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Chapter 1

Introduction

Description Logics (DLs) are knowledge representation formalisms that allow to rep-
resent and reason about conceptual and terminological knowledge in a structured and
semantically well-understood manner. The basic entities for representing knowledge
using DLs are so-called concepts, which correspond to formulas with one free vari-
able in mathematical logic. Complex concepts are built from concept names (unary
predicates), role names (binary predicates), and concept constructors. For example,
using the basic propositionally closed Description Logic ALC, we can describe fathers
having at least one daughter using the concept

Male u ∀child.Human u ∃child.Female.

In this example, Male, Human, and Female are concept names while child is a role
name.

A major limitation of knowledge representation with Description Logics such as
ALC is that “concrete qualities” of real world entities cannot be adequately rep-
resented. For example, if we want to describe husbands that are younger than
their spouses, we can only do this by using an abstract, unary predicate such as
YoungerThanSpouse:

Male u ∃spouse.Female u YoungerThanSpouse.

However, this approach is by no means satisfactory since it does not really capture
the semantics of what we were trying to say: we can at the same time demand that a
husband is YoungerThanSpouse and 50 years old (using another predicate 50YearsOld),
and that his spouse is 40YearsOld without obtaining a contradiction. Other concrete
qualities whose representation leads to similar problems include weights, temperatures,
durations, and shape of real world entities.

To allow an adequate representation of concrete qualities, Description Logics can
be extended by so-called concrete domains. A concrete domain consists of a set such
as the natural numbers and a set of n-ary predicates such as the binary “<” with
the obvious (fixed) extension. The integration of concrete domains into Description
Logics is achieved by adding (i) a concrete domain-based concept constructor and
(ii) a new sort of role names that allows to associate values from the concrete domain
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2 Chapter 1. Introduction

with abstract, logical objects. For example, the husbands that are younger than their
spouse can be described using the concept

Male u ∃spouse.Female u ∃age, spouse age.<,

where spouse is a functional role, age is one of the “concrete domain roles”, and
∃age, spouse age.< is an application of the concrete domain concept constructor, which
must not be confused with the existential value restriction constructor used in the
subconcept ∃spouse.Female—both constructors start with the same symbol “∃”.

Some form of concrete domain can be found in many Description Logic formalisms
and in many implemented DL systems used in applications. However, although it is
generally considered very important to determine the decidability and computational
complexity of reasoning with Description Logics, the complexity of reasoning with
concrete domains has never been formally investigated. In this thesis, we close this
gap by determining the complexity of a many common Description Logics providing
for concrete domains.

The remainder of this introduction is concerned with a more detailed description
of the addressed research problems. Formal definitions and bibliographic references
are deferred until Chapter 2.

Description Logics

A Description Logic usually consists of a concept language and so-called TBox and
ABox formalisms. While the concept language is used for constructing complex con-
cepts and roles, TBoxes allow the representation of terminological knowledge and of
background knowledge from the application domain, and ABoxes store assertional
knowledge about the current state of affairs in a particular “world”. For example, the
concept language ALC mentioned above provides the concept constructors negation
(¬), conjunction (u), disjunction (t), universal value restriction of roles (∀), and ex-
istential value restriction of roles (∃). As we shall see later, there exist many other
concept and role constructors giving rise to more powerful concept languages.

Let us briefly describe the use of TBoxes and ABoxes for knowledge representation.
There exist various flavors of TBoxes with vast differences in expressivity. However,
even the weakest form of TBox, called acyclic TBox, can be used to represent termi-
nological knowledge about the application domain. For example, we can assign the
notion “younger husband” to the husbands describe above:

YoungerHusband
.= Male u ∃spouse.Female u ∃age, spouse age.<.

Intuitively, acyclic TBoxes can be thought of as (acyclic) macro definitions. Using a
more expressive type of TBox, so called general TBoxes, complex background knowl-
edge can be described. For example, we can express that all humans are either male
or female and no human is both male and female:

Human
.= Male t Female

> .= ¬(Male u Female).
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Here, > is a special concept that, intuitively, stands for “everything”.

In contrast to TBoxes, which represent knowledge of a general nature, ABoxes
store knowledge about particular situations. If, for example, we want to describe that
John is 42 years old and married to Mary, who is 40 years old, we can use the following
ABox:

John : Male John : ∃age.=42

Mary : Female Mary : ∃age.=40

(John,Mary) : spouse

Note that, if we add the fact John : YoungerHusband, then the resulting ABox describes
an “impossible” world since spouse is functional and John is not younger than his
(only) spouse Mary. Such inconsistencies can be detected by the Description Logic
reasoning services. More precisely, standard reasoning services offered by Description
Logics include the following:

• decide whether a concept C is satisfiable, i.e., whether it can have any instances
(concept satisfiability);

• decide whether a concept C is subsumed by a concept D, i.e., whether every
instance of C is necessarily also an instance of D (concept subsumption); and

• decide whether a given ABox is consistent, i.e., whether a world as described by
the ABox may exist (ABox consistency).

All these reasoning tasks can be considered with and without reference to TBoxes.
Several other reasoning services have been considered in the literature, but many of
them can be reduced to the basic ones listed above. Note that the top-most task in
the list corresponds to formula satisfiability in mathematical logic.

Apart from being a standard tool for knowledge representation and reasoning,
Description Logics are used in several other application areas such as reasoning about
entity relationship (ER) diagrams or reasoning about ontologies for the semantic web.
In all these application areas, DLs are expected to meet the following two demands:

1. Reasoning should be decidable. Moreover, since it is desirable to implement rea-
soning services in DL systems with an acceptable run-time behavior, reasoning
should be of low worst-case complexity.

2. The logic should be as expressive as possible to allow capturing all relevant
aspects of the application domain.

The trade-off between complexity and expressivity induced by these two demands is
one of the driving forces behind Description Logic research: the task is to develop
logics that are sufficiently expressive, yet for which reasoning is of an acceptable com-
plexity. During the last years, the reading of “acceptable complexity” has changed
dramatically. In contrast to the early years of DL research, where researchers were
striving to develop logics for which reasoning is tractable, nowadays there exist im-
plementations of Description Logics for which reasoning is ExpTime-complete, and
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these implementations exhibit a reasonable run-time behavior on “real-world” prob-
lems. Nevertheless, the investigation of the worst-case complexity of reasoning with
Description Logics is still one of the most important research topics in the field. Know-
ing the exact complexity class of a problem is necessary for devising optimal algorithms
and it provides useful information concerning the run-time behavior to be expected
from implemented DL reasoners.

Concrete Domains

Although several Description Logic systems also provided for some form of concrete
domain, the first formal treatment was given by Baader and Hanschke in [1991a]. The
authors propose to extend the basic Description Logic ALC with a concrete domain
D, thus obtaining the logic ALC(D). More precisely, ALC(D) extends ALC with
(i) functional roles called abstract features, (ii) the above mentioned “concrete domain
roles”, which are called concrete features and are also required to be functional, and
(iii) a concrete domain concept constructor. The difference between abstract and
concrete features is that the former are just functional binary predicates in a standard
first-order sense while the latter provide the link between abstract, logical objects and
objects from the concrete domain. The concrete domain concept constructor provided
by ALC(D) has the form ∃u1, . . . , un.P , where the ui are concrete paths, i.e., sequences
f1 · · · fkg of finitely many abstract features followed by a single concrete feature, and
P is a predicate of arity n from the concrete domain D. For example, using ALC(D)
together with an appropriate concrete domain, we can describe people for whom the
wage of the boss of the father is smaller than the wage of the mother:

Human u ∃(father boss wage), (mother wage).<

In this example, father, boss, and mother are abstract features while wage is a concrete
feature and concrete paths are written in parenthesis. It is important to note that the
concrete domain D can be viewed as a parameter to the logic ALC(D), i.e., Baader and
Hanschke’s approach is not committed to any particular concrete domain. Instead,
their logic can be instantiated with any concrete domain suitable for representing
knowledge from the application domain at hand. In the literature, one can find a
broad spectrum of concrete domains that allow, e.g., to represent knowledge about
numbers (ages, weights, temperatures), temporal relationships, or spatial extensions.

In their 1991 paper, Baader and Hanschke prove that reasoning with ALC(D) is
decidable if the satisfiability of finite conjunctions of predicates from D is decidable
(and, additionally, D satisfies some minor technical conditions). However, although
concrete domains play an important role in DL research and ALC(D) can be regarded
as the basic Description Logic with concrete domains, this fundamental result has
never been further elaborated: first, the exact complexity of reasoning with ALC(D)
has never been determined; second, extensions of ALC(D) with standard concept and
role constructors not available in ALC or with TBox and ABox formalisms have only
rarely been defined. Complexity results for such logics were not available. The main
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goal of this thesis is to explore the realm of Description Logics with concrete domains,
focusing on decidability and computational complexity.

What results can we expect to find? In [Baader & Hanschke 1991a], it is shown
that the extension of ALC(D) with the transitive closure role constructor yields a
logic for which reasoning is undecidable. It is not too hard to see that, with some
modifications, the proof can also be applied to the extension of ALC(D) with general
TBoxes. Thus, reasoning with this logic is also undecidable. These results are rather
surprising since, for the vast majority of Description Logics considered in the literature
(such as ALC), the addition of both the transitive closure constructor and general
TBoxes makes reasoning ExpTime-hard, but does not lead to undecidability. Taking
these observations together, we have obtained a first indication for the fact that there
exist intricate interactions between concrete domains and other means of expressivity
that are usually considered “harmless” w.r.t. their impact on complexity. And indeed,
one main result of this thesis is that the extension of standard Description Logics
with concrete domains in many cases leads to a dramatic increase in the complexity
of reasoning, and in some cases even to undecidability.

The Extensions

For defining expressive extensions of ALC(D), one has several degrees of freedom:
there exist many standard concept and role constructors whose addition to the concept
language significantly increases the expressive power. Having TBoxes is also rather
desirable, and in admitting them we can choose among several variants that differ
considerably w.r.t. expressivity and their impact on the complexity of reasoning. An
ABox formalism should be included if particular worlds are to be described. Finally,
when proving decidability and complexity results, we may either focus on a particular
concrete domain, or, alternatively, try to obtain general results that capture large
classes of concrete domains.

Let us describe some of the concept and role constructors considered in this thesis
in more detail:

1. The inverse role constructor can be applied to roles and abstract features. For
example, it allows to describe children in families comprised of happy people:

∀child−.(Happy u ∀child.Happy)

Here, the expression child− denotes the inverse of the child role.

2. Qualifying number restrictions are an important type of concept constructor and
incorporate “counting” into Description Logics. Using number restrictions, we
can describe persons having at most 4 children of which at least 2 are daughters:

Human u ≤ 4 child.> u≥ 2 child.Female.

3. The role conjunction constructor allows to relate objects by more than a single
role. For example, with this constructor we can talk about people whose spouse
is also their boss:

Human u ∃(spouse u boss).Human.
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4. Using the feature agreement and feature disagreement concept constructors, it is
possible to enforce (dis)agreements between successors of sequences of abstract
features. For example, the following concept describes persons whose parents
are married:

mother married-to ↓ father

while the following one describes persons with divorced parents:

∃mother.¬∃spouse.> t mother married-to ↑ father.

Several other concept and role constructors will be introduced in Chapter 2. The fea-
ture (dis)agreement constructors deserve some special attention. Similar to the con-
crete domain constructor, they take sequences of features as arguments. Apart from
this obvious syntactic similarity, we shall see that logics including feature (dis)agree-
ments are amenable to similar algorithmic techniques as logics including the con-
crete domain constructor. Moreover, we will find that, in many cases, Description
Logics with concrete domains have the same complexity as the corresponding logics
that can be obtained by admitting feature (dis)agreements instead of concrete do-
mains. Because of this interesting connection, the complexity of DLs with feature
(dis)agreements will be an important side-track in this thesis.

Some particular concrete domains will play a prominent role throughout this thesis.
More specifically, the central lower bounds for extensions of ALC(D) rely on the
fact that the concrete domain D allows to represent the natural numbers and offers
(at least) the following predicates: a unary predicate expressing equality to zero, a
binary equality predicate, a binary predicate for addition with the constant 1, and a
ternary predicate expressing addition of two numbers. In what follows, such concrete
domains are called arithmetic. It is important to note that most concrete domains
proposed for knowledge representation such as the one in [Baader & Hanschke 1992]
are in fact arithmetic and, thus, the obtained lower bounds are of practical relevance.
The above mentioned undecidability result for ALC(D) extended with a transitive
closure constructor also requires the concrete domain D to be arithmetic. However,
there exist interesting concrete domains that are not arithmetic, and to which the main
lower bounds obtained in this thesis do thus not apply. An important example is the
concrete domain, which is comprised of the set of all intervals over some temporal
structure and a binary predicate for each of the well-known Allen interval relations.
Description Logics equipped with this temporal concrete domain are well-suited for
interval-based conceptual temporal reasoning. As we shall see, there exist rather
powerful Description Logics that are undecidable if extended with arithmetic concrete
domains, but decidable (in ExpTime) if extended with the concrete domain I.

Structure of the Thesis

Apart from the introduction, the preliminaries, and the conclusion, this thesis can be
divided into three parts. In the first part (Chapter 3), we establish the basic results
that settle the complexity of reasoning with ALC(D) and ALCF(D), where the latter
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is ALC(D) extended with feature (dis)agreements. In the second part (Chapters 4
and 5), we investigate the complexity of reasoning with several natural extensions of
ALC(D). The obtained results are not limited to a particular concrete domain but do
apply to all arithmetic concrete domains. Finally, in the third part (Chapter 7) we
consider Description Logics equipped with concrete domains and general TBoxes. The
main result of this part concerns the above mentioned temporal concrete domain I.

More precisely, this thesis is structured as follows:

• Chapter 2 contains the preliminaries. We start with introducing the basic De-
scription Logic ALC together with the relevant reasoning problems, several vari-
ants of TBoxes, and ABoxes. We also define several additional concept and role
constructors that may be used to devise DLs more powerful than ALC. Next, we
introduce the basic Description Logic providing for concrete domains, ALC(D),
and discuss some important, concrete domain-related extensions of ALC(D). Fi-
nally, we define several example concrete domains, including I. In this context,
we make a short excursion to so-called unary concrete domains and a restricted
version of the concrete domain constructor and show that, in this simple setting,
the complexity of reasoning is rather easily determined.

• In Chapter 3, we prove the basic result that reasoning withALCF(D) is PSpace-
complete if reasoning with the concrete domain D is in PSpace. Since reasoning
with ALC is also PSpace-complete, this means that adding both concrete do-
mains and feature (dis)agreements to ALC does not increase the complexity of
reasoning. The result is established by using a tableau algorithm and adapting
the so-called trace technique to Description Logics with concrete domains.

• Chapter 4 investigates the impact of acyclic TBoxes on the complexity of rea-
soning with Description Logics. This chapter, which is not explicitly concerned
with concrete domains, can be seen as a preparation for the succeedings chapter,
where (among other things) the combination of concrete domains and acyclic
TBoxes is investigated. We show how the standard PSpace tableau algorithm
for ALC can be modified to take into account acyclic TBoxes such that it can
still be executed in polynomial space. A rule of thumb is given, which indicates
that the described modification technique can be applied to a large class of De-
scription Logics. Thus, we show that, in many cases, acyclic TBoxes do not
increase the complexity of reasoning. To demonstrate that this is not always
the case, we prove that, quite surprisingly, the extension of ALC with feature
(dis)agreements and acyclic TBoxes is NExpTime-complete.

• In Chapter 5, we identify five seemingly simple extensions of ALC(D) for which
reasoning is NExpTime-hard if the concrete domain D is arithmetic. These
extensions are (i) with acyclic TBoxes, (ii) with role conjunction, (iii) with in-
verse roles, (iv) with a generalized concrete domain concept constructor, and
(iv) with a concrete domain role constructor. The obtained hardness-results are
rather surprising since the considered extensions are usually considered “harm-
less” w.r.t. complexity and, thus, a leap in complexity from PSpace-complete to
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NExpTime-complete was not to be expected. We also establish a corresponding
upper bound stating that reasoning with all five extensions of ALC(D) together
is in NExpTime if reasoning with D is in NP. Finally, we consider the cor-
responding extensions of ALCF (ALC with feature (dis)agreements) and find
that, in most cases, the complexity parallels that of the extensions of ALC(D).

• Chapter 6 is concerned with the combination of general TBoxes and concrete
domains. First, we prove that reasoning with ALC(D) and general TBoxes is
undecidable if D is arithmetic. Then, we demonstrate that, despite this general,
discouraging result, there exist interesting concrete domains whose combination
with general TBoxes does not lead to undecidability. More precisely, we investi-
gate the extension of ALC(I)—i.e. ALC(D) instantiated with the interval-based
concrete domain I—with general TBoxes. Using an automata-based approach,
we are able to show that reasoning with this logic is decidable and ExpTime-
complete. Several examples from the application domain of process engineering
demonstrate that ALC(I) with general TBoxes is a powerful tool for temporal
conceptual reasoning.

• In Chapter 7, we give an overview over the obtained results and sketch some
perspectives for future research.

Some of the results in this thesis have previously been published: the PSpace upper
bounds given in Chapter 3 appeared in [Lutz 1999b]; the modification technique for ex-
tending tableau algorithms to acyclic TBoxes and the NExpTime-completeness result
for ALCF with acyclic TBoxes from Chapter 4 have been published in [Lutz 1999a];
the NExpTime-lower bounds proved in Chapter 5 already appeared in [Lutz 2000;
Lutz 2001b]; finally, the automata-based decision procedure from Chapter 6 was pub-
lished as [Lutz 2001a].



Chapter 2

Preliminaries

In this chapter, we introduce Description Logics in more detail. The chapter starts
with a short introduction to the field, followed by a formal definition of the basic
propositionally closed DL ALC and the inference problems that are relevant for this
thesis. We discuss several extensions of ALC that are usually considered in the lit-
erature and will resurface in subsequent chapters. Additionally, several variants of
TBox and ABox formalisms for Description Logics are presented. We then focus on
Description Logics with concrete domains and give a detailed overview over this family
of DLs. The chapter closes with a presentation of some example concrete domains.

For all formalisms defined in this chapter, we briefly discuss the known complex-
ity results. A basic acquaintance with the standard complexity classes PTime, NP,
PSpace, ExpTime, NExpTime, etc. is assumed. Nevertheless, some short conven-
tional remarks are in order: completeness and hardness are defined on the basis of
polynomial time reductions as usual. We abstract from issues such as the encoding
of the problem at hand (in order to make it accessible for a Turing machine). This
can be done without loss of generality since the encoding can always be done with
at most a polynomial blowup in size if at least a binary input alphabet for Turing
machines is assumed. Moreover, the complexity classes used are oblivious to such
blowups. Since there exist at least two different definitions of the complexity class
ExpTime, we make its definition more precise: a language L is in ExpTime iff there
exists a Turing machine M and a constant k such that M accepts L terminating after
at most 2n

k
steps if started on an input of size n. The definitions of NExpTime and

ExpSpace are analogous. For a thorough introduction to complexity theory, we refer
the reader to [Papadimitriou 1994].

2.1 Description Logics

Historically, Description Logics evolved from semantic networks [Quillian 1968] and
frame systems [Minsky 1975], mainly to satisfy the need of giving a formal semantics to
these formalisms (see [Baader et al. 2002b] for more historical notes). Nowadays, the
field is situated on the intersection of mathematical and philoshopical logic, knowledge
representation, and database theory. The most important tasks in Description Logic

9
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research may be described as follows:

1. Devise logical formalisms that are, on the one hand, sufficiently expressive
to deal with interesting applications and, on the other hand, have reason-
ing problems that are at least decidable, but preferably in as small a com-
plexity class as possible. This trade-off between expressivity and complexity
gave rise to the definition of numerous Description Logics and the investiga-
tion of the complexity of their reasoning problems, e.g. [Baader & Hanschke
1991a; Donini et al. 1997; Baader et al. 1996; Calvanese et al. 1998a; Horrocks
et al. 2000a]. Any Description Logic should be equipped with a decision proce-
dure that has the potential to be optimized for implementation in a DL rea-
soner (see 2). Rather often, this decision procedure is a tableau algorithm
since it has turned out that this kind of algorithms [D’Agostino et al. 1999;
Baader & Sattler 2000] is particularly amenable to optimizations [Horrocks 1997;
Horrocks & Patel-Schneider 1999].

2. Build DL systems that implement inference services for the DL formalisms men-
tioned under 1 and “behave reasonably well” on real-world application problems.
The main challenge is to find optimization strategies for the algorithms that have
been devised in a more theoretical setting to make them usable for implemen-
tation purposes. This area has been quite active since at least 1997, when the
development of the seminal system FaCT showed that even DLs that are hard
for complexity classes as large as ExpTime can be implemented in efficient DL
systems [Horrocks 1997]. Since then, several expressive and efficient Description
Logic systems have been built [Horrocks & Patel-Schneider 1999; Horrocks 1999;
Patel-Schneider 1999; Haarslev & Möller 2000a].

3. Apply the logical formalisms from 1 and their implementations from 2 in ap-
propriate application areas. The “classical” application of DLs is in knowledge
representation, where they form an own subfield and are closely related to various
other KR formalisms [Brachman 1978; Baader 1999; Baader et al. 1999]. The
second important application area is for reasoning about database problems:
Description Logics have been used for reasoning about, e.g., entity relationship
diagrams [Calvanese et al. 1998b], semistructured data [Calvanese et al. 2000a],
and query answering using views [Calvanese et al. 2000b]. Other application
areas that have been considered include the use of DLs for providing a unify-
ing framework for class-based formalisms in computer science [Calvanese et al.
1998b] and, more recently, for the modelling of ontologies for the semantic web
[Fensel et al. 2000].

This thesis mainly addresses issues from 1: several new expressive Description Logics
with concrete domains are introduced. For all these new logics, as well as for several
existing ones, the complexity of reasoning is determined. In most cases, we also
give (worst-case) optimal decision procedures using techniques that are commonly
believed to be amenable to optimization strategies. Hence, the proposed algorithms
can be expected to behave quite well in practice. The motivation for considering the
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concrete domain family of Description Logics comes from knowledge representation,
as we shall see in Section 2.3. In the following section, we start the formal presentation
of Description Logics by introducing ALC, which is a fragment of all DLs considered
in subsequent chapters.

2.1.1 Introducing ALC

The Description Logic ALC, which was first described by Schmidt-Schauß and Smolka
[1991], is the “smallest” DL that is propositionally closed, i.e., that provides for all
Boolean connectives. More precisely, ALC concepts are built from the Boolean con-
nectives and so-called existential and universal value restrictions. Every Description
Logic used in this thesis provides for at least these five concept constructors.

Definition 2.1 (ALC syntax). Let NC and NR be disjoint and countably infinite
sets of concept and role names. The set of ALC-concepts is the smallest set such that

1. every concept name A ∈ NC is an ALC-concept and

2. if C and D are ALC-concepts and R ∈ NR, then ¬C, C uD, C tD, ∃R.C, and
∀R.C are ALC-concepts.

We use > as an abbreviation for some fixed propositional tautology such as A t ¬A,
⊥ for ¬>, C → D for ¬C tD, and C ↔ D for (C → D) u (D → C). 3

We sometimes identify the name of a concept language and the set of all its concepts,
e.g., we denote the set of all ALC-concepts by ALC. Throughout this thesis, we denote
concept names by A and B, concepts by C and D, and roles by R and S.

The meaning of concepts is fixed by a Tarski-style semantics: concepts are inter-
preted as unary predicates over a set called the domain and roles as binary predicates
over the domain. Together with the semantics, we introduce the standard reasoning
problems on concepts.

Definition 2.2 (ALC semantics). An ALC-interpretation I is a pair (∆I , ·I), where
∆I is a non-empty set called the domain, and ·I is an interpretation function that
maps

• every concept name A to a subset AI of ∆I and

• every role name R to a binary relation RI over ∆I .

The interpretation function is extended to complex concepts as follows:

(¬C)I := ∆I \ CI

(C uD)I := CI ∩DI

(C tD)I := CI ∪DI

(∃R.C)I := {d | there is some e ∈ ∆I such that (d, e) ∈ RI and e ∈ CI}
(∀R.C)I := {d | for all e ∈ ∆I , (d, e) ∈ RI implies e ∈ CI}
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Engine u ∃part.GlowPlug u ∀fuel.Diesel

Process u ∀subprocess.¬(Noisy t Dangerous)

Figure 2.1: Two example concepts.

Let I be an interpretation and d, e ∈ ∆I . Then e is called an R-successor of d in I
iff (d, e) ∈ RI .

A concept C is satisfiable iff there exists an interpretation I such that CI 6= ∅.
Such an interpretation is called a model of C. A concept D subsumes a concept C
(written C v D) iff CI ⊆ DI for all interpretations I. Two concepts are equivalent
(written C ≡ D) iff they mutually subsume each other. 3

The reasoning problems on concepts most often considered in DL research are satis-
fiability and subsumption. Note that, in a Description Logic providing the Boolean
connectives, subsumption can be reduced to (un)satisfiability since C v D iff Cu¬D is
unsatisfiable. The converse also holds since C is unsatisfiable iff C is subsumed by ⊥.
Moreover, subsumption can be reduced to equivalence since C v D iff C u ¬D ≡ ⊥
(and equivalence is defined in terms of subsumption). These simple observations imply
that, when establishing lower and upper complexity bounds or proving decidability
and undecidability, we may restrict ourselves to satisfiability since all the obtained re-
sults are also valid for subsumption and equivalence (note, however, that complexity
classes have to be complemented).

It should be noted that there exist reasoning problems on concepts other than the
ones mentioned above. The above problems are often called “standard” inferences
while reasoning problems such as the computation of the least common subsumer of
two concepts or unification of two concept patterns are frequently referred to as “non-
standard” inferences [Küsters 2001; Molitor 2000]. However, in this thesis we are only
concerned with standard inferences.

Let us now briefly demonstrate the use of ALC for knowledge representation. Two
example concepts can be found in Figure 2.1, where—as always in the sequel—concepts
start with an uppercase letter and roles with a lowercase one. Like most examples in
this thesis, they are concerned with technical devices and production processes for such
devices. Intuitively, the first concept describes a diesel engine: an engine that has a
part that is a glow plug, and which uses only diesel fuel. The second concept describes
a production process all of whose subprocesses are neither noisy nor dangerous.

The complexity of reasoning with ALC has first been determined by Schmidt-
Schauß and Smolka [1991]:1 satisfiability (and hence also subsumption and equiva-
lence) of ALC-concepts is PSpace-complete. The lower bound is proved by reduc-
ing satisfiability of quantified Boolean formulas (QBF) [Stockmeyer & Meyer 1973] to
ALC-concept satisfiability and the upper bound is given by a tableau-like algorithm. In
the early days of Description Logics, the common opinion was that this seemingly high
complexity precludes ALC from being used in knowledge representation and reasoning

1Although this result was already known in the field of Modal Logic, see below.
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systems. However, the KRIS system [Baader & Hollunder 1991a] demonstrated that
it is possible to implement ALC-concept satisfiability in an efficient way and, sev-
eral years later, it turned out that efficient implementations can be devised even for
ExpTime-complete DLs [Horrocks & Patel-Schneider 1999]. Today, every “modern”
Description Logic system implements at least ALC.

There exists a very close connection between Description Logics and various other
logics investigated in the areas of of mathematical logic and philosphical logic. This
connection can be used to transfer complexity and (un)decidability results between
the two fields. Since we will occasionally use results from, e.g., Modal Logic, and,
moreover, the relationship between DLs and mathematical logic is of general impor-
tance, we give a short introduction to this issue. The close connection between Modal
Logic (ML) [Blackburn et al. 2001; Chagrov & Zakharyaschev 1996] and Description
Logics was first observed by Schild in [1991] and later investigated in more detail in
[Giacomo & Lenzerini 1994; Schild 1994; Areces & de Rijke 2001]. Schild notes that
the basic DL ALC is a notational variant of Kω, i.e., the minimal normal Modal Logic
K [Chagrov & Zakharyaschev 1996] with infinitely many modal operators: existential
value restrictions can be seen as diamond operators (one for each role), and universal
value restrictions can be viewed as box operators. Kripke structures and DL interpre-
tations can straightforwardly be translated into one another. Hence, DL concept satis-
fiability is just ML formula satisfiability. This clearly implies that an alternative proof
of the PSpace-completeness ofALC can be given by using the correspondence between
ALC and Kω together with the known PSpace-completeness of Kω [Ladner 1977;
Spaan 1993a]. Most extensions of ALC also have a counterpart in Modal Logic, and
we will keep track of this correspondence throughout this chapter.

However, Modal Logic is not the only close relative of Description Logics: there
exists a very important connection to (several decidable fragments of) First Order
Logic (FO). The “standard translation” of Modal Logic [van Benthem 1983; Vardi
1997] to FO can also be applied to Description Logics which was first done by Borgida
[1996] and later refined in [Lutz et al. 2001a; Lutz et al. 2001b]. More precisely, a
function ·∗ that takes ALC-concepts to FO-formulas with one free variable x can be
defined inductively as follows:

A∗ := PA(x)
(¬C)∗ := ¬(C∗)

(C uD)∗ := (C∗ ∧D∗)
(C tD)∗ := (C∗ ∨D∗)
(∃R.C)∗ := (∃y(PR(x, y) ∧ ∃x(x = y ∧ C∗)))
(∀R.C)∗ := (∀y(PR(x, y)→ ∀x(x = y → C∗)))

where x and y are FO variables, the PA are unary predicates, and the PR are binary
predicates. Models of ALC-concepts C and first order models of C∗ can easily be
translated back and forth (in particular without a blowup in size). Let ALC∗ be
the range of ·∗, i.e., the fragment of FO that is obtained by the translation of ALC-
concepts. At least two very important properties of ALC∗ can be observed.
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Firstly, every ϕ ∈ ALC∗ contains at most two variables. Hence, ALC∗ is a frag-
ment of FO2, the two-variable fragment of First Order Logic which is known to be
NExpTime-complete [Grädel et al. 1997].2 This fact can be used to transfer prop-
erties, such as decidability, the NExpTime upper bound, and the bounded modely
property, from FO2 to ALC and several extensions of ALC. For example, it is known
that every satisfiable FO2-formula ϕ has a model whose size is at most exponential in
the length of ϕ [Grädel et al. 1997]. Since FO2-models can be translated into ALC-
interpretations without a blowup in size, ALC also has this bounded model property
(and so do many of its extensions).

Secondly, in each ϕ ∈ ALC∗, the quantifiers appear only in the form

∀x(P (x, y)→ ψ(x)) and ∃x(P (x, y) ∧ ψ(x))

where P may be equality. This observation led to the definition of the guarded frag-
ment of First Order Logic, in which quantifiers must appear in a restricted way that
can be obtained from the above quantification schema by generalization [Andréka et al.
1998]. Again, results concerning the guarded fragment, such as the ExpTime upper
bound (if a bounded arity of predicates is assumed) [Grädel 1999], can be transfered
to ALC and several of its extensions.

There also exist other logics like the µ-calculus [Kozen 1982; Sattler & Vardi 2001]
or the µ-guarded fragment [Grädel & Walukiewicz 1999] which may be used to transfer
results to Description Logics [Schild 1994]. However, we close our contemplation of
the connection between DL and mathematical logic at this point and only sometimes
return to Modal Logic in what follows.

Before we turn our attention towards extensions of ALC, we introduce some com-
mon notions and a normal form for ALC-concepts that will frequently be used in
subsequent chapters. Like many notions introduced in this section, the normal form
can also be used for extensions of ALC and we will do so without further notice.

Definition 2.3 (NNF). An ALC-concept C is in negation normal form (NNF) iff
negation occurs only in front of concept names. Every ALC-concept can be converted
into an equivalent one in NNF by exhaustively applying the following rewrite rules:

¬¬C ; C
¬(C uD) ; ¬C t ¬D ¬(∃R.C) ; ∀R.¬C
¬(C tD) ; ¬C u ¬D ¬(∀R.C) ; ∃R.¬C 3

The length |C| of a concept C is defined as the number of symbols used to write down
C, e.g. the length of the concept ∀R.(C u D) is 8. Observe that, if a concept C is
converted into an equivalent concept D in NNF using the above rewrite rules, then the
number of rule applications is bounded by |C|. Moreover, |D| is linear in |C| which
means that, for proving complexity results, we can w.l.o.g. assume that concepts are
in NNF.

The set of subconcepts of an ALC-concept C is denoted by sub(C) and defined
inductively in the obvious way (in particular C ∈ sub(C)). For any set S, we use |S|
to denote its cardinality. We clearly have

2More precisely, FO2 with equality. It is also possible to translate ALC-concepts to FO2 without
using equality [Borgida 1996].
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1. |sub(C)| ≤ |C| and

2. if C is in NNF, then all C ′ ∈ sub(C) are also in NNF

The first point is important for proving complexity results while the second is crucial
for devising decision procedures that take advantage of negation normal form since
these decision procedures usually work by breaking down the input concepts into
subconcepts in some appropriate way.

A notion that will be useful for proving termination of decision procedures is the
role depth of concepts. The role depth of a concept C is the maximum nesting depth of
exists and value restrictions in C. For example, the role depth of ∃R.Cu∀S.(Du∃R.C)
is 2.

2.1.2 Extensions of ALC

Since the expressive power of ALC is too weak for many applications, various ex-
tensions of this basic formalism have been considered. In this section, we introduce
extensions of ALC that are relevant for the remaining chapters. The introduction of
concrete domains, however, is delayed until Section 2.3, which is devoted entirely to
this topic.

Extensions of ALC can be divided into (at least) three groups:

1. restrictions of interpretations,

2. additional concept constructors, and

3. role constructors.

Let us first consider restrictions of interpretations. One can, for example, enforce
that the set of roles NR is partitioned into two infinite sets NR1 and NR2, and that
every role R ∈ NR2 is interpreted by a transitive relation RI . This extension of ALC
by transitive roles is called ALCR+ [Sattler 1996]. Alternatively, we may demand
that each role R ∈ NR2 is interpreted by a partial function RI [Baader et al. 1993;
Borgida & Patel-Schneider 1994]. Such abstract features are denoted by the symbol f
and will play an important role in the context of concrete domains.3

Figure 2.2 lists the syntax and semantics of additional concept and role construc-
tors, where ]RI(d,C) is an abbreviation for |{e | (d, e) ∈ RI ∩ CI}|. The figure also
indicates how the names of the resulting extensions of ALC are derived. For exam-
ple, ALC extended with inverse roles and qualifying number restrictions is denoted
by ALCQ−. Note that, in the presence of qualifying number restrictions, one can
define “locally” functional roles by writing ≤1R.>. In contrast, the functionality of
abstract features is of a global nature. Feature (dis)agreements also deserve some
special attention. The arguments p1 and p2 are sequences f1 · · · fk of abstract fea-
tures. Such abstract paths are in the following denoted by the symbol p, and their
semantics is defined in the obvious way: if p = f1 · · · fk is an abstract path, then pI

is defined as the composition of the abstract features fIk (· · · (fI1 (·))). Obviously, it is
3Sometimes, abstract features are called attributes [Baader & Hanschke 1992].
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Name Syntax Semantics Symbol
Role Conjunction R1 uR2 RI1 ∩RI2 ·u

Inverse Role R− {(d, e) | (e, d) ∈ RI} ·−

Qualifying ≥nR.C {d | ]RI(d,C) ≥ n} Q
number restrictions ≤nR.C {d | ]RI(d,C) ≤ n}
Feature agreement p1↓p2 {d | ∃e ∈ ∆I : pI1 (d) = pI2 (d) = e} F
and disagreement p1↑p2 {d | ∃e1, e2 ∈ ∆I : pI1 (d) = e1, p

I
2 (d) = e2,

e1 6= e2}

Figure 2.2: Description Logic role and concept constructors.

Engine u ≥4 part.GlowPlug u ≤4 part.GlowPlug u ∀fuel.Diesel

DieselEngine u ∃part−.Car

Process u (drill-subprocess workpiece ↓ paint-subprocess workpiece)

Process u ∀(subprocess u subprocess−).⊥

Figure 2.3: Some example concepts.

implicitly assumed that the logic ALCF provides for (an infinite number of) abstract
features. In ALCF and its extensions, we often write ∃p.C (∀p.C) as an abbreviation
for ∃f1. · · · .∃fk.C (∀f1. · · · .∃fk.C) if p = f1 · · · fk is an abstract path.

Figure 2.3 gives some example concepts illustrating the expressive power provided
by extensions of ALC.4 The first one is an ALCQ-concept that refines the first concept
from Figure 2.1 by demanding that diesel engines must have exactly four glow plugs.
Note that it would be very natural to demand that the part relation is transitive, i.e.,
to use the DL ALCQR+ for this example [Sattler 2000]. The second example is an
ALC−-concept (or ALC−

R+-concept) describing diesel engines that are parts of cars.
The third example uses ALCF to describe processes that have exactly one drilling
subprocess and exactly one painting subprocess both involving only one and the same
workpiece. Finally, the fourth example uses an ALC−,u-concept to describe processes
for which there exists no other process that is both a subprocess and a superprocess.

