), two expressions of the

form V

A

[

S

W

j

�

T

w2W

w

�1

(U

A

[

b

U

0

��

�

) are interseted. Following the onstrution for the

solvability equations (A) in FL

?

, these expressions an be represented by nondeterministi

�nite automata. The intersetion automaton of these expressions is polynomial in the size

of the original automata, as an be seen in De�nition 2.5. Thus, we have onstruted an

NFA representing Int(A;:A). It takes only linear time ompute the �

�

-losure of that

automaton|we just have to add edges from every aepting state pointing to themselves.

Consequently, we an provide a polynomially large NFA for the representation of L

0

A

for

every A 2 C.

B

B

B

(�): We have already seen that we an represent

b

U

?

��

�

by a treelike automaton. The

idea now is to represent the entire right-hand side of equation (?

0

) exept the union of L

j

by a nondeterministi automaton B. The omplement of the treelike automaton for

b

U

?

��

�

an then be interseted with B. Testing the result of this for emptyness is equivalent to

the inlusion we want to deide.

We do not need to inlude the union of L

j

into the onstrution of B, sine obviously

every L

j

is already a subset of U

?

��

�

, whih is a subset of the right-hand side of the

equation. We know from the previous part, that V

?

��

�

easily an be represented by a

treelike automaton as well as every L

0

A

an be represented by a polynomially large NFA.

The only step missing now is to ompute the union of all these automata. We have

already seen that unifying nondeterministi �nite automata only osts a onstant amount

of additional spae and an be done in linear time. Therefore, we require only linear time

to obtain the desired automaton. We an now ompute the omplement automaton for the

40 hapter 444. solving mathing problems

left-hand side of the equation and test the intersetion automaton for emptyness. Sine

the intersetion automaton is polynomial in the size of the original automata aording

to De�nition 2.5 and sine the ;-problem an be deided in polynomial time in the size of

the automaton, we end up with polynomial time omplexity for the deision.

I

2. For every A 2 C, inserting the appropriate languages into solvability equation (A)

yields the following equation:

U

A

[

b

U

?

��

�

= V

A

[

b

U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

[

b

U

?

��

�

) (A

0

)

We have already mentioned, that

b

U

?

an be represented by a treelike automaton. There-

fore, the above equation is merely a syntati variant of the analogous equation for FL

?

.

In onsequene, we an deide equality with exatly the same strategy as introdued for

equation (A

0

) in Lemma 4.26. Due to the similarity of the equations, this argument also

applies to equation (:A

0

) for every A 2 C.

�

�

�

Most of the omplexity of the solvability equations for ALN is hidden in the onstrut of

exluded words, ourring as E

C

and E

D

. Thanks to the results presented in [BKBM99℄

and [K�us98℄, we need not resolve their struture in detail. Instead, we an rely on the fat

that there exists an algorithm to ompute the set of exluded words of a given onept

desription in polynomial time. Nevertheless, we must ensure one ondition: inserting the

languages proposed in De�nition 4.7 into the right-hand side of equation (?) may not blow

up their size exponentially. On the other hand, one given a polynomial representation of

E

C

, the argument for the other equations is very similar to the approahes seen before for

FL

?

and FL

:

.

Lemma 4.28 Testing solvability in ALN

ALN

ALN

Let C �

?

D be an ALN -mathing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdued in De�nition 4.6 an be deided in poly-

nomial time in the size of the equation.

2. The same holds for equations (A) and (:A) for every A 2 C as well as for equations

(� nR) and (� nR) for every (� nR) 2 N

�

and (� nR) 2 N

�

.

Proof.

I

1. Aording to Lemma 4.7, we have to deide if

E

C

= E

D

(X

?

; X

C

; X

:

; X

�

; X

�

)

It is stated in [BKBM99℄ that it takes only polynomial time in the size of C to ompute

a �nite set U

E

C

with E

C

= U

E

C

��

�

. Therefore, it an be shown that we need only

polynomial time to ompute the solution languages introdued in Lemma 4.7. It an be

shown further that these languages are only polynomially large in the size of the original

mathing problem. Therefore, inserting these languages into D yields a an ALN -onept

desription of polynomial size in the size of D. Aording to [BKBM99℄, we an then in

polynomial time ompute a �nite language U

E

D

suh that E

C

= U

E

C

��

�

. Thus, we an

onstrut treelike automata for the representation of both sides of the equation, whih

are polynomial in the size of the original mathing problem. Equivalene therefore an be

deided in two steps by testing mutual inlusion: Firstly, ompute the omplement of one

automaton and then test the intersetion with the other for emptyness. Seondly, perform

the same test vie-versa with the automata exhanged.

444.444. general result 41

I

2. Inserting the languages of Lemma 4.7 in the remaining solvability equations yields

equations of the following type:

U

A

[E

C

= V

A

[E

C

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

:A

[E

C

) (A

0

)

[

m�n

U

(�mR)

[E

C

= V

(�mR)

[E

C

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

[

m�n

U

(�nR)

[E

C

)

We have mentioned under (1) that for the representation of E

C

and E

D

polynomially

large treelike automata an be onstruted in polynomial time. Therefore, the �rst type

of equations an be veri�ed with the strategy introdued for the equations (A

0

) for FL

?

in Lemma 4.26. Taking into aount that we an also ompute treelike automata for the

representation of the union

S

m�n

U

(�mR)

and

S

m�n

U

(�nR)

[E

C

, the same sheme an

be employed for the equations referring to number restritions.

�

�

�

At this point, we know that mathing problems modulo equivalene an be deided in

polynomial time for ALN and its sublanguages. We still have to disuss how to ompute

the atual solution to a solvable mathing problem. The next setion gives a brief summary

on this subjet.

4.4 General result

Apart from testing solvability, [BKBM99℄ also proposes solutions to be assigned to the

variables ourring in a mathing problem and proves their orretness in detail. Using

our results on the omplexity of operations on treelike automata, we will now furthermore

on�rm that omputing the atual solution to a solvable mathing problem takes only

polynomial time. Additionally, we reall three other properties of the solution strategy.

Firstly, it is shown that it produes least solutions in regard to (v); seondly, it introdues

no new atomi onepts or number restritions; and thirdly, it an handle systems of

mathing problems as well.

Lemma 4.29 Solving mathing problems

Let L be a logi in fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mathing problem modulo

equivalene as introdued in De�nition 3.14. Then there exists an algorithm math

L

with

the following properties:

1. math

L

(P) deides in polynomial time, whether the input mathing problem P has

a solution or not. If P is solvable, then math

L

(P) in polynomial time in the size of

P omputes a solution � whih is minimal in regard to (v).

2. math

L

does not introdue atomi onepts or number restritions whih do not

our in the input mathing problem P .

3. math

L

also aepts a system of mathing problems as introdued in De�nition 3.14.

Proof.

I

1. In the previous setions we have shown that there exist strategies for deiding solv-

ability of a given mathing problem in polynomial time in the size of the problem. We

have seen that suh strategies an be found for ALN as well as for its three sublanguages

onsidered here. We still have to make sure that omputing the atual solution to a solv-

able mathing problem also requires only polynomial time, whih an be readlily inferred

42 hapter 444. solving mathing problems

utilizing the results obtained so far. [BKBM99℄ provides us with strategies to speify ap-

propriate solution languages. Taking advantage of our results onerning the omplexity

properties of treelike automata we will show that these languages an be omputed in

polynomial time. We �rst give the prove for ALN and then onsider its sublanguages

separately.

B

B

B

Solutions in ALN : To show this for ALN -mathing problems, we only need to ombine

results we have already obtained. In [BKBM99℄ it is shown that the languages L

�;�

used

for the solvability test in Lemma 4.7 in fat are least solutions to the mathing problem.

Therefore, a solution � with the desired properties an be de�ned by assigning

X

j

7�! 8L

j;?

:? u u

A2C

8L

j;A

:A u u

A2C

8L

j;:A

::A

u u

(�nR)2N

�

8L

j;(�nR)

:(� nR) u u

(�nR)2N

�

8L

j;(�nR)

:(� nR)

for every j 2 f1; : : : ; `g. It an be shown that the assigned onept desriptions are of

polynomial size in the size of the original mathing problem. Sine every role language of

the form L

�;�

an be represented by a treelike automaton, it takes only polynomial time to

read o� the languages represented by these automata, i.e. to atually return the omputed

result.

B

B

B

Solutions in FL

?

and FL

:

: For these sublanguages of ALN , we must �rst restrit the

languages used in the solvability test to �nite ones. The rest of the argument then is

idential to that for ALN . For FL

?

and FL

:

, [BKBM99℄ again provides us with the

neessary results: Finite solution languages L

j;A

an be obtained in the following way.

Sine

b

L

j;?

an be represented by a treelike automaton for every j, we read o� a �nite

language L

j;?

with L

j;?

��

�

=

b

L

j;?

. Analogous to the languages de�ned for ALN in

Lemma 4.7 we now de�ne languages L

j;A

by subtrating

b

L

j;?

from

b

L

j;A

. We an then

assign to the variable X

j

the onjuntion

X

j

7�! 8L

j;?

:? u u

A2C

8L

j;A

:A u u

A2C

8L

j;:A

::A

for every j 2 f1; : : : ; `g. Again, we yield a solution of polynomial size in polynomial

time. The argument for FL

?

is idential exept for negated atomi onept missing in

the onept desriptions �nally assigned.

B

B

B

Solutions in FL

0

: Two arbitrary FL

0

-onept desriptions are equivalent if and only

if their FL

0

-normal forms agree on all role languages involved. Therefore, in�nite sets

are not neessary at any step when solving mathing problems. It an be shown that the

solvability equation and solution languages for FL

0

are equivalent to those for FL

?

after

removing any onstruts relating to the bottom-onept or its role languages. The task

of deiding solvability and omputing solutions to a given mathing problem then quite

apparently turns out to be of polynomial omplexity.

I

2. It is shown in [BKBM99℄, that the solution spei�ed above already has the desired

property. Espeially, this implies that the solution of a mathing problem an be repre-

sented with the same set of role languages as the mathing problem.

I

3. In Lemma 3.15, we have already seen that systems of mathing equations an be

represented by a single mathing problem modulo subsumption whih is polynomial in

the size of the original system. Thus, with the results from (1) the proposition follows

immediately.

�

�

�

444.444. general result 43

Our examination of mathing problems modulo equivalene without side onditions is

omplete. We an deide and solve mathing problems without side onditions in polyno-

mial time. Furthermore, we an �nd minimal solutions without introduing new atomi

onepts or number restritions and we an admit systems of mathing problems as input.

The results obtained here will be of eminent importane for Chapter 5, where a solution

strategy for mathing problems with side onditions is introdued.

hapter 5

Eliminating Side

Conditions

In the previous hapter, an eÆient solution strategy for mathing problems without side

onditions has been proposed. We now approah mathing problems with ayli non-

strit side onditions. The idea is to redue a mathing problem with side onditions

to an equivalent one without by augmenting the original mathing equation by additional

onstraints. A strategy for this is disussed in [BKBM99℄. However, it is also demonstrated

that this might result in exponentially large mathing equations. In the �rst setion, we

will briey introdue the relevant redution strategy. Moreover, we will show that an

intuitive strategy to represent the resulting mathing problem more ompatly fails to

avoid the exponential blow-up of role languages. In the seond setion, these problems

are overome by employing nondeterministi �nite automata for the representation of role

languages. It will be shown then that the mathing algorithm introdued in the previous

hapter an be modi�ed to aept role languages represented by automata. The solution

proposed in this hapter, however, is limited to ayli side-onditions.

5.1 Reduing mathing problems

The idea of reduing a mathing problem with side onditions to an equivalent one without

side onditions is introdued in [BKBM99℄. The following substitution is de�ned to fail-

itate this redution. In spite of syntati similarity we all it \generalized substitution"

beause substitutions in De�nition 3.13 have been de�ned to map onept patterns onto

onept desriptions and not onto onept patterns again.

De�nition 5.1 Generalized substitutions

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mathing problem in (U; V;W)-

labelled FL

0

-normal form. The generalized substitution � is indutively de�ned as follows:

�(X

1

) := Y

1

u E

1

�(X

j

) := Y

j

u �(E

j

) �

�

�

It is shown in [BKBM99℄ that a mathing problem with ayli side onditions of the form

(C �

?

D; fX

j

v

?

E

j

j1 � j � `g) is equivalent to (C �

?

�(D)), whih is free of side

onditions. Equivalent in this ontext means having the same solution. It is also shown

that this modi�ation an result in exponentially large role languages in the modi�ed

mathing problem. The remedy suggested in this ontext is a \ompat representation"

46 hapter 555. eliminating side onditions

for role languages, whih avoids making onatenations expliit. The following de�nition

extends this idea to the notion of produt form languages.

De�nition 5.2 Produt form languages

For all role languages U and V over �, produt form languages are de�ned as follows:

� Every role language U is a produt form language.

� If U and V are produt form languages, so are U �V and fU; V g.

The semantis of produt form languages is indutively de�ned over their struture. For

produt form languages U and V , the expression U �V represents the onatenation of the

languages represented by U and V . Similarly, fU; V g yields the union of the respetive

languages. A formal de�nition of the semantis of produt form languages is omitted.

�

�

�

The above de�nition does not only allow for a produt representation, but also admits

nested produt forms by inluding the ase fU; V g. The following example shows that

produt form languages in fat yield a more ompat representation for formal languages.

Example 5.3 Produt representation I

The language fRR;RS; SR; SSg an be represented in produt form by fR;Sg�fR;Sg.

However, the onatenation may not only our at the outermost level. For instane, the

language fRR;RSR;RSS; Sg an be represented in by ffRg�fR; fSg�fR;Sgg; fSgg.

�

�

�

However, problems may arise when employing produt form languages for the elimination

of side onditions. Consider the next example, where role languages produed by the

generalized substitution � are represented by produt form languages.

Example 5.4 Produt representation II

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mathing problem in (U; V;W)-

labelled FL

0

-normal form. For P, we speify the following side onditions:

E

1

: X

1

v

?

A

E

2

: X

2

v

?

8fR;Sg:X

1

E

j

: X

j

v

?

8fRg:X

j�1

u 8fQ;Sg:X

j�2

where j 2 f3; : : : ; `g. We have seen that the side onditions an be eliminated by replaing

D with �(D). The role languages of the resulting onept pattern are represented by

produt form languages. In the following, we restrit our attention to role languages

referring to the atomi onept A. For the �rst four variables, we obtain aording to the

de�nition of �:

�(X

1

) � : : : u A

�(X

2

) � : : : u 8fR;Sg:A

�(X

3

) � : : : u 8ffRg�fR;Sg; fQ;Sgg:A

�(X

4

) � : : : u 8ffRg�ffRg�fR;Sg; fQ;Sgg

| {z }

L

1

; fQ;Sg�fR;Sg

| {z }

L

2

g:A

It is easy to see that the produt form representation of the languages is indeed more

ompat. For instane, the resulting role language referring to the atomi onept A in

�(X

4

) in expliit form is:

�(X

4

) � : : : u 8fRRR;RRS;RQ;RS;QR;QS; SR;SSg:A

555.222. automata and ayli side onditions 47

However, produt form role languages do not prevent the above onept patterns from

growing exponentially large, as we will now see. In the above example, the sublanguage

L

2

is idential to the respetive result for X

2

and similarly, L

1

is idential to the result for

X

3

. This expansion arries on for all j 2 f1; : : : ; `g. Thus, the size of the produt form

language referring to A for every onept variable X

j

is greater than the sum of the sizes

of the previous two results. This implies that the size of the produt form representation

of �(X

j

) inreases faster than the Fibonai Sequene whih onstitutes an exponential

growth.

