
� �

� �

� �

� �

Mat
hing under Side Conditions

in Des
ription Logi
s

Diplomarbeitiplomarbeitiplomarbeit imimim Fa
ha
ha
h Informatiknformatiknformatik amamam

Lehr-ehr-ehr- undundund Fors
hungsgebietors
hungsgebietors
hungsgebiet Theoretis
heheoretis
heheoretis
he Informatiknformatiknformatik derderder

Rheinis
h-heinis
h-heinis
h-Westf

�

alis
henestf

�

alis
henestf

�

alis
hen Te
hnis
hene
hnis
hene
hnis
hen Ho
hs
huleo
hs
huleo
hs
hule Aa
hena
hena
hen

Professorrofessorrofessor Drrr.-Ingngng. Franzranzranz Baaderaaderaader

vorgelegtvorgelegtvorgelegt vonvonvon Sebastianebastianebastian Philipphilipphilipp Brandtrandtrandt

Aa
hena
hena
hen, imimim Augustugustugust 200020002000

Mat
hing under Side Conditions

in Des
ription Logi
s

Diplomarbeit

Ausgegeben und betreut von Professor Dr.-Ing. Franz Baader

Erstguta
hter: Professor Dr.-Ing. Franz Baader

Zweitguta
hter: Professor Dr. Wolfgang Thomas

Verfasser

Sebastian Philipp Brandt

Matrikelnummer 200553

Geboren am 25. April 1974

Satz: T

E

X/L

A

T

E

X

Erkl�arung

Hiermit versi
here i
h, da� i
h die vor-

liegende Arbeit selbst�andig verfa�t und keine

anderen als die angegebenen Quellen und

Hilfsmittel benutzt, sowie Zitate kenntli
h

gema
ht habe. Aa
hen, den 21. August 2000.

Meiner Mutter und meinem Vater gewidmet.

Alles, was i
h bin,

bin i
h dur
h Eu
h.

A UN POETA MENOR DE 1899

Dejar un verso para la hora triste

Que en el
onf��n del d��a nos a
e
ha,

Ligar tu nombre a su doliente fe
ha

De oro y de vaga sombra. Eso quisiste.

<Con qu�e pasi�on, al de
linar el d��a,

Trabajar��as el extra~no verso

Que, hasta la dispersi�on del universo,

La hora de extra~no azul
on�rmar��a!

No s�e si lo lograste ni siquiera,

Vago hermano mayor, si has existido,

Pero estoy solo y quiero que el olvido

Restituya a los d��as tu ligera

Sombra para este ya
ansado alarde

De unas palabras en que est�e la tarde.

EINEM MINDEREN DICHTER VON 1899

Der Stunde, die uns trist am Tagesrand

belauert, eine Zeile hinterlassen,

deinen Namen an ihre sie
he Zeit

aus Gold und Dunkel heften war dein Wuns
h.

Mit wel
her Leidens
haft hast du an der Neige

des Abends an diesem sonderbaren Vers gefeilt,

da� er, bis zur Au
�osung des Universums,

die sonderbare blaue Stunde berge!

I
h wei� ni
ht, ob er dir gelang, ni
ht einmal,

du ungewisser �alterer Bruder, ob du lebtest,

aber i
h bin allein und w�uns
hte, das

Vergessen g�abe den Tagen deinen lei
hten

S
hatten zur�u
k f�ur diese m�ude Reihe

von W�ortern, da� in ihnen dieser Abend sei.

JORGE LUIS BORGES

Danksagung

Mit gro�er Freude versehe i
h die P
i
ht, hier all denen meinen Dank auszuspre
hen,

die Anteil hatten am Zustandekommen der vorliegenden Arbeit. Insbesondere danke i
h

Professor Dr. Franz Baader f�ur seine Betreuung und f�ur das Vertrauen, das er in mi
h

und in das Gelingen dieser Arbeit gesetzt hat. Es wird mir ein Anliegen sein zu zeigen,

da� dieses Vertrauen ni
ht unn�utz investiert war. Meinem Mentor Professor Dr. Klaus

Indermark verdanke i
h, da� mein Studium einen si
heren Weg genommen hat und da� die

RWTH Aa
hen si
h mir von Beginn an von einer pers�onli
hen und verantwortungsvollen

Seite gezeigt hat. F�ur die Geduld, f�ur die Unterst�utzung und f�ur die unz�ahligen Gespr�a
he

�uber mein Thema danke i
h Dipl.-Inform. Ralf K�usters, dessen Engagement diese Arbeit

mitbestimmt hat.

I
h danke Neil Stewart M.A. f�ur seinen Rat als \native speaker" und f�ur seine Bereit-

s
haft, au
h einen so derart \o�-topi
" gelegenen Aufsatz mit der Sorgfalt zu behandeln,

die ihn auszei
hnet. Vielen Dank an Sebastian Niesen, der mir als Administrator den

Luxus erm�ogli
ht hat, mi
h g�anzli
h auf diese Arbeit zu konzentrieren, ohne Betriebssys-

teme warten zu m�ussen. F�ur ihre gro�z�ugige Unterst�utzung danke i
h au�erdem Mathias

Christoph Brandt und Young-Im Yang, ohne deren F�ursorge die zur�u
kliegenden Monate

viel entbehrungsrei
her verlaufen w�aren.

Sebastian Philipp Brandt

Contents

1 Introdu
tion 1

1.1 The motive for mat
hing . 3

1.2 The stru
ture of this work . 4

2 Preliminaries 5

2.1 Formal languages . 5

2.2 Finite automata . 6

2.2.1 Nondeterministi
 �nite automata . 6

2.2.2 Deterministi
 �nite automata . 8

3 Mat
hing in Des
ription Logi
s 9

3.1 Des
ription logi
s . 9

3.2 Mat
hing problems . 12

4 Solving Mat
hing Problems 17

4.1 Results from previous work . 17

4.2 Treelike automata . 20

4.2.1 Basi
 de�nitions . 20

4.2.2 Properties . 24

4.2.3 Operations on treelike automata . 27

4.3 De
iding solvability . 36

4.4 General result . 41

5 Eliminating Side Conditions 45

5.1 Redu
ing mat
hing problems . 45

5.2 Automata and a
y
li
 side
onditions . 47

5.3 Restri
ting large languages . 49

5.4 Automata-theoreti
 solution . 51

5.4.1 Result for FL

?

. 51

5.4.2 Extension to FL

:

. 52

6 Fixed Points and Side Conditions 55

6.1 Pre�x free languages . 56

6.2 Redu
ed normal forms . 58

6.2.1 Redu
ed normal forms for FL

?

. 58

6.2.2 Redu
ed normal forms for FL

:

. 60

6.2.3 Redu
ed normal forms for ALN . 62

6.3 The algorithm . 67

ontents

6.4 Corre
tness and
ompleteness . 69

6.5 Termination . 70

6.5.1 General result . 71

6.5.2 Termination
onditions in FL

0

. 73

6.5.3 Termination
onditions in FL

?

. 73

6.5.4 Termination
onditions in FL

:

. 76

6.5.5 Termination
onditions in ALN . 76

7 Con
lusion 81

7.1 Summary . 81

7.2 Future goals . 81

Bibliography 83

hapter 1

Introdu
tion

Des
ription Logi
s (DL) form a
ategory of knowledge-representation formalisms used to

represent terminologi
al knowledge of a given appli
ation domain in a stru
tured and well-

de�ned way. As
ommon
hara
teristi
s, they employ
on
ept-des
riptions for the rep-

resentation of notions relevant in the appli
ation domain, and provide a model-theoreti

semanti
s
losely related to �rst-order logi
s. Con
ept des
riptions are built from atomi

on
epts and atomi
 roles, i.e. from unary and binary predi
ates respe
tively, using
on-

ept
onstru
tors provided by the DL language. Atomi

on
epts and
on
ept des
riptions

represent sets of individuals, whereas atomi
 roles represent binary relations between indi-

viduals [BN98a℄. Consider the following example, whi
h is inspired by [BN98a℄. Assuming

an atomi

on
ept Human representing human beings, an atomi

on
ept Female for all fe-

male beings, and an atomi
 role hasChild spe
ifying parent-
hild relations, we
an represent

the general
on
epts of women and women having only daughters:

Woman := Human u Female

W := Woman u 8hasChild:Woman

The symbol (u) stands for the
onjun
tion of
on
ept des
riptions. Thus, a Woman is

a female human being and W denotes the
on
ept of women su
h that all their
hildren

are again women. The example also illustrates how
on
ept des
riptions are built up from

atomi

on
epts.

In this work we will be
on
erned with the DL language ALN , whi
h also allows the

imposition of number restri
tions on atomi
 roles. If a number restri
tion for some role

is in
luded in a
on
ept des
ription, then
ertain limitations regarding the number of

su

essors in respe
t to this role are imposed on all instan
es of this
on
ept des
ription.

The idea is illustrated by extending the above example. In the de�nition of the
on
ept

des
ription W it is not stated that there a
tually are any daughters. When spe
ifying the

general
on
ept of a mother, however, we do not only require every
hild to be human,

but we espe
ially want to ensure that at least one su
h
hild exists. Utilizing number

restri
tions, this notion
an be represented by the following
on
ept des
ription.

Mother := Woman u 8hasChild:Human u (� 1 hasChild)

M := Mother u 8hasChild:(� 0 hasChild)

Every individual represented by Mother therefore is in hasChild-relation to at least 1 other

individual represented by Human, i.e. there exists at least one daughter or son. The

de�nition of the
on
ept des
ription M is interesting, be
ause here a number restri
tion

o

urs inside a role restri
tion. M represents the
on
ept of a mother who is not a grand-

mother. This holds, sin
e all the
hildren of individuals represented by M are required to

2
hapter 111. introdu
tion

have at most 0
hildren themselves, i.e. there are no
hildren in the se
ond generation.

Observe that the at-least restri
tion in M does not interfere with the at-most restri
tion

in
luded in Mother , sin
e it o

urs on a di�erent level in regard to the role hasChild. A

formal de�nition of the language ALN in
luding all available
onstru
ts will be provided

in Chapter 3. The above examples may suÆ
e at this point in order to give a rough

impression of the
apabilities of DL languages.

Subsumption and equivalen
e are distinguished as relations between
on
ept des
riptions of

a DL language. If one
on
ept des
ription is subsumed by a se
ond one, then these two are

in sub
on
ept{super
on
ept relation. Thus, the se
ond is a super
on
ept or generalization

of the �rst one. In this
ase, the individuals represented by the �rst
on
ept des
ription

always form a subset of those of the se
ond one. For instan
e in the above example the

on
ept des
ription M is subsumed by Mother, whi
h itself is subsumed by Woman, sin
e

every mother is a woman. Con
ept des
riptions are regarded as equivalent if they always

represent the same set of individuals.

The subsumption-relation indu
es a hierar
hy on the set of
on
ept des
riptions whi
h

is desirable for stru
turing the notions relevant for an appli
ation domain. On the other

hand, identifying equivalent
on
ept des
riptions allows to avoid redundan
ies when aug-

menting an existing set of
on
ept des
riptions [BN98a℄. Nevertheless, subsumption- and

equivalen
e-relations must be de
idable in order to take advantage of them in DL sys-

tems. De
iding subsumption or equivalen
e of
on
ept des
riptions are standard inferen
e

problems whi
h have been examined for a variety of DL languages. For many of them,

upper and lower
omplexity bounds have been obtained and mat
hing algorithms have

been proposed (e.g. [HNSS90, HB91, DLNN91℄. See [BKBM99℄ for further referen
es).

However, when DL languages are employed for large-s
ale knowledge bases, standard in-

feren
e algorithms do not perform satisfa
tory for building and maintaining purposes. It

has been shown in [MPS98℄ that non-standard inferen
es like learning and mat
hing
an

be used to improve this. In this work we will restri
t our attention to the latter.

In order to address mat
hing we need to introdu
e
on
ept patterns. These extend the no-

tion of
on
ept des
riptions by allowing for variables, whi
h
an be substituted by
on
ept

des
riptions. Mat
hing a
on
ept pattern against a
on
ept des
ription means �nding a

substitution for the o

urring variables su
h that both expressions be
ome equivalent. This

is
alled mat
hing modulo equivalen
e. Mat
hing modulo subsumption on the other hand

aims at merely making the
on
ept pattern subsume the
on
ept des
ription. Consider

the following example of a
on
ept pattern, whi
h again refers to the
on
ept des
riptions

introdu
ed above:

P := Woman u 8hasChild:X

When mat
hing (modulo equivalen
e) the
on
ept pattern P against the
on
ept des
rip-

tionW of our example the variableX is substituted by an expression equivalent toWoman.

For mat
hing modulo subsumption, assigning X with Human would already be suÆ
ient.

We shall see later on that it is desirable to �nd substitutions whi
h are minimal in respe
t

to subsumption, ensuring that the obtained result is as spe
i�
 as possible.

The idea of mat
hing
an be re�ned by admitting side
onditions whi
h impose further

onstraints on the substitution sought. Side
onditions
an be de�ned for every variable

o

urring in a
on
ept pattern and demand that the solution for this variable be subsumed

by another
on
ept pattern. In this way, side
onditions form a system of subsumption

onditions, whi
h
an either be a
y
li
 or
y
li
. We distinguish non-stri
t and stri
t side

onditions, depending on whether subsumption or stri
t subsumption is required. With

the help of side
onditions it is possible to avoid trivial mat
hes o

urring as solutions to

mat
hing problems or to �nd solutions at a
ertain position in the
on
ept hierar
hy.

111.111. the motive for mat
hing 3

1.1 The motive for mat
hing

Mat
hing was motivated by the idea of pruning large
on
ept des
riptions whi
h are likely

to o

ur in real-world knowledge representation systems based on DL languages. Pruning

means that, instead of printing
on
ept des
riptions in full length, only those aspe
ts are

printed whi
h are relevant under
urrent
ir
umstan
es. For this task mat
hing algorithms

an be used, as the following example may illustrate.

Consider an appli
ation domain where des
ription logi
s are employed to represent the

properties of
ertain
omponents intera
ting with ea
h other for some purpose. Under

ertain
ir
umstan
es only the dependen
y of a
omponent on others might be of interest,

whereas all the other properties are irrelevant. Instead of manually retrieving the relevant

details in a
on
ept des
ription C de�ning a
ertain type of
omponent, one
ould mat
h

C against a
on
ept pattern D of the following form.

D := 8dependsOnServi
e:X u 8providesServi
e:Y

Provided that the dependen
y relations in su
h a
ontext are represented by atomi
 roles

like dependsOnServi
e and providesServi
e the mat
hing result returns exa
tly the relevant

aspe
ts of the
omponent C. It was pointed out that implementing pruning strategies on

user interfa
e level of knowledge representation systems entails disadvantages in
ompar-

ison to in
luding them in the underlying DL language. Espe
ially,
on
ept patterns like

D used to provide a pruned view of
on
ept des
riptions
an be stored, organized, and

re-used [BKBM99℄.

As an extension of the above example, side-
onditions
ould be used to restri
t the solutions

obtained when mat
hing the
on
ept des
ription C against the
on
ept patternD. Assume

that the atomi

on
ept Servi
eTypeA represents a
ertain sub
lass of servi
es provided by

our
omponents. By in
luding a non-stri
t side
ondition of the form

Y v

?

Servi
eTypeA

in the mat
hing problem, only those servi
es provided by C are returned, whi
h are sub-

sumed by Servi
eTypeA, i.e. we obtain only servi
es of type A. In this
ase, side
onditions

are used to obtain more spe
i�
 results for mat
hing problems. This is espe
ially useful for

mat
hing modulo subsumption, where trivial solutions exist for every solvable mat
hing

problem. It should be noted, however, that side
onditions
an also be utilized to prevent

solutions to mat
hing problems from be
oming too spe
i�
. Consequently, side
onditions

provide a powerful means for the re�nement of mat
hing problems.

Mat
hing algorithms have already been employed su

essfully in professional and a
ademi

knowledge representation systems. In the Classi
lassi
lassi
 system developed at AT&T [BMS

+

91℄,

mat
hing is used to prune irrelevant information in the
ontext of explanation fa
ilities

designed to make dedu
tions expli
it to the user. Another example
omes from the domain

of pro
ess engineering [BS96℄, where there are plans to utilize mat
hing in order to avoid

introdu
ing redundan
ies in very large knowledge bases maintained by several persons over

a longer period of time. Apart from these appli
ations, mat
hing
an also be used when

integrating knowledge bases [BK00b℄.

In [BKBM99℄, Baader, K�usters, Borgida, and M
Guinness have proposed algorithms to

solve mat
hing problems without side
onditions in ALN and three of its sublanguages,

namely FL

0

, FL

?

, and FL

:

. These are introdu
ed mainly for dida
ti
 reasons, allowing

to develop the solution for ALN step by step. It should be noted that positive results

in ALN are not automati
ally inherited by the sublanguages, whi
h makes it ne
essary

to
onsider ea
h sublanguage individually. The authors have also given proofs regarding

the
omputational
omplexity of these algorithms, showing that solutions are
omputed

4
hapter 111. introdu
tion

in polynomial time. Nevertheless, the properties of one
onstru
t used within these proofs

have been stated without proof.

The obje
tive of this work is twofold. Firstly, we will
on�rm the results proposed for

mat
hing without side
onditions by giving a formal proof of the properties used infor-

mally in [BKBM99℄. Se
ondly, we will show how mat
hing problems with non-stri
t side

onditions
an be solved in polynomial time as well. The following se
tion will give a brief

overview of the respe
tive
hapters.

1.2 The stru
ture of this work

Chapter 2 introdu
es basi
 notions related to formal languages and �nite automata. Many

of the properties proposed in this
ontext may appear very familiar, but are of
ru
ial

importan
e for our reasoning in the following
hapters. In Chapter 3, des
ription logi
s

and mat
hing problems are introdu
ed formally.

Chapter 4 is
on
erned with the results on mat
hing without side
onditions obtained

in [BKBM99℄ in re
ourse to an intuitive de�nition of so-
alled \treelike automata". We

propose a formal de�nition for them and examine their properties in detail. This will allow

us to
on�rm the respe
tive results, i.e. mat
hing problems without side
onditions
an

be solved in polynomial time in ALN and its sublanguages. In Chapter 5, side
onditions

are taken into
onsideration. Two approa
hes are dis
ussed to redu
e mat
hing problems

with a
y
li
 side
onditions to su
h without them. A straightforward strategy originally

mentioned in [BKBM99℄ is shown to fail, while an alternative one, utilizing �nite automata,

will su

eed. Both approa
hes, however, are limited to a
y
li
 side
onditions.

This is over
ome in Chapter 6, where we present a solution
omprising a �xed point

algorithm appli
able to a
y
li
 as well as
y
li
 side
onditions. It will be shown that by

this approa
h mat
hing problems with non-stri
t side
onditions in ALN as well as its

sublanguages
an be solved in polynomial time. Proving these
laims will be simpli�ed

by the introdu
tion of normal forms for
on
ept des
riptions, a representation whi
h is

unique with respe
t to equivalen
e.

In the last
hapter we give a summary and very brie
y mention two open problems for

whi
h the results of this work might be valuable. These problems are mat
hing under

stri
t side
onditions and mat
hing in des
ription logi
s other than ALN .

hapter 2

Preliminaries

In this
hapter we introdu
e basi
 notions relating to sets, formal languages, and �nite

automata. Furthermore, some properties of �nite automata are dis
ussed, whi
h will prove

useful in the later
hapters.

Let us �rst explain some typographi

onventions throughout this work. The end of the

body of every de�nition, of every proof, and of every example is indi
ated by a box (�

�

�)

at the right-hand side of the
olumn. The notions newly introdu
ed in a de�nition are

set in itali
 type. If the assertion of a lemma
omprises an enumeration of several
laims,

then bla
k triangles (

I

) at the left-hand side of the
olumn are used to stru
ture the

proof a

ordingly. When several
ases are distinguished in a proof, light triangles (

B

B

B

) are

employed to indi
ate the beginning of every
ase. We hope that these visual markers make

reading more
onvenient.

Throughout this work, the word \i�" is used as an equivalent to \if and only if". It

should also be noted that we in
lude 0 in the set of natural numbers, i.e. N is de�ned

as N := f0; 1; : : :g. Our �rst de�nition spe
i�es our notation for the power set and the

ardinality of sets.

De�nition 2.1 Notation for sets

For every set S, denote by P(S) the power set of S, i.e. P(S) := fT jT � Sg. The

ardinality of S is denoted by jSj.

�

�

�

2.1 Formal languages

We are now ready to introdu
e formal languages and dis
uss some of their properties. We

will make use of the notation introdu
ed in [HU80℄, where the subje
t is studied in depth.

De�nition 2.2 Formal languages

Let � be a �nite nonempty set. � is
alled alphabet and its elements are
alled
hara
ters,

whi
h we regard as atomi
 symbols. A �nite sequen
e of
hara
ters is
alled a word over

�. The length of a word w is denoted by jwj. The word
onsisting of 0
hara
ters is

denoted by ", the empty word. For two words w and w

0

, w

0

is
alled a pre�x of w i� there

exists another word w

00

su
h that w = w

0

w

00

. In this
ase, w

00

is
alled a suÆx of w and w

is
alled a
ontinuation of w

0

. The notion of pre�xes indu
es a stri
t order over the set of

words over � in the following way: Two words w and v are in stri
t pre�x order (denoted

by w <

pr

v), i� w is a pre�x of v, and v is not equal to w.

Denote by `�' the
on
atenation of words, i.e. the expression w�v represents the
hara
-

ter sequen
e wv for every word w and v. The empty word is neutral in respe
t to the

on
atenation.

6
hapter 222. preliminaries

A set of words over � is
alled a (formal) language over �. A language is
alled regular,

if it
an be represented by a grammar of type 3 in the Chomsky Hierar
hy. The notion

of
on
atenation is extended to languages in the following way: For languages L, L

0

, the

on
atenation L�L

0

is de�ned by
on
atenating all possible pairs of words, whi
h yields

L�L

0

:= fw�w

0

jw 2 L;w

0

2 L

0

g. For the iterated
on
atenation, the following notation is

de�ned indu
tively. For every language L and for n 2 N, de�ne:

L

0

:= f"g

L

n+1

:= L�L

n

For every language L, the expression L

�

is de�ned as L

�

:=

S

n2N

L

n

. Similarly, L

+

is

de�ned by ex
epting the
ase n = 0, i.e. L

+

:= L

�

n L

0

. The �

�

-
losure of L is de�ned

by L��

�

.

�

�

�

Note that the alphabet �
an be regarded as a language itself. Every word over � is an

element of �

�

and every language over � is a subset of �

�

.

For formal languages, the operations left and the right quotient are de�ned as follows:

De�nition 2.3 Left and right quotients

Let L be a language over the alphabet �, let w 2 �

�

be a word over �. The left quotient

of L in respe
t to w is de�ned as w

�1

�L := fv 2 �

�

jwv 2 Lg. The right quotient of L in

respe
t to w is de�ned as L�w

�1

:= fv 2 �

�

jvw 2 Lg.

�

�

�

Thus, if a word in a formal language L begins with w, then the remainder of this word is

an element of the left-quotient of w and L. The idea for the right-quotient is analogous.

The
ardinality jLj denotes the number of words
ontained in a formal language L. To

in
lude the length of words into a measure for L, we introdu
e the notion of the size of

formal languages:

De�nition 2.4 Size of formal languages

Let j � j be the ordinary length-fun
tion for words over �. For every �nite language L � �

�

,

de�ne the size of S by:

kLk :=

X

w2L

jwj �

�

�

The size kLk of a language L
orresponds to the amount of storage ne
essary to represent L

expli
itly. Thus, it is an appropriate measure when studying the
omputational
omplexity

of algorithms over formal languages.

2.2 Finite automata

Finite automata are well known
onstru
ts for the representation of regular languages.

We �rst address nondeterministi
 �nite automata and then de�ne the deterministi

ase

as a spe
ialization. Finite automata are studied exhaustively in [HU80℄, where our basi

de�nitions originate.

2.2.1 Nondeterministi
 �nite automata

De�nition 2.5 Nondeterministi
 �nite automata

Let � be a �nite alphabet. A nondeterministi
 �nite automaton (NFA) B over � is de�ned

as B := hQ;�; Æ; q

0

; F i, where

� Q 6= ; denotes a �nite set of states,

� F � Q is the set of a

epting states,

222.222. finite automata 7

� q

0

2 Q denotes the initial state and

� Æ : Q� �! P(Q) is a non-deterministi
 transition fun
tion.

The transition fun
tion is extended to words of arbitrary length by the notion of the

extended transition fun
tion

^

Æ. For every q 2 Q, w 2 �

�

, and for every s 2 �, de�ne

^

Æ

indu
tively as follows:

^

Æ : Q� �

�

! P(Q)

q ; " 7! fqg

q ; ws 7! fp j 9r 2

^

Æ(q; w) : p 2 Æ(r; s)g

The language a

epted by B now
an be de�ned as L(B) = fw 2 �

�

j

^

Æ(q

0

; w)\F 6= ;g. The

size jBj of an automaton B is de�ned by the number of states it has, i.e. jBj := jQj.

�

�

�

Sin
e we will employ automata for the representation of formal languages, appropriate

operations are ne
essary to
ompute the
omplement, the interse
tion, and the union

of nondeterministi
 �nite automata. Note that the
omplement
annot be
omputed

eÆ
iently in the nondeterministi

ase. However, the other operations
an be realized

in polynomial time. The following de�nition provides a
onstru
tion for the interse
tion-

automaton of two given automata:

De�nition 2.6 Produ
t automata

For nondeterministi
 �nite automata B

i

:= hQ

i

;�; q

0i

; Æ

i

; F

i

i (i 2 f1; 2g) with disjoint sets

of states, de�ne the produ
t automaton of B

1

and B

2

as follows:

B

1

\ B

2

:= hQ

1

�Q

2

; (q

01

; q

02

); Æ; F

1

� F

2

i with: For all (q

1

; q

2

) 2 Q

1

�Q

2

, and for every

s 2 �, the transition fun
tion Æ is de�ned by: Æ((q

1

; q

2

); s) := (Æ

1

(q

1

; s); Æ

2

(q

2

; s)).

�

�

�

The produ
t automaton simply runs both input automata in parallel and a

epts the

input, i� both automata independently a

ept it. The
orre
tness of this
onstru
tion is

stated in the next lemma. We omit a proof, sin
e the results below are probably well

known.

Lemma 2.7 Properties of produ
t automata

Let B

1

;B

2

2 NFA(�), where B

i

:= hQ

i

;�; q

0i

; Æ

i

; F

i

i for i 2 f1; 2g. Let Q

1

\Q

2

= ;. Then

1. L(B

1

\ B

2

) = L(B

1

) \ L(B

2

)

2. jB

1

\ B

2

j is polynomial in jB

1

j and jB

2

j.

3. B

1

\ B

2

an be
omputed in polynomial time in jB

1

j und jB

2

j.

Re
all that
omputing the union of �nite automata is parti
ularly simple in the nondeter-

ministi

ase. Provided disjoint sets of states we
an de�ne the union of n automata by

merely adding a new initial state
onne
ted to the n former initial states by "-transitions.

This
onstru
tion is employed in Kleene's Theorem. The size of the resulting automaton

ex
eeds the sum of the sizes of the original automata only by a
onstant.

Automata are intended not only as a representation of formal languages, but also as a

means of de
iding
ertain properties of them. Later on in this work, espe
ially two ques-

tions must be answered eÆ
iently. Firstly, is the language a

epted by a given automaton

empty; and se
ondly, is a
ertain word
ontained in this language. Both problems in fa
t

an be de
ided in polynomial time for nondeterministi
 automata. The following lemma

is stated without proof, sin
e its assertions are well known.

8
hapter 222. preliminaries

Lemma 2.8 De
ision problems

Let B 2 NFA(�) be an NFA over � and let w be a word over �. Then

1. L(B) =

?

;, i.e. the ;-problem,
an be de
ided in polynomial time in jBj.

2. w 2

?

L(B), i.e. the word-problem,
an be de
ided in polynomial time in jBj and jwj.

Regular languages
an be represented by nondeterministi
 automata. We will now see

that su
h a representation
an be
omputed in polynomial time. Given a �nite language,

we
an eÆ
iently
onstru
t an appropriate nondeterministi
 automaton. This is solved

similar to the
onstru
tion of Kleene's Theorem. Nevertheless, we
an avoid introdu
ing

intermediate states in our
onstru
tion whi
h is brie
y des
ribed in the next lemma.

Lemma 2.9 A

epting �nite languages

Let L � �

�

be a �nite language over �. Then there is a nondeterministi
 �nite automaton

B 2 NFA(�) with:

1. L(B) = L, i.e. B a

epts L

2. jBj � kLk+ 1, i.e. the size of B ex
eeds the size of L only by one.

3. B
an be
onstru
ted in polynomial time in kLk.

Proof.

For every w 2 L, generate an appropriate automaton to a

ept fwg only. Su
h automata

an be
onstru
ted easily by merely
on
atenating states in a linear fashion, labelling the

edges with the appropriate
hara
ters of the words to a

ept. The union of these automata

is then
onstru
ted by
ombining the initial states of all the automata
onstru
ted so far

to one inital state.

It is not diÆ
ult to see that the resulting automaton has the desired properties.

�

�

�

2.2.2 Deterministi
 �nite automata

In the deterministi

ase, the transition fun
tion of a �nite automaton returns exa
tly one

state for every input. Therefore, we might simply de�ne deterministi
 �nite automata

by demanding that jÆ(q; s)j = 1 for every state q and every
hara
ter s. However, this

limitation
an be utilized to simplify the de�nition of the a

epted language. The next

de�nition therefore introdu
es a slightly di�erent transition fun
tion.

De�nition 2.10 Deterministi
 �nite automata

Let � be a �nite alphabet. A deterministi
 �nite automaton B := hQ;�; Æ; q

0

; F i over �

is de�ned analogous to a nondeterministi
 �nite automaton ex
ept for the the transition

fun
tion Æ. Here, Æ(q; s) represents exa
tly one state in Q and not a subset of it. Thus, the

deterministi
 transition fun
tion Æ is of the form Æ : Q� �! Q. This entails a simpli�ed

de�nition of the extended transition fun
tion

^

Æ. For every q 2 Q, w 2 �

�

, and for every

s 2 �, de�ne

^

Æ by:

^

Æ : Q� �

�

! Q

q ; " 7! q

q ; ws 7! Æ(

^

Æ(q; w); s)

The de�nition of the a

epted language is de�ned analogous to the nondeterministi

ase.

The same holds for the size of B.

�

�

�

hapter 3

Mat
hing in

Des
ription Logi
s

In this
hapter, we introdu
e the framework ne
essary to formally express the subje
t of

this work. We need to de�ne the des
ription logi
s of interest and the
lasses of problems to

be examined within these logi
s. For this, the following se
tions start by merely repeating

the basi
 de�nitions given in [BKBM99℄.

3.1 Des
ription logi
s

Throughout this work, we will refer to the following sets of atomi

on
epts, roles and

variables, whi
h are ne
essary for the de�nition of des
ription logi
s. Let C, R, and X be

mutually disjoint �nite sets. Denote by C an arbitrary but �xed set of atomi

on
epts

and denote by R an arbitrary but �xed set of atomi
 roles. Every formal language L � R

�

is referred to as role language.

The des
ription logi
s ALN and three of its sublanguages, FL

0

, FL

?

, and FL

:

, are

now de�ned by spe
ifying the syntax of its
on
ept des
riptions �rst and de�ning a model

theoreti
 semanti
s afterwards.

De�nition 3.1 Syntax of
on
ept des
riptions

A (�)-number restri
tion is of the form (� nR), where n 2 N and R 2 R. Similarly,

a (�)-number restri
tion is of the form (� nR). Denote by N

�

an arbitrary but �xed

�nite set of (�)-number restri
tions, denote by N

�

an arbitrary but �xed �nite set of

(�)-number restri
tions. The set dom(ALN) of ALN -
on
ept des
riptions over C, R,

N

�

, and N

�

is indu
tively de�ned by the following rules.

1. Every atomi

on
ept A 2 C and the symbol > (\top-
on
ept") are
on
ept des
rip-

tions.

2. If C and D are
on
ept des
riptions, then C uD is as well.

3. If C is a
on
ept des
ription and R 2 R is an atomi
 role, then 8R:C is a
on
ept

des
ription.