Let us briefly review Description and Modal Logics related to the extensions of
ALC just introduced and then discuss their complexity. The role conjunction construc-
tor is frequently used in Description Logics such as ALCNR and the logic ALB which
underlies the MSpass system [Donini et al. 1997; Hustadt & Schmidt 2000]. In Modal
Logic, this constructor appears e.g. in Boolean Modal Logic, the extension of Kω with
the Boolean operators on modal parameters [Gargov et al. 1987; Lutz & Sattler 2001],
where modal parameters are the Modal Logic counterpart of roles (other names from
the literature are, e.g., modal indices and programs). The most prominent occurrence

4Here, as in the following, we refrain from formally defining the notion “expressive power” since this
is out of the scope of this thesis. See, e.g., [Baader 1990a; Areces & de Rijke 1998] for a formalization.
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of the inverse of modal parameters is probably in temporal logics with future and
past operators [Goldblatt 1987], but also in some variants of Propositional Dynamic
Logics [Harel 1984]. In Description Logics, the inverse role constructor is one of the
most common role constructors and can be found, e.g., in [Calvanese et al. 1998a;
Horrocks et al. 2000a]. The same references, together with [Hollunder & Baader 1991;
Baader et al. 1996] are appropriate for qualifying number restrictions. Transitive
roles can, e.g., be found in [Sattler 1996; Calvanese et al. 1998a; Horrocks et al.
2000a]. In Modal Logic, qualifying number restrictions are called graded modali-
ties [Fine 1972], while transitive roles appear in the form of the Modal Logic K4
[Chagrov & Zakharyaschev 1996]. It appears that feature (dis)agreements have not
been considered in Modal Logic. In Description Logics, they have been introduced
as a variant of the more powerful (dis)agreements on sequences of (non-functional)
roles called role value maps [Brachman & Schmolze 1985]. Unlike role value maps,
which usually lead to undecidable reasoning problems [Schmidt-Schauß 1989], Descrip-
tion Logics with feature (dis)agreements are often decidable [Hollunder & Nutt 1990;
Borgida & Patel-Schneider 1994].

Concerning the complexity of reasoning, several results are known for the exten-
sions of ALC introduced in this section:

• Tobies [2001b] shows that satisfiability of ALCQ−,u-concepts (or rather the
Modal Logic equivalent of this problem) is PSpace-complete. Thus, any logic
“between” ALC and ALCQ−,u also has this property;

• Horrocks et al. [2000a] prove that the satisfiability of ALCN−
R+-concepts is in

PSpace, where ALCN−
R+ is ALC extended with transitive roles, the inverse role

constructor, and a weak form of number restrictions; and

• Hollunder and Nutt [1990] prove PSpace-completeness of ALCF-concept satis-
fiability.

Hence, many of the introduced extensions of ALC are in the same complexity class as
ALC itself, albeit more expressive. This situation changes dramatically when TBoxes
and concrete domains come into play. Note that (to the best of our knowledge) not
much is known about the complexity of reasoning with extensions of ALCF . We
will determine the complexity of several such extensions in subsequent chapters. For
example, in Section 5.5.2, we shall show that ALCF− is undecidable.

2.2 TBox and ABox Formalisms

Most Description Logics are not only comprised of a concept language but, addi-
tionally, provide for a TBox and an ABox formalism. The TBox stores terminologi-
cal knowledge and background knowledge about the application domain while asser-
tional knowledge, i.e., knowledge about the state of affairs in a particular “world”, is
stored in the ABox. Most implemented DL reasoners have some sort of TBox compo-
nent [Horrocks 1997; Patel-Schneider 1999; Haarslev & Möller 2000a], while ABoxes
are provided only by some systems [Haarslev & Möller 2000a].



18 Chapter 2. Preliminaries

2.2.1 TBoxes

Several kinds of TBoxes have been considered in the DL literature. Let us first intro-
duce general TBoxes which are one of the most expressive TBox formalisms available.

Definition 2.4 (General TBox). An expression of the form C
.= D, where C and

D are concepts, is called a concept equation. A finite set T of concept equations is
called general TBox (or TBox for short).

An interpretation I is a model of a TBox T iff CI = DI for all C .= D ∈ T .
A concept C is satisfiable w.r.t. a TBox T iff there exists a model of C and T .
A concept D subsumes a concept C w.r.t. a TBox T (written C vT D) iff CI ⊆ DI

for all models I of T . Two concept C and D are equivalent w.r.t. a TBox T (written
C ≡T D) iff C vT D and D vT E.

The size |T | of a TBox T is defined as

|T | :=
∑

(C
.
=D)∈T

|C|+ |D|.
3

A TBox T that contains only concepts from a Description Logic L is called L-TBox.
Several notions from Section 2.1.1 can be generalized from concepts to TBoxes: T is
in negation normal form iff all concepts appearing in T are in NNF. By sub(T ),
we denote

⋃
(C
.
=D)∈T sub(C) ∪ sub(D), and sub(C, T ) is used as an abbreviation for

sub(C) ∪ sub(T ). Also note that the two properties of sub(C) stated at the end of
Section 2.1.1 can obviously be generalized to sub(T ) and sub(C, T ).

General TBoxes have frequently been considered in the literature [Calvanese et
al. 1998a; Horrocks et al. 2000a] and are a powerful tool for expressing background
knowledge about application domains. However, since the presence of general TBoxes
significantly increases the complexity of reasoning (see below), several weaker forms
of TBoxes have been considered. The most common ones are acyclic TBoxes which
we introduce next.

Definition 2.5 (Acyclic TBox). An expression of the form A
.= C, where A is a

concept name and C a concept, is called a concept definition.
Let T be a finite set of concept definitions. A concept name A directly uses a

concept name B in T if there is a concept definition A .= C ∈ T such that B appears
in C. By “uses”, we denote the transitive closure of “directly uses”. T is called acyclic
TBox if

(i) there is no concept name A such that A uses itself and

(ii) the left-hand sides of all concept definitions in T are pairwise distinct.
3

Obviously, every acyclic TBox is also a general TBox. However, in contrast to gen-
eral TBoxes, which are usually used to formulate general constraints, acyclic TBoxes
define concepts, i.e., they assign concept names to complex concepts thus defining ab-
breviations. Figure 2.4 gives an example concept definition and an example concept
equation. The concept definition defines the notion “diesel engine” by associating the
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Dieselengine
.= Engine u ∃part.GlowPlug u ∀fuel.Diesel

> .= (Engine u ∃fuel.Diesel)→ ∀fuel.Diesel

Figure 2.4: A concept definition and a concept equation.

define procedure unfold(C, T )
while C contains a concept name A defined in T do

Let A .= E ∈ T .
Replace each occurrence of A in C with E.

return C

Figure 2.5: The unfolding algorithm.

concept name Dieselengine with the description of a diesel engine from Figure 2.1. The
concept equation formalizes the background knowledge that all engines running with
diesel fuel run with nothing else but diesel fuel.

There exist various other forms of TBoxes that are not directly relevant for this
thesis. For example, one can add counting to concept equations [Baader et al. 1996]
or drop condition (i) from acyclic TBoxes and then use least or greatest fix point
semantics [Baader 1990b; Nebel 1991; Küsters 1998; Calvanese et al. 1999]. Another
variant is obtained by replacing the equality “ .=” in concept definitions by a subset
relation “v” [Calvanese 1996a; Buchheit et al. 1998]. As is easily seen, this latter
choice does only make a difference for acyclic TBoxes since, using general TBoxes,
concept equations C v D can be expressed by > .= C → D and concept equations
C

.= D can be expressed by the two equations C v D and D v C. We will pick up
this issue again at the end of Chapter 4.

The concept definitions in acyclic TBoxes can be viewed as macro definitions for
concepts. They can even be expanded like macros and thus satisfiability of concepts
w.r.t. acyclic TBoxes can be rephrased as satisfiability of concepts without reference
to TBoxes. More precisely, this can be done as follows. Let T be an acyclic TBox.
A concept C is called unfolded w.r.t. T iff none of the concept names in C occurs on
the left-hand side of a concept definition in T . Every concept C can be transformed
into a concept C ′ such that C ≡T C ′ and C ′ is unfolded w.r.t. T by using the simple
unfolding algorithm in Figure 2.5. It is easily seen that C ′ is satisfiable (without
reference to TBoxes) iff C ′ is satisfiable w.r.t. T iff C is satisfiable w.r.t. T . Moreover,
the algorithm clearly terminates due to the acyclicity of acyclic TBoxes.

Nebel shows that, if a T L-concept C is unfolded w.r.t. a T L-TBox T yielding C ′,
where T L is the concept language comprised solely of conjunction and universal value
restriction, then the length of C ′ may be exponential in |C| + |T | [1990]. Since T L
is a fragment of ALC, unfolding an ALC-concept may also lead to an exponential
blowup in concept size. It follows that unfolding is an appropriate method to obtain
decidability results for the satisfiability of concepts w.r.t. TBoxes but it is not an
adequate means for proving complexity bounds.
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As in the previous sections, we now discuss complexity issues and the connection to
Modal Logic. The satisfiability of ALC-concepts w.r.t. general TBoxes is ExpTime-
complete: the upper bound is proved in [Schild 1991], and the lower bound follows
from “Complexity Theorem 1” in [Schild 1994]. However, we shall reprove ExpTime-
completeness below to illustrate the connection between general TBoxes and their
Modal Logic counterpart. For most Description Logics, reasoning with acyclic TBoxes
is of lower complexity than reasoning with general TBoxes. In Section 4.1.1, we peform
a detailed analysis of the impact of acyclic TBoxes on the complexity of reasoning with
DLs that contain ALC as a fragment. For example, we will see that satisfiability of
ALC-concepts w.r.t. acyclic TBoxes is PSpace-complete, i.e., not harder than concept
satisfiability without reference to TBoxes.

While acyclic TBoxes have no counterpart in Modal Logic, the closest relative
of general TBoxes is the universal modality [Goranko & Passy 1992; Hemaspaandra
1996]. Just like ALC with TBoxes, the Modal Logic Ku

ω—i.e, Kω enriched with the
universal modality—is ExpTime-complete [Spaan 1993a]. Spaan establishes the lower
bound by adopting the ExpTime-hardness proof for PDL given by Fisher and Ladner
[Fischer & Ladner 1979] and the upper bound by using a standard algorithm based
on formula types [Pratt 1979]. Both techniques can straightforwardly be adapted
to ALC with general TBoxes. However, Spaan’s results imply that another way to
(re)prove ExpTime-completeness of ALC with general TBoxes is to mutually reduce
satisfiability of ALC-concepts w.r.t. general TBoxes and satisfiability of Ku

ω-formulas
to one another. We do this in the following since it gives some insight into the
relationship between general TBoxes and the universal modality.

Theorem 2.6. Satisfiability of ALC-concepts w.r.t. general TBoxes is ExpTime-
complete.

Proof. Throughout this proof, we use [R]ϕ and 〈R〉ϕ to denote the Kω box and
diamond operators with modal parameter R and [u]ϕ and 〈u〉ϕ for the universal
modality.5 Modal formulas without the universal modality can be translated straight-
forwardly: for a Kω-formula ϕ, we use ϕ$ to denote the corresponding ALC-concept
that is obtained by replacing ML operators by their DL counterparts and proposi-
tional variables by concept names. Conversely, for an ALC-concept C, C$ denotes the
corresponding Kω-formula.

The reduction of satisfiability of ALC-concepts w.r.t. general TBoxes to satisfi-
ability of Ku

ω-formulas (which establishes the upper bound) is quite straightforward
and was first described by Schild in [1991]: it is easily verified that a concept C is
satisfiable w.r.t. a TBox T iff the Ku

ω-formula

C$ ∧
∧

(D
.
=E)∈T

[u](D$ ↔ E$)

is satisfiable.

5It is out of scope to introduce Kuω in full detail. Readers not familiar with Modal Logic may skip
the proof of Theorem 2.6 or consult [Blackburn et al. 2001] for more information.
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Now for the lower bound, i.e, reducing satisfiability of Ku
ω-formulas to satisfiability

of ALC-concepts w.r.t. TBoxes. Let ϕ be a Ku
ω-formula in negation normal form (de-

fined analogously to the NNF of concepts). We construct a corresponding concept Cϕ
and TBox Tϕ as follows:

1. For every Ku
ω-formula ψ, we use ν(ψ) to denote the result of replacing every

subformula of the form [u]ϑ, where ϑ is a Kω-formula (i.e., no occurrence of
the universal modality is allowed in ϑ), with a new propositional variable pϑ.
We inductively define a sequence of formulas ϕ0, ϕ1, . . . by setting ϕ0 := ϕ and
ϕi+1 := ν(ϕi). It is obvious that there exists a minimal k such that ϕk = ϕk+1.

Now fix a modal parameter U not appearing in ϕk. For every Ku
ω-formula ψ,

we use ρ(ψ) to denote the result of replacing every subformula of ψ of the form
〈u〉ϑ with 〈U〉ϑ. Set ϕk+1 := ρ(ϕk). It is easily seen that ϕk+1 is a Kω-formula.

The concept Cϕ is defined as ϕ$
k+1. Clearly, Cϕ is in NNF. In the following, we

denote the concept name corresponding to a “surrogate variable” pψ introduced
in the above translation by Aψ.

2. The TBox Tϕ is defined as⋃
Aψ occurs in Cϕ

{
> .=

(
Aψ → ψ$ u u

R occurs in Cϕ

(
(Aψ → ∀R.Aψ)u(∃R.Aψ → Aψ)

))}

It is easy to check that |Cϕ| is bounded by the length of ϕ and that |Tϕ| is at most
quadratic in the length of ϕ. We show that Cϕ is satisfiable w.r.t. Tϕ iff ϕ is satisfiable.

First for the “if” direction. Let M = (W,R1,R2, . . . , π) be a Kripke structure
which is a model of ϕ. We first extend M to a new Kripke structure M′ that inter-
pretes the surrogate variables pψ introduced in the translation process such that, for
each such variable pψ, we have

(i) either M′, w |= pψ for all w ∈W or M′, w |= pψ for no w ∈W ;

(ii) M′, w |= pψ implies M′, w |= ψ for all w ∈W .

This can be done by inductively defining a sequence of structures M0, . . . ,Mk:

1. Induction start. Set M0 :=M.

2. Induction step. Assume thatMi−1 is already defined. ConstructMi fromMi−1

as follows: for all w ∈W , set

πi(w) := πi−1(w) ∪ {pψ | pψ occurs in ϕi and Mi−1, w |= [u]ψ}.

Finally, set M′ := Mk. It is easy to prove by structural induction that, for i < k,
ψ ∈ sub(ϕi), and w ∈ W , we have that Mi, w |= ψ implies Mi+1, w |= ν(ψ), where
sub(ϑ) denotes the set of subformulas of ϑ. This implies that M′ is a model of ϕk
since M is a model of ϕ. Moreover, together with the construction of M′, it implies
that (ii) is satisfied. Clearly, (i) is satisfied by construction of M′.
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Now translateM′ into an ALC-interpretation I in the usual way. Let J = (W, ·J )
be the interpretation obtained from I by setting UJ := W ×W . It is straightforward
to prove by structural induction that, for ψ ∈ sub(ϕk) and w ∈W ,M′, w |= ψ implies
w ∈ (ρ(ψ)$)J . Since M′ is a model of ϕk, this implies that J is a model of Cϕ.
Considering (i) and (ii) and the construction of J , it is not hard to see that J is also
a model of Tϕ.

Now for the “only if” direction. It is well-known thatALC with general TBoxes has
the connected model property [Schild 1991; Baader 1991]: if a concept C is satisfiable
w.r.t. a TBox T , then there exists a model I of T and a d ∈ ∆I such that d ∈ CI
and, for every d′ ∈ ∆I with d 6= d′, there exists a sequence of domain elements
e0, . . . , ek ∈ ∆I and a sequence of roles R0, . . . , Rk−1 occurring in C or T such that
d = e0, d′ = ek, and (ei, ei+1) ∈ Ri for i < k. Let I be such a connected model of Cϕ
and Tϕ. Using connectedness and the definition of Tϕ, it is easy to show that, for all
Aψ occurring in Cϕ, we have

(i) either AIψ = ∆I or AIψ = ∅ and

(ii) if AIψ = ∆I , then (ψ$)I = ∆I .

Translate I into a Kripke structureM = (∆I ,R1,R2, . . . , π) in the usual way. Using
structural induction, the fact that φ0, . . . , φk are in NNF, and points (i) and (ii) from
above, it is straightforward to show that

1. For ψ ∈ sub(ϕk) and w ∈ ∆I , w ∈ (ρ(ψ)$)I implies M, w |= ψ.

2. For i < k, ψ ∈ sub(ϕi), and w ∈W , M, w |= ν(ψ) implies M, w |= ψ.

Since I is a model of Cϕ, it follows that M is a model of ϕ. ❏

2.2.2 ABoxes

In contrast to TBoxes, there usually exists only a single “natural” ABox formalism
for a given concept language. However, there may be small variations in the ABox
formalisms of distinct concept languages. The ABox formalism for ALC is defined as
follows.

Definition 2.7 (ABox). Let Oa be a countably infinite set of abstract objects. If C is
a concept, R a role name, and a, b ∈ Oa, then a : C and (a, b) : R are ALC-assertions.
A finite set of assertions is called an ALC-ABox. Interpretations I can be extended to
ABoxes by demanding that ·I maps every abstract object a to an element aI of ∆I .
An interpretation I satisfies an assertion

a : C iff aI ∈ CI
(a, b) : R iff (aI , bI) ∈ RI .

An interpretation is a model of an ABox A iff it satisfies all assertions in A. An ABox
A is consistent (ABox) w.r.t. a TBox T iff there exists a model of A and T . 3
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c1 : car e1 : Engine u ∃fuel.Diesel
(c1, e1) : part

e2 : Dieselengine c2 : car
f2 : Kerosine f2 :¬Diesel

(c2, e2) : part (e2, f2) : fuel

Figure 2.6: An example ABox.

For an ABox A, we write sub(A) to denote the set

{C | C ∈ sub(D) and a : D ∈ A for some a ∈ Oa}.

In the sequel, we will also consider ABox consistency without reference to TBoxes,
i.e., with reference to the empty TBox. Throughout this thesis, abstract objects are
denoted by a and b. Note that we do not require aI 6= bI for all a, b ∈ Oa with a 6= b,
i.e., the unique name assumption is not imposed. Moreover, we make the open world
assumption, which means that there may exist domain elements d ∈ ∆I such that
aI 6= d for all a ∈ Oa. In the literature, there exist additional reasoning problems on
ABoxes [Baader & Hollunder 1991b] such as instance checking: an abstract object a is
an instance of a concept C in an ABox A iff aI ∈ CI for all models I of A. However,
most such reasoning problems can be reduced to (in)consistency. For example, an
object a is an instance of a concept C in an ABox A iff A ∪ {a : ¬C} is inconsistent.
In what follows, we will restrict ourselves to the ABox consistency problem.

It is not hard to see that concept satisfiability can also be reduced to ABox con-
sistency: the concept C is satisfiable iff the ABox {a : C} is consistent. For some
DLs, the converse also holds: as shown by Hollunder in [1996], it is possible to reduce
ALC-ABox consistency to ALC-concept satisfiability. However, the reduction is more
involved and we will come back to it in Section 4.1.3.

A self-explanatory example ABox can be found in Figure 2.6. Note that the
displayed ABox is inconsistent w.r.t. the TBox in Figure 2.4.

For most Description Logics, the complexity of ABox consistency coincides with
the complexity of concept satisfiability.6 This is also the case for ALC, i.e., consistency
of ALC-ABoxes w.r.t. general TBoxes is ExpTime-complete [Giacomo & Lenzerini
1994] while consistency of ALC-ABoxes without reference to TBoxes is PSpace-
complete [Baader & Hollunder 1991b]. In Section 4.1.1, we will see that consistency
of ALC-ABoxes w.r.t. acyclic TBoxes is also PSpace-complete. There does not re-
ally exist a counterpart of ABoxes in Modal Logic. The closest relation is to logics
that allow the use of nominals (the modal equivalent of abstract objects) in formulas.
However, nominals provide strictly more expressive power than ABoxes. An impor-
tant family of logics providing for nominals are the so-called hybrid logics [Areces et
al. 1999]. The translation of ABoxes into hybrid logics is discussed in [Areces & de
Rijke 2001].

6But see [Schaerf 1993] for a counterexample: in the Description Logic ALE , concept satisfiability
is co-NP-complete while ABox consistency is PSpace-complete.
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2.3 Description Logics with Concrete Domains

Although the DL-based approach to knowledge representation is quite successful in
general, it has been identified as a serious shortcoming of many Description Logics
that all knowledge has to be described on an abstract logical level. More precisely,
most DLs do not allow to adequately express knowledge about “concrete qualities” of
entities from the application domain, such as their length, duration, or temperature.
In order to facilitate the integration of such knowledge, Baader and Hanschke pro-
posed the extension of ALC with concrete domains and predicates on these domains
[1991a], where concrete domains are, e.g., the integers, the reals, sets of temporal
intervals, or sets of spatial regions, and predicates include equality, temporal overlap-
ping, and spatial disconnectedness. The interface between the Description Logic and
the concrete domain is provided by a concrete domain concept constructor. Important
application areas which have been found to depend on integrated reasoning with con-
crete domains are, e.g., mechanical engineering [Baader & Hanschke 1992], reasoning
about aggregation in databases [Baader & Sattler 1998], reasoning with physical laws
[Kamp & Wache 1996] as well as temporal and spatial reasoning [Haarslev et al. 1999].

2.3.1 Introducing ALC(D)

To illustrate how knowledge representation with Description Logics can benefit from
the use of concrete domains, let us view some examples before introducing concrete
domains formally. Using Baader and Hanschke’s concrete domain constructor, we can
refine the diesel engine from Figure 2.4 by writing

Dieselengine u ∃carburettor.Carburettor
u ∃power. =45 u ∃weight, (carburettor weight). > .

Intuitively, this concept describes a diesel engine with a power of 45PS whose weight
is greater than the weight of its carburettor. Here, the third and fourth conjunct
are applications of the concrete domain constructor. More precisely, carburettor is an
abstract feature as introduced in Section 2.1.2 while power and weight are so-called
concrete features, which are interpreted as partial functions from the domain ∆I
into the concrete domain (say, the reals). The expression “(carburettor weight)” is a
sequence of features written in brackets for better readability and “>” is a predicate
from the concrete domain.

When talking about processes, it seems appropriate to use a concrete domain
comprised of time intervals and corresponding temporal predicates. The following
concept describes a process with two subprocesses that are both running within the
same time interval, which is contained in the time interval of the “mother” process.

Process u ∃subproc1.Process u ∃subproc2.Process
u ∃time, (subproc1 time).contained u ∃(subproc1 time), (subproc2 time). =

Obviously, concrete domains must be taken into account when checking the satisfia-
bility of concepts. If, for example, we take the conjunction of the above concept with
the concept ∃time, (subproc2 time).disjoint stating that the running time of the second



2.3 Description Logics with Concrete Domains 25

subprocess is disjoint from the running time of the mother process, then we obtain a
concept that is inconsistent due to the interplay of concrete domain predicates. Let
us now make things more precise.

Definition 2.8. A concrete domain D is a pair (∆D,ΦD), where ∆D is a set and ΦD
a set of predicate names. Each predicate name P ∈ ΦD is associated with an arity n
and an n-ary predicate PD ⊆ ∆n

D. Let V be a set of variables. A predicate conjunction
of the form

c =
∧
i<k

(x(i)
0 , . . . , x(i)

ni ) : Pi,

where Pi is an ni-ary predicate for i < k and the x(i)
j are variables from V, is called

satisfiable iff there exists a function δ mapping the variables in c to elements of ∆D
such that (δ(x(i)

0 ), . . . , δ(x(i)
ni )) ∈ PDi for i ≤ k. Such a function is called a solution

for c. A concrete domain D is called admissible iff

1. its set of predicate names is closed under negation and contains a name >D for
∆D and

2. the satisfiability problem for finite conjunctions of predicates is decidable.

By P , we denote the name for the negation of the predicate P , i.e., if the arity of P
is n, then P

D = ∆n
D \ PD. 3

In what follows, we refer to the satisfiability of finite conjunctions of predicates from a
concrete domain D as D-satisfiability. The basic Description Logic equipped with con-
crete domains is ALC(D)—the extension of ALC with a concrete domain D [Baader &
Hanschke 1991a]. It is important to note that the concrete domain D is not fixed but
rather a parameter to the DL. In the following, we introduce ALC(D) in detail since
all logics with concrete domains considered in this thesis are extensions of this logic.

Definition 2.9 (ALC(D) Syntax). Let NaF be a countably infinite subset of NR such
that NR \ NaF is also countably infinite. Elements of NaF are called abstract features.
Let NcF be a countable infinite set of concrete features such that NR ∩ NcF = ∅ and
NC ∩ NcF = ∅. A concrete path is a sequence f1 · · · fkg, where f1, . . . , fk ∈ NaF and
g ∈ NcF.

Let D be a concrete domain. ALC(D) is obtained from ALC by allowing the use of
the concrete domain constructor ∃u1, . . . , un.P and the undefinedness constructor g↑
in place of concept names, where g ∈ NcF, u1, . . . , un are concrete paths, and P ∈ ΦD
is a predicate with arity n.

Let Oc be a countably infinite set of concrete objects disjoint from the set of
abstract objects Oa. Let C be an ALC(D)-concept, R ∈ NR a role (possibly an
abstract feature), g a concrete feature, a ∈ Oa, x1, . . . , xn ∈ Oc, and P ∈ ΦD with
arity n. Then

a : C, (a, b) : R, (a, x) : g, and (x1, . . . , xn) : P

are ALC(D)-assertions. An ALC(D)-ABox is a finite set of ALC(D)-assertions. 3



26 Chapter 2. Preliminaries

We use u↑ as an abbreviation for ∀f1. · · · .∀fk.g↑ if u = f1 · · · fkg is a concrete path. In
the sequel, we denote concrete features by g, concrete paths by u, and concrete objects
by x and y. The presented syntax of the concrete domain constructor is different
from Baader and Hanschke’s who write P (u1, . . . , un) instead of ∃u1, . . . , un.P . The
semantics of the additional constructors illustrate how concrete domains are integrated
into the Description Logic.

Definition 2.10 (ALC(D) Semantics). AnALC(D)-interpretation I is a pair (∆I , ·I),
where ∆I is a non-empty set called the abstract domain and ·I is an interpretation
function that maps

• every concept name A to a subset AI of ∆I ,

• every role name R to a binary relation RI over ∆I ,

• every abstract feature f to a partial function fI from ∆I to ∆I , and

• every concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 · · · fkg is a concrete path, then uI is defined as the composition of the path’s
components: gI(fIk (· · · (fI1 (·)))). The semantics of the additional concept constructors
is as follows:

(∃u1, . . . , un.P )I := {d ∈ ∆I | There exist x1, . . . , xn such that
uIi (d) = xi for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ PD}

(g↑)I := {d ∈ ∆I | gI(d) undefined}

Interpretations I are straightforwardly extended to ABoxes, i.e., I maps each a ∈
Oa to an element aI of ∆I and each x ∈ Oc to an element xI of ∆D. Since the
interpretation of assertions a : C and (a, b) : R is already given in Definition 2.7, we
only need to deal with the additional kinds of assertions: I satisfies

(a, x) : g iff gI(aI) = xI

(x1, . . . , xn) : P iff PD(xI1 , . . . , x
I
n). 3

According to our definition, ALC(D) provides for two different types of features: ab-
stract and concrete ones. In contrast, Baader and Hanschke’s original version of
ALC(D) offers only a single type of feature that is interpreted as a partial function
from ∆I to ∆I ∪ ∆D. Our logic is slightly less expressive than Baader and Han-
schke’s since, in our version, the “range” of features is fixed and expressions such as
∃f.C t ∃f.P are not well-formed concepts. However, in knowledge representation it
seems rather hard to find any cases in which the additional expressiveness is really
needed. Furthermore, concepts like ∃f.C t ∃f.P from Baader and Hanschke’s logic
can be “simulated” by writing

(∃f.C u g↑) t (∀f.⊥ u ∃g.P ).

We keep concrete and abstract features separated since this allows a clearer algorithmic
treatment and clearer proofs. Another difference to Baader and Hanschke’s logic is
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the presence of the undefinedness constructor g↑. Since we assume abstract and
concrete features to be separated, this constructor is necessary to ensure that every
ALC(D)-concept can be converted into an equivalent one in negation normal form
(see Chapter 3).

For examples of ALC(D)-concepts, we refer to the beginning of this section: all
examples given there are in fact ALC(D)-concepts. Concrete domains have no direct
counterpart in Modal Logic or other areas of mathematical logic but appear rather
frequently as a part of Description Logics. Although Baader and Hanschke presented
the first rigorous treatment of concrete domains in 1991, many early DL reasoners
like meson [Edelmann & Owsnicki 1986] or classic [Brachman et al. 1991] provided
for more or less elaborate means to deal with “concrete domains” even before 1991.
Baader and Hanschke’s approach was implemented in the Taxon system [Abecker et
al. 1991]. More recent Description Logics with concrete domains include the following:

• In [Baader & Sattler 1998], an extension of ALC(D) with aggregation functions
is defined. More precisely, Baader and Sattler allow concrete domains to provide
for aggregation functions like max and sum which can then be used to construct
complex concrete features. The main motivation for integrating aggregation
functions is to allow reasoning about database schemas.

• Kamp and Wache describe a Description Logic called CTL which is mainly a
combination of Description Logics and constraint logic programming (CLP)
[Kamp & Wache 1996]. The combination is realized using concept constructors
rather similar to the concrete domain concept constructor. The authors moti-
vate their logic by showing that it is a powerful tool for reasoning about technical
devices.

• Very recent proposals combine general TBoxes with extremely restricted forms
of concrete domains. In [Horrocks & Sattler 2001], only unary concrete domain
predicates are admitted in an otherwise very expressive logic that is motivated as
a tool for reasoning about ontologies. In [Haarslev et al. 2001], a slightly more
general approach is pursued: predicates of arbitrary arity are admitted but
only concrete features instead of paths may be used inside the concrete domain
constructor. As in the previously mentioned approach, the restriction serves
the purpose of allowing an easy combination of concrete domains with a very
expressive Description Logic. We will return to both approaches in Section 2.4.1.

Two additional extensions of ALC(D) will be discussed in Section 2.3.2.

The complexity of Description Logics with concrete domains has, until now, not
been investigated in any detail. Baader and Hanschke only show that satisfiability
of ALC(D)-concepts and consistency of ALC(D)-ABoxes is decidable if the concrete
domain D is admissible [1991a]. Admissibility of concrete domains is usually required
for devising general decision procedures, i.e., decision procedures that work for any
(admissible) concrete domain and not just for a fixed one. It is obvious that the
complexity of D-satisfiability is closely related to the complexity of ALC(D)-concept
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satisfiability: if D-satisfiability is hard for some complexity class C, then ALC(D)-
concept satisfiability is also hard for C. However, the converse obviously does not hold
in general. In Chapter 3, we prove that satisfiability of ALC(D)-concepts and con-
sistency of ALC(D)-ABoxes (both without reference to TBoxes) is PSpace-complete
if D is admissible and D-satisfiability is in PSpace. In subsequent sections, we add
TBoxes and more concept and role constructors and investigate the complexity of the
resulting logics. Let us jump ahead by saying that the addition of acyclic TBoxes
significantly increases complexity yet retaining decidability while, for many concrete
domains D, the addition of general TBoxes leads to undecidability.

There is an obvious syntactic similarity between the concrete domain construc-
tor of ALC(D) and the feature (dis)agreements of ALCF since both are defined
in terms of sequences of features. Indeed, as mentioned by Baader and Hanschke
[1991a], the introduction of the concrete domain constructor was motivated by feature
(dis)agreements. Moreover, we shall see later that both constructors can be treated
with similar algorithmic techniques and behave largely identically w.r.t. complexity
and decidability if combined with TBoxes and other role or concept constructors.
Throughout this thesis, the investigation of (extensions of) ALCF will thus be an
important side-track.

2.3.2 Extensions of ALC(D)

Although concrete domains have, until now, only rarely been combined with the stan-
dard Description Logic concept and role constructors mentioned in Section 2.1.2, sev-
eral extensions of and additions to the concrete domain part itself have been proposed.
Some of these extensions, such as the integration of aggregation functions, have already
been described in the previous section. In this section, we introduce two extensions
of ALC(D) in more detail since they are relevant for later chapters.

Generalized Concrete Domain Constructors

Hanschke [1992] proposed to extend ALC(D) in various directions: he adds (i) a
more general form of concrete domain constructor, (ii) so-called abstract predicates,
and (iii) feature (dis)agreements. We shall only introduce the generalized concrete
domain constructors here since abstract predicates are irrelevant for our purposes and
feature (dis)agreements have already been discussed in Section 2.1.2. The generalized
constructors allow the use of roles where the standard concrete domain constructor
allows only features. This extension makes it rather natural to introduce a universal
version of the concrete domain constructor as well.

Definition 2.11 (Syntax and semantics of ALCP(D)). A sequence U = R1 . . . Rkg
where R1, . . . , Rk ∈ NR and g ∈ NcF is called a role path. For an interpretation I,
UI is defined as

{(d, x) ⊆ ∆I ×∆D |∃d1, . . . , dk+1 : d = d1,
(di, di+1) ∈ RIi for 1 ≤ i ≤ k, and gI(dk+1) = x}.
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ALCP(D) is obtained from ALC(D) by allowing the use of concepts ∀U1, . . . , Un.P and
∃U1, . . . , Un.P in place of concept names, where P ∈ ΦD is of arity n and U1, . . . , Un
are role paths.

The semantics of the generalized concrete domain constructors is defined as follows:

(∀U1, . . . , Un.P )I := {d ∈ ∆I | For all x1, . . . , xn with (d, xi) ∈ UIi for 1 ≤ i ≤ n,
we have (x1, . . . , xn) ∈ PD}

(∃U1, . . . , Un.P )I := {d ∈ ∆I | There exist x1, . . . , xn with (d, xi) ∈ UIi for
1 ≤ i ≤ n and (x1, . . . , xn) ∈ PD} 3

In the following, we denote role paths by U . Obviously, every concrete path is
also a role path. Hence, the ∃U1, . . . , Un.P constructor of ALCP(D) is a general-
ization of the ∃u1, . . . , un.P constructor of ALC(D). For concrete paths u1, . . . , un,
the ALCP(D)-concept ∀u1, . . . , un.P is equivalent to the ALC(D)-concept u1↑ t · · · t
un.↑ t ∃u1, . . . , un.P . This is the reason why ALC(D) does not need a counterpart of
the ∀U1, . . . , Un.P constructor.

Satisfiability of ALCP(D)-concepts and consistency of ALCP(D)-ABoxes are de-
cidable if D is admissible [Hanschke 1992]. The generalized constructors are not just
syntactic sugar but truly increase the expressivity of the logic. For example, if we
do not want to fix the number of cylinders a diesel engine has, we have to relate the
engine to the cylinders using a role:7

Dieselengine u ∀cylinder.Cylinder

InALCP(D), we can now state that all cylinders of the engine have the same maximum
operating temperature by writing

∀(cylinder maxOpTemp), (cylinder maxOpTemp). = .

It is not hard to see that this construction is not possible without the generalized
constructors (nor can it easily be “simulated”). We investigate the complexity of
ALCP(D) in Chapter 5.

A Concrete Domain Role Constructor

The Description Logic ALCrp(D) introduced in [Haarslev et al. 1999] extends ALC(D)
with a constructor that allows the definition of roles with reference to the concrete
domain.

Definition 2.12 (ALCrp(D)). A predicate role is an expression of the form

∃(u1, . . . , un), (v1, . . . , vm).P

where u1, . . . , un and v1, . . . , vn are concrete paths and P is an n + m-ary predicate.
The semantics is given as follows:

(∃(u1, . . . , un), (v1, . . . , vm).P )I :=
{(d, e) ∈ ∆I ×∆I | There exist x1, . . . , xn and y1, . . . , yn

such that uIi (d) = xi for 1 ≤ i ≤ n, vIi (d) = yi for 1 ≤ i ≤ m, and
(x1, . . . , xn, y1, . . . , ym) ∈ PD}

7If we had a fixed number k of cylinders, we could use abstract features cylinder1, . . . , cylinderk.
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ALCrp(D) is obtained from ALC(D) by allowing the use of predicate roles in place of
role names from NR \ NaF. 3

In [Lutz & Möller 1997], it is proved that there exists a large class of concrete do-
mains D such that satisfiability of ALCrp(D)-concepts is undecidable. However, in
[Haarslev et al. 1999] a fragment of ALCrp(D) is identified that is closed under nega-
tion, strictly extends ALC(D), and is decidable for all admissible concrete domains.
In the following, we introduce this fragment. To do so, we need a way to convert
ALCrp(D)-concepts into equivalent ones in NNF. This conversion is done by exhaus-
tively applying the rewrite rules from Definition 2.3.1 together with the following
ones:

¬(∃u1, . . . , un.P ) ; ∃u1, . . . , un.P t u1↑ t · · · t un↑
¬(g↑) ; ∃g.>D

Definition 2.13 (Restricted ALCrp(D)-concept). An ALCrp(D)-concept C is cal-
led restricted iff the result C ′ of converting C to NNF satisfies the following conditions:

1. For any ∀R.D ∈ sub(C ′), where R is a predicate role,

(a) sub(D) does not contain any concepts ∃S.E with S a predicate role, and

(b) if sub(D) contains a concept ∃u1, . . . , un.P , then u1, . . . , un ∈ NcF.