�

�

�

It might be possible for every �(X

j

) to �nd another representation on the basis of produt

form languages, whih is more ompat than the one immediately produed by �. The sim-

pli�ations neessary for this, however, are greatly dependent on the individual struture

of the side onditions and annot be realized in an intuitive way. It is not lear whether

an appropriate simpli�ation an always be ahieved in polynomial time.

5.2 Automata and ayli side onditions

We have seen that it is diÆult to �nd appropriate ompat representations avoiding an

exponential blow-up when eliminating ayli side onditions. In this setion, we will

employ �nite automata for the representation of role languages. To this end we study

the struture of the role languages produed by the generalized substitution �. The result

will provide us with a strategy to ompute appropriate nondeterministi �nite automata.

It is essential in this ontext to �nd a strategy whih avoids opying idential strutures

when synthesizing an automaton. We have seen in Example 5.4 how language-related

representation tehniques are awed by struture opying. Automata-theoreti approahes

would be a�eted by the same problem.

Here, we therefore share or re-use sub-automata appearing at several positions in the

onstrution, i.e. instead of using several instanes of a sub-automaton only one instane is

introdued, linked with all neessary states by appropriate edges. Sine the side onditions

are ayli, we an use an indutive argument to �nd an appropriate onstrution.

Lemma 5.5 Automata and side onditions

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mathing problem in (U; V;W)-

labelled FL

0

-normal form with non-strit ayli side onditions. Then:

1. The role languages ourring in �(X

j

) an be represented by nondeterministi �nite

automata, whih size is polynomial in the size of P and whih an be omputed in

polynomial time. This holds for every j 2 f1; : : : ; `g

2. The same holds for the role languages ourring in �(D).

Proof.

I

1. It is suÆient to prove the assertion for �(X

`

). For smaller values of j, remove the

side onditions for fX

j+1

; : : : ; X

`

g. Due to the ayli nature of the side onditions, the

following argument an be employed for �(X

j

) as well. Proof by indution over `.

B

B

B

` = 1: Trivial. Due to ayli side onditions, it holds that: �(X

1

) = Y

1

u u

A2C

8V

1;A

:A.

The size of the role languages V

1;A

do not exeed the size of the input problem P . There-

fore, aording to Lemma 2.9 only polynomial time in the size of P is neessary to onstrut

appropriate nondeterministi automata B

1;A

2 Treelike(�) for the representation of V

1;A

.

B

B

B

` > 1: Due to indution, we may assume that the assertion holds for every j < `. Thus,

for every j 2 f1; : : : ; `� 1g, for every j

0

2 f1; : : : ; j � 1g and for every A 2 C there exist

48 hapter 555. eliminating side onditions

polynomially large automata B

j;A

; C

j;j

0

2 NFA(�) suh that �(X

j

) an be respresented as

follows:

�(X

j

) � Y

j

u u

A2C

8L(B

j;A

):A u

j�1

u

j

0

=1

8L(C

j;j

0

):Y

j

0

Consider �(X

`

). Aording to the de�nition, this equals Y

`

u �(E

`

). We may then expand

E

`

aording to De�ntion 3.14 and apply the de�nition of �. Due to indution, we obtain:

�(X

`

) � Y

`

u u

A2C

8V

`;A

:A u

`�1

u

j=1

8W

`;j

:

�

Y

j

u u

A2C

8L(B

j;A

):A u

j�1

u

j

0

=1

8L(C

j;j

0

):Y

j

0

�

By sorting the role languages ourring in the above expression by respeting atomi

onept or variable, we yield the FL

0

-normal of �(X

j

):

�(X

`

) � u

A2C

8(fV

`;A

g [fW

`;j

�L(B

j;A

)j1 � j � `� 1g

| {z }

M

A

):A

u

`�1

u

j

0

=1

8(fW

`;j

0

g [fW

`;j

�L(C

j;j

0

)jj

0

+ 1 � j � `� 1g

| {z }

M

0

j

0

):Y

j

0

u Y

`

It has to be shown that for all A and j

0

there exist automata B

`;A

; C

`;j

0

2 NFA(�) of

polynomial size in the size of P , suh that L(B

`;A

) =M

A

and L(C

`;j

0

) =M

0

j

0

.

The role languages V

`;A

and W

`;j

do not exeed the size of the input mathing problem.

We know from Lemma 2.9 that we an onstrut appropriate nondeterministi �nite au-

tomata for their representation, whih exeed their respetive language in size only by a

onstant. Aording to the indution hypothesis there exist polynomially large automata

B

j;A

and C

j;j

0

for the representation of L(B

j;A

) and L(C

j;j

0

) respetively. Inidentally,

these automata have already been onstruted in the previous steps of the indution. For

the representation of W

`;j

�L(B

j;A

) we therefore merely onstrut an automaton represent-

ingW

`;j

and link it to the already existing instane of B

j;A

by an appropriate "-transition.

From this an automaton representingM

A

is easily obtained. It suÆes to introdue a new

initial state whih non-deterministially branhes to the automaton for V

`;A

on the one

hand and to that for W

`;j

on the other. An analogous proedure an be used to onstrut

an automaton for the representation of M

0

j

0

.

Following this strategy, we �nally end up with polynomially large automata having the

desired properties. As we use nondeterministi �nite automata, the above onstrution

takes only polynomial time. Espeially the union of several NFA an be omputed in

polynomial time in the sum of the sizes of the original automata and results in an union-

automaton of polynomial size in the size of the input mathing problem.

I

2. For the onept pattern D, it holds due to the de�nition of � that:

�(D) � u

A2C

8V

A

:A u

l

u

j=1

8W

j

:�(X

j

)

We have seen in (1) that appropriate automata for the representation of all role languages

ourring in �(X

j

) an be omputed in polynomial time for all j. Inluding the remaining

role languages requires a onatenation with the languageW

j

and|in some ases|a union

with V

A

. Both operations an be aomplished by the same sheme proposed in the above

part.

�

�

�

Due to this lemma, ayli non-strit side onditions an be eliminated without an ex-

ponential blow-up of the resulting mathing problem. The next setions are onerned

with the question if the mathing algorithms introdued in Lemma 4.29 an be modi�ed

to ope with the modi�ations introdued here.

555.333. restriting large languages 49

5.3 Restriting large languages

Before modifying the original mathing algorithm, we will prove that there is a strategy to

avoid onsidering all words of the role languages ouring in an input mathing problem.

Note that the algorithm introdued in Lemma 4.29 in fat relies on this ability. Sine the

redution by the generalized substitution � only a�ets the right-hand side of the mathing

problem, it is not neessary to �nd a strategy for all role languages. We will see that only

the intersetion of left quotients appearing in the algorithm requires speial attention.

The following de�nition introdues some auxiliary notions. The intention behind their

introdution will beome lear in the next lemma.

De�nition 5.6 Auxiliary languages

Let U;W be languages over �. De�ne the pre�x losure pre(U) and the auxiliary sets

pre(U)

W

, pre(U)

W

, post(U)

W

, and neg(U)

W

as follows:

pre(U) := fw 2 �

�

j9s 2 �

�

: ws 2 Ug

pre(U)

W

:= pre(U) \W

pre(U)

W

:= pre(U) \W

post(U)

W

:= U ��

�

\W

neg(U)

W

:= pre(U) [U ��

�

\ W �

�

�

Observe that U an be expressed in terms of the above languages. It an be shown

that W = pre(U)

W

[post(U)

W

[neg(U)

W

, and similarly W = pre(U)

W

[pre(U)

W

.

For example, onsider � := fR;Sg, U := fRSg, and W := fR;RRg. Then we have

pre(U)

W

= fRg, post(U)

W

= ;, and neg(U)

W

= fRRg. In the following lemma it is

shown that these auxiliary languages an be used to simplify intersetions of left quotients:

Lemma 5.7 Properties

Let U;W � �

�

be languages. Then

1.

T

w2post(U)

W

w

�1

�(U ��

�

) = �

�

2. If neg(U)

W

6= ;, then

T

w2W

w

�1

�(U ��

�

) = ;

3. If neg(U)

W

= ;, then

T

w2W

w

�1

�(U ��

�

) =

T

w2pre(U)

W

w

�1

�(U ��

�

)

4. If pre(U)

W

6= ;, then

T

w2W

w

�1

�(U) = ;

5. If pre(U)

W

= ;, then

T

w2W

w

�1

�(U) =

T

w2pre(U)

W

w

�1

�(U)

Proof.

I

1. Consider an arbitrary w 2 post(U)

W

. We prove that w

�1

�(U ��

�

) = �

�

. By de�ni-

tion of the left quotient, there exists a word u 2 U and a word v 2 �

�

, with w = uv � U ��

�

.

Consequently, any ontinuation of w lies in the same set: ws 2 U ��

�

for every word s 2 �

�

.

This is equivalent to w

�1

�(U ��

�

) = �

�

, ompleting the argument.

I

2. It is suÆient to show that there exists a word w 2 W suh that w

�1

�(U ��

�

) is

empty. Aording to the assumption, we may assume a word w 2 neg(U)

W

, whih by

de�nition means that w 2 pre(U) [U ��

�

\W . Therefore, w 2 W , but neither is w an

element of pre(U), nor of U ��

�

. Hene, w is no pre�x of a word u 2 U and w 62 U ��

�

.

This implies for every word s 2 �

�

that ws 62 U ��

�

. Consequently, the left quotient

w

�1

�(U ��

�

) is empty.

I

3. We have mentioned in De�nition 5.6 thatW an be expressed as the following union:

pre(U)

W

[post(U)

W

[neg(U)

W

. As neg(U)

W

is assumed to be empty, we may split up the

intersetion

T

w2W

w

�1

�(U ��

�

) into one intersetion over all w 2 pre(U)

W

and another

50 hapter 555. eliminating side onditions

over all w 2 post(U)

W

. We have seen in (1), that the intersetion over all w 2 post(U)

W

is equal to �

�

, whih implies the assertion.

I

4. and 5. The argument for pre(U)

W

is analogous to the ases (2) and (3) above.

It holds that W an be expressed as the union pre(U)

W

[pre(U)

W

and for every word

w 2 pre(U)

W

it holds that w

�1

�(U) is empty.

�

�

�

It is not yet lear why the above assertions yield a desirable modi�ation. This is lari�ed

in the following lemma, when disussing the omplexity of the involved languages.

Lemma 5.8 Deidable Problems

Let U � �

�

be a �nite language and let B 2 NFA(�) be a nondeterministi �nite automa-

ton. Denote the aepted language as L(B) =W Then:

1. kpre(U)k � kUk

2

2. pre(U)

W

an be omputed in polynomial time in jBj and kUk

3. neg(U)

W

?

= ; is deidable in polynomial time in jBj und kUk

4. pre(U)

W

?

= ; is deidable in polynomial time in jBj and kUk.

Proof.

I

1. Every word u 2 U has at most juj di�erent pre�xes, all of whih are shorter than u.

This implies that the size kpre(U)k does not exeed

P

u2U

juj�juj, whih is obviously less

or equal to kUk

2

. Observe that onsequently, pre(U)

W

is also quadrati in the size kUk,

sine pre(U)

W

is a subset of pre(U).

I

2. pre(U) an be omputed easily from U . For every word u 2 U , we simply add every

pre�x of u to the result. This obviously takes only polynomial time. To onstrut pre(U)

W

from pre(U), we now only have to deide the word problem in respet to B. We have seen

in Lemma 2.8, that deiding the word problem osts only polynomial time. Due to (1), we

know that the word problem only has to be deided for polynomially many words, whih

ompletes our argument.

I

3. Aording to Lemma 4.24, it osts only linear time in the size kUk to onstrut a

treelike automation A

1

, suh that A

1

aepts U ��

�

and the size of A

1

is linear in kUk. We

an analogously de�ne an automaton A

2

2 Treelike(�) for the representation of pre(U).

For treelike automata, the operations union and omplement take only linear time and

produe a resulting automaton, whih in size does not exeed the sum of the sizes of the

original automata. Consequently, we an use the operations on treelike automata to de�ne

an automaton A := A

1

[A

2

. Obviously, A aepts the language pre(U) [U ��

�

. The size

of A is quadrati in kUk.

Next we onstrut a nondeterministi �nite automaton C as the produt automaton of

A and B. Due to the de�nition of the produt automaton, it holds that C aepts the

intersetion of pre(U) [U ��

�

and W , whih is equal to neg(U)

W

. Furthermore, the size

of C is polynomial in the size of A and B. Finally, the ;-problem for C an be deided in

polynomial time, as shown in Lemma 2.8.

I

4. The argument for pre(U)

W

is idential to (3). We merely have to exept the au-

tomaton A

2

from the sheme proposed in the above ase.

�

�

�

If we an represent the languageW by a nondeterministi �nite automaton, then pre(U)

W

is only of polynomial size. Moreover, the validity of the prerequisites in Lemma 5.7 an be

veri�ed in polynomial time. With these preliminaries, we an speify a modi�ed mathing

algorithm in the next setion.

555.444. automata-theoreti solution 51

5.4 Automata-theoreti solution

We have seen in the previous setion that it takes only polynomial time to transform a

mathing problem with ayli side onditions into an equivalent one without side ondi-

tions, where the ourring role languages are represented by �nite automata. In Chapter

4, algorithms have been proposed to solve ordinary mathing problems. These algorithms

are now extended to admitting �nite automata for the representation of role languages in

the input mathing problem. At �rst we disuss an approah for FL

?

and then very briey

address the ase of FL

:

. We will not address a strategy for FL

0

expliitly here beause

for this ase, a strategy analogous to that for FL

?

an be spei�ed without diÆulty.

5.4.1 Result for FL

?

In analogy to Lemma 4.26, we again examine testing solvability for FL

?

mathing prob-

lems. Now the role languages of the form V

i

and W

j

ourring in the input mathing

problem are assumed to be represented by nondeterministi �nite automata. We will �nd

that the general sheme of the solvability test of Lemma 4.26 an still be applied.

Lemma 5.9 Testing solvability in FL

?

FL

?

FL

?

Let C �

?

D be an FL

?

-mathing problem in (U; V;W)-labelled FL

0

-normal form. For

every H 2 f?g[C and for every j 2 f1; : : : ; `g, let V

H

;W

j

2 NFA(�) be nondeterministi

�nite automata suh that every automaton V

H

aepts the language V

H

and every W

j

aepts W

j

. Then

1. Equation (?) as introdued in De�nition 4.1 an be veri�ed in polynomial time in jCj

and the size of all automata V

H

and W

j

.

2. The same holds for Equation (A) for every A 2 C.

Proof.

I

1. Let us �rst reall the strategy used previously to deide solvability for equation (?).

In Lemma 4.26, deiding the following onditions proves suÆient: For every j 2 f1; : : : ; `g,

de�ne L

0

j

:=W

j

�

T

w2W

j

w

�1

�(U

?

��

�

). Then equation (?) is solvable i�

� V

?

� U

?

��

�

� For all u 2 U

?

: u 2 V

?

��

�

or there exists a j with u 2 L

0

j

.

Suppose verifying the above onditions with the former strategy of Lemma 4.26, whih

problems would our? The sheme for the �rst ondition still holds, only we already have

an NFA aepting V

?

and do not need to onstrut it. On the ontrary, we even positively

abandon onstruting it anew from V

?

, beause the language V

?

might be exponentially

large in jV

i

j. Thus, we test V

?

\ U

?

��

�

=

?

;, using the automaton V

?

already given for

V

?

.

For the seond ondition, testing u 2 V

?

��

�

again remains feasible. The automaton V

?

an be modi�ed in linar time to aept V

?

��

�

, we just have to add yles to every aepting

state. This modi�ation does not enlarge the automaton signi�antly, so that the word

problem is still deidable in polynomial time.