4. The symbol ? (\bottom-
on
ept") is a
on
ept des
ription.

5. For every atomi

on
ept A 2 C, :A is a
on
ept des
ription.

6. Every number restri
tion in N

�

or N

�

is a
on
ept des
ription.

10
hapter 333. mat
hing in des
ription logi
s

The sets ofFL

0

-, FL

?

- andFL

:

-
on
ept des
riptions are de�ned as subsets of dom(ALN).

For the set dom(FL

0

) of FL

0

-
on
ept des
riptions only rules (1){(3) are admitted, for

dom(FL

?

) only rules (1){(4), and for dom(FL

:

) only rules (1){(5).

�

�

�

The model-theoreti
 semanti
s of ALN and its sublanguages is de�ned by spe
ifying a

domain and an interpretation fun
tion mapping every
on
ept des
ription onto a subset

of this domain.

De�nition 3.2 Semanti
s

Let �

I

be a non-empty set. De�ne an interpretation I by its domain �

I

and its interpre-

tation fun
tion �

I

: dom(ALN) ! P(�

I

) [P(�

I

��

I

) in su
h a way that A

I

� �

I

for

all A 2 C and R

I

� �

I

��

I

for all R 2 R. The interpretation fun
tion is then extended

to
omplex
on
ept des
riptions by the following rules.

� ?

I

:= ;, >

I

:= �

I

(bottom,top)

� (:A)

I

:= �

I

nA

I

(atomi
 negation)

� (C uD)

I

:= C

I

\D

I

(
onjun
tion)

� (8R:C)

I

:= fd 2 �

I

j 8e 2 �

I

: (d; e) 2 R

I

) e 2 C

I

g (role restri
tion)

� (� nR)

I

:= fd 2 �

I

j jfe 2 �

I

j(d; e) 2 R

I

gj � ng (�-number restri
ion)

� (� nR)

I

:= fd 2 �

I

j jfe 2 �

I

j(d; e) 2 R

I

gj � ng (�-number restri
tion)

where A 2 C, R 2 R, C;D 2 dom(ALN), (� nR) 2 N

�

, and (� nR) 2 N

�

.

�

�

�

In [BN98a℄, Baader and Narendran have introdu
ed the
on
ept
entered normal form,

whi
h
an be used to represent
on
ept des
riptions in a standardized manner. It has

been re�ned further in [BKBM99℄, yielding the FL

0

-normal form, whi
h is appli
able to

ALN -
on
ept des
riptions as well as to any of its three sublaguages
onsidered here. The

next de�nition introdu
es FL

0

-normal forms along with variable names used to denote

the o

urring role languages.

De�nition 3.3 FL

0

FL

0

FL

0

-normal form

Denote by L an arbitrary identi�er. For every H 2 f?g [C [f:AjA 2 Cg [N

�

[N

�

,

let the de
oration L

H

of L denote a �nite role language. De�ne the L-labelled FL

0

-normal

form of an ALN -
on
ept des
ription C as follows:

C := 8L

?

:? u u

A2C

8L

A

:A u u

A2C

8L

:A

::A

u u

(�nR)2N

�

8L

(�nR)

:(� nR) u u

(�nR)2N

�

8L

(�nR)

:(� nR)

De�ne 8f"g:D := D and 8;:D := > for every ALN -
on
ept des
ription D. The L-

labelled FL

0

-normal form of an arbitrary FL

:

-
on
ept des
ription
an now be de�ned by

requiring the role languages L

(�mR)

and L

(�nR)

to be empty for every number restri
tion

(� mR) 2 N

�

and (� nR) 2 N

�

. For the L-labelled FL

0

-normal form of any FL

?

-

on
ept des
ription, we additionally demand that L

:A

is empty for every atomi

on
ept

A 2 C. Finally, for the L-labelled FL

0

-normal form of an FL

0

-
on
ept des
riptions, the

language L

?

is empty as well.

�

�

�

The above notation has the advantage that every atomi

on
ept, every negated atomi

on
ept, and every number restri
tion from the spe
i�ed sets o

urs exa
tly on
e. It

should be noted that the absen
e of an atomi

on
ept in a
on
ept des
ription easily
an

be expressed by
hoosing ; for the respe
tive role language. In this
ase, the respe
tive

333.111. des
ription logi
s 11

expression be
omes equivalent to the top-
on
ept, the o

urren
e of whi
h does not al-

ter the interpretation of any
on
ept des
ription. We
an now de�ne subsumption and

equivalen
e of
on
ept des
riptions.

De�nition 3.4 Inferen
e problems

Subsumption (v), equivalen
e (�), and stri
t subsumption (�) are de�ned as binary rela-

tions (v); (�); (�) � dom(ALN)

2

. For any C;D 2 dom(ALN) de�ne:

� C v D (C \is subsumed by" D) i� C

I

� D

I

for all interpretations I ;

� C � D (C \is equivalent to" D) i� C

I

= D

I

for all interpretations I ;

� C � D (C \is stri
tly subsumed by" D) i� C � D and C 6� D

for all interpretations I .

Sin
e dom(FL

0

) � dom(FL

?

) � dom(FL

:

) � dom(ALN), the notion of (stri
t) sub-

sumption and equivalen
e is impli
itly de�ned for the sublanguages of ALN .

�

�

�

The FL

0

-normal form as introdu
ed in De�nition 3.3
an be used to
hara
terize subsump-

tion and equivalen
e of
on
ept des
riptions. We �rst introdu
e the notion of ex
luding

words, whi
h is required for the
hara
terization.

De�nition 3.5 Ex
luding words

Let C be anALN -
on
ept des
ription. LetD be an FL

:

-
on
ept des
ription in U -labelled

FL

0

-normal form. The set of C-ex
luding words is de�ned by:

E

C

:= fw 2 �

�

jC v 8w:?g

For D, de�ne the role language

b

U

?

as follows:

b

U

?

:= U

?

[

[

A2C

(U

A

\ U

:A

) �

�

�

It
an be shown that E

D

=

b

U

?

��

�

for every FL

:

-
on
ept des
ription D in U -labelled

FL

0

-normal form. Thus, for FL

:

-
on
ept des
riptions in FL

0

-normal form the notion of

ex
luding words
an be
hara
terized by

b

U

?

. We shall see later on, that a
hara
terization

of ex
luding words for ALN -
on
ept des
riptions in FL

0

-normal form is more
omplex.

Subsumption in ALN was
hara
terized by K�usters in [K�us98℄, yielding the following

result:

Lemma 3.6 Chara
terization of subsumption in ALN

ALN

ALN

Let C;D be ALN -
on
ept des
riptions. Let C be in U -labelled FL

0

-normal. Let D be in

V -labelled FL

0

-normal form. Then C v D i� all of the following
onditions hold.

1. E

C

� E

D

2. U

A

[E

C

� V

A

[E

D

for all A 2 C

3. U

:A

[E

C

� V

:A

[E

D

for all A 2 C

4.

S

m�n

U

(�mR)

[E

C

�

S

m�n

V

(�mR)

[E

D

for all (� nR) 2 N

�

with n � 1

5.

S

m�n

U

(�mR)

[E

C

�R

�1

�

S

m�n

V

(�mR)

[E

D

�R

�1

for all (� nR) 2 N

�

Similar
hara
terizations
an be obtained for the sublanguages of ALN . The following

results for FL

0

, FL

?

and FL

:

an be obtained from [BKBM99℄.

Lemma 3.7 Chara
terization of subsumption in FL

0

FL

0

FL

0

Let C and D be FL

0

-
on
ept des
riptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� U

A

� V

A

for all A 2 C.

12
hapter 333. mat
hing in des
ription logi
s

Lemma 3.8 Chara
terization of subsumption in FL

?

FL

?

FL

?

Let C and D be FL

?

-
on
ept des
riptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� the following two
onditions

hold:

1. U

?

��

�

� V

?

��

�

2. U

A

[U

?

��

�

� V

A

[V

?

��

�

for all A 2 C

Lemma 3.9 Chara
terization of subsumption in FL

:

FL

:

FL

:

Let C and D be FL

:

-
on
ept des
riptions. Let C be in U -labelled FL

0

-normal form and

let D be in V -labelled FL

0

-normal form. Then C v D i� the following two
onditions

hold:

1.

b

U

?

��

�

�

b

V

?

��

�

2. U

A

[

b

U

?

��

�

� V

A

[

b

V

?

��

�

for all H 2 C [f:AjA 2 Cg

It has to be noted that [BKBM99℄ a
tually
hara
terize equivalen
e and not subsumption.

However, it
an be shown with little e�ort that the above results are
orre
t. Char-

a
terizations of equivalen
e
an be derived easily from the above results. A

ording to

De�nition 3.2, equivalen
e of
on
ept des
riptions is equivalent to mutual subsumption.

In order to
hara
terize equivalen
e it is therefore suÆ
ient to repla
e all (�)-relations by

(=) in the above four lemmae. The notion of subsumption is illustrated by the following

example.

Example 3.10 Subsumption in FL

:

FL

:

FL

:

Assume � := fR;Sg as the alphabet of roles. Consider the following ALN -
on
ept

des
riptions:

C :=8fR;Sg:B t 8fRRg:(� 2S)

D :=8fR;Sg:?t 8fRRg:(� 3S)

E :=8f"g:?t 8fR;Sg:A

Then E is subsumed by all the other
on
ept des
riptions, be
ause it is equivalent to the

bottom-
on
ept. D is stri
tly subsumed by C, be
ause it forbids R- and S-role su

essors

instead of requiring B for them and imposes stronger number restri
tions on RR-role

su

essors.

�

�

�

3.2 Mat
hing problems

In order to de�ne mat
hing problems, we �rst need to introdu
e the notion of
on
ept

patterns. Intuitively,
on
ept patterns extend
on
ept des
riptions by admitting variables.

For this purpose, denote by X an arbitrary but �xed set of variables. For the sake of

onsistent notation throughout this work, let X =: fX

1

; : : : ; X

`

g for some ` 2 N.

De�nition 3.11 Con
ept patterns

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. The set dom

X

(L) of L-
on
ept patterns ist indu
tively

de�ned as follows:

1. Every
on
ept des
ription C 2 dom(L) is a
on
ept pattern.

2. Every
on
ept variable X 2 X is a
on
ept pattern.

3. If C and D are
on
ept patterns, then C uD is as well.

333.222. mat
hing problems 13

4. If C is a
on
ept pattern and R 2 R, then 8R:C is a
on
ept pattern.

�

�

�

The FL

0

-normal form for
on
ept des
riptions
an be extended to
on
ept patterns by

treating variables as spe
ial atomi

on
epts.

De�nition 3.12 FL

0

FL

0

FL

0

-normal form for
on
ept patterns

Denote by L; L

0

arbitrary but distin
t identi�ers. For every j 2 f1; : : : ; `g and for every

H 2 f?g [C [f:AjA 2 Cg [N

�

[N

�

, let de
orations L

H

and L

0

j

of L and L

0

denote

a �nite role language. De�ne the (L; L

0

)-labelled FL

0

-normal form of an ALN -
on
ept

pattern D as follows:

D := 8L

?

:? u u

A2C

8L

A

:A u u

A2C

8L

:A

::A

u u

(�nR)2N

�

8L

(�nR)

:(� nR) u u

(�nR)2N

�

8L

(�nR)

:(� nR)

u

`

u

j=1

L

0

j

:X

j

�

�

�

For the assignment of
on
ept des
riptions to
on
ept variables, we introdu
e substitutions

over ALN and its sublanguages.

De�nition 3.13 Substitution

Let L 2 fFL

0

;FL

?

;FL

:

g. De�ne a substitution � over L as a mapping from the set of

variables X to dom(L). � is extended to a fun
tion �̂ of the form �̂ : dom

X

(L)! dom(L),

su
h that the following
onditions hold for all C;D 2 dom

X

(L), for all X 2 X , A 2 C,

R 2 R, and for all number restri
tions (� nR) and (� nR).

� �̂(X) = �(X)

� �̂(A) = A; �̂(:A) = :A

� �̂(?) = ?; �̂(>) = >

� �̂(C uD) = �̂(C) u �̂(D)

� �̂(8R:C) = 8R:�̂(C)

� �̂(� nR) = (� nR); �̂(� nR) := (� nR)

For a simpler notation, we will not distinguish between a substitution � and its extension

�̂ in the remainder of this work and denote both by �. For substitutions � and �

0

sharing

the same domain X , we de�ne the following relations.

� � v �

0

i� �(X) v �

0

(X) for all
on
ept variables X 2 X .

� � � �

0

i� � v �

0

and there is a variable X 2 X with �(X) � �

0

(X).

� � � �

0

i� � v �

0

and �

0

v �.

�

�

�

The purpose of these relations is to provide a means to determine whether the values

assigned by one substitution are more general (in respe
t to subsumption) than another.

We are now ready to de�ne mat
hing problems.

14
hapter 333. mat
hing in des
ription logi
s

De�nition 3.14 Mat
hing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let C denote an L-
on
ept des
ription. Let D denote

an L-
on
ept pattern. Referring to De�nition 3.4, we distinguish two di�erent kinds of

mat
hing problems.

� An L-mat
hing problem modulo subsumption is of the form C v

?

D. A solution to

this problem is a substitution � over L with C v �(D).

� An L-mat
hing problem modulo equivalen
e is of the form C v

?

D. A solution to

this problem is a substitution � over L with C � �(D).

� A system of L-mat
hing problems is of the form fP

i

j1 � i � ng, where n is a positive

integer and for every i, P

i

is an L-mat
hing problem modulo equivalen
e or modulo

subsumption. A solution to this system is a substitution whi
h solves P

i

for every i.

The notion of FL

0

-normal forms is extended to L-mat
hing problems as follows. An L-

mat
hing problem is in (L; L

0

; L

00

)-labelled FL

0

-normal form if and only if C is in L-labelled

FL

0

-normal form and D is in (L

0

; L

00

)-labelled FL

0

-normal form for distin
t identi�ers L,

L

0

, and L

00

.

�

�

�

It is shown in [BKBM99℄ that mat
hing problems modulo subsumption and systems of

mat
hing problems
an be redu
ed to mat
hing modulo equivalen
e. The following lemma

merely summarizes the respe
tive results and may therefore be stated without proof.

Lemma 3.15 Representation of mat
hing problems

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Then

1. For every L-mat
hing problem modulo subsumption there is a polynomially large

L-mat
hing problem modulo equivalen
e with the same set of solutions.

2. For every system of L-mat
hing problems there is a polynomially large L-mat
hing

problem modulo equivalen
e with the same set of solutions.

3. Both redu
tions
an be
omputed in polynomial time.

The idea of
ombining a system of mat
hing problems into a single mat
hing problem

modulo equivalen
e is illustrated by the next example, where a simple system of mat
hing

problems is
onsidered.

Example 3.16 Representation of mat
hing problems

Let C;E be L-
on
ept des
riptions and let D;F be L-
on
ept patterns. Let R

1

; R

2

2 �

be distin
t atomi
 roles. Let P := fC �

?

D;E v

?

Fg be a system of L-mat
hing

problems. Then P has the same set of solutions as the following mat
hing problem modulo

equivalen
e: 8R

1

:C u 8R

2

:E �

?

8R

1

:C u 8R

2

:(E u F).

Due to the results of the above lemma it is suÆ
ient to examine single mat
hing problems

modulo equivalen
e. A mat
hing problem
an be spe
i�ed further by stating additional

requirements for the solution. This leads to a de�nition
entral for this work.

De�nition 3.17 Mat
hing problems with side
onditions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let C denote an L-
on
ept des
ription. Let D denote

an L-
on
ept pattern. For every j 2 f1; : : : ; `g let E

j

denote an ALN -
on
ept pattern.

For the de�nition of mat
hing problems with side
onditions, we �rst need to introdu
e

the notion of subsumption
onditions. Again, we de�ne a stri
t and a non-stri
t version.

� An L-side
ondition for X 2 X is of the form X v

?

D. A solution to this
ondition

is a substitution � over L with �(X) v �(D).

333.222. mat
hing problems 15

� A stri
t L-side
ondition for X 2 X is of the form X �

?

D. A solution to this

ondition is a substitution � over L with �(X) � �(D).

Mat
hing problems with side
onditions
an now be de�ned as a tuple
onsisting of a

mat
hing problem and a set of side
onditions.

� An L-mat
hing problem modulo equivalen
e with (non-stri
t) side
onditions is of the

form (C �

?

D; fX

j

v

?

E

j

j1 � j � `g). A solution to this problem is a substitution

� over L with C � �(D) and �(X

j

) v �(E

j

) for every j 2 f1; : : : ; `g.

� An L-mat
hing problem modulo equivalen
e with stri
t side
onditions is of the form

(C �

?

D; fX

j

�

?

j

E

j

j1 � j � `g), where �

j

2 f�;vg for all j 2 f1; : : : ; `g. A solution

to this problem is a substitution � over L with C � �(D) and �(X

j

) �

j

�(E

j

) for

every j 2 f1; : : : ; `g.

� Side
onditions are
alled a
y
li
 i� the variables X

j

; : : : ; X

`

do not o

ur in E

j

for

every j 2 f1; : : : ; `g.

An L-mat
hing problem with side
onditions is in (L; L

0

; L

00

)-labelled FL

0

-normal form i�

for unique identi�ers L, L

0

, and L

00

, C is in L-labelled FL

0

-normal form, D is in (L

0

; L

00

)-

labelled FL

0

-normal form, and E

j

is in (L

0

j

; L

00

j

)-labelled FL

0

-normal form for every index

j 2 f1; : : : ; `g.

�

�

�

hapter 4

Solving Mat
hing

Problems

This
hapter presents methods to solve mat
hing problems modulo equivalen
e without

side
onditions in ALN and its sublanguages. In the �rst se
tion we give a summary of

results on this subje
t, whi
h has been studied extensively in [BKBM99℄. The solution

strategies proposed there rely on the informally introdu
ed notion of \treelike automata".

In the se
ond se
tion, we formally de�ne treelike automata and dis
uss their
omplexity.

This allows a formal veri�
ation of the
omplexity results stated in [BKBM99℄, whi
h will

be given in the third se
tion. We will see that mat
hing problems modulo equivalen
e in

fa
t
an be solved in polynomial time.

4.1 Results from previous work

In [BKBM99℄ and [K�us98℄, mat
hing modulo equivalen
e in FL

?

, FL

:

and ALN is redu
ed

to solving equations over formal languages, whi
h we will refer to as \solvability equations".

The following four de�nitions and the following three lemmata summarize the results of

the respe
tive arti
les.

De�nition 4.1 Solvability equations in FL

?

FL

?

FL

?

Let (C �

?

D) be an FL

?

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form.

De�ne the following formal language equations:

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�X

j;?

��

�

(?)

U

A

[U

?

��

�

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�X

j;A

(A)

for all A 2 C.

�

�

�

Solvability of the above system of equations is de
ided by assigning appropriate formal

languages to the o

urring variables. The following lemma spe
i�es these formal languages.

Lemma 4.2 Testing solvability in FL

?

FL

?

FL

?

Let (C �

?

D) be an FL

?

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form. Then

the system of equations (?); ((A)jA 2 C) has a solution i�:

1. For every j 2 f1; : : : ; `g, repla
ing the expression X

j;?

��

�

by the set

b

L

j;?

:=

T

w2W

j

w

�1

�(U

?

��

�

) solves equation (?).

18
hapter 444. solving mat
hing problems

2. For every A 2 C and for every j 2 f1; : : : ; `g, repla
ing the variable X

j;A

by the set

b

L

j;A

:=

T

w2W

j

w

�1

�(U

A

[U

?

��

�

) solves equation (A).

Similar results are obtained for FL

:

. Here, we have the following solvability equations.

De�nition 4.3 Solvability equations in FL

:

FL

:

FL

:

Let (C �

?

D) be an FL

:

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form.

De�ne the following formal language equations.

b

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�X

j;?

��

�

[

[

A2C

Int(A;:A)��

�

(?)

U

A

[

b

U

?

��

�

= V

A

[

b

U

?

��

�

[

`

[

j=1

W

j

�X

j;A

(A)

U

:A

[

b

U

?

��

�

= V

:A

[

b

U

?

��

�

[

`

[

j=1

W

j

�X

j;:A

(:A)

for all A 2 C, where

Int(A;:A) := (V

A

[

`

[

j=1

W

j

�X

j;A

) \ (V

:A

[

`

[

j=1

W

j

�X

j;:A

): �

�

�

Though still only dependent on the set C of atomi

on
epts, the number of equations

has in
reased, be
ause negated atomi

on
epts need to be dealt with separately. Observe

that in the solvability equations for FL

?

, the equation (?) was
ompletely independent

of role languages referring to atomi

on
epts A 2 C. For FL

:

this is no longer the
ase,

be
ause the
onjun
tion of an atomi

on
ept and its negation is in
onsistent. For that

reason, the expression Int is in
luded in equation (?). The following lemma provides a

test for solvability in FL

:

.

Lemma 4.4 Testing solvability in FL

:

FL

:

FL

:

Let (C �

?

D) be an FL

:

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form. Then

the system of equations (?); ((A)jA 2 C); ((:A)jA 2 C) has a solution i�:

1. For every A 2 C and for every j 2 f1; : : : ; `g, repla
ing the variable X

j;A

by the set

b

L

j;A

:=

T

w2W

j

w

�1

�(U

A

[

b

U

?

��

�

) solves equation (A).

2. For every A 2 C and for every j 2 f1; : : : ; `g, repla
ing the variable X

j;:A

by the set

b

L

j;:A

:=

T

w2W

j

w

�1

�(U

:A

[

b

U

?

��

�

) solves equation (A).

3. For every j 2 f1; : : : ; `g, repla
ing the variables X

j;?

��

�

by the expression

b

L

j;?

:=

T

w2W

j

w

�1

�(U

?

��

�

) together with the assignments proposed in (1) and (2)

solves equation (?).

Note that
ondition three requires \together with the assignments proposed in (1) and

(2)". This is ne
essary be
ause of the expression Int , by whi
h equation (?) be
omes

dependent on the other assignments. For ALN , we have to introdu
e some notation �rst.

444.111. results from previous work 19

De�nition 4.5 Notation

Let (C �

?

D) be an ALN -mat
hing problem in (U; V;W)-labelled FL

0

-normal form. The

following tuples of variables are de�ned for the sake of readability.

X

?

:= (X

j;?

j1 � j � `)

X

C

:= (X

j;A

j1 � j � l; A 2 C)

X

:

:= (X

j;:A

j1 � j � `; A 2 C)

X

�

:= (X

j;(�nR)

j1 � j � `; (� nR) 2 N

�

)

X

�

:= (X

j;(�nR)

j1 � j � `; (� nR) 2 N

�

)

Denote by � an arbitrary assignment of �nite languages to the variables
ontained in the

tuples, i.e. �(X

i;H

) = L

i;H

for all i 2 f1; : : : ; `g and H 2 f?g[C[f:AjA 2 Cg[N

�

[N

�

.

Let � be the substitution
orresponding to �, so that for every j 2 f1; : : : ; `g we have:

�(X

j

) := 8�(X

j;?

):? u u

A2C

8�(X

j;A

):A u u

A2C

8�(X

j;:A

)::A

u u

(�nR)2N

�

8�(X

j;(�nR)

):(� nR) u u

(�nR)2N

�

8�(X

j;(�nR)

):(� nR)

Denote by E

D

(X

?

; X

C

; X

:

; X

�

; X

�

) the set of ex
luding words obtained for D relative to

the assignment �. Thus, let

E

D

(�(X

?

); �(X

C

); �(X

:

); �(X

�

); �(X

�

)) := E

�(D)

;

yielding the set of �(D)-ex
luding words after assigning the o

urring variables.

�

�

�

The above
onstru
t is ne
essary, be
ause the set of ex
luding words is de�ned only for

on
ept des
riptions and not for
on
ept patterns. Consequently, we must assume some

assignment of the
on
ept variables o

urring on the right-hand side of the mat
hing

problem. With these preparations, the following solvability equations are provided.

De�nition 4.6 Solvability equations in ALN

ALN

ALN

Let (C �

?

D) be an ALN -mat
hing problem in (U; V;W)-labelled FL

0

-normal form.

With the notation of the above de�nition, de�ne the following formal language equations.

E

C

= E

D

(X

?

; X

C

; X

:

; X

�

; X

�

) (?)

U

A

[E

C

= V

A

[E

C

[

`

[

j=1

W

j

�X

j;A

(A)

U

:A

[E

C

= V

:A

[E

C

[

`

[

j=1

W

j

�X

j;:A

(:A)

[

m�n

U

(�mR)

[E

C

= V

(�mR)

[E

C

[

`

[

j=1

W

j

�X

j;(�nR)

(� nR)

[

m�n

0

U

(�mR)

[E

C

�R

�1

= V

(�mR)

[E

C

�R

�1

[

`

[

j=1

W

j

�X

j;(�n

0

R)

(� n

0

R)

for all A 2 C, n 2 N n f0g, n

0

2 N, (� nR) 2 N

�

, and (� n

0

R) 2 N

�

.

�

�

�

Here, the number of equations additionally depends on the number restri
tions o

urring

in the mat
hing problem. Again, equation (?) takes into a

ount role languages referring

to other
on
epts than the ?-
on
ept. However, this property is synta
ti
ally hidden in

the
onstru
ts E

C

and E

D

, whi
h are de�ned as fw 2 �

�

jC v 8w:?g and analogously for

E

D

, as we know from Chapter 2.

20
hapter 444. solving mat
hing problems

Lemma 4.7 Testing solvability in ALN

ALN

ALN

Let (C �

?

D) be an ALN -mat
hing problem in (U; V;W)-labelled FL

0

-normal form.

Furthermore, let

b

L

j;?

:=

T

w2W

j

w

�1

�E

C

. Then there exists a �nite set L

j;?

of polynomial

size in the input mat
hing problem with L

j;?

��

�

=

b

L

j;?

. As mentioned previously, this is

shown in [BKBM99℄. The system of equations (?); ((A)jA 2 C); ((:A)jA 2 C); ((� nR)j(�

nR) 2 N

�

); ((� nR)j(� nR) 2 N

�

) then has a solution i�:

1. For every j 2 f1; : : : ; `g and A 2 C, repla
ing the variable X

j;A

by the set

L

j;A

:= (

T

w2W

j

w

�1

�(U

A

[E

C

)) n

b

L

j;?

solves equation (A).

2. For every j 2 f1; : : : ; `g and A 2 C, repla
ing the variable X

j;:A

by the set

L

j;:A

:= (

T

w2W

j

w

�1

�(U

:A

[E

C

)) n

b

L

j;?

solves equation (:A).

3. For every j 2 f1; : : : ; `g and (� nR) 2 N

�

, repla
ing the variable X

j;:A

by the set

L

j;(�nR)

:= (

T

w2W

j

w

�1

�(

S

m�n

U

(�nR)

[E

C

)) n

b

L

j;?

solves equation (� nR).

4. For every j 2 f1; : : : ; `g and (� nR) 2 N

�

, repla
ing the variable X

j;:A

by the set

L

j;(�nR)

:= (

T

w2W

j

w

�1

�(

S

m�n

U

(�nR)

[E

C

�R

�1

)) n

b

L

j;?

solves equation (� nR).

5. For every j 2 f1; : : : ; `g, repla
ing the variable X

j;?

by the set

L

j;?

together with the assignments proposed in (1){(4) solves equation (?).

Observe that in the above
onditions a �nite alternative to

b

L

j;?

is provided and that

b

L

j;?

is subtra
ted from the other languages, thus produ
ing polynomially large languages as

solutions to the equations. This is an immediate
onsequen
e of [BKBM99℄, where it was

shown that the above solution languages
an be
omputed in polynomial time.

By inserting the languages spe
i�ed in the previous lemmata into the referring solvability

equations, we obtain variable-free formal language equations, whi
h are valid if and only

if the original mat
hing problem is solvable. Note that this redu
es the de
ision problem

from solvability to equality. Therefore, we only need a method to de
ide equality for

the equations obtained in this way. In [BKBM99℄, the notion of treelike automata is

introdu
ed to fa
ilitate this task. The next se
tion formally de�nes them and dis
usses

their properties.

4.2 Treelike automata

We need to de
ide equality for the variable-free variants of the solvability equations in-

trodu
ed in the last se
tion. Why not employ ordinary �nite automata for this de
ision?

In the general
ase, repeatedly interse
ting deterministi
 �nite automata may produ
e

exponentially large results [YZ91℄. Nondeterministi
 �nite automata, on the other hand,

annot be
omplemented eÆ
iently. Sin
e both interse
tion and
omplement are essential

operations for our de
ision problem, we need to de�ne automata suiting our requirements

better|treelike automata. Their main obje
tive is to support eÆ
ient operations for the

left quotient, the
omplement, the interse
tion, and the union.

4.2.1 Basi
 de�nitions

In order to de�ne treelike automata as a spe
ial
lass of deterministi
 �nite automata it

would be suÆ
ient to restri
t the set of states and the transition fun
tion in a
ertain way.

However, we want to stress the analogy to trees and therefore de�ne treelike automata

indu
tively. Furthermore, this will enable us to de�ne operations on treelike automata in

a parti
ularly simple fashion.

444.222. treelike automata 21

De�nition 4.8 Syntax of treelike automata

Let � be a �nite alphabet and Type := fNor ;Fing a set of labels. The set Treelike(�) of

treelike automata over � is indu
tively de�ned by:

Treelike(�) := fNil ;Cy
g [(Type � (Treelike(�)

j�j

))

The indu
tive de�nition of Treelike(�)
orresponds to the stru
ture of a tree with nodes of

the form (Nor ; (�)) and (Fin ; (�)) respe
tively. The se
ond
omponent of a node is a tuple

of the dimension j�j, representing the list of su

essors of that node. Sin
e we assume the

alphabet � to be ordered, su

essors for
ertain elements of � are simply inserted in the

appropriate pla
es of the tuple. Thus, ea
h node has one su

essor for every
hara
ter of

�. The idea is that having a su

essor for some
hara
ter s

i

is analogous to a dire
ted

edge labelled s

i

in an ordinary �nite automaton.

There are two spe
ial
onstru
tors, Nil and Cy
. Nil is supposed to be the automaton

a

epting no input whatsoever, Cy
 the one a

epting any input. In a tree representation,

Nil and Cy
 appear as leaf-nodes. However, they deviate from this notion in one respe
t

whi
h will be
ome
lear when de�ning the transition fun
tion. Both nodes have themselves

as su

essor for every
hara
ter of �. In this respe
t treelike automata di�er from the

intuition of trees.

�

�

�

In an ordinary tree, leaf-nodes like Nil and Cy
 pointing to themselves do not exist. It

might therefore appear negligent to refer to trees when illustrating the stru
ture of treelike

automata. We will nevertheless do so for two reasons. Firstly, the existen
e of unusual

leaf-nodes does not violate the analogy to trees severely; se
ondly, the terminology existing

for trees will prove suitable to explain our ideas.

Let us �rst introdu
e some abbreviations for treelike automata.

De�nition 4.9 Notation

� For (Nor ; (T

1

; : : : ; T

n

)) write (T

1

; : : : ; T

n

)

N

;

for (Fin ; (T

1

; : : : ; T

n

)) write (T

1

; : : : ; T

n

)

F

.

� Write (T

1

; : : : ; T

n

)

�

, if (T

1

; : : : ; T

n

)

N

as well as (T

1

; : : : ; T

n

)

F

are referred to, i.e. (�)

�

means \(�)

N

or (�)

F

" in existentially quanti�ed statements and \(�)

N

and (�)

F

" in

for-all-quanti�ed statements.

�

�

�

For the rest of this
hapter, we shall regard � as an arbitrary but �xed �nite alphabet

with n unique elements for some positive integer n. Therefore, let � := fs

1

; : : : ; s

n

g.

Like deterministi
 �nite automata, treelike automata are equipped with a transition fun
-

tion and a set of a

epting states. Unlike deterministi
 �nite automata, both transition

fun
tion and a

epting states will be de�ned identi
al for every treelike automaton. This

is possible, be
ause the behaviour of the automaton is impli
itly
ontained in its indu
tive

stru
ture.