2. For any ∃R.D ∈ sub(C ′), where R is a predicate role,

(a) sub(D) does not contain any concepts ∀S.E with S a predicate role, and

(b) if sub(D) contains a concept ∃u1, . . . , un.P , then u1, . . . , un ∈ NcF.
3

It is easily seen that the set of restricted ALCrp(D)-concepts is closed under negation.
Hence, subsumption of restricted ALCrp(D)-concepts can still be reduced to satisfia-
bility of restricted ALCrp(D)-concepts (and vice versa). Since all ALCrp(D)-concepts
we use in this thesis (also inside TBoxes and ABoxes) are restricted, in what follows
we simply write “ALCrp(D)-concept” for “restricted ALCrp(D)-concept”.

Let us demonstrate the expressive power of predicate roles by using a temporal
concrete domain to model a process. The concept

Process u ∀(∃(time), (time).overlaps).¬Dangerous-Process

describes processes that do not temporally overlap any dangerous processes. Here,
∃(time), (time).overlaps is a predicate role. Unrestricted ALCrp(D) with a temporal
concrete domain based on time intervals is very closely related to the (undecidable)
Modal Logic of time intervals presented by Halpern and Shoham [1991]. This logic is
discussed in more detail in Section 6.3. The complexity of reasoning with (restricted)
ALCrp(D) is investigated in Chapter 5.
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2.4 Examples of Concrete Domains

All example ALC(D)-concepts that we presented so far depended on the intuition
of the reader in that we used predicates from several concrete domains without ever
introducing them formally. In this section, we present a selection of useful concrete
domains ranging from rather inexpressive to very expressive. The description of each
concrete domain D is accompanied by some examples and a brief discussion of the
complexity of D-satisfiability.

2.4.1 Unary Concrete Domains and ALCf(D)

We call a concrete domain D unary if all predicates P ∈ ΦD are unary. Unary
concrete domains offer only very limited expressive power but have the advantage that
existing DL reasoning algorithms can rather easily be extended to take such concrete
domains into account. Despite their limited expressivity, unary concrete domains are
of interest in several application areas such as reasoning about ontologies [Horrocks &
Sattler 2001].

Let us introduce a typical unary concrete domain. The concrete domain E is
defined by setting

∆E := N (i.e., the naturals)
ΦE := {>E,⊥E} ∪ {Pr | P ∈ {=, 6=, <,>,≤,≥} and r ∈ ∆E}

where all predicates are unary and have the obvious extension. For example,

(≥4)D = {r ∈ Q | r ≥ 4}.

It is readily checked that E is admissible: the extension of >E is ∆E, ΦE is clearly
closed under negation, and it is straightforward to devise a polynomial time algorithm
for deciding E-satisfiability. What kind of expressivity is offered by the Description
Logic ALC(E)? Since all predicates are unary, E allows to describe concrete values
attached to elements of the abstract domain via concrete features but it does not
allow to describe the relationship between such concrete values. For example, the
ALC(E)-concept

Engine u (∃weight. ≥200 u ∃power. ≥50)

describes an engine that weights at least 200kg and whose power is at least 50PS (we
assume that units are fixed). However, using ALC(E), it is impossible to relate, say,
the weight of the engine to the weight of its carburettor.

In [Haarslev et al. 2001], a Description Logic with concrete domains is presented
that admits only concrete features inside the concrete domain constructor instead of
concrete paths. This restriction serves the purpose of allowing an easy extension of
reasoning algorithms for expressive Description Logics to take into account concrete
domains. It is not hard to see that there exists a close connection between unary
concrete domains and the described restriction of the concrete domain constructor.
More precisely, in the case of unary concrete domains, the mentioned restriction can
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be made without loss of generality since ∃u.P can be replaced with ∃f1. · · · .∃fk.∃g.P
for u = f1 . . . fkg.

As already noted, the use of unary concrete domains does not significantly enhance
the expressive power of ALC, and the same holds for the restricted concrete domain
constructor. We illustrate this by (re)proving decidability of ALCf(D)-concept satisfi-
ability w.r.t. general TBoxes, where ALCf(D) is obtained from ALC(D) by restricting
the concrete domain constructor to concrete features in place of concrete paths. The
weakness of the restricted concrete domain constructor is illustrated by the proof itself
rather than by the result: it shows that, intuitively, the restricted concrete domain
constructor can be “simulated” by concept names.

For the proof, it is convenient to assume the input concept and TBox to be in
negation normal form. Every ALCf(D)-concept C and TBox T can be transformed
into an equivalent one in NNF using the rewrite rules from Definition 2.3.1 together
with the following ones:

¬(∃g1, . . . , gn.P ) ; ∃g1, . . . , gn.P t g1↑ t · · · t gn↑
¬(g↑) ; ∃g.>D

We can now prove the decidability result.

Theorem 2.14. If D is an admissible concrete domain, then satisfiability of ALCf(D)-
concepts w.r.t. general TBoxes is decidable.

Proof. We prove the theorem by reducing satisfiability of ALCf(D)-concepts w.r.t.
TBoxes to satisfiability ofALC-concepts w.r.t. TBoxes. Let C be anALCf(D)-concept
and T be a TBox whose satisfiability is to be decided. W.l.o.g., we assume that C
and T are in NNF and that all concept equations in T are of the form D

.= >. The
latter can be done since any concept equation D

.= E can be rewritten as (D u E) t
(¬D u ¬E) .= >.

Define the set of “relevant” concrete domain concepts as

Γ := {∃g1, . . . , gk.P | ∃g1, . . . , gk.P occurs in C or T }.

Now define the set Ψ ⊆ 2Γ as follows:

Ψ := {Φ | Φ ⊆ Γ and
∧

∃g1,...,gk.P∈Φ

P (xg1 , . . . , xgk) is unsatisfiable}

where xg is a variable for each g ∈ NcF. Intuitively, each element of Ψ describes an
inconsistent “configuration” of relevant concrete domain concepts, i.e., a configuration
that cannot appear in models of C and T . For each D ∈ Γ, let AD be a concept name
not occurring in C or T . Similarly, for each concrete feature g appearing in C and T ,
let Bg be a concept name not appearing in C and T . If D is an ALCf(D)-concept,
then we use D$ to denote the result of replacing each subconcept

1. ∃g1, . . . , gk.P of D with A∃g1,...,gk.P and

2. each subconcept g↑ of D with ¬Bg.
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Analogously, if T is an ALCf(D)-TBox, then we use T $ to denote the result of
replacing every concept D in T with D$. Intuitively, the concepts AD are surrogates
for the concrete domain constructor, and the concepts Bg represent the presence of
successors for concrete features g. Define a new TBox T ′ as follows:

T ′ := T $ ∪
{
> .= u

Φ∈Ψ
¬u
D∈Φ

AD , > .= u
∃g1,...,gk.P∈Γ

(
A∃g1,...,gk.P → Bg1 u · · · uBgk

)}
We claim that C is satisfiable w.r.t. T iff C$ is satisfiable w.r.t. T ′. First for the
“if” direction. Let I be a model of C$ and T ′. For every d ∈ ∆I , define a predicate
conjunction

ζd :=
∧

A∃g1,...,gk.P with d∈(A∃g1,...,gk.P )I

P (xg1 , . . . , xgk).

Since it follows from the definition of Ψ and T ′ that ζd is satisfiable, we may fix a
solution δd. Define an ALCf(D)-interpretation J by setting

• ∆J := ∆I ,

• AJ := AI for A ∈ NC,

• RJ := RI for R ∈ NR, and

• gJ (d) := δd(xg) if xg appears in ζd for g ∈ NcF and d ∈ ∆J .

It is straightforward to check by structural induction that, for all d ∈ ∆I and
D ∈ sub(C, T ), d ∈ (D$)I implies d ∈ DJ (it is crucial here that C and T are in
NNF). Since all concept equations in T are of the form D

.= >, this implies that J is
a model of C and T .

For showing the “only if” direction, it is straightforward to convert models I of C
and T into models J of C$ and T ′ by setting (A∃g1,...,gk.P )J := (∃g1, . . . , gk.P )I for
all surrogates A∃g1,...,gk.P and BJg := (¬g↑)I for all concepts Bg. ❏

Note that we were able to obtain this result only since we considered the restricted
concrete domain constructor: the semantics of the general constructor involves more
than a single domain element and also their relationship via abstract features. This
complex semantics cannot be simulated using concept names. As we shall see in
Chapter 6, satisfiability of ALC(D)-concepts w.r.t. general TBoxes is in many cases
undecidable.

The above proof illustrates that the restricted concrete domain constructor does
not significantly add to the expressive power of ALC. It does, however, not provide us
with a tight upper complexity bound: a lower ExpTime-bound stems from ALC with
general TBoxes [Schild 1991], but the algorithm induced by the proof needs double
exponential time in the worst case since the size of T ′ may be exponential in the
size of C and T . To close this gap, we sketch another decision procedure that is
less illustrative w.r.t. expressivity but yields an ExpTime upper bound for ALCf(D)-
concept satisfiability.
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Theorem 2.15. Let D be an admissible concrete domain.

1. If D-satisfiability is in ExpTime, then satisfiability of ALCf(D)-concepts w.r.t.
general TBoxes is ExpTime-complete.

2. If D-satisfiability is in C ∈ {NExpTime,ExpSpace}, then the satisfiability of
ALCf(D)-concepts w.r.t. general TBoxes is also in C.

Proof. We prove the upper bounds using a standard elimination technique from
Modal Logic that can, e.g., be found in [Halpern & Moses 1992; Spaan 1993a]. First
for Point 1 of the theorem: fix a concrete domain D for which D-satisfiability is in
ExpTime. Let C be an ALCf(D)-concept and T an ALCf(D)-TBox, both in NNF.
A concept type t for (C, T ) is a maximal subset of sub(C, T ) such that

1. ¬A ∈ t iff A /∈ t for all ¬A ∈ sub(C, T ),

2. D1 uD2 ∈ t iff D1, D2 ∈ t for all D1 uD2 ∈ sub(C, T ),

3. D1 tD2 ∈ t iff D1 ∈ t or D2 ∈ t for all D1 tD2 ∈ sub(C, T ),

4. D1 ∈ t iff D2 ∈ t for all D1
.= D2 ∈ T ,

5. if ∃g1, . . . , gk.P ∈ t, then {g1↑, . . . , gk↑} ∩ t = ∅, and

6.
∧

(∃g1,...,gk.P )∈t

P (xg1 , . . . , xgk) is satisfiable (where xg is a variable for each g ∈ NcF).

We use T to denote the set of all concept types for (C, T ) and n as an abbreviation
for |C|+ |T |. Obviously, |T | ≤ 2|sub(C,T )| and hence |T | ≤ 2n. Moreover, T can be con-
structed in time exponential in n since D-satisfiability can be decided in exponential
time.

The set T is the starting point for the satisfiability algorithm to be devised: the
algorithm first computes T and then repeatedly deletes concept types that, intuitively,
cannot be “instantiated”. More precisely, the algorithm computes a sequence of sets
of concept types T = T0 ⊇ T1 ⊇ T2 ⊇ · · · as follows:

Ti := Ti−1 \
(
{t ∈ Ti−1 | there exists (∃R.D) ∈ t with R ∈ NR \ NaF s.t. there

is no t′ ∈ Ti−1 with {D} ∪ {E | (∀R.E) ∈ t} ⊆ t′} ∪

{t ∈ Ti−1 | there exists an (∃f.D) ∈ t with f ∈ NaF s.t. there is no
t′ ∈ Ti−1 with {E | (∀f.E) ∈ t or (∃f.E) ∈ t} ⊆ t′}

)
.

The algorithm terminates iff Tk = Tk−1. It returns satisfiable if there is some t ∈ Tk
with C ∈ t and unsatisfiable otherwise.

We now prove the correctness of the algorithm. If it returns satisfiable, we may use
the set Tk to define a model I of C w.r.t. T . Assume an ordering on the set of types
Tk and fix a solution δt for each predicate conjunction ζt corresponding to a type t as
in Point 6 above. Then I is defined as follows:
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• ∆I := Tk,

• AI := {t | A ∈ t} for all A ∈ NC,

• RI := {(t, t′) | (∀R.D) ∈ t implies D ∈ t′} for all R ∈ NR \ NaF,

• fI(t) := t′ if t′ is the minimal type (w.r.t. the assumed ordering) satisfying
{D | (∃f.D) ∈ t or (∀f.D) ∈ t} ⊆ t′,

• gI(t) := δt(xg) if xg occurs in ζt.

Concerning the definition of fI , note that, if t contains no concept of the form ∃f.D,
then there may exist no type t′ as required and hence fI may be undefined. It is
straightforward to show by structural induction that D ∈ t implies t ∈ DI for all
t ∈ Tk and D ∈ sub(C, T ). It follows that I is a model of C w.r.t. T .

On the other hand, if there is a model I of C and T , then the algorithm returns
satisfiable. This may be proved by showing that concept types t for which there exists
a d ∈ ∆I such that t = {D ∈ sub(C, T ) | d ∈ DI} are never deleted (using induction
on the number k of steps made by the algorithm). It then follows immediately that
there exists a t ∈ Tk with C ∈ t.

Since |T | ≤ 2n and at least one type is eliminated in each elimination round,
the algorithm clearly stops after at most 2n rounds. Together with the fact that
the initial set of types T can be constructed in time exponential in n, we thus have
proved an ExpTime upper bound for ALCf(D)-concept satisfiability w.r.t. general
TBoxes for the case that D-satisfiability is in ExpTime. Together with the ExpTime

lower bound for ALC-concept satisfiability w.r.t. general TBoxes from [Schild 1991],
we obtain Point 1 of the Theorem.

Now let D-satisfiability be in C ∈ {NExpTime,ExpSpace}. Since the number
of D-satisfiability tests performed by the above algorithm is at most exponential in
n and the size of each tested conjunction is linear in n, it is straightforward to check
that ALC(D)-concept satisfiability w.r.t. TBoxes is in C.

❏

Since lower complexity bounds transfer from D-satisfiability to ALCf(D)-concept sat-
isfiability, this theorem yields tight complexity bounds if D-satisfiability is NExp-

Time-complete or ExpSpace-complete.
Both algorithms sketched above can presumably not be efficiently implemented in

DL systems as demanded at the beginning of this chapter. It is, however, not hard to
devise a tableau algorithm for ALC(D) with general TBoxes if D is unary or if the con-
crete domain constructor is restricted to concrete features [Horrocks & Sattler 2001;
Haarslev et al. 2001]. As already mentioned, tableau algorithms are usually amenable
to optimizations and well-suited for implementation. This nice behaviour of the re-
stricted concrete domain constructor is investigated in [Baader et al. 2002a], where it
is explained by the fact that the extension of a Description Logic L with the restricted
concrete domain constructor can be viewed as the “fusion” of L with a rather trivial
logic. Fusions of Description Logics are discussed in some more detail in Section 5.6.
We did not use a tableau algorithm in this section since, as demonstrated by Donini
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and Massacci in [2000], tableau algorithms are a rather bad tool for establishing Ex-

pTime upper bounds. It is out of scope to also investigate the complexity of ABox
consistency here, but we conjecture that the complexity of this problem is identical
to the complexity of concept satisfiability.

2.4.2 Expressive Concrete Domains

We now present an example from the other end of the expressivity spectrum of concrete
domains. The rather expressive concrete domain R, which was first proposed by
Baader and Hanschke in [1991a], is based on the first order theory of real closed fields
or, in other words, on Tarski algebra [Tarski 1951]. Formally, it is defined as follows:

• the set ∆R is R and

• the set ΦR of predicates is built by first order means (i.e., by using logical
connectives and quantifiers) from equalities and inequalities (using =, 6=, <, >,
≤, or ≥) between integer polynomials in several indeterminates.

It is not hard to check that ΦR is closed under negation and contains a predicate for
∆R (e.g., x = x). Since logical conjunction is available for building complex predicates,
satisfiability of finite conjunctions of R-predicates can be reduced to satisfiability of
single R-predicates. It was shown in [Mayr & Meyer 1982] that this problem, i.e.,
satisfiability of formulas in the first order theory of real closed fields, is ExpSpace-
complete. Summing up, we can conclude that R is admissible.

In [Baader & Hanschke 1992], the appropriateness of ALC(R) for modelling rota-
tional-symmetric workpieces of CNC lathe machines is demonstrated. Indeed, ALC(R)
seems very appropriate for defining concepts related to geometry and stereometry. For
example, we can describe the edge ratio in right-angled triangles by writing

∃edge1, edge2, edge3.x2 + y2 = z2.

Here, x2 + y2 = z2 is a ternary predicate from ΦR with first argument x, second
argument y, and third argument z. Analogously, we can describe the surface of a
cube as

∃edgelength, surface.y = 6x2.

Note that R allows to assign precise values to concrete feature successors by using
predicates such as x = 3. However, R also has several limitations w.r.t. expressivity.
For example, we cannot define a predicate stating “x ∈ N” or “x ∈ Z” since this would
allow to express Hilbert’s tenth problem using an R-predicate thus contradicting the
decidability of R-satisfiability [Davis 1973].

We obtain tight complexity bounds for the satisfiability of ALC(R)-concepts in a
more general setting in Chapters 3 (without TBoxes) and 5 (with acyclic TBoxes).

2.4.3 Temporal Concrete Domains

During the last 10 years, various approaches to temporal reasoning with Description
Logics have been proposed [Artale & Franconi 2001]. An important one is to use a
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Description Logic with a temporal concrete domain, which has first been suggested
in [Lutz et al. 1997]. In this section, we introduce several such temporal concrete
domains.

When defining a temporal logic, several ontological decisions have to be made. For
example, a temporal structure needs to be fixed and one has to choose whether time
points or time intervals are the basic temporal entity [Gabbay et al. 1994; Gabbay
et al. 2001]. In this thesis, a temporal structure is a set T equipped with a a strict
total ordering ≺. The elements of T are called time points. An interval over T is
a pair (t1, t2) of elements of T such that t1 ≺ t2. Hence, we consider linear time
(as opposed to branching time) with either bounded or unbounded past and future.
In this section, we generally use the temporal structure (R, <) for defining concrete
domains. However, all concrete domains can also be defined with other structures
such as (N, <), (Z, <), or even ({0, . . . , 10}, <).

Let us start with defining a concrete domain P that uses points as its basic temporal
entity. Set

∆P := R

ΦP := {>P,⊥P,=, 6=, <,>,≤,≥}

where >P and ⊥P are unary predicates, the other predicates are binary, and all predi-
cates have the obvious meaning induced by the usual total ordering “<” on the reals.
Obviously, ΦP contains a predicate for ∆P and is closed under negation. As follows
from results in [van Beek & Cohen 1990; Ladkin & Maddux 1994], P-satisfiability is de-
cidable in deterministic polynomial time, and hence P is admissible. Using P, we can
define the concept

Process u ∃start, (subprocess start).<

describing processes which have a subprocess that starts after the start of the “mother”
process.

Let us now define an interval-based concrete domain. The main advantage of
interval-based concrete domains over point-based ones is that the former provide for a
richer set of predicates. More precisely, we define a concrete domain I that is based on
the set of 13 interval relations usually referred to as Allen relations [Allen 1983]. The
Allen relations describe the relationship between any two intervals over some temporal
structure and can be defined in terms of the interval endpoints. We refer to [Allen
1983] for such a definition and confine ourselves to the graphical presentation of the
relations given in Figure 2.7. In what follows, we denote the set of Allen relations
by A. Let (T,≺) be a temporal structure. The set A has several important properties
of which we state two explicitly:

• it is exhaustive, i.e., for each t1, t2 ∈ T , there exists at least one r ∈ A such that
t1 r t2;

• the relations are mutually exclusive, i.e., for each t1, t2 ∈ T , there exists at most
one r ∈ A such that t1 r t2.
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black before gray
gray after black

black meets gray
gray met-by black

black overlaps gray
gray overlapped-by black

black during gray
gray contains black

black starts gray
gray started-by black

black finishes gray
gray finished-by black

Figure 2.7: The Allen relations (without equal).

The concrete domain I is based on the reals and defined as follows:

∆I := {(t1, t2) | t1, t2 ∈ R and t1 < t2}
ΦI := {>I,⊥I, equals, before, after,meets,met-by, overlaps, overlapped-by, during,

contains, starts, started-by, finishes, finished-by,

nequals, nbefore, nafter, nmeets, nmet-by, noverlaps, noverlapped-by, nduring,

ncontains, nstarts, nstarted-by, nfinishes, nfinished-by}

Again, >I and ⊥I are the only unary predicates and all other predicates are binary.
The binary predicates not prefixed with “n” are interpreted as the corresponding Allen
relations and the predicates that are prefixed with “n” are interpreted as the negation
of the corresponding Allen relations.

Let us analyze the complexity of I-satisfiability. A generalized Allen relation is
a disjunction r1 ∨ · · · ∨ rk, where each ri is one of the 13 Allen relations introduced
previously. To distinguish them from the generalized relations, we sometimes call the
13 relations base relations. Note that the predicates in ΦI starting with “n” correspond
to generalized relations, e.g., nbefore corresponds to

after ∨meets ∨met-by ∨ overlaps ∨ overlapped-by ∨ during

∨contains ∨ starts ∨ started-by ∨ finishes ∨ finished-by.

In the area of qualitative temporal reasoning, so-called interval algebra networks
(IANs) are used to describe temporal configurations [van Beek & Cohen 1990]. An
IAN is a directed graph whose edges are labeled with generalized Allen relations and
it is satisfiable iff there exists a function mapping each node to an interval over R (i.e.,
to an element of ∆I) such that the edge labels are “respected”. We will determine
the complexity of I-satisfiability by using results concerning IAN-satisfiability. It is
easily seen that I-satisfiability can be reduced to the satisfiability of IANs. The con-
verse does also hold if only relations from ΦI are admitted as IAN-edge labels. This
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restriction is important since the complexity of IAN-satisfiability depends on which
generalized relations are allowed as edge labels. If all generalized relations are admit-
ted, IAN-satisfiability is known to be NP-complete [Vilain et al. 1990]. This clearly
implies that I-satisfiability is in NP. Moreover, I-satisfiability is NP-hard since (i)
the ORD-Horn class of generalized Allen relations defined by Nebel and Bürckert
does not contain all the relations corresponding to predicates in ΦI and (ii) Nebel and
Bürckert show that ORD-Horn is the unique greatest class of generalized relations
that contains all 13 base relations and for which IAN-satisfiability is tractable [1995].
Given the NP-completeness, it is easy to check that I is admissible.

As an example for knowledge representation with ALC(I), consider the ALC(I)-
concept

Process
u ∃(subp1 time), (subp2 time).before
u ∃(subp2 time), (subp3 time).before
u
(
∃(subp1 time), (subp3 time).overlaps t ∃(subp1 time), (subp3 time).meets

)
describing a process with three subprocesses and the temporal relation between these
subprocesses. The third conjunct of this concept demonstrates that there is no
need to introduce additional generalized Allen relations into the concrete domain
since this would not enhance the expressivity of the language. For example, we
can replace ∃u1, u2.overlaps∨meets (where overlaps∨meets is from a fictitious con-
crete domain providing predicates for generalized relations) by the ALC(I)-concept
∃u1, u2.overlapst ∃u1, u2.meets. Moreover, the concept illustrates that the Allen rela-
tions have rich relational properties that must be taken into account for reasoning: if
the first subprocess is before the second one and the second subprocess is before the
third one, then it can neither be the case that the first subprocess overlaps the third
one nor that the first subprocess meets the third one. Hence, the above concept is
unsatisfiable.

It is interesting to note that, despite the different complexity of P-satisfiability
and I-satisfiability, ALC(P) has just the same expressivity as ALC(I). We illus-
trate this by sketching a straightforward reduction of ALC(P)-concept satisfiability to
ALC(I)-concept satisfiability and vice versa (again, we do not define a formal notion
of expressivity since this is out of the scope of this thesis).

1. Let C be an ALC(P)-concept. A corresponding ALC(I)-concept C∗ is obtained
from C by replacing

∃u.>P with ∃u.>I ∃u.⊥P with ∃u.⊥I

∃u1, u2.< with ∃u1, u2.before ∃u1, u2.> with ∃u1, u2.after
∃u1, u2.= with ∃u1, u2.equals
∃u1, u2.6= with ∃u1, u2.before t ∃u1, u2.after
∃u1, u2.≤ with ∃u1, u2.before t ∃u1, u2.equals
∃u1, u2.≥ with ∃u1, u2.after t ∃u1, u2.equals

It is not hard to see that models of C can be straightforwardly translated into
models of C∗ and vice versa.
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2. Let C be an ALC(I)-concept. We define a corresponding ALC(P)-concept C∗

such that models of C can be easily translated into models of C∗ and vice
versa. For every path u = f1 . . . fkg in C, we use two paths u` = f1 · · · fkg` and
ur = f1 · · · fkgr in C∗. Intuitively, u` describes the left endpoint of the interval
described by u and ur describes the right endpoint. The concept C∗ is obtained
from C by replacing

• ∃u.>I with ∃u`.>P u ∃ur.>P,

• ∃u.⊥I with ∃u`.⊥P u ∃ur.⊥P,

• ∃u1, u2.r, where r is a base relation, with a concept expressing (1) the rela-
tionship between left and right endpoints of intervals and (2) the relation r
in terms of endpoints, and

• ∃u1, u2.nr, where r is a base relation, with t
r′∈A\{r}

(∃u1, u2.r
′)∗.

For example,

∃u1, u2.after is replaced with ∃u`1, ur1.< u ∃u`2, ur2.< u ∃u`1, ur2.>.

and
∃u1, u2.nbefore is replaced with t

r′∈A\{before}
(∃u1, u2.r

′)∗.

Again, it is easy to prove that C∗ is as required.

We will pick up the theme of temporal reasoning with Description Logics again in
Chapter 6 where more modelling examples and a thorough discussion of related ap-
proaches are presented.

There exists a close and important relative of the concrete domain I whose ex-
istence should at least be mentioned here: in qualitative spatial reasoning, a set
of 8 relations called RCC-8 is used to describe the relationship between regions in
(topological) space [Randell et al. 1992; Bennett 1997]. In several aspects, such as
exhaustiveness and mutual exclusiveness, these relations resemble the Allen relations.
Hence, it is natural to define a concrete domain based on RCC-8 in analogy to the
definition of I. We cannot go into more detail here and refer to [Haarslev et al. 1999]
for a formal definition of such a spatial concrete domain. In general, it seems that the
concrete domain I and the RCC-8 based concrete domain “behave” rather similarly,
i.e., results for a Description Logics L equipped with the concrete domain I also hold
for the Description Logic obtained from L by replacing the concrete domain I with
the RCC-8 based concrete domain and vice versa.



Chapter 3

Reasoning with ALCF(D)

This chapter is devoted to establishing tight complexity bounds for reasoning with the
basic Description Logic with concrete domains, ALC(D). In [1991a], Baader and Han-
schke devise a tableau algorithm that decides ALC(D)-concept satisfiability (provided
that the concrete domain D is admissible) and needs both exponential time and expo-
nential space in the worst case. Hence, the upper complexity bound induced by this
algorithm does not match the known PSpace lower bound which stems from ALC-
concept satisfiability [Schmidt-Schauß & Smolka 1991]. In this chapter, we develop a
tableau algorithm that is similar to the one of Baader and Hanschke but uses the
tracing technique from [Schmidt-Schauß & Smolka 1991] to reduce the space require-
ment. This algorithm yields a PSpace upper bound for ALC(D)-concept satisfiability
if D is admissible and D-satisfiability is in PSpace. We then use the precompletion
technique from [Hollunder 1996] to extend the PSpace upper bound to ABox con-
sistency. For both concept satisfiability and ABox consistency, we assume that no
TBoxes are present, since, as we shall prove in Chapter 5, the presence of the rather
weak acyclic TBoxes is already sufficient to make concept satisfiability NExpTime-
hard for a large class of concrete domains. When using the tracing technique, which
is explained in detail below, we need to take special care of the fact that sequences of
features may be used inside the concrete domain constructor. It turns out that the
necessary adaptations are quite similar to the ones needed for the Description Logic
ALCF [Hollunder & Nutt 1990]. Because of this and because we treat the complexity
of (extensions of) ALCF as a side-track in this thesis, we prove the afore mentioned
upper bounds for ALCF(D), i.e., for the extension of ALC with both concrete domains
and feature (dis)agreements.

3.1 Concept Satisfiability

In this section, we devise a tableau algorithm for deciding satisfiability of ALCF(D)-
concepts that needs at most polynomial space if D is admissible and D-satisfiability
is in PSpace. The algorithm also yields tight complexity bounds if D-satisfiability is
NExpTime-compete or ExpSpace-complete. Syntax and semantics of the Descrip-
tion Logic ALCF(D) are defined in the obvious way, see Sections 2.1.2 and 2.3.1.

41
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Note, however, that the feature (dis)agreement constructors take abstract paths as
arguments while the concrete domain constructor takes concrete paths as arguments.
Hence, feature (dis)agreements are not concerned with elements from the concrete do-
main. However, if the concrete domain provides for equality and inequality predicates,
it is obvious that we can express (dis)agreement of concrete paths using the concrete
domain constructor.

3.1.1 Overview

Since there exist rather different variants of tableau algorithms in Modal Logic and
First Order Logic, we call the family of tableau algorithms commonly used for Descrip-
tion Logics (including all tableau algorithms in this thesis) completion algorithms. The
reader is referred to [D’Agostino et al. 1999] for an overview over tableau algorithms
in general and to [Baader & Sattler 2000] for an overview over completion algorithms.
The closest relative in Modal Logic of completion algorithms are so-called labeled
tableaux [Goré 1999].

Completion algorithms are characterized by an underlying data structure, a set
of completion rules operating on this data structure, and a (possibly trivial) strategy
for applying the rules. In principle, a completion algorithm starts with an initial data
structure induced by the concept D whose satisfiability is to be decided and repeatedly
applies completion rules according to the strategy. Repeated rule application can
be thought of as making implicit knowledge explicit or as constructing a canonical
model for the input concept (represented in terms of the underlying data structure).
The algorithm stops if it encounters a contradiction or if no more completion rule is
applicable. It returns satisfiable iff the latter is the case and no obvious contradiction
was found, i.e., if the algorithm succeeds in constructing a model for the input concept.
Otherwise, it returns unsatisfiable.

If a PSpace upper bound is to be proved using a completion algorithm, some
additional efforts have to be made. To simplify discussion, let us consider the logic
ALC for the moment. A naive completion algorithm for ALC does not yield a PSpace

upper bound since there exist satisfiable ALC-concepts all of whose models are of
size exponential in the concept length [Halpern & Moses 1992]. Thus, an algorithm
keeping the entire (representation of a) model in memory needs exponential space in
the worst case. However, there exists a well-known way to overcome this problem:
the key observation is that canonical models I constructed by completion algorithms
are tree models, i.e., they have the form of a tree if viewed as a graph with ∆I the
set of vertices and

⋃
R∈NR

RI the set of edges. It is sufficient to consider only such
tree models since ALC has the tree model property, i.e., each satisfiable concept has
a tree model [Halpern & Moses 1992]. To check for the existence of tree models for
a given concept, we may try to construct one by performing depth-first search over
role successors keeping only paths of the tree model in memory. Since, in the case of
ALC, the length of paths is at most polynomial in the length of the input concept
[Halpern & Moses 1992], this technique—which is known as tracing [Schmidt-Schauß &
Smolka 1991]—yields an algorithm that needs at most polynomial space in the worst
case. Completion algorithms for ALC-concept satisfiability that use tracing are very
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f

f↓ff

f

Figure 3.1: A model of the ALCF(D)-concept f↓ff .

similar to the well-known K-world algorithm from Modal Logic [Ladner 1977].

The tracing technique has to be modified to deal with ALCF(D)-concepts since
it is not hard to see that ALCF(D) does not enjoy the tree model property: for
example, the concept f↓ff is satisfiable but has only non-tree models such as the
one in Figure 3.1. The failure of the tree model property is obviously due to the
feature (dis)agreement constructors and the “non-treen-shape” of models is due to
substructures that are exclusively comprised of features (and not of roles from NR \
NaF). Based on this observation, we define generalized tree models.

Definition 3.1 (Generalized Tree Model). Let I be a model of an ALCF(D)-
concept C and define a relation ∼ on ∆I as follows:

d ∼ e iff d = e or there exists an abstract path f1 · · · fk and domain elements
d0, . . . , dk ∈ ∆I such that d0 = d, dk = e, and either di+1 = fIi+1(di)
or di = fIi+1(di+1) for i < k.

It is easy to see that ∼ is an equivalence relation. By [d]∼, we denote the equivalence
class of d ∈ ∆I w.r.t. ∼. The model I is a generalized tree model of C iff I is a model
of C and the graph (VI , EI) defined as

VI := {[d]∼ | d ∈ ∆I}
EI := {([d]∼, [e]∼) | ∃d′ ∈ [d]∼, e′ ∈ [e]∼ such that

(d′, e′) ∈ RI for some R ∈ NR \ NaF}

is a tree. 3

It will be a byproduct of the results obtained in this section that ALCF(D) has
the generalized tree model property, i.e., that every satisfiable ALCF(D)-concept C
has a generalized tree model. Note that the identification of some kind of tree
model property is usually very helpful for devising decision procedures [Vardi 1997;
Grädel 1999]. Our completion algorithm for ALCF(D) uses tracing on generalized
tree models: it keeps only fragments of models I in memory that induce paths in the
abstraction (VI , EI). Intuitively, such a fragment consists of a sequence of “clusters”
of domain elements, where each cluster is an equivalence class w.r.t. the relation ∼,
i.e., a set of elements connected by abstract features. Succeeding clusters in the se-
quence are connected by roles from NR \NaF. Fortunately, as we shall see later, there
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always exists a generalized tree model I in which the cardinality of clusters and the
depth of the tree (VI , EI) is at most polynomial in the length of the input concept. We
use these facts to devise a completion algorithm for ALCF(D)-concept satisfiability
running in polynomial space.

Before we start the formal presentation, let us briefly discuss how completion
algorithms can deal with concrete domains. Along with constructing the “abstract
part” of the model for the input concept, Baader and Hanschke’s completion algorithm
for ALC(D)-concept satisfiability builds up a predicate conjunction describing the
“concrete part” of the constructed model [Baader & Hanschke 1991a]. This predicate
conjunction is required to be satisfiable in order for the constructed model to be non-
contradictory (see the general description of completion algorithms above). However,
the number of conjuncts in the predicate conjunction is exponential in the length
of the input concept in the worst case, which is another reason why Baader and
Hanschke’s algorithm needs exponential space. In our algorithm, we address this
problem as follows: domain elements that are in different clusters of the generalized
tree model are not connected through abstract paths. Hence, it cannot be enforced
that concrete successors of domain elements from different clusters are related by
a concrete predicate. This, in turn, means that it is sufficient to separately check
the satisfiability of predicate conjunctions associated with clusters. Since the size of
predicate conjunctions associated with a cluster is at most polynomial in the length
of the input concept, this separate checking allows to devise a PSpace algorithm (if
D-satisfiability is in PSpace).

3.1.2 The Completion Algorithm

In the following, we assume that the concrete domainD is admissible and that concepts
are in negation normal form. Every ALCF(D)-concept C can be transformed into an
equivalent one in NNF using the rewrite rules from Definition 2.3.1 together with the
following ones:

¬(∃u1, . . . , un.P ) ; ∃u1, . . . , un.P t u1↑ t · · · t un↑
¬(g↑) ; ∃g.>D

¬(p1↑p2) ; p1↓p2 t ∀p1.⊥ t ∀p2.⊥
¬(p1↓p2) ; p1↑p2 t ∀p1.⊥ t ∀p2.⊥

Let us start the presentation of the completion algorithm by introducing ALCF(D)-
ABoxes as the underlying data structure.

Definition 3.2 (ALCF(D)-ABox). Let C be an ALCF(D)-concept, R ∈ NR a role,
p1 and p2 abstract paths, g a concrete feature, a ∈ Oa, x1, . . . , xn ∈ Oc, and P ∈ ΦD
with arity n. Then

a : C, (a, b) : R, (a, x) : g, (x1, . . . , xn) : P, and a 6= b

are ALCF(D)-assertions. An ALCF(D)-ABox is a finite set of ALCF(D)-assertions.
Since the definitions of the other kinds of assertions are already given in Definitions 2.7
and 2.10, we only note that an interpretation I satisfies an assertion a 6= b iff aI 6= bI .
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Let A be an ALCF(D)-ABox, a, b ∈ Oa and x ∈ Oc. We write A(a) to denote the
set of concepts {C | a : C ∈ A}. The abstract object b is called R-successor of a in
A iff (a, b) : R is in A. Analogously, x is a g-successor of a iff (a, x) : g is in A. The
notion “successor” generalizes to abstract and concrete paths in the obvious way.

The size |α| of an assertion α is defined as |C| if α = a : C and 1 otherwise. The
size |A| of an ABox A is defined as the sum of the sizes of its assertions. 3

Note that the notion “successor in ABoxes” as defined above is syntactical while the
notion “successor in models” from Definition 2.2 is semantical. It should be obvious
how ABoxes can be used to represent models. If the satisfiability of a concept D is to
be decided, the completion algorithm is started with the initial ABox for D defined
as AD = {a : D}. Before the completion rules are defined, we introduce an operation
that is used in the formulation of the rules for introducing new assertions of the form
(a, b) : R and (a, x) : g.