The test for u 2 L

0

j

, however, must be modi�ed to remain eÆient in our new setting. In

the former ase, we ould a�ord to onstrut a treelike automaton for the representation of

w

�1

�(U

?

��

�

) for every w 2W

j

. Now the language W

j

might be exponentially large, thus

ruling out the possibility to onsider every word in W

j

separately. Lemma 5.7 provides

us with a means to avoid this. If neg(U

?

)

W

j

is not empty, then L

0

j

is empty. Moreover,

if neg(U

?

)

W

j

is empty, then we may restrit the intersetion in the de�nition of L

0

j

to

all words in pre(U

?

)

W

j

instead of W

j

. We have seen in Lemma 5.8 that emptyness of

neg(U

?

)

W

j

is deidable in polynomial time. Furthermore, pre(U

?

)

W

j

is of polynomial

52 hapter 555. eliminating side onditions

size in kU

?

k and an be omputed in polynomial time in kU

?

k and jW

j

j, so that after

restriting the intersetion to all words in neg(U

?

)

W

j

, the former strategy for testing

u 2 L

0

j

beomes appliable again: for every u 2 U

?

, it takes only polynomial time to test

if u is an element of V

?

��

�

or an element of W

j

�w

�1

�(U

0

��

�

) for some j 2 f1; : : : ; `g and

w 2 pre(U

?

)

W

j

.

I

2. The sheme for equation (A) is similar to the previous one. Beause of Lemma 4.26,

(A) an be deided by the following onditions. De�ne L

j

:= W

j

�

T

w2W

j

w

�1

�(U

A

) and

again L

0

j

:=W

j

�

T

w2W

j

w

�1

�(U

?

��

�

). Then (A) has a solution if and only if:

� V

A

� U

A

[U

?

��

�

� For all u 2 U

A

: u 2 V

A

[U

?

��

�

or there exists a j with u 2 L

j

or u 2 L

0

j

.

The strategy proposed for testing the �rst ondition again requires modi�ation only in so

far as onstruting an automaton for the representation of V

A

is not neessary, sine V

A

is

already given. For the seond ondition, we an employ the same arguments as proposed

in (1). The only issue remaining is the test for u 2 L

j

. Aording to Lemma 5.7, the

intersetion over all w 2 W

j

in the de�nition of L

j

an be restrited to w 2 pre(U

A

)

W

j

,

if pre(U

A

)

W

j

is empty. If pre(U

A

)

W

j

is not empty, then L

j

is empty itself. We know

from Lemma 5.8, that deiding emptyness for pre(U

A

)

W

j

requires only polynomial time.

Furthermore, the language pre(U

A

)

W

j

is of polynomial size in kU

A

k and an be omputed

in polynomial time in kU

A

k and jW

j

j. Thus, with these modi�ations we an deide u 2 L

j

in the way formerly desribed in lemma 4.26.

�

�

�

By the above lemma solvability an be tested for mathing problems, whose right-hand

side role languages are represented by nondeterministi �nite automata. The question of

how to ompute the atual solutions under these irumstanes has not yet been attended

to. We an onvine ourselves in De�nition 4.26 that the only diÆulty imposed by the

automata representation is the intersetion of left quotients over all elements of the|

possibly large|role languages W

j

. We have seen in the previous lemma how espeially

this detail an be handled. The sheme employed there similarly an be used to ompute

the atual solution languages in polynomial time.

5.4.2 Extension to FL

:

In Lemma 4.27, we have seen that only little additional e�ort is neessary to extend the

solution strategy for FL

?

to mathing problems in FL

:

. We will see that the same holds

for the modi�ed mathing algorithm proposed in the previous setion. When omparing

the equations (?

0

) and (A

0

) in Lemmata 4.26 and 4.27 we �nd that exatly the same prob-

lems arise due to right-hand side role languages represented by automata. It is therefore

suÆient to employ again the strategy proposed previously for FL

?

. It should be noted

that the onstruts Int(A;:A) ourring in equation (?

0

) do not introdue new problems

in this ontext. Our results on simplifying the intersetion of left quotients are suÆient

to re-use the strategy originally proposed to ompute them.

For ALN , the most interesting part of the mathing algorithm omprises the omputation

of the exluding words. In analogy to the situation for FL

:

, it is fairly simple to see that

the rest of the algorithm proposed in Lemma 4.28 an be extended by the same strategy

as seen above. To modify the omputation of exluding words aordingly, the respetive

algorithm, whih is provided in [K�us98℄, would have to be onsidered in detail. We omit this

step, beause the overall approah proposed here is weaker than the one to be introdued

in Chapter 6.

555.444. automata-theoreti solution 53

The generalized substitution introdued in De�nition 5.1 is bound to ayli side ondi-

tions. It is not yet lear whether a similar approah an be devised for the ayli ase.

For yli side onditions, however, we will see in the next hapter that a more intuitive

solution strategy exists.

hapter 6

Fixed Points and

Side Conditions

Judging by its objetive, the present hapter might be seen as belonging to the previous

one. We present yet another approah to solve mathing problems modulo equivalene with

non-strit side onditions in polynomial time. This approah, however, aims at providing a

satisfatory sheme for both ALN and its three sublanguages. Contrary to the strategies

disussed previously, it is furthermore intended to ope with yli side onditions as well

as with ayli ones.

The idea here is to redue mathing problems with side onditions to suh without side

onditions. We have already seen that this idea does not bear fruit when pursued in a

straight-forward fashion. In Chapter 5, it is shown that the approah of merely syntati-

ally inluding side onditions into the original mathing equation may produe exponen-

tially large mathing problems|even when employing intuitive strategies to represent the

result in a ompat way.

Here, we handle the redution di�erently. The transformation of the original mathing

problem with side onditions into an equivalent one without will not be performed in

a single step. On the ontrary, we will propose an algorithm to ompute a solution by

iteratively improving an intermediate result. Every step of this algorithm omprises solving

a ertain mathing problem without side onditions. This approah diretly relies on the

ability to solve mathing problems without side onditions, as addressed in Chapter 4.

In order to prove termination we must make sure that equivalent onept desriptions

annot beome arbitrarily large. The FL

0

-normal form does not meet this requirement

for onept desriptions in FL

?

, FL

:

, and ALN . In the Setion 2, we therefore speify

\redued normal forms" for these logis. In order to do so, we �rst need to examine

the properties of pre�x-free languages in Setion 1. The atual algorithm is introdued

in Setion 3. It will be de�ned uniformly for all four logis. Thanks to this, the proof

of orretness and ompleteness also an be given simultaneously for all four logis in

Setion 4. Finally, termination of the algorithm is proved in the last setion of this hapter.

In order to show termination the properties of redued normal forms are neessary as

prerequisites.

Finally, we will �nd that the algorithm in fat provides us with an eÆient method to

solve mathing problems with non-strit ayli or yli side onditions in ALN as well

as in its sublanguages. Due to that result, the present hapter may be regarded as the

heart of our work.

56 hapter 666. fixed points and side onditions

6.1 Pre�x free languages

We de�ne pre�x free languages as a speialization of formal languages by introduing a

unary funtion to make a given formal language pre�x free.

De�nition 6.1 Pre�x free languages

pf : P(�

�

)! P(�

�

)

L 7! L n (L��

+

)

A language U � �

�

is alled pre�x free if and only if U = pf (U).

�

�

�

Intuitively, pf (L) for every word w 2 L removes all nontrivial ontinuations of w. The

result is that for every word w 2 pf (L), all nontrivial pre�xes of w are missing in pf (L).

To examine the properties of pre�x free sets in greater detail, we must �rst introdue an

appropriate order over �nite languages. The de�nition of multiset orders is taken from

[BN98b℄, where their properties are disussed in depth. However, we employ multiset

orders over formal languages and do not need to introdue multisets, whih generalize the

notion of sets by admitting multiple ourrenes of elements.

De�nition 6.2 Multiset order for �nite languages

De�ne (�) as a multiset order with (>

pr

) on �

�

. Thus, for �nite languages U; V � �

�

it

holds that V � U if and only if there exist �nite languages X;Y � �

�

suh that:

1. ; 6= X � V

2. U = (V nX) [Y

3. 8y 2 Y 9x 2 X : x <

pr

y

�

�

�

Aording to the de�nition, �nite languages U and V are in pre�x order, i.e. U � V , if and

only if U an be transformed into V by performing a modi�ation of the following type

one or more times: remove a word u from U and replae it by a �nite number of words

from fug��

+

. Thus, u is replaed by a �nite number of (nontrivial) ontinuations of u.

Note that in this modi�ation, u may be removed without substituting any words. This

is allowed beause in the de�nition above, the language Y may be empty. The following

example illustrates this.

Example 6.3 Multiset order

Let � := fa; b; g Then fa; ab; g � fab; a; aa; ab; g. The de�nition of the multiset

order is satis�ed by taking X := fa; g and Y := fa; aa; ab; g. On the other hand,

we also obtain fa; ab; g � fag by taking X := fa; ab; g and Y := fag. Observe that

the relation U � V does not imply an obvious relation for the ardinality of the languages

or for the length of the longest word ontained in them.

�

�

�

The multiset order an be used to simplify omparing the �

�

-losure of two given lan-

guages. This is addressed by the following lemma.

666.111. prefix free languages 57

Lemma 6.4 �

�

�

�

�

�

-losures and pre�x free languages

Let U; V � �

�

be �nite languages over �. Then

1. U ��

�

= pf (U)��

�

2. U ��

�

� V ��

�

i� pf (U) � pf (V)

3. U ��

�

= V ��

�

i� pf (U) = pf (V).

Proof.

For the sake of brevity, denote pf (U) by U

0

throughout this lemma. Analogously, denote

pf (V) by V

0

.

I

1. Sine U

0

is a subset of U and sine the sets on both sides of the equation are �

�

-

losed, it is suÆient to show that U nU

0

is a subset of U

0

��

�

. Thus, onsider w 2 U nU

0

.

Then, by de�nition of pre�x free sets, w 2 U ��

+

. This implies, that in U there exists

a word u 2 U of minimal length and a word v 2 �

+

so that w = uv. Consequently,

u 62 U ��

+

, beause in this ase the length of u would not be minimal. So we have u 2 U

0

,

implying that w = uv 2 U

0

��

�

.

I

2. (\(") If U

0

� V

0

then, by De�nition 6.1, there exist �nite sets X;Y � �

�

with:

1. ; 6= X � V

0

2. U

0

= (V

0

nX) [Y

3. 8y 2 Y 9x 2 X : x <

pr

y.

We �rst prove the non-strit version of the laim, i.e. U ��

�

� V ��

�

, and then show that

the inlusion is strit.

B

B

B

Nonstrit inlusion: As U

0

equals (V

0

nX)[Y , it is suÆient to show that Y � V

0

��

�

.

Thus, onsider an arbitrary y 2 Y . Beause of property 3 of multiset orders it holds

that there is an x 2 X � V

0

so that x <

pr

y. Being less in regard to the pre�x order

implies, that we obtain y = xw for an appropriate w 2 �

�

. Sine x 2 V

0

, this yields

y = xw 2 V

0

��

�

, ompleting the proof.

B

B

B

Stritness of the inlusion: Consider an arbitrary x 2 X � V

0

. Aording to property

1 of multiset orders, suh an x in fat exists. x is no element of (V

0

nX), beause V

0

is

pre�x free and thus ontains no pre�x of x. Now, if x 2 Y then property 3 demands that

there is another word x

0

2 X so that x

0

<

pr

X . This would be a ontradition to V

0

being

pre�x free, and therefore: x 62 U

0

��

�

.

I

2. (\)") Assume U

0

��

�

� V

0

��

�

. Taking advantage of (1), this is equivalent to the

original proposition. De�ne �nite languages X;Y in the following way: X := V

0

n U

0

and

Y := U

0

n V

0

. We will show that these languages math onditions 1, 2, and 3 stated in

the de�nition of multiset orders.

B

B

B

Property 1: Trivial. X is obviously de�ned as a subset of V

0

. If X is empty, then

U

0

� V

0

, whih would rule out U

0

��

�

� V

0

��

�

, oniting with the assumption above.

B

B

B

Property 2: Applying the de�nitions of X and y, we an expand (V

0

n X) [Y to the

expression (V

0

n (V

0

n U

0

)) [U

0

n V

0

, whih simpli�es to (U

0

\ V

0

) [U

0

n V

0

. This is

obviously equivalent to U

0

.

B

B

B

Property 3: Consider an arbitrary y 2 Y = U

0

n V

0

. From property 2 of the multiset

order we know that Y � U

0

� V

0

��

�

. Thus, there are words v 2 V

0

and w 2 �

�

suh that

y = vw. This implies w 6= ", beause otherwise y, being equal to v, would be an element

of V

0

. If w is not empty, then v and y are in pre�x relation: v <

pr

y. Consequently, v

is no element of U

0

, beause then U

0

would not be pre�x free. This implies v 2 V

0

n U

0

,

whih by de�nition is equivalent to v 2 X .

58 hapter 666. fixed points and side onditions

I

3. (\(") This is an immediate onsequene of (1). If U

0

equals V

0

, then obviously

U

0

��

�

= V

0

��

�

, whih implies U ��

�

= V ��

�

, as shown in (1). (\)") Reversely assume

that U

0

��

�

= V

0

��

�

. Aording to (1), this is equivalent to the original proposition. It is

suÆient to prove the inlusion U

0

� V

0

, sine the reverse inlusion follows by symmetry.

Consider an arbitrary u 2 U

0

. Aording to the above assumption we have U

0

� V

0

��

�

,

whih implies the existene of words v 2 V

0

and w 2 �

�

with u = vw. It reversely holds

that V

0

� U

0

��

�

, again implying words u

0

2 U

0

and w

0

2 �

�

so that v = u

0

w

0

. Therefore,

we yield u = vw = u

0

w

0

w. This implies w = w

0

= ", beause otherwise U

0

would not be

pre�x free, ontaining a pre�x of u. With w equal to ", we �nally obtain u 2 V

0

, whih

had to be shown.

�

�

�

Observe, that the �

�

-losure of a languageL is uniquely de�ned by the pre�x free version of

L. We an also use pre�x free languages to guarantee a suÆx ondition when representing

the left quotient of the �

�

-losure of a language:

Lemma 6.5 Left quotients and pre�x free languages

Let U � �

�

be a �nite language and let w 2 �

�

. Then there exists a �nite language

L � �

�

suh that

1. L��

�

= w

�1

(U ��

�

) and

2. L is pre�x free and

3. L ontains only suÆxes of words in U .

Proof.

Aording to [BKBM99℄, there exists a �nite language L

0

with L

0

��

�

= w

�1

�(U ��

�

). Due

to Lemma 6.4, we know that this also holds for L := pf (L

0

). We now show that L ontains

only suÆxes of U , whih is suÆient for our laim. Assume a word v 2 L, whih is no suÆx

of any word in U . Observe, that this implies v 6= " beause otherwise v would be a trivial

suÆx of any word in U . By de�nition of L, we know that v is an element of w

�1

�(U ��

�

).

Thus, there exists a word u 2 U and a word x 2 �

+

suh that wv = ux 2 U ��

�

. We

exlude x = ", beause then v would be a suÆx of u. Denote by s the last harater of v,

i.e. take s 2 � and v

0

2 �

�

suh that v = v

0

s. Analogously, let x = x

0

s for an appropriate

x

0

2 �

�

. Then we an onlude that v

0

2 L, beause wv

0

= ux

0

is an element of U ��

�

.

This implies a ontradition to the language L being pre�x free.

�

�

�

6.2 Redued normal forms

In FL

?