De�nition 4.10 Semanti
s of treelike automata

For any treelike automata T

1

; : : : ; T

n

2 Treelike(�) and for any s

i

2 �, the transition

fun
tion Æ is indu
tively de�ned by:

Æ : Treelike(�)� � ! Treelike(�)

Nil ; s

i

7! Nil

Cy
 ; s

i

7! Cy

(T

1

; : : : ; T

n

)

�

; s

i

7! T

i

22
hapter 444. solving mat
hing problems

Observe that Nil and Cy
 point to themselves as su

essors, thus deviating from the idea

of tree-nodes. Æ is now generalized in the usual way to a

ept words of length greater than

one and the empty word ". For T 2 Treelike(�), for s

i

2 �, and for any v 2 �

�

, de�ne

indu
tively:

^

Æ : Treelike(�)� �

�

! Treelike(�)

T ; " 7! T

T ; s

i

v 7!

^

Æ(Æ(T ; s

i

); v)

One
an see that

^

Æ(Nil ; w) equals Nil for any word w. The same holds for Cy
. The

di�eren
e between Nil and Cy
 be
omes apparent when de�ning a

epting
onditions.

The set A

 of a

epting states is the same for any treelike automaton. It is de�ned as

in�nite set of the form:

A

 := fCy
g [(fFing � (Treelike(�)

j�j

))

Observe that for a given node T , membership in A

an be tested in
onstant time. It

is suÆ
ient to test whether or not T equals Cy
 or begins with (Fin ; : : :). The language

a

epted by a treelike automaton T now
an be de�ned as:

L(T) := fw 2 �

�

j

^

Æ(T ; w) 2 A

g

Equivalen
e is de�ned as usual for automata. Treelike automata S and T are equivalent

(S � T), i� they a

ept the same language, i.e. L(S) = L(T).

�

�

�

The following example illustrates the stru
ture of treelike automata in
omparison to

deterministi
 �nite automata.

Example 4.11 Treelike automata

Let � := fs

1

; s

2

; s

3

g and let A be a treelike automaton over � su
h that:

A := (Fin ; ((Fin ; (Nil ;Nil ;Nil)); (Nor ; (Cy
;Nil ;Nil));Nil))

Then A
an be represented by a transition tree as shown on the left-hand side below.

In this tree every node represents a state of the automaton. The upper half denotes the

label of the state, the lower half lists the su

essors for every
hara
ter of �. The topmost

state is the initial state. A dire
ted edge labelled s

i

orresponds to a transition of the

automaton upon input s

i

. Cy
li
 edges at the leave-nodes apply to every
hara
ter of �.

Nor

Nil Nil Nil Cy
 Nil Nil

Nil

s

1

s

2

Fin

Fin

BA

s

1

s

2

s

3

s

1

s

2

s

3

s

1

s

2

s

3

s

1

For instan
e, upon input s

2

s

1

s

3

the automaton A rea
hes the state Cy
. A

ording to the

de�nition, the initial state, its leftmost dire
t su

essor, and the leaf-node labelled Cy
 are

a

epting states. We thus �nd that A a

epts the language L(A) = f"; s

1

g [fs

2

s

1

g��

�

.

444.222. treelike automata 23

Observe that the size of A depends on the
ardinality of �. On the right-hand side, we have

ontrasted a deterministi
 �nite automaton B a

epting the same language. Obviously,

B is signi�
antly smaller that A. When introdu
ing operations on treelike automata,

however, we shall see that this overhead yields advantages.

�

�

�

Exploiting the analogy to trees, we de�ne some further notions for treelike automata:

De�nition 4.12 Subtrees and trimmed automata

T ;S 2 Treelike(�)

� S is a subtree of T i� there is a word w 2 �

�

with

^

Æ(T ; w) = S.

� T is trimmed i� T has no subtree of the form (Nil ; : : : ;Nil)

N

, i.e. all leave-nodes in

the tree represented by T are a

epting states of the form (Nil ; : : : ;Nil)

F

or Cy
.

�

�

�

The notion of a subtree
orresponds to the intuitive idea of a subtree in the tree represented

by a treelike automaton.

Trimming treelike automata aims at ruling out
ertain irregularities. Nodes of the form

(Nil ; : : : ;Nil)

N

do not
ontribute to the language a

epted by the automaton. In
ertain

ontexts it will be ne
essary to modify automata in su
h a way that no leave-node a

epts

only the empty set.

The
anoni
al de�nition of the a

epted language in De�nition 4.10 makes it easy to see

the
onne
tion between treelike and deterministi
 �nite automata. For pra
ti
al purposes,

however, we
an take advantage of the rather simple stru
ture of treelike automata to

propose an alternative de�nition of the a

epted language.

De�nition 4.13 Language fun
tion

For treelike automata T

1

; : : : ; T

n

2 Treelike(�) the fun
tion lang is indu
tively de�ned as

follows.

lang : Treelike(�) ! P(�

�

)

Nil 7! ;

Cy
 7! �

�

(T

1

; : : : ; T

n

)

N

7!

n

[

i=1

fs

i

g�lang(T

i

)

(T

1

; : : : ; T

n

)

F

7! f"g [lang((T

1

; : : : ; T

n

)

N

) �

�

�

The fun
tion lang is intended to simplify the handling of treelike automata. Nevertheless,

we still have to prove that the above de�nition in fa
t is equivalent to the previous one.

This will be shown in the next se
tion.

Sin
e we will be
on
erned with
omplexity issues, a means of quantifying the size of a

treelike automaton is required. The next de�nition provides su
h a measure.

De�nition 4.14 Size of treelike automata

For treelike automata T

1

; : : : ; T

n

2 Treelike(�) the fun
tion k � k is indu
tively de�ned by:

k � k : Treelike(�)! N

Nil 7! 1

Cy
 7! 1

(T

1

; : : : ; T

n

)

�

7! 1 +

n

X

i=1

kT

i

k �

�

�

24
hapter 444. solving mat
hing problems

kT k
orresponds to the amount of spa
e ne
essary to represent T .

The de�nitions stated so far make treelike automata appear fairly similar to deterministi

�nite automata. It is the task of the next se
tion to answer two questions: How mu
h do

treelike automata and DFA have in
ommon and what
lass of formal languages
an be

represented by treelike automata.

4.2.2 Properties

At �rst, we have to verify the
orre
tness of the alternative de�nition given in the previous

se
tion for the language a

epted by treelike automata. In most
ases, using the fun
tion

lang will prove simpler than the original de�nition.

Lemma 4.15 Corre
tness of lang

Let T 2 Treelike(�) be a treelike automaton. Then L(T) = lang(T), i.e. lang is an

equivalent de�nition of the language a

epted by T .

Proof.

We prove the
laim by indu
tion over the stru
ture of T .

B

B

B

T = Nil or T = Cy
 : By De�nition 4.10, L(Nil) = fw 2 �

�

j

^

Æ(Nil ; w) 2 A

g. It holds

that

^

Æ(Nil ; w) equals Nil for any word w. As Nil is no element of A

, we have L(Nil) = ;.

By De�nition 4.13, this equals lang(Nil). The
ase T = Cy
 is similar. The only di�eren
e

is that Cy
 2 A

, so that we gain �

�

as a

epted language whi
h mat
hes the de�nition

of lang(Cy
).

B

B

B

T = (T

1

; : : : ; T

n

)

N

: Then L((T

1

; : : : ; T

n

)

N

) = fw 2 �

�

j

^

Æ((T

1

; : : : ; T

n

)

N

; w) 2 A

g.

Nodes of the form (�)

N

do not o

ur in A

. Thus, " is not in L((T

1

; : : : ; T

n

)

N

). We

an thus rewrite L((T

1

; : : : ; T

n

)

N

) as fs

i

vjs

i

2 �; v 2 �

�

;

^

Æ((T

1

; : : : ; T

n

)

N

; s

i

v) 2 A

g. By

applying distributivity over the union we obtain

L((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�fv 2 �

�

j

^

Æ((T

1

; : : : ; T

n

)

N

; s

i

v) 2 A

g:

A

ording to De�nition 4.10, the
ondition

^

Æ(Æ((T

1

; : : : ; T

n

)

N

; s

i

); v) 2 A

 is equivalent

to

^

Æ(T

i

; v) 2 A

, whi
h by indu
tion is equivalent to v 2 lang(T

i

). Consequently, we have

L((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�lang(T

i

);

whi
h equals de�nition of lang((T

1

; : : : ; T

n

)

N

).

B

B

B

T = (T

1

; : : : ; T

n

)

F

: The argument for nodes marked Fin is similar to the previous
ase.

Here, the automaton will a

ept ", so that with the arguments from (3) above, we
an

infer

L((T

1

; : : : ; T

n

)

F

) = f"g [

n

[

i=1

fs

i

g�lang(T

i

);

whi
h equals de�nition of lang((T

1

; : : : ; T

n

)

F

).

�

�

�

We will now show that|not surprisingly|every treelike automaton
an be represented by

a deterministi
 �nite automaton. The
lass Treelike(�) therefore is a spe
ial representation

of a sub
lass of DFA(�).

444.222. treelike automata 25

Lemma 4.16 Relation between treelike and �nite automata

Let T 2 Treelike(�) be a treelike automaton. Then there is a deterministi
 �nite automa-

ton A 2 DFA(�) with L(T) = L(A).

Proof.

De�ne A 2 DFA(�) as A := hQ;�; Æ

A

; q

T

; F i, where

� Q := fq

S

j S subtree of T g is the set of states with initial state q

T

,

� F := fq

S

2 Qj S 2 A

g is the set of �nite states, and

� for q

S

2 Q and s

i

2 � the transition fun
tion Æ

A

is de�ned by:

Æ

A

(q

S

; s

i

) := q

Æ(S;s

i

)

.

Observe that Q is �nite and
losed under Æ

A

. Æ

A

is a deterministi
 transition fun
tion.

For the extended transition fun
tion Æ

A

: Q��

�

! Q we
an derive by indu
tion over the

length of w that: Æ

A

(q

S

; w) = q

^

Æ(S;w)

.

We now prove the equivalen
e of the DFA and the treelike automaton. A

ording to

the
ommon de�nition of DFA, the language a

epted by A is fw 2 �

�

jÆ

A

(q

T

; w) 2 Fg.

We have mentioned that Æ

A

(q

T

; w) = q

^

Æ(S;w)

for any word w. Sin
e F is de�ned as

fq

S

2 Qj S 2 A

g, we obtain

L(A) = fw 2 �

�

jq

^

Æ(S;w)

2 fq

S

2 Qj S 2 A

gg:

The
ondition for the set holds i�

^

Æ(S; w) 2 A

, whi
h is equivalent to w 2 L(T).

�

�

�

The dire
ted graph representing the automaton introdu
ed in the above lemma does not

ne
essarily form a tree. In treelike automata, identi
al subtrees
an o

ur at di�erent

positions in the tree. The de�nition of the set of states Q above automati
ally maps

identi
al states onto one state. Consequently, the size of the equivalent DFAmay be smaller

than that of original treelike automaton. Note also that the deterministi
 �nite automaton

B proposed in Example 4.11 is not obtained from the analogous treelike automaton A by

performing the
onstru
tion of Lemma 4.16.

We now intro
ude auxiliary fun
tions to simplify the
onstru
tion of treelike automata for

the re
ognition of two simple
lasses of languages.

De�nition 4.17 Indu
ed treelike automata

The fun
tions ind and ind

0

are indu
tively de�ned as follows.

ind : �

�

! Treelike(�)

" 7! (Nil ; : : : ;Nil)

F

s

i

v 7! (Nil ; : : : ;Nil

| {z }

i�1

; ind(v);Nil ; : : : ;Nil

| {z }

n�i

)

N

ind

0

: �

�

! Treelike(�)

" 7! Cy

s

i

v 7! (Nil ; : : : ;Nil

| {z }

i�1

; ind

0

(v);Nil ; : : : ;Nil

| {z }

n�i

)

N

�

�

�

Given a word w, the fun
tion ind is supposed to return a treelike automaton a

epting

the language fwg. Similarly, ind

0

(w) is supposed to a

ept fwg��

�

. In the next lemma,

we will prove that the fun
tions ind and ind

0

in fa
t have the desired property.

26
hapter 444. solving mat
hing problems

Lemma 4.18 Properties ind and ind

0

Let w 2 �

�

be a word over �. Then

1. L

ind(w)

= fwg and L

ind

0

(w)

= fwg��

�

2. The size kind(w)k of ind(w) is linear in jwj. The exe
ution of ind(w) requires linear

time in jwj.

3. The equivalent
laim holds for ind

0

.

Proof.

I

1. Due to Lemma 4.15, it is suÆ
ient to
onsider lang(T) instead of L(T). Proof by

indu
tion over the length of w.

B

B

B

jwj = 0: Then: w = ". We have ind(") = (Nil ; : : : ;Nil)

F

a

ording to De�nition 4.17.

lang((Nil ; : : : ;Nil)

F

) equals f"g [lang((Nil ; : : : ;Nil)

N

) and �nally, lang((Nil ; : : : ;Nil)

N

)

equals

S

n

i=1

fs

i

g�lang(Nil). By de�nition, lang(Nil) is empty. Thus, for lang(ind (")), we

end up with f"g.

The reasoning for ind

0

(") is similar. ind

0

(") returns Cy
 and lang(Cy
) = �

�

. Sin
e

�

�

= f"g��

�

, this
ase is
orre
t.

B

B

B

jwj > 0: Then there exist s

i

2 � and v 2 �

�

with w = s

i

v. By de�nition, lang(ind (s

i

v))

equals lang((Nil ; : : : ;Nil ; ind(v);Nil ; : : : ;Nil)

N

). We have already seen in (jwj = 0) that

all leave-nodes marked Nil do not
ontribute to the a

epted language. Thus, he have

lang(ind (s

i

v)) = fs

j

g�lang(ind (v)). By indu
tion, this equals fs

j

g�fvg, whi
h
ompletes

the argument.

For ind

0

(s

i

v), the proof is identi
al ex
ept for the indu
tion argument. Here we
an assume

that lang(ind

0

(v)) equals fvg��

�

. The rest of the
on
lusion remains the same.

I

2. Upon input w 2 �

�

, exa
tly one
hara
ter of w is removed by ind in every step

of re
ursion. Simultaneously, the automaton to be assembled is expanded by a
onstant

amount of spa
e. That amount is linear in the size j�j of the alphabet and is thus
onstant

in jwj. Therefore, the expansion of the automaton
osts a
onstant amount of time in every

step. The number of steps is linear in jwj. Thus, we require only linear time in jwj to

assemble ind(w).

I

3. Analogous to (2).

�

�

�

We have seen as a
onsequen
e of Lemma 4.16 that the language a

epted by a treelike

automaton is regular, sin
e one
an always
onstru
t an equivalent DFA. We will now

examine further the stru
ture of languages a

epted by treelike automata and show that

there are regular languages whi
h
annot be a

epted by any of them.

Lemma 4.19 Stru
ture of L(T)

L(T)

L(T)

1. For every treelike automaton T 2 Treelike(�) there exist �nite languages L;L

0

� �

�

with: L

T

= L [L

0

��

�

.

2. For any �nite languages L;L

0

� �

�

there is a treelike automaton T 2 Treelike(�)

with: L

T

= L [L

0

��

�

.

Proof.

I

1. Be
ause of 4.15 we
an again resort to lang(T) instead of examining L(T). Proof

by stru
tural indu
tion over T .

444.222. treelike automata 27

B

B

B

T = Nil or T = Cy
 : Per de�nition, lang(Nil) = ; = ; [;��

�

. Consequently, with

L = L

0

= ; the
laim holds. Similar for Cy
 : lang(Cy
) = �

�

= ; [f"g��

�

. By de�ning

L = ; and L

0

= f"g, we again have the desired result.

B

B

B

T = (T

1

; : : : ; T

n

)

N

: lang((T

1

; : : : ; T

n

)

N

) equals

S

n

i=1

fs

i

g�lang(T

i

). By indu
tion, we

may assume that there exist �nite languages L and L

0

with lang(T

i

) = (L

i

[L

0

i

��

�

).

Applying distributivity over union then yields

lang((T

1

; : : : ; T

n

)

N

) =

n

[

i=1

fs

i

g�L

i

[

n

[

i=1

fs

i

g�L

0

i

��

�

Therefore, by
hoosing L =

S

n

i=1

fs

i

g�L

i

and L

0

=

S

n

i=1

fs

i

g�L

0

i

the argument is
omplete.

B

B

B

T = (T

1

; : : : ; T

n

)

F

: This
ase is equivalent to the previous one. The only di�eren
e is

that now f"g is in
luded in lang((T

1

; : : : ; T

n

)

F

). thus, we
an
hoose L = f"g[

S

n

i=1

fs

i

g�L

i

and L

0

=

S

n

i=1

fs

i

g�L

0

i

to su

eed.

I

2. A

ording to Lemma 4.18 for every w 2 �

�

there exist treelike automata T ; T

0

with:

L

T

= fwg and L

T

0

= fwg��

�

. The languages L and L

0

are �nite. Moreover, in the next

se
tion we will show by Lemma 4.20 that Treelike(�) is
losed under �nite union. Taking

into a

ount these two arguments, we
an draw the proposed
on
lusion.

�

�

�

So far we have no reasonable methods to
onstru
t more
omplex treelike automata. In the

last lemma it be
ame apparent that a s
heme to
onstru
t the union of treelike automata

is desirable. In the next se
tion, we will introdu
e appropriate operations for treelike

automata to fa
ilitate this.

4.2.3 Operations on treelike automata

In De�nition 4.12 the notion of trimmed treelike automata was introdu
ed. Now we will

propose methods for a
tually trimming an automaton. However, there is a se
ond
lass

of irregularities we seek to eliminate. Apart from nodes whi
h
ontribute nothing to

the a

epted language, it is possible in a treelike automaton that large subtrees merely

a

ept every input whatsoever. In su
h a
ase, it would be appropriate to repla
e the

entire subtree by a Cy
-node, thus minimizing the automaton.

At this point it is not
lear why minimized automata are
onsidered important for our

reasoning. At last, we want to use treelike automata to establish an algorithm for solving

mat
hing problems whi
h meets
ertain
omplexity bounds. For that purpose we have to

guarantee that, when
onstru
ting a treelike automaton for a
ertain language, the size of

the automaton is limited in the size of the language to represent. The auxiliary fun
tions

introdu
ed next will prove to eliminate that problem.

For any treelike automata T

1

; : : : ; T

n

the operations trim (trim) and simplify (simp) are

indu
tively de�ned as follows.

trim : Treelike(�)! Treelike(�)

Nil 7! Nil

Cy
 7! Cy

(T

1

; : : : ; T

n

)

N

7!

(

Nil if for all i : trim(T

i

) = Nil

(trim(T

1

); : : : ; trim(T

n

))

N

otherwise

(T

1

; : : : ; T

n

)

F

7! (trim(T

1

); : : : ; trim(T

n

))

F

28
hapter 444. solving mat
hing problems

trim is intended to remove all nodes of the form (Nil ; : : : ;Nil)

N

and repla
e them by Nil

whi
h is equivalent in regard to the a

epted language. However, this pro
ess has to be

done re
ursively. The repla
ement of one node by Nil may
hange the prede
essor node

to (Nil ; : : : ;Nil)

N

, whi
h then has to be repla
ed as well. The idea is to remove all nodes

ontributing nothing to the a

epted language. Nodes of the form (�)

F

are never removed

be
ause they a

ept f"g.

Like trim , the purpose of simp is to remove subtrees and repla
e them by simple equiva-

lents. Nodes of the form (Cy
; : : : ;Cy
)

F

a

ept �

�

and
an be repla
ed by Cy
. Again,

that modi�
ation is
arried out re
ursively to eliminate all su
h
ases.

simp : Treelike(�)! Treelike(�)

Nil 7! Nil

Cy
 7! Cy

(T

1

; : : : ; T

n

)

N

7! (simp(T

1

); : : : ; simp(T

n

))

N

(T

1

; : : : ; T

n

)

F

7!

(

Cy
 if for all i : simp(T

i

) = Cy

(simp(T

1

); : : : ; simp(T

n

))

F

otherwise

Taking advantage of these fun
tions we
an now introdu
e operations on treelike automata.

Most of them are intended to refer to set-theoreti
 operations on the sets represented by

treelike automata, i.e. the
omplement of a treelike automata A is intended to a

ept the

omplemented language of A.

For any treelike automata T

1

; : : : ; T

n

;S

1

; : : : ;S

n

2 Treelike(�) and w 2 �

�

the opera-

tions left quotient (w

�1

(�)),
omplement (
), trimmed
omplement (�), interse
tion (\

0

),

trimmed interse
tion (\), and union ([) are de�ned indu
tively.

w

�1

: Treelike(�)! Treelike(�)

T

1

7!

^

Æ(T

1

; w)

 : Treelike(�)! Treelike(�)

Nil 7! Cy

Cy
 7! Nil

(T

1

; : : : ; T

n

)

N

7! (
(T

1

); : : : ;
(T

n

))

F

(T

1

; : : : ; T

n

)

F

7! (
(T

1

); : : : ;
(T

n

))

N

Let us �rst
onsider the unary operations. The left quotient is supposed to return the

subtree of a treelike automaton after reading a word w. The state of an automaton is

an automaton itself, so we just have to return the result of the transition fun
tion. The

omplement also works re
ursively. Sin
e Nor - and Fin-nodes di�er in a

epting " or not,

the labels of these nodes have to be ex
hanged.

For the sake of brevity, all binary operations are de�ned
ommutatively without expli
itly

repeating symmetri
 patterns.

\

0

: Treelike(�)� Treelike(�)! Treelike(�)

Nil ; T 7! Nil

Cy
 ; T 7! T

(T

1

; : : : ; T

n

)

N

; (S

1

; : : : ;S

n

)

�

7! (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

N

(T

1

; : : : ; T

n

)

F

; (S

1

; : : : ;S

n

)

F

7! (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

F

When regarding Nor as \False" and Fin as \True", the interse
tion takes the logi
al

onjun
tion as resulting label. The union operator, as de�ned below, takes the disjun
tion.

444.222. treelike automata 29

This is not surprising, be
ause in the interse
tion-automaton only those states may be

a

epting states whi
h have been a

epting states in both input automata. An analogous

argument applies to the union-automaton.

[: Treelike(�)� Treelike(�)! Treelike(�)

Nil ; T 7! T

Cy
 ; T 7! Cy

(T

1

; : : : ; T

n

)

F

; (S

1

; : : : ;S

n

)

�

7! (T

1

[S

1

; : : : ; T

n

[S

n

)

F

(T

1

; : : : ; T

n

)

N

; (S

1

; : : : ;S

n

)

N

7! (T

1

[S

1

; : : : ; T

n

[S

n

)

N

Observe that an expli
it de�nition of the union is in fa
t not ne
essary be
ause we have

introdu
ed the
omplement and the interse
tion. The alternative proposed above, however,

may prove more eÆ
ient when a
tually implenting algorithms based on treelike automata.

The
omplexity
lass, as we will see, is not a�e
ted.

When interse
ting trimmed automata, the trimming-property
an get lost. The
omple-

ment has the same disadvantage. To over
ome this we introdu
e modi�ed versions of these

operations.

\ : Treelike(�)! Treelike(�)

\ := trim Æ \

0

� : Treelike(�)! Treelike(�)

(�) := trim Æ

Thus, the
orre
tion is a
hieved by simply applying the trim operation at the end.

The left-quotient of a treelike automaton T is denoted as appli
ation of a fun
tion, i.e.

w

�1

(T), and not like a produ
t. In this respe
t we deviate from the notation for the left

quotient of formal languages in De�nition 2.3. A notation like w

�1

�T
ould mislead to the

impression that there is a
on
atenation for treelike automata.

Observe that in most of the
ases the operations de�ned above
ould be realized by merely

hanging node labels in an appropriate way. Nevertheless, it has not been shown yet that

these operations yield the desired results. We will give a proof of
orre
tness �rst and

then examine the
omplexity of the operations.

Lemma 4.20 Corre
tness of the operations

Let w 2 �

�

be a word. and let T ;S 2 Treelike(�) be treelike automata. Then

1. trim(T) is trimmed and L(trim(T)) = L(T).

2. L(simp(T)) = L(T)

3. L(w

�1

(T)) = w

�1

�L(T)

4. L(T) = L(T)

5. L(T \ S) = L(T) \ L(S)

6. L(T [S) = L(T) [L(S)

Proof.

I

1. Prove trimming-property: T is trimmed if and only if no subtree of T is of the

form (Nil ; : : : ;Nil)

N

. One
an see, that trim re
ursively removes subtrees of that form,

repla
ing then with Nil . Thus, the resulting tree has the desired property.

Proof of the equality of the a

epted languages by stru
tural indu
tion over T .

30
hapter 444. solving mat
hing problems

B

B

B

T = Nil or T = Cy
 : Trivial, be
ause trim does not
hange Nil or Cy
.

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: First
ase: trim(T

i

) = Nil for all i. Then:

lang(trim((T

1

; : : : ; T

n

)

N

)) = lang(Nil) = ; by de�nition of trim . By indu
tion, we obtain

lang(trim(T

i

)) = lang(T

i

), whi
h equals lang(Nil) a

ording to the assumption. Sin
e

lang(Nil) = ;, we obtain by de�nition of lang : lang((T

1

; : : : ; T

n

)

N

) =

S

n

i=1

fs

i

g�;, whi
h

simpli�es to ;.

Se
ond
ase: There is an i with trim(T

i

) 6= Nil . If not all T

i

are trimmed to Nil , trim does

not a�e
t the label of the root node. By indu
tion, we have lang(trim(T

i

)) = lang(T

i

).

Consequently, trim does not
hange the a

epted langauge.

If T = (T

1

; : : : ; T

n

)

F

, trim does not a�e
t the root node by de�nition. Thus, the argument

of the se
ond
ase applies again.

I

2. Taking advantage of the analogous de�nitions of trim and simp, we
an proof the

orre
tness of simp in the same fashion as for trim. Here the
riterion is not evaluating

to Nil , but evaluationg to Cy
. Moreover, this time nodes marked Nor remain un
hanged

by instead of Fin in the se
ond
ase above.

I

3. For w = ", the left quotient has no e�e
t. Furthermore, (wv)

�1

�L = v

�1

�(w

�1

�L) for

v 2 �

�

and for every language L. Consequently, left quotients for longer words w
an be

obtained by su

essively applying the left quotient for only one
hara
ter. It is therefore

suÆ
ient to
onsider only words w of length 1 in our proof, i.e. w = s

i

. Then we have:

L(s

�1

i

(T)) = fv 2 �

�

j

^

Æ(s

�1

i

(T); v) 2 A

g. A

ording to the de�nition of the left quotient,

^

Æ(s

�1

i

(T); v) =

^

Æ(

^

Æ(T ; s

i

); v), whi
h by de�nition of

^

Æ equals

^

Æ(T ; s

i

v). Hen
e, taking all

words v for whi
h

^

Æ(T ; s

i

v) 2 A

 is equivalent to taking the left quotient s

�1

�L(T).

I

4. Due to (1), it is suÆ
ient to prove the proposition for the
omplement (
) instead

of the trimmed
omplement. Proof by stru
tural indu
tion over T .

B

B

B

T = Nil or T = Cy
 : A

ording to lang , we have lang(Nil) = ; and lang(Cy
) = �

�

.

Nil and Cy
 are
omplementary with regard to (
), their languages are
omplementary

with regard to the
omplement of formal languages. Thus,
 is
orre
t for Nil and Cy
.

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: (
)
hanges the node label and pro
eeds to

the su

essors. We thus obtain lang(
((T

1

; : : : ; T

n

)

N

)) = f"g [

S

n

i=1

fs

i

g�lang(
(T

i

)) by

de�nition of lang , whi
h by indu
tion
an be repla
ed by f"g [

S

n

i=1

fs

i

g�lang(T

i

). We

now have to show that this equals lang((T

1

; : : : ; T

n

)

N

).

For a word w 2 �

�

, it holds that w 62 lang((T

1

; : : : ; T

n

)

N

) i� w 62

S

n

i=1

fs

i

g�lang(T

i

).

This is equivalent to w = " or, for some
hara
ter s

i

2 � and v 2 �

�

, w = s

i

v su
h

that v 62 lang(T

i

). Therefore, w is an element of f"g [

S

n

i=1

fs

i

g�lang(T

i

), whi
h is the

omplement of lang((T

1

; : : : ; T

n

)

N

) a

ording to the de�nition of (
).

The proof for T = (T

1

; : : : ; T

n

)

F

is identi
al ex
ept for the empty word " missing in the

a

epted language.

I

5. Be
ause of (1), we will
onsider the interse
tion (\

0

) and not the trimmed interse
tion

(\). Proof by indu
tion over the stru
ture of T and S.

B

B

B

T = Nil or T = Cy
 : The interse
tion of lang(Nil) with any other language is empty.

By de�nition, Nil \

0

S is Nil for any treelike automaton S, so that lang(Nil \

0

S) is

empty as well. Similarly, interse
ting lang(Cy
) with any other language yields �

�

. As

Cy
 \

0

S = Cy
, the language a

epted by Cy
 \

0

S is also �

�

.

444.222. treelike automata 31

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

N

: By de�nition, we have that T \

0

S is equal

to (T

1

\

0

S

1

; : : : ; T

n

\

0

S

n

)

N

. Therefore, lang(T \

0

S) equals

S

n

i=1

fs

i

g�lang(T

i

\

0

S

i

). By

indu
tion, fs

i

g�lang(T

i

\

0

S

i

) equals fs

i

g�(lang(T

i

) \ lang(S

i

)). The
hara
ters of the

alphabet � are assumed to be uniqe. This allows us to apply distributivity over the

interse
tion, yielding

S

n

i=1

fs

i

g�lang(T

i

) \

S

n

i=1

fs

i

g�lang(S

i

), whi
h mat
hes the de�nition

of lang(T) \ lang(S).

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

F

: Similar to the previous
ase. Here " is an

element of lang(S). It disappears when applying the interse
tion operation (\

0

) as well as

when interse
ting the a
tual a

epted languages of T and S. Thus, the same argument

holds.

B

B

B

T = (T

1

; : : : ; T

n

)

F

; S = (S

1

; : : : ;S

n

)

F

: Analogous to the previous
ases. This time the

empty word " appears in the languages of both T and S.

I

6. Proof by indu
tion over the stru
ture of T and S. Due to the great similarity to

the interse
tion operation we will not give the proof in full detail. Whereas previously

the interse
tion with �

�

auses no
hange, here the union with ;
hanges nothing. The

same analogy exists between interse
ting with ; an uniting with �

�

. Therefore, for
ase

T = Nil or T = Cy
, the same arguments hold.

The other
ases are also obtained in the way seen above. Here, however, we do not even

require the argument of �
onsisting of distin
t
hara
ters. Distributivity over the union

ould be applied even without this.

�

�

�

Let us now study the
omplexity of treelike automata. In the next lemma, we dis
uss the

e�e
t of the above operations on the size of the resulting automata. We will see that the

size of the resulting automaton never ex
eeds the sum of the sizes of the original automata.

Lemma 4.21 Size of the
onstru
ted automata

Consider a word w 2 �

�

and treelike automata T ;S 2 Treelike(�). Then

1. ktrim(T)k � kT k and ksimp(T)k � kT k

2. kw

�1

(T)k � kT k

3. kT k � kT k

4. kT \ Sk < kT k+ kSk and kT [Sk < kT k+ kSk

Proof.

I

1. Applied on Nil or Cy
 , trim does not
hange anything. Applied on nodes of the

form (T

1

; : : : ; T

n

)

�

however, it repla
es subtrees of size greater than 1 by Nil , whi
h is of

size 1. Therefore, the size
annot in
rease when applying trim. The same argument holds

for simp.

I

2. The left quotient operation by de�nition returns a subtree of the automaton it is

applied to. Obviously, a treelike automaton is never of a smaller size than one of its

subtrees.

I

3. Be
ause of the result of (1), it is suÆ
ient to
onsider (
) instead of (�). By indu
tion

over the stru
ture of T , we prove that j
(T)j = jT j.

B

B

B

T = Nil or T = Cy
 : Nil and
 are
omplementary in regard to (
). Moreover, the size

of both is the same whi
h implies that it remains the same when applying (
).

32
hapter 444. solving mat
hing problems

B

B

B

T = (T

1

; : : : ; T

n

)

N

or T = (T

1

; : : : ; T

n

)

F

: By de�nition of
, k(T

1

; : : : ; T

n

)

N

k is equal to

k(
(T

1

); : : : ;
(T

n

))

N

k, whi
h simpli�es to 1+

P

n

i=1

k
(T

i

)k. By indu
tion, k
(T

i

)k = kT

i

k,

so that k
(T)k = 1 +

P

n

i=1

jT

i

j whi
h mat
hes the de�nition of kT k.