Definition 3.3 (“+” operation). An abstract or concrete object is called fresh
w.r.t. an ABox A if it does not appear in A. Let A be an ABox. By

A+ aRb

with a ∈ Oa used in A, R ∈ NR, and b ∈ Oa we denote the ABox A ∪ {(a, b) : R}.
Similarly, we use

A+ agx

with g ∈ NcF and x ∈ Oc to denote A ∪ {(a, x) : g}.
When nesting the + operation, we omit brackets writing, e.g., A + aR1b + bR2c

for (A+ aR1b) + bR2c. Let p = f1 · · · fn be an abstract path (resp. u = f1 · · · fng be
a concrete path). By A+ apb (resp. A+ aux), where a ∈ Oa is used in A and b ∈ Oa

(resp. x ∈ Oc), we denote the ABox A′ which can be obtained from A by choosing
distinct objects b1, . . . , bn ∈ Oa which are fresh in A and setting

A′ := A+ af1b1 + · · ·+ bn−1fnb

(resp. A′ := A+ af1b1 + · · ·+ bn−1fnbn + bngx).
3

The completion rules can be found in Figure 3.2. Note that the Rt rule is nondeter-
ministic, i.e., it has more than one possible outcome. Thus, the described completion
algorithm is a nondeterministic decision procedure. Such an algorithm accepts its in-
put (i.e. returns satisfiable) iff there is some way to make the nondeterministic decisions
such that a positive result is obtained. A convenient way to think of nondeterministic
rules is that they “guess” the correct outcome, i.e., if there is an outcome which, if
chosen, leads to a positive result, then this outcome is in fact considered.

Most completion rules are standard and known from [Baader & Hanschke 1991b]
and [Hollunder & Nutt 1990]. The R∃f and R∀f rules are special in that they only deal
with concept ∃f.C and ∀f.C where f is an abstract feature. As we will see later,
concepts ∃R.C and ∀R.C with R ∈ NR \ NaF are not treated by completion rules but
through recursion calls of the algorithm. The Rfe rule also deserves some attention:
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Ru if C1 u C2 ∈ A(a) and {C1, C2} 6⊆ A(a)
then A := A ∪ {a : C1, a : C2}

Rt if C1 t C2 ∈ A(a) and {C1, C2} ∩ A(a) = ∅
then A := A ∪ {a : C} for some C ∈ {C1, C2}

R∃f if ∃f.C ∈ A(a) and there is no f -successor b of a with C ∈ A(b)
then set A := (A+ afb) ∪ {b : C} for a b ∈ Oa fresh in A

R∀f if ∀f.C ∈ A(a), b is an f -successor of a, and C /∈ A(b)
then set A := A ∪ {b : C}

Rc if ∃u1, . . . , un.P ∈ A(a) and there exist no x1, . . . , xn ∈ Oc such that
xi is ui-successor of a for 1 ≤ i ≤ n and (x1, . . . , xn) : P ∈ A

then set A := (A+ au1x1 + · · ·+ aunxn) ∪ {(x1, . . . , xn) : P}
with x1, . . . , xn ∈ Oc fresh in A

R↓ if p1↓p2 ∈ A(a) and there is no b that is both
a p1-successor of a and a p2-successor of a

then set A := A+ ap1b+ ap2b for a b ∈ Oa fresh in A

R↑ if p1↑p2 ∈ A(a) and there are no b1, b2 with
b1 p1-successor of a, b2 p2-successor of a, and (b1 6= b2) ∈ A

then set A := (A+ ap1b1 + ap2b2) ∪ {(b1 6= b2)}
for b1, b2 ∈ Oa distinct and fresh in A

Rfe if {(a, b) : f, (a, c) : f} ⊆ A and b 6= c
(resp. {(a, x) : g, (a, y) : g} ⊆ A and x 6= y)

then replace b by c in A (resp. x by y)

Figure 3.2: Completion rules for ALCF(D).

it ensures that, for any object a ∈ Oa, there exists at most a single f -successor for
each f ∈ NaF and at most a single g-successor for each g ∈ NcF. Redundant successors
are eliminated by identification. This process is often referred to as fork elimination
(hence the name of the rule). In many cases, fork elimination is not explicitly for-
mulated as a completion rule but viewed as an integral part of the other completion
rules. In the presence of feature (dis)agreements, this latter approach seems to be less
transparent. Consider for example the ABox

{a : ∃f1.>, a : ∃f2.>, a : f1↓f2}.

Assume the R∃f rule is applied twice adding the assertions (a, b) : f1 and (a, c) : f2.
Now, the R↓ rule is applied adding (a, b′) : f1 and (a, b′) : f2. Clearly, we may now
apply the Rfe rule to the assertions (a, b) : f1 and (a, b′) : f1. Say the rule application
replaces b′ by b, and we obtain the ABox

{a : ∃f1.>, a : ∃f2.>, a : f1↓f2, (a, b) : f1, (a, c) : f2, (a, b) : f2}.

Obviously, we may now apply Rfe to (a, c) : f2 and (a, b) : f2 replacing b by c.
Observe that this latter fork elimination does not involve any objects generated by
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define procedure sat(A)
A := fcompl(A)
if A contains a clash then

return unsatisfiable
forall objects a in Oa and ∃R.C ∈ A(a) with R ∈ NR \NaF do

Fix b ∈ Oa

if sat({b : C} ∪ {b : E | ∀R.E ∈ A(a)}) = unsatisfiable then
return unsatisfiable

return satisfiable

define procedure fcompl(A)
while a rule from Figure 3.2 is applicable to A do

Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

return A

Figure 3.3: The ALCF(D)-concept satisfiability algorithm.

the last “non-Rfe” rule application. To make such effects more transparent, we chose
to formulate fork elimination as a separate rule.

Let us now formalize what it means for an ABox to be contradictory.

Definition 3.4 (Clash). With each ABox A, we associate a predicate conjunction

ζA =
∧

(x1,...,xn):P∈A

P (x1, . . . , xn).

The ABox A is called concrete domain satisfiable iff ζA is satisfiable. It is said to
contain a clash iff one of the following conditions applies:

1. {A,¬A} ⊆ A(a) for a concept name A and object a ∈ Oa,

2. (a 6= a) ∈ A for some object a ∈ Oa,

3. g↑ ∈ A(a) for some a ∈ Oa such that there exists a g-successor of a, or

4. A is not concrete domain satisfiable.

If A does not contain a clash, then A is called clash-free. 3

The completion algorithm itself can be found in Figure 3.3. We briefly summarize
the strategy followed by the algorithm. The argument to sat is an ABox containing
exactly one object a ∈ Oa and only assertions of the form a : C. The algorithm uses
the fcompl function to create all feature successors of a, all feature successors of these
feature successors and so on. However, fcompl does not generate any R-successors for
roles R ∈ NR \NaF. In other words, fcompl generates a cluster of objects as described
in Section 3.1.1. After the call to the fcompl function, the algorithm makes a recursion
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f

f

f

b

a
∀f.∃f.>

c

Figure 3.4: The “jojo” effect.

call for each object in the cluster and each role successor enforced via an ∃R.C assertion
(with R ∈ NR \NaF). A single such recursion call corresponds to moving along a path
in a generalized tree model, i.e, to moving to a successor cluster of the cluster under
consideration. Each cluster of objects is checked separately for contradictions. Note
that, due to Definition 3.4, checking for a clash involves checking whether the predicate
conjunction ζA is satisfiable. This, in turn, is a decidable problem since we assume D
to be admissible.

Observe that fcompl applies the Rfe rule with highest priority. Without this strat-
egy, the algorithm would not terminate: consider the ABox

A = {a : ∀f.∃f.>, (a, a) : f, (a, b) : f}.

This ABox, which is depicted in the upper part of Figure 3.4, is encountered if, for
example, the algorithm is started on the input concept f ′↓f ′f u∃f ′.(∀f.∃f.>u∃f.>).
Now assume that the completion rules are applied to A without giving Rfe the highest
priority. This means that we can apply the R∀f rule and obtain b : ∃f.>. We can
then apply R∃f generating (b, c) : f, c : >. Fork elimination may now identify a and b
and thus we are back at the initial situation (possibly up to renaming). Clearly, this
sequence of rule applications may be repeated indefinitely—the algorithm does not
terminate. This “jojo” effect was also described, e.g., in [Baader & Sattler 2000].

Apart from enforcing that Rfe is applied with highest priority, we do not specify
the order of rule application inside the fcompl function. This (seemingly) introduces
additional nondeterminism into the decisision procedure. It is, however, a different
form of nondeterminism than the one introduced by the Rt rule: nondeterminism as
in the fcompl function is called don’t care nondeterminism since the nondeterministic
choice has no influence on the result of the algorithm; to the contrary, nondeterminsm
as in the Rt rule is called don’t know nondeterminism since the nondeterministic
choice has an impact on the result of the algorithm. Obviously, it is trivial to convert
an algorithm with don’t care nondeterminism only into a deterministic one. The
difference the algorithms may lie in their efficiency, but not in the result.
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R∃r if ∃R.C ∈ A(a) with R ∈ NR \ NaF and
there is no R-successor b of a with C ∈ A(b)

then set A := (A+ aRb) ∪ {b : C} for a b ∈ Oa fresh in A

R∀r if ∀R.C ∈ A(a) with R ∈ NR \ NaF, b is a R-successor of a, and C /∈ A(b)
then set A := A ∪ {b : C}

Figure 3.5: Virtual completion rules for ALCF(D).

3.1.3 Correctness and Complexity

In this section, we prove that the completion algorithm is sound, complete, and termi-
nating and can be executed using only polynomial space provided that D-satisfiability
is in PSpace. By D, we denote the input concept to the completion algorithm whose
satisfiability is to be decided.

We first prove termination of the algorithm. It is convenient to start with estab-
lishing an upper bound for the number of rule applications performed by the fcompl
function and, closely related, an upper bound for the size of ABoxes generated by the
fcompl function. Before we do this, let us introduce the two additional completion
rules displayed in Figure 3.5, which will play an important role in the termination and
correctness proofs. These rules are not applied explicitly by the algorithm, but, as we
shall see later, recursion calls of the sat function can be viewed as a single application
of the R∃r rule together with multiple applications of the R∀r rule. Let us now return
to the upper bounds for the fcompl function. With foresight to the ABox consistency
algorithm to be devised in the next section, we consider the precompl function instead
of the fcompl function, where precompl is defined exactly as fcompl except that it also
applies the R∀r rule. A formal definition of the precompl function can be found in
Figure 3.7. It is not hard to see that upper bounds for the number of rule applications
performed by precompl or the size of ABoxes generated by precompl also apply to the
fcompl function.

Lemma 3.5. For any input A, the function precompl terminates after at most |A|3
rule applications and constructs an ABox A′ with |A′| ≤ |A|5.

Proof. In the following, we call assertions of the form a : C concept assertions,
assertions of the form (a, b) : f or (a, x) : g feature assertions, and assertions of the
form (a, b) : R with R ∈ NR \ NaF role assertions.

The main task is to show that

precompl terminates after at most |A|3 rule applications. (∗)

For suppose that (∗) has been shown. We can then prove the lemma as follows. We
have |α| < |A| for each new assertion α added by rule application since

(i) concept assertions are the only kind of assertions that may have a size greater
one and
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(ii) if a concept assertion a : C is added by rule application, then C ∈ sub(A).

Moreover, as is easily checked, each rule application adds either no new assertions (the
Rfe rule) or at most |C| new assertions, where a : C is the concept assertion appearing
in the (instantiated) rule premise.1 Hence, by (ii), each rule application adds at most
|A| new assertions. Together with (∗), these observations imply that the size of the
ABox A′ generated by precompl is bounded by |A|5.

Hence, let us prove (∗). Let A0,A1, . . . be the sequence of ABoxes computed by
precompl. More precisely, A0 = A and Ai+1 is obtained from Ai by the i-th rule
application performed by precompl.

We first introduce some notions. For i ≥ 0 and a ∈ Oa ∪ Oc, we use nmi(a) to
denote the set of names that a had “until Ai”. More precisely, nm0(a) = {a} for all
a ∈ Oa. If the Rfe rule is applied to an ABox Ai renaming an object a to b, then
nmi+1(b) = nmi(a) ∪ nmi(b) and nmi+1(c) = nmi(c) for all c 6= b. For all other rule
applications, we simply have nmi+1(a) = nmi(a) for all a ∈ Oa ∪ Oc. The following
properties, which we summarize under the notion persistence, are easily proved using
the fact that assertions are never deleted:

• If a : C ∈ Ai and a ∈ nmj(a′) for some j > i and a′ ∈ Oa, then a′ : C ∈ Aj .

• if (a, b) : R ∈ Ai, a ∈ nmj(a′), and b ∈ nmj(b′) for some j > i and a′, b′ ∈ Oa,
then (a′, b′) : R ∈ Aj .

• If (a, x) : g ∈ Ai, a ∈ nmj(a′), and x′ ∈ nmj(x) for some j > i, a′ ∈ Oa, and
x′ ∈ Oc, then (a′, x′) : g ∈ Aj .

• If (x1, . . . , xn) : P ∈ Ai and x′i ∈ nmj(xi) for 1 ≤ i ≤ n, then (x′1, . . . , x
′
n) : P ∈ Aj .

A concept assertion a : C is called touched in Ai if there exists an a′ ∈ nmi(a) such that
one of the first i rule applications involved a′ : C in the (instantiated) rule premise
and untouched otherwise. By ]feat(A), we denote the number of feature assertions
in A. For role assertions (a, b) : R with R ∈ NR \ NaF, we use λAi(a, b : R) to denote
the number of concepts ∀R.C in sub(A) for which there exist no a′ ∈ nmi(a) and
b′ ∈ nmi(b) such that one of the first i rule applications involved both a′ : ∀R.C and
(a′, b′) : R in the (instantiated) rule premise.

For i ≥ 0, define

w(Ai) :=
∑

a:C is untouched in Ai

|a : C| + ]feat(Ai) +
∑

(a,b):R∈Ai

λAi(a, b : R) · |A|.

We show that w(Ai+1) < w(Ai) for i ≥ 0, which implies that the length of the
sequence A0,A1, . . . is bounded by |A|3 since, as is easily checked, w(A0) ≤ |A|3. A
case distinction is made according to the completion rule applied.

• Assume that Ai+1 is obtained from Ai by an application of the Ru rule. By
definition of this rule and due to persistence, it is applied to an untouched

1Recall that the length of a concept is the number of symbols used to write it, see Section 2.1.1.
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assertion a : C1 u C2 in Ai: for suppose that a : C1 u C2 is touched in Ai. By
definition of “touched”, this implies that there exists an a′ ∈ nmi(a) such that
Ru has been applied to a′ : C1 u C2 in the j-th rule application for some j < i.
By definition of Ru, this implies {a′ : C1, a

′ : C2} ⊆ Aj . By persistence, we have
{a : C1, a : C2} ⊆ Ai and, thus, the Ru rule is not applicable to a : C1uC2 in Ai
which is a contradiction. Hence, we have shown that a : C1 u C2 is untouched
in Ai. Moreover, this assertion is clearly touched in Ai+1. The rule application
generates new concept assertions a : C1 and a : C2 which are untouched in Ai+1

and it generates no new feature and role assertions. By definition of the size of
assertions and the length of concepts, we have |a : C1 u C2| > |a : C1|+ |a : C2|.

• The Rt case is analogous to the previous case.

• Assume thatAi+1 is obtained fromAi by an application of the R∀f rule. The rule
is applied to assertions a : ∀f.C and (a, b) : f . Suppose that a : ∀f.C is touched
in Ai, i.e., that the R∀f rule has been applied in a previous step to an assertion
a′ : ∀f.C with a′ ∈ nmi(a). It then added c : C for an f -successor c of a′. The
facts that (i) Rfe is applied with highest priority, (ii) b is an f -successor of a in
Ai+1, and (iii) the R∀f rule is applicable imply that we have c ∈ nmi(b). This,
in turn, implies b : C ∈ Ai by persistence and we have obtained a contradiction
to the assumption that R∀f is applicable. Hence, we have shown that a : ∀f.C is
untouched in Ai. The assertion is touched in Ai+1. Rule application generates
a new assertion b : C that is untouched in Ai+1. However, |a : ∀f.C| > |b : C|.
No new feature or role assertions are generated.

• Assume thatAi+1 is obtained fromAi by an application of the R∀r rule. The rule
is applied to assertions a : ∀R.C and (a, b) : R in Ai. Due to persistence, there do
not exist a′ ∈ nmi(a) and b′ ∈ nmi(b) such that the R∀r rule has previously been
applied to a′ : ∀R.C and (a′, b′) : R. Hence, λAi+1(a, b : R) = λAi(a, b : R)−1 and
the third summand of w(Ai) exceeds the third summand of w(Ai+1) by |A|. The
rule application adds no feature or role assertions and a single concept assertion
b : C. Since ∀R.C ∈ sub(A), we have |b : C| < |A| and hence w(Ai+1) < w(Ai).

• Assume that Ai+1 is obtained from Ai by an application of the R∃f rule. As
in the Ru case, it is easy to show that the rule is applied to an untouched
assertion a : ∃f.C. It generates new assertions (a, b) : f and b : C (and no
new role assertions). The assertion b : C is untouched in Ai+1 and a : ∃f.C
is touched in Ai+1. The new feature assertion (a, b) : f yields ]feat(Ai+1) =
]feat(Ai) + 1. On the other hand, no role assertion is added and we clearly have
|a : ∃f.C| > |b : C|+ 1.

• The Rc, R↓, and R↑ rules touch a (due to persistence) previously untouched
concept assertion a : C appearing in the instantiated premise and do not add
new concept or role assertions. It is readily checked that the number of feature
assertions added by rule application smaller than |a : C|.

• Assume that the Rfe rule is applied to an ABox Ai. This obviously implies
]feat(Ai+1) < ]feat(Ai), i.e., the second summand of w(Ai+1) is strictly smaller
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than the second summand of w(Ai). If the rule application renames a concrete
object, these are the only changes and we are done. If an abstract object is
renamed, some work is necessary to show that the first and third summand of
w(Ai+1) are not greater than the corresponding summands of w(Ai). Assume
that a ∈ Oa is renamed to b. We then have nmi+1(b) = nmi(a) ∪ nmi(b).

– First summand. Every concept assertion c : C ∈ Ai+1 ∩ Ai is touched
in Ai+1 iff it is touched in Ai: this is trivial if c 6= b since this implies
nmi+1(c) = nmi(c). If c = b, it follows from nmi(b) ⊆ nmi+1(b). Moreover,
if there exists an assertion b : C ∈ Ai+1 \ Ai due to variable renaming, then
a : C ∈ Ai \ Ai+1, and b : C being untouched in Ai+1 implies a : C being
untouched in Ai since nmi(a) ⊆ nmi+1(b). Hence, the first summand does
not increase.

– Third summand. Let (c, d) : R ∈ Ai+1 ∩ Ai (implying c 6= a and d 6= a).
We distinguish several subcases:

1. c 6= b and d 6= b. Then, clearly, λi(c, d : R) = λi+1(c, d : R).
2. c = b and d 6= b. By definition of λi, nmi(b) ⊆ nmi+1(b) implies
λi(b, d : R) ≥ λi+1(b, d : R).

3. c 6= b and d = b. As previous case.
4. c = e = b. As previous case.

Now let (c, d) : R ∈ Ai+1 \Ai (implying c = b or d = b). We can distinguish
the cases (i) c = b, d 6= b, (ii) d = b, c 6= b, and (iii) c = d = b. Since all
cases are similar, we concentrate on (i). In this case, (a, d) : R ∈ Ai \Ai+1.
Moreover, nmi(a) ⊆ nmi+1(b) implies λAi+1(b, d : R) ≤ λAi(a, d : R).
Summing up, the third summand may only decrease but not increase.

❏

The role depth of ALCF(D)-concepts is defined analogously to the role depth of ALC-
concepts (see Section 2.1.1) with the only difference that, in the case of ALCF(D),
both roles (including abstract features) and concrete features contribute to the role
depth. For example, the role depth of ∀R.∃fg.>D is 3. We now prove a technical
lemma that, together with Lemma 3.5, immediately yields termination.

Lemma 3.6. Assume that the completion algorithm was started with input D. Then

1. in each recursion call, the size |A| of the argument A passed to sat is bounded
by |D|2;

2. in each recursion step of sat, at most p(|D|) recursion calls are made, where p
is a polynomial; and

3. the recursion depth of sat is bounded by |D|.

Proof. Let us first prove Point 1. ABoxes passed to sat contain assertions of the
form a : C for a single object a. Since only concepts from sub(D) are generated
during rule application, the number of distinct assertions of this form is bounded by
|sub(D)| ≤ |D|. Obviously, the size of each such assertion is also bounded by |D|
which yields an upper bound of |D|2 for the size of arguments to sat.
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For Point 2, note that in each recursion step, the number of recursion calls made is
bounded by the number of assertions a : ∃R.C in the ABox A obtained by application
of fcompl. By Point 1, the size of argument ABoxes to sat is bounded by |D|2. Hence,
by Lemma 3.5, the size of A is bounded by p(|D|) where p is a polynomial and the
same bound applies to the number of recursion calls made in each recursion step.

Let us turn to Point 3. As a consequence of (i) the fact that rule application
performed by fcompl may not introduce concepts with a role depth greater than the
role depth of concepts that have already been in the ABox and (ii) the way in which
the argument ABoxes for recursion calls to sat are constructed, we have that the
role depth of concepts in the argument ABoxes passed to sat strictly decreases with
recursion depth. It follows that the role depth of D is an upper bound for the recursion
depth, i.e., the recursion depth is bounded by |D|. ❏

Proposition 3.7. The completion algorithm terminates on any input AD.

Proof. Immediate consequence of Lemma 3.5 and Points 2 and 3 from Lemma 3.6.
❏

We now come to proving soundness and completeness of the completion algorithm.
Recall that, intuitively, the completion algorithm traverses a generalized tree model in
a depth-first manner without keeping the entire model in memory. For the proofs, it is
convenient to make the model traversed by the algorithm explicit—or more precisely
the ABox representing it. To do this, we define an extended version of the completion
algorithm. This extended algorithm is identical to the original one but additionally
constructs a sequence of ABoxesA0

∪,A1
∪, . . . collecting all assertions that the algorithm

generates. Hence, it returns satisfiable if and only if the original algorithm does.
We will show that, if the extended algorithm is started on an initial ABox AD and
terminates after n steps returning satisfiable, then the ABox An∪ defines a canonical
model for AD. Since the extended algorithm returns satisfiable if the original one
does, this yields soundness. Completeness can also be shown using the correspondence
between the two algorithms. Note that the extended version of the algorithm is defined
just to prove soundness and completeness of the original version and we do not claim
that the extended version itself can be executed in polynomial space.

The extended algorithm can be found in Figure 3.6. The extensions are marked
with asterisks. If the algorithm is started on the initial ABox AD = {a : D}, we set
A0
∪ := {a0 : D}. The algorithm uses two global variables sc and rc, which are both

initialized with the value 0. The first one is a counter for the number of calls to the
sat function. The second one counts the number of ABoxes Ai∪ that have already been
generated. The introduction of the global variable sc is necessary due to the following
technical problem: the object names created by the algorithm are unique only within
the ABox considered in a single recursion step. For the cumulating ABoxes Ai∪ that
collect assertions from many recursion steps, we have to ensure that an object a from
one recursion step can be distinguished from a in a different step since these two
objects do clearly not represent the same domain element in the constructed model.
To achieve this, objects are renamed before new assertions are added to an ABox Ai∪
by indexing with the value of the counter sc.
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* Initialization:
* rc := sc := 0
* A0

∪ := {a0 : D} if AD = {a : D}

define procedure sat(A)
A := fcompl(A)
if A contains a clash then

return unsatisfiable
forall objects a in Oa and ∃R.C ∈ A(a) with R ∈ NR \NaF do

* sc := sc+ 1
* rc := rc+ 1

Fix b ∈ Oa

* Arc∪ := Arc−1
∪ ∪ {(asc−1, bsc) : R} ∪ {bsc : C} ∪

* {bsc : E | a : ∀R.E ∈ A(a)}
if sat({b : C} ∪ {b : E | ∀R.E ∈ A(a)}) = unsatisfiable then

return unsatisfiable
return satisfiable

define procedure fcompl(A)
* A0 := A

while a rule R from Figure 3.2 is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

* rc := rc+ 1
* N := A \ A0

* Replace each a ∈ Oa (resp. x ∈ Oc) in N with asc (resp. xsc)
* Arc∪ := Arc−1

∪ ∪N
return A

Figure 3.6: The extended satisfiability algorithm.

Observe that, for i > 0, the ABox Ai∪ is obtained either

1. by multiple applications of completion rules from Figure 3.2 to the ABox Ai−1
∪

or

2. by a recursion call made while the counter rc has value i− 1.

Let us be a little bit more precise about the second point. W.r.t. the sequence of
ABoxes A0

∪,A1
∪, . . . , recursion calls can be viewed as applications of the completion

rules displayed in Figure 3.5: if Ai∪ is obtained from Ai−1
∪ by a recursion call, then

this is equivalent to a single application of the R∃r rule and exhaustive application of
the R∀r rule.

Non-applicability of all completion rules to an ABox will be an important property
in what follows.
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Definition 3.8 (Complete ABox). An ABox A is complete iff no completion rule
from Figures 3.2 and 3.5 is applicable to A. 3

The following lemma is central for proving soundness and completeness.

Lemma 3.9. Let A be an ALCF(D)-ABox and R be a completion rule from Figure 3.2
or Figure 3.5 such that R is applicable to A.

1. A is consistent iff R can be applied such that the resulting ABox A′ is consistent.

2. if A is complete and clash-free, then it is consistent.

Proof. The two parts are proved separately.

(1) Let us first deal with the “if” direction. This is trivial if R 6= Rfe since this implies
A ⊆ A′ and, hence, every model of A′ is also a model of A. Assume that the Rfe
rule is applied to assertions {(a, b) : f, (a, c) : f} ∈ A and replaces c with b. Let I
be a model of A′. Construct an interpretation I ′ from I by setting cI

′
:= bI . It

is straightforward to check that I ′ is a model of A. The case that Rfe is applied to
assertions {(a, x) : g, (a, y) : g} ∈ A is analogous.

Now for the “only if” direction. We make a case distinction according to the
completion rule R.

• The Ru rule is applied to an assertion a : C1 uC2 and A′ = A∪{a : C1, a : C2}.
Let I be a model of A. Since aI ∈ (C1 u C2)I , we have aI ∈ CI1 and aI ∈ CI2
by the semantics of ALCF(D), which implies that I is also a model of A′.

• The Rt rule is applied to an assertion a : C1 tC2. The rule can be applied such
that either A′ = A ∪ {a : C1} or A′ = A ∪ {a : C2}. Let I be a model of A.
Since aI ∈ (C1 t C2)I , we have either aI ∈ CI1 or aI ∈ CI2 by the semantics of
ALCF(D). Hence, we can apply the rule such that I is a model of A′.

• The R∃f rule is applied to an assertion a : ∃f.C yielding the ABox A′. Then
A′ = A ∪ {(a, b) : f, b : C} where b is fresh in A. Let I be a model of A. Since
aI ∈ (∃f.C)I , there exists a d ∈ ∆I such that fI(aI) = d and d ∈ CI . Let I ′
be the interpretation obtained from I by setting aI

′
:= d. It is easily checked

that I ′ is a model of A′.

• The R∃r rule is treated analogously to the previous case.

• The R∀f rule is applied to an assertion a : ∀f.C and A′ = A ∪ {b : C} where b
is an f -successor of a in A and A′. Let I be a model of A. Since aI ∈ (∀f.C)I

and fI(aI) = bI , we have b ∈ CI . Hence, I is also a model of A′.

• The R∀r rule is treated analogously to the previous case.

• The Rc rule is applied to an assertion a : ∃u1, . . . , un.P with ui = f
(i)
1 · · · f

(i)
ki
gi

yielding the ABox A′. Then there exist abstract objects a(i)
j with 1 ≤ i ≤ n and

1 ≤ j ≤ ki which are fresh in A and concrete objects x1, . . . , xn which are fresh
in A such that, for 1 ≤ i ≤ n,
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(i) a
(i)
1 is f (i)

1 -successor of a,

(ii) a
(i)
j is f (i)

j -successor of a(i)
j−1 for 1 < j ≤ ki,

(iii) xi is gi-successor of a(i)
ki

, and

(iv) (x1, . . . , xn) : P ∈ A′.

Let I be a model of A. Since aI ∈ (∃u1, . . . , un.P )I , there exist domain elements
d

(i)
j ∈ ∆I with 1 ≤ i ≤ n and 1 ≤ j ≤ ki and z1, . . . , zn ∈ ∆D such that, for

1 ≤ i ≤ n, we have

– (aI , d(i)
1 ) ∈ (f (i)

1 )I ,

– (d(i)
j−1, d

(i)
j ) ∈ (f (i)

j )I for 1 < j ≤ ki,

– gIi (d(i)
ki

) = zi, and

– (z1, . . . , zn) ∈ PD.

Define I ′ as the interpretation obtained from I by setting

(a(i)
j )I

′
:= d

(i)
j for 1 ≤ i ≤ n and 1 < j ≤ ki

and
xI
′
i := zi for all i with 1 ≤ i ≤ n.

It is straightforward to check that I ′ is a model of A′.

• Applications of the R↓ rule are treated similar to the previous case.

• Applications of the R↑ rule are also treated similar to the Rc case.

• The Rfe rule is applied to assertions {(a, b) : f, (a, c) : f} ∈ A and replaces c
with b. Let I be a model of A. Due to the presence of the above two assertions
and since features are interpreted as partial functions, we have bI = cI . It is
readily checked that this implies that I is a model of A′.

(2) Based on A, an interpretation I can be defined as follows. Fix a solution δ for ζA
which exists since A is clash-free.

1. ∆I consists of all abstract objects that occur in A,

2. AI := {a ∈ Oa | a : A ∈ A} for all A ∈ NC,

3. RI := {(a, b) ∈ Oa × Oa | (a, b) : R ∈ A} for all R ∈ NR,

4. gI := {(a, δ(x)) ∈ Oa ×∆D | (a, x) : g ∈ A} for all g ∈ NcF,

5. aI := a for all a ∈ Oa, and

6. xI := δ(x) for all x ∈ Oc.
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Note that I is well-defined: Since the Rfe rule is not applicable, fI and gI are func-
tional for all f ∈ NaF and g ∈ NcF. We prove that I is a model of A, i.e., that all
assertions in A are satisfied by I. It is an immediate consequence of the definition of
I that (a, b) : R ∈ A implies (aI , bI) ∈ RI and (a, x) : g ∈ A implies gI(aI) = xI .
Moreover, if (a 6= b) ∈ A, then a 6= b since A is clash-free. Hence, (a 6= b) ∈ A implies
aI 6= bI . Since δ is a solution for ζA, (x1, . . . , xn) : P ∈ A implies (xI1 , . . . , x

I
n) ∈ PD.

It thus remains to show that a : C ∈ A implies a ∈ CI . This is done by induction on
the structure of C. For the induction start, we make a case distinction according to
the form of C:

• If C ∈ NC, then the above claim is an immediate consequence of the definition
of C.

• C = ¬E. Since we assume all concepts to be in negation normal form, E is a
concept name. Since A is clash-free, a : E /∈ A and, by definition of I, a /∈ EI .
Hence, a ∈ (¬E)I .

• C = ∃u1, . . . , un.P . Since the Rc rule is not applicable to A, there exist
x1, . . . , xn ∈ Oc such that xi is ui-successor of a in A for 1 < i ≤ n. By
definition of I, we have uIi (a) = δ(xi) for 1 < i ≤ n. Furthermore, we have
(x1, . . . , xn) : P ∈ A and, since δ is a solution for ζP , (δ(x1), . . . , δ(xn)) ∈ PD.
Summing up, a ∈ (∃u1, . . . , un.P )I .

• C = p1↓p2. Since the R↓ rule is not applicable to A, there exists an object
b ∈ Oa which is both a p1-successor and a p2-successor of a in A. By definition
of I, we have pI1 (a) = pI2 (a) = b and, hence, a ∈ (p1↓p2)I .

• C = p1↑p2. Since the R↑ rule is not applicable to A, there exist b1, b2 ∈ Oa such
that b1 is a p1-successor of a in A, b2 is a p2-successor of a in A, and b1 6= b2 ∈ A.
Since A is clash-free, we have b1 6= b2. By definition of I, we have pI1 (a) = b1
and pI2 (a) = b2 and, hence, a ∈ (p1↑p2)I .

• C = g↑. Since A is clash-free, a has no g-successor x in A. By definition of I,
gI(a) is undefined and hence a ∈ (g↑)I .

For the induction step, we make a case analysis according to the topmost constructor
in C.

• C = C1uC2. Since the Ru rule is not applicable to A, we have {C1, C2} ⊆ A(a).
By induction, a ∈ CI1 and a ∈ CI2 , which implies a ∈ (C1 u C2)I .

• C = C1 t C2. Similar to the previous case.

• C = ∃R.E. Since neither the R∃f nor the R∃r rule is applicable to A, there
exists an object b ∈ Oa such that b is an R-successor of a in A and E ∈ A(b).
By definition of I, b being an R-successor of a implies (a, b) ∈ RI . By induction,
we have b ∈ EI and may hence conclude a ∈ (∃R.E)I .
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• C = ∀R.E. Let b ∈ ∆I such that (a, b) ∈ RI . By definition of I, b is an
R-successor of a in A. Since neither the R∀f not the R∀r rule is applicable to A,
we have E ∈ A(b). By induction, it follows that b ∈ EI . Since this holds for all
b, we can conclude a ∈ (∀R.E)I .

❏

In the following, the i-th recursion step denotes the recursion step of the extended
completion algorithm in which the counter sc has value i.

Proposition 3.10 (Soundness). If the completion algorithm returns satisfiable, then
the input concept is satisfiable.

Proof. Assume that the completion algorithm is started on an input concept D and
there exists a way to make the non-deterministic decisions such that the algorithm
returns satisfiable. Moreover assume that the extended algorithm constructs the ABox
An∪ if the non-deterministic decisions are made in precisely the same way, i.e., the
counter rc has value n upon termination. We first establish the following claim:

Claim: An∪ is complete and clash-free.

First for completeness. We distinguish several cases. First assume that a rule

R ∈ {Ru,Rt,R∃f,Rc,R↓,R↑,R∃r}

is applicable to An∪. This is due to the presence of an assertion ai : C in An∪. If, e.g.,
R = Ru, then C has the form C1 uC2. By construction of An∪, this implies that a : C
is in A in the i-th recursion step. Hence, if R 6= R∃r, the rule R has been applied to
a : C by the fcompl function which, again by construction of An∪, implies that R is
not applicable to ai : C in An∪ yielding a contradiction. If R = R∃r, then C = ∃R.E.
Clearly, (ai, bj) : R and bj : C (for some j > i) is added to An∪ due to a subsequent
recursion call and we obtain a contradiction to the applicability of R∃r to ai : C in An∪.

Now assume that the R∀f rule is applicable to An∪. This is due to the presence
of assertions ai : ∀f.C and (ai, bj) : f in An∪. Since assertions (ai, bj) : f are only
added to An∪ because of applications of the rules R∃f, Rc, R↓, and R↑ performed by
the fcompl function, we have i = j. It follows that a : ∀f.C and (a, b) : f are in A in
the i-th recursion step. Hence, the R∀f rule is applied by fcompl to these assertions.
This implies that b : C is in A in the i-th recursion step which allows us to conclude
bi : C ∈ An∪, a contradiction.

Assume that R∀r is applicable to An∪ due to the presence of assertions ai : ∀R.C
and (ai, bj) : R. By construction of An∪, ai : ∀R.C in is A in the i-th recursion step
and (ai, bj) : R has been added to An∪ due to a recursion call made during the i-th
recursion step. By definition of the annotated algorithm, these two facts imply that
bj : C has also been added to An∪ in the i-th recursion step. Again a contradiction.

To finish the proof that An∪ is complete, assume that Rfe is applicable to An∪ due
to the presence of assertions (ai, bj) : f and (ai, c`) : f . Since assertions (ai, bj) : f are
only added to An∪ because of applications of the rules R∃f, Rc, R↓, and R↑ performed
by the fcompl function, we have i = j = `. It follows that (a, b) : f and (a, c) : f are in
A in the i-th recursion step. Hence, the Rfe rule is applied by fcompl. This, however,
implies that either (ai, bj) : f or (ai, c`) : f is not in An∪.
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We now prove that A is clash-free. Assume {A,¬A} ⊆ An∪(ai). Then {A,¬A} ⊆
A(a) in the i-th recursion step. Since A is clash-free in every recursion step (the
algorithm returned satisfiable), we obtain a contradiction. Clashes of the form ai 6=
ai ∈ An∪ are treated analogously. Now assume ai : g↑ and (ai, xj) : g are in An∪. Since
assertions (ai, xj) : g are only added due to applications of the Rc rule by fcompl, we
have i = j. It is again straightforward to derive a contradiction.