, FL

:

, and ALN , equivalent onept desriptions in FL

0

-normal form an di�er

in size to an arbitrary extent. For instane, 8f"g:? u 8U

A

:A is equivalent to 8f"g:? for

every role language U

A

. For our algorithm to work, we require normal forms whih impose

stronger limitations on the size of onept desriptions equivalent to or subsuming eah

other. For this purpose, redued normal forms for FL

?

, FL

:

, and ALN are introdued.

These are not neessary for FL

0

, sine here the FL

0

-normal is already suÆient.

6.2.1 Redued normal forms for FL

?

Let us now de�ne the �rst redued normal form. As done for pre�x free sets, we de�ne

it by speifying an operation to transform a given onept desription into its redued

normal form.

666.222. redued normal forms 59

De�nition 6.6 Redued normal form

Let C be an FL

?

-onept desription in U -labelled FL

0

-normal form. Its orresponding

U

#

-labelled redued normal form C

#

is de�ned as follows:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A

where for A 2 C:

U

#

?

:= pf (U

?

)

U

#

A

:= U

A

n U

#

?

��

�

A onept desription C is alled redued, if C is in FL

0

-normal form and if it oinides

with C

#

in every ourring role language. The notion of redution an be extended to

substitutions. For a substitution �, the redued substitution �

#

is established by de�ning

�

#

(X) := �(X)

#

for every variable X in the domain of �.

�

�

�

The above de�nition implies as immediate onsequenes the following simple properties,

whih are stated without proof.

Corollary 6.7 Properties

Let C be an FL

?

-onept desriptions in U -labelled FL

0

-normal form. Then

1. U

#

?

is pre�x free and U

#

A

\ U

#

?

��

�

is empty for every A 2 C

2. The redued normal form C

#

an be omputed in polynomial time in the size of C.

It will be partiularly useful that there is no overlap between the role language U

#

?

and

the �

�

-losure of U

#

A

. The role languages for C

#

an be onstruted in polynomial time

using treelike automata, for whih the omplement and the �

�

-losure an be omputed

in linear time. It also takes only polynomial time to make a given �nite role language

pre�x free. The ability to ompute redued normal forms in polynomial time will not be

required in the remainder of this hapter. Nevertheless, it might be an important property

in the ontext of presenting the output of mathing algorithms in a ompat way.

Reall that pf in Chapter 2 was de�ned to make the input language pre�x free. The

purpose of redued normal forms is to simplify the haraterization of subsumption and

equivalene. One an see that in the above de�nition exatly those languages are made

pre�x free, whose �

�

-losure appears in the haraterization of the subsumption proposed

in Lemma 3.8. Furthermore, by subtrating the �

�

-losure from the other role languages,

we make sure that all unions in the haraterising onditions are disjoint. In the next

lemma we will see that this is suÆient to redue equivalene to equality.

Lemma 6.8 Properties

Let B;C;D be FL

?

-onept desriptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redued normal form, and D in V -labelled redued normal form. Then:

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [C

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

A

� U

A

[U

?

��

�

for all A 2 A

(b) U

?

= V

?

and U

A

� V

A

for all A 2 C and there exists an A 2 C with U

A

� V

A

.

Proof.

I

1. We have seen in Lemma 3.8 that it is suÆient to prove the following two onditions:

� W

?

��

�

=W

#

?

��

�

� W

A

[W

?

��

�

=W

#

A

[W

#

?

��

�

for all A 2 C.

60 hapter 666. fixed points and side onditions

The �rst ondition was shown as a property of pre�x free languages in Lemma 6.4. For

the seond ondition, we an therefore onlude for every A that W

#

A

[W

#

?

��

�

is equal

to W

#

A

[W

?

��

�

. We may add (W

A

\W

?

��

�

), whih is a subset of W

?

��

�

, thus yielding

W

#

A

[(W

A

\W

?

��

�

) [W

?

��

�

. Aording to the de�nition of redued normal forms, W

A

equalsW

#

A

[(W

A

\W

?

��

�

). Therefore,W

#

A

[(W

A

\W

?

��

�

)[W

?

��

�

equalsW

A

[W

?

��

�

.

I

2. (\(") is trivial. (\)") Assume C � D. Due to Lemma 3.8, this again is equivalent

to U

?

��

�

= V

?

��

�

and U

A

[U

?

��

�

= V

A

[V

?

��

�

for all A 2 C. Sine C and D are

assumed to be redued, this implies U

?

= V

?

, aording to the properties of pre�x free sets.

Furthermore, due to the de�nition of redued normal forms, U

A

and U

?

��

�

are disjoint

for every A. The same applies to V

A

and V

?

��

�

. Therefore, U

A

[U

?

��

�

= V

A

[V

?

��

�

implies U

A

= V

A

for all A, whih was to be shown.

I

3. (\)") Assume C � D. Then we again have U

?

��

�

� V

?

��

�

. We distinguish two

ases depending on whether the inlusion is strit or not.

B

B

B

Strit inlusion: If U

?

��

�

� V

?

��

�

, we an infer U

?

� V

?

, as shown in Lemma 6.4.

We know from the haraterization of the subsumption that U

A

[U

?

��

�

� V

A

[V

?

��

�

for all A 2 C. We may remove V

?

��

�

from the right-hand side of the inlusion, yielding

the assertion for ase (a), V

A

� U

A

[U

?

��

�

.

B

B

B

Equality: If U

?

��

�

= V

?

��

�

, we have U

?

= V

?

, beause C and D are redued and

therefore U

?

and V

?

are pre�x free. The subsumption C � D also implies that U

A

[

U

?

��

�

� V

A

[V

?

��

�

for every A. The unions on both sides of the inlusion are disjoint,

as stated in Corollary 6.7. Taking advantage of the equality of U

?

��

�

and V

?

��

�

, we

obtain U

A

� V

A

for every A 2 C. There has to be one A with a strit inlusion U

A

� V

A

.

Otherwise, C and D would agree on all role languages, implying equivalene as shown in

(2). Thus, the assertion for ase (b) holds.

I

3. (\(") We have to show that both onditions for the subsumption as stated in

Lemma 3.8 are met. Assuming ase (b), this an be seen immediately. Consider ase

(a). If U

?

� V

?

holds, the �rst ondition for the subsumption is met as a onsequene of

Lemma 6.4, obtaining U

?

��

�

� V

?

��

�

. We have assumed that V

A

� U

A

[U

?

��

�

. Adding

V

?

��

�

on both sides yields V

A

[V

?

��

�

� U

A

[U

?

��

�

[V

?

��

�

. As V

?

��

�

is a subset of

U

?

��

�

, this is equivalent to V

A

[V

?

��

�

� U

A

[U

?

��

�

. Thus, the seond ondition of

the subsumption is met for every A 2 C. We yield strit subsumption C � D, beause

otherwise U

?

= V

?

.

�

�

�

In part (3) of the lemma a omplete haraterization of strit subsumption is provided for

the sake of ompleteness. For our purposes we do not require the equivalene in full detail.

It would have been su�ient to prove that if C � D, then either we have U

?

� V

?

or

ondition (b) holds. It might be interesting that ondition (a) an be put a little striter,

stating: U

?

� V

?

and V

A

� U

A

[(U

?

��

�

n V

?

��

�

) for all A 2 A. For the remainder of

this hapter, however, this will not be required.

6.2.2 Redued normal forms for FL

:

For FL

:

, we follow the same pattern as seen in the previous setion. Firstly, the redution

operation is expanded in suh a way that it works with negated atomi onepts as well.

666.222. redued normal forms 61

De�nition 6.9 Redued normal form

Let C be an FL

:

-onept desription in U -labelled FL

0

-normal form. Like in De�ni-

tion 6.6, de�ne its orresponding redued normal form C

#

by modifying the role languages:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

where for A 2 C:

U

#

?

:= pf (U

?

[

[

A2C

U

A

\ U

:A

)

U

#

A

:= U

A

n U

#

?

��

�

Again, if C is redued, then its role languages are idential to those of C

#

. We extend the

notion of redution to substitutions as in De�nition 6.6.

�

�

�

Observe that in this de�nition the role language U

?

referring to the bottom onept may

inrease in size when normalized. Contrary to FL

0

, it is possible to have inonsistenies

without involving the bottom onept. The redued normal form for FL

:

aims at making

all impliit inonsistenies expliit, i.e. whenever an expression like 8w:(Au:A) ours, w

is removed from the role languages referring to A and :A and is inluded in the language

for the bottom onept. The de�nition of exluding words again implies some inportant

properties, whih are stated below without proof.

Corollary 6.10 Properties

Let C be an FL

:

-onept desriptions in U -labelled FL

0

-normal form. Then:

1. U

#

?

is pre�x free and U

#

?

= (U

#

?

)b .

2. U

#

H

\ (U

#

?

)b ��

�

is empty for every H 2 C [f:AjA 2 Cg.

3. U

#

A

\ U

#

:A

is empty for every A 2 C.

4. The redued normal form C

#

an be omputed in polynomial time in the size of C.

Sine (U

#

?

)b is de�ned as U

#

?

[

S

A2C

(U

#

A

\U

#

:A

), the above assertions are readily obtained

from the de�nition of redued normal forms. Computing the redued normal form in

polynomial time an again be aomplished by employing treelike automata. By virtue of

these properties, we again ahieve the desired simpli�ation for the haraterization of the

subsumption. In the next lemma it is shown that the results obtained for FL

:

resemble

those for FL

?

seen in the last setion.

Lemma 6.11 Properties

Let B;C;D be FL

:

-onept desriptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redued normal form, and D in V -labelled redued normal form. Let

H := C [f:AjA 2 Cg. Then

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [H

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[U

?

��

�

for all H 2 H

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with U

A

� V

A

.

Proof.

I

1. Due to Lemma 3.9, it is suÆient to prove that the following onditions hold:

�

W

?

��

�

= (W

#

?

)b ��

�

� W

H

[

W

?

��

�

=W

#

H

[(W

#

?

)b ��

�

for all H 2 H.

62 hapter 666. fixed points and side onditions

B

B

B

First ondition: By de�nition,

W

?

��

�

equals (W

?

[

S

A2C

W

A

\ W

:A

)��

�

, whih is

equivalent to the pre�x free version pf (W

?

[

S

A2C

W

A

\W

:A

)��

�

, as we have seen in

Lemma 6.4. Applying the de�nition of redued normal forms, this is equivalent toW

#

?

��

�

.

The intersetion of W

#

A

and W

#

:A

is empty for every A 2 C, as stated in Corrolary 6.10.

We may therefore add (

S

A2C

W

#

A

\ W

#

:A

) to the expression, so that we end up with

(W

#

?

[

S

A2C

W

#

A

\W

#

:A

)��

�

. This equals (W

#

?

)b ��

�

, as an be veri�ed from the de�nition.

B

B

B

Seond ondition: Taking advantage of (1), we an see that W

#

H

[(W

#

?

)b ��

�

is equal

to W

#

H

[

W

?

��

�

for every H 2 H. We may add a subset of the seond term, yielding the

expression W

#

H

[(W

H

\

W

?

��

�

) [

W

?

��

�

. The language W

#

H

is de�ned as W

H

nW

#

?

��

�

.

As stated in Corollary 6.10, this equals W

H

n (W

#

?

)b ��

�

, whih in (1) is shown equal to

W

H

n

W

?

��

�

. The expression W

#

H

[(W

H

\

W

?

��

�

) [

W

?

��

�

an therefore be simpli�ed

to W

H

[

W

?

��

�

, yielding the desired result.

I

2. (\(") Trivial. (\)") Aording to Corollary 6.10, we have

b

U

?

= U

?

and

b

V

?

= V

?

.

When replaing these role languages, the proposition and the haraterization of the sub-

sumption are analogous to those for FL

?

. Consequently, the proof is idential to (2) in

the previous Lemma 6.8.

I

3. Again, taking into aount that

b

U

?

= U

?

and

b

V

?

= V

?

, we an prove the proposition

in the same way as seen in (3) in the previous lemma.

�

�

�

One an see that the additional omplexity of onept desriptions in FL

:

is hidden

ompletely by the redued normal form. It should be noted that, same as for FL

?

, we

will not require the full haraterization of the strit subsumption for our reasoning. It

is therefore suÆient to keep in mind that C � D implies that either U

?

� V

?

holds or

ondition (b) applies. However, the result enables us to disover that the size of the role

languages V

A

and V

:A

ourring in D is limited.

6.2.3 Redued normal forms for ALN

When introduing redued normal forms for ALN -onept desriptions, we have to fae

two additional problems. Firstly, the set of all inonsistenies expliitly ourring or

impliitly inluded in a onept desription annot be obtained in suh a straightforward

way as in the previous two logis. Seondly, we also have to ope with number restritions.

In the following de�nition, we utilize the notion of exluding words, whih have been

introdued in the ontext of ALN -onept desriptions in De�nition 3.3.

De�nition 6.12 Redued normal form

Let C be an ALN -onept desription in U -labelled FL

0

-normal form. De�ne the redued

normal form of C by modifying its role languages. It has been stated in [BKBM99℄ that

there exists a �nite language U

E

C

with E

C

= U

E

C

��

�

. Using this language, de�ne C

#

as:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

u u

(�nR)2N

�

8U

#

(�nR)

:(� nR) u u

(�nR)2N

�

8U

#

(�nR)

:(� nR)

666.222. redued normal forms 63

where for A 2 C, (� nR) 2 N

�

, and (� nR) 2 N

�

:

U

#

?

:= pf (U

E

C

)

U

#

A

:= U

A

nE

C

U

#

:A

:= U

:A

nE

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

nE

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

nE

C

�R

�1

Analogous to the previous ases, the notion of redution is extended to substitutions.

�

�

�

In spite of the formally more omplex de�nition, the objetive of the above normal form

is equal to those seen before. Inonsistenies are made expliit by augmenting the role

language of the bottom onept and the other role languages are minimized as muh as

possible. Observe that the redued role language U

#

?

in fat is well-de�ned, beause for

languages of the form L��

�

the set pf (L) is unique. The de�nition of redued normal

forms again implies some basi properties, whih are presented in the orollary below.

Corollary 6.13 Properties

Let C be an ALN -onept desriptions in U -labelled FL

0

-normal form. Then:

1. U

#

?

is pre�x free

2. U

#

H

\ E

C

is empty for every H := C [f:AjA 2 Cg [N

�

.

Furthermore, U

#

(�nR)

\ E

C

�R

�1

is empty for every (� nR) 2 N

�

3.

S

m�n

U

#

(�mR)

= U

#

(�nR)

for all (� nR) 2 N

�

and analogously for all (� nR) 2 N

�

4. The redued normal form C

#

an be omputed in polynomial time in the size of C.

As stated in [BKBM99℄, a role language U

E

C

with E

C

= U

E

C

��

�

an be omputed in

polynomial time. With the aid of treelike automata, it therefore takes only polynomial

time to ompute the redued normal form of C. In order to examine the properties of our

normal form loser, we have to proure a better haraterization for the set of exluding

words from [K�us98℄. The following de�nition is neessary as a preparation.

De�nition 6.14 Required words

Let C be an ALN -onept desription in U -labelled FL

0

-normal form. Let v and v

0

be

words over �. Let jvj =: m and jvv

0

j =: n and v

0

=: R

m+1

: : : R

n

. Then vv

0

is required by

C starting from v i� for all i 2 fm; : : : ; n� 1g there exist positive integers k

i+1

� 1 suh

that vR

m+1

: : : R

i

2 U

(�k

i+1

R

i+1

)

.

�

�

�

Intuitively, the ontinuation vv

0

is required by a onept desription C starting from v, i�

there is a sequene of (�)-number restritions for every pre�x of vv

0

between v and vv

0

demanding the presene of the respetive following pre�x. We give a small example to

larify this.

Example 6.15 Required words

Assume � := fR;Sg and let C := A u 8fRS;RSRg:(� 1R) u 8fRSRg:(� 2S). Then the

words RSRR and RSRS are required by C starting from RS.