I

4. Again, we only need to give a proof for the interse
tion (\

0

) without trimming. Proof

by indu
tion over the stru
ture of T .

B

B

B

T = Nil or T = Cy
 : Then T \

0

S 2 fT ;Sg a

ording to the de�nition. Both kT k and

kSk are integers greater than 0. Consequently, the size of the interse
tion automaton must

be smaller than the sum of the sizes of T and S.

B

B

B

T = (T

1

; : : : ; T

n

)

�

and S = (S

1

; : : : ;S

n

)

�

: Applying the de�nition of the interse
tion and

that of k�k, we obtain that kT \

0

Sk equals 1+

P

n

i=1

kT

i

\

0

S

i

k. By indu
tion, this is less than

1+

P

n

i=1

(kT

i

k+kS

i

k). Adding 1 and splitting the sum yields 1+

P

n

i=1

kT

i

k+1+

P

n

i=1

kS

i

k,

whi
h is equivalent to kT k+ kSk.

Be
ause of the symmetri
 de�nitions of the interse
tion and the union, the same argument

holds for the union of T and S.

�

�

�

Regarding time
omplexity, we
an establish similar results. The next lemma will show

that all operations take only linear time in the size of the input automata.

Lemma 4.22 Time
omplexity

Let w 2 �

�

be a word and let T ;S 2 Treelike(�) be treelike automata. Then the following

operations require only linear time in the size of the input automata:

1. trim, simp, and (�),

2. the left quotient (w

�1

(�)),

3. trimmed interse
tion (\) and union ([).

Proof.

I

1. Proof by indu
tion over the stru
ture of T .

B

B

B

T = Nil or T = Cy
 : Upon input Nil or Cy
 , the three fun
tions trim, simp, and

immediately return Nil or Cy
 als result. For all of them it takes
onstant time to identify

the input automaton as one of Nil or Cy
. Generating and returning the result also requires

only
onstant time. The trimmed
omplement operation (�) is de�ned as
on
atenation

of trim and
 and therefore also is �nished in
onstant time in the size of the input.

B

B

B

T = (T

1

; : : : ; T

n

)

�

: Consider trim(T). By indu
tion, it requires only linear time in

kT

i

k to
ompute the results for trim(T

i

), simp(T

i

), and
(T

i

) respe
tively. The test for

trim(T

i

) = Nil requires only
onstant time for all i. Sin
e � is assumed to be
onstant

and sin
e the number of subtrees equals j�j, testing all T

i

osts only
onstant time in

k(T

1

; : : : ; T

n

)

�

k. The �nal result of trim(T)
an be
omputed from the results of trim(T

i

)

in
onstant time. Altogether, we
an infer linear time in the sum of all kT

i

k and thus

linear time in k(T

1

; : : : ; T

n

)

�

k.

For simp and
, the same argument holds.

I

2. For w 2 �

�

, the
omputation of

^

Æ(T ; w)
osts only linear time in jwj and kT k.

Returning the resulting subtree also requires only linear time. Altogether, we obtain

linear time
omplexity.

I

3. Taking advantage of (1), it is suÆ
ient to
onsider (\

0

) instead of (\). Proof by

indu
tion over the stru
ture of T .

444.222. treelike automata 33

B

B

B

T = Nil or T = Cy
 : Nil \

0

S and Cy
\

0

S return either Nil or Cy
. Sin
e the test for

T = Nil or T = Cy
 requires only
onstant time, the result
an be
omputed in
onstant

time. The same argument applies to the union operation ([).

B

B

B

T = (T

1

; : : : ; T

n

)

�

: By indu
tion, for all i the results T

i

\

0

S

i

an be
omputed in linear

time in kT

i

k and kS

i

k. The time ne
essary to assemble the �nal results from that is

linear in j�j and therefore
onstant in k(T

1

; : : : ; T

n

)

�

k. Consequently, we obtain linear

time
omplexity in k(T

1

; : : : ; T

n

)

�

k for the interse
tion.

The same argument holds for the union ([).

�

�

�

The advantage of trim and simp is to provide a method for generating a better repre-

sentation for an automaton a

epting some language. In the view of the rather simple

stru
ture of treelike automata the question arises if there is a unique representation for

every automaton, i.e. a normal form whi
h
annot be simpli�ed further. The next lemma

shows that su
h a representation
an be de�ned using trim and simp.

Lemma 4.23 Normal forms

Let T ;S 2 Treelike(�) be treelike automata. Then

1. T � S i� simp(trim(T)) = simp(trim(S))

2. Testing for equivalen
e requires only linear time in kT k+ kSk.

Proof.

I

1. (\)") Proof by indu
tion over the stru
ture of T and S.

B

B

B

T ;S 2 fNil ;Cy
g: Sin
e simp(trim(Nil)) = Nil and simp(trim(Cy
)) = Cy
 and sin
e

lang(Nil) 6= lang(Cy
), the proposition follows immediately.

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = Nil : Then T only a

epts ; and we
an derive lang(T

i

) = ;

for every i, whi
h means that all T

i

are equivalent to Nil . By indu
tion, we then obtain

simp(trim(T

i

)) = simp(trim(Nil)), whi
h equals Nil by de�nition of simp and trim. If

simp(trim(T

i

)) = Nil , then already trim(Nil) must have been Nil . If this is the
ase, then

by de�nition trim((T

1

; : : : ; T

n

)

N

) is Nil and therefore simp(trim((T

1

; : : : ; T

n

)

N

)) is as well.

Utilizing that Nil = simp(trim(Nil)) we end up with simp(trim((T

1

; : : : ; T

n

)

N

)) equal to

simp(trim(Nil)), whi
h was to be shown.

B

B

B

T = (T

1

; : : : ; T

n

)

F

and S = Cy
 : Then lang(T) = �

�

and so lang(T

i

) = �

�

for every i.

This implies that every T

i

is equivalent to Cy
 whi
h by indu
tion yields the equality of

simp(trim(T

i

)) and simp(trim(Cy
)). Thus, simp(trim(T

i

)) = Cy
 for every i.

As T is labelled Fin , simp(trim(T)) simpli�es to simp((trim(T

1

); : : : ; trim(T

n

))

F

). Sin
e

always simp(trim(T

i

)) = Cy
, the whole expression simpli�es to Cy
 by de�nition of simp.

Exploiting again that Cy
 = simp(trim(Cy
)) we obtain that simp(trim((T

1

; : : : ; T

n

)

F

))

equals simp(trim(Cy
)).

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

N

: By de�nition of lang , we have that lang(T

i

)

equals lang(S

i

) for all i, implying T

i

� S

i

. By indu
tion, we
an infer that simp(trim(T

i

))

equals simp(trim(S

i

)) for all i.

First
ase: for all i it holds that trim(T

i

) = Nil . Then simp(trim(T

i

)) = Nil , so that by the

above equation simp(trim(S

i

)) = Nil . Therefore, trim(S

i

) = Nil for all i as well. As both

T and S are labelled Nor , by de�nition of trim this yields that simp(trim((T

1

; : : : ; T

n

)

N

))

equals simp(Nil) and analogously simp(trim((S

1

; : : : ;S

n

)

N

)) is equal to simp(Nil). Con-

sequently, simp(trim(T)) equals simp(trim(S)).

34
hapter 444. solving mat
hing problems

Se
ond
ase: there is an i with trim(T

i

) 6= Nil . Then trim will redu
e neither T nor S to

Nil . As simp by de�nition does not redu
e nodes labelled Nor , the proposition is obtained

by merely applying the de�nitions of trim and simp: simp(trim((T

1

; : : : ; T

n

)

N

)) equals

simp((trim(T

1

); : : : ; trim(T

n

))

N

) whi
h equals (simp(trim(T

1

)); : : : ; simp(trim(T

n

)))

N

.

This is equivalent to (simp(trim(S

1

)); : : : ; simp(trim(S

n

)))

N

, whi
h
an again be simpli�ed

to simp((trim(S

1

); : : : ; trim(S

n

))

N

), resulting in simp(trim((S

1

; : : : ;S

n

)

N

)).

B

B

B

T = (T

1

; : : : ; T

n

)

F

and S = (S

1

; : : : ;S

n

)

F

: This
ase is fairly analogous to the previous

one. We again
an infer simp(trim(T

i

)) being equal to simp(trim(S

i

)) for all i and then

distinguish two
ases.

First
ase: for all i : simp(trim(T

i

)) = Cy
. As trim does not redu
e nodes marked

Fin, simp(trim((T

1

; : : : ; T

n

)

F

)) simpli�es to simp((trim(T

1

); : : : ; trim(T

n

))

F

). Sin
e al-

ways simp(trim(T

i

)) = Cy
, simp redu
es the expression to Cy
. The same transformation

applies to S, so that we obtain equality.

Se
ond
ase: there is an i with: simp(trim(T

i

)) 6= Cy
. In this
ase, neither trim nor

simp redu
e the root node. Similar to the se
ond
ase above we
an therefore prove the

proposition by merely applying the de�nitions of trim and simp.

B

B

B

T = (T

1

; : : : ; T

n

)

N

and S = (S

1

; : : : ;S

n

)

F

: Then T and S
annot be equivalent be
ause

they do not agree upon a

epting " or not.

I

1. (\(") Assume simp(trim(T)) = simp(trim(S)). A

ording to Lemma 4.20, simp

and trim do not alter the a

epted language, so that L(T) equals L(simp(trim(T))) and

L(S) equals L(simp(trim(S))). This implies L(T) = L(S),
ompleting the proof.

I

2. A

ording to Lemma 4.22,
omputing simp(trim(T)) and simp(trim(S)) requires

only linear time in kT k + kSk. Due to Lemma 4.21, treelike automata
annot in
rease

in size when trimming or simplifying them. It is therefore suÆ
ient to �nd a strategy to

synta
ti
ally
ompare the automata in linear time in the size of the automata.

Su
h a strategy
an be de�ned easily. For instan
e, a simultaneous depth-�rst sear
h over

the trees
orresponding to the automata has the required properties.

�

�

�

Be
ause of the properties shown in the previous lemma, simp(trim(T))
ould serve as a

normal-form for the automaton T . It is parti
ularly interesting that su
h a normal form

an be
omputed in linear time in the size of the automaton.

In the end we want to use treelike automata to represent regular languages o

uring in

the solvability equations introdu
ed in the �rst se
tion of this
hapter. We have already

seen that treelike automata
an represent any language of the form L [L

0

��

�

, where L

and L

0

are �nite languages. We have not yet provided a s
heme to a
tually
onstru
t su
h

an automaton, given languages L and L

0

. In the next lemma this will be provided.

Lemma 4.24 Representing languages by treelike automata

Let L;L

0

� �

�

be �nite languages over �. Then there is a automaton T 2 Treelike(�)

whi
h a

epts von L [L

0

��

�

with:

1. kT k 2 O(kLk+ kL

0

k).

2. The
onstru
tion of T takes only linear time in kLk+ kL

0

k.

Proof.

Constru
t the automaton T for in the following way:

� For every w 2 L,
onstru
t ind(w) whi
h a

epts fwg, for every w

0

2 L

0

; analogously

onstru
t ind

0

(w

0

) a

epting fw

0

g��

�

.

444.222. treelike automata 35

� Constru
t the union over all automata ind(w) and ind

0

(w

0

)
onstru
ted before.

Formally, T
an be denoted as (

S

w2L

ind(w)) [(

S

w

0

2L

0

ind

0

(w

0

)). Taking advantage of

Lemma 4.18 and of Lemma 4.20 it is not diÆ
ult to see that T a

epts L [L

0

��

�

in

a

ordan
e with the proposition. We now show that T meets properties (1) and (2).

I

1. In Lemma 4.18 we have seen than for every word w 2 �

�

the size kind(w)k and

kind

0

(w)k of the indu
ed automata are in O(jwj). From Lemma 4.21 we furthermore know

that for every treelike automata T

1

and T

2

, the size kT

1

[T

2

k of the uni�ed automata is

less than the sum kT

1

k + kT

2

k of the original sizes. With these results we
an infer the

following result for the size of T :

jT j by de�nition equals k(

S

w2L

ind (w)) [(

S

w

0

2L

0

ind

0

(w

0

))k. Be
ause of the properties

of the union, this is in O((

P

w2L

kind(w)k) + (

P

w

0

2L

0

kind

0

(w

0

)k)) whi
h is limited by

O((

P

w2L

jwj) + (

P

w

0

2L

0

jw

0

j)) a

ording to the properties of ind . The de�nition of the

size of formal languages implies that this is equivalent to O(kLk+ kL

0

k).

I

2. For the time
omplexity, an argument similar to (1)
an be devised. We know from

Lemma 4.18 that ind and ind

0

require only linear time in the size of the input.

Unifying treelike automata
an also be done in linear time, as shown in Lemma 4.22. Now

it is very important to take into a

ount that after ea
h uni�
ation the size of the resulting

automaton does not ex
eed the sum of the sizes of the input automata. This guarantees

that when repeatedly unifying automata the size of the arguments is always the sum of

all automata so far uni�ed. With this we
ome to the following
on
lusion.

When exe
uted naively, the union over all automata of the form ind(w) and ind

0

(w)
osts

quadrati
 time in the size of L and L

0

, as
an be illustrated easily: unifying ind (w

1

)

and ind(w

2

)
osts linear time in jw

1

j + jw

2

j. But then unifying the resulting automaton

with ind(w

3

) additionally requires linear time in jw

1

j + jw

2

j + jw

3

j, so that for the �nal

automaton the
osts are 2 � (jw

1

j+ jw

2

j) + jw

3

j. This intuition implies a quadrati
 result

in kLk+ kL

0

k for the overall time ne
essary to
onstru
t T . It should be noted that this

result is suÆ
ient for the argument in the following se
tions. We will in fa
t require no

more than polynomial time
omplexity.

However, a more eÆ
ient strategy
an be found. Instead of unifying two automata in

every su

essive step, the union over all automata
an be
omputed simultaneously. This

strategy avoids re-reading the resulting automaton in every step and
an thus be realized

in linear time in the sum kLk+ kL

0

k of the sizes of the input languages.

�

�

�

Observe that the reverse task, i.e. reading o� the language a

epted by a given treelike

automaton,
an be solved easily in linear time in the size of the automaton. We only need

to perform a depth-�rst traversal of the automaton and memorize the word read on the

path from the root-node to the
urrent node. Whenever visiting a node marked Fin , the

urrent word is added to a �rst language L; whenever visiting Cy
, the
urrent word is

added to a se
ond language L

0

. It
an be shown that then the automaton examined in

that way a

epts the language L [L

0

��

�

.

The
omplexity of standard automata-theoreti
 problems for treelike automata has not yet

been
onsidered. For the purpose of verifying solvability equations, we need two of them

at most: the emptyness- and the word-problem. Both
an be solved easily for treelike

automata, as we will see next.

Lemma 4.25 De
ision problems

Let T 2 Treelike(�) be a treelike automata and let w 2 �

�

be a word. Then the following

problems are solvable in linear time in the size kT k of the automaton and in the size of w:

1. L(T) =

?

;, i.e. the ;-problem

36
hapter 444. solving mat
hing problems

2. w 2

?

L(B), i.e. the word-problem

Proof.

I

1. As seen in Lemma 4.23, the language a

epted by T is empty if and only if the

normalized automaton simp(trim(T)) equals Nil .

Computing simp and trim does not in
rease the size of an automaton. These operations

also take only linear time in the size of the argument. We have seen this in Lemma 4.21

and Lemma 4.22. Furthermore, the test of equality to Nil
osts only
onstant time. We

therefore end up with linear time
omplexity for the ;-problem.

I

2. A

ording to the de�nition of L(T), w is a

epted by T i�

^

Æ(T ; w) 2 A

. By

de�nition of the left quotient, this is equivalent to w

�1

(T) 2 A

. A

ording to Lemma

4.22,
omputing the left quotient
osts only linear time in kT k and jwj. The left quotient

of T of
ourse is not greater in size than T . Finally, testing for w

�1

(T) 2

?

A

 takes only

onstant time, sin
e the left quotient either has to be Cy
 or it has to be labelled Fin.

Thus, the word problem is of linear time
omplexity as well.

�

�

�

There are two operations o

urring in our solvability equations whi
h have not yet been

de�ned for treelike automata|
on
atenation and the right quotient. The right quotient

o

urs in the equations referring to �-number restri
tions for ALN . However, as
an be

seen in De�nition 4.6, it is applied only to sets of ex
luding words and it is applied only

for single atomi
 roles. We will see later on that in this
ase the right quotient
an be

repla
ed by a simple expression requiring only known operations.

Nevertheless, treelike automata
annot be
on
atenated eÆ
iently. When just linking

two treelike automata via "-transitions, the deterministi
 behaviour as well as the tree

stru
ture might get lost. Merely
opying the se
ond automaton to every �nite state would

also violate the tree stru
ture if the �rst automaton
ontained inner nodes marked Fin.

In addition
opying would be ineÆ
ient for su

essive
on
atenations (whi
h do not o

ur

in the equations, though).

To solve the problem of
on
atenation, we have to resort to general nondeterministi

�nite automata. These, however,
annot be
omplemented eÆ
iently. Observe that no

solvability equation requires
on
atenation on both sides. This suggests the following

strategy: We
an represent the left-hand side of an equation by a treelike automaton and

the right-hand side|requiring
on
atenation|by an NFA. We
an then still
ompute the

omplement treelike automaton and interse
t it with the NFA. This strategy is su

essful

if two
onditions hold. Firstly, the interse
tion of two NFA must be eÆ
ient. Se
ondly,

the ;-problem for NFA must be de
idable in polynomial time. We know from Lemma 2.8

that these
onditions
an be met.

In the next se
tion, we will give strategies to de
ide solvability in FL

?

, FL

:

, and ALN .

Finally, we shall summarize the results on mat
hing in the last se
tion of this
hapter.

Mat
hing problems in FL

0

will not be examined in detail, be
ause de
iding solvability

and
omputing least solutions there is
omparatively simple. When summarizing results,

however, we will brie
y address this
ase.

4.3 De
iding solvability

We are now ready to a
tually de
ide the solvability of the solvability equations in FL

?

.

Thus, we insert the languages provided in Lemma 4.2 into the equations of De�nition 4.1.

The resulting equations are then tested for equality using a strategy introdu
ed in the

next lemma. Now is the time for deploying the
apabilities of treelike automata we have

444.333. de
iding solvability 37

taken so mu
h
are to spe
ify in the last se
tion. The possibility to eÆ
iently
ompute

the
omplement of a treelike automaton will prove espe
ially useful.

Lemma 4.26 Testing solvability in FL

?

FL

?

FL

?

Let C �

?

D be an FL

?

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdu
ed in De�nition 4.1
an be de
ided in poly-

nomial time in the size of the equation.

2. The same holds for equation (A) for every A 2 C.

Proof.

I

1. A

ording to De�nition 4.1 and Lemma 4.2, we have to de
ide if

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)

| {z }

=:L

0

j

: (?

0

)

For every j it
an be shown that L

0

j

is a subset of U

?

��

�

and is �

�

-
losed. For the above

equation to hold the following
onditions are therefore suÆ
ient:

� V

?

� U

?

��

�

� For all u 2 U

?

: u 2 V

?

��

�

or there exists a j with u 2 L

0

j

.

B

B

B

Testing V

?

� U

?

��

�

: The idea is to
onstru
t a nondeterministi
 �nite automaton B

0

a

epting the language V

?

\ U

?

��

�

. The ;-problem is then de
ided for B

0

.

As shown in Lemma 4.24, we
an
onstru
t a treelike automaton T for U

?

��

�

whi
h is

of polynomial size in kU

?

k and whi
h
an be obtained in polynomial time. A

ording to

Lemmata 4.21 and 4.22, it furthermore takes only polynomial time in the size of A to

onstru
t the
omplement automaton T . Espe
ially, the size of T does not ex
eed that

of T . We
an similarly
onstru
t a treelike automaton S for V

?

. As the interse
tion of

two treelike automata takes only polynomial time (Lemma 4.22), we
an easily produ
e

an interse
tion automaton I := T \ S. Lemma 4.21 again guarantees that I is of poly-

nomial size in the sizes of T and S. Finally, de
iding the ;-problem for treelike automata

takes only polynomial time in the size of the automata. This was shown in Lemma 4.25

when introdu
ing general nondeterministi
 automata. Altogether, we
an de
ide the �rst

ondition in polynomial time, sin
e all the role languages involved are limited in size by

the input mat
hing problem.

B

B

B

Testing the se
ond
ondition: At �rst, observe that every L

0

j

is of the form L��

�

, whi
h

allows us to ex
ept the �

�

-
losure of U

?

when sele
ting elements u for our test. Sin
e U

?

is part of the input mat
hing problem, it is no problem to examine every u 2 U

?

as long as

ea
h requires only polynomial time. Thus,
onsider one su
h u. Testing whether u 2 V

?

��

�

an be realized similar to the �rst
ondition. We
an
ompute an appropriate treelike

automaton to represent V

?

��

�

. As seen in Lemma 4.25, solving the word problem then

osts only polynomial time. Thus, we still have to test if u is an element ofW

j

�w

�1

(U

?

��

�

)

for every j.

For a given j we
an test this as follows. W

j

is part of the input and thus of polynomial

size. Consequently, we
an
onstru
t a treelike automaton for U

?

��

�

and then
ompute

the left quotient for every w 2W

j

in polynomial time. We
an then establish the interse
-

tion automaton over all automata
omputed that way. The properties of the operations

38
hapter 444. solving mat
hing problems

for treelike automata guarantee that this takes only polynomial time in the size of the

mat
hing problem and results in a treelike automaton T

j

of polynomial size.

Furthermore, we
an
onstru
t a treelike automaton S

j

a

epting W

j

. The
on
atenation,

however, is not available for treelike automata. We
an nevertheless establish a nonde-

terministi
 �nite automaton representing L

0

j

by linking S

j

and T

j

in the way proposed in

Kleene's theorem for the
on
atenation automaton: Add "-transitions from every a

ept-

ing state of S

j

to the initial state of T

j

. This operation obviously does not in
rease the

size of the resulting automaton severely. It results in an NFA B

j

a

epting L

0

j

whi
h is

polynomial in the size of the mat
hing problem. The treelike property, however, is lost

over that operation. This implies that we
annot
ompute the
omplement of B

j

eÆ
iently.

Fortunately, we only have to solve the word problem for every j, whi
h
an be de
ided in

polynomial time. This is a result of Lemma 2.8.

Putting the above arguments together, we
an de
ide in polynomial time in the size of the

input mat
hing problem whether equation (?

0

) is valid or not.

I

2. Equation (A) for every A 2 C holds if and only if:

U

A

[U

?

��

�

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

[U

?

��

�

) (A

0

)

= V

A

[U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

)

| {z }

=:L

j

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)

| {z }

=:L

0

j

For every j it holds that: L

j

� U

A

und L

0

j

� U

?

��

�

. For the validity of equation (A

0

) the

following two
onditions are therefore suÆ
ient:

� V

A

� U

A

[U

?

��

�

� For all u 2 U

A

: u 2 V

A

[U

?

��

�

or there exists a j mit u 2 L

j

or u 2 L

0

j

.

The �rst
ondition is treated similarly to (1). We
an
onstru
t in polynomial time a

treelike automaton of polynomial size representing V

A

\U

A

[U

?

��

�

. For this automaton,

again the ;-problem
an be de
ided in polynomial time

For the se
ond
ondition the strategy is almost identi
al to the one introdu
ed in (1).

Espe
ially, testing whether u 2 L

j

or u 2 L

0

j

requires exa
tly the same steps as seen

above.

�

�

�

We shall see in the following lemma that the above s
heme
an easily be generalized for

FL

:

. Here, additional equations for negated atomi

on
ept have to be in
luded in the

test. Their stru
ture, however, is identi
al to the respe
tive non-negated version ex
ept

for two new aspe
ts. The o

urren
e of role languages of the form

b

U

?

instead of U

?

, and

the usage of the fun
tion Int in equation (?). We will see that both problems
an be

solved without altering the overall de
ision strategy proposed in the last lemma.

Lemma 4.27 Testing solvability in FL

:

FL

:

FL

:

Let C �

?

D be an FL

:

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdu
ed in De�nition 4.3
an be de
ided in poly-

nomial time in the size of the equation.

2. The same holds for equations (A) and (:A) for every A 2 C.

444.333. de
iding solvability 39

Proof.

I

1. Due to De�nition 4.3 and Lemma 4.4, we obtain the following equation for the test

if equation (?) is solvable:

b

U

?

��

�

= V

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

?

��

�

)��

�

| {z }

=:L

j

[

[

A2C

Int(A;:A)��

�

| {z }

=:L

0

A

(?

0

)

where inserting the languages spe
i�ed in Lemma 4.4 into the de�nition of Int yields:

Int(A;:A) = (V

A

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

) [

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

b

U

?

��

�

))

\ (V

:A

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

:A

) [

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

b

U

?

��

�

))

Combining the above results, we end up with an equation
onsiderably more
omplex than

that dis
ussed for FL

?

in Lemma 4.26. Nevertheless, we
an follow a similar s
heme to

verify the validity of equation (?

0

) for FL

:

. We prove the in
lusion from left to right (�)

by solving the word problem for an appropriate nondeterministi
 �nite automaton and the

in
lusion from right to left (�) by de
iding the ;-problem for the interse
tion of a treelike

and a nondeterministi
 �nite automaton.

B

B

B

(�): Like for FL

?

, the entire right side of (?

0

) is �

�

-
losed. It is therefore again

suÆ
ient to test if every word w 2

b

U

?

an be found in V

?

��

�

or in the remaining expression

on the right side. Firstly, V

?

��

�

an be represented by a treelike automaton. Se
ondly,

following the strategy of Lemma 4.26, we
an
onstru
t nondeterministi
 �nite automata

for every L

j

. Thus, we only have to show that there are appropriate automata for de
iding

the word problem for L

0

A

. In the above equation for Int(A;:A), two expressions of the

form V

A

[

S

W

j

�

T

w2W

w

�1

(U

A

[

b

U

0

��

�

) are interse
ted. Following the
onstru
tion for the

solvability equations (A) in FL

?

, these expressions
an be represented by nondeterministi

�nite automata. The interse
tion automaton of these expressions is polynomial in the size

of the original automata, as
an be seen in De�nition 2.5. Thus, we have
onstru
ted an

NFA representing Int(A;:A). It takes only linear time
ompute the �

�

-
losure of that

automaton|we just have to add edges from every a

epting state pointing to themselves.

Consequently, we
an provide a polynomially large NFA for the representation of L

0

A

for

every A 2 C.

B

B

B

(�): We have already seen that we
an represent

b

U

?

��

�

by a treelike automaton. The

idea now is to represent the entire right-hand side of equation (?

0

) ex
ept the union of L

j

by a nondeterministi
 automaton B. The
omplement of the treelike automaton for

b

U

?

��

�

an then be interse
ted with B. Testing the result of this for emptyness is equivalent to

the in
lusion we want to de
ide.

We do not need to in
lude the union of L

j

into the
onstru
tion of B, sin
e obviously

every L

j

is already a subset of U

?

��

�

, whi
h is a subset of the right-hand side of the

equation. We know from the previous part, that V

?

��

�

easily
an be represented by a

treelike automaton as well as every L

0

A

an be represented by a polynomially large NFA.

The only step missing now is to
ompute the union of all these automata. We have

already seen that unifying nondeterministi
 �nite automata only
osts a
onstant amount

of additional spa
e and
an be done in linear time. Therefore, we require only linear time

to obtain the desired automaton. We
an now
ompute the
omplement automaton for the

40
hapter 444. solving mat
hing problems

left-hand side of the equation and test the interse
tion automaton for emptyness. Sin
e

the interse
tion automaton is polynomial in the size of the original automata a

ording

to De�nition 2.5 and sin
e the ;-problem
an be de
ided in polynomial time in the size of

the automaton, we end up with polynomial time
omplexity for the de
ision.

I

2. For every A 2 C, inserting the appropriate languages into solvability equation (A)

yields the following equation:

U

A

[

b

U

?

��

�

= V

A

[

b

U

?

��

�

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

A

[

b

U

?

��

�

) (A

0

)

We have already mentioned, that

b

U

?

an be represented by a treelike automaton. There-

fore, the above equation is merely a synta
ti
 variant of the analogous equation for FL

?

.

In
onsequen
e, we
an de
ide equality with exa
tly the same strategy as introdu
ed for

equation (A

0

) in Lemma 4.26. Due to the similarity of the equations, this argument also

applies to equation (:A

0

) for every A 2 C.

�

�

�

Most of the
omplexity of the solvability equations for ALN is hidden in the
onstru
t of

ex
luded words, o

urring as E

C

and E

D

. Thanks to the results presented in [BKBM99℄

and [K�us98℄, we need not resolve their stru
ture in detail. Instead, we
an rely on the fa
t

that there exists an algorithm to
ompute the set of ex
luded words of a given
on
ept

des
ription in polynomial time. Nevertheless, we must ensure one
ondition: inserting the

languages proposed in De�nition 4.7 into the right-hand side of equation (?) may not blow

up their size exponentially. On the other hand, on
e given a polynomial representation of

E

C

, the argument for the other equations is very similar to the approa
hes seen before for

FL

?

and FL

:

.

Lemma 4.28 Testing solvability in ALN

ALN

ALN

Let C �

?

D be an ALN -mat
hing problem in (U; V;W)-labelled FL

0

-normal form. Then

1. Solvability of equation (?) as introdu
ed in De�nition 4.6
an be de
ided in poly-

nomial time in the size of the equation.

2. The same holds for equations (A) and (:A) for every A 2 C as well as for equations

(� nR) and (� nR) for every (� nR) 2 N

�

and (� nR) 2 N

�

.

Proof.

I

1. A

ording to Lemma 4.7, we have to de
ide if

E

C

= E

D

(X

?

; X

C

; X

:

; X

�

; X

�

)

It is stated in [BKBM99℄ that it takes only polynomial time in the size of C to
ompute

a �nite set U

E

C

with E

C

= U

E

C

��

�

. Therefore, it
an be shown that we need only

polynomial time to
ompute the solution languages introdu
ed in Lemma 4.7. It
an be

shown further that these languages are only polynomially large in the size of the original

mat
hing problem. Therefore, inserting these languages into D yields a an ALN -
on
ept

des
ription of polynomial size in the size of D. A

ording to [BKBM99℄, we
an then in

polynomial time
ompute a �nite language U

E

D

su
h that E

C

= U

E

C

��

�

. Thus, we
an

onstru
t treelike automata for the representation of both sides of the equation, whi
h

are polynomial in the size of the original mat
hing problem. Equivalen
e therefore
an be

de
ided in two steps by testing mutual in
lusion: Firstly,
ompute the
omplement of one

automaton and then test the interse
tion with the other for emptyness. Se
ondly, perform

the same test vi
e-versa with the automata ex
hanged.

444.444. general result 41

I

2. Inserting the languages of Lemma 4.7 in the remaining solvability equations yields

equations of the following type:

U

A

[E

C

= V

A

[E

C

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(U

:A

[E

C

) (A

0

)

[

m�n

U

(�mR)

[E

C

= V

(�mR)

[E

C

[

`

[

j=1

W

j

�

\

w2W

j

w

�1

(

[

m�n

U

(�nR)

[E

C

)

We have mentioned under (1) that for the representation of E

C

and E

D

polynomially

large treelike automata
an be
onstru
ted in polynomial time. Therefore, the �rst type

of equations
an be veri�ed with the strategy introdu
ed for the equations (A

0

) for FL

?

in Lemma 4.26. Taking into a

ount that we
an also
ompute treelike automata for the

representation of the union

S

m�n

U

(�mR)

and

S

m�n

U

(�nR)

[E

C

, the same s
heme
an

be employed for the equations referring to number restri
tions.

�

�

�

At this point, we know that mat
hing problems modulo equivalen
e
an be de
ided in

polynomial time for ALN and its sublanguages. We still have to dis
uss how to
ompute

the a
tual solution to a solvable mat
hing problem. The next se
tion gives a brief summary

on this subje
t.

4.4 General result

Apart from testing solvability, [BKBM99℄ also proposes solutions to be assigned to the

variables o

urring in a mat
hing problem and proves their
orre
tness in detail. Using

our results on the
omplexity of operations on treelike automata, we will now furthermore

on�rm that
omputing the a
tual solution to a solvable mat
hing problem takes only

polynomial time. Additionally, we re
all three other properties of the solution strategy.