It remains to show that An∪ is concrete domain satisfiable. For every i ≤ n, let
Ai be the ABox A in the i-th recursion step after the application of fcompl and let δi
be a solution for ζAi , which exists since Ai is clash-free. Define δ(xi) := δi(x) for all
xi occurring in An∪. It is readily checked that δ is a solution for ζAn∪ : fix an assertion
((x1)i1 , . . . , (xk)ik) : P ∈ An∪. Since such assertions are only added due to applications
of the Rc rule by fcompl, there exists an i ≤ n such that ij = i for all j with 1 ≤ j ≤ k.
Hence, (x1, . . . , xk) : P ∈ Ai and (δi(x1), . . . , δi(xk)) ∈ PD. By definition of δ, it
follows that (δ((x1)i1), . . . , δ((xk)ik)) ∈ PD, as was to be shown.

The proof of the claim is now finished and we return to the proof of soundness. By
Lemma 3.9, Point 2, the claim implies that An∪ is consistent. By construction, we have
a0 : D ∈ An∪. It immediately follows that D is satisfiable. ❏

Proposition 3.11 (Completeness). If the completion algorithm is started on a
satisfiable input concept, then it returns satisfiable.

Proof. Let the extended completion algorithm be started on an input concept D
that is satisfiable. Then, the initial ABox AD = {a : D} is obviously consistent. By
Lemma 3.9, Point 1 and due to the fact that performing a recursion step corresponds to
the application of rules from Figure 3.5, we can make the non-deterministic decisions of
the extended algorithm such that every ABox in the sequenceA0

∪,A1
∪, . . . is consistent.

Now assume that the extended algorithm returns unsatisfiable. This means that
an ABox A is encountered that contains a clash. Let, upon this event, the counter rc
have the value n. By definition of the extended algorithm, we clearly have A ⊆ An∪ up
to variable renaming, and, thus, An∪ also contains a clash. Since it is straightforward
to check that an ABox containing a clash is inconsistent, we obtain a contradiction
to the consistency of An∪. Thus, the extended algorithm does not return unsatisfiable.
By Proposition 3.7, this implies that it returns satisfiable. It remains to note that the
original algorithm returns satisfiable iff the extended algorithm returns satisfiable.

❏

It may be viewed as a byproduct of the soundness and completeness proof that
ALCF(D) has the generalized tree model property defined in Section 3.1.1: assume
that the extended algorithm is started with initial ABox AD = {a : D} and that
D is satisfiable. By Proposition 3.11 and the correspondence of the original and the
extended algorithm, the extended algorithm returns satisfiable. From the proof of
Proposition 3.10, we learn that in this case the ABox An∪ (where n is the value of the
counter sc upon termination) is complete and clash-free. In the proof of Lemma 3.9
Point 2, a canonical model I of An∪ is constructed where ∆I is the set of abstract
objects used in An∪. It is straightforward to check that this model is a generalized tree
model for D since
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1. a0 : D is in An∪,

2. the sets Xi := {ai | ai ∈ ∆I} for 0 ≤ i ≤ n are equivalence classes w.r.t. I and ∼
as in Definition 3.1, and

3. due to the recursive nature of the completion algorithm, the graph (VI , EI) (see
Definition 3.1) is a tree.

We now analyze the time and space requirements of our algorithm.

Proposition 3.12.

1. If D-satisfiability is in PSpace, then the completion algorithm can be executed
in polynomial space.

2. If D-satisfiability is in NExpTime, then the completion algorithm can be exe-
cuted in nondeterministic exponential time.

3. If D-satisfiability is in ExpSpace, then the completion algorithm can be executed
in exponential space.

Proof. By Point 1 of Lemma 3.6 and Lemma 3.5, the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D|), where p is a polynomial. Since,
by Point 3 of Lemma 3.6, the recursion depth is bounded by |D|, sat can be executed
in polynomial space if the check for concrete domain satisfiability is not taken into
account.

Assume that D-satisfiability is in PSpace. Since the maximum size of ABoxes A
encountered in recursion steps is bounded by p(|D|), the maximum number of con-
juncts in predicate conjunctions ζA checked for concrete domain satisfiability is also
bounded by p(|D|). Together with the fact that the complexity class PSpace is obliv-
ious for polynomial blowups of the input, it follows that the completion algorithm
can be executed in polynomial space. Along the same lines, it can be shown that the
algorithm can be executed in exponential space if D-satisfiability is in ExpSpace.

Now assume that D-satisfiability is in NExpTime. From Lemma 3.5, we know
that fcompl terminates after at most |A|3 rule applications if started on input A.
Since, by Point 1 of Lemma 3.6, the size of its input is bounded by |D|2, it terminates
after at most |D|6 rule applications. Since the recursion depth is bounded by |D|, and,
by Point 2 of Lemma 3.6, at most q(|D|) recursion calls are made per recursion step
for some polynomial q, sat can be executed in nondeterministic exponential time if the
check for concrete domain satisfiability is not taken into account. By the bounds on
the recursion depth and the number of recursion calls per recursion steps, the number
of concrete domain satisfiability checks performed is at most exponential in |D|. Since
the size of predicate conjunctions passed in each step is bounded by p(D) and D-
satisfiability is in NExpTime, we can perform each check in (non-deterministic) time
exponential in |D|. Summing up, the sat algorithm an be executed in nondeterministic
exponential time. ❏
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Combining this result with the PSpace lower bound of ALC-concept satisfiabil-
ity [Schmidt-Schauß & Smolka 1991] and using Savitch’s Theorem which implies that
PSpace = NPSpace and ExpSpace = NExpSpace [Savitch 1970], we obtain the
following theorem.

Theorem 3.13. Let D be an admissible concrete domain.

1. If D-satisfiability is in PSpace, then ALCF(D)-concept satisfiability is PSpace-
complete.

2. If D-satisfiability is in C ∈ {NExpTime,ExpSpace}, then ALCF(D)-concept
satisfiability is also in C.

Since lower complexity bounds transfer from D-satisfiability to ALCF(D)-concept
satisfiability, this theorem yields tight complexity bounds if D-satisfiability is NExp-

Time-complete or ExpSpace-complete. Moreover, since subsumption can be reduced
to (un)satisfiability and vice versa (see Section 2.1.1), the obtained complexity bounds
also apply to subsumption.2

3.2 ABox Consistency

We extend the complexity results obtained in the previous section from concept sat-
isfiability to ABox consistency by devising a precompletion algorithm in the style
of [Hollunder 1996]. In particular, this algorithm yields a tight PSpace complexity
bound for ALCF(D)-ABox consistency if D-satisfiability is in PSpace.

3.2.1 The Algorithm

The algorithm works by reducing ABox consistency to concept satisfiability. First,
a set of precompletion rules is exhaustively applied to the input ABox A yielding a
precompletion of A. Intuitively, rule application makes all implicit knowledge in the
ABox explicit except that it does not generate new R-successors for roles R ∈ NR\NaF.
Then, several reduction concepts are generated from the precompletion and passed to
the concept satisfiability algorithm devised in the previous section. The input ABox
is satisfiable iff the precompletion contains no obvious contradiction and all reduction
concepts are satisfiable.

The precise formulation of the algorithm can be found in Figure 3.7. We assume
all concepts in the input ABox to be in NNF. As already mentioned in Section 3.1.3,
the precompl function is identical to the fcompl function in Figure 3.3 except that
it additionally applies the R∀r rule. This is necessary since, in contrast to ABoxes
processed by the sat algorithm, the input ABox to cons may contain assertions of the
form (a, b) : R with R ∈ NR \NaF. Although not generating new R-successors for roles
R ∈ NR \ NaF, the precompletion algorithm does generate new f -successors and new
g-successors for features f ∈ NaF and g ∈ NcF. Intuitively, the input ABox induces a

2More precisely, this holds for all cases except one: if D-satisfiability is in NExpTime, then
ALCF(D)-concept subsumption is obviously in co-NExpTime.
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define procedure cons(A)
A := precompl(A)
if A contains a clash then

return inconsistent
forall objects a in Oa and ∃R.C ∈ A(a) with R ∈ NR \NaF do

Fix b ∈ Oa

if sat({b : C u u
∀R.E∈A(a)

b : E) = unsatisfiable then

return inconsistent
return consistent

define procedure precompl(A)
while a rule from {Ru,Rt,R∀r,R∀f,R∃f,Rc,R↓,R↑,Rfe}

is applicable to A do
Choose an applicable rule R s.t. R = Rfe if Rfe is applicable
Apply R to A

return A

Figure 3.7: The ALCF(D)-ABox consistency algorithm.

set of clusters of objects as discussed in Section 3.1.1 and this cluster is constructed
by the precompl function.

Note that the construction of a reduction concept corresponds to a single applica-
tion of the R∃r rule together with exhaustive application of the R∀r rule very similar
to recursion calls of the sat functions in Figure 3.3.

3.2.2 Correctness and Complexity

Termination of the precompletion algorithm is easily obtained.

Proposition 3.14. The precompletion algorithm terminates on any input.

Proof. By Lemma 3.5, the precompl function terminates, and, by Proposition 3.7,
the sat function also terminates. ❏

We now prove soundness and completeness. In the following, the ABox A′ is called a
precompletion of the ABox A iff A′ can be obtained by applying the precompl function
to A. Note that precompl is non-deterministic and hence there may exist more than
a single precompletion for a given ABox A.

Proposition 3.15 (Soundness). If the precompletion algorithm returns consistent,
then the input ABox is consistent.

Proof. If the algorithm is started on input ABox A returning consistent, then there
exists a precompletion Ap for A that does not contain a clash and all reduction
concepts C1, . . . , Cn of Ap that are passed as arguments to the sat algorithm are
satisfiable. We show that this implies that Ap has a model, which, by Lemma 3.9
Point 1 and the definition of precompletion, proves the proposition.
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Let I1, . . . , In be the models of the reduction concepts C1, . . . , Cn and ai : ∃Ri.Ei
be the assertion in Ap that triggered the construction of the reduction concept Ci.
W.l.o.g., we assume that

• ∆Ii ∩∆Ij for 1 ≤ i < j ≤ n and

• ∆Ii ∩ Oa = ∅ for 1 ≤ i ≤ n.

For each i with 1 ≤ i ≤ n, we fix an element di ∈ ∆Ii with di ∈ CIii . Moreover, we fix
a solution δ for ζAp , which exists since Ap is clash-free. Define an interpretation I as
follows:

1. ∆I := {a ∈ Oa | a used in Ap} ]∆I1 ] · · · ]∆In ,

2. AI := {a ∈ Oa | a : A ∈ Ap} ∪
⋃

1≤i≤nA
Ii for all A ∈ NC,

3. RI := {(a, b) ∈ Oa × Oa | (a, b) : R ∈ A} ∪ {(ai, di) | 1 ≤ i ≤ n and R = Ri}
∪
⋃

1≤i≤nR
Ii for all R ∈ NR,

4. gI := {(a, δ(x)) ∈ Oa ×∆D | (a, x) : g ∈ A} ∪
⋃

1≤i≤n g
Ii for all g ∈ NcF,

5. aI := a for all a ∈ Oa, and

6. xI := δ(x) for all x ∈ Oc.

I is well-defined: due to the non-applicability of the Rfe rule to Ap, fI and gI are
functional for all f ∈ NaF and g ∈ NcF. The following claim is an easy consequence of
the construction of I:

Claim: Let 1 ≤ i ≤ n. For all d ∈ ∆Ii and C ∈ sub(Ap), d ∈ CIi implies d ∈ CI .

It remains to show that I is a model of Ap, i.e., that all assertions in Ap are satisfied
by I. For assertions of the form (a, b) : R and (a, x) : g, this is an immediate
consequence of the definition of I. Assertions a 6= b are satisfied since Ap is clash-free
and assertions (x1, . . . , xn) : P since δ is a solution for ζAp . It thus remains to show
that a : C ∈ Ap implies a ∈ CI . This is done by induction over the structure of C as
in the proof of Lemma 3.9, Point 2. The only differences are in the following cases of
the induction step:

• a : ∃R.E ∈ Ap. Then there is an i with 1 ≤ i ≤ n such that a = ai, R = Ri,
and E = Ei appears as a conjunct in the reduction concept Ci. By definition
of I, we have (a, di) ∈ RI . By the above claim together with di ∈ CIii , we have
di ∈ CIi . Since E is a conjunct in Ci, this clearly implies di ∈ EI and thus
a ∈ (∃R.E)I .

• a : ∀R.E ∈ Ap. Fix a b ∈ ∆I such that (a, b) ∈ RI . Then either b is an R-
successor of a in Ap or a = ai, R = Ri, and b = di for some 1 ≤ i ≤ n. The first
case was already treated in the proof of Lemma 3.9, Point 2. Hence, let us stick
to the second case. By construction of Ci, E appears as a conjunct in Ci. By
the claim, we have di ∈ CIi and hence di ∈ EI . ❏
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Proposition 3.16 (Completeness). If the precompletion algorithm is started on a
consistent input ABox, then it returns consistent.

Proof. Suppose that the algorithm is started on a consistent ABox A. By Lemma 3.9
Point 1, the precompl function can apply the completion rules such that only consistent
ABoxes are obtained. Hence, by Lemma 3.5, the precompl function generates a con-
sistent precompletion Ap of A. Consistency of Ap clearly implies that the reduction
concepts constructed from Ap are satisfiable. Since, by Proposition 3.7, the sat func-
tion terminates, the precompletion algorithm also terminates and returns consistent.

❏

It remains to analyze the time and space requirements of our algorithm.

Proposition 3.17.

1. If D-satisfiability is in PSpace, then the precompletion algorithm can be executed
in polynomial space.

2. If D-satisfiability is in NExpTime, then the precompletion algorithm can be
executed in nondeterministic exponential time.

3. If D-satisfiability is in ExpSpace, then the precompletion algorithm can be ex-
ecuted in exponential space.

Proof. Let A be the input ABox to the precompletion algorithm. By Lemma 3.5, the
precompl function terminates after at most |A|3 steps generating an ABox A′ of size
at most |A|5. Since all complexity classes mentioned in the proposition are oblivious
for polynomial blowups of the input, the concrete domain satisfiability check does not
spoil the upper bound on the time/space requirements. Concerning the calls to the
sat function, it is enough to refer to Proposition 3.12. ❏

As in the previous section, we use the PSpace lower bound of ALC-concept satisfia-
bility and the fact that PSpace =NPSpace and ExpSpace =NExpSpace to obtain
the following theorem.

Theorem 3.18. Let D be an admissible concrete domain.

1. If D-satisfiability is in PSpace, then ALCF(D)-ABox consistency is PSpace-
complete.

2. If D-satisfiability is in C ∈ {NExpTime,ExpSpace}, then ALCF(D)-ABox
consistency is also in C.

3.3 Discussion

In this chapter, we have established tight upper bounds for ALCF(D)-concept satis-
fiability and ALCF(D)-ABox consistency for a large class of concrete domains. The
upper bound for concept satisfiability has been obtained by a completion algorithm
that uses the tracing technique while the upper bound for ABox consistency has
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been established by a precompletion-style reduction to concept satisfiability. We have
strictly separated the algorithms for these two inference problems since this allows
for a clearer presentation and makes more precise the additional means necessary for
dealing with ABoxes instead of with concepts. We will keep up this separation be-
tween concept satisfiability algorithms and ABox consistency algorithms throughout
this thesis. However, for the implementation of DL reasoners that can decide ABox
consistency, it may in some cases be more appropriate to use a “direct” ABox con-
sistency algorithm instead of reducing this reasoning task to concept satisfiability.
Considering the description of the two algorithms given in this chapter, it should be
straightforward to devise such an algorithm.

The established upper bounds are readily applicable to a wide range of inter-
esting concrete domains. For example, Theorem 3.18 implies that ALCF(R)-ABox
consistency, where ALCF(R) is ALCF(D) instantiated with the expressive concrete
domain R introduced in Section 2.4.2, is ExpSpace-complete; Theorem 3.13 implies
that ALCF(I)-concept satisfiability, where I is the interval-based temporal concrete
domain from Section 2.4.3, is PSpace-complete. This latter result has already found
applications in knowledge representation. In [Artale & Lutz 1999], it is used to obtain
a PSpace upper bound for concept satisfiability in the interval-based temporal De-
scription Logic T L-ALCF , which was first described in [Artale & Franconi 1998]. In
[Kullmann et al. 2000], the logic ALCF(I) has been used for temporal reasoning in
the application domain of disaster management.
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Chapter 4

Acyclic TBoxes and Complexity

In the following chapters, we will investigate the complexity of reasoning with various
extensions of ALC(D), an important one being by acyclic TBoxes. To allow a proper
evaluation of the obtained results, it is convenient to relate them to known results for
other Description Logics that are in some sense comparable. In contrast to Description
Logics that are fragments of ALC [Donini et al. 1997; Calvanese 1996a; Buchheit et
al. 1998], the complexity of reasoning with Description Logics that contain ALC as
a fragment and are equipped with acyclic TBoxes is not well explored. Therefore,
in this chapter we perform a general analysis of the impact of acyclic TBoxes on
the complexity of reasoning with Description Logics “above” ALC. In doing so, we
concentrate on logics for which concept satisfiability is PSpace-complete.

As already mentioned in Section 2.2.1, Nebel [1990] was the first to investigate
the complexity of Description Logics with acyclic TBoxes. He showed that, for the
very simple Description Logic T L whose concept language offers only conjunction and
universal value restriction, concept subsumption is in PTime if no TBoxes are present
and co-NP-complete if acyclic TBoxes are admitted. Hence, there exist Description
Logics for which the presence of acyclic TBoxes makes the complexity of reasoning
harder. On the other hand, it is common knowledge in the Description Logic com-
munity that, if concept satisfiability without reference to TBoxes is PSpace-complete
for a Description Logic L, then admitting acyclic TBoxes does “usually” not increase
the complexity of L-concept satisfiability. However, to the best of our knowledge, this
conviction has never been used to obtain formal complexity results. One reason for
this may be that researchers concentrated on the more expressive cyclic and general
TBoxes. We argue that there are good reasons to investigate the complexity of rea-
soning with acyclic TBoxes as well: first, the complexity of reasoning with acyclic
TBoxes is in many cases lower than the complexity of reasoning with general TBoxes.
Hence, acyclic TBoxes should be preferred over general TBoxes if their expressive
power is sufficient for the application at hand. Second, there exist Description Logics
for which reasoning with general TBoxes is undecidable but reasoning with acyclic
TBoxes is not. In many cases, it is more desirable to sacrifice expressivity instead of
losing decidability.

In this chapter, we establish formal grounds for the above mentioned common
knowledge: we show that, for many “standard” PSpace-complete Description Logics

67
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such as ALC and ALCNu, admitting acyclic TBoxes does indeed not increase the
complexity of reasoning. However, we also show that there exist counterexamples to
this general observation, i.e., logics for which the complexity of reasoning does get
significantly harder if acyclic TBoxes are admitted. More precisely, this chapter is
organized as follows: we start with devising a modification technique allowing to ex-
tend existing completion algorithms that establish a PSpace upper bound by using
the tracing technique to take into account acyclic TBoxes. We apply this modification
technique to the standard completion algorithm with tracing for ALC and argue that
it can also be applied to many other such algorithms. Hence, we prove ALC-concept
satisfiability w.r.t. acyclic TBoxes to be PSpace-complete. We then extend the mod-
ification technique to precompletion algorithms and the PSpace-completeness result
to ALC-ABox consistency. Finally, we show that the modification technique cannot
succeed in all cases: ALCF-concept satisfiability without reference to TBoxes is known
to be PSpace-complete, as first proved in [Hollunder & Nutt 1990] and reproved in
Chapter 3 using a completion algorithm with tracing. Surprisingly, we are able to
show that ALCF-concept satisfiability w.r.t. acyclic TBoxes is NExpTime-complete.
Thus, for this logic, admitting acyclic TBoxes results in a dramatic increase of com-
plexity. It should be noted that ALCF-concept satisfiability w.r.t. general TBoxes
is undecidable as a consequence of Theorem 6.3 in [Baader et al. 1993]. Thus, it is
rather natural to consider ALCF with acyclic TBoxes.

4.1 PSpace Upper Bounds

We present the standard completion algorithm for ALC that uses the tracing tech-
nique, as first described in [Schmidt-Schauß & Smolka 1991], and demonstrate how it
can be modified to take into account acyclic TBoxes.1 We then argue that the pre-
sented modification strategy can also be applied to tracing-style algorithms for several
extensions of ALC.

4.1.1 ALC with Acyclic TBoxes

The completion algorithm for ALC is a restricted version of the completion algorithm
for ALCF(D) presented in Chapter 3: the two algorithms are identical except that
some completion rules and several clash conditions are dropped. For the sake of
completeness, we nevertheless present a detailed description. As with the ALCF(D)-
algorithm, we assume that the input concept D is in negation normal form. If the
satisfiability of an input conceptD is to be decided, the completion algorithm is started
with the initial ABox AD = {a : D}. The completion algorithm repeatedly applies
completion rules to the initial ABox until either a contradiction is found or no more
completion rule is applicable. The completion rules are already known from Figures 3.2
and 3.5 and can be found in Figure 4.1. The rule set includes the non-deterministic
rule Rt and, thus, the described algorithm is a non-deterministic decision procedure.
The ALC-completion algorithm uses only a single clash condition:

1In the form presented here, the algorithm first appeared in [Baader & Hollunder 1991b].
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Ru if C1 u C2 ∈ A(a) and {C1, C2} 6⊆ A(a)
then A := A ∪ {a : C1, a : C2}

Rt if C1 t C2 ∈ A(a) and {C1, C2} ∩ A(a) = ∅
then A := A ∪ {a : C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ A(a) and there is no R-successor b of a with C ∈ A(b)
then set A := A ∪ {(a, b) : R, b : C} for a b ∈ Oa fresh in A

R∀ if ∀R.C ∈ A(a), b is an R-successor of a, and C /∈ A(b)
then set A := A ∪ {b : C}

Figure 4.1: Completion rules for ALC.

define procedure sat(A)
while a rule R from {Ru,Rt} is applicable to A do

Apply R to A
if A contains a clash then

return unsatisfiable
forall ∃R.C ∈ A(a) do

if sat({a : C} ∪ {a : E | ∀R.E ∈ A(a)}) = unsatisfiable then
return unsatisfiable

return satisfiable

Figure 4.2: The ALC-concept satisfiability algorithm.

Definition 4.1 (Clash). An ABox A contains a clash iff {A,¬A} ⊆ A(a) for some
concept name A and some object a ∈ Oa. If A does not contain a clash, then A is
called clash-free. 3

The algorithm itself can be found in Figure 4.2. It tries to construct a tree model
for the input concept by performing depth-first search over role successors without
keeping the entire model in memory. As already noted in Section 3.1.1, it is sufficient to
consider only tree models since it is well-known that ALC has the tree model property
[Halpern & Moses 1992]. Similar to the R∃r and R∀r rules of the ALCF(D) algorithm,
the R∃ and R∀ rules are not applied explicitly by the algorithm but only implicitly
through recursion calls. In contrast to the ALCF(D)-algorithm, each recursion step
of the ALC-completion algorithm does only concern the single object “a” instead of
a cluster of objects connected by features.2 We shall later see that this makes a
considerable difference if acyclic TBoxes are admitted.

Soundness and completeness of the ALC-completion algorithm are an immediate
consequence of the facts that

1. every ALC-concept is an ALCF(D)-concept,
2This also means that using ABoxes as the underlying data structure for the ALC-completion

algorithm is in fact overkill; see the K-world algorithm from Modal Logic [Ladner 1977].
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2. the ALC-completion algorithm is the restriction of the ALCF(D)-completion
algorithm to ALC-concepts: if started on an ALC-concept, the ALCF(D)-
completion algorithm will obviously never apply the rules R∃f, R∀f, Rc, R↓,
R↑, and Rfe; similarly, the clash conditions 2 to 4 from Definition 3.4 will also
never apply.

3. the ALCF(D)-completion algorithm terminates and is sound and complete.

Along the same lines, one can show that the ALC-completion algorithm needs poly-
nomial space in the worst case.

How can the ALC-completion algorithm be generalized to take into account acyclic
TBoxes? Using the unfolding technique described in Section 2.2.1 as a preprocessing
step yields decidability of concept satisfiability w.r.t. acyclic TBoxes, but this is not
an adequate means to obtain a PSpace upper bound: since unfolding may result in an
exponential blowup in concept length [Nebel 1990], the result of unfolding the input
concept cannot be stored in polynomial space. Hence, we have to pursue a different
approach. Firstly, the input TBox is converted into a certain normal form and then
the completion algorithm is modified to operate solely with concept names that are
defined in the TBox instead of with complex concepts.

Definition 4.2 (Simple TBox). A TBox T is called simple iff it is acyclic and,
additionally, satisfies the following conditions:

• the right-hand side of each concept definition in T is of the form ¬A, A1 u A2,
A1 tA2, ∃R.A1, or ∀R.A1 where A1, A2 ∈ NC,

• if the right hand side of a concept definition in T is ¬A, then A does not occur
on the left hand side of any concept definition in T .

3

See [Calvanese 1996a; Buchheit et al. 1998] for similar normal forms. Let T and T ′
be TBoxes. We say that a model I of T can be extended to a model of T ′ if there
exists a model I ′ of T ′ that agrees with I on the interpretation of all concept and
role names used in T . The following lemma shows that restricting ourselves to simple
TBoxes is not a limitation.

Lemma 4.3. Any acyclic TBox T can be converted into a simple one T ′ in polynomial
time such that T ′ is equivalent to T in the following sense: any model of T ′ can be
extended to a model of T and vice versa.

Proof. Let T be an acyclic TBox. The conversion can be done in three steps:

1. Eliminate non-atomic negation. Firstly, convert the right-hand sides of all con-
cept definitions in T to NNF. Then add a new concept definition A

.= nnf(¬C)
for each definition A

.= C in T where A is a concept name not appearing in T .
Finally, replace every occurrence of ¬A in T with A if A occurs on the left-hand
side of a concept definition in T .
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2. Break up concepts. Exhaustively apply the following rewrite rules, where C
denotes a concept such that C /∈ NC and D denotes an arbitrary concept.

A
.= C uD ; A

.= A′ uD, A′ = C (and analogous for t)
A
.= D u C ; A

.= D uA′, A′ = C (and analogous for t)
A
.= ∃R.C ; A

.= ∃R.A′, A′ = C (and analogous for ∀)

In all cases, A′ is a concept name not yet used in T .

3. Eliminate redundant names. For each concept definition A
.= A′ with A,A′ ∈

NC, replace every occurrence of A′ in T with A. Remove the definition from T .

It is straightforward to show that the TBox resulting from the above procedure is
acyclic and satisfies the two conditions from Definition 4.2. The loosened form of
equivalence is necessary since T ′ may contain additional concept names introduced
in Steps 1 and 2, and, moreover, some “redundant” concept names from T may have
been deleted in Step 3. Assume that the above procedure is applied to a TBox T .
The first step can be performed in time polynomial in |T | since NNF conversion needs
at most linear time (c.f. Section 2.1.1) and |T | such conversions are performed. Since
the number of rewrite rule applications in the second step is bounded by the number
of constructors in T , this step can clearly also be performed in polynomial time. This
obviously also holds for the last step. ❏

Since the conversion of a TBox T into a simple one T ′ as in Lemma 4.3 can be
done in polynomial time, the size of T ′ is obviously polynomial in the size of the
original TBox T . Hence, we may use conversion of the input TBox into simple form
as a preprocessing step for the completion algorithm without running into the same
problems as with unfolding.

We now modify the ALC-completion algorithm to decide the satisfiability of con-
cept names w.r.t. simple TBoxes. It is easily seen that the resulting algorithm also al-
lows to decide the satisfiability of possibly complex conceptsD w.r.t. acyclic TBoxes T :
just add a definition A .= D to T , where A was not previously used in T , convert the
resulting TBox into an equivalent one T ′ in simple form according to Lemma 4.3 and
start the modified algorithm with (A, T ′). This yields the desired result since, as is
easily seen, A is satisfiable w.r.t. T ′ iff D is satisfiable w.r.t. T .

The modified algorithm uses ABoxes of a restricted form as the underlying data
structure: in assertions of the form a : C, we require C to be a concept name. In the
following, such ABoxes are called simple.

Definition 4.4 (Modified Completion Algorithm). The modified ALC-comple-
tion algorithm tboxsat is obtained from theALC-completion algorithm sat in Figure 4.2
by the following modifications:

1. To decide the satisfiability of a concept name A w.r.t. a simple TBox T , the
tboxsat algorithm starts with the initial ABox AA := {a : A} where a ∈ Oa.

2. The completion rules are modified as follows: in the premise of each completion
rule, substitute

“C ∈ A(a)” with “B ∈ A(a) and B
.= C ∈ T ”.
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For example, in the conjunction rule, “C1 u C2 ∈ A(a)” is replaced by
“B ∈ A(a) and (B .= C1 u C2) ∈ T ”;

3

Note that the second modification also concerns implicit applications of the R∃ and
R∀ rules in recursion calls. More precisely, the forall condition now reads

forall A ∈ A(a) such that A .= (∃R.C) ∈ T

and the argument to recursion calls is

{b : C} ∪ {b : E | A ∈ A(a) and (A .= ∀R.E) ∈ T }.

Intuitively, the modified algorithm is sound, complete, and terminates since the
original algorithm has these properties and there exists a one-to-one correspondence
between runs of the modified algorithm on input A, T and runs of the original algo-
rithm on input C, where C is the result of unfolding A w.r.t. T . In the following,
we make this correspondence more precise. We use unfold(C, T ) to denote the result
of unfolding the concept C w.r.t. the TBox T . The following notion captures the
relationship between ABoxes A in runs of the modified algorithm on input A, T and
corresponding ABoxes A′ in runs of the original algorithm on input unfold(A, T ).

Definition 4.5. A simple ABox A is a variant of an ABox A′ w.r.t. a TBox T iff the
following conditions hold:

1. a : A ∈ A and unfold(A, T ) = C implies a : C ∈ A′,

2. a : C ∈ A′ implies the existence of an A ∈ NC such that a : A ∈ A and
unfold(A, T ) = C, and

3. (a, b) : R ∈ A iff (a, b) : R ∈ A′ for all assertions of this form.
3

The following lemma establishes the correspondence between runs of the two algo-
rithms.

Lemma 4.6. Let A1 be a simple ABox. Moreover, let A1 be a variant of an ABox
A′1 w.r.t. the simple TBox T .

• If the modified completion algorithm can apply a completion rule R to A1 yielding
an ABox A2, then the original completion algorithm can apply R to A′1 yielding
an ABox A′2 such that A2 is a variant of A′2 w.r.t. T .

• Conversely, if the original completion algorithm can apply a completion rule R
to A′1 yielding an ABox A′2, then the modified completion algorithm can apply R
to A1 yielding a variant A2 of A′2 w.r.t. T .
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Proof. The proof is by a straightforward case distinction according to the type of R.
We only treat one case exemplarily, namely R = Ru.

First assume that Ru was applied by the modified completion algorithm to an
assertion a : A in A1 with (A .= A1uA2) ∈ T . Then A2 = A1∪{a : A1, a : A2}. Since
A1 is a variant of A′1 w.r.t. T , a : C is in A′1 with C = unfold(A, T ). By definition
of unfolding, we have C = C1 u C2 with C1 = unfold(A1, T ) and C2 = unfold(A2, T ).
Hence, the original algorithm may apply Ru to A′1 yielding A′2 = A′1∪{a : C1, a : C2}.
It is readily checked that A2 is a variant of A′2 w.r.t. T .

Now assume that Ru was applied by the original completion algorithm to an
assertion a : C1 u C2 in A′1. Then A′2 = A′1 ∪ {a : C1, a : C2}. Since A1 is a variant
of A′1 w.r.t. T , there exists an A such that a : A ∈ A1 and unfold(A, T ) = C1 u C2.
By definition of unfolding and since T is simple, this implies the existence of A1, A2

such that A .= A1 uA2 ∈ T , unfold(A1, T ) = C1, and unfold(A2, T ) = C2. Hence, the
modified algorithm can apply Ru to A1 yielding A2 = A1 ∪ {a : A1, a : A2} which is
obviously a variant of A′2 w.r.t. T . ❏

We now establish correctness and termination and investigate the space requirements
of the modified algorithm.

Proposition 4.7. The tboxsat algorithm terminates on any input, is sound and com-
plete, and can be executed in polynomial space.

Proof. Termination, soundness, and completeness are an immediate consequence of
Lemma 4.6 and the facts that

1. the original algorithm is sound, complete, and terminating;

2. a concept name A and a simple TBox T have a model iff the concept C =
unfold(A, T ) has a model; and

3. recursion calls can be viewed as rule applications.

Assume that the tboxsat algorithm is started on a concept name A and a TBox T . It is
an immediate consequence of the following facts that tboxsat needs at most polynomial
space.

• The recursion depth is bounded by |T |. This can also be shown using the
correspondence between the original and the modified algorithm. However, we
choose a more direct approach since, later on, this will help us to characterize
the class of completion algorithms to which the described modification technique
is applicable.

Let C be the result of unfolding A w.r.t. T . For an ABox A constructed during
a recursion step of the algorithm, set

rdT (A) := max{rd(D) | there exists a : A ∈ A such that D = unfold(A, T )}

where rd(D) denotes the role depth of the concept D. It is not hard to see that
the value rdT (A) strictly decreases with recursion depth: if A′ is the result of
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applying the Ru or Rt rule to an ABox A, then rdT (A′) = rdT (A); moreover,
if A is an ABox considered during a recursion step and A′ is constructed from
A as an argument to a recursion call, then rdT (A′) < rdT (A). Since, for the
initial ABox AA, we clearly have rdT (AA) = rd(C), it remains to show that
rd(C) ≤ |T |. Assume to the contrary that the role depth of C exceeds |T |.
This means that the right- hand side of some concept definition A′

.= ∃R.D
or A′ .= ∀R.D in T contributes to the role depth of C more than once. From
this, however, it follows that unfolding D w.r.t. T yields a concept containing
A′ which is a contradiction to the acyclicity of T .

• The size of ABoxes A constructed in recursion steps is linear in |T |. This is the
case since each such ABox contains at most a single object a and, if a : A occurs
in A, then A is a concept name occurring in T .

❏

Together with the known PSpace-hardness of ALC-concept satisfiability without ref-
erence to TBoxes [Schmidt-Schauß & Smolka 1991] and the fact that NPSpace =
PSpace [Savitch 1970], we obtain the following result.

Theorem 4.8. ALC-concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete.

Since subsumption can be reduced to (un)satisfiability, we have that ALC-concept
subsumption w.r.t. acyclic TBoxes is also PSpace-complete.

4.1.2 A Rule of Thumb

We argue that the use of the presented modification scheme is not limited to ALC. In
order to give an intuition for when the described modification technique can be applied
yielding a PSpace algorithm, let us summarize why the approach is successful in the
case of ALC.

We started with a completion algorithm for ALC-concept satisfiability (without
reference to TBoxes) that uses the tracing technique, i.e., that constructs a model by
performing depth-first search over role successors without keeping the entire model in
memory. This original algorithm can be executed in polynomial space because

1. its recursion depth is bounded by the role depth of the input concept D and

2. in each recursion step, the size of the constructed ABoxA is bounded by |sub(D)|
(since each such ABox contains only a single object).

The modified completion algorithm tboxsat has very similar properties. Assume that
it is started on a concept name A and a simple TBox T and that C = unfold(A, T ).

1. as shown in the proof of Proposition 4.7, the recursion depth of the modified
algorithm is bounded by the role depth of C. We obtain a linear bound for the
recursion depth of the modified algorithm since the role depth is “polynomial
under unfolding”, i.e., the role depth of C is linear in |T |.
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2. Similarly, the size of ABoxes A constructed in recursion steps of the modified
algorithm is bounded by |sub(C)|. The function |sub(C)| is also polynomial
under unfolding in the above sense, i.e., |sub(C)| is linear in |T |. A formal proof
of the latter claim is ommitted here and will be given later (Lemma 5.56).

We may generalize the above observations into a rule of thumb that characterizes a
class of completion algorithms to which the modification technique may be applied
successfully. To do this, we first formalize what it means for a function to be preserved
by unfolding.

Definition 4.9. A function f mapping concepts to natural numbers is called polyno-
mial under unfolding iff there exists a polynomial p such that, for all concept names
A and simple TBoxes T , the result C of unfolding A w.r.t. T satisfies f(C) ≤ p(|T |).

3

As was shown in the proof of Proposition 4.7, the role-depth of concepts is an ex-
ample for a function that is polynomial under unfolding. An example for a function
which is not polynomial under unfolding is the length of concepts. This is implied
by Nebel’s result that unfolding may cause an exponential blowup in concept length
[Nebel 1990]).

Rule of Thumb. The described modification technique can be applied to all com-
pletion algorithms that decide L-concept satisfiability for some Description Logic L.
Assume that the algorithm performs depth-first search over role-successors and can
be executed in polynomial space. If there exist functions f and g that are polynomial
under unfolding such that the size of ABoxes constructed during recursion steps is
bounded by f(C) and the recursion depth is bounded by g(C), then the modified algo-
rithm can also be expected to be executable in polynomial space.

The key to understand polynomiality under unfolding and the rule of thumb is the
one-to-one-correspondence between runs of the modified algorithm on input A, T and
runs of the original algorithm on the result C of unfolding A w.r.t. T . Since the
functions f and g are polynomial under unfolding, we can carry over the polynomial
space requirement of the original algorithm started on C to the modified algorithm
started on A and T .