�

�

�

With the notion of required words we an haraterize exluding words for ALN -onept

desriptions by the following lemma.

64 hapter 666. fixed points and side onditions

Lemma 6.16 Charaterization of exluding words

Let C be an ALN -onept desription in U -labelled FL

0

-normal form. Let w be a word

over �. Then w 2 E

C

i�

1. there exists a pre�x v 2 �

�

of w and a word v

0

2 �

�

suh that vv

0

is required by C

starting from v and

(a) vv

0

2 U

?

, or

(b) there is an atomi onept A 2 C with vv

0

2 U

A

\ U

:A

, or

() there are number resttritions (� lR) 2 N

�

and (� rR) 2 N

�

suh that l > r

and v 2 U

(�lR)

\ U

(�rR)

; or

2. there exists a pre�x vR of w (with v 2 �

�

; R 2 �) suh that v 2 U

(�0R)

.

Now we are set to examine redued normal forms in detail. Before addressing the stan-

dard questions of orretness, equivalene, and subsumption, however, we �rst introdue

one auxiliary result regarding the notion of exluding words, whih will be required in

Lemma 6.19. In the next lemma, it is shown that transforming a onept desription into

redued normal forms does not hange its properties in respet to required words.

Lemma 6.17 Required words and redued normal forms

Let C be an ALN -onept desription in U -labelled FL

0

-normal form and let v; v

0

be

words over �. Then, if vv

0

is required by C

#

starting from v then vv

0

is required by C

starting from v.

Proof.

To simplify notation, denote jvj =: s, jvv

0

j =: t, and vv

0

=: R

1

R

2

: : : R

t

. If vv

0

is required

by C

#

starting from v, then by de�nition it holds for all i 2 fs; : : : ; t� 1g that there exists

a positive integer k � 1, so that R

1

: : : R

i

2 U

#

(�kR

i+1

)

. By de�nition of redued normal

forms, this implies that R

1

: : : R

i

2

S

n�k

U

(�nR

i+1

)

nE

C

. No n under the union is smaller

than k. Consequently, there exists an integer k

0

� k so that R

1

: : : R

i

is an element of

U

(�k

0

R

i+1

)

nE

C

. Obviously, we an inlude all the words subtrated by E

C

, thus obtaining

that R

1

: : : R

i

2 U

(�k

0

R

i+1

)

. This is equivalent to vv

0

being required by C starting from v,

whih was to be shown

�

�

�

A simpli�ed haraterization for the set of exluding words is now proposed for onept

desriptions in redued normal form. It is shown by the next lemma that only ase (1a)

of the haraterization given in Lemma 6.16 is relevant for the redued normal form of

onept desriptions.

Lemma 6.18 Exluding words and redued normal forms

Let C be an ALN -onept desription in U -labelled FL

0

-normal form. Let w be a word

over �. Then, w 2 E

C

#
i� there exists a pre�x v 2 �

�

of w and a word v

0

2 �

�

with: vv

0

is required by C

#

starting from v and vv

0

2 U

?

.

Proof.

Consider a word w 2 E

C

. It is suÆient to prove that the ases (1b), (1), or (2) spei�ed

in the haraterization of E

C

#
do not apply.

B

B

B

Case (1b): Then there exists a pre�x v 2 �

�

of w, a word v

0

2 �

�

, and an atomi onept

A 2 C, so that vv

0

is required by C

#

starting from v and vv

0

2 (U

#

A

\ U

#

:A

). Applying the

de�nition of redued normal forms, this implies that vv

0

is an element of U

A

\U

:A

, but no

element of E

C

. By De�nition of the semantis of ALN -onept desriptions, this implies

C v 8vv

0

:?. As a onsequene of De�nition 3.5, this implies vv

0

2 E

C

, in ontradition

to the above �nding that vv

0

62 E

C

.

B

B

B

Case (1): Then we have an analogous word vv

0

and nonnegative numbers l > r with

vv

0

2 U

(�lR)

\U

(�rR)

. Again by de�nition of redued normal forms, we onlude that vv

0

is

666.222. redued normal forms 65

an element of the intersetion

S

l

0

�l

U

(�l

0

R)

\

S

r

0

�r

U

(�r

0

R)

, but it is not in E

C

. Therefore,

we an �nd integers l

0

� l and r

0

� r suh that vv

0

2 U

(�l

0

R)

\U

(�r

0

R)

. Analogous to ase

(1b), the semantis of ALN then implies C v 8vv

0

:?. Due to De�nition 3.5, this entails

vv

0

2 E

C

, ontraditing the above statement.

B

B

B

Case (2): We prove that in the redued normal form C

#

the role language U

#

(�0R)

is

empty for every atomi role R 2 �. As 0 is the least nonnegative integer, for every atomi

role R 2 � the de�nition of U

#

(�0R)

an be simpli�ed to U

(�0R)

n E

C

�R

�1

, omitting the

union. Therefore, if U

#

(�0R)

is not empty, it ontains an element of U

(�0R)

. Thus, assume

w 2 U

(�0R)

for a word w. Aording to the de�nition of number restritions, this implies

that w has no suessors in regard to R. Consequently, wR 2 E

C

. Obviously, we an infer

w 2 E

C

�R

�1

. In the de�nition of U

#

(�0R)

, the set E

C

�R

�1

is subtrated from the rest,

implying w 62 U

#

(�0R)

. Case (2) does therefore not apply to C

#

.

�

�

�

The above result suggests a simpler proof of the orretness of the normal form. The

standard questions, orretness and modi�ed haraterizations for equivalene and sub-

sumption, are addressed in the next lemma.

Lemma 6.19 Properties

Let B;C;D be ALN -onept desriptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redued normal form, and D in V -labelled redued normal form. Let

H := C [f:AjA 2 Cg [N

�

[N

�

. Then

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [H

3. C � D i� one of the following onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[U

?

��

�

for all H 2 H nN

�

and

V

H

� U

H

[U

?

��

�

[U

?

�R

�1

for all (� nR) := H 2 N

�

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with U

A

� V

A

.

Proof.

I

1. In Lemma 3.6, equivalene of ALN -onept deriptions was is haraterized by the

following onditions. For A 2 C, (� mR) 2 N

�

, and (� mR) 2 N

�

:

1. E

B

= E

B

2. W

#

A

[E

B

=W

A

[E

B

3. W

#

:A

[E

B

=W

:A

[E

B

4.

S

m�n

W

#

(�mR)

[E

B

=

S

m�n

W

(�mR)

[E

B

5.

S

m�n

W

#

(�mR)

[E

B

#
�R

�1

=

S

m�n

W

(�mR)

[E

B

�R

�1

B

B

B

Condition 1: Prove E

B

� E

B

. Consider an arbitrary w 2 E

B

. Due to the simpli�ed

haraterization of exlusion for redued normal forms, this implies that there exists a

pre�x v 2 �

�

of w and a word v

0

2 �

�

suh that vv

0

is required by B starting from v

and vv

0

2W

#

?

. Aording to De�nition 6.9, this implies that vv

0

is in pf (W

E

B

) � E

B

for

an appropriate �nite language W

E

B

with E

B

= W

E

B

��

�

. Due to Lemma 6.17, we know

that vv

0

is required by B starting from v. Sine vv

0

2 E

B

, this implies v 2 E

B

. As E

B

is

�

�

-losed and as v is a pre�x of w, we obtain w 2 E

B

.

Prove E

B

� E

B

. If w 2 E

B

then there exists a pre�x w

0

of w and a word w

00

2 �

�

, so that

w = w

0

w

00

and w

0

is an element of pf (W

E

B

). Applying the de�nition of redued normal

forms, we have w

0

2 W

#

?

. This implies B

#

v 8w

0

:?, whih is subsumed by 8w

0

w

00

:?,

aording to the semantis of ?. Due to the de�nition of E

B

, this yields w

0

w

00

= w 2 E

B

.

Combining the above two results, we obtain E

B

= E

B

, whih was to be shown.

66 hapter 666. fixed points and side onditions

B

B

B

Condition 2 and 3: Taking into aount the result of (1), it holds that W

#

A

[E

B

is

equal to W

#

A

[E

B

for every A 2 C. Applying the de�nition of W

#

A

yields the expression

(W

A

n E

B

) [E

B

, whih is obviously equal to W

A

[E

B

. The same argument holds for

negated atomi onepts :A.

B

B

B

Condition 4 and 5: Again, the result of (1) and the de�nition of W

#

(�mR)

enable us to

expand

S

m�n

W

#

(�mR)

[E

B

to the expression

S

m�n

(

S

p�m

W

(�pR)

n E

B

) [E

B

. By

applying distributivity over the union, we obtain (

S

m�n

S

p�m

W

(�pR)

) nE

B

[E

B

, whih

an be simpli�ed to (

S

m�n

W

(�mR)

) n E

B

[E

B

. We an omit subtrating E

B

before

adding it again, so that we �nally have (

S

m�n

W

(�mR)

) [E

B

.

In (1) we have seen that E

B

= E

B

. This implies E

B

�R

�1

= E

B

�R

�1

for every atomi

role R. Consequently, the above argument applies to ondition 5 as well.

I

2. (\(") Trivial. (\)") If C � D, then the haraterization of the subsumption allows

us to onlude the following onditions again:

1. E

C

= E

D

2. U

A

[E

C

= V

A

[E

D

3. U

:A

[E

C

= V

:A

[E

D

4.

S

m�n

U

(�mR)

[E

C

=

S

m�n

V

(�mR)

[E

D

5.

S

m�n

U

(�mR)

[E

C

�R

�1

=

S

m�n

V

(�mR)

[E

D

�R

�1

Taking advantage of Lemma 6.4, we an infer from ondition 1 that pf (U

E

C

) = pf (V

E

D

),

whih is equivalent to U

?

= V

?

, sine both onept desriptions are assumed to be redued.

Due to redution, it also holds that U

A

= U

A

n E

C

and analogously V

A

= V

A

n E

D

.

Therefore, the unions in ondition 2 are disjoint. Beause of ondition 1 we may replae

E

D

by E

C

in ondition 2, whih yields U

A

= V

A

. The same argument applies to ondition

3. Beause C and D are redued, the role languages U

(�mR)

and U

(�mR)

already ontain

the union over all lesser and the union over all greater numbers respetively, as stated in

Corollary 6.13. In ondition 4 and 5, we may therefore ommit the unions overm. Moreover,

the role languages in ondition 4 and 5 are de�ned as disjoint to E

C

and E

D

respetively,

so that �nally the argument for onditions 2 and 3 also applies, yielding U

(�nR)

= V

(�nR)

for every number restrition (� nR) 2 N

�

and analogously U

(�nR)

= V

(�nR)

for every

(� nR) 2 N

�

.

I

3. (\)") If C � D, then from the haraterization of subsumption we know that

E

C

� E

D

. We �rst onsider the ase that this inlusion is strit, then the ase of equality

of the languages.

B

B

B

E

C

� E

D

: Then, as stated in [BKBM99℄, there are �nite languages U

E

C

and V

E

D

suh

that pf (U

E

C

)��

�

� pf (V

E

D

)��

�

. Due to the de�nition of redued normal forms, this

is equivalent to the inlusion U

?

��

�

� V

?

��

�

. Aording to Lemma 6.4, we an then

infer U

?

� V

?

. Sine C � D, we know from the haraterization of subsumption that

U

H

[E

C

� V

H

[E

D

for all H 2 C [f:AjA 2 Cg. As mentioned above, this inlusion is

equivalent to U

H

[U

?

��

�

� V

H

[V

?

��

�

. We may drop the term V

?

��

�

on the right-hand

side, obtaining the desired result for all H 2 C [f:AjA 2 Cg.

For (� nR) 2 N

�

, we similarly yield

S

m�n

U

(�mR)

[U

?

��

�

=

S

m�n

V

(�mR)

[V

?

��

�

. As

mentioned before, the union over all m � n an be omitted. Dropping the term V

?

��

�

on

the right-hand side of the inlusion afterwards analogously produes V

H

� U

H

[U

?

��

�

,

whih was to be shown.

666.333. the algorithm 67

This analogy does not hold for �-number restritions, where we need to ope with the

right quotient (�R

�1

) in the respetive equations: For every (� nR) := H 2 N

�

, we

obtain U

H

[U

?

��

�

�R

�1

� V

H

[V

?

��

�

�R

�1

. We may drop the expression V

?

��

�

�R

�1

on the right-hand side of the inlusion. Furthermore, as stated in [BKBM99℄, U ��

�

�R

�1

equals U ��

�

[U �R

�1

for every �nite language U over � and R 2 �. Consequently, the

inlusion an be simpli�ed to U

H

[U

?

��

�

[U

?

�R

�1

� V

H

, whih we wanted to show.

B

B

B

E

C

= E

D

: As shown in (2), the redued normal form of C and D then allows us to

infer U

?

��

�

= V

?

��

�

, whih yields U

?

= V

?

, as both languages are pre�x free. The

haraterization of the subsumption furthermore allows us to onlude that U

H

� V

H

for

every H 2 H. Obviously, C and D annot agree on all role languages, sine this would

imply C � D, in ontradition to the assumption. Consequently, there is one H 2 H suh

that U

H

� V

H

.

I

3. (\(") In ase (b), it is not diÆult to verify that the onditions for subsumption

stated in Lemma 3.6 are met. Assume ase (a). From U

?

� V

?

we an infer by Lemma

6.4 that U

?

��

�

� V

?

��

�

. Sine C and D are redued, this implies E

C

� E

D

, mathing

the �rst ondition for subsumption. As assumed, for every H 2 H n N

�

it holds that

V

H

� U

H

[U

?

��

�

. We have already seen in (3) that U

?

��

�

equals E

C

. Therefore, after

adding the language E

D

on both sides of the inlusion we have V

H

[E

D

� U

H

[E

C

[E

D

.

Sine E

D

is a subset of E

C

, we obtain V

H

[E

D

� U

H

[E

C

. For H 2 C [f:AjA 2 Cg,

this equals onditions 2 and 3 for the subsumption as stated in Lemma 3.6.

Aording to Corollary 6.13, for all (� nR) 2 N

�

the language U

(�nR)

is equal to the

union

S

m�n

U

(�nR)

, so that the inlusion V

H

[E

D

� U

H

[E

C

an be expanded to

S

m�n

V

(�mR)

[E

D

�

S

m�n

U

(�mR)

[E

C

, whih meets ondition 4 for the subsumption.

For (� nR) 2 N

�

, we have assumed V

(�nR)

� U

(�nR)

[U

?

��

�

[U

?

�R

�1

. As mentioned

above for the reverse diretion of (3), we an replae U

?

��

�

[U

?

�R

�1

by U

?

��

�

�R

�1

, whih

is equal to E

C

�R

�1

. Following a similar line as for the �-number restritions, E

D

�R

�1

is

added on both sides of the inlusion, yielding V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

[E

D

�

R

�1

. As E

C

is a superset of E

D

and as also both languages are of the form L��

�

for some

�nite language L, it is easy to see that E

C

�R

�1

is a superset of E

C

�R

�1

for every R 2 �.

The inlusion therefore simpli�es to V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

. Exploiting

Corollary 6.13, the languages U

(�nR)

and V

(�nR)

an be replaed by the respetive unions

over all m � n, thus mathing ondition 5 of the subsumption onditions of Lemma 3.6.

Consequently, all onditions for subsumption are met. We obtain strit subsumption,

beause (2) would otherwise imply U

?

= V

?

, ontraditing U

?

� V

?

.

�

�

�

The haraterization of strit subsumption in (3) an be expressed in a slightly striter

form, stating for ase (a) that U

?

� V

?

and V

H

� U

H

[(U

?