Firstly, it is shown that it produ
es least solutions in regard to (v); se
ondly, it introdu
es

no new atomi

on
epts or number restri
tions; and thirdly, it
an handle systems of

mat
hing problems as well.

Lemma 4.29 Solving mat
hing problems

Let L be a logi
 in fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mat
hing problem modulo

equivalen
e as introdu
ed in De�nition 3.14. Then there exists an algorithm mat
h

L

with

the following properties:

1. mat
h

L

(P) de
ides in polynomial time, whether the input mat
hing problem P has

a solution or not. If P is solvable, then mat
h

L

(P) in polynomial time in the size of

P
omputes a solution � whi
h is minimal in regard to (v).

2. mat
h

L

does not introdu
e atomi

on
epts or number restri
tions whi
h do not

o

ur in the input mat
hing problem P .

3. mat
h

L

also a

epts a system of mat
hing problems as introdu
ed in De�nition 3.14.

Proof.

I

1. In the previous se
tions we have shown that there exist strategies for de
iding solv-

ability of a given mat
hing problem in polynomial time in the size of the problem. We

have seen that su
h strategies
an be found for ALN as well as for its three sublanguages

onsidered here. We still have to make sure that
omputing the a
tual solution to a solv-

able mat
hing problem also requires only polynomial time, whi
h
an be readlily inferred

42
hapter 444. solving mat
hing problems

utilizing the results obtained so far. [BKBM99℄ provides us with strategies to spe
ify ap-

propriate solution languages. Taking advantage of our results
on
erning the
omplexity

properties of treelike automata we will show that these languages
an be
omputed in

polynomial time. We �rst give the prove for ALN and then
onsider its sublanguages

separately.

B

B

B

Solutions in ALN : To show this for ALN -mat
hing problems, we only need to
ombine

results we have already obtained. In [BKBM99℄ it is shown that the languages L

�;�

used

for the solvability test in Lemma 4.7 in fa
t are least solutions to the mat
hing problem.

Therefore, a solution � with the desired properties
an be de�ned by assigning

X

j

7�! 8L

j;?

:? u u

A2C

8L

j;A

:A u u

A2C

8L

j;:A

::A

u u

(�nR)2N

�

8L

j;(�nR)

:(� nR) u u

(�nR)2N

�

8L

j;(�nR)

:(� nR)

for every j 2 f1; : : : ; `g. It
an be shown that the assigned
on
ept des
riptions are of

polynomial size in the size of the original mat
hing problem. Sin
e every role language of

the form L

�;�

an be represented by a treelike automaton, it takes only polynomial time to

read o� the languages represented by these automata, i.e. to a
tually return the
omputed

result.

B

B

B

Solutions in FL

?

and FL

:

: For these sublanguages of ALN , we must �rst restri
t the

languages used in the solvability test to �nite ones. The rest of the argument then is

identi
al to that for ALN . For FL

?

and FL

:

, [BKBM99℄ again provides us with the

ne
essary results: Finite solution languages L

j;A

an be obtained in the following way.

Sin
e

b

L

j;?

an be represented by a treelike automaton for every j, we read o� a �nite

language L

j;?

with L

j;?

��

�

=

b

L

j;?

. Analogous to the languages de�ned for ALN in

Lemma 4.7 we now de�ne languages L

j;A

by subtra
ting

b

L

j;?

from

b

L

j;A

. We
an then

assign to the variable X

j

the
onjun
tion

X

j

7�! 8L

j;?

:? u u

A2C

8L

j;A

:A u u

A2C

8L

j;:A

::A

for every j 2 f1; : : : ; `g. Again, we yield a solution of polynomial size in polynomial

time. The argument for FL

?

is identi
al ex
ept for negated atomi

on
ept missing in

the
on
ept des
riptions �nally assigned.

B

B

B

Solutions in FL

0

: Two arbitrary FL

0

-
on
ept des
riptions are equivalent if and only

if their FL

0

-normal forms agree on all role languages involved. Therefore, in�nite sets

are not ne
essary at any step when solving mat
hing problems. It
an be shown that the

solvability equation and solution languages for FL

0

are equivalent to those for FL

?

after

removing any
onstru
ts relating to the bottom-
on
ept or its role languages. The task

of de
iding solvability and
omputing solutions to a given mat
hing problem then quite

apparently turns out to be of polynomial
omplexity.

I

2. It is shown in [BKBM99℄, that the solution spe
i�ed above already has the desired

property. Espe
ially, this implies that the solution of a mat
hing problem
an be repre-

sented with the same set of role languages as the mat
hing problem.

I

3. In Lemma 3.15, we have already seen that systems of mat
hing equations
an be

represented by a single mat
hing problem modulo subsumption whi
h is polynomial in

the size of the original system. Thus, with the results from (1) the proposition follows

immediately.

�

�

�

444.444. general result 43

Our examination of mat
hing problems modulo equivalen
e without side
onditions is

omplete. We
an de
ide and solve mat
hing problems without side
onditions in polyno-

mial time. Furthermore, we
an �nd minimal solutions without introdu
ing new atomi

on
epts or number restri
tions and we
an admit systems of mat
hing problems as input.

The results obtained here will be of eminent importan
e for Chapter 5, where a solution

strategy for mat
hing problems with side
onditions is introdu
ed.

hapter 5

Eliminating Side

Conditions

In the previous
hapter, an eÆ
ient solution strategy for mat
hing problems without side

onditions has been proposed. We now approa
h mat
hing problems with a
y
li
 non-

stri
t side
onditions. The idea is to redu
e a mat
hing problem with side
onditions

to an equivalent one without by augmenting the original mat
hing equation by additional

onstraints. A strategy for this is dis
ussed in [BKBM99℄. However, it is also demonstrated

that this might result in exponentially large mat
hing equations. In the �rst se
tion, we

will brie
y introdu
e the relevant redu
tion strategy. Moreover, we will show that an

intuitive strategy to represent the resulting mat
hing problem more
ompa
tly fails to

avoid the exponential blow-up of role languages. In the se
ond se
tion, these problems

are over
ome by employing nondeterministi
 �nite automata for the representation of role

languages. It will be shown then that the mat
hing algorithm introdu
ed in the previous

hapter
an be modi�ed to a

ept role languages represented by automata. The solution

proposed in this
hapter, however, is limited to a
y
li
 side-
onditions.

5.1 Redu
ing mat
hing problems

The idea of redu
ing a mat
hing problem with side
onditions to an equivalent one without

side
onditions is introdu
ed in [BKBM99℄. The following substitution is de�ned to fa
il-

itate this redu
tion. In spite of synta
ti
 similarity we
all it \generalized substitution"

be
ause substitutions in De�nition 3.13 have been de�ned to map
on
ept patterns onto

on
ept des
riptions and not onto
on
ept patterns again.

De�nition 5.1 Generalized substitutions

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mat
hing problem in (U; V;W)-

labelled FL

0

-normal form. The generalized substitution � is indu
tively de�ned as follows:

�(X

1

) := Y

1

u E

1

�(X

j

) := Y

j

u �(E

j

) �

�

�

It is shown in [BKBM99℄ that a mat
hing problem with a
y
li
 side
onditions of the form

(C �

?

D; fX

j

v

?

E

j

j1 � j � `g) is equivalent to (C �

?

�(D)), whi
h is free of side

onditions. Equivalent in this
ontext means having the same solution. It is also shown

that this modi�
ation
an result in exponentially large role languages in the modi�ed

mat
hing problem. The remedy suggested in this
ontext is a \
ompa
t representation"

46
hapter 555. eliminating side
onditions

for role languages, whi
h avoids making
on
atenations expli
it. The following de�nition

extends this idea to the notion of produ
t form languages.

De�nition 5.2 Produ
t form languages

For all role languages U and V over �, produ
t form languages are de�ned as follows:

� Every role language U is a produ
t form language.

� If U and V are produ
t form languages, so are U �V and fU; V g.

The semanti
s of produ
t form languages is indu
tively de�ned over their stru
ture. For

produ
t form languages U and V , the expression U �V represents the
on
atenation of the

languages represented by U and V . Similarly, fU; V g yields the union of the respe
tive

languages. A formal de�nition of the semanti
s of produ
t form languages is omitted.

�

�

�

The above de�nition does not only allow for a produ
t representation, but also admits

nested produ
t forms by in
luding the
ase fU; V g. The following example shows that

produ
t form languages in fa
t yield a more
ompa
t representation for formal languages.

Example 5.3 Produ
t representation I

The language fRR;RS; SR; SSg
an be represented in produ
t form by fR;Sg�fR;Sg.

However, the
on
atenation may not only o

ur at the outermost level. For instan
e, the

language fRR;RSR;RSS; Sg
an be represented in by ffRg�fR; fSg�fR;Sgg; fSgg.

�

�

�

However, problems may arise when employing produ
t form languages for the elimination

of side
onditions. Consider the next example, where role languages produ
ed by the

generalized substitution � are represented by produ
t form languages.

Example 5.4 Produ
t representation II

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mat
hing problem in (U; V;W)-

labelled FL

0

-normal form. For P, we spe
ify the following side
onditions:

E

1

: X

1

v

?

A

E

2

: X

2

v

?

8fR;Sg:X

1

E

j

: X

j

v

?

8fRg:X

j�1

u 8fQ;Sg:X

j�2

where j 2 f3; : : : ; `g. We have seen that the side
onditions
an be eliminated by repla
ing

D with �(D). The role languages of the resulting
on
ept pattern are represented by

produ
t form languages. In the following, we restri
t our attention to role languages

referring to the atomi

on
ept A. For the �rst four variables, we obtain a

ording to the

de�nition of �:

�(X

1

) � : : : u A

�(X

2

) � : : : u 8fR;Sg:A

�(X

3

) � : : : u 8ffRg�fR;Sg; fQ;Sgg:A

�(X

4

) � : : : u 8ffRg�ffRg�fR;Sg; fQ;Sgg

| {z }

L

1

; fQ;Sg�fR;Sg

| {z }

L

2

g:A

It is easy to see that the produ
t form representation of the languages is indeed more

ompa
t. For instan
e, the resulting role language referring to the atomi

on
ept A in

�(X

4

) in expli
it form is:

�(X

4

) � : : : u 8fRRR;RRS;RQ;RS;QR;QS; SR;SSg:A

555.222. automata and a
y
li
 side
onditions 47

However, produ
t form role languages do not prevent the above
on
ept patterns from

growing exponentially large, as we will now see. In the above example, the sublanguage

L

2

is identi
al to the respe
tive result for X

2

and similarly, L

1

is identi
al to the result for

X

3

. This expansion
arries on for all j 2 f1; : : : ; `g. Thus, the size of the produ
t form

language referring to A for every
on
ept variable X

j

is greater than the sum of the sizes

of the previous two results. This implies that the size of the produ
t form representation

of �(X

j

) in
reases faster than the Fibona

i Sequen
e whi
h
onstitutes an exponential

growth.

�

�

�

It might be possible for every �(X

j

) to �nd another representation on the basis of produ
t

form languages, whi
h is more
ompa
t than the one immediately produ
ed by �. The sim-

pli�
ations ne
essary for this, however, are greatly dependent on the individual stru
ture

of the side
onditions and
annot be realized in an intuitive way. It is not
lear whether

an appropriate simpli�
ation
an always be a
hieved in polynomial time.

5.2 Automata and a
y
li
 side
onditions

We have seen that it is diÆ
ult to �nd appropriate
ompa
t representations avoiding an

exponential blow-up when eliminating a
y
li
 side
onditions. In this se
tion, we will

employ �nite automata for the representation of role languages. To this end we study

the stru
ture of the role languages produ
ed by the generalized substitution �. The result

will provide us with a strategy to
ompute appropriate nondeterministi
 �nite automata.

It is essential in this
ontext to �nd a strategy whi
h avoids
opying identi
al stru
tures

when synthesizing an automaton. We have seen in Example 5.4 how language-related

representation te
hniques are
awed by stru
ture
opying. Automata-theoreti
 approa
hes

would be a�e
ted by the same problem.

Here, we therefore share or re-use sub-automata appearing at several positions in the

onstru
tion, i.e. instead of using several instan
es of a sub-automaton only one instan
e is

introdu
ed, linked with all ne
essary states by appropriate edges. Sin
e the side
onditions

are a
y
li
, we
an use an indu
tive argument to �nd an appropriate
onstru
tion.

Lemma 5.5 Automata and side
onditions

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mat
hing problem in (U; V;W)-

labelled FL

0

-normal form with non-stri
t a
y
li
 side
onditions. Then:

1. The role languages o

urring in �(X

j

)
an be represented by nondeterministi
 �nite

automata, whi
h size is polynomial in the size of P and whi
h
an be
omputed in

polynomial time. This holds for every j 2 f1; : : : ; `g

2. The same holds for the role languages o

urring in �(D).

Proof.

I

1. It is suÆ
ient to prove the assertion for �(X

`

). For smaller values of j, remove the

side
onditions for fX

j+1

; : : : ; X

`

g. Due to the a
y
li
 nature of the side
onditions, the

following argument
an be employed for �(X

j

) as well. Proof by indu
tion over `.

B

B

B

` = 1: Trivial. Due to a
y
li
 side
onditions, it holds that: �(X

1

) = Y

1

u u

A2C

8V

1;A

:A.

The size of the role languages V

1;A

do not ex
eed the size of the input problem P . There-

fore, a

ording to Lemma 2.9 only polynomial time in the size of P is ne
essary to
onstru
t

appropriate nondeterministi
 automata B

1;A

2 Treelike(�) for the representation of V

1;A

.

B

B

B

` > 1: Due to indu
tion, we may assume that the assertion holds for every j < `. Thus,

for every j 2 f1; : : : ; `� 1g, for every j

0

2 f1; : : : ; j � 1g and for every A 2 C there exist

48
hapter 555. eliminating side
onditions

polynomially large automata B

j;A

; C

j;j

0

2 NFA(�) su
h that �(X

j

)
an be respresented as

follows:

�(X

j

) � Y

j

u u

A2C

8L(B

j;A

):A u

j�1

u

j

0

=1

8L(C

j;j

0

):Y

j

0

Consider �(X

`

). A

ording to the de�nition, this equals Y

`

u �(E

`

). We may then expand

E

`

a

ording to De�ntion 3.14 and apply the de�nition of �. Due to indu
tion, we obtain:

�(X

`

) � Y

`

u u

A2C

8V

`;A

:A u

`�1

u

j=1

8W

`;j

:

�

Y

j

u u

A2C

8L(B

j;A

):A u

j�1

u

j

0

=1

8L(C

j;j

0

):Y

j

0

�

By sorting the role languages o

urring in the above expression by respe
ting atomi

on
ept or variable, we yield the FL

0

-normal of �(X

j

):

�(X

`

) � u

A2C

8(fV

`;A

g [fW

`;j

�L(B

j;A

)j1 � j � `� 1g

| {z }

M

A

):A

u

`�1

u

j

0

=1

8(fW

`;j

0

g [fW

`;j

�L(C

j;j

0

)jj

0

+ 1 � j � `� 1g

| {z }

M

0

j

0

):Y

j

0

u Y

`

It has to be shown that for all A and j

0

there exist automata B

`;A

; C

`;j

0

2 NFA(�) of

polynomial size in the size of P , su
h that L(B

`;A

) =M

A

and L(C

`;j

0

) =M

0

j

0

.

The role languages V

`;A

and W

`;j

do not ex
eed the size of the input mat
hing problem.

We know from Lemma 2.9 that we
an
onstru
t appropriate nondeterministi
 �nite au-

tomata for their representation, whi
h ex
eed their respe
tive language in size only by a

onstant. A

ording to the indu
tion hypothesis there exist polynomially large automata

B

j;A

and C

j;j

0

for the representation of L(B

j;A

) and L(C

j;j

0

) respe
tively. In
identally,

these automata have already been
onstru
ted in the previous steps of the indu
tion. For

the representation of W

`;j

�L(B

j;A

) we therefore merely
onstru
t an automaton represent-

ingW

`;j

and link it to the already existing instan
e of B

j;A

by an appropriate "-transition.

From this an automaton representingM

A

is easily obtained. It suÆ
es to introdu
e a new

initial state whi
h non-deterministi
ally bran
hes to the automaton for V

`;A

on the one

hand and to that for W

`;j

on the other. An analogous pro
edure
an be used to
onstru
t

an automaton for the representation of M

0

j

0

.

Following this strategy, we �nally end up with polynomially large automata having the

desired properties. As we use nondeterministi
 �nite automata, the above
onstru
tion

takes only polynomial time. Espe
ially the union of several NFA
an be
omputed in

polynomial time in the sum of the sizes of the original automata and results in an union-

automaton of polynomial size in the size of the input mat
hing problem.

I

2. For the
on
ept pattern D, it holds due to the de�nition of � that:

�(D) � u

A2C

8V

A

:A u

l

u

j=1

8W

j

:�(X

j

)

We have seen in (1) that appropriate automata for the representation of all role languages

o

urring in �(X

j

)
an be
omputed in polynomial time for all j. In
luding the remaining

role languages requires a
on
atenation with the languageW

j

and|in some
ases|a union

with V

A

. Both operations
an be a

omplished by the same s
heme proposed in the above

part.

�

�

�

Due to this lemma, a
y
li
 non-stri
t side
onditions
an be eliminated without an ex-

ponential blow-up of the resulting mat
hing problem. The next se
tions are
on
erned

with the question if the mat
hing algorithms introdu
ed in Lemma 4.29
an be modi�ed

to
ope with the modi�
ations introdu
ed here.

555.333. restri
ting large languages 49

5.3 Restri
ting large languages

Before modifying the original mat
hing algorithm, we will prove that there is a strategy to

avoid
onsidering all words of the role languages o

uring in an input mat
hing problem.

Note that the algorithm introdu
ed in Lemma 4.29 in fa
t relies on this ability. Sin
e the

redu
tion by the generalized substitution � only a�e
ts the right-hand side of the mat
hing

problem, it is not ne
essary to �nd a strategy for all role languages. We will see that only

the interse
tion of left quotients appearing in the algorithm requires spe
ial attention.

The following de�nition introdu
es some auxiliary notions. The intention behind their

introdu
tion will be
ome
lear in the next lemma.

De�nition 5.6 Auxiliary languages

Let U;W be languages over �. De�ne the pre�x
losure pre(U) and the auxiliary sets

pre(U)

W

, pre(U)

W

, post(U)

W

, and neg(U)

W

as follows:

pre(U) := fw 2 �

�

j9s 2 �

�

: ws 2 Ug

pre(U)

W

:= pre(U) \W

pre(U)

W

:= pre(U) \W

post(U)

W

:= U ��

�

\W

neg(U)

W

:= pre(U) [U ��

�

\ W �

�

�

Observe that U
an be expressed in terms of the above languages. It
an be shown

that W = pre(U)

W

[post(U)

W

[neg(U)

W

, and similarly W = pre(U)

W

[pre(U)

W

.

For example,
onsider � := fR;Sg, U := fRSg, and W := fR;RRg. Then we have

pre(U)

W

= fRg, post(U)

W

= ;, and neg(U)

W

= fRRg. In the following lemma it is

shown that these auxiliary languages
an be used to simplify interse
tions of left quotients:

Lemma 5.7 Properties

Let U;W � �

�

be languages. Then

1.

T

w2post(U)

W

w

�1

�(U ��

�

) = �

�

2. If neg(U)

W

6= ;, then

T

w2W

w

�1

�(U ��

�

) = ;

3. If neg(U)

W

= ;, then

T

w2W

w

�1

�(U ��

�

) =

T

w2pre(U)

W

w

�1

�(U ��

�

)

4. If pre(U)

W

6= ;, then

T

w2W

w

�1

�(U) = ;

5. If pre(U)

W

= ;, then

T

w2W

w

�1

�(U) =

T

w2pre(U)

W

w

�1

�(U)

Proof.

I

1. Consider an arbitrary w 2 post(U)

W

. We prove that w

�1

�(U ��

�

) = �

�

. By de�ni-

tion of the left quotient, there exists a word u 2 U and a word v 2 �

�

, with w = uv � U ��

�

.

Consequently, any
ontinuation of w lies in the same set: ws 2 U ��

�

for every word s 2 �

�

.

This is equivalent to w

�1

�(U ��

�

) = �

�

,
ompleting the argument.

I

2. It is suÆ
ient to show that there exists a word w 2 W su
h that w

�1

�(U ��

�

) is

empty. A

ording to the assumption, we may assume a word w 2 neg(U)

W

, whi
h by

de�nition means that w 2 pre(U) [U ��

�

\W . Therefore, w 2 W , but neither is w an

element of pre(U), nor of U ��

�

. Hen
e, w is no pre�x of a word u 2 U and w 62 U ��

�

.

This implies for every word s 2 �

�

that ws 62 U ��

�

. Consequently, the left quotient

w

�1

�(U ��

�

) is empty.

I

3. We have mentioned in De�nition 5.6 thatW
an be expressed as the following union:

pre(U)

W

[post(U)

W

[neg(U)

W

. As neg(U)

W

is assumed to be empty, we may split up the

interse
tion

T

w2W

w

�1

�(U ��

�

) into one interse
tion over all w 2 pre(U)

W

and another

50
hapter 555. eliminating side
onditions

over all w 2 post(U)

W

. We have seen in (1), that the interse
tion over all w 2 post(U)

W

is equal to �

�

, whi
h implies the assertion.

I

4. and 5. The argument for pre(U)

W

is analogous to the
ases (2) and (3) above.

It holds that W
an be expressed as the union pre(U)

W

[pre(U)

W

and for every word

w 2 pre(U)

W

it holds that w

�1

�(U) is empty.

�

�

�

It is not yet
lear why the above assertions yield a desirable modi�
ation. This is
lari�ed

in the following lemma, when dis
ussing the
omplexity of the involved languages.

Lemma 5.8 De
idable Problems

Let U � �

�

be a �nite language and let B 2 NFA(�) be a nondeterministi
 �nite automa-

ton. Denote the a

epted language as L(B) =W Then:

1. kpre(U)k � kUk

2

2. pre(U)

W

an be
omputed in polynomial time in jBj and kUk

3. neg(U)

W

?

= ; is de
idable in polynomial time in jBj und kUk

4. pre(U)

W

?

= ; is de
idable in polynomial time in jBj and kUk.

Proof.

I

1. Every word u 2 U has at most juj di�erent pre�xes, all of whi
h are shorter than u.

This implies that the size kpre(U)k does not ex
eed

P

u2U

juj�juj, whi
h is obviously less

or equal to kUk

2

. Observe that
onsequently, pre(U)

W

is also quadrati
 in the size kUk,

sin
e pre(U)

W

is a subset of pre(U).

I

2. pre(U)
an be
omputed easily from U . For every word u 2 U , we simply add every

pre�x of u to the result. This obviously takes only polynomial time. To
onstru
t pre(U)

W

from pre(U), we now only have to de
ide the word problem in respe
t to B. We have seen

in Lemma 2.8, that de
iding the word problem
osts only polynomial time. Due to (1), we

know that the word problem only has to be de
ided for polynomially many words, whi
h

ompletes our argument.

I

3. A

ording to Lemma 4.24, it
osts only linear time in the size kUk to
onstru
t a

treelike automation A

1

, su
h that A

1

a

epts U ��

�

and the size of A

1

is linear in kUk. We

an analogously de�ne an automaton A

2

2 Treelike(�) for the representation of pre(U).

For treelike automata, the operations union and
omplement take only linear time and

produ
e a resulting automaton, whi
h in size does not ex
eed the sum of the sizes of the

original automata. Consequently, we
an use the operations on treelike automata to de�ne

an automaton A := A

1

[A

2

. Obviously, A a

epts the language pre(U) [U ��

�

. The size

of A is quadrati
 in kUk.

Next we
onstru
t a nondeterministi
 �nite automaton C as the produ
t automaton of

A and B. Due to the de�nition of the produ
t automaton, it holds that C a

epts the

interse
tion of pre(U) [U ��

�

and W , whi
h is equal to neg(U)

W

. Furthermore, the size

of C is polynomial in the size of A and B. Finally, the ;-problem for C
an be de
ided in

polynomial time, as shown in Lemma 2.8.

I

4. The argument for pre(U)

W

is identi
al to (3). We merely have to ex
ept the au-

tomaton A

2

from the s
heme proposed in the above
ase.

�

�

�

If we
an represent the languageW by a nondeterministi
 �nite automaton, then pre(U)

W

is only of polynomial size. Moreover, the validity of the prerequisites in Lemma 5.7
an be

veri�ed in polynomial time. With these preliminaries, we
an spe
ify a modi�ed mat
hing

algorithm in the next se
tion.

555.444. automata-theoreti
 solution 51

5.4 Automata-theoreti
 solution

We have seen in the previous se
tion that it takes only polynomial time to transform a

mat
hing problem with a
y
li
 side
onditions into an equivalent one without side
ondi-

tions, where the o

urring role languages are represented by �nite automata. In Chapter

4, algorithms have been proposed to solve ordinary mat
hing problems. These algorithms

are now extended to admitting �nite automata for the representation of role languages in

the input mat
hing problem. At �rst we dis
uss an approa
h for FL

?

and then very brie
y

address the
ase of FL

:

. We will not address a strategy for FL

0

expli
itly here be
ause

for this
ase, a strategy analogous to that for FL

?

an be spe
i�ed without diÆ
ulty.

5.4.1 Result for FL

?

In analogy to Lemma 4.26, we again examine testing solvability for FL

?

mat
hing prob-

lems. Now the role languages of the form V

i

and W

j

o

urring in the input mat
hing

problem are assumed to be represented by nondeterministi
 �nite automata. We will �nd

that the general s
heme of the solvability test of Lemma 4.26
an still be applied.

Lemma 5.9 Testing solvability in FL

?

FL

?

FL

?

Let C �

?

D be an FL

?

-mat
hing problem in (U; V;W)-labelled FL

0

-normal form. For

every H 2 f?g[C and for every j 2 f1; : : : ; `g, let V

H

;W

j

2 NFA(�) be nondeterministi

�nite automata su
h that every automaton V

H

a

epts the language V

H

and every W

j

a

epts W

j

. Then

1. Equation (?) as introdu
ed in De�nition 4.1
an be veri�ed in polynomial time in jCj

and the size of all automata V

H

and W

j

.

2. The same holds for Equation (A) for every A 2 C.

Proof.

I

1. Let us �rst re
all the strategy used previously to de
ide solvability for equation (?).

In Lemma 4.26, de
iding the following
onditions proves suÆ
ient: For every j 2 f1; : : : ; `g,

de�ne L

0

j

:=W

j

�

T

w2W

j

w

�1

�(U

?

��

�

). Then equation (?) is solvable i�

� V

?

� U

?

��

�

� For all u 2 U

?

: u 2 V

?

��

�

or there exists a j with u 2 L

0

j

.

Suppose verifying the above
onditions with the former strategy of Lemma 4.26, whi
h

problems would o

ur? The s
heme for the �rst
ondition still holds, only we already have

an NFA a

epting V

?

and do not need to
onstru
t it. On the
ontrary, we even positively

abandon
onstru
ting it anew from V

?

, be
ause the language V

?

might be exponentially

large in jV

i

j. Thus, we test V

?

\ U

?

��

�

=

?

;, using the automaton V

?

already given for

V

?

.

For the se
ond
ondition, testing u 2 V

?

��

�

again remains feasible. The automaton V

?

an be modi�ed in linar time to a

ept V

?

��

�

, we just have to add
y
les to every a

epting

state. This modi�
ation does not enlarge the automaton signi�
antly, so that the word

problem is still de
idable in polynomial time.

The test for u 2 L

0

j

, however, must be modi�ed to remain eÆ
ient in our new setting. In

the former
ase, we
ould a�ord to
onstru
t a treelike automaton for the representation of

w

�1

�(U

?

��

�

) for every w 2W

j

. Now the language W

j

might be exponentially large, thus

ruling out the possibility to
onsider every word in W

j

separately. Lemma 5.7 provides

us with a means to avoid this. If neg(U

?

)

W

j

is not empty, then L

0

j

is empty. Moreover,

if neg(U

?

)

W

j

is empty, then we may restri
t the interse
tion in the de�nition of L

0

j

to

all words in pre(U

?

)

W

j

instead of W

j

. We have seen in Lemma 5.8 that emptyness of

neg(U

?

)

W

j

is de
idable in polynomial time. Furthermore, pre(U

?

)

W

j

is of polynomial

52
hapter 555. eliminating side
onditions

size in kU

?

k and
an be
omputed in polynomial time in kU

?

k and jW

j

j, so that after

restri
ting the interse
tion to all words in neg(U

?

)

W

j

, the former strategy for testing

u 2 L

0

j

be
omes appli
able again: for every u 2 U

?

, it takes only polynomial time to test

if u is an element of V

?

��

�

or an element of W

j

�w

�1

�(U

0

��

�

) for some j 2 f1; : : : ; `g and

w 2 pre(U

?

)

W

j

.

I

2. The s
heme for equation (A) is similar to the previous one. Be
ause of Lemma 4.26,

(A)
an be de
ided by the following
onditions. De�ne L

j

:= W

j

�

T

w2W

j

w

�1

�(U

A

) and

again L

0

j

:=W

j

�

T

w2W

j

w

�1

�(U

?

��

�

). Then (A) has a solution if and only if:

� V

A

� U

A

[U

?

��

�

� For all u 2 U

A

: u 2 V

A

[U

?

��

�

or there exists a j with u 2 L

j

or u 2 L

0

j

.

The strategy proposed for testing the �rst
ondition again requires modi�
ation only in so

far as
onstru
ting an automaton for the representation of V

A

is not ne
essary, sin
e V

A

is

already given. For the se
ond
ondition, we
an employ the same arguments as proposed

in (1). The only issue remaining is the test for u 2 L

j

. A

ording to Lemma 5.7, the

interse
tion over all w 2 W

j

in the de�nition of L

j

an be restri
ted to w 2 pre(U

A

)

W

j

,

if pre(U

A

)

W

j

is empty. If pre(U

A

)

W

j

is not empty, then L

j

is empty itself. We know

from Lemma 5.8, that de
iding emptyness for pre(U

A

)

W

j

requires only polynomial time.

Furthermore, the language pre(U

A

)

W

j

is of polynomial size in kU

A

k and
an be
omputed

in polynomial time in kU

A

k and jW

j

j. Thus, with these modi�
ations we
an de
ide u 2 L

j

in the way formerly des
ribed in lemma 4.26.

�

�

�

By the above lemma solvability
an be tested for mat
hing problems, whose right-hand

side role languages are represented by nondeterministi
 �nite automata. The question of

how to
ompute the a
tual solutions under these
ir
umstan
es has not yet been attended

to. We
an
onvin
e ourselves in De�nition 4.26 that the only diÆ
ulty imposed by the

automata representation is the interse
tion of left quotients over all elements of the|

possibly large|role languages W

j

. We have seen in the previous lemma how espe
ially

this detail
an be handled. The s
heme employed there similarly
an be used to
ompute

the a
tual solution languages in polynomial time.

5.4.2 Extension to FL

:

In Lemma 4.27, we have seen that only little additional e�ort is ne
essary to extend the

solution strategy for FL

?

to mat
hing problems in FL

:

. We will see that the same holds

for the modi�ed mat
hing algorithm proposed in the previous se
tion. When
omparing

the equations (?

0

) and (A

0

) in Lemmata 4.26 and 4.27 we �nd that exa
tly the same prob-

lems arise due to right-hand side role languages represented by automata. It is therefore

suÆ
ient to employ again the strategy proposed previously for FL

?

. It should be noted

that the
onstru
ts Int(A;:A) o

urring in equation (?

0

) do not introdu
e new problems

in this
ontext. Our results on simplifying the interse
tion of left quotients are suÆ
ient

to re-use the strategy originally proposed to
ompute them.

For ALN , the most interesting part of the mat
hing algorithm
omprises the
omputation

of the ex
luding words. In analogy to the situation for FL

:

, it is fairly simple to see that

the rest of the algorithm proposed in Lemma 4.28
an be extended by the same strategy

as seen above. To modify the
omputation of ex
luding words a

ordingly, the respe
tive

algorithm, whi
h is provided in [K�us98℄, would have to be
onsidered in detail. We omit this

step, be
ause the overall approa
h proposed here is weaker than the one to be introdu
ed

in Chapter 6.