Let us discuss an example application of the rule of thumb. In [Donini et al. 1997],
the Description Logic ALCNu is introduced, which extends ALC by role conjunction
and unqualifying number restrictions of the form ≥nR and ≤nR where n ∈ N. These
constructors are a restricted form of the qualifying number restrictions introduced in
Section 2.1.2 and their semantics is defined as

(≥ nR)I := (≥ nR.>)I and (≤ nR)I := (≤ nR.>)I .

Donini et al. describe an algorithm for deciding ALCNu-concept satisfiability without
reference to TBoxes that performs depth-first search over role successors. The authors
assume that numbers inside number restrictions are coded unarily and show that,
under this assumption, their algorithm can be executed using only polynomial space.
More precisely, the algorithm’s recursion depth is bounded by the role depth of the
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input concept D. The ABoxes considered in each recursion step contain at most
ex(D) + nsum(D) + 1 objects, at most |sub(D)| assertions of the form a : C per
object a, and at most |sub(D)| assertions of the form (a, b) : R per pair of objects a, b.
Here, ex(D) is the number of distinct subconcepts of D that are of the form ∃R.E
and nsum(D) =

∑
≥nR ∈ sub(D) n.

Since Donini et al. assume unary coding of numbers, nsum() is obviously polyno-
mial under unfolding. It is easy to prove that this also holds for ex(): assume that C is
the result of unfolding a concept name A w.r.t. a simple TBox T and that ex(C) > |T |.
For each ∃R.E ∈ sub(C), we fix a concept equation B .= ∃R.B′ in T that was “used for
generating” ∃R.E during unfolding, i.e., the concept name B was replaced by ∃R.B′
and then B′ was unfolded to E. This concept equation is denoted by E(∃R.E). By
definition of acyclic TBoxes, E(∃R.E) = E(∃R′.E′) implies ∃R.E = ∃R′.E′. Since
the number of distinct subconcepts of the form ∃R.E in sub(C) exceeds |T |, there
exist distinct concepts ∃R.E, ∃R′.E′ ∈ sub(C) such that E(∃R.E) = E(∃R′.E′): a
contradiction.

Hence, there exist functions f and g as required and we may apply the rule of
thumb to the ALCNu-completion algorithm obtaining the following conjecture.

Conjecture. ALCNu-concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete.

This conjecture illustrates the usefulness of the devised rule of thumb. It is, however,
out of the scope of this thesis to prove the conjectured result which can be done by
modifying Donini et al.’s algorithm in the same way as we modified the ALC comple-
tion algorithm in Section 4.1.1.

We claim that the rule of thumb covers a large class of completion algorithms
that use the tracing technique. However, there exist notable exceptions. Consider for
example the ALCF(D)-completion algorithm described in Chapter 3. Its recursion
depth is bounded by the role depth of its input and thus we have found a function
g that is polynomial under unfolding and as required by the rule of thumb. But it
is not at all obvious how to find an function f that is polynomial under unfolding
and describes the size of ABoxes generated in each recursion step. In fact, such a
function does not exist: in Section 4.2, we will see that ALCF-concept satisfiability
w.r.t. acyclic TBoxes is already NExpTime-hard.

4.1.3 ALC-ABox Consistency

The strategy for modifying completion algorithms to take into account acyclic TBoxes
can also be applied to precompletion algorithms that decide ABox consistency. We
illustrate this by showing how the standard precompletion algorithm for ALC-ABox
consistency can be modified to take into account acyclic TBoxes.

The ALC-precompletion algorithm is presented in Figure 4.3. It exhaustively ap-
plies the completion rules Ru, Rt, and R∀ to the input ABox and then constructs
a number of reduction concepts that are passed to the ALC completion algorithm
for satisfiability checking. The construction of the reduction concepts can be viewed
as an (implicit) application of the R∃ rule together with multiple applications of the
R∀ rule. Obviously, the ALC-precompletion algorithm is nothing but the restric-
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define procedure cons(A)
while a rule R ∈ {Ru,Rt,R∀} is applicable to A do

Apply R to A
if A contains a clash then

return inconsistent
forall objects a in Oa and ∃R.C ∈ A(a) do

Fix b ∈ Oa

if sat({b : C u u
∀R.E∈A(a)

b : E) = unsatisfiable then

return inconsistent
return consistent

Figure 4.3: The ALC-ABox consistency algorithm.

tion of the ALCF(D)-precompletion algorithm to ALC-concepts. This implies that
termination, soundness, and completeness of the ALC-precompletion algorithm is an
immediate consequence of termination, soundness, and completeness of theALCF(D)-
precompletion algorithm.

We now modify the ALC-ABox consistency algorithm to take into account acyclic
TBoxes. The modified algorithm decides consistency of simple ABoxes w.r.t. simple
TBoxes. It can obviously also be used to decide consistency of regular ABoxes A w.r.t.
acyclic TBoxes T : extend the TBox T by a new concept definition AC

.= C for each
concept C appearing in A, where AC is a concept name not yet appearing in T ; then
convert T into simple form according to Lemma 4.3 and replace C by AC in A for all
concepts C appearing in A. Call the resulting ABox A′ and the resulting TBox T ′.
It is easily seen that A is consistent w.r.t. T iff A′ is consistent w.r.t. T ′.

Definition 4.10 (Modified Precompletion Algorithm). The modified ALC-pre-
completion algorithm tboxcons is obtained from the ALC-precompletion algorithm
cons in Figure 4.3 by the following modification:

In the premise of each completion rule, substitute

“C ∈ A(a)” by “A ∈ A(a) and A
.= C ∈ T ”

3

As in Definition 4.4, the modification also concerns the implicit applications of the R∃
and R∀ rules, i.e., the forall condition and the construction of the reduction conceptsa.
We may now establish the correctness of the modified algorithm. In the following, the
result of exhaustively applying the modified precompletion rules Ru, Rt, and R∀ to
the input ABox A using the input TBox T is called a precompletion of A w.r.t. T .

Proposition 4.11. The tboxcons algorithm terminates on any input, is sound and
complete, and can be executed in polynomial space.

Proof. Termination, soundness, and completeness can be proved similarly to the
corresponding properties of the modified ALC-concept satisfiability algorithm (using
Lemma 4.6).
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Let A and T be the input to the tboxcons algorithm and A′ a precompletion
computed by the algorithm. To prove that tboxsat can be executed in polynomial
space, we show that, for every precompletion A′ of A w.r.t. T , |A′| is polynomial
in |A| + |T |. First consider the number of new assertions of the form a : C that
are present in A′ but not in A. Since the precompletion rules do not introduce new
object names and both A and A′ are simple, the number of such new assertions is
clearly bounded by |A| · |T |. Similarly, the number of new assertions (a, b) : R in
A′ is bounded by |A|2 · |T |. It remains to recall that, by Theorem 4.8, ALC-concept
satisifiability w.r.t. acyclic TBoxes can be decided using polynomial space. ❏

Together with the lower bound for ALC-concept satisfiability and the well-known fact
that NPSpace = PSpace, we thus obtain the following result.

Theorem 4.12. ALC-ABox consistency w.r.t. acyclic TBoxes is PSpace-complete.

As in the case of the completion algorithm, the application of the presented modi-
fication technique is not limited to the logic ALC. Again, we can straightforwardly
generalize the obtained results into a rule of thumb.

Rule of Thumb. The described modification technique can be applied to all precom-
pletion algorithms that reduce L-ABox consistency to L-concept satisfiability for some
Description Logic L. If there exists an function f that is polynomial under unfolding
such that the size of the constructed precompletions is bounded by f(C) and L-concept
satisfiability w.r.t. acyclic TBoxes is PSpace-complete, then the modified algorithm
can also be expected to be executable in polynomial space.

It seems that, if L-concept satisfiability w.r.t. acyclic TBoxes is PSpace-complete
for some Description Logic L, then, in most cases, L-ABox consistency w.r.t. acyclic
TBoxes is also PSpace-complete. At least there is—to the best of our knowledge—no
known counterexample to this claim.

4.2 A Counterexample: ALCF

Given the modification scheme for completion algorithms and the rule of thumb de-
veloped in the previous section, it is a natural question to ask whether there are any
relevant Description Logics for which reasoning without reference to TBoxes is in
PSpace but reasoning w.r.t. acyclic TBoxes is not. In the following, we will answer
this question to the affirmative by showing that the complexity of ALCF-concept
satisfiability moves from PSpace-complete to NExpTime-complete if TBoxes are ad-
mitted.

The PSpace upper bound for ALCF-concept satisfiabiliy without reference to
TBoxes has already been established in Chapter 3. We prove the lower bound for
ALCF-concept satisfiability w.r.t. acyclic TBoxes by a reduction of a NExpTime-
hard variant of the well-known undecidable domino problem [Berger 1966; Knuth
1968]. A domino problem is given by a finite set of tile types. All tile types are of
the same size, each type has a quadratic shape and colored edges. Of each type, an
unlimited number of tiles is available. The problem in the original domino problem
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is to arrange these tiles to cover the plane without holes or overlapping, such that
adjacent tiles have identical colors on their touching edges (rotation of the tiles is not
allowed). In the NExpTime-hard variant of the domino problem that we use, the
task is not to tile the whole plane, but to tile a 2n+1× 2n+1-torus, i.e., a 2n+1× 2n+1-
rectangle whose edges are “glued” together. See, e.g., [Berger 1966; Knuth 1968] for
undecidable versions of the domino problem and [Börger et al. 1997] for bounded
variants.

Definition 4.13. Let D = (T,H, V ) be a domino system, where T is a finite set of
tile types and H,V ⊆ T ×T represent the horizontal and vertical matching conditions.
For s, t ∈ N, let U(s, t) be the torus Zs ×Zt, where Zn denotes the set {0, . . . , n− 1}.
Let a = a0, . . . , an−1 be an n-tuple of tiles (with n ≤ s). We say that D tiles U(s, t)
with initial condition a iff there exists a mapping τ : U(s, t) → T such that, for all
(x, y) ∈ U(s, t):

• if τ(x, y) = t and τ(x⊕s 1, y) = t′, then (t, t′) ∈ H

• if τ(x, y) = t and τ(x, y ⊕t 1) = t′, then (t, t′) ∈ V

• τ(i, 0) = ai for 0 ≤ i < n.

where ⊕i denotes addition modulo i. Such a mapping τ is called a solution for D
w.r.t. a. 3

These bounded domino systems are capable of expressing the computational be-
haviour of restricted, so-called simple, Turing machines (TMs).3 The restriction is
non-essential in the following sense: every language accepted in time T (n) and space
S(n) by some one-tape TM is accepted within the same time and space bounds by a
simple TM, provided that S(n), T (n) ≥ 2n [Börger et al. 1997].

Theorem 4.14 ([Börger et al. 1997], Theorem 6.1.2). Let M be a simple TM
with input alphabet Γ. Then there exists a domino system D = (T,H, V ) and a linear
time reduction that takes any input x ∈ Γ∗ to an n-tuple a of tiles with |x| = n such
that

• If M accepts x in time t0 with space s0, then D tiles U(s, t) with initial condition
a for all s ≥ s0 + 2, t ≥ t0 + 2;

• if M does not accept x, then D does not tile U(s, t) with initial condition a for
any s, t ≥ 2.

This theorem implies the existence of NExpTime-complete domino problems:

Corollary 4.15. There exists a domino system D such that the following is a NExp-

Time-hard problem: given an initial condition a = a0 · · · an−1 of length n, does D tile
the torus U(2n+1, 2n+1) with initial condition a?

3We introduce Turing machines in more detail in Section 5.1.
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Proof. It is not hard to see that there exists a non-deterministic TM M with time-
(and hence also space-) bound 2n that decides a NExpTime-hard language over some
alphabet Γ. We only sketch the proof: take a non-deterministic TM M ′ that decides
an arbitrary NExpTime-hard language L with time- and space-bound 2n

d
for some

integer constant d. For any word x ∈ Γ∗ and every integer constant e > 1, we define
bue(x) as the “blowup” of x to size |x|e by padding with a fixed symbol s /∈ Γ. For
each such e, we define a Turing machine Me as follows:

1. the input alphabet of Me is Γ ∪ {s},

2. if started on an input x, Me first checks whether x is in the range of bue(x). If
this is not the case, it rejects the input. Otherwise, it behaves just as M ′ with
the only difference that the s symbol is treated in the same way as M ′ treats
the blank symbol.

Obviously, for every fixed e, the language accepted by the Turing machine Me is also
NExpTime-hard. It is easy to check that we can choose e such that Me accepts any
input with time- and space-bound 2n: let w be an input to Me. Then we have w = xv,
where |v| = |x|e − |x|. The initial “checking” of the input can obviously be done in
time p(|w|) for some polynomial p and the succeeding computation can be done in
time 2|x|

d
. Hence, we need to choose e such that

2|x|
e ≥ p(|x|e) + 2|x|

d
.

Now let M be a TM with time- and space-bound 2n accepting a NExpTime-hard
language L and w.l.o.g. assume that M is simple. Let D be the corresponding domino
system and tran the reduction from Theorem 4.14. The function tran is a linear
reduction of L to the problem formulated in the corollary: for x ∈ Γ∗ with |x| = n,
we have x ∈ L iff M accepts x in time and space 2|x| iff D tiles U(2n+1, 2n+1) with
initial condition tran(x). ❏

In the following, the NExpTime-hard domino problem from Corollary 4.15 is reduced
to ALCF-concept satisfiability w.r.t. acyclic TBoxes. Given a domino system D =
(T,H, V ) with initial condition a, we define a concept (name) CD,a and an acyclic
TBox TD,a of size polynomial in |T |+ |a| such that CD,a is satisfiable w.r.t. TD,a iff D
tiles U(2n+1, 2n+1) with initial condition a (where n = |a|). The reduction TBox TD,a
is split into the two Figures 4.4 and 4.6, where the concept definitions in Figure 4.4 are
needed twice: once with α, β, γ replaced by `1, r1, y and once with α, β, γ replaced by
`2, r2, x. With `i, ri, x, y, and zi, we denote features (there is no distinction between
abstract and concrete features since ALCF provides for abstract features, only). We
first informally describe the reduction and then prove its correctness.

Models of CD,a w.r.t. TD,a describe a grid of size 2n+1 which has the form of a
torus and is properly tiled by D with initial condition a. The nodes of the grid are
represented by domain elements, horizontal edges are represented by the feature x and
vertical edges by the feature y . How is the grid enforced? The first task is to define
two cyclic “feature chains” with 2n+1 nodes each. One chain will be “row 0” of the
grid while the other one will be “column 0”. The chains are established by defining a
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Tree0[α, β, γ] .= βn+1γ↓αn+1

u ∃α.Tree1[α, β, γ] u ∃β.Tree1[α, β, γ]
u αβnγ↓βαn

Tree1[α, β, γ] .= ∃α.Tree2[α, β, γ] u ∃β.Tree2[α, β, γ]
u αβn−1γ↓βαn−1

...
Treen

.= ∃α.Treen+1[α, β, γ] u ∃β.Treen+1

u αγ↓β
Treen+1

.= Gridn+1

Figure 4.4: The ALCF-reduction TBox TD,a with |a| = n: tree definition. Substitute
α, β, γ with `1, r1, y and `2, r2, x.

γ γ γ

γ

α β α β

e1,1e1,0

α

e0,0

β

e2,1 e2,2 e2,3e2,0

Figure 4.5: An example model of Tree0[α, β, γ] with n = 1.

binary tree of depth n + 1 whose leaf nodes are connected by a cyclic feature chain.
The relevant concept Tree0 can be found in Figure 4.4. Since two trees are needed,
the TBox in the Figure has to be instantiated twice as described above. The first
instantiation yields a cyclic y-chain with 2n+1 nodes and the second one a cyclic x-
chain of the same length. An example model of the Tree0 concept can be found in
Figure 4.5.

To see how the rest of the grid is established, consider the concept CD,a in Fig-
ure 4.6, which glues together all the necessary building parts. It refers to the Tree0

concept to build up the cyclic feature chains and enforces the identification of their
“start” nodes. The remainig grid is built by the Gridi concepts. The features z0, . . . , zn
are diagonals in the grid (each zi spans 2i “grid cells”) and play a central role in the
grid definition: the use of these diagonals allows the definition of the exponentially
sized grid by an (acyclic) TBox of polynomial size. First observe that, by definition
of the Treen+1 concept, each domain element on the two cyclic feature chains (row 0
and column 0 of the torus to be defined) is in the extension of Gridn+1 and hence
also of Grid0. Because of this, each element on the chains has coinciding z0-, xy-, and
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Grid0
.= Tile u xy↓yx u xy↓z0

Grid1
.= Grid0 u z0z0↓z1 u ∃z0.Grid0

...
Gridn

.= Gridn−1 u zn−1zn−1↓zn u ∃zn−1.Gridn−1

Gridn+1
.= Gridn u ∃zn.Gridn

Tile
.= t

t∈T
At uu

t∈T
u

t′∈T\{t}
¬(At uAt′)

u u
t∈T

(At → ∃x. t
(t,t′)∈H

At′)

u u
t∈T

(At → ∃y. t
(t,t′)∈V

At′)

Init
.= ∃`n+1

2 .(Aa0 u ∃x.(Aa1 u · · · u ∃x.(Aan−2 u ∃x.Aan−1) . . . ))

CD,a
.= Tree0[`1, r1, y] u Tree0[`2, r2, x] u `n+1

1 ↓`n+1
2 u Init

Figure 4.6: The ALCF reduction TBox TD,a with n = |a|: grid definition and tiling.

yx-successors . Together with the cyclicity of the initial feature chains, this properly
defines row 1 and column 1 of the torus. Since the elements on the initial chains are in
the extension of Grid1, the elements on row 1 and column 1, which are z0-successors of
elements on the initial chains, are in the extension of Grid0. Hence, we can repeat the
argument for row/column 1 and conclude the proper definition of row/column 2. Now
observe that the elements on row/column 2 are z1-successors of elements on the initial
chains. This implies that they are in the extension of both the Grid0 and Grid1 con-
cept and we can repeat the entire argument to derive the existence of rows/columns 3
and 4. This “doubling” can be repeated n+ 1 times due the existence of the features
z0, . . . , zn and yields rows/columns 0, . . . , 2n+1 of the torus. The cyclicity of the initial
feature chains ensures that the edges of the grid are properly “glued” to form a torus,
i.e., that row/column 2n+1 coincides with row/column 0. Figure 4.7 shows a clipping
of a model of TD,a.

The grid represents the structure to be tiled. The final task is to define the tiling
itself. Tile types are represented by concept names At. Due to the definition of
Grid0, each node in the grid is in the extension of the concept Tile. This ensures that,
horizontally as well as vertically, the tiling condition is satisfied. The Init concept
enforces the initial condition a = a0, . . . , an−1.

Lemma 4.16. CD,a is satisfiable w.r.t. TD,a iff D tiles U(2n+1, 2n+1) with initial
condition a where n = |a|.

Proof. First for the “only if” direction. Let I be a model of CD,a and TD,a. To prove
that D tiles U(2n+1, 2n+1) with initial condition a, we show that there is a mapping τ
as in Definition 4.13.
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z0z0

z0

x x x
x

x

y

yy

z1 z1

z0

(`2, r2) tree

(`1, r1) tree

Figure 4.7: Clipping of a model of the reduction concept C.

Using induction on n and the definitions of the Treei concepts and the CD,a concept,
it is easy to show that there exist domain elements ei,j for 0 ≤ i ≤ n+1 and 0 ≤ j < 2i

such that e0,0 ∈ CID,a, e0,0 ∈ (rn+1
1 y↓`n+1

1 )I and the following holds:

1. ei,j ∈ Treei[`1, r1, y]I for i ≤ n+ 1 and j < 2i,

2. `I1 (ei,j) = e(i+1),2j and rI1 (ei,j) = e(i+1),(2j+1) for i ≤ n and j < 2i, and

3. ei,j ∈ (`1rn−i1 y↓r1`
n−i
1 )I for i ≤ n and j < 2i.

Intuitively, Property 2 states that the di,j form a binary tree in which edges connecting
left successors are labeled with `1 and edges connecting right successors are labeled
with r1.4 Property 3 states that the leaves of the tree are connected by a “cyclic chain”
w.r.t. the feature y. The naming scheme for nodes is as indicated in Figure 4.5.

Similarly, we may show the existence of domain elements e′i,j for 0 ≤ i ≤ n + 1
and 0 ≤ j < 2i such that e′0,0 = e0,0, e(n+1),0 = e′(n+1),0, e′0,0 ∈ (rn+1

2 y↓`n+1
2 )I , and the

following holds:

1. e′i,j ∈ Treei[`2, r2, x]I for i ≤ n+ 1 and j < 2i,

2. `I1 (e′i,j) = e′(i+1),2j and rI1 (e′i,j) = e′(i+1),(2j+1) for i ≤ n and j < 2i, and

3. e′i,j ∈ (`2rn−i2 x↓r2`
n−i
2 )I for i ≤ n and j < 2i.

Intuitively, this means that there exists another binary tree sharing the root and the
“leftmost” leaf with the previous one.

We now show that the model I describes a torus of size 2n+1×2n+1. Observe that
the elements e(n+1),0, . . . , e(n+1),(2n+1−1) and the elements e′(n+1),0, . . . , e

′
(n+1),(2n+1−1)

4Note that nodes in the tree are not necessarily distinct.
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are in the extension of the concepts GridIi for 0 ≤ i ≤ n+ 1. The former elements will
be column 0 of the torus while the latter will be row 0 of the torus. The following
claim can be proved using induction on k, the definition of the Gridi concepts, and the
“diagonal” features z0, . . . , zn.

Claim: If there exist domain elements di,0 with 0 ≤ i < 2n+1, domain elements d0,j

with 0 ≤ j < 2n+1, and a k ≤ n such that

(i) yI(di,0) = d(i⊕2n+11),0 for i < 2n+1,

(ii) xI(d0,j) = d0,(j⊕2n+11) for j < 2n+1, and

(iii) d0,0, . . . , d(2n+1−1),0 ∈ GridIk and d0,0, . . . , d0,(2n+1−1) ∈ GridIk ,

then there exist domain elements di,j with 0 ≤ i < 2n+1 and 0 ≤ j ≤ 2k and domain
elements di,j with 0 ≤ i ≤ 2k and 0 ≤ j < 2n+1 such that5

(a) yI(di,j) = d(i⊕2n+11),j for i < 2n+1 and j ≤ 2k,

(b) xI(di,j) = di,(j+1) for i < 2n+1 and j < 2k,

(c) yI(di,j) = d(i+1),j for i < 2k and j < 2n+1,

(d) xI(di,j) = di,(j⊕2n+11) for i ≤ 2k and j < 2n+1,

(e) zIk (di,0) = d(i⊕2n+12k),2k for i < 2n+1, and

(f) zIk (d0,j) = d2k,(j⊕2n+12k) for j < 2n+1.

(g) for all above elements di,j , we have di,j ∈ Grid0
I .

Intuitively, if the claim is applied to row 0 and column 0 of the torus, then the elements
in the consequent describe the leftmost 2k+1 columns and the lower 2k+1 rows of the
torus. Apply the claim to the domain elements from above e(n+1),0, . . . , e(n+1),(2n+1−1)

(these are the di,0) and e′(n+1),0, . . . , e
′
(n+1),(2n+1−1) (these are the d0,j) with k = n. We

obtain elements di,j with i < 2n+1 and j ≤ 2n and di,j with i ≤ 2n and j < 2n+1 as in
the claim. Since yI(d2n+1−1,0) = d0,0 and xI(d0,2n+1−1) = d0,0 and due to Point (g),
it is readily checked that

• yI(d2n+1−1,j) = d0,j for 1 ≤ j ≤ 2k and

• xI(di,2n+1−1) = di,0 for 1 ≤ i ≤ 2k.

Hence, we have obtained the leftmost half and the upper half of the torus. Due to
Points (e) and (f) from above and since the elements e(n+1),0, . . . , e(n+1),(2n+1−1) and
e′(n+1),0, . . . , e

′
(n+1),(2n+1−1) are in Gridn+1, we have

d0,2k , . . . , d(2n+1−1),2k , d2k,0, . . . , d2k,(2n+1−1) ∈ GridIn.
5Note that these two sets of elements overlap each other and also contain the initial elements di,0

and d0,i from the antecedent.



4.2 A Counterexample: ALCF 85

Hence, we may again apply the claim with k = n, the elements di,0 set to

d2k,2k , . . . , d(2n+1−1),2k , d0,2k , . . . , d(2k−1),2k

and the elements d0,j set to

d2k,2k , . . . , d2k,(2n+1−1), d2k,0, . . . , d2k,(2k−1).

By doing this, we obtain the rightmost half and the upper half of the torus. The
entire torus is comprised of domain elements di,j with 0 ≤ i < 2n+1 and 0 ≤ j < 2n+1

that are connected by x and y features as expected, and, by Property (g) from above,
in the extension of Grid0. Hence, all di,j are also in the extension of Tile. Define the
mapping τ as follows:

set τ(i, j) = t if di,j ∈ At.

Since all di,j are in the extension of Tile, this mapping is total and well-defined and
the horizontal and vertical tiling conditions are satisfied. Moreover, since obviously
e0,0 ∈ InitI , the initial condition a is also met.

Now for the “if” direction. Assume that the domino system D tiles the torus
U(2n+1, 2n+1) with initial condition a of length n. This means that there exists a
mapping τ as in Definition 4.13. We use this mapping to define a model I of CD,a
and TD,a, details can be found in Figure 4.8. It is straightforward to check that I
is a model of CD,a and TD,a: the ei,j domain elements form a tree of depth n + 1
where edges are labeled with `1 and r1. The n + 1’st level of the tree consists of
the elements d0,0, . . . , d0,(2n+1−1). Similarly, the e′i,j elements form an `2, r2-tree where
the root is the element e0,0 (i.e., shared with the (`1, r1)-tree) and the n + 1’st level
consists of the elements d0,0, . . . , d(2n+1−1),0. The di,j elements are arranged in a grid
w.r.t. the features x and y (and diagonals zi) which satisfies the Tile and Init concept
since the extension of the At concepts is defined through the tiling τ respecting the
initial condition a. We conclude that I is a model of CD,a and TD,a. ❏

It is easy to verify that the size of TD,a is polynomial in |T |+ |a| and can be computed
in polynomial time. Hence, we have obtained the following result:

Theorem 4.17. Satisfiability of ALCF concepts w.r.t. acyclic TBoxes is NExpTime-
hard.

This theorem yields a co-NExpTime lower bound for ALCF-concept subsumption
since concept unsatisfiability w.r.t. acyclic TBoxes can be reduced to concept sub-
sumption w.r.t. acyclic TBoxes.

In contrast to (dis)agreements on roles, called “role value maps” [Schmidt-Schauß
1989], (dis)agreements on features are usually believed to be “harmless” w.r.t. decid-
ability and complexity. The above result indicates that this is not always the case. If
general TBoxes are admitted, things get even worse: the given reduction can easily
be extended to an undecidability proof. Consider the following TBox:

{> .= xy↓yx, > .= Tile}
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∆I = {di,j | 0 ≤ i, j < 2n+1} ∪ {ei,j , e′i,j | 0 ≤ i ≤ n, 0 ≤ j < 2i}

for i ≤ n, set
Treei[`1, r1, y]I := {ei,j | 0 ≤ j < 2i}
Treei[`2, r2, x]I := {e′i,j | 0 ≤ j < 2i}

`I1 (e0,0) := e1,0, rI1 (e0,0) := e1,1, `I2 (e0,0) := e′1,0, rI2 (e0,0) := e′1,1

for i < n and j < 2i, set
`I1 (ei,j) := e(i+1),(2j), rI1 (ei,j) := e(i+1),(2j+1)

`I2 (e′i,j) := e′(i+1),(2j), rI2 (e′i,j) := e′(i+1),(2j+1)

TreeIn+1 := GridIn+1 := {d0,j , dj,0 | 1 ≤ j < 2n+1}

for i < 2n, set
`I1 (en,i) := d0,(2i), rI1 (en,i) := d0,(2i+1),

`I2 (e′n,i) := d(2i),0, rI2 (e′n,i) := d(2i+1),0

for i, j < 2n+1, set xI(di,j) := d(i⊕2n+11),j , yI(di,j) := di,(j⊕2n+11)

for i, j < 2n+1 and k < n, set zIk (di,j) := d(i⊕2n+12k),(j⊕2n+12k)

for i < 2n+1, set zIn(di,0) := d(i⊕2n+12n),2n , zIn(d0,i) := d2n,(i⊕2n+12n)

GridI0 := · · · := GridIn := TileI := {di,j | 0 ≤ i, j < 2n+1}

for t ∈ T, set AIt := {di,j | τ(i, j) = t}

InitI := CID,a := {e0,0}

Figure 4.8: Constructing a model I from a function τ .

where Tile is defined as in Figure 4.6. Models of this TBox have the form of an
infinite grid and it is not hard to see that satisfiability of the concept > w.r.t. the
above TBox implies the existence of a complete tiling of the first quadrant of the plane
and vice versa. As shown in [Knuth 1968], the variant of the domino problem that
requires tilings of the first quadrant of the plane is already undecidable. Hence, we
have proved undecidability of ALCF-concept satisfiability w.r.t. general TBoxes. This
result is already known from feature logic [Baader et al. 1993, Theorem 6.3], where
it was proved using a more complicated reduction of the word problem for finitely
presented groups.

4.3 The Upper Bound

Our main goal in this section is to prove a NExpTime upper bound for ALCF-
concept satisfiability w.r.t. acyclic TBoxes matching the lower bound established in the
previous section. However, in Section 5.5.1, we will need a NExpTime upper bound for
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ALCFu-concept satisfiability without reference to TBoxes—where ALCFu is ALCF
extended with the role conjunction constructor introduced in Section 2.1.2. To avoid
double work, we combine both logics and, in this section, prove a NExpTime upper
bound for ALCFu-concept satisfiability w.r.t. acyclic TBoxes. This upper bound is
established by proving a bounded model property (BMP), i.e., by showing that, if an
ALCFu-concept C is satisfiable w.r.t. an acyclic TBox T , then there exists a model of
C and T of size exponential in the size of C and T . The BMP induces the following
simple decision procedure: to decide the satisfiability of a concept C w.r.t. an acyclic
TBox T , a non-deterministic Turing machine may “guess” an interpretation I of
exponential size and check whether it is a model of C and T . Due to the bounded
model property and that, as we shall see, checking whether an interpretation is a model
of a given concept and TBox can be done in linear time, this yields a NExpTime

decision procedure.
Some introductory remarks concerning the Description Logic ALCFu are in order:

ALCFu allows the application of the role conjunction constructor introduced in Sec-
tion 2.1.2 to both roles and features (even intermixed). However, this constructor may
only be used inside existential and universal value restrictions and not inside feature
(dis)agreements. Hence, ∃(R u f u f ′).A is an ALCFu-concept, but f ↓ (f u R) and
f1 ↓ (f2 u f3) are not.

For developing a decision procedure for ALCFu-concepts w.r.t. acyclic TBoxes, we
restrict ourselves to simple ALCFu-TBoxes which are defined as in Definition 4.2 with
the only difference that right-hand sides may also be of the form ∃(R1 u · · · uRn).C,
∀(R1 u · · · uRn).C, p1↓p2, or p1↑p2. Since Lemma 4.3 obviously generalizes from
simple ALC-TBoxes to simple ALCFu-TBoxes, this can be done without loss of gen-
erality. Moreover, as argued in Section 4.1.1, it is sufficient to decide satisfiability of
concept names w.r.t. simple TBoxes since it is straightforward to reduce satisfiability
of (possibly complex) concepts C w.r.t. acyclic TBoxes to this task.

We now establish the bounded model property for concept names and simple
TBoxes using a technique known as selective filtration in Modal Logic [Chagrov &
Zakharyaschev 1996]. We first show how models of ALCFu-concepts can be filtrated
into smaller models (without considering TBoxes at all). Intuitively, the (selective)
filtration of a model I of a concept D is obtained by “selecting” the part of I that is
relevant for D. We then use filtrated models to establish the bounded model property
for concept names and TBoxes and describe the decision procedure induced by the
BMP in more detail. In what follows, the role depth of an ALCFu-concept C is
denoted by rd(C) and defined analogously to the role depth of ALCF(D)-concepts as
defined in Section 3.1.3. For example, the role depth of ∃R1 uR2.(f1f2 ↓ f1) is 3.

Definition 4.18 (Filtration). Let D be an ALCFu-concept. Assume that sub(D)
contains k existential concepts, i.e. concepts of the form ∃(R1 u · · · uRn).C for some
n ≥ 1, where R1, . . . , Rn ∈ NR. We assume that this set of concepts is linearly ordered
and that E(i) (with 0 ≤ i ≤ k) yields the i-th such concept. A model J is called a
filtration of I w.r.t. D if it can be constructed from I in the following way.

Fix a domain element d0 ∈ DI . Moreover, for each d ∈ ∆I and each i ≤ k with
E(i) = ∃R1 u · · · uRn.C and d ∈ (∃R1 u · · · uRn.C)I , fix a witness τ(d, i) ∈ ∆I such
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that (d, τ(d, i)) ∈ (R1 u · · · uRn)I and τ(d, i) ∈ CI . An edge in I is a triple (d, e,R)
such that (d, e) ∈ RI . Determine a set of selected domain elements and a set of
selected edges in rd(D) + 1 rounds as follows:

• In round 0, select d0 (no edges are selected).

• In round i with 0 < i ≤ rd(D), do the following for all elements d that have
been selected in round i− 1:

– for all e ∈ ∆I and features f used in D, if (d, e) ∈ fI , then select the
object e and the edge (d, e, f).

– for j ≤ k, if d ∈ (∃(R1 u · · · uRn).C)I and ∃(R1 u · · · uRn).C = E(j), then
select the element τ(d, j) and the edges (d, τ(d, j), R1), . . . , (d, τ(d, j), Rn).

Define the interpretation J as the restriction of I to the set of selected nodes and
edges, i.e.,

• ∆J := {d ∈ ∆I | d is selected},

• AJ := AI ∩∆J for all A ∈ NC, and

• RJ := {(d, e) ∈ RI | (d, e,R) selected} for all R ∈ NR.

The object d0 ∈ ∆J selected in round 0 is called the root of J . 3

Note that, given a model I of a concept D, there may exist more than one filtration
of I w.r.t. D. Also note that, during the selection procedure, objects may be selected
multiple times, since e.g., for distinct (d, i) and (e, j), we may have τ(d, i) = τ(e, j).

Our next subgoal is to prove that, if I is a model of D and J a filtration of I
w.r.t. D, then J is also a model of D. To this end, we first establish a new notion and
a technical lemma. Let I be an interpretation and d0 ∈ ∆I . The mapping depthId0

()
from the domain ∆I into the natural numbers measures the “distance” between d0

and other domain elements:

• set depthId0
(d0) := 0;

• for any d ∈ ∆J with d 6= d0, define depthId0
(d) to be the length of the shortest

sequence R1, . . . , Rk of roles such that (d0, d) ∈ RJ1 ◦ · · · ◦R
J
k and ∞ if no such

sequence exists.

The following lemma shows the connection between the selection procedure and
the depth() function.

Lemma 4.19. Let I be a model of D, J a filtration of I w.r.t. D, and d0 the root
of J . For all d ∈ ∆J , depthJd0

(d) = ` implies that d was selected in round ` during
the construction of J .
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Proof. Let E() and τ() be as in the construction of J (see Definition 4.18). The proof
is by induction on `. For the induction start, we have ` = 0. By definition of depth(),
this implies d = d0. Hence, d was obviously selected in round 0. For the induction
step, assume 0 < ` ≤ rd(D). Then there exists a sequence of roles R1, . . . , R` such
that (d0, d) ∈ RJ1 ◦ · · · ◦R

J
` which is the shortest sequence with this property. Hence,

there exists a domain element e such that (e, d) ∈ RJ` and depthJd0
(e) = ` − 1. By

the induction hypothesis, e was selected in round ` − 1. Since (e, d) ∈ RJ` , the edge
(e, d,R`) is selected in I. By definition of the selection procedure, this means that
either (i) R` = f for some f ∈ NaF, and (e, d) ∈ fI or (ii) there exists an i such that
∃(R′1 u · · · uR′n).C = E(i), R` = R′j for some 1 ≤ j ≤ n, e ∈ E(i)I , and τ(e, i) = d. In
both cases, d is selected in round `. ❏

Note that, if D, J , and d0 are defined as in Lemma 4.19, then depthJd0
(d) ≤ rd(D)

for all d ∈ ∆J . ALCFu-concepts can be converted into equivalent ones in NNF in
precisely the same way as ALCF(D)-concepts, c.f. Section 3.1.2. The following lemma
implies that each filtration of a model of a concept D is also a model of D. Without
loss of generality, we assume the concept D to be in NNF.

Lemma 4.20. Let D be a concept in NNF, I a model of D, J a filtration of I
w.r.t. D, and d0 the root of J . For all d ∈ ∆J and C ∈ sub(D), we have that d ∈ CI
and rd(C) ≤ rd(D)− depthJd0

(d) implies d ∈ CJ .

Proof. Let E() and τ() be as in the construction of J (see Definition 4.18). The proof
is by induction on the structure of C. The induction start consists of the following
cases:

• C is a concept name. Straightforward by definition of J .

• C = ¬C1. Since D is in NNF and C ∈ sub(D), C is also in NNF and hence
C1 = A for some A ∈ NC. By definition of J , d /∈ AI implies d /∈ AJ and we
are done.