��

�

nV

?

��

�

) for allH 2 HnN

�

and V

H

� U

H

[(U

?

n V

?

)�R

�1

[(U

?

��

�

n (V

?

��

�

[V

?

�R

�1

)) for all (� nR) := H 2 N

�

.

Nevertheless, this will not be required here.

Observe, however, that the haraterizations of equivalene and subsumption derived for

FL

?

and FL

:

are of similar struture. The only di�erene regards �-number restritions

in the haraterization of the subsumption. Therefore, one advantage of the normal forms

proposed in this setion is the ability to exploit strutural similarities between the logis,

allowing a uniform handling.

6.3 The algorithm

We are now prepared to introdue the atual algorithm for solving mathing problems

modulo equivalene with non-strit side onditions. Its idea is to simulate solving mathing

68 hapter 666. fixed points and side onditions

problems with side onditions in a single step by solving a series of mathing problems

without them in several steps. Hene, this approah is based on the ability to solve

mathing problems without side onditions in a logi L. An appropriate algorithm for this

task has been proposed under the name math

L

in Lemma 4.29. The new algorithm is

spei�ed in an imperative fashion by the following de�nition.

De�nition 6.20 Algorithm

Let L be a logi in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mathing problem modulo equivalene with non-strit side on-

ditions. The algorithm A

L

(P) is de�ned as follows:

1. t := 0; �

0

:= math

L

fC �

?

Dg

2. �

t+1

:= math

L

(fC �

?

Dg [f�

t

(X

j

) v

?

E

j

j1 � j � ng)

3. If �

t+1

is unde�ned: return \no solution".

If �

t

� �

t+1

: return �

t

.

Otherwise: t := t+ 1, ontinue at (2).

�

�

�

At �rst glane, we �nd that upon input P the algorithm starts by merely ignoring the side

onditions inluded in the mathing problem and solves it without them. Thus, it yields a

�rst result �

0

, whih might be too spei� for P . By solving ertain mathing problems,

the algorithm then improves the intermediate solution �

0

iteratively until a �xed point is

reahed in respet to equivalene. Taking a loser look, we will see that the �xed point

iteration exhibits four underlying properties:

� No possible solution to the input mathing problem P is more spei� than the initial

substitution �

0

.

� The same holds for every subsequent substitution �

t

.

� Every substitution �

t+1

is more general than its respetive predeessor �

t

.

� If two onseutive substitutions �

t

and �

t+1

are equivalent, then they are valid

solutions of P .

Before dealing with the question in terms of a formal proof, let us disuss intuitively

why the above properties hold. The substitution �

0

lies below every possible solution to

the input mathing problem, sine math

L

by de�nition always returns the least solution.

Thus, for every solution �

L

of P and for every j 2 f1; : : : ; `g it holds that �

0

(X

j

) v �

L

(X

j

),

whih in turn implies that �

0

(X

j

) v �

L

(E

j

). Consequently, every substitution �

t

produed

in step 2 of the iteration also lies below every solution to P , i.e. �

t

v �

L

. Sine additional

onstraints are inluded, it is easy to see that �

1

is never more spei� than �

0

, i.e.

�

0

v �

1

. Consequently, we �nd by indution that �

t

v �

t+1

for every t, meaning that

the substitutions produed by the iteration beome more general in every step. In ase of

equivalene, i.e. �

t

� �

t+1

, it holds that C � �

t

(D) as well as �

t

(X

j

) v �

t

(E

j

) for every

j, implying that �

t

solves P .

In the next setion we will �nd that proving the algorithm to be orret and omplete is

partiularly simple when following the above lines. Nevertheless, it is not yet lear whether

the iteration always reahes a solution in a �nite number of steps provided there exists

one. Analogously, we have to asertain that the algorithm returns \no solution", whenever

there exists no solution to the input mathing problem. This issue, i.e. the question of

termination, is addressed in Setion 6.5.

666.444. orretness and ompleteness 69

6.4 Corretness and ompleteness

Here two properties have to be shown. Firstly, if our algorithm terminates with a ertain

solution, then this solution solves the input mathing problem. Seondly, if it terminates

without �nding a solution, then in fat no solution exists. To show this, we will begin by

formally proving the properties disussed at the end of the previous setion.

Lemma 6.21 Corretness and ompleteness

Let L be a logi in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mathing problem modulo equivalene with non-strit side on-

ditions. Then:

1. For every solution �

L

to the input mathing problem P and for every substitution �

t

ouring during the exeution of the algorithm A

L

(P), it holds that �

t

v �

L

.

2. For all substitutions �

t

and �

t+1

ouring during the exeution of the algorithm

A

L

(P) it holds that: �

t

v �

t+1

.

3. If A

L

(P) returns a substitution �, then � solves the input mathing problem P .

4. If A

L

(P) returns \no solution", then the input mathing problem P has no solution.

Proof.

I

1. Proof by indution over the number of iterations t the algorithm takes.

B

B

B

t = 0: We know from the properties of math

L

that then �

t

is the least solution for the

mathing problem C �

?

D . Every solution �

L

to P espeially solves C �

?

D with respet

to (v). Therefore, we always obtain �

0

v �

L

.

B

B

B

t > 0: Assume that �

t+1

exists. By the indition hypothesis we know that �

t

v �

L

.

Thus, for all j 2 f1; : : : ; `g we have �

t

(X

j

) v �

L

(X

j

). We now show that this implies

math

L

(fC �

?

Dg [f�

t

(X

j

) v

?

E

j

j1 � j � ng)

v math

L

(fC �

?

Dg [f�

L

(X

j

) v

?

E

j

j1 � j � ng) :

Every solution to the|more general|mathing problem of the right-hand side is espeially

a solution to the mathing problem of the left-hand side of the equation. Asmath

L

always

omputes minimal solutions for both sides, the above onlusion is valid. Applying the

de�nition of A

L

, the above yields �

t+1

v �

L

, whih was to be shown.

I

2. Analogous to (1). Due to the properties of math

L

, we similarly have �

0

v �

1

. The

indution is idential to (1): If �

t�1

v �

t

then we an infer by the same sheme as above

that �

t

v �

t+1

.

I

3. By de�nition of the algorithm, C � �

t

(D) for every substitution �

t

. Hene, �

t

is a

valid solution to the mathing problem without side onditions. It remains to be shown

that the �nal solution meets the side onditions as well. Thus, assume that A

L

(P) = �

t

for some nonnegative integer t. Then by de�nition, �

t

� �

t+1

, whih implies that for every

j 2 f1; : : : ; `g we have �

t

(X

j

) v �

t+1

(E

j

) � �

t

(E

j

). The subsumption holds by de�nition

of �

t+1

, the equivalene by the assumption above. Thus, the side onditions are met.

I

4. If math

L

fails in step 1 of the algorithm then no solution exists for the mathing

problem without side onditions. This obviously implies that there is no solution for the

mathing problem with side onditions as well.

If the algorithm fails in step 2 for some positive integer t, then the mathing problem

C �

?

D is solvable, but there is a j 2 f1; : : : ; `g suh that �

t

(X

j

) v

?

E

j

does not have a

solution. This implies that �

t

(X

j

) is an assignment too general for the i-th side ondition.

Taking into aount the results of (1), this onsequently applies to any possible solution

�

L

to the original mathing problem with side onditions.

�

�

�

70 hapter 666. fixed points and side onditions

As an immediate onsequene of the above lemma, we an derive an important property

of the algorithm A

L

, whih is stated in the following orollary: The solutions returned by

A

L

are minimal.

Corollary 6.22 Minimal solutions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mathing problem modulo equivalene

with non-strit side onditions. Then, if A

L

(P) returns a solution �, this solution is the

least solution to P in respet to subsumption.

We have seen in the previous lemma that no substitution �

t

is more general than any

solution �

L

to P . Provided the �xed-point iteration terminates it is therefore obvious

that the obtained solution is minimal. Observe that the main argument in the above

proof of orretness and ompleteness is the property of the mathing algorithm math

L

to produe minimal solutions in respet to subsumption. Redued normal forms and their

harateristis have not been required so far.

6.5 Termination

In this setion, we will show that the algorithm A

L

terminates in polynomial time in the

size of any input mathing problem. The objetive is to avoid giving analogous proofs of

termination iteratively for every logi. Therefore, we identify three onditions as suÆient

to permit a general proof of termination. We then only have to ensure that these onditions

hold in all four logis.

Two steps are neessary in preparation. Firstly, a uniform notation is needed to denote

all role languages produed by the algorithm during the �xed point iteration. Seondly,

we will assume that every onept desription ouring in the algorithm is in redued

normal form. Naturally, it has to be lari�ed beforehand why suh an assumption an be

made without loss of generality. But let us �rst take are of the notation problem. It was

shown in Lemma 4.29, that math

L

does not introdue new atomi onepts or number

restritions for its solution. Moreover, the solutions are presented in FL

0

-normal form.

For a uniform notation, we therefore only need to speify three things. Firstly, the set of

all indies t ouring during the omputation of A

L

(P); seondly; the set of all onept

names and role restritions ouring in the input problem; and thirdly, an appropriate

notation for the FL

0

-normal forms of all substitutions:

De�nition 6.23 Notation

Let L be a logi in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mathing problem modulo equivalene with non-strit side on-

ditions. Upon Input P , the algorithm A

L

generates substitutions �

t

, where t 2 N.

� Denote by T (A

L

; P) the set of indies t ourring during the �xed point itera-

tion for A

L

(P). Formally, T (A

L

; P) := N i� A

L

upon input P does not termi-

nate, T (A

L

; P) := f0; : : : ; t + 1g i� it terminates in step 3 with �

t

as solution and

T (A

L

; P) := f0; : : : ; tg i� �

t+1

is unde�ned.

� De�ne H as the set of all onept names and number restriions ourring in the

input mathing problem, i.e. for ALN , de�ne H := f?g[C[f:AjA 2 Cg[N

�

[N

�

.

For FL

:

, we require N

�

and N

�

to be empty. For FL

?

, negated atomi onepts

are omitted as well. For FL

0

, we simply have H = C.

� For every ourring index t 2 T (A

L

; P) and for every j 2 f1; : : : ; `g, denote �

t

(X

j

)

in U

t

-labelled FL

0

-normal form.

�

�

�

666.555. termination 71

With the above notation, every onept desription �

t

(X

j

) ourring in the the �xed point

iteration an be represented by a set of role languages fU

t;j;H

jH 2 Hg.

We want to identify ertain onditions in order to simplify the proof of termination of

algorithm A

L

for all four ases of L. For these onditions to hold, it is neessary that

every onept desription ourring during the exeution of the A

L

is in redued normal

form, i.e. for every input mathing problem P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g), for

every t 2 T (A

L

; P) and for every j 2 f1; : : : ; `g, C as well as �

t

(X

j

) are in redued normal

form. The de�nition of A

L

, however, does not inlude this. Why an suh an assumption

be made without loss of generality? We know from Lemmata 6.8, 6.11, and 6.19 that

transforming a onept desription into redued normal form onserves equivalene. Thus,

the results omputed by math

L

in steps 1 and 2 of the algorithm are not altered in respet

to equivalene by assuming redued normal forms. The termination riterion in step 3 of

the algorithm also refers only to equivalene and not to equality. Consequently, the redued

version of the algorithm terminates if and only if the non-redued version does. Hene,

we may safely assume redued normal forms.

We are now prepared to introdue the termination onditions.

De�nition 6.24 Termination onditions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mathing problem modulo equivalene

with non-strit side onditions as introdued in De�nition 3.17. De�ne the following

onditions for the mathing algorithm A

L

.

1. Representation ondition

A

L

operates on a �xed set of role languages for the representation of the substitutions

�

t

(X

j

) ouring during the exeution of A

L

(P). Therefore, no new (negated) atomi

onepts or role restritions are introdued.

2. SuÆx ondition

For every H 2 H there exists a role language M

H

of polynomial size in the size of

P suh that for all t 2 T and j 2 f1; : : : ; `g the role languages U

t;j;H

ontain only

suÆxes of words from M

H

.

3. Deletion ondition

If a word ouring in a role language U

t;j;H

assigned by �

t

is missing in the role

language U

t+1;j;H

assigned by �

t+1

, then this word is missing in every role language

U

t

0

;j;H

assigned by further substitutions �

t

0

with t

0

> t.

�

�

�

Observe that the representation ondition in our ase is only relevant for ALN . In the

sublanguages the problem does not arise. For ALN , however, it is stated in Lemma 4.29

that atually already math

ALN

respets the representation ondition. This ondition

is nevertheless mentioned expliitly here, beause we want to emphasize that it is an

essential prerequisite for the proof of orretess. The next subsetion provides a general

proof of termination, presupposing the validity of the termination onditions. The last

four subsetions are devoted to verifying these onditions in our four logis.

6.5.1 General result

We have to show that by virtue of the termination onditions we an prove termination

of the algorithm A

L

simultaneously for all four ases of L. The following lemma performs

this step.

72 hapter 666. fixed points and side onditions

Lemma 6.25 Termination

Let L be a logi in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mathing problem modulo equivalene with non-strit side on-

ditions. Then A

L

(P) terminates in polynomial time in the size of P .

Proof.

It is suÆient to show that two properties hold for A

L

. Firstly, the number t of steps

the exeution of A

L

(P) takes is polynomially limited in the size of P ; seondly, the time

required for a single step is polynomially bounded in the size of P as well.

B

B

B

Limit for t: It is shown in Lemma 6.21 that �

t

v �

t+1

for every t 2 T (A

L

; P). Sine

the �xed point iteration in A

L

terminates in ase �

t

� �

t+1

, we have �

t

� �

t+1

for every

t as long as the iteration does not terminate. The strit subsumption of the substitutions

implies that for every t there is an j 2 f1; : : : ; `g suh that �

t

(X

j

) � �

t+1

(X

j

).

Due to the haraterization of strit subsumption for redued normal forms (Lemmata 6.8,

6.11, and 6.19), this implies that there is an H 2 H, suh that at least one word in the

role language U

t;j;H

ourring in �

t

(X

j

) is deleted at the transition to U

t+1;j;H

ourring

in �

t+1

(X

j

). Now on the one hand, the deletion ondition guarantees that no word an

reappear one it has been deleted at suh a transition. On the other hand, the suÆx

ondition ensures for every H 2 H that every word deleted from a role language U

t;j;H

is

a suÆx of some word in the polynomially large language M

H

.

We now have obtained three fats suÆient to prove the existene of a polynomial upper

bound for t. Firstly, at the transition from t to t + 1 some word has to be deleted from

some role language; seondly, one deleted, no word will reappear later on; and thirdly,

the hoie of words to delete is polynomially limited and independent of t. Consequently, t

annot exeed the sum of the number of all suÆxes of the words of all role languagesM

H

.

H is immediately limited by the input mathing problem. Furthermore, M

H

is required

by the suÆx ondition to be polynomial in the size of the input problem. Finally, the

number of suÆxes of a word is quadrati in the length of the word. We therefore end up

with a polynomial upper bound for t.

B

B

B

Limit for a single step: The redued normal form of onept desriptions an be om-

puted in polynomial time. Aording to the properties ofmath

#

L

, we an solve L-mathing

problems in polynomial time in the size of the input. The mathing problem solved in

every single step in A

L

(P) is always of polynomial size in the size of P . This fat is guar-

anteed by the representation ondition and the suÆx ondition whih we have shown valid

for every logi L onsidered here. Therefore, a single step osts only polynomial time.

�

�

�

It should be stressed that, as a onsequene of the above result, the algorithm A

L

itself

does terminate orretly even without the assumption of redued normal forms. Only

the proof of termination is simpli�ed signi�antly by this additional requirement. As an

immediate onsequene of the termination of the algorithm A

L

we obtain the following

orollary.