555.444. automata-theoreti
 solution 53

The generalized substitution introdu
ed in De�nition 5.1 is bound to a
y
li
 side
ondi-

tions. It is not yet
lear whether a similar approa
h
an be devised for the a
y
li

ase.

For
y
li
 side
onditions, however, we will see in the next
hapter that a more intuitive

solution strategy exists.

hapter 6

Fixed Points and

Side Conditions

Judging by its obje
tive, the present
hapter might be seen as belonging to the previous

one. We present yet another approa
h to solve mat
hing problems modulo equivalen
e with

non-stri
t side
onditions in polynomial time. This approa
h, however, aims at providing a

satisfa
tory s
heme for both ALN and its three sublanguages. Contrary to the strategies

dis
ussed previously, it is furthermore intended to
ope with
y
li
 side
onditions as well

as with a
y
li
 ones.

The idea here is to redu
e mat
hing problems with side
onditions to su
h without side

onditions. We have already seen that this idea does not bear fruit when pursued in a

straight-forward fashion. In Chapter 5, it is shown that the approa
h of merely synta
ti-

ally in
luding side
onditions into the original mat
hing equation may produ
e exponen-

tially large mat
hing problems|even when employing intuitive strategies to represent the

result in a
ompa
t way.

Here, we handle the redu
tion di�erently. The transformation of the original mat
hing

problem with side
onditions into an equivalent one without will not be performed in

a single step. On the
ontrary, we will propose an algorithm to
ompute a solution by

iteratively improving an intermediate result. Every step of this algorithm
omprises solving

a
ertain mat
hing problem without side
onditions. This approa
h dire
tly relies on the

ability to solve mat
hing problems without side
onditions, as addressed in Chapter 4.

In order to prove termination we must make sure that equivalent
on
ept des
riptions

annot be
ome arbitrarily large. The FL

0

-normal form does not meet this requirement

for
on
ept des
riptions in FL

?

, FL

:

, and ALN . In the Se
tion 2, we therefore spe
ify

\redu
ed normal forms" for these logi
s. In order to do so, we �rst need to examine

the properties of pre�x-free languages in Se
tion 1. The a
tual algorithm is introdu
ed

in Se
tion 3. It will be de�ned uniformly for all four logi
s. Thanks to this, the proof

of
orre
tness and
ompleteness also
an be given simultaneously for all four logi
s in

Se
tion 4. Finally, termination of the algorithm is proved in the last se
tion of this
hapter.

In order to show termination the properties of redu
ed normal forms are ne
essary as

prerequisites.

Finally, we will �nd that the algorithm in fa
t provides us with an eÆ
ient method to

solve mat
hing problems with non-stri
t a
y
li
 or
y
li
 side
onditions in ALN as well

as in its sublanguages. Due to that result, the present
hapter may be regarded as the

heart of our work.

56
hapter 666. fixed points and side
onditions

6.1 Pre�x free languages

We de�ne pre�x free languages as a spe
ialization of formal languages by introdu
ing a

unary fun
tion to make a given formal language pre�x free.

De�nition 6.1 Pre�x free languages

pf : P(�

�

)! P(�

�

)

L 7! L n (L��

+

)

A language U � �

�

is
alled pre�x free if and only if U = pf (U).

�

�

�

Intuitively, pf (L) for every word w 2 L removes all nontrivial
ontinuations of w. The

result is that for every word w 2 pf (L), all nontrivial pre�xes of w are missing in pf (L).

To examine the properties of pre�x free sets in greater detail, we must �rst introdu
e an

appropriate order over �nite languages. The de�nition of multiset orders is taken from

[BN98b℄, where their properties are dis
ussed in depth. However, we employ multiset

orders over formal languages and do not need to introdu
e multisets, whi
h generalize the

notion of sets by admitting multiple o

urren
es of elements.

De�nition 6.2 Multiset order for �nite languages

De�ne (�) as a multiset order with (>

pr

) on �

�

. Thus, for �nite languages U; V � �

�

it

holds that V � U if and only if there exist �nite languages X;Y � �

�

su
h that:

1. ; 6= X � V

2. U = (V nX) [Y

3. 8y 2 Y 9x 2 X : x <

pr

y

�

�

�

A

ording to the de�nition, �nite languages U and V are in pre�x order, i.e. U � V , if and

only if U
an be transformed into V by performing a modi�
ation of the following type

one or more times: remove a word u from U and repla
e it by a �nite number of words

from fug��

+

. Thus, u is repla
ed by a �nite number of (nontrivial)
ontinuations of u.

Note that in this modi�
ation, u may be removed without substituting any words. This

is allowed be
ause in the de�nition above, the language Y may be empty. The following

example illustrates this.

Example 6.3 Multiset order

Let � := fa; b;
g Then fa; ab;
g � fab; a
;
aa;
ab;

g. The de�nition of the multiset

order is satis�ed by taking X := fa;
g and Y := fa
;
aa;
ab;

g. On the other hand,

we also obtain fa; ab;
g � f
ag by taking X := fa; ab;
g and Y := f
ag. Observe that

the relation U � V does not imply an obvious relation for the
ardinality of the languages

or for the length of the longest word
ontained in them.

�

�

�

The multiset order
an be used to simplify
omparing the �

�

-
losure of two given lan-

guages. This is addressed by the following lemma.

666.111. prefix free languages 57

Lemma 6.4 �

�

�

�

�

�

-
losures and pre�x free languages

Let U; V � �

�

be �nite languages over �. Then

1. U ��

�

= pf (U)��

�

2. U ��

�

� V ��

�

i� pf (U) � pf (V)

3. U ��

�

= V ��

�

i� pf (U) = pf (V).

Proof.

For the sake of brevity, denote pf (U) by U

0

throughout this lemma. Analogously, denote

pf (V) by V

0

.

I

1. Sin
e U

0

is a subset of U and sin
e the sets on both sides of the equation are �

�

-

losed, it is suÆ
ient to show that U nU

0

is a subset of U

0

��

�

. Thus,
onsider w 2 U nU

0

.

Then, by de�nition of pre�x free sets, w 2 U ��

+

. This implies, that in U there exists

a word u 2 U of minimal length and a word v 2 �

+

so that w = uv. Consequently,

u 62 U ��

+

, be
ause in this
ase the length of u would not be minimal. So we have u 2 U

0

,

implying that w = uv 2 U

0

��

�

.

I

2. (\(") If U

0

� V

0

then, by De�nition 6.1, there exist �nite sets X;Y � �

�

with:

1. ; 6= X � V

0

2. U

0

= (V

0

nX) [Y

3. 8y 2 Y 9x 2 X : x <

pr

y.

We �rst prove the non-stri
t version of the
laim, i.e. U ��

�

� V ��

�

, and then show that

the in
lusion is stri
t.

B

B

B

Nonstri
t in
lusion: As U

0

equals (V

0

nX)[Y , it is suÆ
ient to show that Y � V

0

��

�

.

Thus,
onsider an arbitrary y 2 Y . Be
ause of property 3 of multiset orders it holds

that there is an x 2 X � V

0

so that x <

pr

y. Being less in regard to the pre�x order

implies, that we obtain y = xw for an appropriate w 2 �

�

. Sin
e x 2 V

0

, this yields

y = xw 2 V

0

��

�

,
ompleting the proof.

B

B

B

Stri
tness of the in
lusion: Consider an arbitrary x 2 X � V

0

. A

ording to property

1 of multiset orders, su
h an x in fa
t exists. x is no element of (V

0

nX), be
ause V

0

is

pre�x free and thus
ontains no pre�x of x. Now, if x 2 Y then property 3 demands that

there is another word x

0

2 X so that x

0

<

pr

X . This would be a
ontradi
tion to V

0

being

pre�x free, and therefore: x 62 U

0

��

�

.

I

2. (\)") Assume U

0

��

�

� V

0

��

�

. Taking advantage of (1), this is equivalent to the

original proposition. De�ne �nite languages X;Y in the following way: X := V

0

n U

0

and

Y := U

0

n V

0

. We will show that these languages mat
h
onditions 1, 2, and 3 stated in

the de�nition of multiset orders.

B

B

B

Property 1: Trivial. X is obviously de�ned as a subset of V

0

. If X is empty, then

U

0

� V

0

, whi
h would rule out U

0

��

�

� V

0

��

�

,
on
i
ting with the assumption above.

B

B

B

Property 2: Applying the de�nitions of X and y, we
an expand (V

0

n X) [Y to the

expression (V

0

n (V

0

n U

0

)) [U

0

n V

0

, whi
h simpli�es to (U

0

\ V

0

) [U

0

n V

0

. This is

obviously equivalent to U

0

.

B

B

B

Property 3: Consider an arbitrary y 2 Y = U

0

n V

0

. From property 2 of the multiset

order we know that Y � U

0

� V

0

��

�

. Thus, there are words v 2 V

0

and w 2 �

�

su
h that

y = vw. This implies w 6= ", be
ause otherwise y, being equal to v, would be an element

of V

0

. If w is not empty, then v and y are in pre�x relation: v <

pr

y. Consequently, v

is no element of U

0

, be
ause then U

0

would not be pre�x free. This implies v 2 V

0

n U

0

,

whi
h by de�nition is equivalent to v 2 X .

58
hapter 666. fixed points and side
onditions

I

3. (\(") This is an immediate
onsequen
e of (1). If U

0

equals V

0

, then obviously

U

0

��

�

= V

0

��

�

, whi
h implies U ��

�

= V ��

�

, as shown in (1). (\)") Reversely assume

that U

0

��

�

= V

0

��

�

. A

ording to (1), this is equivalent to the original proposition. It is

suÆ
ient to prove the in
lusion U

0

� V

0

, sin
e the reverse in
lusion follows by symmetry.

Consider an arbitrary u 2 U

0

. A

ording to the above assumption we have U

0

� V

0

��

�

,

whi
h implies the existen
e of words v 2 V

0

and w 2 �

�

with u = vw. It reversely holds

that V

0

� U

0

��

�

, again implying words u

0

2 U

0

and w

0

2 �

�

so that v = u

0

w

0

. Therefore,

we yield u = vw = u

0

w

0

w. This implies w = w

0

= ", be
ause otherwise U

0

would not be

pre�x free,
ontaining a pre�x of u. With w equal to ", we �nally obtain u 2 V

0

, whi
h

had to be shown.

�

�

�

Observe, that the �

�

-
losure of a languageL is uniquely de�ned by the pre�x free version of

L. We
an also use pre�x free languages to guarantee a suÆx
ondition when representing

the left quotient of the �

�

-
losure of a language:

Lemma 6.5 Left quotients and pre�x free languages

Let U � �

�

be a �nite language and let w 2 �

�

. Then there exists a �nite language

L � �

�

su
h that

1. L��

�

= w

�1

(U ��

�

) and

2. L is pre�x free and

3. L
ontains only suÆxes of words in U .

Proof.

A

ording to [BKBM99℄, there exists a �nite language L

0

with L

0

��

�

= w

�1

�(U ��

�

). Due

to Lemma 6.4, we know that this also holds for L := pf (L

0

). We now show that L
ontains

only suÆxes of U , whi
h is suÆ
ient for our
laim. Assume a word v 2 L, whi
h is no suÆx

of any word in U . Observe, that this implies v 6= " be
ause otherwise v would be a trivial

suÆx of any word in U . By de�nition of L, we know that v is an element of w

�1

�(U ��

�

).

Thus, there exists a word u 2 U and a word x 2 �

+

su
h that wv = ux 2 U ��

�

. We

ex
lude x = ", be
ause then v would be a suÆx of u. Denote by s the last
hara
ter of v,

i.e. take s 2 � and v

0

2 �

�

su
h that v = v

0

s. Analogously, let x = x

0

s for an appropriate

x

0

2 �

�

. Then we
an
on
lude that v

0

2 L, be
ause wv

0

= ux

0

is an element of U ��

�

.

This implies a
ontradi
tion to the language L being pre�x free.

�

�

�

6.2 Redu
ed normal forms

In FL

?

, FL

:

, and ALN , equivalent
on
ept des
riptions in FL

0

-normal form
an di�er

in size to an arbitrary extent. For instan
e, 8f"g:? u 8U

A

:A is equivalent to 8f"g:? for

every role language U

A

. For our algorithm to work, we require normal forms whi
h impose

stronger limitations on the size of
on
ept des
riptions equivalent to or subsuming ea
h

other. For this purpose, redu
ed normal forms for FL

?

, FL

:

, and ALN are introdu
ed.

These are not ne
essary for FL

0

, sin
e here the FL

0

-normal is already suÆ
ient.

6.2.1 Redu
ed normal forms for FL

?

Let us now de�ne the �rst redu
ed normal form. As done for pre�x free sets, we de�ne

it by spe
ifying an operation to transform a given
on
ept des
ription into its redu
ed

normal form.

666.222. redu
ed normal forms 59

De�nition 6.6 Redu
ed normal form

Let C be an FL

?

-
on
ept des
ription in U -labelled FL

0

-normal form. Its
orresponding

U

#

-labelled redu
ed normal form C

#

is de�ned as follows:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A

where for A 2 C:

U

#

?

:= pf (U

?

)

U

#

A

:= U

A

n U

#

?

��

�

A
on
ept des
ription C is
alled redu
ed, if C is in FL

0

-normal form and if it
oin
ides

with C

#

in every o

urring role language. The notion of redu
tion
an be extended to

substitutions. For a substitution �, the redu
ed substitution �

#

is established by de�ning

�

#

(X) := �(X)

#

for every variable X in the domain of �.

�

�

�

The above de�nition implies as immediate
onsequen
es the following simple properties,

whi
h are stated without proof.

Corollary 6.7 Properties

Let C be an FL

?

-
on
ept des
riptions in U -labelled FL

0

-normal form. Then

1. U

#

?

is pre�x free and U

#

A

\ U

#

?

��

�

is empty for every A 2 C

2. The redu
ed normal form C

#

an be
omputed in polynomial time in the size of C.

It will be parti
ularly useful that there is no overlap between the role language U

#

?

and

the �

�

-
losure of U

#

A

. The role languages for C

#

an be
onstru
ted in polynomial time

using treelike automata, for whi
h the
omplement and the �

�

-
losure
an be
omputed

in linear time. It also takes only polynomial time to make a given �nite role language

pre�x free. The ability to
ompute redu
ed normal forms in polynomial time will not be

required in the remainder of this
hapter. Nevertheless, it might be an important property

in the
ontext of presenting the output of mat
hing algorithms in a
ompa
t way.

Re
all that pf in Chapter 2 was de�ned to make the input language pre�x free. The

purpose of redu
ed normal forms is to simplify the
hara
terization of subsumption and

equivalen
e. One
an see that in the above de�nition exa
tly those languages are made

pre�x free, whose �

�

-
losure appears in the
hara
terization of the subsumption proposed

in Lemma 3.8. Furthermore, by subtra
ting the �

�

-
losure from the other role languages,

we make sure that all unions in the
hara
terising
onditions are disjoint. In the next

lemma we will see that this is suÆ
ient to redu
e equivalen
e to equality.

Lemma 6.8 Properties

Let B;C;D be FL

?

-
on
ept des
riptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redu
ed normal form, and D in V -labelled redu
ed normal form. Then:

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [C

3. C � D i� one of the following
onditions holds:

(a) U

?

� V

?

and V

A

� U

A

[U

?

��

�

for all A 2 A

(b) U

?

= V

?

and U

A

� V

A

for all A 2 C and there exists an A 2 C with U

A

� V

A

.

Proof.

I

1. We have seen in Lemma 3.8 that it is suÆ
ient to prove the following two
onditions:

� W

?

��

�

=W

#

?

��

�

� W

A

[W

?

��

�

=W

#

A

[W

#

?

��

�

for all A 2 C.

60
hapter 666. fixed points and side
onditions

The �rst
ondition was shown as a property of pre�x free languages in Lemma 6.4. For

the se
ond
ondition, we
an therefore
on
lude for every A that W

#

A

[W

#

?

��

�

is equal

to W

#

A

[W

?

��

�

. We may add (W

A

\W

?

��

�

), whi
h is a subset of W

?

��

�

, thus yielding

W

#

A

[(W

A

\W

?

��

�

) [W

?

��

�

. A

ording to the de�nition of redu
ed normal forms, W

A

equalsW

#

A

[(W

A

\W

?

��

�

). Therefore,W

#

A

[(W

A

\W

?

��

�

)[W

?

��

�

equalsW

A

[W

?

��

�

.

I

2. (\(") is trivial. (\)") Assume C � D. Due to Lemma 3.8, this again is equivalent

to U

?

��

�

= V

?

��

�

and U

A

[U

?

��

�

= V

A

[V

?

��

�

for all A 2 C. Sin
e C and D are

assumed to be redu
ed, this implies U

?

= V

?

, a

ording to the properties of pre�x free sets.

Furthermore, due to the de�nition of redu
ed normal forms, U

A

and U

?

��

�

are disjoint

for every A. The same applies to V

A

and V

?

��

�

. Therefore, U

A

[U

?

��

�

= V

A

[V

?

��

�

implies U

A

= V

A

for all A, whi
h was to be shown.

I

3. (\)") Assume C � D. Then we again have U

?

��

�

� V

?

��

�

. We distinguish two

ases depending on whether the in
lusion is stri
t or not.

B

B

B

Stri
t in
lusion: If U

?

��

�

� V

?

��

�

, we
an infer U

?

� V

?

, as shown in Lemma 6.4.

We know from the
hara
terization of the subsumption that U

A

[U

?

��

�

� V

A

[V

?

��

�

for all A 2 C. We may remove V

?

��

�

from the right-hand side of the in
lusion, yielding

the assertion for
ase (a), V

A

� U

A

[U

?

��

�

.

B

B

B

Equality: If U

?

��

�

= V

?

��

�

, we have U

?

= V

?

, be
ause C and D are redu
ed and

therefore U

?

and V

?

are pre�x free. The subsumption C � D also implies that U

A

[

U

?

��

�

� V

A

[V

?

��

�

for every A. The unions on both sides of the in
lusion are disjoint,

as stated in Corollary 6.7. Taking advantage of the equality of U

?

��

�

and V

?

��

�

, we

obtain U

A

� V

A

for every A 2 C. There has to be one A with a stri
t in
lusion U

A

� V

A

.

Otherwise, C and D would agree on all role languages, implying equivalen
e as shown in

(2). Thus, the assertion for
ase (b) holds.

I

3. (\(") We have to show that both
onditions for the subsumption as stated in

Lemma 3.8 are met. Assuming
ase (b), this
an be seen immediately. Consider
ase

(a). If U

?

� V

?

holds, the �rst
ondition for the subsumption is met as a
onsequen
e of

Lemma 6.4, obtaining U

?

��

�

� V

?

��

�

. We have assumed that V

A

� U

A

[U

?

��

�

. Adding

V

?

��

�

on both sides yields V

A

[V

?

��

�

� U

A

[U

?

��

�

[V

?

��

�

. As V

?

��

�

is a subset of

U

?

��

�

, this is equivalent to V

A

[V

?

��

�

� U

A

[U

?

��

�

. Thus, the se
ond
ondition of

the subsumption is met for every A 2 C. We yield stri
t subsumption C � D, be
ause

otherwise U

?

= V

?

.

�

�

�

In part (3) of the lemma a
omplete
hara
terization of stri
t subsumption is provided for

the sake of
ompleteness. For our purposes we do not require the equivalen
e in full detail.

It would have been su�
ient to prove that if C � D, then either we have U

?

� V

?

or

ondition (b) holds. It might be interesting that
ondition (a)
an be put a little stri
ter,

stating: U

?

� V

?

and V

A

� U

A

[(U

?

��

�

n V

?

��

�

) for all A 2 A. For the remainder of

this
hapter, however, this will not be required.

6.2.2 Redu
ed normal forms for FL

:

For FL

:

, we follow the same pattern as seen in the previous se
tion. Firstly, the redu
tion

operation is expanded in su
h a way that it works with negated atomi

on
epts as well.

666.222. redu
ed normal forms 61

De�nition 6.9 Redu
ed normal form

Let C be an FL

:

-
on
ept des
ription in U -labelled FL

0

-normal form. Like in De�ni-

tion 6.6, de�ne its
orresponding redu
ed normal form C

#

by modifying the role languages:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

where for A 2 C:

U

#

?

:= pf (U

?

[

[

A2C

U

A

\ U

:A

)

U

#

A

:= U

A

n U

#

?

��

�

Again, if C is redu
ed, then its role languages are identi
al to those of C

#

. We extend the

notion of redu
tion to substitutions as in De�nition 6.6.

�

�

�

Observe that in this de�nition the role language U

?

referring to the bottom
on
ept may

in
rease in size when normalized. Contrary to FL

0

, it is possible to have in
onsisten
ies

without involving the bottom
on
ept. The redu
ed normal form for FL

:

aims at making

all impli
it in
onsisten
ies expli
it, i.e. whenever an expression like 8w:(Au:A) o

urs, w

is removed from the role languages referring to A and :A and is in
luded in the language

for the bottom
on
ept. The de�nition of ex
luding words again implies some inportant

properties, whi
h are stated below without proof.

Corollary 6.10 Properties

Let C be an FL

:

-
on
ept des
riptions in U -labelled FL

0

-normal form. Then:

1. U

#

?

is pre�x free and U

#

?

= (U

#

?

)b .

2. U

#

H

\ (U

#

?

)b ��

�

is empty for every H 2 C [f:AjA 2 Cg.

3. U

#

A

\ U

#

:A

is empty for every A 2 C.

4. The redu
ed normal form C

#

an be
omputed in polynomial time in the size of C.

Sin
e (U

#

?

)b is de�ned as U

#

?

[

S

A2C

(U

#

A

\U

#

:A

), the above assertions are readily obtained

from the de�nition of redu
ed normal forms. Computing the redu
ed normal form in

polynomial time
an again be a

omplished by employing treelike automata. By virtue of

these properties, we again a
hieve the desired simpli�
ation for the
hara
terization of the

subsumption. In the next lemma it is shown that the results obtained for FL

:

resemble

those for FL

?

seen in the last se
tion.

Lemma 6.11 Properties

Let B;C;D be FL

:

-
on
ept des
riptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redu
ed normal form, and D in V -labelled redu
ed normal form. Let

H := C [f:AjA 2 Cg. Then

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [H

3. C � D i� one of the following
onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[U

?

��

�

for all H 2 H

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with U

A

� V

A

.

Proof.

I

1. Due to Lemma 3.9, it is suÆ
ient to prove that the following
onditions hold:

�

W

?

��

�

= (W

#

?

)b ��

�

� W

H

[

W

?

��

�

=W

#

H

[(W

#

?

)b ��

�

for all H 2 H.

62
hapter 666. fixed points and side
onditions

B

B

B

First
ondition: By de�nition,

W

?

��

�

equals (W

?

[

S

A2C

W

A

\ W

:A

)��

�

, whi
h is

equivalent to the pre�x free version pf (W

?

[

S

A2C

W

A

\W

:A

)��

�

, as we have seen in

Lemma 6.4. Applying the de�nition of redu
ed normal forms, this is equivalent toW

#

?

��

�

.

The interse
tion of W

#

A

and W

#

:A

is empty for every A 2 C, as stated in Corrolary 6.10.

We may therefore add (

S

A2C

W

#

A

\ W

#

:A

) to the expression, so that we end up with

(W

#

?

[

S

A2C

W

#

A

\W

#

:A

)��

�

. This equals (W

#

?

)b ��

�

, as
an be veri�ed from the de�nition.

B

B

B

Se
ond
ondition: Taking advantage of (1), we
an see that W

#

H

[(W

#

?

)b ��

�

is equal

to W

#

H

[

W

?

��

�

for every H 2 H. We may add a subset of the se
ond term, yielding the

expression W

#

H

[(W

H

\

W

?

��

�

) [

W

?

��

�

. The language W

#

H

is de�ned as W

H

nW

#

?

��

�

.

As stated in Corollary 6.10, this equals W

H

n (W

#

?

)b ��

�

, whi
h in (1) is shown equal to

W

H

n

W

?

��

�

. The expression W

#

H

[(W

H

\

W

?

��

�

) [

W

?

��

�

an therefore be simpli�ed

to W

H

[

W

?

��

�

, yielding the desired result.

I

2. (\(") Trivial. (\)") A

ording to Corollary 6.10, we have

b

U

?

= U

?

and

b

V

?

= V

?

.

When repla
ing these role languages, the proposition and the
hara
terization of the sub-

sumption are analogous to those for FL

?

. Consequently, the proof is identi
al to (2) in

the previous Lemma 6.8.

I

3. Again, taking into a

ount that

b

U

?

= U

?

and

b

V

?

= V

?

, we
an prove the proposition

in the same way as seen in (3) in the previous lemma.

�

�

�

One
an see that the additional
omplexity of
on
ept des
riptions in FL

:

is hidden

ompletely by the redu
ed normal form. It should be noted that, same as for FL

?

, we

will not require the full
hara
terization of the stri
t subsumption for our reasoning. It

is therefore suÆ
ient to keep in mind that C � D implies that either U

?

� V

?

holds or

ondition (b) applies. However, the result enables us to dis
over that the size of the role

languages V

A

and V

:A

o

urring in D is limited.

6.2.3 Redu
ed normal forms for ALN

When introdu
ing redu
ed normal forms for ALN -
on
ept des
riptions, we have to fa
e

two additional problems. Firstly, the set of all in
onsisten
ies expli
itly o

urring or

impli
itly in
luded in a
on
ept des
ription
annot be obtained in su
h a straightforward

way as in the previous two logi
s. Se
ondly, we also have to
ope with number restri
tions.

In the following de�nition, we utilize the notion of ex
luding words, whi
h have been

introdu
ed in the
ontext of ALN -
on
ept des
riptions in De�nition 3.3.

De�nition 6.12 Redu
ed normal form

Let C be an ALN -
on
ept des
ription in U -labelled FL

0

-normal form. De�ne the redu
ed

normal form of C by modifying its role languages. It has been stated in [BKBM99℄ that

there exists a �nite language U

E

C

with E

C

= U

E

C

��

�

. Using this language, de�ne C

#

as:

C

#

:= 8U

#

?

:? u u

A2C

8U

#

A

:A u u

A2C

8U

#

:A

::A

u u

(�nR)2N

�

8U

#

(�nR)

:(� nR) u u

(�nR)2N

�

8U

#

(�nR)

:(� nR)

666.222. redu
ed normal forms 63

where for A 2 C, (� nR) 2 N

�

, and (� nR) 2 N

�

:

U

#

?

:= pf (U

E

C

)

U

#

A

:= U

A

nE

C

U

#

:A

:= U

:A

nE

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

nE

C

U

#

(�nR)

:=

[

m�n

U

(�mR)

nE

C

�R

�1

Analogous to the previous
ases, the notion of redu
tion is extended to substitutions.

�

�

�

In spite of the formally more
omplex de�nition, the obje
tive of the above normal form

is equal to those seen before. In
onsisten
ies are made expli
it by augmenting the role

language of the bottom
on
ept and the other role languages are minimized as mu
h as

possible. Observe that the redu
ed role language U

#

?

in fa
t is well-de�ned, be
ause for

languages of the form L��

�

the set pf (L) is unique. The de�nition of redu
ed normal

forms again implies some basi
 properties, whi
h are presented in the
orollary below.

Corollary 6.13 Properties

Let C be an ALN -
on
ept des
riptions in U -labelled FL

0

-normal form. Then:

1. U

#

?

is pre�x free

2. U

#

H

\ E

C

is empty for every H := C [f:AjA 2 Cg [N

�

.

Furthermore, U

#

(�nR)

\ E

C

�R

�1

is empty for every (� nR) 2 N

�

3.

S

m�n

U

#

(�mR)

= U

#

(�nR)

for all (� nR) 2 N

�

and analogously for all (� nR) 2 N

�

4. The redu
ed normal form C

#

an be
omputed in polynomial time in the size of C.

As stated in [BKBM99℄, a role language U

E

C

with E

C

= U

E

C

��

�

an be
omputed in

polynomial time. With the aid of treelike automata, it therefore takes only polynomial

time to
ompute the redu
ed normal form of C. In order to examine the properties of our

normal form
loser, we have to pro
ure a better
hara
terization for the set of ex
luding

words from [K�us98℄. The following de�nition is ne
essary as a preparation.

De�nition 6.14 Required words

Let C be an ALN -
on
ept des
ription in U -labelled FL

0

-normal form. Let v and v

0

be

words over �. Let jvj =: m and jvv

0

j =: n and v

0

=: R

m+1

: : : R

n

. Then vv

0

is required by

C starting from v i� for all i 2 fm; : : : ; n� 1g there exist positive integers k

i+1

� 1 su
h

that vR

m+1

: : : R

i

2 U

(�k

i+1

R

i+1

)

.

�

�

�

Intuitively, the
ontinuation vv

0

is required by a
on
ept des
ription C starting from v, i�

there is a sequen
e of (�)-number restri
tions for every pre�x of vv

0

between v and vv

0

demanding the presen
e of the respe
tive following pre�x. We give a small example to

larify this.

Example 6.15 Required words

Assume � := fR;Sg and let C := A u 8fRS;RSRg:(� 1R) u 8fRSRg:(� 2S). Then the

words RSRR and RSRS are required by C starting from RS.

�

�

�

With the notion of required words we
an
hara
terize ex
luding words for ALN -
on
ept

des
riptions by the following lemma.

64
hapter 666. fixed points and side
onditions

Lemma 6.16 Chara
terization of ex
luding words

Let C be an ALN -
on
ept des
ription in U -labelled FL

0

-normal form. Let w be a word

over �. Then w 2 E

C

i�

1. there exists a pre�x v 2 �

�

of w and a word v

0

2 �

�

su
h that vv

0

is required by C

starting from v and

(a) vv

0

2 U

?

, or

(b) there is an atomi

on
ept A 2 C with vv

0

2 U

A

\ U

:A

, or

(
) there are number resttri
tions (� lR) 2 N

�

and (� rR) 2 N

�

su
h that l > r

and v 2 U

(�lR)

\ U

(�rR)

; or

2. there exists a pre�x vR of w (with v 2 �

�

; R 2 �) su
h that v 2 U

(�0R)

.

Now we are set to examine redu
ed normal forms in detail. Before addressing the stan-

dard questions of
orre
tness, equivalen
e, and subsumption, however, we �rst introdu
e

one auxiliary result regarding the notion of ex
luding words, whi
h will be required in

Lemma 6.19. In the next lemma, it is shown that transforming a
on
ept des
ription into

redu
ed normal forms does not
hange its properties in respe
t to required words.

Lemma 6.17 Required words and redu
ed normal forms

Let C be an ALN -
on
ept des
ription in U -labelled FL

0

-normal form and let v; v

0

be

words over �. Then, if vv

0

is required by C

#

starting from v then vv

0

is required by C

starting from v.

Proof.

To simplify notation, denote jvj =: s, jvv

0

j =: t, and vv

0

=: R

1

R

2

: : : R

t

. If vv

0

is required

by C

#

starting from v, then by de�nition it holds for all i 2 fs; : : : ; t� 1g that there exists

a positive integer k � 1, so that R

1

: : : R

i

2 U

#

(�kR

i+1

)

. By de�nition of redu
ed normal

forms, this implies that R

1

: : : R

i

2

S

n�k

U

(�nR

i+1

)

nE

C

. No n under the union is smaller

than k. Consequently, there exists an integer k

0

� k so that R

1

: : : R

i

is an element of

U

(�k

0

R

i+1

)

nE

C

. Obviously, we
an in
lude all the words subtra
ted by E

C

, thus obtaining

that R

1

: : : R

i

2 U

(�k

0

R

i+1

)

. This is equivalent to vv

0

being required by C starting from v,

whi
h was to be shown

�

�

�

A simpli�ed
hara
terization for the set of ex
luding words is now proposed for
on
ept

des
riptions in redu
ed normal form. It is shown by the next lemma that only
ase (1a)

of the
hara
terization given in Lemma 6.16 is relevant for the redu
ed normal form of

on
ept des
riptions.

Lemma 6.18 Ex
luding words and redu
ed normal forms

Let C be an ALN -
on
ept des
ription in U -labelled FL

0

-normal form. Let w be a word

over �. Then, w 2 E

C

#
i� there exists a pre�x v 2 �

�

of w and a word v

0

2 �

�

with: vv

0

is required by C

#

starting from v and vv

0

2 U

?

.

Proof.