• C = p1↑p2 with p1 = f1 · · · fn and p2 = f ′1 · · · f ′m. Since d ∈ CI , there exist
domain elements e1 and e2 such that pI1 (d) = e1, pI2 (d) = e2, and e1 6= e2. Since
rd(C) ≤ rd(D) − depthJd0

(d) and rd(C) = max{n,m}, we have depthJd0
(d) ≤

rd(D) −max{n,m}. Hence, by Lemma 4.19, d has been selected in round j ≤
rd(D)−max{n,m}. By definition of the selection procedure, this implies that e1

and e2 and all the domain elements and edges “between” d and e1 and “between”
d and e2 are also selected. Thus d ∈ CJ by definition of J .

• C = p1↓p2. Similar to the previous case.

For the induction step, we make a case distinction according to the topmost construc-
tor in C:

• C = C1uC2. d ∈ CI implies d ∈ CI1 and d ∈ CI2 . By induction, we have d ∈ CJ1
and d ∈ CJ2 and thus d ∈ CJ .

• C = C1 t C2. Similar to the previous case.
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• C = ∃(R1 u · · · u Rn).C1. Then there exists an i such that E(i) = C. Since
rd(C) ≤ rd(D) − depthJd0

(d) and rd(C) ≥ 1, we have depthJd0
(d) < rd(D). By

Lemma 4.19, d has been selected in round j < rd(D). Because of this and
since d ∈ E(i)I , τ(d, i) is selected in round j + 1. By definition of the selection
procedure, we have (d, τ(d, i)) ∈ (R1 u · · · uRn)J . Moreover, since τ(d, i) ∈ CI1 ,
we have τ(d, i) ∈ CJ1 by induction. Hence, d ∈ CJ .

• C = ∀(R1 u · · · uRn).C1. Assume (d, e) ∈ (R1 u · · · uRn)J . By definition of J ,
this implies (d, e) ∈ (R1 u · · · u Rn)I . Moreover, we clearly have depthJd0

(e) ≤
depthJd0

(d) + 1. Since rd(C) ≤ rd(D) − depthJd0
(d) and, obviously, rd(C1) =

rd(C)− 1, we have rd(C1) ≤ rd(D)− depthJd0
(e). Since d ∈ CI , we have e ∈ CI1 .

Thus, we obtain e ∈ CJ1 by induction. Since this holds independently of the
choice of e, we conclude d ∈ CJ . ❏

We now investigate the size of filtrations. For this purpose, the size of an interpretation
I is denoted by |I| and defined as the cardinality of ∆I . Let C be an ALCFu-
concept. We use feat(C) to denote the number of distinct features occurring in C (c.f.
Section 3.1.3) and ex(D) to denote the number of distinct subconcepts of D that are
of the form ∃(R1 u · · · uRn).E (c.f. Section 4.1.2).

Lemma 4.21. Let I be a model of D and J a filtration of I w.r.t. D. Then |J | ≤
(feat(D) + ex(D))rd(D)+1 − 1.

Proof. The selection procedure consists of rd(D) rounds. Using induction on i, it is
easily proved that, for each i ≤ rd(D), at most (feat(D) + ex(D))i objects are selected
in round i. This clearly implies the claim. ❏

We now have all necessary building blocks to prove the bounded model property.

Theorem 4.22 (Bounded Model Property). If a concept name B is satisfiable
w.r.t. a simple TBox T , then there exists a model I of B and T such that |I| ≤ 2|T |

2
.

Proof. Assume that B is satisfiable w.r.t. T and let I be a model of B and T .
Moreover, let D be the result of unfolding B w.r.t. T . By induction over the number
of unfolding steps, it is straightforward to prove that I is a model of D. Let J be the
filtration of I w.r.t. D with root d0. By definition of simple TBoxes, it is easily seen
that D is in NNF. Hence, by Lemma 4.20 and since d0 ∈ DI , we have d0 ∈ DJ , i.e., J
is a model of D. It is now easy to convert J into a model J ′ of B and T : w.l.o.g.
assume that AJ = ∅ for all A ∈ NC not appearing in D. Let B1

.= C1, . . . , Bk
.= Ck

be a total ordering of the concept definitions in T such that Bj does not “use” Bi
in T (see Definition 2.5) for 1 ≤ i < j ≤ k. Such an ordering obviously exists due to
the definition of acyclic TBoxes. We define a sequence J0, . . . ,Jk of interpretations
by setting J0 := J and, for 0 < i ≤ k, defining Ji as the interpretation obtained from
Ji−1 by setting

BJii := B
Ji−1

i ∪ CJi−1

i .

By induction on i, it is straightforward to prove that Ji is a model of the TBox
{B1

.= C1, . . . , Bi
.= Ci}. Hence, J ′ := Jk is a model of T . By construction, J ′ is

also a model of B.
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Since clearly |J ′| = |J |, it remains to show that |J | ≤ 2|T |
2

to prove the lemma.
By Lemma 4.21, we have |J | ≤ (feat(D) + ex(D))rd(D)+1 − 1. It is not hard to
see that feat(D) ≤ |T | (in other words, feat() is polynomial under unfolding as de-
fined in Section 4.1.2). Moreover, in Sections 4.1.1 and 4.1.2 we have shown that,
if A is a concept name and T̂ is an ALC-TBox, then ex(unfold(A, T̂ )) ≤ |T̂ | and
rd(unfold(A, T̂ )) ≤ |T̂ |. Since these results do obviously generalize to ALCFu, we
have ex(D) ≤ |T | and rd(D) ≤ |T |. It follows that |J | ≤ (2 · |T |)|T |+1 − 1 and aa
function plotter reveals that |J | ≤ 2|T |

2
if |T | ≥ 4. Furthermore, if |T | < 4, then T is

of the form {A .= A′} or {A .= ¬A′} and clearly has a model of size 1. ❏

The bounded model property just established gives rise to a decision procedure for
the satisfiability of ALCFu-concepts w.r.t. acyclic TBoxes.

Corollary 4.23. ALCFu-concept satisfiability w.r.t. acyclic TBoxes is NExpTime-
complete.

Proof. The lower bound stems from Theorem 4.17. Hence we concentrate on the
upper bound. As already argued, we may restrict ourselves to the satisfiability of
concept names w.r.t. simple TBoxes. Hence, let B be a concept name and T be a
simple TBox whose satisfiability is to be decided. A non-deterministic Turing machine
may “guess” an interpretation of size at most 2|T |

2
, check whether it is a model of B

and T , and return satisfiable if this check succeeds and unsatisfiable otherwise. In the
light of Theorem 4.22, the correctness of this procedure is easily seen. The Turing
machine can be designed to run in non-deterministic exponential time due to the
following observations:

1. In models I of B and T , the interpretation of concept names A 6= B not used
in T and role names R not used in T is clearly irrelevant and can thus be
assumed to be empty. Hence, we can represent any model I of B and T of size
at most 2|T |

2
by using a sequence of symbols of length 2p(|T |), where p() is a

polynomial.

2. As is easily seen, checking whether an interpretation I is a model of a concept
name B and a simple TBox T can be done using model checking algorithms for
First Order Logic: the interpretation I can naturally be viewed as a first order
structure and the corresponding formula is

ϕB,T := PB(x) ∧
∧

A
.
=C∈T

∀x(PA(x)↔ C∗(x)).

Here, ·∗ is the translation of ALC-concepts into FO-formulas given in Sec-
tion 2.1.1 extended with the following cases:

(∃(R1 u · · · uRk).C)∗ := (∃y(PR1(x, y) ∧ · · · ∧ PRk(x, y) ∧ ∃x(x = y ∧ C∗)))
(∀(R1 u · · · uRk).C)∗ := (∀y((PR1(x, y) ∧ · · · ∧ PRk(x, y))→ ∀x(x = y → C∗)))
(f1 · · · fk ↓ f ′1 · · · f ′k′)∗ := ∃x1, . . . , xk, y1, . . . , yk

(
Pf1(x, x1) ∧ Pf ′1(x, y1)

∧ xk = yk′ ∧
∧

1≤i<k
Pfi(xi, xi+1) ∧

∧
1≤i<k′

Pf ′i (yi, yi+1)
)
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It is well-known that the combined space complexity of model checking in FO
is O(|ϕ| · log(|A|)), where ϕ is the input formula and A the input structure
[Vardi 1982]. Hence, the time complexity of this problem is O(2|ϕ| · |A|). Since
the models to be checked have a representation of size at most 2p(|T |), and,
obviously, the length of ϕB,T is linear in |T |, the model checking performed by
our algorithm can be done in time exponential in |T |.

❏

Since subsumption w.r.t. acyclic TBoxes can be reduced to (un)satisfiability w.r.t.
acyclic TBoxes, subsumption of ALCFu-concepts w.r.t. acyclic TBoxes is co-NExp-

Time-complete. We refrain from extending the above result to ABox consistency since
ALCF is just a side-track in this thesis. However, we conjecture that ALCFu-ABox
consistency is also NExpTime-complete and that this can be shown by a precomple-
tion algorithm similar to the one presented in Section 3.2.

4.4 Discussion

We have developed a rule of thumb that characterizes a class of PSpace-complete
Description Logics for which admitting acyclic TBoxes does not increase the com-
plexity of reasoning. As we have seen, this class includes many “standard” DLs such
as ALC and ALCNu. Moreover, we proved that there also exist standard DLs to
which the rule of thumb is not applicable and the addition of acyclic TBoxes does
significantly increase the complexity of reasoning: for the logic ALCF , adding acyclic
TBoxes raises the complexity from PSpace-complete to NExpTime-complete. In the
following chapter, we shall see that ALC(D) is another example of a DL for which
the addition of acyclic TBoxes does make a difference. In fact, we will see that,
complexity-wise, extensions of ALC(D) “behave” very similar to extensions of ALCF .
Hence, feature (dis)agreements are not the only reason why the modification tech-
nique from Section 4.1.1 cannot be applied to the ALCF(D) completion algorithm
presented in Chapter 3. Dropping feature (dis)agreement from ALCF(D) would not
help in this respect.

As noted in Section 2.2.1, there exists a variant of acyclic TBoxes in which concept
definitions have the form A v C and are satisfied by an interpretation I iff AI ⊆ CI .
In the following, we call such TBoxes primitive. It is not hard to see that acyclic
TBoxes are stronger than primitive ones in the sense that primitive concept definitions
A v C can be rephrased as A .= CuA′, where A′ is a concept name not yet appearing in
the TBox, but concept definitions A .= C cannot be “simulated” by primitive TBoxes.
There exist Description Logics for which the complexity of reasoning with primitive
TBoxes does not coincide with the complexity of reasoning with acyclic TBoxes: for
example, T L-concept subsumption w.r.t. primitive TBoxes is in PTime [Calvanese
1996a] while T L-concept subsumption w.r.t. acyclic TBoxes is co-NP-complete [Nebel
1990].6 However, as is easily verified, all results obtained in this chapter do also
apply to primitive TBoxes. This holds for the modification technique presented in

6Recall that T L is the Description Logic whose only constructors are conjunction and universal
value restriction.
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Section 4.1.1, which can in exactly the described form be used for primitive TBoxes, as
well as for the ALCF lower bound and the ALCFu upper bound from Section 4.2—for
the upper bound this is even trivial since acyclic TBoxes can “simulate” primitive ones
as argued above. Hence, it seems that, for Description Logics containing ALC as a
fragment, the complexity of reasoning with acyclic TBoxes “usually” coincides with
the the complexity of reasoning with primitive TBoxes.
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Chapter 5

Extensions of ALC(D)

In Sections 2.1.2 and 2.2.1, we have introduced several extensions of the basic Descrip-
tion Logic ALC that have been proposed since the expressive power of ALC itself is
not sufficient for many applications. Although ALC(D) extends ALC by the capabil-
ity of representing knowledge about “concrete qualities” of real-world entities, many
of ALC’s shortcomings are still present in ALC(D). For example, using ALC(D), we
cannot talk about the inverses of roles or about the number of role successors a domain
element may have. Moreover, until now we only considered ALC(D) without TBoxes
and hence are lacking a means to represent terminological knowledge and background
knowledge from application domains.

In this chapter, we extend ALC(D) with various means of expressivity and analyze
the complexity of the resulting formalisms. More precisely, we consider the extension
by (i) acyclic TBoxes, (ii) a role conjunction constructor, (iii) an inverse role construc-
tor, (iv) generalized concrete domain constructors, and (v) the concrete domain role
constructor (the latter two have been introduced in Section 2.3.2). Most of these exten-
sions are seemingly “harmless” w.r.t. complexity: in Section 4.1, we saw that the ex-
tension of many PSpace Description Logics with acyclic TBoxes does not increase the
complexity of reasoning. Moreover, it is well-known that the extension of a PSpace

DL with role conjunction and inverse roles usually does not change the complexity
of reasoning. For example, ALC extended with role conjunction is still in PSpace

[Donini et al. 1997] as is ALC extended with inverse roles [Horrocks et al. 2000a;
Spaan 1993b] or even with both [Tobies 2001b]. Surprisingly, we find that—despite
their harmlessness in the context of ALC—each of the above mentioned extensions of
ALC(D) yields a logic for which reasoning is significantly harder than with ALC(D)
itself.

More precisely, we will see that there exists a rather simple concrete domain W such
that concept satisfiability in each of the five extensions ofALC(W) is NExpTime-hard.
With “simple”, we refer both to the nature of the predicates offered by W as well as to
the complexity of W-satisfiability, which is in PTime. To demonstrate the relevance
of the obtained hardness results, we show that they also apply to many other concrete
domains proposed in the literature. As a corresponding upper bound, we prove that,
if reasoning with a concrete domain D is in NP, then reasoning with ALC(D) and

95
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all five extensions (simultaneously) is in NExpTime. The established lower bounds
show that the complexity of ALC(D) is rather sensitive w.r.t. extensions of the logic
and hence the PSpace upper bound for ALC(D)-concept satisfiability established in
Chapter 3 cannot be considered robust. However, it should be noted that there also
exist interesting extensions of ALC(D) that (most probably) have no impact on the
complexity of reasoning. We shall return to this issue in Section 5.6.

This chapter is organized as follows: we start with introducing a NExpTime-
complete variant of the well-known undecidable Post Correspondence Problem [Post
1946]. Then, we introduce the concrete domain W that is designed for encoding the
NExpTime-complete PCP in Description Logics with concrete domains and show
that W-satisfiability is in PTime. Using this concrete domain, we establish the five
lower bounds and then prove the corresponding upper bound by devising a comple-
tion algorithm. Finally, we compare the extensions of ALC(D) with the corresponding
extensions of ALCF , obtaining the result that, in most cases, the complexity of (ex-
tensions of) ALCF parallels the complexity of (extensions of) ALC(D).

5.1 A NExpTime-complete Variant of the PCP

Post’s Correspondence Problem, which was introduced by Emil Post as early as 1946
[Post 1946], is a valuable tool for undecidability proofs. In the following, we tailor
a NExpTime-complete variant of Post’s original undecidable problem to allow for
convenient NExpTime-hardness proofs in subsequent sections.

Definition 5.1 (PCP). An instance P of the Post Correspondence Problem is given
by a finite, non-empty list (`1, r1), . . . , (`k, rk) of pairs of words over some alphabet Σ.
A sequence of integers i1, . . . , im, with m ≥ 1, is called a solution to P iff

`i1 · · · `im = ri1 · · · rim .

The Post Correspondence Problem (PCP) is to decide, for a given instance P , whether
P has a solution. Let f(n) be a mapping from N to N and let |P | denote the sum of
the lengths of all words in the PCP P , i.e.,

|P | =
∑

1≤i≤k
|`i|+ |ri|.

A solution i1, . . . , im to a PCP-instance P is called f(n)-solution iff m ≤ f(|P |). By
f(n)-PCP, we denote the version of the PCP that admits only f(n)-solutions. 3

Undecidability of the general PCP was first proved in [Post 1946] and later reproved
by Hopcroft and Ullman in [1979]. In [Garey & Johnson 1979], a variant of the PCP
is listed as an NP-complete problem (problem number [SR11]). In this variant, a
PCP-instance is given by a finite list of word pairs (`1, r1), . . . , (`k, rk) and a positive
integer K ≤ k in unary coding. As solutions, only sequences of length at most K are
admitted. Inspired by this result, we prove NExpTime-completeness of the 2n + 1-
PCP. For proving NExpTime-hardness, which is much more difficult than establishing
the upper bound, we first introduce another variant of the PCP.
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Definition 5.2 (MPCP). Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. A solu-
tion i1, . . . , im to P is called an MPCP-solution iff i1 = 1. By MPCP, we denote the
version of the PCP that admits only MPCP-solutions. 3

For functions f(n) from N to N, we define f(n)-MPCP-solutions and the f(n)-MPCP
in the obvious way. In the following, we will sometimes call a PCP-instance P an
MPCP-instance if we are only interested in MPCP solutions. The next lemma shows
that, in order to prove NExpTime-hardness of the 2n + 1-PCP, it suffices to prove
NExpTime-hardness of certain MPCPs.

Lemma 5.3. Let p(n) be a polynomial such that p(n) ≥ 8n for all n ∈ N. If the
2p(n)-MPCP is NExpTime-hard, then the 2n + 1-PCP is NExpTime-hard.

Proof. We reduce the 2p(n)-MPCP to the 2n + 1-PCP. The reduction is largely
identical to Hopcroft and Ullman’s reduction of the general MPCP to the general
PCP [Hopcroft & Ullman 1979]. However, we need to do some additional work to deal
with the lengths of solutions.

Let P = (`1, r1), . . . , (`k, rk) be an MPCP-instance with |P | = s and let ¢, $, and ]
be symbols not occurring in P . Our goal is to define a corresponding PCP-instance
P ′ such that P has a 2p(n)-MPCP-solution iff P ′ has a 2n + 1-solution. W.l.o.g., we
assume that P contains no pairs of the form (ε, ε). Moreover, we can safely assume
s > 1 since otherwise P has no solution which means that we can set P ′ := P and are
done.

Define a PCP-instance P ′ = (`′0, r
′
0), . . . , (`′k+2, r

′
k+2) as follows:

1. for 1 ≤ i ≤ k, `′i is obtained from `i by inserting the symbol ¢ after each symbol
in `i, and r′i is obtained from ri by inserting the symbol ¢ ahead of each symbol
in ri;

2. (`′0, r
′
0) := (¢`′1, r

′
1) and (`′k+1, r

′
k+1) := ($, ¢$);

3. `′k+2 = ε and r′k+2 = ]x where x = p(s)− (2s+ |`′1|+ |r′1|+ 4).

Note that x ≥ 0: since |`′1| ≤ 2s, |r′1| ≤ 2s, and 4 ≤ 2s (recall that s > 1), we have

(2s+ |`′1|+ |r′1|+ 4) ≤ 8s.

Moreover, we require p(s) ≥ 8s and hence x ≥ 0. It is not hard to check that |P ′| =
p(s): the size of the list (`′1, r

′
1), . . . , (`′k, r

′
k) is 2s, the size of (`′0, r

′
0) is |`′1|+ |r′1|+ 1,

the size of (`′k+1, r
′
k+1) is 3, and the size of (`′k+2, r

′
k+2) is x. Hence, by definition of x,

we have |P ′| = p(s).
We claim that every 2p(n)-MPCP solution to P can be translated into a 2n + 1-

solution to P ′ and vice versa. Intuitively, the ¢ and $ symbols are introduced to ensure
that (i) (`′0, r

′
0) is the only pair in which the left and the right word start with the

same symbol and (ii) MPCP-solutions to P can be translated into solutions to P ′

and vice versa (this part of the reduction is identical to Hopcroft and Ullman’s). The
purpose of the ] symbol and the pair (`′k+2, r

′
k+2) is to “blow up” the size of P ′ which

is necessary to ensure that solutions have correct lengths. Note that the index k + 2
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can appear in solutions to P ′ only if x = 0. In this case, however, it can es well be
left away since the corresponding pair degenerates to (ε, ε).

Assume that 1, i1, . . . , ir is a 2p(n)-MPCP-solution to P (i.e., r < 2p(s)). Using
the definition of P ′, it is readily checked that this implies that 0, i1, . . . , ir, k + 1 is a
solution to P ′ (c.f. [Hopcroft & Ullman 1979] where more details and an example are
presented). Since |P ′| = p(s), it is readily checked that 0, i1, . . . , ir, k + 1 is even a
2n + 1-solution to P ′.

Now assume that i1, . . . , ir is a 2n + 1-solution to P ′. We assume w.l.o.g. that
ij 6= k + 2 for 1 ≤ j ≤ r (see above). We have i1 = 0 due to the use of the ¢ symbol.
Moreover, it is readily checked that i1, . . . , ij is a solution to P , where j is the smallest
integer such that ij+1 = k + 1. Such a j always exists due to the use of the ¢ and $
symbols (see [Hopcroft & Ullman 1979]). Since |P ′| = p(s) and (obviously) j < r, it is
readily checked that i1, . . . , ij is a 2p(n)-MPCP-solution to P . ❏

In the following, we show that there in fact exists a polynomial p(n) with p(n) ≥ 8n
for all n ∈ N such that the 2p(n)-MPCP is NExpTime-hard. This is done using a
reduction of the acceptance problem of Turing machines.

Definition 5.4 (Turing machine). A non-deterministic Turing machine is given
by a tuple M := (Q,Γ, δ, q0, Qf ) where

• Q is a finite set of states,

• Γ is a finite set of symbols with Γ∩Q = ∅, which contains the special symbol B
called the blank symbol,

• δ is a transition function which maps Q × Γ to the power set of Q × Γ ×
{left, right, stay},

• q0 ∈ Q is the initial state, and

• Qf ⊆ Q is a set of final states.

Let M = (Q,Γ, δ, q0, Qf ) be a (non-deterministic) Turing machine. An ID uqv of M
is a word in Γ∗QΓ∗. Such an ID has the usual interpretation, i.e., it describes the
inscription of the infinite tape (all tape cells “before u” and “behind v” are labeled
with B), the current state q, and the head position of M , which is on the leftmost
symbol of v.
The usual transition relation on IDs is denoted by . Intuitively. uqv u′q′v′ if a
single step of M in ID uqv may result in ID u′q′v′. An exact definition is omitted and
can be found in any book on recursion theory, e.g. [Hopcroft & Ullman 1979]. By ∗ ,
we denote the reflexive transitive closure of .
M accepts an input w (given as an initial tape inscription) iff there exists a qf ∈ Qf
such that q0w

∗ uqfv for some u, v ∈ Γ∗. Let f be a function from N to N. M is an
f(n)-Turing machine iff, for each input w, every sequence

q0w u1q1v1 u2q2v2 · · ·

is of length at most f(|w|). 3
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Group I
Left word Right word

X X for each X ∈ Γ
] ]

Group II. For each q ∈ Q \Qf , p ∈ Q, and X,Y, Z ∈ Γ:

Left word Right word
qX Y p if δ(q,X) = (p, Y,R)
ZqX pZY if δ(q,X) = (p, Y, L)
q] Y p] if δ(q,B) = (p, Y,R)
Zq] pZY ] if δ(q,B) = (p, Y, L)

Group III. For each q ∈ Qf and X,Y ∈ Γ:

Left word Right word
XqY q
Xq q
qY q

Group IV.
Left word Right word

q]] ] for each q ∈ Qf

Figure 5.1: The MPCP translation.

We now give a translation of Turing machines and their inputs to MPCP-instances,
which is crucial for proving the central result of this section. The translation is
identical to the one used by Hopcroft and Ullman to prove undecidability of the
general PCP [Hopcroft & Ullman 1979]. We repeat it for the sake of completeness.
Let M = (Q,Γ, δ, q0, Qf ) be a Turing machine and w an input for M . We define a
corresponding MPCP-instance PMw = (`1, r1), . . . , (`k, rk) as follows. The first pair
(`1, r1) is defined as

`1 := ] r1 := ]q0w].

The set of remaining pairs (`i, ri) is partitioned into 4 groups and can be found in
Figure 5.1. Intuitively, if PMw has an MPCP-solution I = i1, . . . , ir, then the word wI =
`i1 · · · `ir = ri1 · · · rir starts with ]q0w]u1q1v1] · · · ]unqnvn, where subwords between
successive ]’s are successive IDs in a computation of M with input w and qn is a final
state.

We now fix a Turing machine M and a word w and establish some properties of
the MPCP-instance PMw . We call a pair of words (x, y) a partial solution iff x is a
prefix of y and there exists a sequence of integers i1, . . . , im such that x = `i1 · · · `im
and y = ri1 · · · rim . Hopcroft and Ullman prove the following lemma:
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Lemma 5.5. If there exists a sequence of IDs q0w u1q1v1 · · · unqnvn, then
there exists a partial solution

(x, y) = (]q0w]u1q1v1] · · · ]un−1qn−1vn−1],

]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn]).

The proof is by induction on n where the induction step straightforwardly translates
Turing machine transitions into sequences of word pairs as given in Figure 5.1. We
now show that the existence of a partial solution describing an accepting computation
of M on w implies the existence of a (partial) solution (x, y) such that x = y and
certain length bounds are satisfied.

Lemma 5.6. If there exists a partial solution

(x, y) = (]q0w]u1q1v1] · · · ]un−1qn−1vn−1],

]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn]),

with qn ∈ Qf , and |uivi| ≤ n+ |w| for 1 ≤ i ≤ n, then there exists a (partial) solution

(x′, y′) = (]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn] · · · ]urqrvr]],
]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn] · · · ]urqrvr]])

with r ≤ 2n+ |w| and |uivi| ≤ n+ |w| for all 1 ≤ i ≤ r.

Proof. If |unvn| = 0, it remains to concatenate a single pair from Group IV (we then
have n = r in (x′, y′)). Hence assume |unvn| > 0. It is not hard to see that each
partial solution of the form (x, y) can be extended to a partial solution

(]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn],

]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn]un+1qnvn+1])

where |un+1| < |un| or |vn+1| < |vn|: just use (at most) |un| + |vn| concatenations of
pairs from Group I and a single concatenation of a pair from Group III. Repeating
this extension step, we will finally arrive at a partial solution

(x′′, y′′) = (]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn] · · · ]ur−1qnvr−1],

]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn] · · · ]ur−1qnvr−1]qn])

where r ≤ n+ |unvn|. Since |unvn| ≤ n+ |w|, we have r ≤ 2n+ |w|. By construction
of (x′′, y′′), we have |uivi| ≤ n+ |w| for all 1 ≤ i < r. A single concatenation of a pair
from Group IV yields the desired solution (x′, y′). ❏

We may now establish the lower bound.

Proposition 5.7. There exists a polynomial p(n) with p(n) ≥ 8n for all n ∈ N such
that the 2p(n)-MPCP is NExpTime-hard.
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Proof. Let M be a 2n
d
-Turing machine (for some integer d ≥ 1) deciding an arbitrary

NExpTime-hard language. W.l.o.g., we assume that M makes at least |w| steps on
w before stopping. The reason for this will become clear later. We show that

M accepts w iff PMw has a 28nd-MPCP-solution, (∗)

i.e., we reduce the NExpTime-hard problem solved by the Turing machine M to the
28nd-MPCP. It is easy to check that the polynomial 8nd is as required.

First for the “only if” direction. Let w be an input to M and assume that M
accepts w in n steps, where n ≤ 2|w|

d
. Then there exists a sequence of IDs

q0w u1q1v1 · · · unqnvn

such that qn ∈ Qf . By Lemma 5.5, this implies the existence of a partial solution

(x, y) = (]q0w]u1q1v1] · · · ]un−1qn−1vn−1],

]q0w]u1q1v1] · · · ]un−1qn−1vn−1]unqnvn]),

to PMw . Since a Turing machine writes at most one symbol per step, we obviously have
|uivi| ≤ n + |w| for 1 ≤ i ≤ n. By Lemma 5.6, there exists a solution I = i1, . . . , im
to PMw corresponding to a word

wI = `i1 · · · `im = ri1 · · · rim = ]q0w]u1q1v1] · · · ]urqrvr]]

with r ≤ 2n + |w| and |uivi| ≤ n + |w| for all 1 ≤ i ≤ r. Since, by assumption, M
makes at least |w| steps if started on w, it follows that r ≤ 3n and |uivi| ≤ 2n for
all 1 ≤ i ≤ r. We need an estimation for the length m of the solution i1, . . . , im.
Obviously, we have m ≤ r · (2n+ 2) + 2 since m is clearly bounded by the number of
symbols in wI , and the length of each subword of wI of the form ]u1qivi is bounded
by 2n + 2. It follows that m ≤ 6n2 + 6n + 2 and hence also m ≤ n5 + 13. Together
with n ≤ 2|w|

d
, this implies m ≤ 25·|w|d + 13, and, since |w| ≤ |PMw | by definition

of PMw , we have m ≤ 25·|PMw |d + 13. Since |PMw | ≥ 2 (also by definition), we have
25·|PMw |d + 13 ≤ 28·|PMw |d .

Now for the “if” direction. We show the contrapositive. Hence, assume that M
does not accept w, i.e., no computation of M on w reaches a final state. Assume to the
contrary of what is to be shown that PMw has a 28nd-solution. Following Hopcroft and
Ullmann, we claim that, if PMw has a solution, then it has a solution I = i1, . . . , im such
that wI = ]q0w]u1q1v1] · · · ]ukqkvk] where strings between successive ]′s are successive
IDs in a computation of M with input w, and qk is a final state. This implies that M
accepts w (the length of the above mentioned solution I and the corresponding TM
computation is irrelevant since we know that every computation of M has length at
most 2|w|

d
). Hence, the existence of a 28nd-solution to PMw is a contradiction to the

assumption that M does not accept w. ❏

The main result of this section is now easily obtained.

Theorem 5.8. It is NExpTime-complete to decide whether a 2n + 1-PCP has a
solution.
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Proof. NExpTime-hardness is an immediate consequence of Proposition 5.7 and
Lemma 5.3. To decide whether a PCP-instance has a 2n + 1-solution, a non-determi-
nistic Turing machine may simply “guess” such a solution and then check its validity.
Since it is not hard to see that this can be done using a 2n

d
-Turing machine (for some

constant d), the 2n + 1-PCP is in NExpTime. ❏

5.2 A Concrete Domain for Encoding the PCP

In this section, we introduce a concrete domain W that will allow to reduce the
2n + 1-PCP to concept satisfiability in Description Logics providing for this concrete
domain. More specifically, W is based on the set of words over some sufficiently large
alphabet Σ and a set of rather simple predicates that, most importantly, allow to
express the concatenation of words. Here, “sufficiently large” means that 2n+1-PCP’s
based on Σ must be capable of encoding the computations of some NExpTime-hard
Turing machine (see the proof of Proposition 5.7). In the following, we assume that
an appropriate Σ is used without specifying it explicitly.

Definition 5.9 (Concrete Domain W). Let Σ be an alphabet. The concrete domain
W is defined by setting ∆W := Σ∗ and defining ΦW as the smallest set containing the
following predicates:

• unary predicates word and nword with wordW = ∆W and nwordW = ∅,

• unary predicates =ε and 6=ε with =W
ε = {ε} and 6=W

ε = Σ+,

• a binary equality predicate = and a binary inequality predicate 6= with the
obvious interpretation, and

• for each w ∈ Σ+, two binary predicates concw and nconcw with

concW
w = {(u, v) | v = uw} and nconcW

w = {(u, v) | v 6= uw}.
3

Note that ΦW is closed under negation. To show that W is admissible, it hence remains
to prove that the satisfiability of finite predicate conjunctions (see Definition 2.8) is
decidable. We do this by developing an appropriate algorithm.

The algorithm works on predicate conjunctions that contain only the predicates
nword, =ε, 6=, and concw (for any w ∈ ∆W). Such predicate conjunctions are said
to be in normal form (NF). We show that assuming predicate conjunctions to be in
NF does not sacrifice generality: by applying the following normalization steps, every
predicate conjunction c can be converted into a predicate conjunction c′ that is in NF
and satisfiable iff c is satisfiable.

1. Eliminate all occurrences of the word predicate from c and call the result c1.

2. Let x be a variable not appearing in c1. Augment c1 by the conjunct =ε(x) and
then replace every occurrence of 6=ε(y) in c1 with 6=(x, y) calling the result c2.
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3. Let β1, . . . , βk be all conjuncts in c2 which are of the form nconcw(x, y) and
let z1, . . . , zk be variables not appearing in c2. For each i with 1 ≤ i ≤ k and
βi = nconcw(x, y), augment c2 by the conjuncts concw(x, zi) and 6=(zi, y). Then
delete the conjunct βi from c2. Call the result c3.

4. Remove occurrences of the = predicate from c3 by “filtration”: Let ∼ be the
equivalence relation induced by occurrences of the = predicate in c3 and use [x]∼
to denote the equivalence class of ∼ containing x. For each equivalence class C
of ∼, fix a variable zC such that zC 6= zC′ if C 6= C′. Now substitute, for each
variable x occurring in c3, every occurrence of x in c3 by z[x]∼ . Then delete all
occurrences of the = predicate from c3. The result of this step is the normal
form c′ of c.

Obviously, the normalization process preserves (un)satisfiability, i.e., a predicate con-
junction c is satisfiable iff its normal form c′ is satisfiable. The translation can be
performed in polynomial time and the size of the resulting predicate conjunction c′ is
linear in the size of c.

Before the algorithm itself is given, we introduce some notions. Let c be a predicate
conjunction (not necessarily in normal form). By V (c), we denote the set of variables
used in c. The conc-graph G(c) = (V,E) of c is the directed graph described by
occurrences of concw predicates in c, i.e., V = V (c) and (x, y) ∈ E iff concw(x, y) is a
conjunct of c for some word w. A conjunction c is said to have a conc-cycle if G(c)
has a cycle. The distance dist(v, v′) of two variables v, v′ ∈ V in c is 0 if v = v′ and
the length of the longest path leading from v to v′ in G(c) otherwise. The level lev(v)
of v in c is defined as

lev(v) := max{k | dist(v, v′) = k and v′ is a sink}

where a sink is a node which has no outgoing edges. Note that there exist conc-graphs
G(c) with nodes v such that lev(v) is undefined since there exists no path from v to
a sink. However, we will only use lev() for conc-graphs that contain no cycle. In this
case, lev(v) is obviously always defined. Let w,w′ ∈ Σ+. The function pre is defined
as follows:

pre(w,w′) =
{
v if w = vw′ with v 6= ε
undefined if no such v exists

The algorithm for deciding the satisfiability of predicate conjunctions in normal form
can be found in Figure 5.2. Note that the parameter c to norm is passed “by refer-
ence”, i.e., changes made to c in the norm function are also effective in the calling
procedure. Before the correctness of the algorithm is proved formally, we explain
the underlying intuition. Assume that the satisfiability of a conjunction is to be
decided. The algorithm repeatedly performs several normalization steps and inconsis-
tency checks. In Figure 5.2, normalizations are annotated with Ni while inconsistency
checks are marked with Ci. All normalizations performed by the algorithm preserve
(un)satisfiability of predicate conjunctions. If an inconsistency check succeeds, the
algorithm may thus safely return unsatisfiable. If no inconsistencies are found, the
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define procedure sat-W(c)
if c contains the nword predicate or norm(c) = unsatisfiable then (C1)

return unsatisfiable

for i = 0 to |V (c)| do
while there exist x, y, y′ ∈ V (c) with lev(x) = i

and w,w′ ∈ Σ+ with w 6= w′ such that
concw(y, x) and concw′(y′, x) are in c do

// since norm was just applied, we have y 6= y′. (C2)
if neither w is a suffix of w′ nor vice versa then

return unsatisfiable

w.l.o.g., assume that w′ is a suffix of w. (N1)
// since norm was just applied, we have w = vw′ for a v 6= ε.
replace concw(y, x) by concpre(w,w′)(y, y′) in c

if norm(c) = unsatisfiable then (C3)
return unsatisfiable

if there exist x, y ∈ V (c) and a w ∈ Σ+ such that (C4)
concw(y, x) and =ε(x) are in c then

return unsatisfiable

if there are x0, . . . , xk, y0, . . . , y` ∈ V (c) (C5)
and w0, . . . , wk−1, v0, . . . , v`−1 ∈ Σ+ such that
(i) =ε (x0), =ε (y0) are in c or x0 = y0,
(ii) concwi(xi, xi+1) in c for i < k and concvi(yi, yi+1) in c for i < `,
(iii) w0 · · ·wk−1 = v0 · · · v`−1, and
(iv) 6=(xk, yk) is in c then

return unsatisfiable

return satisfiable

define procedure norm(c) // c is passed “by reference” (see text)
while there exist x, y, y′ ∈ V (c) with y 6= y′ and a w ∈ Σ+ such that (N2)

concw(y, x) and concw(y′, x) are in c do

replace every occurrence of y′ in c by y
if c contains a conc-cycle then (C6)

return unsatisfiable

if there exist x, y ∈ V (c) and w,w′ ∈ Σ+ with w 6= w′ such that (C7)
concw(y, x) and concw′(y, x) are in c then

return unsatisfiable

return satisfiable

Figure 5.2: The W satisfiability algorithm.
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Figure 5.3: An example fork elimination.

algorithm ends up with a predicate conjunction that is satisfiable. This clearly im-
plies satisfiability of the original predicate conjunction and thus the algorithm returns
satisfiable.