Corollary 6.26 Minimal solutions

Solvable mathing problems modulo equivalene with non-strit side onditions in FL

0

,

FL

?

, FL

:

, and ALN have a minimal solution in respet to subsumption.

This laim holds, beause the algorithm terminates suessfully if and only if the input

mathing problem has a solution and the solution returned is minimal in respet to sub-

sumption. Let us now verify the validity of the termination onditions in our four logis.

666.555. termination 73

6.5.2 Termination onditions in FL

0

For FL

0

, proving the onditions is partiularly easy beause of the simple haraterization

of the subsumption obtained by Lemma 3.7. The haraterization immediately implies the

desired results, as shown in the next lemma.

Lemma 6.27 Termination in FL

0

FL

0

FL

0

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

0

-mathing problem modulo equiv-

alene with non-strit side onditions in (U; V;W)-labelled FL

0

-normal form. Then the

termination onditions introdued in De�nition 6.24 hold for A

FL

0

(P).

Proof.

B

B

B

Representation: We have seen in Lemma 4.29 that math

L

already meets the represen-

tation ondition. As a onsequene, it also holds for A

FL

0

.

B

B

B

SuÆx: Due to Lemma 6.21, for every t 2 T (A

FL

0

; P) ouring during the exeution

of A

FL

0

(P) it holds that: �

t

v �

t+1

. In FL

0

, this implies U

t;j;H

� U

t+1;j;H

for every

j 2 f1; : : : ; `g and for every H 2 H. Thus, we an infer U

t;j;H

� U

0;j;H

for every j and H .

The role language U

0;j;H

ours in step 1 of the algorithm in the soluion to the mathing

problem C �

?

D. In [BKBM99℄, it is shown that for the FL

0

-normal form of the solution

to C �

?

D it holds that U

0;j;H

equals

S

w2W

j

w

�1

(U

H

) for every j and H . Therefore,

every role language U

t;j;H

ontains only suÆxes of U

H

. Sine U

H

is part of the input

mathing problem P , the set of its suÆxes serve as an appropriate upper bound. Thus,

the suÆx ondition is met by hosing M

H

as the set of all suÆxes of words in U

H

.

B

B

B

Deletion: We have seen above that �

t

v �

t+1

for every t, j, and H implies a superset

relation U

t;j;H

� U

t+1;j;H

. This relation entails that words annot reappear after they

have been deleted at the transition from U

t;j;H

to U

t+1;j;H

.

�

�

�

6.5.3 Termination onditions in FL

?

Redued normal forms were not neessary for the termination onditions to hold in FL

0

.

We will see for FL

?

, FL

:

, and ALN that they are essential for the proof of the suÆx-

and deletion property. We shall also see that the bottom-onept ontributes most to the

greater e�ort neessary to prove the termination onditions. At �rst, the validity of the

suÆx ondition is shown. The idea is to use the solution languages introdued in De�nition

4.2 to derive a reursive relationship with respet to t between the role languages ouring

in onseutive substitutions �

t

. We an then infer the desired properties from �

0

upwards

by indution.

Lemma 6.28 SuÆx ondition in FL

?

FL

?

FL

?

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mathing problem with non-

strit side onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

ouring during the exeution of A

FL

?

(P) as spei�ed in De�nition 6.23. Then for all

t 2 T (A

FL

?

; P) and for all j 2 f1; : : : ; `g it holds that

1. U

t;j;?

ontains only suÆxes of U

?

.

2. U

t;j;H

ontains only suÆxes of U

H

for all H 2 H.

Proof.

I

1. When performing step t of the algorithm A

FL

?

(P), the following system of mathing

problems must be solved.

8U

?

:? u u

A2C

8U

A

:A �

?

8V

?

:? u u

A2C

8V

A

:A uu

j

8W

j

:X

j

8U

t;j;?

:? u u

A2C

8U

t;j;A

:A v

?

8V

j;0

:? u u

A2C

8V

j;i

:A uu

j

0

8W

j;j

0

:X

j

0

74 hapter 666. fixed points and side onditions

where the seond line represents one equation for every j 2 f1; : : : ; `g. As stated in

Lemma 3.15, this system an be ombined into a single mathing problem modulo equiv-

alene with little diÆulty. The exat strategy is omitted here, but its idea has been

illustrated in Example 3.16. For the resulting mathing problem, setting up the solvabil-

ity equations proposed in De�nition 4.1 and applying Lemma 4.2, we yield the following

solution language for the bottom-onept.

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

) (�)

Due to the notation introdued for the solutions �

t

, here U

t+1;j;?

��

�

takes the plae of

b

L

j;?

used in Lemma 4.2 to denote the solution language for the ?-onept. We have to

show that the U

t+1;j;?

ontains only suÆxes of U

?

.

Aording to Lemma 6.5, for every �nite language U and for every word w there exists a

�nite pre�x free language L suh that �rstly, L��

�

= w

�1

(U ��

�

); and seondly, L ontains

only suÆxes of U . Using this result we now show the proposition for U

t;j;?

by indution

over the number of steps t the algorithm A

FL

?

(P) takes.

B

B

B

(t = 0): Aording to equation (�), it holds that

U

0;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

): (�

0

)

At �rst, we show that the suÆx ondition does not get lost when interseting languages

of the form L��

�

having that property. It is shown in [BKBM99℄ that for �nite languages

L and L

0

the intersetion L��

�

\ L

0

��

�

is equal to ((L \ L

0

��

�

) [(L

0

\ L��

�

))��

�

.

Obviously, (L \ L

0

��

�

) [(L

0

\ L��

�

) is a subset of the union L [L

0

. This implies that

the intersetion L��

�

\ L

0

��

�

an be represented as L

00

��

�

suh that every element of L

00

omes from L or from L

0

.

Beause of Lemma 6.5, it holds for every j 2 f1; : : : ; `g and for every w 2 W

j

that the

language w

�1

(U

?

��

�

) an be represented as L��

�

, where L ontains only suÆxes of U

?

.

We have just seen that the suÆx ondition is respeted by the intersetion. Thus, the

entire right-hand side of equation (�

0

) is of the form L��

�

, where L ontains only suÆxes

of U

?

. pf (L) is a subset of L and therefore ontains only suÆxes as well. pf (L)��

�

also

represents the right-hand side of (�

0

), as we know from Lemma 6.4. From the de�nition

of redued normal forms in FL

?

we also know that U

0;j;0

is pre�x free. Lemma 6.4 now

implies that U

0;j;0

is equal to pf (L), ompleting our argument.

B

B

B

(t > 0): Due to indution, we may assume that all role languages on the right-hand side

of equation (�) ontain only suÆxes of U

?

. Analogous to the argument for the ase t = 0,

the suÆx property is valid for U

t+1;j;?

as well.

I

2. Consider U

t;j;H

for an arbitrary H 2 H. Starting again with the system of mathing

equations proposed in (1) and taking into aount the de�nition of the solution languages

666.555. termination 75

in Lemma 4.29, we obtain the following result for U

t;j;H

.

U

t+1;j;H

=

\

w2W

j

w

�1

(U

h

[U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;H

[U

t;j;?

��

�

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

h

[U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;H

[U

t;j;?

��

�

)

| {z }

M

1

n

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

)

| {z }

M

2

!

�

[

w2W

j

w

�1

(U

h

) [

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;H

)

The equality to M

1

nM

2

is obtained by replaing U

t+1;j;?

��

�

with the right-hand side

of equation (�). The last step in the above sequene remains to be shown. Consider an

arbitrary word v in U

t+1;j;H

= M

1

nM

2

. Sine v is not an element of M

2

, there exists a

word w 2W

j

or a word w

0

2W

j;j

0

suh that v is no element of w

�1

(U

?

��

�

) or no element

of w

�1

(U

t;j;?

��

�

). Assume the �rst ase, i.e. v 62 w

�1

(U

?

��

�

). As v is an element of M

1

,

obviously v 2 w

�1

(U

h

[U

?

��

�

), whih implies v 2 w

�1

(U

h

). Thus, v is a suÆx of a word

in U

h

. The seond ase is analogous, yielding that v is a pre�x of a word in U

t;j;H

. Thus,

the inlusion laimed above holds.

Sine U

H

and all U

t;j;H

are �nite languages, it is not diÆult to see that the left quotients

w

�1

(U

H

) and w

�1

(U

t;j;H

) for every word w only ontain suÆxes of U

H

and U

t;j;H

respe-

tively. We still have to ensure that the suÆx ondition is respeted by the union. This

an be shown indutively similar to the proof seen in (1) for the intersetion. In ase of

the union, however, the indution argument is by far simpler, sine for �nite languages

L;L

0

the union L��

�

[L

0

��

�

is equal to (L [L

0

)��

�

.

�

�

�

For the proof of the deletion ondition, the haraterization of the subsumption for re-

dued normal forms an be utilized to rule out words reappearing after being deleted.

A subsumption argument, of ourse, an only be used sine we know from the proof of

orretess, that the solutions �

t

in fat are subsumed by its respetive suessors �

t+1

.

Lemma 6.29 Deletion ondition in FL

?

FL

?

FL

?

Inlude P and A

FL

?

(P) from above. Again, we refer to the notation introdued in

De�nition 6.23 for the exeution of the algorithm. Then A

FL

?

(P) meets the deletion

ondition spei�ed in De�nition 6.24 for all ourring role languages.

Proof.

We �rst prove the deletion ondition for role languages referring to the ?-onept and

then onsider those referring to atomi onepts A 2 C.

B

B

B

?-onept: Assume that ontrary to our laim a word w an reappear for greater values

of t after being deleted from a role language at a ertain point during the exeution of

the algorithm. Thus, assume for w 2 �

�

that w 2 U

t;j;?

and w 62 U

t

0

;j;?

but �nally

w 2 U

t

0

+1;j;?

for some j 2 f1; : : : ; `g and for nonnegative integers t < t

0

2 T .

We know from Lemma 6.21 that �

t

v �

t

0

v �

t

0

+1

. As all substitutions are redued we

further know due to our assumption, that �

t

(X

j

) 6� �

t

0

(X

j

) 6� �

t

0

+1

(X

j

). From this we

an infer by means of Lemma 6.8 that U

t;j;?

� U

t

0

;j;?

� U

t

0

+1;j;?

.

76 hapter 666. fixed points and side onditions

We have assumed that w 2 U

t

0

+1;j;?

. The above relation then for U

t

0

;j;?

demands that

U

t

0

;j;?

ontains a pre�x w

0

of w. As w is no element of U

t

0

;j;?

, this is a nontrivial pre�x.

Similarly we �nd that U

t;j;?

ontains a pre�x of w

0

or w

0

itself. The language U

t;j;?

,

however, initially was assumed to ontain w as well, yielding a ontradition to U

t;j;?

being pre�x free.

B

B

B

A-onept: Assume similarly for a word w 2 �

�

that w 2 U

t;j;H

and w 62 U

t

0

;j;H

but

�nally w 2 U

t

0

+1;j;H

for some j 2 f1; : : : ; `g, for H 2 H, and for nonnegative integers

t < t

0

2 T . Sine �

t

v �

t

0

v �

t

0

+1

and as also all substitutions are redued we obtain as a

onsequene of lemma 6.8:

U

t;j;H

_

[U

t;j;?

��

�

� U

t

0

;j;H

_

[U

t

0

;j;?

��

�

� U

t

0

+1;j;H

_

[U

t

0

+1;j;?

��

�

:

We have assumed that w 2 U

t

0

+1;j;k

. Sine w is no element of U

t

0

;j;k

, the subset relation

implies that w 2 U

t

0

;j;?

��

�

. From the haraterization of the subsumption we know that

U

t;j;?

��

�

� U

t

0

;j;?

��

�

, whih in our ase implies w 2 U

t;j;?

��

�

. This ontradits the

disjointedness of the union with U

t;j;H

, whih was shown in Lemma 6.8.

�

�

�

6.5.4 Termination onditions in FL

:

For FL

:

, a separate proof of termination is omitted, beause we an exploit the analogy to

FL

?

. Verifying the termination onditions again yields a positive result, whih is stated

below without proof.

Lemma 6.30 Termination onditions in FL

:

FL

:

FL

:

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

:

-mathing problem modulo equiv-

alene with non-strit side onditions. Then A

FL

:

(P) meets the termination onditions

introdued in De�nition 6.24.

Let us disuss briey why we an expet to gain the same result for FL

:

in exatly the

same way as seen for FL

?

. The idea is to show that due to the redued normal form of all

substitutions �

t

ourring during the exeution of A

FL

:

(P), the validity of the termination

onditions an be shown analogous to the proof for FL

?

. Reall that the prerequisites

for the existene of a solution in FL

:

are stronger than in FL

?

. Nevertheless, one

the mathing problem is solvable, the solution assigned by �

t

is syntatially similar to

FL

?

|the only di�erene being the onstrut

b

U instead of U . This an be found when

omparing Lemma 4.2 and Lemma 4.4, where the solution languages are introdued. In

the presene of redued normal forms the di�erene between languages of the form

b

U and

U disappears, as stated in Corollary 6.10. Furthermore, a omparison of Lemma 6.8 and

Lemma 6.11 yields the same haraerization of equivalene and subsumption for redued

normal forms in FL

?

and FL

:

. Hene the results obtained for FL

:

are analogous to

those for FL

?

.

6.5.5 Termination onditions in ALN

The overall task of solving mathing problems in ALN is signi�antly more omplex than

in the preeding logis. However, most of the additional omplexity is hidden in the notion

of exluding words, whih has been studied in depth in [K�us98℄. One we know that sets

of exluding words are of the form L��

�

for some �nite language L, we do not need to

introdue new ideas to prove the termination onditions. By virtue of the redued normal

forms we again �nd a situation analogous to FL

?

, though onsisting of onsiderably larger

equations.

666.555. termination 77

Lemma 6.31 SuÆx ondition in ALN

ALN

ALN

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an ALN -mathing problem with non-

strit side onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

ouring during the exeution of A

ALN

(P) as spei�ed in De�nition 6.23. Then for all

t 2 T and for all j 2 f1; : : : ; `g it holds that:

1. U

t;j;?

ontains only suÆxes of U

?

.

2. U

t;j;A

ontains only suÆxes of U

A

for every A 2 C and U

t;j;:A

ontains only suÆxes

of U

:A

for every A 2 C.

3. U

t;j;�nR

ontains only suÆxes of U

(�nR)

for every (� nR) 2 N

�

.

4. U

t;j;�nR

ontains only suÆxes of U

(�nR)

[U

?

�R

�1

for every (� nR) 2 N

�

.

Proof.

I

1. At step t of the algorithm A

ALN

(P), the following system of mathing problems has

to be solved:

8U

?

:? u u

A2C

8U

A

:A u u

A2C

8U

:A

::A

u u

(�nR)2N

�

8U

(�nR)

:(� nR) u u

(�nR)2N

�

8U

(�nR)

:(� nR)

�

?

8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A

u u

(�nR)2N

�

8V

(�nR)

:(� nR) u u

(�nR)2N

�

8V

(�nR)

:(� nR)

u

n

u

j=1

8W

j

:X

j

and for every j 2 f1; : : : ; ng:

8U

t;j;?

:? u u

A2C

8U

t;j;A

:A u u

A2C

8U

t;j;:A

::A

u u

(�nR)2N

�

8U

t;j;(�nR)

:(� nR) u u

(�nR)2N

�

8U

t;j;(�nR)

:(� nR)

v

?

8V

j;?

:? u u

A2C

8V

j;A

:A u u

A2C

8V

j;:A

::A

u u

(�nR)2N

�

8V

j;(�nR)

:(� nR) u u

(�nR)2N

�

8V

j;(�nR)

:(� nR)

u

n

u

j

0

=1

8W

j;j

0

:X

j

0

This system an be ombined into a single mathing problem modulo equivalene. For

the solution to this problem, Lemma 4.7 provides us with appropriate solution languages.