Consider a word w 2 E

C

. It is suÆ
ient to prove that the
ases (1b), (1
), or (2) spe
i�ed

in the
hara
terization of E

C

#
do not apply.

B

B

B

Case (1b): Then there exists a pre�x v 2 �

�

of w, a word v

0

2 �

�

, and an atomi

on
ept

A 2 C, so that vv

0

is required by C

#

starting from v and vv

0

2 (U

#

A

\ U

#

:A

). Applying the

de�nition of redu
ed normal forms, this implies that vv

0

is an element of U

A

\U

:A

, but no

element of E

C

. By De�nition of the semanti
s of ALN -
on
ept des
riptions, this implies

C v 8vv

0

:?. As a
onsequen
e of De�nition 3.5, this implies vv

0

2 E

C

, in
ontradi
tion

to the above �nding that vv

0

62 E

C

.

B

B

B

Case (1
): Then we have an analogous word vv

0

and nonnegative numbers l > r with

vv

0

2 U

(�lR)

\U

(�rR)

. Again by de�nition of redu
ed normal forms, we
on
lude that vv

0

is

666.222. redu
ed normal forms 65

an element of the interse
tion

S

l

0

�l

U

(�l

0

R)

\

S

r

0

�r

U

(�r

0

R)

, but it is not in E

C

. Therefore,

we
an �nd integers l

0

� l and r

0

� r su
h that vv

0

2 U

(�l

0

R)

\U

(�r

0

R)

. Analogous to
ase

(1b), the semanti
s of ALN then implies C v 8vv

0

:?. Due to De�nition 3.5, this entails

vv

0

2 E

C

,
ontradi
ting the above statement.

B

B

B

Case (2): We prove that in the redu
ed normal form C

#

the role language U

#

(�0R)

is

empty for every atomi
 role R 2 �. As 0 is the least nonnegative integer, for every atomi

role R 2 � the de�nition of U

#

(�0R)

an be simpli�ed to U

(�0R)

n E

C

�R

�1

, omitting the

union. Therefore, if U

#

(�0R)

is not empty, it
ontains an element of U

(�0R)

. Thus, assume

w 2 U

(�0R)

for a word w. A

ording to the de�nition of number restri
tions, this implies

that w has no su

essors in regard to R. Consequently, wR 2 E

C

. Obviously, we
an infer

w 2 E

C

�R

�1

. In the de�nition of U

#

(�0R)

, the set E

C

�R

�1

is subtra
ted from the rest,

implying w 62 U

#

(�0R)

. Case (2) does therefore not apply to C

#

.

�

�

�

The above result suggests a simpler proof of the
orre
tness of the normal form. The

standard questions,
orre
tness and modi�ed
hara
terizations for equivalen
e and sub-

sumption, are addressed in the next lemma.

Lemma 6.19 Properties

Let B;C;D be ALN -
on
ept des
riptions. Let B be in W -labelled FL

0

-normal form, let

C be in U -labelled redu
ed normal form, and D in V -labelled redu
ed normal form. Let

H := C [f:AjA 2 Cg [N

�

[N

�

. Then

1. B � B

#

2. C � D i� U

H

= V

H

for all H 2 f?g [H

3. C � D i� one of the following
onditions holds:

(a) U

?

� V

?

and V

H

� U

H

[U

?

��

�

for all H 2 H nN

�

and

V

H

� U

H

[U

?

��

�

[U

?

�R

�1

for all (� nR) := H 2 N

�

(b) U

?

= V

?

and U

H

� V

H

for all H 2 H and there exists an H 2 H with U

A

� V

A

.

Proof.

I

1. In Lemma 3.6, equivalen
e of ALN -
on
ept de
riptions was is
hara
terized by the

following
onditions. For A 2 C, (� mR) 2 N

�

, and (� mR) 2 N

�

:

1. E

B

= E

B

2. W

#

A

[E

B

=W

A

[E

B

3. W

#

:A

[E

B

=W

:A

[E

B

4.

S

m�n

W

#

(�mR)

[E

B

=

S

m�n

W

(�mR)

[E

B

5.

S

m�n

W

#

(�mR)

[E

B

#
�R

�1

=

S

m�n

W

(�mR)

[E

B

�R

�1

B

B

B

Condition 1: Prove E

B

� E

B

. Consider an arbitrary w 2 E

B

. Due to the simpli�ed

hara
terization of ex
lusion for redu
ed normal forms, this implies that there exists a

pre�x v 2 �

�

of w and a word v

0

2 �

�

su
h that vv

0

is required by B starting from v

and vv

0

2W

#

?

. A

ording to De�nition 6.9, this implies that vv

0

is in pf (W

E

B

) � E

B

for

an appropriate �nite language W

E

B

with E

B

= W

E

B

��

�

. Due to Lemma 6.17, we know

that vv

0

is required by B starting from v. Sin
e vv

0

2 E

B

, this implies v 2 E

B

. As E

B

is

�

�

-
losed and as v is a pre�x of w, we obtain w 2 E

B

.

Prove E

B

� E

B

. If w 2 E

B

then there exists a pre�x w

0

of w and a word w

00

2 �

�

, so that

w = w

0

w

00

and w

0

is an element of pf (W

E

B

). Applying the de�nition of redu
ed normal

forms, we have w

0

2 W

#

?

. This implies B

#

v 8w

0

:?, whi
h is subsumed by 8w

0

w

00

:?,

a

ording to the semanti
s of ?. Due to the de�nition of E

B

, this yields w

0

w

00

= w 2 E

B

.

Combining the above two results, we obtain E

B

= E

B

, whi
h was to be shown.

66
hapter 666. fixed points and side
onditions

B

B

B

Condition 2 and 3: Taking into a

ount the result of (1), it holds that W

#

A

[E

B

is

equal to W

#

A

[E

B

for every A 2 C. Applying the de�nition of W

#

A

yields the expression

(W

A

n E

B

) [E

B

, whi
h is obviously equal to W

A

[E

B

. The same argument holds for

negated atomi

on
epts :A.

B

B

B

Condition 4 and 5: Again, the result of (1) and the de�nition of W

#

(�mR)

enable us to

expand

S

m�n

W

#

(�mR)

[E

B

to the expression

S

m�n

(

S

p�m

W

(�pR)

n E

B

) [E

B

. By

applying distributivity over the union, we obtain (

S

m�n

S

p�m

W

(�pR)

) nE

B

[E

B

, whi
h

an be simpli�ed to (

S

m�n

W

(�mR)

) n E

B

[E

B

. We
an omit subtra
ting E

B

before

adding it again, so that we �nally have (

S

m�n

W

(�mR)

) [E

B

.

In (1) we have seen that E

B

= E

B

. This implies E

B

�R

�1

= E

B

�R

�1

for every atomi

role R. Consequently, the above argument applies to
ondition 5 as well.

I

2. (\(") Trivial. (\)") If C � D, then the
hara
terization of the subsumption allows

us to
on
lude the following
onditions again:

1. E

C

= E

D

2. U

A

[E

C

= V

A

[E

D

3. U

:A

[E

C

= V

:A

[E

D

4.

S

m�n

U

(�mR)

[E

C

=

S

m�n

V

(�mR)

[E

D

5.

S

m�n

U

(�mR)

[E

C

�R

�1

=

S

m�n

V

(�mR)

[E

D

�R

�1

Taking advantage of Lemma 6.4, we
an infer from
ondition 1 that pf (U

E

C

) = pf (V

E

D

),

whi
h is equivalent to U

?

= V

?

, sin
e both
on
ept des
riptions are assumed to be redu
ed.

Due to redu
tion, it also holds that U

A

= U

A

n E

C

and analogously V

A

= V

A

n E

D

.

Therefore, the unions in
ondition 2 are disjoint. Be
ause of
ondition 1 we may repla
e

E

D

by E

C

in
ondition 2, whi
h yields U

A

= V

A

. The same argument applies to
ondition

3. Be
ause C and D are redu
ed, the role languages U

(�mR)

and U

(�mR)

already
ontain

the union over all lesser and the union over all greater numbers respe
tively, as stated in

Corollary 6.13. In
ondition 4 and 5, we may therefore ommit the unions overm. Moreover,

the role languages in
ondition 4 and 5 are de�ned as disjoint to E

C

and E

D

respe
tively,

so that �nally the argument for
onditions 2 and 3 also applies, yielding U

(�nR)

= V

(�nR)

for every number restri
tion (� nR) 2 N

�

and analogously U

(�nR)

= V

(�nR)

for every

(� nR) 2 N

�

.

I

3. (\)") If C � D, then from the
hara
terization of subsumption we know that

E

C

� E

D

. We �rst
onsider the
ase that this in
lusion is stri
t, then the
ase of equality

of the languages.

B

B

B

E

C

� E

D

: Then, as stated in [BKBM99℄, there are �nite languages U

E

C

and V

E

D

su
h

that pf (U

E

C

)��

�

� pf (V

E

D

)��

�

. Due to the de�nition of redu
ed normal forms, this

is equivalent to the in
lusion U

?

��

�

� V

?

��

�

. A

ording to Lemma 6.4, we
an then

infer U

?

� V

?

. Sin
e C � D, we know from the
hara
terization of subsumption that

U

H

[E

C

� V

H

[E

D

for all H 2 C [f:AjA 2 Cg. As mentioned above, this in
lusion is

equivalent to U

H

[U

?

��

�

� V

H

[V

?

��

�

. We may drop the term V

?

��

�

on the right-hand

side, obtaining the desired result for all H 2 C [f:AjA 2 Cg.

For (� nR) 2 N

�

, we similarly yield

S

m�n

U

(�mR)

[U

?

��

�

=

S

m�n

V

(�mR)

[V

?

��

�

. As

mentioned before, the union over all m � n
an be omitted. Dropping the term V

?

��

�

on

the right-hand side of the in
lusion afterwards analogously produ
es V

H

� U

H

[U

?

��

�

,

whi
h was to be shown.

666.333. the algorithm 67

This analogy does not hold for �-number restri
tions, where we need to
ope with the

right quotient (�R

�1

) in the respe
tive equations: For every (� nR) := H 2 N

�

, we

obtain U

H

[U

?

��

�

�R

�1

� V

H

[V

?

��

�

�R

�1

. We may drop the expression V

?

��

�

�R

�1

on the right-hand side of the in
lusion. Furthermore, as stated in [BKBM99℄, U ��

�

�R

�1

equals U ��

�

[U �R

�1

for every �nite language U over � and R 2 �. Consequently, the

in
lusion
an be simpli�ed to U

H

[U

?

��

�

[U

?

�R

�1

� V

H

, whi
h we wanted to show.

B

B

B

E

C

= E

D

: As shown in (2), the redu
ed normal form of C and D then allows us to

infer U

?

��

�

= V

?

��

�

, whi
h yields U

?

= V

?

, as both languages are pre�x free. The

hara
terization of the subsumption furthermore allows us to
on
lude that U

H

� V

H

for

every H 2 H. Obviously, C and D
annot agree on all role languages, sin
e this would

imply C � D, in
ontradi
tion to the assumption. Consequently, there is one H 2 H su
h

that U

H

� V

H

.

I

3. (\(") In
ase (b), it is not diÆ
ult to verify that the
onditions for subsumption

stated in Lemma 3.6 are met. Assume
ase (a). From U

?

� V

?

we
an infer by Lemma

6.4 that U

?

��

�

� V

?

��

�

. Sin
e C and D are redu
ed, this implies E

C

� E

D

, mat
hing

the �rst
ondition for subsumption. As assumed, for every H 2 H n N

�

it holds that

V

H

� U

H

[U

?

��

�

. We have already seen in (3) that U

?

��

�

equals E

C

. Therefore, after

adding the language E

D

on both sides of the in
lusion we have V

H

[E

D

� U

H

[E

C

[E

D

.

Sin
e E

D

is a subset of E

C

, we obtain V

H

[E

D

� U

H

[E

C

. For H 2 C [f:AjA 2 Cg,

this equals
onditions 2 and 3 for the subsumption as stated in Lemma 3.6.

A

ording to Corollary 6.13, for all (� nR) 2 N

�

the language U

(�nR)

is equal to the

union

S

m�n

U

(�nR)

, so that the in
lusion V

H

[E

D

� U

H

[E

C

an be expanded to

S

m�n

V

(�mR)

[E

D

�

S

m�n

U

(�mR)

[E

C

, whi
h meets
ondition 4 for the subsumption.

For (� nR) 2 N

�

, we have assumed V

(�nR)

� U

(�nR)

[U

?

��

�

[U

?

�R

�1

. As mentioned

above for the reverse dire
tion of (3), we
an repla
e U

?

��

�

[U

?

�R

�1

by U

?

��

�

�R

�1

, whi
h

is equal to E

C

�R

�1

. Following a similar line as for the �-number restri
tions, E

D

�R

�1

is

added on both sides of the in
lusion, yielding V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

[E

D

�

R

�1

. As E

C

is a superset of E

D

and as also both languages are of the form L��

�

for some

�nite language L, it is easy to see that E

C

�R

�1

is a superset of E

C

�R

�1

for every R 2 �.

The in
lusion therefore simpli�es to V

(�nR)

[E

D

�R

�1

� U

(�nR)

[E

C

�R

�1

. Exploiting

Corollary 6.13, the languages U

(�nR)

and V

(�nR)

an be repla
ed by the respe
tive unions

over all m � n, thus mat
hing
ondition 5 of the subsumption
onditions of Lemma 3.6.

Consequently, all
onditions for subsumption are met. We obtain stri
t subsumption,

be
ause (2) would otherwise imply U

?

= V

?

,
ontradi
ting U

?

� V

?

.

�

�

�

The
hara
terization of stri
t subsumption in (3)
an be expressed in a slightly stri
ter

form, stating for
ase (a) that U

?

� V

?

and V

H

� U

H

[(U

?

��

�

nV

?

��

�

) for allH 2 HnN

�

and V

H

� U

H

[(U

?

n V

?

)�R

�1

[(U

?

��

�

n (V

?

��

�

[V

?

�R

�1

)) for all (� nR) := H 2 N

�

.

Nevertheless, this will not be required here.

Observe, however, that the
hara
terizations of equivalen
e and subsumption derived for

FL

?

and FL

:

are of similar stru
ture. The only di�eren
e regards �-number restri
tions

in the
hara
terization of the subsumption. Therefore, one advantage of the normal forms

proposed in this se
tion is the ability to exploit stru
tural similarities between the logi
s,

allowing a uniform handling.

6.3 The algorithm

We are now prepared to introdu
e the a
tual algorithm for solving mat
hing problems

modulo equivalen
e with non-stri
t side
onditions. Its idea is to simulate solving mat
hing

68
hapter 666. fixed points and side
onditions

problems with side
onditions in a single step by solving a series of mat
hing problems

without them in several steps. Hen
e, this approa
h is based on the ability to solve

mat
hing problems without side
onditions in a logi
 L. An appropriate algorithm for this

task has been proposed under the name mat
h

L

in Lemma 4.29. The new algorithm is

spe
i�ed in an imperative fashion by the following de�nition.

De�nition 6.20 Algorithm

Let L be a logi
 in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mat
hing problem modulo equivalen
e with non-stri
t side
on-

ditions. The algorithm A

L

(P) is de�ned as follows:

1. t := 0; �

0

:= mat
h

L

fC �

?

Dg

2. �

t+1

:= mat
h

L

(fC �

?

Dg [f�

t

(X

j

) v

?

E

j

j1 � j � ng)

3. If �

t+1

is unde�ned: return \no solution".

If �

t

� �

t+1

: return �

t

.

Otherwise: t := t+ 1,
ontinue at (2).

�

�

�

At �rst glan
e, we �nd that upon input P the algorithm starts by merely ignoring the side

onditions in
luded in the mat
hing problem and solves it without them. Thus, it yields a

�rst result �

0

, whi
h might be too spe
i�
 for P . By solving
ertain mat
hing problems,

the algorithm then improves the intermediate solution �

0

iteratively until a �xed point is

rea
hed in respe
t to equivalen
e. Taking a
loser look, we will see that the �xed point

iteration exhibits four underlying properties:

� No possible solution to the input mat
hing problem P is more spe
i�
 than the initial

substitution �

0

.

� The same holds for every subsequent substitution �

t

.

� Every substitution �

t+1

is more general than its respe
tive prede
essor �

t

.

� If two
onse
utive substitutions �

t

and �

t+1

are equivalent, then they are valid

solutions of P .

Before dealing with the question in terms of a formal proof, let us dis
uss intuitively

why the above properties hold. The substitution �

0

lies below every possible solution to

the input mat
hing problem, sin
e mat
h

L

by de�nition always returns the least solution.

Thus, for every solution �

L

of P and for every j 2 f1; : : : ; `g it holds that �

0

(X

j

) v �

L

(X

j

),

whi
h in turn implies that �

0

(X

j

) v �

L

(E

j

). Consequently, every substitution �

t

produ
ed

in step 2 of the iteration also lies below every solution to P , i.e. �

t

v �

L

. Sin
e additional

onstraints are in
luded, it is easy to see that �

1

is never more spe
i�
 than �

0

, i.e.

�

0

v �

1

. Consequently, we �nd by indu
tion that �

t

v �

t+1

for every t, meaning that

the substitutions produ
ed by the iteration be
ome more general in every step. In
ase of

equivalen
e, i.e. �

t

� �

t+1

, it holds that C � �

t

(D) as well as �

t

(X

j

) v �

t

(E

j

) for every

j, implying that �

t

solves P .

In the next se
tion we will �nd that proving the algorithm to be
orre
t and
omplete is

parti
ularly simple when following the above lines. Nevertheless, it is not yet
lear whether

the iteration always rea
hes a solution in a �nite number of steps provided there exists

one. Analogously, we have to as
ertain that the algorithm returns \no solution", whenever

there exists no solution to the input mat
hing problem. This issue, i.e. the question of

termination, is addressed in Se
tion 6.5.

666.444.
orre
tness and
ompleteness 69

6.4 Corre
tness and
ompleteness

Here two properties have to be shown. Firstly, if our algorithm terminates with a
ertain

solution, then this solution solves the input mat
hing problem. Se
ondly, if it terminates

without �nding a solution, then in fa
t no solution exists. To show this, we will begin by

formally proving the properties dis
ussed at the end of the previous se
tion.

Lemma 6.21 Corre
tness and
ompleteness

Let L be a logi
 in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mat
hing problem modulo equivalen
e with non-stri
t side
on-

ditions. Then:

1. For every solution �

L

to the input mat
hing problem P and for every substitution �

t

o

uring during the exe
ution of the algorithm A

L

(P), it holds that �

t

v �

L

.

2. For all substitutions �

t

and �

t+1

o

uring during the exe
ution of the algorithm

A

L

(P) it holds that: �

t

v �

t+1

.

3. If A

L

(P) returns a substitution �, then � solves the input mat
hing problem P .

4. If A

L

(P) returns \no solution", then the input mat
hing problem P has no solution.

Proof.

I

1. Proof by indu
tion over the number of iterations t the algorithm takes.

B

B

B

t = 0: We know from the properties of mat
h

L

that then �

t

is the least solution for the

mat
hing problem C �

?

D . Every solution �

L

to P espe
ially solves C �

?

D with respe
t

to (v). Therefore, we always obtain �

0

v �

L

.

B

B

B

t > 0: Assume that �

t+1

exists. By the indi
tion hypothesis we know that �

t

v �

L

.

Thus, for all j 2 f1; : : : ; `g we have �

t

(X

j

) v �

L

(X

j

). We now show that this implies

mat
h

L

(fC �

?

Dg [f�

t

(X

j

) v

?

E

j

j1 � j � ng)

v mat
h

L

(fC �

?

Dg [f�

L

(X

j

) v

?

E

j

j1 � j � ng) :

Every solution to the|more general|mat
hing problem of the right-hand side is espe
ially

a solution to the mat
hing problem of the left-hand side of the equation. Asmat
h

L

always

omputes minimal solutions for both sides, the above
on
lusion is valid. Applying the

de�nition of A

L

, the above yields �

t+1

v �

L

, whi
h was to be shown.

I

2. Analogous to (1). Due to the properties of mat
h

L

, we similarly have �

0

v �

1

. The

indu
tion is identi
al to (1): If �

t�1

v �

t

then we
an infer by the same s
heme as above

that �

t

v �

t+1

.

I

3. By de�nition of the algorithm, C � �

t

(D) for every substitution �

t

. Hen
e, �

t

is a

valid solution to the mat
hing problem without side
onditions. It remains to be shown

that the �nal solution meets the side
onditions as well. Thus, assume that A

L

(P) = �

t

for some nonnegative integer t. Then by de�nition, �

t

� �

t+1

, whi
h implies that for every

j 2 f1; : : : ; `g we have �

t

(X

j

) v �

t+1

(E

j

) � �

t

(E

j

). The subsumption holds by de�nition

of �

t+1

, the equivalen
e by the assumption above. Thus, the side
onditions are met.

I

4. If mat
h

L

fails in step 1 of the algorithm then no solution exists for the mat
hing

problem without side
onditions. This obviously implies that there is no solution for the

mat
hing problem with side
onditions as well.

If the algorithm fails in step 2 for some positive integer t, then the mat
hing problem

C �

?

D is solvable, but there is a j 2 f1; : : : ; `g su
h that �

t

(X

j

) v

?

E

j

does not have a

solution. This implies that �

t

(X

j

) is an assignment too general for the i-th side
ondition.

Taking into a

ount the results of (1), this
onsequently applies to any possible solution

�

L

to the original mat
hing problem with side
onditions.

�

�

�

70
hapter 666. fixed points and side
onditions

As an immediate
onsequen
e of the above lemma, we
an derive an important property

of the algorithm A

L

, whi
h is stated in the following
orollary: The solutions returned by

A

L

are minimal.

Corollary 6.22 Minimal solutions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mat
hing problem modulo equivalen
e

with non-stri
t side
onditions. Then, if A

L

(P) returns a solution �, this solution is the

least solution to P in respe
t to subsumption.

We have seen in the previous lemma that no substitution �

t

is more general than any

solution �

L

to P . Provided the �xed-point iteration terminates it is therefore obvious

that the obtained solution is minimal. Observe that the main argument in the above

proof of
orre
tness and
ompleteness is the property of the mat
hing algorithm mat
h

L

to produ
e minimal solutions in respe
t to subsumption. Redu
ed normal forms and their

hara
teristi
s have not been required so far.

6.5 Termination

In this se
tion, we will show that the algorithm A

L

terminates in polynomial time in the

size of any input mat
hing problem. The obje
tive is to avoid giving analogous proofs of

termination iteratively for every logi
. Therefore, we identify three
onditions as suÆ
ient

to permit a general proof of termination. We then only have to ensure that these
onditions

hold in all four logi
s.

Two steps are ne
essary in preparation. Firstly, a uniform notation is needed to denote

all role languages produ
ed by the algorithm during the �xed point iteration. Se
ondly,

we will assume that every
on
ept des
ription o

uring in the algorithm is in redu
ed

normal form. Naturally, it has to be
lari�ed beforehand why su
h an assumption
an be

made without loss of generality. But let us �rst take
are of the notation problem. It was

shown in Lemma 4.29, that mat
h

L

does not introdu
e new atomi

on
epts or number

restri
tions for its solution. Moreover, the solutions are presented in FL

0

-normal form.

For a uniform notation, we therefore only need to spe
ify three things. Firstly, the set of

all indi
es t o

uring during the
omputation of A

L

(P); se
ondly; the set of all
on
ept

names and role restri
tions o

uring in the input problem; and thirdly, an appropriate

notation for the FL

0

-normal forms of all substitutions:

De�nition 6.23 Notation

Let L be a logi
 in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mat
hing problem modulo equivalen
e with non-stri
t side
on-

ditions. Upon Input P , the algorithm A

L

generates substitutions �

t

, where t 2 N.

� Denote by T (A

L

; P) the set of indi
es t o

urring during the �xed point itera-

tion for A

L

(P). Formally, T (A

L

; P) := N i� A

L

upon input P does not termi-

nate, T (A

L

; P) := f0; : : : ; t + 1g i� it terminates in step 3 with �

t

as solution and

T (A

L

; P) := f0; : : : ; tg i� �

t+1

is unde�ned.

� De�ne H as the set of all
on
ept names and number restri
ions o

urring in the

input mat
hing problem, i.e. for ALN , de�ne H := f?g[C[f:AjA 2 Cg[N

�

[N

�

.

For FL

:

, we require N

�

and N

�

to be empty. For FL

?

, negated atomi

on
epts

are omitted as well. For FL

0

, we simply have H = C.

� For every o

urring index t 2 T (A

L

; P) and for every j 2 f1; : : : ; `g, denote �

t

(X

j

)

in U

t

-labelled FL

0

-normal form.

�

�

�

666.555. termination 71

With the above notation, every
on
ept des
ription �

t

(X

j

) o

urring in the the �xed point

iteration
an be represented by a set of role languages fU

t;j;H

jH 2 Hg.

We want to identify
ertain
onditions in order to simplify the proof of termination of

algorithm A

L

for all four
ases of L. For these
onditions to hold, it is ne
essary that

every
on
ept des
ription o

urring during the exe
ution of the A

L

is in redu
ed normal

form, i.e. for every input mat
hing problem P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g), for

every t 2 T (A

L

; P) and for every j 2 f1; : : : ; `g, C as well as �

t

(X

j

) are in redu
ed normal

form. The de�nition of A

L

, however, does not in
lude this. Why
an su
h an assumption

be made without loss of generality? We know from Lemmata 6.8, 6.11, and 6.19 that

transforming a
on
ept des
ription into redu
ed normal form
onserves equivalen
e. Thus,

the results
omputed by mat
h

L

in steps 1 and 2 of the algorithm are not altered in respe
t

to equivalen
e by assuming redu
ed normal forms. The termination
riterion in step 3 of

the algorithm also refers only to equivalen
e and not to equality. Consequently, the redu
ed

version of the algorithm terminates if and only if the non-redu
ed version does. Hen
e,

we may safely assume redu
ed normal forms.

We are now prepared to introdu
e the termination
onditions.

De�nition 6.24 Termination
onditions

Let L 2 fFL

0

;FL

?

;FL

:

;ALNg. Let P be an L-mat
hing problem modulo equivalen
e

with non-stri
t side
onditions as introdu
ed in De�nition 3.17. De�ne the following

onditions for the mat
hing algorithm A

L

.

1. Representation
ondition

A

L

operates on a �xed set of role languages for the representation of the substitutions

�

t

(X

j

) o

uring during the exe
ution of A

L

(P). Therefore, no new (negated) atomi

on
epts or role restri
tions are introdu
ed.

2. SuÆx
ondition

For every H 2 H there exists a role language M

H

of polynomial size in the size of

P su
h that for all t 2 T and j 2 f1; : : : ; `g the role languages U

t;j;H

ontain only

suÆxes of words from M

H

.

3. Deletion
ondition

If a word o

uring in a role language U

t;j;H

assigned by �

t

is missing in the role

language U

t+1;j;H

assigned by �

t+1

, then this word is missing in every role language

U

t

0

;j;H

assigned by further substitutions �

t

0

with t

0

> t.

�

�

�

Observe that the representation
ondition in our
ase is only relevant for ALN . In the

sublanguages the problem does not arise. For ALN , however, it is stated in Lemma 4.29

that a
tually already mat
h

ALN

respe
ts the representation
ondition. This
ondition

is nevertheless mentioned expli
itly here, be
ause we want to emphasize that it is an

essential prerequisite for the proof of
orre
tess. The next subse
tion provides a general

proof of termination, presupposing the validity of the termination
onditions. The last

four subse
tions are devoted to verifying these
onditions in our four logi
s.

6.5.1 General result

We have to show that by virtue of the termination
onditions we
an prove termination

of the algorithm A

L

simultaneously for all four
ases of L. The following lemma performs

this step.

72
hapter 666. fixed points and side
onditions

Lemma 6.25 Termination

Let L be a logi
 in fFL

0

;FL

?

;FL

:

;ALNg. Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g)

be a (U; V;W)-labelled L-mat
hing problem modulo equivalen
e with non-stri
t side
on-

ditions. Then A

L

(P) terminates in polynomial time in the size of P .

Proof.

It is suÆ
ient to show that two properties hold for A

L

. Firstly, the number t of steps

the exe
ution of A

L

(P) takes is polynomially limited in the size of P ; se
ondly, the time

required for a single step is polynomially bounded in the size of P as well.

B

B

B

Limit for t: It is shown in Lemma 6.21 that �

t

v �

t+1

for every t 2 T (A

L

; P). Sin
e

the �xed point iteration in A

L

terminates in
ase �

t

� �

t+1

, we have �

t

� �

t+1

for every

t as long as the iteration does not terminate. The stri
t subsumption of the substitutions

implies that for every t there is an j 2 f1; : : : ; `g su
h that �

t

(X

j

) � �

t+1

(X

j

).

Due to the
hara
terization of stri
t subsumption for redu
ed normal forms (Lemmata 6.8,

6.11, and 6.19), this implies that there is an H 2 H, su
h that at least one word in the

role language U

t;j;H

o

urring in �

t

(X

j

) is deleted at the transition to U

t+1;j;H

o

urring

in �

t+1

(X

j

). Now on the one hand, the deletion
ondition guarantees that no word
an

reappear on
e it has been deleted at su
h a transition. On the other hand, the suÆx

ondition ensures for every H 2 H that every word deleted from a role language U

t;j;H

is

a suÆx of some word in the polynomially large language M

H

.

We now have obtained three fa
ts suÆ
ient to prove the existen
e of a polynomial upper

bound for t. Firstly, at the transition from t to t + 1 some word has to be deleted from

some role language; se
ondly, on
e deleted, no word will reappear later on; and thirdly,

the
hoi
e of words to delete is polynomially limited and independent of t. Consequently, t

annot ex
eed the sum of the number of all suÆxes of the words of all role languagesM

H

.

H is immediately limited by the input mat
hing problem. Furthermore, M

H

is required

by the suÆx
ondition to be polynomial in the size of the input problem. Finally, the

number of suÆxes of a word is quadrati
 in the length of the word. We therefore end up

with a polynomial upper bound for t.

B

B

B

Limit for a single step: The redu
ed normal form of
on
ept des
riptions
an be
om-

puted in polynomial time. A

ording to the properties ofmat
h

#

L

, we
an solve L-mat
hing

problems in polynomial time in the size of the input. The mat
hing problem solved in

every single step in A

L

(P) is always of polynomial size in the size of P . This fa
t is guar-

anteed by the representation
ondition and the suÆx
ondition whi
h we have shown valid

for every logi
 L
onsidered here. Therefore, a single step
osts only polynomial time.

�

�

�

It should be stressed that, as a
onsequen
e of the above result, the algorithm A

L

itself

does terminate
orre
tly even without the assumption of redu
ed normal forms. Only

the proof of termination is simpli�ed signi�
antly by this additional requirement. As an

immediate
onsequen
e of the termination of the algorithm A

L

we obtain the following

orollary.

Corollary 6.26 Minimal solutions

Solvable mat
hing problems modulo equivalen
e with non-stri
t side
onditions in FL

0

,

FL

?

, FL

:

, and ALN have a minimal solution in respe
t to subsumption.

This
laim holds, be
ause the algorithm terminates su

essfully if and only if the input

mat
hing problem has a solution and the solution returned is minimal in respe
t to sub-

sumption. Let us now verify the validity of the termination
onditions in our four logi
s.

666.555. termination 73

6.5.2 Termination
onditions in FL

0

For FL

0

, proving the
onditions is parti
ularly easy be
ause of the simple
hara
terization

of the subsumption obtained by Lemma 3.7. The
hara
terization immediately implies the

desired results, as shown in the next lemma.

Lemma 6.27 Termination in FL

0

FL

0

FL

0

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

0

-mat
hing problem modulo equiv-

alen
e with non-stri
t side
onditions in (U; V;W)-labelled FL

0

-normal form. Then the

termination
onditions introdu
ed in De�nition 6.24 hold for A

FL

0

(P).

Proof.

B

B

B

Representation: We have seen in Lemma 4.29 that mat
h

L

already meets the represen-

tation
ondition. As a
onsequen
e, it also holds for A

FL

0

.

B

B

B

SuÆx: Due to Lemma 6.21, for every t 2 T (A

FL

0

; P) o

uring during the exe
ution

of A

FL

0

(P) it holds that: �

t

v �

t+1

. In FL

0

, this implies U

t;j;H

� U

t+1;j;H

for every

j 2 f1; : : : ; `g and for every H 2 H. Thus, we
an infer U

t;j;H

� U

0;j;H

for every j and H .

The role language U

0;j;H

o

urs in step 1 of the algorithm in the soluion to the mat
hing

problem C �

?

D. In [BKBM99℄, it is shown that for the FL

0

-normal form of the solution

to C �

?

D it holds that U

0;j;H

equals

S

w2W

j

w

�1

(U

H

) for every j and H . Therefore,

every role language U

t;j;H

ontains only suÆxes of U

H

. Sin
e U

H

is part of the input

mat
hing problem P , the set of its suÆxes serve as an appropriate upper bound. Thus,

the suÆx
ondition is met by
hosing M

H

as the set of all suÆxes of words in U

H

.

B

B

B

Deletion: We have seen above that �

t

v �

t+1

for every t, j, and H implies a superset

relation U

t;j;H

� U

t+1;j;H

. This relation entails that words
annot reappear after they

have been deleted at the transition from U

t;j;H

to U

t+1;j;H

.

�

�

�

6.5.3 Termination
onditions in FL

?

Redu
ed normal forms were not ne
essary for the termination
onditions to hold in FL

0

.

We will see for FL

?

, FL

:

, and ALN that they are essential for the proof of the suÆx-

and deletion property. We shall also see that the bottom-
on
ept
ontributes most to the

greater e�ort ne
essary to prove the termination
onditions. At �rst, the validity of the

suÆx
ondition is shown. The idea is to use the solution languages introdu
ed in De�nition

4.2 to derive a re
ursive relationship with respe
t to t between the role languages o

uring

in
onse
utive substitutions �

t

. We
an then infer the desired properties from �

0

upwards

by indu
tion.

Lemma 6.28 SuÆx
ondition in FL

?

FL

?

FL

?

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

?

-mat
hing problem with non-

stri
t side
onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

o

uring during the exe
ution of A

FL

?

(P) as spe
i�ed in De�nition 6.23. Then for all

t 2 T (A

FL

?

; P) and for all j 2 f1; : : : ; `g it holds that

1. U

t;j;?

ontains only suÆxes of U

?

.

2. U

t;j;H

ontains only suÆxes of U

H

for all H 2 H.

Proof.

I

1. When performing step t of the algorithm A

FL

?

(P), the following system of mat
hing

problems must be solved.

8U

?

:? u u

A2C

8U

A

:A �

?

8V

?

:? u u

A2C

8V

A

:A uu

j

8W

j

:X

j

8U

t;j;?

:? u u

A2C

8U

t;j;A

:A v

?

8V

j;0

:? u u

A2C

8V

j;i

:A uu

j

0

8W

j;j

0

:X

j

0

74
hapter 666. fixed points and side
onditions

where the se
ond line represents one equation for every j 2 f1; : : : ; `g. As stated in

Lemma 3.15, this system
an be
ombined into a single mat
hing problem modulo equiv-

alen
e with little diÆ
ulty. The exa
t strategy is omitted here, but its idea has been

illustrated in Example 3.16. For the resulting mat
hing problem, setting up the solvabil-

ity equations proposed in De�nition 4.1 and applying Lemma 4.2, we yield the following

solution language for the bottom-
on
ept.

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

) (�)

Due to the notation introdu
ed for the solutions �

t

, here U

t+1;j;?

��

�

takes the pla
e of

b

L

j;?

used in Lemma 4.2 to denote the solution language for the ?-
on
ept. We have to

show that the U

t+1;j;?

ontains only suÆxes of U

?

.

A

ording to Lemma 6.5, for every �nite language U and for every word w there exists a

�nite pre�x free language L su
h that �rstly, L��

�

= w

�1

(U ��

�

); and se
ondly, L
ontains

only suÆxes of U . Using this result we now show the proposition for U

t;j;?

by indu
tion

over the number of steps t the algorithm A

FL

?

(P) takes.

B

B

B

(t = 0): A

ording to equation (�), it holds that

U

0;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

): (�

0

)

At �rst, we show that the suÆx
ondition does not get lost when interse
ting languages

of the form L��

�

having that property. It is shown in [BKBM99℄ that for �nite languages

L and L

0

the interse
tion L��

�

\ L

0

��

�

is equal to ((L \ L

0

��

�

) [(L

0

\ L��

�

))��

�

.

Obviously, (L \ L

0

��

�

) [(L

0

\ L��

�

) is a subset of the union L [L

0

. This implies that

the interse
tion L��

�

\ L

0

��

�

an be represented as L

00

��

�

su
h that every element of L

00

omes from L or from L

0

.

Be
ause of Lemma 6.5, it holds for every j 2 f1; : : : ; `g and for every w 2 W

j

that the

language w

�1

(U

?

��

�

)
an be represented as L��

�

, where L
ontains only suÆxes of U

?

.

We have just seen that the suÆx
ondition is respe
ted by the interse
tion. Thus, the

entire right-hand side of equation (�

0

) is of the form L��

�

, where L
ontains only suÆxes

of U

?

. pf (L) is a subset of L and therefore
ontains only suÆxes as well. pf (L)��

�

also

represents the right-hand side of (�

0

), as we know from Lemma 6.4. From the de�nition

of redu
ed normal forms in FL

?

we also know that U

0;j;0

is pre�x free. Lemma 6.4 now

implies that U

0;j;0

is equal to pf (L),
ompleting our argument.

B

B

B

(t > 0): Due to indu
tion, we may assume that all role languages on the right-hand side

of equation (�)
ontain only suÆxes of U

?

. Analogous to the argument for the
ase t = 0,

the suÆx property is valid for U

t+1;j;?

as well.

I

2. Consider U

t;j;H

for an arbitrary H 2 H. Starting again with the system of mat
hing

equations proposed in (1) and taking into a

ount the de�nition of the solution languages

666.555. termination 75

in Lemma 4.29, we obtain the following result for U

t;j;H

.

U

t+1;j;H

=

\

w2W

j

w

�1

(U

h

[U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;H

[U

t;j;?

��

�

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

h

[U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;H

[U

t;j;?

��

�

)

| {z }

M

1

n

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

)

| {z }

M

2

!

�

[

w2W

j

w

�1

(U

h

) [

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;H

)

The equality to M

1

nM

2

is obtained by repla
ing U

t+1;j;?

��

�

with the right-hand side

of equation (�). The last step in the above sequen
e remains to be shown. Consider an

arbitrary word v in U

t+1;j;H

= M

1

nM

2

. Sin
e v is not an element of M

2

, there exists a

word w 2W

j

or a word w

0

2W

j;j

0

su
h that v is no element of w

�1

(U

?

��

�

) or no element

of w

�1

(U

t;j;?

��

�

). Assume the �rst
ase, i.e. v 62 w

�1

(U

?

��

�

). As v is an element of M

1

,

obviously v 2 w

�1

(U

h

[U

?

��

�

), whi
h implies v 2 w

�1

(U

h

). Thus, v is a suÆx of a word

in U

h

. The se
ond
ase is analogous, yielding that v is a pre�x of a word in U

t;j;H

. Thus,

the in
lusion
laimed above holds.

Sin
e U

H

and all U

t;j;H

are �nite languages, it is not diÆ
ult to see that the left quotients

w

�1

(U

H

) and w

�1

(U

t;j;H

) for every word w only
ontain suÆxes of U

H

and U

t;j;H

respe
-

tively. We still have to ensure that the suÆx
ondition is respe
ted by the union. This

an be shown indu
tively similar to the proof seen in (1) for the interse
tion. In
ase of

the union, however, the indu
tion argument is by far simpler, sin
e for �nite languages

L;L

0

the union L��

�

[L

0

��

�

is equal to (L [L

0

)��

�

.

�

�

�

For the proof of the deletion
ondition, the
hara
terization of the subsumption for re-

du
ed normal forms
an be utilized to rule out words reappearing after being deleted.

A subsumption argument, of
ourse,
an only be used sin
e we know from the proof of

orre
tess, that the solutions �

t

in fa
t are subsumed by its respe
tive su

essors �

t+1

.

Lemma 6.29 Deletion
ondition in FL

?

FL

?

FL

?

In
lude P and A

FL

?

(P) from above. Again, we refer to the notation introdu
ed in

De�nition 6.23 for the exe
ution of the algorithm. Then A

FL

?

(P) meets the deletion

ondition spe
i�ed in De�nition 6.24 for all o

urring role languages.

Proof.

We �rst prove the deletion
ondition for role languages referring to the ?-
on
ept and

then
onsider those referring to atomi

on
epts A 2 C.

B

B

B

?-
on
ept: Assume that
ontrary to our
laim a word w
an reappear for greater values

of t after being deleted from a role language at a
ertain point during the exe
ution of

the algorithm. Thus, assume for w 2 �

�

that w 2 U

t;j;?

and w 62 U

t

0

;j;?

but �nally

w 2 U

t

0

+1;j;?

for some j 2 f1; : : : ; `g and for nonnegative integers t < t

0

2 T .

We know from Lemma 6.21 that �

t

v �

t

0

v �

t

0

+1

. As all substitutions are redu
ed we

further know due to our assumption, that �

t

(X

j

) 6� �

t

0

(X

j

) 6� �

t

0

+1

(X

j

). From this we

an infer by means of Lemma 6.8 that U

t;j;?

� U

t

0

;j;?

� U

t

0

+1;j;?

.

76
hapter 666. fixed points and side
onditions

We have assumed that w 2 U

t

0

+1;j;?

. The above relation then for U

t

0

;j;?

demands that

U

t

0

;j;?

ontains a pre�x w

0

of w. As w is no element of U

t

0

;j;?

, this is a nontrivial pre�x.

Similarly we �nd that U

t;j;?

ontains a pre�x of w

0

or w

0

itself. The language U

t;j;?

,

however, initially was assumed to
ontain w as well, yielding a
ontradi
tion to U

t;j;?

being pre�x free.

B

B

B

A-
on
ept: Assume similarly for a word w 2 �

�

that w 2 U

t;j;H

and w 62 U

t

0

;j;H

but

�nally w 2 U

t

0

+1;j;H

for some j 2 f1; : : : ; `g, for H 2 H, and for nonnegative integers

t < t

0

2 T . Sin
e �

t

v �

t

0

v �

t

0

+1

and as also all substitutions are redu
ed we obtain as a

onsequen
e of lemma 6.8:

U

t;j;H

_

[U

t;j;?

��

�

� U

t

0

;j;H

_

[U

t

0

;j;?

��

�

� U

t

0

+1;j;H

_

[U

t

0

+1;j;?

��

�

:

We have assumed that w 2 U

t

0

+1;j;k

. Sin
e w is no element of U

t

0

;j;k

, the subset relation

implies that w 2 U

t

0

;j;?

��

�

. From the
hara
terization of the subsumption we know that

U

t;j;?

��

�

� U

t

0

;j;?

��

�

, whi
h in our
ase implies w 2 U

t;j;?

��

�

. This
ontradi
ts the

disjointedness of the union with U

t;j;H

, whi
h was shown in Lemma 6.8.

�

�

�

6.5.4 Termination
onditions in FL

:

For FL

:

, a separate proof of termination is omitted, be
ause we
an exploit the analogy to

FL

?

. Verifying the termination
onditions again yields a positive result, whi
h is stated

below without proof.

Lemma 6.30 Termination
onditions in FL

:

FL

:

FL

:

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an FL

:

-mat
hing problem modulo equiv-

alen
e with non-stri
t side
onditions. Then A

FL

:

(P) meets the termination
onditions

introdu
ed in De�nition 6.24.

Let us dis
uss brie
y why we
an expe
t to gain the same result for FL

:

in exa
tly the

same way as seen for FL

?

. The idea is to show that due to the redu
ed normal form of all

substitutions �

t

o

urring during the exe
ution of A

FL

:

(P), the validity of the termination

onditions
an be shown analogous to the proof for FL

?

. Re
all that the prerequisites

for the existen
e of a solution in FL

:

are stronger than in FL

?

. Nevertheless, on
e

the mat
hing problem is solvable, the solution assigned by �

t

is synta
ti
ally similar to

FL

?

|the only di�eren
e being the
onstru
t

b

U instead of U . This
an be found when

omparing Lemma 4.2 and Lemma 4.4, where the solution languages are introdu
ed. In

the presen
e of redu
ed normal forms the di�eren
e between languages of the form

b

U and

U disappears, as stated in Corollary 6.10. Furthermore, a
omparison of Lemma 6.8 and

Lemma 6.11 yields the same
hara
erization of equivalen
e and subsumption for redu
ed

normal forms in FL

?

and FL

:

. Hen
e the results obtained for FL

:

are analogous to

those for FL

?

.

6.5.5 Termination
onditions in ALN

The overall task of solving mat
hing problems in ALN is signi�
antly more
omplex than

in the pre
eding logi
s. However, most of the additional
omplexity is hidden in the notion

of ex
luding words, whi
h has been studied in depth in [K�us98℄. On
e we know that sets

of ex
luding words are of the form L��

�

for some �nite language L, we do not need to

introdu
e new ideas to prove the termination
onditions. By virtue of the redu
ed normal

forms we again �nd a situation analogous to FL

?

, though
onsisting of
onsiderably larger

equations.

666.555. termination 77

Lemma 6.31 SuÆx
ondition in ALN

ALN

ALN

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an ALN -mat
hing problem with non-

stri
t side
onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

o

uring during the exe
ution of A

ALN

(P) as spe
i�ed in De�nition 6.23. Then for all

t 2 T and for all j 2 f1; : : : ; `g it holds that:

1. U

t;j;?

ontains only suÆxes of U

?

.

2. U

t;j;A

ontains only suÆxes of U

A

for every A 2 C and U

t;j;:A

ontains only suÆxes

of U

:A

for every A 2 C.

3. U

t;j;�nR

ontains only suÆxes of U

(�nR)

for every (� nR) 2 N

�

.

4. U

t;j;�nR

ontains only suÆxes of U

(�nR)

[U

?

�R

�1

for every (� nR) 2 N

�

.

Proof.

I

1. At step t of the algorithm A

ALN

(P), the following system of mat
hing problems has

to be solved:

8U

?

:? u u

A2C

8U

A

:A u u

A2C

8U

:A

::A

u u

(�nR)2N

�

8U

(�nR)

:(� nR) u u

(�nR)2N

�

8U

(�nR)

:(� nR)

�

?

8V

?

:? u u

A2C

8V

A

:A u u

A2C

8V

:A

::A

u u

(�nR)2N

�

8V

(�nR)

:(� nR) u u

(�nR)2N

�

8V

(�nR)

:(� nR)

u

n

u

j=1

8W

j

:X

j

and for every j 2 f1; : : : ; ng:

8U

t;j;?

:? u u

A2C

8U

t;j;A

:A u u

A2C

8U

t;j;:A

::A

u u

(�nR)2N

�

8U

t;j;(�nR)

:(� nR) u u

(�nR)2N

�

8U

t;j;(�nR)

:(� nR)

v

?

8V

j;?

:? u u

A2C

8V

j;A

:A u u

A2C

8V

j;:A

::A

u u

(�nR)2N

�

8V

j;(�nR)

:(� nR) u u

(�nR)2N

�

8V

j;(�nR)

:(� nR)

u

n

u

j

0

=1

8W

j;j

0

:X

j

0

This system
an be
ombined into a single mat
hing problem modulo equivalen
e. For

the solution to this problem, Lemma 4.7 provides us with appropriate solution languages.

Regarding the ?-
on
ept, we obtain the following result for the solution language U

t+1;j;?

assigned by �

t+1

(X

j

):

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(E

t;j;C

) (�)

Again, due to our notation U

t+1;j;?

��

�

takes the pla
e of

b

L

j;?

as used in Lemma 4.7.

Furthermore, E

C

denotes the set of C-ex
luding words and analogously E

t;j;C

the set of

ex
luding words for the j-th mat
hing problem in the above system of mat
hing problems.

We may assume C to be in redu
ed normal form. Consequently, it holds that U

?

��

�

= E

C

,

as seen in De�nition 6.12. As �

t

is also in redu
ed normal form, we furthermore obtain

78
hapter 666. fixed points and side
onditions

that U

t;j;?

��

�

= E

t;j;C

for every t 2 T . In equation (�), we may therefore repla
e E

C

by

U

?

��

�

and E

t;j;C

by U

t;j;?

��

�

. This reveals the indu
tive relation of the role languages:

U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

) (�

0

)

It is to prove that U

t+1;j;?

ontains only suÆxes of U

?

. Equation (�

0

) is only a synta
ti

variant of equation (�) established in Lemma 6.28. As U

t+1;j;?

is pre�x free, we
an prove

the
laim exa
tly following the same pattern as seen for FL

?

in Lemma 6.28.

I

2. From the system of mat
hing problems introdu
ed in (1), we now derive solutions

for role languages of the form U

t+1;j;A

referring to the atomi

on
ept A in �

t+1

(X

j

). By

virtue of Lemma 4.7 we obtain:

U

t+1;j;A

=

\

w2W

j

w

�1

(U

A

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;A

[E

t;j;C

)

n U

t+1;j;?

��

�

Taking into a

ount that U

?

��

�

= E

C

and that U

t;j;?

��

�

= E

t;j;C

, we
an apply the

argument of Lemma 6.28 and repla
e the expression U

t+1;j;?

��

�

with the right-hand side

of equation (�

0

). Again, we
an obtain an upper bound for the resulting expression, yielding

that:

U

t+1;j;A

�

[

w2W

j

w

�1

(U

A

) [

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;A

) :

Be
ause U

A

and every U

t+1;j;A

is �nite, it is not diÆ
ult to prove that w

�1

(U

A

) and every

w

�1

(U

t+1;j;A

)
ontain only suÆxes of U

A

. We know from Lemma 6.28, that this property

is respe
ted by the union, thus
ompleting the proof. For role languages U

t;j;:A

referring

to negated atomi

on
epts :A, exa
tly the same argument holds.

I

3. We already know that �

t

is in redu
ed normal form for every t 2 T . Thus, we have

for every number restri
tion (� nR) 2 N

�

that

S

m�n

U

t;j;(�mR)

is equal to U

t;j;(�nR)

,

i.e. the union
an be omitted. The same holds for C, whi
h is in redu
ed normal form

as well. Therefore, the expression

S

m�n

U

(�mR)

similarly
an be repla
ed by U

(�nR)

.

This observation enables us to simplify the solution language derived from the system of

mat
hing problems proposed in (1). By means of Lemma 4.7, we
an infer for U

t+1;j;(�nR)

that:

U

t+1;j;(�nR)

=

\

w2W

j

w

�1

(

[

m�n

U

(�mR)

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(

[

m�n

U

t;j;(�mR)

[E

t;j;C

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

(�nR)

[E

C

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[E

t;j;C

)

n U

t+1;j;?

��

�

We
an see that after removing the unions for the number restri
tions, the above equation

is synta
ti
ally identi
al to the one derived for A 2 C in (2). The rest of the argument

therefore is identi
al to what has been proposed there.

I

4. For (�)-number restri
tions, we
an again remove the union-operator in the same

fashion as done in (3). However, we obtain slightly di�erent results for the solution lan-

guages derived from the system of mat
hing problems introdu
ed in (1). For U

t+1;j;(�nR)

666.555. termination 79

we
an infer that:

U

t+1;j;(�nR)

=

\

w2W

j

w

�1

(

[

m�n

U

(�mR)

[E

C

�R

�1

)

\

\

j

0

\

w2W

j;j

0

w

�1

(

[

m�n

U

t;j;(�mR)

[E

t;j;C

�R

�1

)

n U

t+1;j;?

��

�

=

\

w2W

j

w

�1

(U

(�nR)

[(U

?

��

�

)�R

�1

)

\

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[(U

t;j;?

��

�

)�R

�1

)

n

0

�

\

w2W

j

w

�1

(U

?

��

�

) \

\

j

0

\

w2W

j;j

0

w

�1

(U

t;j;?

��

�

)

1

A

| {z }

=:M

2

Observe, that in the se
ond step we
ould repla
e E

C

by U

?

��

�

and E

t;j;C

by U

t;j;?

��

�

.

This repla
ement is valid be
ause C and �

t

are in redu
ed normal form. However, the

result deviates from the pattern seen in the previous
ases of this proof|the right-quotients

of U

?

��

�

and U

t;j;?

��

�

o

ur instead of the original languages. Nevertheless, we
an

simplify the right quotient thanks to the �niteness of U

?

and U

t;j;?

: (U

?

��

�

)�R

�1

equals

U

?

�R

�1

[U

?

��

�

and similarly (U

t;j;?

��

�

)�R

�1

an be simpli�ed to U

t;j;?

�R

�1

[U

t;j;?

��

�

for all t and j. Sin
e after this transformation all right quotients refer to �nite languages,

we
an subtra
t M

2

and follow the argument familiar from Lemma 6.28. Consequently,

we obtain:

U

t+1;j;(�nR)

�

[

w2W

j

w

�1

(U

(�nR)

[U

?

�R

�1

)

[

[

j

0

[

w2W

j;j

0

w

�1

(U

t;j;(�nR)

[U

t;j;?

�R

�1

)

Finally, we
an again employ an indu
tion argument to prove that every U

t+1;j;(�nR)

ontains only suÆxes of U

(�nR)

[U

?

�R

�1

.

�

�

�

After eliminating the union over number restri
tions and the right-quotient for (�)-number

restri
tions in the above equations, the resulting situation appeared very similar to the

analogous problems for FL

?

. Re
alling the
hara
terizations of equivalen
e and subsump-

tion for redu
ed normal forms in FL

?

and ALN , this is not surprising. By
omparing

Lemma 6.8 and 6.19, we �nd almost the same
onditions for subsumption. Observe,

that we again assumed C to be in redu
ed normal form. This is legitimate, sin
e in the

de�nition of A

ALN

, C is only referred to in redu
ed normal form.

Lemma 6.32 Deletion
ondition in ALN

ALN

ALN

Let P := (C �

?

D; fX

j

v

?

E

j

j1 � j � `g) be an ALN -mat
hing problem with non-

stri
t side
onditions in (U; V;W)-labelled FL

0

-normal form. Denote the role languages

o

uring during the exe
ution of A

ALN

(P) as spe
i�ed in De�nition 6.23 Then A

ALN

(P)

meets the deletion
ondition spe
i�ed in De�nition 6.24 for all o

urring role languages.

Proof.

At �rst, the assertion is proved for role languages referring to the ?-
on
ept and then for

the remaining
ases.

80
hapter 666. fixed points and side
onditions

B

B

B

?-
on
ept: Assume that a word w
an appear in a role language for greater t after

having been deleted, i.e. there exists a word w 2 �

�

, and indi
es t < t

0

2 T and a

j 2 f1; : : : ; `g su
h that w 2 U

t;j;?

and w 62 U

t

0

;j;?

but w 2 U

t

0

+1;j;?

. We
an now infer a

ontradi
tion to U

t;j;?

being pre�x free, as already done for FL

?

in Lemma 6.29.

As the substitutions �

t

, �

t

0

and �

t

0

+1

are redu
ed, we
an infer from the assumptions by

virtue of the properties of redu
ed normal forms in ALN that U

t;j;?

� U

t

0

;j;?

� U

t

0

+1;j;?

.

The rest of the argument is analogous to Lemma 6.29. We apply the de�nition of the

multiset order (�) and infer that U

t;j;?

must
ontain a nontrivial pre�x of w as well as w

itself.

B

B

B

Other
ases: Assume similarly for a word w 2 �

�

that w 2 U

t;j;A

and w 62 U

t

0

;j;A

, but

w 2 U

t

0

+1;j;A

for an atomi

on
ept A 2 C, for some j 2 f1; : : : ; `g, and for nonnegative

integers t < t

0

2 T . Sin
e again �

t

v �

t

0

v �

t

0

+1

and sin
e all substitutions are redu
ed,

we yield by Lemma 6.19:

U

t;j;A

_

[U

t;j;?

��

�

� U

t

0

;j;A

_

[U

t

0

;j;?

��

�

� U

t

0

+1;j;A

_

[U

t

0

+1;j;?

��

�

Now we
an follow the argument employed in Lemma 6.29 to infer a
ontradi
tion to the

disjointness of the unions. It is shown in Lemma 6.19 that the argument of disjoint unions

also applies for negated atomi

on
ept and number restri
tions.

�

�

�

This se
tion
ompletes our dis
ussion on mat
hing problems modulo equivalen
e with non-

stri
t side
onditions. It should be noted that our proofs strongly rely on the assumption of

redu
ed normal forms. Nevertheless, we have pointed out in Se
tion 6.5 that the algorithm

A

L

has the same behaviour without this requirement. The results obtained here therefore

apply to the algorithm as introdu
ed in De�nition 6.20. It might be worth emphasizing

that the algorithm proposed here is appli
able to both a
y
li
 and
y
li
 side
onditions.

hapter 7

Con
lusion

7.1 Summary

In this work the
omputational
omplexity of mat
hing algorithms has been dis
ussed

for four
ommon des
ription logi
s|ALN and three of its sublanguages. Three di�erent

problems have been
onsidered in this
ontext: Mat
hing modulo equivalen
e without

side
onditions, the approa
h of eliminating side
onditions and the use of �xed point

algorithms for solving mat
hing problems with side
onditions.

The arti
le [BKBM99℄ by Baader, K�usters, Borgida, and M
Guinness formed the basis for

our work, providing a
hara
terization of subsumption for our logi
s and algorithms for

mat
hing problems without side
onditions. Regarding the
omputational
omplexity of

these algorithms, only one minor gap had to be
losed. In order to formally verify that

the algorithms are eÆ
ient, the properties of treelike automata had to be examined. This

gap is
losed by Chapter 4, where treelike automata have been dis
ussed in depth. In

onsequen
e, the results of [BKBM99℄ have been
on�rmed|mat
hing problems without

side
onditions
an be solved in polynomial time. This has been our �rst main topi
.

It was shown in [BKBM99℄ that mat
hing problems with non-stri
t side
onditions
annot

be solved eÆ
iently by straightforwardly eliminating side
onditions. It has been our se
-

ond main topi
 in Chapter 5 to dis
uss how the approa
h of eliminating side
onditions
an

be
arried out su

essfully. Eventually, we have seen that stru
ture sharing is required for

ompa
t representations of role languages in order to gain an eÆ
ient solution. However,

the result proposed here is limited to a
y
li
 side
onditions. It is not
lear whether this

idea
an be extended to the
y
li

ase.

Finding a solution appli
able to mat
hing problems with a
y
li
 as well as
y
li
 side

onditions has been the third main issue in this work (
overed in Chapter 6). Here a

�xed point algorithm has been developed solving this problem. In this
ontext, redu
ed

normal forms have been introdu
ed in order to simplify the proof of termination for that

algorithm. Nevertheless, redu
ed normal forms might also be interesting in FL

?

, FL

:

,

and ALN , be
ause they redu
e equivalen
e to equality in these logi
s. FL

0

-normal forms

do not suit this purpose.

7.2 Future goals

In addition to the non-stri
t
ase, in [BKBM99℄ also mat
hing problems with stri
t side

onditions are examined. It was shown by a redu
tion to 3SAT ([GJ79℄) that mat
hing un-

der stri
t side
onditions is NP-hard even in FL

0

. Nevertheless, an appropriate mat
hing

82
hapter 777.
on
lusion

algorithm has not yet been proposed. It seems worthwhile utilize the eÆ
ient mat
h-

ing algorithm for non-stri
t side
onditions proposed here in the
ontext of a mat
hing

algorithm for stri
t side
onditions.

For mat
hing under non-stri
t side
onditions, the �xed-point algorithm proposed in Chap-

ter 6
omprises a strategy built on top of a mat
hing algorithm already existing for ALN

or its sublanguages studied here. It might be promising to apply a similar approa
h to

other des
ription logi
s, where standard mat
hing algorithms have already been found.

One su
h example
ould be the logi
 ALE , whi
h allows for existential role restri
tions

instead of number restri
tions. Mat
hing in ALE has already been studied in [BK00a℄.

Bibliography

[BK00a℄ F. Baader and R. K�usters. Mat
hing in des
ription logi
s with existential

restri
tions. In A.G. Cohn, F. Giun
higlia, and B. Selman, editors, Pro
eed-

ings of the Seventh International Conferen
e on Knowledge Representation

and Reasoning (KR2000), pages 261{272, San Fran
is
o, CA, 2000. Morgan

Kaufmann Publishers. ! p. 82

[BK00b℄ A. Borgida and R. K�usters. What's not in a name: Some properties of a purely

stru
tural approa
h to integrating large dl knowledge bases. In F. Baader

and U. Sattler, editors, Pro
eedings of the 2000 International Workshop on

Des
ription Logi
s (DL2000), number 33 in CEUR-WS, Aa
hen, Germany,

2000. ! p. 3

[BKBM99℄ F. Baader, R. K�usters, A. Borgida, and D. M
Guinness. Mat
hing in des
rip-

tion logi
s. Journal of Logi
 and Computation, 9(3):411{447, 1999. ! pp. 2,

3, 4, 9, 10, 11, 12, 14, 17, 20, 40, 41, 42, 45, 58, 62, 63, 66, 67, 73, 74, 81

[BMS

+

91℄ Ronald Bra
hman, Deborah M
Guinness, Peter Patel S
hneider, Lori Alperin

Resni
k, and Alexander Borgida. Living with CLASSIC: When and how to

use a KL-ONE-like language. In John F. Sowa, editor, Prin
iples of Semanti

Networks | Explorations in the Representation of Knowledge, pages 401{456.

Morgan Kaufmann, 1991. ! p. 3

[BN98a℄ F. Baader and P. Narendran. Uni�
ation of
on
ept terms in des
ription logi
s.

In H. Prade, editor, Pro
eedings of the 13th European Conferen
e on Arti�
ial

Intelligen
e (ECAI-98), pages 331{335. John Wiley & Sons Ltd, 1998. ! pp.

1, 2, 10

[BN98b℄ Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge

University Press, New York, 1998. ! p. 56

[BS96℄ F. Baader and U. Sattler. Knowledge representation in pro
ess engineering. In

Pro
eedings of the International Workshop on Des
ription Logi
s, Cambridge

(Boston), MA, U.S.A., 1996. AAAI Press/The MIT Press. ! p. 3

[DLNN91℄ Fran
es
o M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.

The
omplexity of
on
ept languages. In James Allen, Ri
hard Fikes, and

Erik Sandewall, editors, Pro
eedings of the 2nd International Conferen
e on

Prin
iples of Knowledge Representation and Reasoning, pages 151{162, San

Mateo, CA, USA, April 1991. Morgan Kaufmann Publishers. ! p. 2

[GJ79℄ M. R. Garey and D. S. Johnson. Computers and Intra
tability : A Guide to

the Theory of NP-Completeness. W.H. Freeman and Company, 1979.! p. 81

84 bibliography

[HB91℄ B. Hollunder and F. Baader. Qualifying number restri
tions in
on
ept lan-

guages. In Pro
eedings of the Se
ond International Conferen
e on Prin
iples

of Knowledge Representation and Reasoning, KR-91, pages 335{346, Boston

(USA), 1991. ! p. 2

[HNSS90℄ Bernhard Hollunder, Werner Nutt, and Manfred S
hmidt-S
hau�. Subsump-

tion algorithms for
on
ept des
ription languages. In Pro
eedings of ECAI-90,

9th European Conferen
e on Arti�
ial Intelligen
e, pages 348{353, Sto
kholm,

Sweden, 1990. ! p. 2

[HU80℄ J. Hop
roft and J. Ullman. Introdu
tion to Automata Theory, Languages, and

Computation. Addison-Wesley, N. Reading, MA, 1980. ! pp. 5, 6

[K�us98℄ R. K�usters. Chara
terizing the Semanti
s of Terminologi
al Cy
les in ALN us-

ing Finite Automata. In Pro
eedings of the Sixth International Conferen
e on

Prin
iples of Knowledge Representation and Reasoning (KR'98), pages 499{

510. Morgan Kaufmann, 1998. ! pp. 11, 17, 40, 52, 63, 76

[MPS98℄ Deborah L. M
Guinness and Peter F. Patel-S
hneider. Usability issues in

knowledge representation systems. In Pro
eedings of the 15th National Con-

feren
e on Arti�
ial Intelligen
e (AAAI-98) and of the 10th Conferen
e on

Innovative Appli
ations of Arti�
ial Intelligen
e (IAAI-98), pages 608{614,

Menlo Park, July 26{30 1998. AAAI Press. ! p. 2

[YZ91℄ S. Yu and Q. Zhuang. On the state
omplexity of interse
tion of regular

languages. ACM SIGACT News, 22(3):52{54, 1991. ! p. 20