Regarding the ?-onept, we obtain the following result for the solution language U

t+1;j;?

assigned by �

t+1

(X

j

):

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(E

t;j;C

) (�)

Again, due to our notation U

t+1;j;?

��

�

takes the plae of

b

L

j;?

as used in Lemma 4.7.

Furthermore, E

C

denotes the set of C-exluding words and analogously E

t;j;C

the set of

exluding words for the j-th mathing problem in the above system of mathing problems.

We may assume C to be in redued normal form. Consequently, it holds that U

?

��

�

= E

C

,

as seen in De�nition 6.12. As �

t

is also in redued normal form, we furthermore obtain

78 hapter 666. fixed points and side onditions

that U

t;j;?

��

�

= E

t;j;C

for every t 2 T . In equation (�), we may therefore replae E

C

by

U

?

��

�

and E

t;j;C

by U

t;j;?

��

�

. This reveals the indutive relation of the role languages:

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

) (�

0

)

It is to prove that U

t+1;j;?

ontains only suÆxes of U

?

. Equation (�

0

) is only a syntati

variant of equation (�) established in Lemma 6.28. As U

t+1;j;?

is pre�x free, we an prove

the laim exatly following the same pattern as seen for FL

?

in Lemma 6.28.

I

2. From the system of mathing problems introdued in (1), we now derive solutions

for role languages of the form U

t+1;j;A

referring to the atomi onept A in �

t+1

(X

j

). By

virtue of Lemma 4.7 we obtain:

U

t+1;j;A

=

\

w2W

j

w

�1

(U

A

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;A

[E

t;j;C

)

n U

t+1;j;?

��

�

Taking into aount that U

?

��

�

= E

C

and that U

t;j;?

��

�

= E

t;j;C

, we an apply the

argument of Lemma 6.28 and replae the expression U

t+1;j;?

��

�

with the right-hand side

of equation (�

0

). Again, we an obtain an upper bound for the resulting expression, yielding

that:

U

t+1;j;A

�

[

w2W

j

w

�1

(U

A

) [

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;A

) :

Beause U

A

and every U

t+1;j;A

is �nite, it is not diÆult to prove that w

�1

(U

A

) and every

w

�1

(U

t+1;j;A

) ontain only suÆxes of U

A

. We know from Lemma 6.28, that this property

is respeted by the union, thus ompleting the proof. For role languages U

t;j;:A

referring

to negated atomi onepts :A, exatly the same argument holds.

I

3. We already know that �

t

is in redued normal form for every t 2 T . Thus, we have

for every number restrition (� nR) 2 N

�

that

S

m�n

U

t;j;(�mR)

is equal to U

t;j;(�nR)

,

i.e. the union an be omitted. The same holds for C, whih is in redued normal form

as well. Therefore, the expression

S

m�n

U

(�mR)

similarly an be replaed by U

(�nR)

.

This observation enables us to simplify the solution language derived from the system of

mathing problems proposed in (1). By means of Lemma 4.7, we an infer for U

t+1;j;(�nR)

that:

U

t+1;j;(�nR)

=

\

w2W

j

w

�1

(

[

m�n

U

(�mR)

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(

[

m�n

U

t;j;(�mR)

[E

t;j;C

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

(�nR)

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[E

t;j;C

)

n U

t+1;j;?

��

�

We an see that after removing the unions for the number restritions, the above equation

is syntatially idential to the one derived for A 2 C in (2). The rest of the argument

therefore is idential to what has been proposed there.

I

4. For (�)-number restritions, we an again remove the union-operator in the same

fashion as done in (3). However, we obtain slightly di�erent results for the solution lan-

guages derived from the system of mathing problems introdued in (1). For U

t+1;j;(�nR)

666.555. termination 79

we an infer that:

U

t+1;j;(�nR)

=

\

w2W

j

w

�1

(

[

m�n

U

(�mR)

[E

C

�R

�1

)

\

\

j

0

\

w2W

j;j

0

w

�1

(

[

m�n

U

t;j;(�mR)

[E

t;j;C

�R

�1

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

(�nR)

[(U

?

��

�

)�R

�1

)

\

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[(U

t;j;?

��

�

)�R

�1

)

n

0

�

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

)

1

A

| {z }

=:M

2

Observe, that in the seond step we ould replae E

C

by U

?

��

�

and E

t;j;C

by U

t;j;?

��

�

.

This replaement is valid beause C and �

t

are in redued normal form. However, the

result deviates from the pattern seen in the previous ases of this proof|the right-quotients

of U

?

��

�

and U

t;j;?

��

�

our instead of the original languages. Nevertheless, we an

simplify the right quotient thanks to the �niteness of U

?

and U

t;j;?

: (U

?

��

�

)�R

�1

equals

U

?

�R

�1

[U

?

��

�

and similarly (U

t;j;?

��

�

)�R

�1

an be simpli�ed to U

t;j;?

�R

�1

[U

t;j;?

��

�

for all t and j. Sine after this transformation all right quotients refer to �nite languages,

we an subtrat M

2

and follow the argument familiar from Lemma 6.28. Consequently,

we obtain:

U

t+1;j;(�nR)

�

[

w2W

j

w

�1

(U

(�nR)

[U

?

�R

�1

)

[

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[U

t;j;?

�R

�1

)

Finally, we an again employ an indution argument to prove that every U

t+1;j;(�nR)

ontains only suÆxes of U

(�nR)

[U

?

�R

�1

.

�

�

�

After eliminating the union over number restritions and the right-quotient for (�)-number

restritions in the above equations, the resulting situation appeared very similar to the

analogous problems for FL

?

. Realling the haraterizations of equivalene and subsump-

tion for redued normal forms in FL

?

and ALN , this is not surprising. By omparing

Lemma 6.8 and 6.19, we �nd almost the same onditions for subsumption. Observe,

that we again assumed C to be in redued normal form. This is legitimate, sine in the

de�nition of A

ALN

, C is only referred to in redued normal form.

Lemma 6.32 Deletion ondition in ALN

ALN

ALN

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an ALN -mathing problem with non-

strit side onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

ouring during the exeution of A

ALN

(P) as spei�ed in De�nition 6.23 Then A

ALN

(P)

meets the deletion ondition spei�ed in De�nition 6.24 for all ourring role languages.

Proof.

At �rst, the assertion is proved for role languages referring to the ?-onept and then for

the remaining ases.

80 hapter 666. fixed points and side onditions

B

B

B

?-onept: Assume that a word w an appear in a role language for greater t after

having been deleted, i.e. there exists a word w 2 �

�

, and indies t < t

0

2 T and a

j 2 f1; : : : ; `g suh that w 2 U

t;j;?

and w 62 U

t

0

;j;?

but w 2 U

t

0

+1;j;?

. We an now infer a

ontradition to U

t;j;?

being pre�x free, as already done for FL

?

in Lemma 6.29.

As the substitutions �

t

, �

t

0

and �

t

0

+1

are redued, we an infer from the assumptions by

virtue of the properties of redued normal forms in ALN that U

t;j;?

� U

t

0

;j;?

� U

t

0

+1;j;?

.

The rest of the argument is analogous to Lemma 6.29. We apply the de�nition of the

multiset order (�) and infer that U

t;j;?

must ontain a nontrivial pre�x of w as well as w

itself.

B

B

B

Other ases: Assume similarly for a word w 2 �

�

that w 2 U

t;j;A

and w 62 U

t

0

;j;A

, but

w 2 U

t

0

+1;j;A

for an atomi onept A 2 C, for some j 2 f1; : : : ; `g, and for nonnegative

integers t < t

0

2 T . Sine again �

t

v �

t

0

v �

t

0

+1

and sine all substitutions are redued,

we yield by Lemma 6.19:

U

t;j;A

_

[U

t;j;?

��

�

� U

t

0

;j;A

_

[U

t

0

;j;?

��

�

� U

t

0

+1;j;A

_

[U

t

0

+1;j;?

��

�

Now we an follow the argument employed in Lemma 6.29 to infer a ontradition to the

disjointness of the unions. It is shown in Lemma 6.19 that the argument of disjoint unions

also applies for negated atomi onept and number restritions.

�

�

�

This setion ompletes our disussion on mathing problems modulo equivalene with non-

strit side onditions. It should be noted that our proofs strongly rely on the assumption of

redued normal forms. Nevertheless, we have pointed out in Setion 6.5 that the algorithm

A

L

has the same behaviour without this requirement. The results obtained here therefore

apply to the algorithm as introdued in De�nition 6.20. It might be worth emphasizing

that the algorithm proposed here is appliable to both ayli and yli side onditions.

hapter 7

Conlusion

7.1 Summary

In this work the omputational omplexity of mathing algorithms has been disussed

for four ommon desription logis|ALN and three of its sublanguages. Three di�erent

problems have been onsidered in this ontext: Mathing modulo equivalene without

side onditions, the approah of eliminating side onditions and the use of �xed point

algorithms for solving mathing problems with side onditions.

The artile [BKBM99℄ by Baader, K�usters, Borgida, and MGuinness formed the basis for

our work, providing a haraterization of subsumption for our logis and algorithms for

mathing problems without side onditions. Regarding the omputational omplexity of

these algorithms, only one minor gap had to be losed. In order to formally verify that

the algorithms are eÆient, the properties of treelike automata had to be examined. This

gap is losed by Chapter 4, where treelike automata have been disussed in depth. In

onsequene, the results of [BKBM99℄ have been on�rmed|mathing problems without

side onditions an be solved in polynomial time. This has been our �rst main topi.

It was shown in [BKBM99℄ that mathing problems with non-strit side onditions annot

be solved eÆiently by straightforwardly eliminating side onditions. It has been our se-

ond main topi in Chapter 5 to disuss how the approah of eliminating side onditions an

be arried out suessfully. Eventually, we have seen that struture sharing is required for

ompat representations of role languages in order to gain an eÆient solution. However,

the result proposed here is limited to ayli side onditions. It is not lear whether this

idea an be extended to the yli ase.

Finding a solution appliable to mathing problems with ayli as well as yli side

onditions has been the third main issue in this work (overed in Chapter 6). Here a

�xed point algorithm has been developed solving this problem. In this ontext, redued

normal forms have been introdued in order to simplify the proof of termination for that

algorithm. Nevertheless, redued normal forms might also be interesting in FL

?

, FL

:

,

and ALN , beause they redue equivalene to equality in these logis. FL

0

-normal forms

do not suit this purpose.

7.2 Future goals

In addition to the non-strit ase, in [BKBM99℄ also mathing problems with strit side

onditions are examined. It was shown by a redution to 3SAT ([GJ79℄) that mathing un-

der strit side onditions is NP-hard even in FL

0

. Nevertheless, an appropriate mathing

82 hapter 777. onlusion

algorithm has not yet been proposed. It seems worthwhile utilize the eÆient math-

ing algorithm for non-strit side onditions proposed here in the ontext of a mathing

algorithm for strit side onditions.

For mathing under non-strit side onditions, the �xed-point algorithm proposed in Chap-

ter 6 omprises a strategy built on top of a mathing algorithm already existing for ALN

or its sublanguages studied here. It might be promising to apply a similar approah to

other desription logis, where standard mathing algorithms have already been found.

One suh example ould be the logi ALE , whih allows for existential role restritions

instead of number restritions. Mathing in ALE has already been studied in [BK00a℄.

Bibliography

[BK00a℄ F. Baader and R. K�usters. Mathing in desription logis with existential

restritions. In A.G. Cohn, F. Giunhiglia, and B. Selman, editors, Proeed-

ings of the Seventh International Conferene on Knowledge Representation

and Reasoning (KR2000), pages 261{272, San Franiso, CA, 2000. Morgan

Kaufmann Publishers. ! p. 82

[BK00b℄ A. Borgida and R. K�usters. What's not in a name: Some properties of a purely

strutural approah to integrating large dl knowledge bases. In F. Baader

and U. Sattler, editors, Proeedings of the 2000 International Workshop on

Desription Logis (DL2000), number 33 in CEUR-WS, Aahen, Germany,

2000. ! p. 3

[BKBM99℄ F. Baader, R. K�usters, A. Borgida, and D. MGuinness. Mathing in desrip-

tion logis. Journal of Logi and Computation, 9(3):411{447, 1999. ! pp. 2,

3, 4, 9, 10, 11, 12, 14, 17, 20, 40, 41, 42, 45, 58, 62, 63, 66, 67, 73, 74, 81

[BMS

+

91℄ Ronald Brahman, Deborah MGuinness, Peter Patel Shneider, Lori Alperin

Resnik, and Alexander Borgida. Living with CLASSIC: When and how to

use a KL-ONE-like language. In John F. Sowa, editor, Priniples of Semanti

Networks | Explorations in the Representation of Knowledge, pages 401{456.

Morgan Kaufmann, 1991. ! p. 3

[BN98a℄ F. Baader and P. Narendran. Uni�ation of onept terms in desription logis.

In H. Prade, editor, Proeedings of the 13th European Conferene on Arti�ial

Intelligene (ECAI-98), pages 331{335. John Wiley & Sons Ltd, 1998. ! pp.

1, 2, 10

[BN98b℄ Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, New York, 1998. ! p. 56

[BS96℄ F. Baader and U. Sattler. Knowledge representation in proess engineering. In

Proeedings of the International Workshop on Desription Logis, Cambridge

(Boston), MA, U.S.A., 1996. AAAI Press/The MIT Press. ! p. 3

[DLNN91℄ Franeso M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.

The omplexity of onept languages. In James Allen, Rihard Fikes, and

Erik Sandewall, editors, Proeedings of the 2nd International Conferene on

Priniples of Knowledge Representation and Reasoning, pages 151{162, San

Mateo, CA, USA, April 1991. Morgan Kaufmann Publishers. ! p. 2

[GJ79℄ M. R. Garey and D. S. Johnson. Computers and Intratability : A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company, 1979.! p. 81

84 bibliography

[HB91℄ B. Hollunder and F. Baader. Qualifying number restritions in onept lan-

guages. In Proeedings of the Seond International Conferene on Priniples

of Knowledge Representation and Reasoning, KR-91, pages 335{346, Boston

(USA), 1991. ! p. 2

[HNSS90℄ Bernhard Hollunder, Werner Nutt, and Manfred Shmidt-Shau�. Subsump-

tion algorithms for onept desription languages. In Proeedings of ECAI-90,

9th European Conferene on Arti�ial Intelligene, pages 348{353, Stokholm,

Sweden, 1990. ! p. 2

[HU80℄ J. Hoproft and J. Ullman. Introdution to Automata Theory, Languages, and

Computation. Addison-Wesley, N. Reading, MA, 1980. ! pp. 5, 6

[K�us98℄ R. K�usters. Charaterizing the Semantis of Terminologial Cyles in ALN us-

ing Finite Automata. In Proeedings of the Sixth International Conferene on

Priniples of Knowledge Representation and Reasoning (KR'98), pages 499{

510. Morgan Kaufmann, 1998. ! pp. 11, 17, 40, 52, 63, 76

[MPS98℄ Deborah L. MGuinness and Peter F. Patel-Shneider. Usability issues in

knowledge representation systems. In Proeedings of the 15th National Con-

ferene on Arti�ial Intelligene (AAAI-98) and of the 10th Conferene on

Innovative Appliations of Arti�ial Intelligene (IAAI-98), pages 608{614,

Menlo Park, July 26{30 1998. AAAI Press. ! p. 2

[YZ91℄ S. Yu and Q. Zhuang. On the state omplexity of intersetion of regular

languages. ACM SIGACT News, 22(3):52{54, 1991. ! p. 20