All of the normalizations and most of the inconsistency checks are concerned with
situations of the form

concw(y, x), concw′(y′, x)

where several cases can be distinguished:

a) y 6= y′ and neither w is a suffix of w′ nor vice versa. In this case, c is unsatisfi-
able (C2).

b) y = y′ and w 6= w′. In this case, c is unsatisfiable (C7).

c) y 6= y′ and w′ is a true suffix of w.1 In this case, we call the predicate expres-
sions concw(y, x), concw′(y′, x) a fork. We may eliminate the fork by replacing
concw(y, x) with concpre(w,w′)(y, y′). An example for fork elimination can be
found in Figure 5.3. It is easily checked that this operation preserves (un)satis-
fiability (N1).

d) y 6= y′ and w = w′. In this case, y and y′ describe the same word and can be
identified preserving (un)satisfiability (N2).

If a predicate conjunction does neither contain a conc-cycle nor any of the above
situations, then its conc-graph has the form of a forest. In the correctness proof, this
fact will play a crucial role: together with some additional conditions, it ensures that
we can find a solution to the predicate conjunction if the algorithm returns satisfiable.
We now formally prove correctness and termination of the algorithm. For a predicate
conjunction c, let |c| denote the number of conjuncts in c.

Lemma 5.10 (Correctness and Termination). Let c0 be an input to sat-W.
The algorithm terminates after O(|c0|k) steps (where k ∈ N is constant) returning
satisfiable if c0 has a solution and unsatisfiable otherwise.

1The case that w is a true suffix of w′ is not listed explicitly since it is symmetric to Case c).
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Proof. We first prove that c0 has a solution if sat-W returns satisfiable and c0 has no
solution if sat-W returns unsatisfiable. Since it is readily checked that the normalization
steps N1 and N2 performed by the algorithm preserve (un)satisfiability, it suffices to
show that

(i) if sat-W returns satisfiable, then the predicate conjunction c constructed by nor-
malization has a solution, and

(ii) if sat-W returns unsatisfiable, then the predicate conjunction c constructed by
normalization has no solution.

Point (ii) can be proved straightforwardly by examining the inconsistency checks C1
to C7 which cause the algorithm to return unsatisfiable: either c contains the nword
predicate, the situations a) or b) described above occur, c contains a conc-cycle, or
one of the last two if clauses from the main procedure applies. Obviously, in all cases
the constructed predicate conjunction c has no solution.

Now for Point (i). We first prove that, if the algorithm returns satisfiable, then the
constructed predicate conjunction c satisfies the following conditions:

1. c does not contain the nword predicate and no conc-cycle,

2. c contains no situations of the form concw(y, x), concw′(y′, x) with y 6= y′, and

3. if concw(y, x), concw′(y, x) are in c, then w = w′.

It is easily seen that Property 1 holds: firstly, occurrences of the nword predicate are
checked in C1 and this predicate is not (re)introduced later; secondly, conc-cycles
are checked for in C3/C6, i.e., after the last normalization step. Similarly, Property 3
obviously holds since it is checked for by C3/C7, also after the last normalization step.
In the following, we show that Property 2 holds.

Obviously, if Property 2 fails, then c contains one of the situations a), c), or d).
Normalization C3/N2 deals with situation d). Since N2 is applied after the last N1
application, c does not contain situation d). Hence, let us concentrate on a) and c).
The for loop in the main procedure iterates from 0 to |V (c)|. In each iteration step,
inconsistency check C2 deals with situation a) and normalization N1 with c) (i.e., with
forks). In both cases, however, predicates

concw(y, x), concw′(y′, x)

are considered only if lev(x) = i. This is sufficient to ensure that c does not contain
situations a) and c) due to the following facts:

• We consider only conc-graphs G(c) that are cycle-free (otherwise we return
unsatisfiable due to C3/C6). Hence, the maximum level of nodes is |V (c)|.

• The elimination of forks in N1 and the elimination of situations d) in C3/N2
may create new forks

concw̃(ỹ, x̃), concw̃′(ỹ′, x̃).
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However, it is straightforward to check that (in both cases) lev(x̃) > lev(x) and
hence these newly generated forks will be eliminated during a later step of the
for loop.

We now return to the proof of Point (i): using Properties 1 to 3, we show that
the constructed conjunction c has a solution δ if the algorithm returns satisfiable.
Properties 1 and 2 imply that the conc-graph G(c) = (V,E) of c is a forest. We
inductively define a solution δ for c. Our strategy is to start with defining δ(v) for
the variables v which are roots of trees in the forest G(c). Since the edges in the trees
correspond to concw-predicates, our choice of δ(v) for the root v of a tree determines
δ(v′) for all remaining nodes v′ in the same tree. We must, however, carefully choose
δ(v) for the roots v of the trees to guarantee that all =ε and 6= predicates in c are
satisfied. Let t be the number of trees in G(c) and let w1, . . . , wt be words from Σ+

such that

|wi+1| − |wi| ≥ |V | ·max{|w| | concw is used in c} for 1 ≤ i < t.

For the induction start, fix an ordering on the trees in G(c) and let x1, . . . , xt ∈ V be
such that xi is the root of the i-th tree in G(c). For all 1 ≤ i ≤ t, set

• δ(xi) = ε if =ε(xi) is in c and

• δ(xi) = wi otherwise.

For the induction step, if x is a node with δ(x) = w and concw′(x, y) is in c, then set
δ(y) = ww′. δ is well-defined since G(c) is a forest and Property 3 from above holds.
Obviously, δ satisfies all concw predicates in c. Non-applicability of inconsistency check
C4 ensures that, if =ε(x) is in c, then x is the root of a tree and hence δ also satisfies
all =ε(x) predicates in c. Now for 6=(x, y) predicates. We make a case distinction:

• x and y are in the same tree. By definition of δ and since the last C5 inconsistency
check did not apply, 6=(x, y) is satisfied.

• x and y are in different trees, and each tree has a root z with δ(z) = ε, i.e.,
=ε(z) is in c. Identical to the above case.

• x and y are in different trees and at least one of the trees has a root z with
δ(z) 6= ε. Let z and z′ be the roots of the two trees. By definition of δ, we have

abs(|δ(z)| − |δ(z′)|) ≥ |V | ·max{|w| | concw is used in c}

where abs(x) denotes the absolute value of x. This clearly implies that, for any
two nodes x′ and y′, where x′ is in the tree with root z and y′ is in the tree with
root z′, we have δ(x′) 6= δ(y′).

This completes the proof of (ii). It thus remains to show termination after at most
polynomially many steps. This amounts to showing that the two while loops termi-
nate after at most polynomially many steps since it is easy to see that all the tests (in
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the while conditions and if clauses) and operations (node and conjunction replace-
ments) and also the computation of the level of nodes can be performed in polynomial
time.

Termination after polynomially many steps is obvious for the loop in the norm
procedure since, in every iteration, the number of variables in c decreases (and the
algorithm introduces no new variables). Now for the while loop in the main pro-
cedure. If a fork concw(y, x), concw′(y′, x) is found, then concw(y, x) is replaced by
concpre(w,w′)(y, y′). As was already noted, this and the application of norm may gen-
erate new forks concw̃(ỹ, x̃), concw̃′(ỹ′, x̃) but only with the restriction lev(x̃) > lev(x).
Hence the newly generated fork will not be considered during the current iteration step
of the for loop. Since the number of forks concw(y, x), concw′(y′, x) with lev(x) = i is
clearly bounded by |c|2, we conclude that the while loop terminates after polynomi-
ally many steps. ❏

The following proposition is an immediate consequence of the lemma just proved.

Proposition 5.11. It is decidable in deterministic polynomial time whether a finite
conjunction of predicates from W has a solution.

Corollary 5.12. The concrete domain W is admissible.

On first sight, the concrete domain W may look somewhat artificial and one may
question the relevance of lower bounds for Description Logics with concrete domains
that have been obtained using W. However, it is straightforward to encode words
as natural numbers and to define concatenation of words as rather simple operations
on the naturals [Baader & Hanschke 1992]: words w 6= ε over the alphabet Σ can be
interpreted as numbers written at base |Σ|+ 1 where the symbol that is the “0 digit”
does never occur. Hence, we can use the corresponding natural number (at base 10) to
represent a word w and the number 0 to represent the empty word. The concatenation
of two words v and w can then be expressed as vw = v · (|Σ| + 1)|w| + w, where |w|
denotes the length of the word w. Moreover, exponentiation and multiplication can
be expressed as multiple additions.2 These observations give rise to the following
definition:

Definition 5.13. A concrete domain D is called arithmetic iff

1. ∆D contains the natural numbers and

2. ΦD contains

• unary predicates for equality and inequality with zero,

• binary predicates for equality and inequality,

• a binary predicate expressing addition with 1, and

• a ternary predicate expressing addition.
3

2Thanks to Ralf Treinen who suggested this.
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Using the above considerations, the following theorem is easily proved.

Theorem 5.14. If ALC(W)-concept satisfiability is hard for a complexity class c

closed under polynomial reductions, then, for every arithmetic concrete domain D,
ALC(D)-concept satisfiability is also hard for c.

Proof. We only sketch the proof, which is by reduction. Let C be an ALC(W)-
concept. To translate C into an eqi-satisfiable ALC(D)-concept C ′, we need to rewrite
subconcepts of the form ∃u1, . . . , un.P . Most cases are simple (we use self-explanatory
names for the predicates in ΦD):

∃u.word ; ∃u, u.= ∃u.nword ; ⊥
∃u.=ε ; ∃u.=0 ∃u. 6=ε ; ∃u. 6=0

∃u1, u2.= and ∃u1, u2.6= do not need to be rewritten.

Now for the only interesting case ∃u1, u2.concw. As mentioned above, the result D of
translating this concept must be such that, for all interpretations I, a ∈ DI implies
uI2 (a) = uI1 (a) · (|Σ|+ 1)|w| + w. Abbreviate (|Σ|+ 1)|w| by n and let m2, . . . ,mn and
s1, . . . , sw be concrete features not occurring in C. Replace ∃u1, u2.concw with

∃u1, u1,m2,+ u u
i=2,...,n−1

∃mi, u1,mi+1,+

u ∃mn, s1,+1 u u
i=1,...,w−1

∃si, si+1,+1

u ∃sw, u2.=.

Note that features mi and si introduced for different subconcepts ∃u1, u2.concw of
C must be distinct. It remains to note that concepts ∃u1, u2.nconcw can be first
translated to the ALC(W)-concept ∃u1, g.concw u ∃u2, g. 6= (where g is a concrete
feature not appearing in C) and then to an ALC(D)-concept. As is easily seen, the
ALC(D)-concept C ′ obtained from C by the above translations is satisfiable iff C is
satisfiable. ❏

It is straightforward to prove variants of Theorem 5.14 for concept satisfiability w.r.t.
acyclic or general TBoxes, for concept subsumption, and for ABox consistency. More-
over, the Theorem can also be proved for extensions of ALC. These results show that
lower bounds obtained using W apply to a large class of concrete domains includ-
ing e.g. the concrete domain R introduced in Section 2.4.2 which is easily seen to be
arithmetic.

5.3 Lower Bounds

Having crafted appropriate tools in the form of the NExpTime-complete PCP and
the concrete domain W, we now establish the lower bounds for the five extensions
of ALC(D). The employed reductions are similar in all five cases since they all re-
duce the NExpTime-complete PCP, but also exhibit considerable differences since
the expressive power of the five logics is rather different.
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Ch[u1, u2, u3, u4] := (∃(u1, u2). = u ∃(u3, u4). =)

t t
(`i,ri) in P

(∃(u1, u2).conc`i u ∃(u3, u4).concri)

C0
.= ∃`.C1 u ∃r.C1

u Ch[`rn−1g`, r`
n−1g`, `r

n−1gr, r`
n−1gr]

...
Cn−2

.= ∃`.Cn−1 u ∃r.Cn−1

u Ch[`rg`, r`g`, `rgr, r`gr]
Cn−1

.= Ch[`g`, rg`, `gr, rgr]

CP
.= C0

u ∃`ng`. =ε u ∃`ngr. =ε

u ∃rnf2.∃g`, gr. = u ∃rnf2g`. 6=ε

u ∀rn.
(
Ch[g`, f1g`, gr, f1gr] u Ch[f1g`, f2g`, f1gr, f2gr]

)
Figure 5.4: The ALC(W) reduction TBox TP (n = |P |).

5.3.1 ALC(D)-concept Satisfiability w.r.t. Acyclic TBoxes

We prove that the satisfiability of ALC(W)-concepts w.r.t. acyclic TBoxes is NExp-

Time-hard. Since Theorem 5.14 can easily be extended to acyclic TBoxes, this implies
that ALC(D)-concept satisfiability w.r.t. acyclic TBoxes is NExpTime-hard for any
arithmetic concrete domain D. These results are rather surprising since, in Section 4.1,
we saw that, for many PSpace Description Logics, admitting acyclic TBoxes does not
increase the complexity of reasoning. In this thesis, ALC(D) is the second example of
a logic for which admitting acyclic TBoxes does significantly increase the complexity
of reasoning (the first was ALCF , c.f. Section 4.2).

The proof is by a reduction of the 2n + 1-PCP using the concrete domain W.
Given a 2n + 1-PCP-instance P = (`1, r1), . . . , (`k, rk), we define a TBox TP of size
polynomial in |P | and a concept (name) CP such that CP is satisfiable w.r.t. TP iff
P has a solution. Figure 5.4 contains the reduction TBox and Figure 5.5 an example
model for |P | = 2. In the figures, `, r, f1, and f2 denote abstract features and g` and
gr denote concrete features. The first two lines in Figure 5.4 do not contain a concept
definition but an abbreviation: replace every occurrence of Ch[u1, u2, u3, u4] in the
TBox by the right-hand side of the first equality substituting u1, . . . , u4 appropriately.

The idea is to define TP such that models of CP and TP have the form of a binary
tree of depth |P | whose leaves have attached two sequences of words from ∆W related
via concw predicates. These two sequences represent the “left concatenation” and the
“right concatenation” of words from P according to some “guessed” index sequence.
The definition of the tree is very similar to the corresponding part in the reduction
of the NExpTime-hard domino problem to ALCF-concept satisfiability presented in
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r r

g` g` g` g` g` g`

=ε =

gr gr gr gr gr gr

=ε

= equality or concw for some w

r`

` `
f2

f1

x0

y1

y0

x1 x2 x3 x4

y2 y3 y4 y5

x5

d0,0

d1,0 d1,2

d2,0 d2,1 d2,2 d2,3 d2,4 d2,5

Figure 5.5: An example model of CP and TP for n = 2.

Section 4.2: the first line of the definitions of the C0, . . . , Cn−1 concepts ensures that
models have the form of a binary tree of depth n (with n = |P |) whose left edges
are labeled with the abstract feature ` and whose right edges are labeled with the
abstract feature r. Let the domain elements dn,0, . . . dn,2n−1 be the leaves of this tree.
By the second line of the definitions of the C0, . . . , Cn−1 concepts and the definition
of the Ch concept, every dn,i has a g`-successor xi and a gr-successor yi. These second
lines also ensure that the sequences x0, . . . , x2n−1 and y0, . . . , y2n−1 are connected via
two predicate chains, where the predicates on the chains are either equality or concw.
More precisely, for i < 2n − 1, we have either xi = xi+1 and yi = yi+1, or there exists
a j ∈ {1, . . . , k} such that (xi, xi+1) ∈ concW

`j
and (yi, yi+1) ∈ concW

rj . By the second
line of the definition of CP , we have x0 = y0 = ε. Intuitively, the disjunction in the
Ch concept guesses appropriate indexes to find a solution and the equality predicate
is used to allow for short solutions. Since we must consider solutions of a length up to
2n + 1, the 2n domain elements on the fringe of the tree with their 2n − 1 connecting
predicate edges are not sufficient, and we need to “add” two more elements dn,2n and
dn,2n+1 which behave analogously to the dn,0, . . . dn,2n−1. This is done by the last line
of the definition of CP . Finally, the third line of the definition of CP ensures that
x2n+1 = y2n+1 6= ε and hence that (x2n+1, y2n+1) is in fact a solution to P .

Lemma 5.15. Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. Then P has a 2n+ 1-
solution iff the concept (name) CP is satisfiable w.r.t. the TBox TP .

Proof. Let P be a PCP-instance as in the lemma with |P | = n. We assume n ≥ 2
(otherwise, P has no or a trivial solution). First assume that CP is satisfiable w.r.t. TP .
Using induction on n and the definitions of the Ci concepts, it is easy to show that
there exist domain elements di,j for 0 ≤ i ≤ n and 0 ≤ j < 2i such that d0,0 ∈ CIP ,

1. `I(di,j) = d(i+1),2j and rI(di,j) = d(i+1),(2j+1) for i < n and j < 2i, and
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2. di,j ∈ (Ch[`rn−(i+1)g`, r`
n−(i+1)g`, `r

n−(i+1)gr, r`
n−(i+1)gr])I for i < n.

Intuitively, the first property states that the di,j form a binary tree in which edges
connecting left successors are labeled with ` and edges connecting right successors are
labeled with r.3 The naming scheme for nodes is as indicated in Figure 5.5.

We now establish a certain property for every two neighboring leaf nodes dn,j and
dn,(j+1), which will allow us to deduce the existence of two sequences of words related
by concw predicates or the equality predicate: by induction on n, it is straightforward
to prove that, for any two nodes dn,j and dn,(j+1) with j < 2n − 1, there exists a
common ancestor dm,k of dn,j and dn,(j+1) such that

(`rn−(m+1))I(dm,k) = dn,j and (r`n−(m+1))I(dm,k) = dn,j+1.

By Property 2 from above, we have

dm,k ∈ (Ch[`rn−(m+1)g`, r`
n−(m+1)g`, `r

n−(m+1)gr, r`
n−(m+1)gr])I .

Since this holds independently from the choice of j, we may use the definition of
the Ch[u1, u2, u3, u4] concept to conclude that there exist words x0, . . . , x2n−1 and
y0, . . . , y2n−1 and indexes i1, . . . , i2n−1 ∈ {1, . . . , k} ∪ {♣} such that

1. gI` (dn,j) = xj and gIr (dn,j) = yj for j < 2n and,

2. for 1 ≤ j < 2n,

• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

Analogously, by the last two lines of the definition of CP , there exist domain elements
dn,2n , dn,(2n+1), words x2n , x2n+1, y2n , y2n+1, and indexes i2n , i2n+1 ∈ {1, . . . , k} ∪ {♣}
such that

1. fI1 (dn,2n−1) = dn,2n and fI2 (dn,2n−1) = dn,(2n+1),

2. gI` (dn,i) = xi and gIr (dn,i) = yi for i ∈ {2n, 2n + 1}, and,

3. for all j ∈ {2n, 2n + 1},

• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

Moreover, by the second and third line of the definition of CP , we have x0 = y0 = ε and
x2n+1 = y2n+1 6= ε. Taking together these observations, it is clear that the sequence
i′1, . . . , i

′
p, which can be obtained from i1, . . . , i2n+1 by eliminating all ij with ij = ♣,

is a solution to P . Furthermore, we obviously have 1 ≤ p ≤ 2n + 1.

Now for the “only if” direction. Assume that P has a solution i1, . . . , im with
m ≤ 2|P |+1. By Lj (resp. Rj), we denote the concatenation `i1 · · · `ij (resp. ri1 · · · rij )

3As in Section 4.2, nodes in the tree are not necessarily distinct.
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for 1 ≤ j ≤ m and set L0 = R0 = ε and Lj = Lm (resp. Rj = Rm) for all j > m. In
the following, we define a model I of CP and TP which has the form of a binary tree
of depth n. Again, the object names in Figure 5.5 indicate the naming scheme used.

∆I := {di,j | 0 ≤ i ≤ n, 0 ≤ j < 2i} ∪ {dn,2n , dn,(2n+1)}

for i < n, set CIi := {di,j | j < 2i}

for i < n and j < 2i, set `I(di,j) := d(i+1),(2j) and rI(di,j) := d(i+1),(2j+1)

fI1 (dn,(2n−1)) := dn,2n and fI2 (dn,(2n−1)) := dn,(2n+1)

for i ≤ 2n + 1, set gI` (dn,i) := Li and gIr (dn,i) := Ri

CIP := {d0,0}

It is not hard to verify that I is a model of TP and that d0,0 ∈ CIP . ❏

Obviously, the size of TP is polynomial in |P | and TP can be constructed in time
polynomial in |P | which yields the following theorem:

Theorem 5.16. ALC(W)-concept satisfiability w.r.t. acyclic TBoxes is NExpTime-
hard.

To contrast this result with Theorem 3.13, it is interesting to take into account the
complexity of W-satisfiability.

Corollary 5.17. There exists a concrete domain D such that D-satisfiability is in
PTime and ALC(D)-concept satisfiability w.r.t. acyclic TBoxes is NExpTime-hard.

Finally, the fact that Theorem 5.14 can be straightforwardly extended to take into
account TBoxes yields the following corollary:

Corollary 5.18. For every arithmetic concrete domain D, satisfiability of ALC(D)-
concepts w.r.t. acyclic TBoxes is NExpTime-hard.

In all three cases, we obtain a co-NExpTime lower bound for subsumption since
unsatisfiability w.r.t. acyclic TBoxes can be reduced to subsumption w.r.t. acyclic
TBoxes.

5.3.2 ALCu(D)-concept Satisfiability

We now turn our attention towards ALCu(D), the extension of ALC(D) with the role
conjunction constructor from Section 2.1.2. This constructor is allowed only inside
existential and universal value restrictions where it may be applied to both roles
and abstract features (even intermixed). Hence, ∃(R u f u f ′).A is an ALCu(D)-
concept, but neither ∃(gug′).P nor ∃(f uf ′)g, g′.P are.4 In this section, we show that
ALCu(W)-concept satisfiability (without reference to TBoxes) is NExpTime-hard.
As in the previous section, it is the addition of a seemingly harmless looking means
of expressivity that causes a considerable increase in complexity.

4Although, with the obvious semantics, the latter concept is equivalent to the ALCu(D)-concept
∃(f u f ′).> u ∃fg, g′.P .
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Ch[u1, u2, u3, u4] := (∃(u1, u2). = u ∃(u3, u4). =)

t t
(`i,ri) in P

(∃(u1, u2).conc`i u ∃(u3, u4).concri)

Tree := ∃(R u `).> u ∃(R u r).>
u Ch[`rn−1g`, r`

n−1g`, `r
n−1gr, r`

n−1gr]
u ∀R.

(
∃(R u `).> u ∃(R u r).>
u Ch[`rn−2g`, r`

n−2g`, `r
n−2gr, r`

n−2gr]
)

...

u ∀Rn−2.
(
∃(R u `).> u ∃(R u r).>
u Ch[`rg`, r`g`, `rgr, r`gr]

)
u ∀Rn−1.Ch[`g`, rg`, `gr, rgr]

CP := Tree

u ∃`ng`. =ε u ∃`ngr. =ε

u ∃rnf2.∃g`, gr. = u ∃rnf2g`. 6=ε

u ∀rn.
(
Ch[g`, f1g`, gr, f1gr] u Ch[f1g`, f2g`, f1gr, f2gr]

)
Figure 5.6: The ALCu(W) reduction concept CP (n = |P |).

The proof is again by a reduction of the 2n + 1-PCP, which is very similar to the
reduction presented in the previous section. However, we have to compensate the lack
of acyclic TBoxes by using the role conjunction constructor. The key observation is
that TBoxes have been used to “propagate” the concepts C0, . . . , Cn−1 to the proper
positions in the tree. If we try to do this using ALC(D) without TBoxes, we obtain
a concept of size exponential in |P |, which is obviously not acceptable. Fortunately,
the role conjunction constructor can help: we construct the tree such that left edges
are labeled with ` u R and right edges with r u R. This allows to use the standard
universal value restriction “over” the role R to propagate the C0, . . . , Cn−1 concepts
(resp. their equivalents in the current reduction, which are not assigned a name)
to the appropriate levels of the tree. The reduction concept CP can be found in
Figure 5.6. The equations are not to be read as concept definitions from a TBox but
serve as abbreviations. Models of CP have the form of the interpretation displayed in
Figure 5.5, with the only difference that all edges labeled with ` and r are additionally
labeled with R.

The proof of the following lemma is omitted since it is very similar to the proof of
Lemma 5.15.

Lemma 5.19. Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. Then P has a 2n+ 1-
solution iff the concept CP is satisfiable.
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The size of CP is polynomial in |P | and CP can be constructed in time polynomial
in |P |.

Theorem 5.20. ALCu(W)-concept satisfiability is NExpTime-hard.

As in the previous section, the following corollary is easily obtained:

Corollary 5.21. There exists a concrete domain D such that D-satisfiability is in
PTime and ALCu(D)-concept satisfiability is NExpTime-hard.

Since the concrete domain W can be replaced by any arithmetic concrete domain as
in the proof of Theorem 5.14, we obtain:

Corollary 5.22. For every arithmetic concrete domain D, satisfiability of ALCu(D)-
concepts is NExpTime-hard.

In all three cases, we obtain a corresponding co-NExpTime lower bound for con-
cept subsumption. It is worth noting that the reduction crucially depends on the
fact that abstract features may be used inside role conjunctions. Let ALC(u)(D) be
the Description Logic obtained from ALCu(D) by disallowing the use of features in
role conjunctions. ALC(u)(D) is the fusion or independent join of the logics ALCu
and ALC(D). Intuitively, this means that, in ALC(u)(D), there is “no interaction”
between the constructors of ALCu and the constructors of ALC(D) [Baader et al.
2002a]. It is well-known that, in many cases, the complexity of the fusion of two
logics is identical to the complexity of the “harder one” of the two component logics
[Spaan 1993a]. Because of this and since, in the case of ALC(u)(D), both component
logics are PSpace-complete if D-satisfiability is in PSpace (see [Donini et al. 1997]
and Chapter 3), we conjecture that ALC(u)(D)-concept satisfiability is also PSpace-
complete if D-satisfiability is in PSpace. We shall discuss fusions in more detail in
Section 5.6.

5.3.3 ALC−(D)-concept Satisfiability

We consider ALC−(D), i.e. ALC(D) extended with inverse roles, and show that this
logic is another example for a seemingly harmless extension of ALC(D) for which
concept satisfiability is much harder than for ALC(D) itself. More precisely, the
logic ALC−(D) is obtained from ALC(D) by allowing the use of inverse roles (and
inverse abstract features) inside existential and universal value restrictions. Hence,
∃R−.∀f−.A is an ALC−(D)-concept, but ∃f−g, f ′g′.P and ∃fg−, f ′g′.P are not. The
reason for not admitting inverse features inside the concrete domain constructor is that
we want to keep this constructor restricted to functional roles and inverse features are
not necessarily functional.

As in the previous sections, we reduce the 2n + 1-PCP using the concrete do-
main W. Although models of the reduction concept will again have the form of a
binary tree, the employed strategy differs: in the case of inverse roles, it is not pos-
sible to enforce chains of predicates connecting the leaves of the tree. Therefore, we
construct the reduction concept such that the predicate chains emulate the structure
of the tree following the scheme indicated in Figure 5.7. The reduction concept CP
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Figure 5.7: Predicate chains in models of CP .

for the 2n + 1-PCP P = (`1, r1), . . . , (`k, rk) can be found in Figure 5.8. In the figure,
g`, gr, h`, hr, p`, pr, x`, xr, y`, yr, z`, and zr are concrete features. Note that the figure
does only define abbreviations, but does not contain concept equalities from a TBox.

Before giving a formal correctness proof, we dicuss the structure of models of CP
on an intuitive level. Let P be a 2n + 1-PCP with |P | = n. Due to the first line in
the definition of CP and the ∃f− quantifiers in the definition of X, models of CP have
the form of a tree of depth n − 1 in which all edges are labeled with f−. This edge
labeling scheme is possible since, as already noted, the inverse of an abstract feature is
not necessarily functional. Now for the two chains of concrete domain predicates. To
illustrate the use of the various concrete features for establishing the chains, Figure 5.9
shows a more detailed clipping from a model of CP . The predicate chains are enforced
as follows: the concept X establishes the edges of the predicate chains as depicted in
Figure 5.9 (in fact, Figure 5.9 is a model of the concept X) while the second line of
CP establishes the edges “leading around” the leaves. Edges of the latter type and
the dotted edges in Figure 5.9 are labeled with the equality predicate. To see why
this is the case, let us investigate the length of the chains.

The length of the two predicate chains is twice the number of edges in the tree
plus the number of leaves, i.e., 2 · (2n − 2) + 2n−1. To eliminate the factor 2 and the
summand 2n−1, CP is defined such that every edge in the predicate chains leading
“up” in the tree and every edge “leading around” a leaf is labeled with the equality
predicate, i.e., these edges do not contribute to PCP-solutions. To extend the chains
to length 2n + 1, we need to add three additional edges (definition of CP , lines three,
four, and five). Finally, the last two lines in the definition of CP ensure that the first
words on both chains represents the empty word and that the last words represent a
(non-empty) solution to P .

Lemma 5.23. Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. Then P has a 2n+ 1-
solution iff the concept CP is satisfiable.

Proof. Let |P | = n and assume n ≥ 2. For the “if” direction, let CP be satisfiable,
i.e., assume that there exists an interpretation I and a d ∈ ∆I such that d ∈ CIP .
Using induction over n and considering the first line of the definition of CP and the
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Ch[u1,u2, u3, u4] := (∃(u1, u2).= u ∃(u3, u4).=)

t t
(`i,ri) in P

∃(u1, u2).conc`i u ∃(u3, u4).concri

X := ∃f−.(Ch[fg`, g`, fgr, gr] u ∃(h`, fp`).= u ∃(hr, fpr).=)
u ∃f−.(Ch[fp`, g`, fpr, gr] u ∃(h`, fh`).= u ∃(hr, fhr).=)

CP := X u ∀f−.X u · · · u ∀(f−)n−2.X

u ∀(f−)n−1.(∃(g`, h`).= u ∃(gr, hr).=)
u Ch[h`, x`, hr, xr]
u Ch[x`, y`, xr, yr]
u Ch[y`, z`, yr, zr]
u ∃g`.=ε u ∃gr.=ε

u ∃z`, zr.= u ∃z`. 6=ε

Figure 5.8: The ALC−(W) reduction concept CP (n = |P |).

definition of X, it is easy to show that there exist domain elements di,j for 0 ≤ i < n
and 0 ≤ j < 2i such that d0,0 ∈ CIP and, for i < n− 1 and j < 2i, we have

1. {(di,j , d(i+1),2j), (di,j , d(i+1),(2j+1))} ⊆ (f−)I ,

2. d(i+1),2j ∈ (Ch[fg`, g`, fgr, gr] u ∃(h`, fp`).= u ∃(hr, fpr).=)I , and

3. d(i+1),(2j+1) ∈ (Ch[fp`, g`, fpr, gr] u ∃(h`, fh`).= u ∃(hr, fhr).=)I .

The first property states that the di,j form a binary tree of depth n− 1 whose edges
are labeled with f−. For the remaining proof, it is convenient to number the nodes in
the tree in a different way. To do this, in turn, it is convenient to define some auxiliary
functions.

Let T be a binary tree of depth n−1 whose nodes are labeled with natural numbers
in preorder such that the root is labeled with 0 (this tree is independent of the di,j
and of I in general).5 By sucl(i) and sucr(i), we respectively denote the node label
of the left and right successor of the node labeled with i in T (sucl(i) and sucr(i) are
undefined if the given node has no successors). Furthermore, for i ∈ N, lev(i) denotes
the level of the node in T labeled with i (where the root is on level 0) and is undefined
if no such node exists. By “renaming” the nodes di,j , it is easy to show that there
exist domain elements e0, . . . , e2n−2 such that, for i ≤ 2n − 2 with lev(i) < n − 1, we
have

1. fI(esucl(i)) = ei and fI(esucr(i)) = ei,
5To label a tree in preorder, first label its root, then inductively label the subtree induced by the

root’s left successor and finally label the subtree induced by the root’s right successor. This numbering
scheme is demonstrated in Figure 5.7.
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Figure 5.9: A clipping from a model of CP .

2. esucl(i) ∈ (Ch[fg`, g`, fgr, gr] u ∃(h`, fp`).= u ∃(hr, fpr).=)I , and

3. esucr(i) ∈ (Ch[fp`, g`, fpr, gr] u ∃(h`, fh`).= u ∃(hr, fhr).=)I .

Intuitively, the ei form a binary tree of depth n − 1 labeled in preorder whose edges
are labeled with f−. In the following, when we talk of the nodes of the tree, we mean
the elements e0, . . . , e2n−2. By the second line of CP and definition of X, there exist
words x0, . . . , x2n−2, y0, . . . , y2n−2 such that gI` (ei) = xi and gIr (ei) = yi for i ≤ 2n−2.
Next, we prove the following claim:

Claim: For j < 2n − 2, we have either xj = xj+1 and yj = yj+1 or there exists an
i ∈ {1, . . . , k} such that (xj , xj+1) ∈ concW

`i
and (yj , yj+1) ∈ concW

ri .

Fix a j with j < 2n − 2. From the pre-order numbering scheme, it follows that two
cases can be distinguished:

(i) lev(ej) < n− 1 (i.e., ej is not a leaf node). Then j + 1 = sucl(j). By Property 2
from above, we have ej+1 ∈ (Ch[fg`, g`, fgr, gr])I . By definition of Ch, this
implies the statement from the claim.

(ii) lev(ej) = n − 1 (i.e., ej is a leaf node). Then there exists a node et and nodes
es0 , . . . , esm (m ≥ 0) such that

• j + 1 = sucr(t),

• s0 = sucl(t),

• for ` with ` < m, s`+1 = sucr(s`), and

• sm = j

By Properties 1-3 from above, we have

• ej+1 ∈ (Ch[fp`, g`, fpr, gr])I ,

• es0 ∈ (∃(h`, fp`).= u ∃(hr, fpr).=)I , and
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• es1 , . . . , esm ∈ (∃(h`, fh`).= u ∃(hr, fhr).=)I .

Moreover, since ej is a leaf node, by the second line of the definition of CP , we
have

ej ∈ (∃(g`, h`).= u ∃(gr, hr).=)I .

Using the definition of Ch, it is now straightforward to verify that the claim
holds.

It is an immediate consequence of the claim that there exist indexes i1, . . . , i2n−2 ∈
{1, . . . , k} ∪ {♣} such that, for 0 < j ≤ 2n − 2,

• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

Similarly, by the third, fourth, and fifth line of the definition of CP , there exist words
x2n−1, x2n , x2n+1, y2n−1, y2n , y2n+1 and indexes i2n−1, i2n , i2n+1 ∈ {1, . . . , k}∪{♣} such
that

1. xI` (e0) = x2n−1 and xIr (e0) = y2n−1,
yI` (e0) = x2n and yIr (e0) = y2n ,
zI` (e0) = x2n+1 and zIr (e0) = y2n+1, and

2. for j ∈ {2n − 1, 2n, 2n + 1}

• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

Moreover, by the last two lines of the definition of CP , we have x0 = y0 = ε and
x2n+1 = y2n+1 6= ε. Taking together these observations, it is clear that the sequence
i′1, . . . , i

′
p, which can be obtained from i1, . . . , i2n+1 by eliminating all ij with ij = ♣,

is a 2n + 1-solution for P .

Now for the “only if” direction. Assume that P has a solution i1, . . . , im with
m ≤ 2n+1. By K`

j (resp. Kr
j ), we denote the concatenation `i1 · · · `ij (resp. ri1 · · · rij )

for 1 ≤ j ≤ m and set K`
0 = Kr

0 = ε and K`
j = K`

m (resp. Kr
j = Kr

m) for all j > m.
We define a model for CP with the form of a binary tree of depth n− 1.

∆I := {di | 0 ≤ i < 2n − 2}

For i with i < 2n − 2 and lev(i) < n set
fI(dsucl(i)) = di and fI(dsucr(i)) = di.

It remains to define the interpretation of the concrete features. We first define only
some of them:

1. gI` (di) = K`
i−1 and gIr (di) = Kr

i−1 for i ≤ 2n − 2

2. xI` (d0) = K`
2n−1 and xIr (d0) = Kr

2n−1
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3. yI` (d0) = K`
2n and yIr (d0) = Kr

2n

4. zI` (d0) = K`
2n+1 and zIr (d0) = Kr

2n+1

Based on this, we now define the interpretation of the remaining concrete features.
By sucrj(i), we denote the j-fold composition of sucr. For i ≤ 2n − 2 and t ∈ {`, r},
set

hIt (di) :=
{
gIt (di) if lev(i) = n− 1
gIt (dsucrn−(lev(i)+1)(i)) otherwise

pIt (di) :=
{
gIt (dsucl(i)) if lev(i) = n− 2
gIt (dsucrn−(lev(i)+2)(sucl(i))) if lev(i) < n− 2

Nodes di with lev(i) = n−1 do not need to have successors for the concrete features p`
and pr. It is straightforward to check that I is well-defined and that d0 ∈ CIP . ❏

The size of CP is polynomial in |P | and CP can be constructed in time polynomial in
|P |.

Theorem 5.24. ALC−(W)-concept satisfiability is NExpTime-hard.

Again, we obtain two corollaries and corresponding co-NExpTime lower bounds for
subsumption.

Corollary 5.25. There exists a concrete domain D such that D-satisfiability is in
PTime and ALC−(D)-concept satisfiability is NExpTime-hard.

Corollary 5.26. For every arithmetic concrete domain D, satisfiability of ALC−(D)-
concepts is NExpTime-hard.

Similar to the interaction of abstract features and the role conjunction constructor in
theALCu(D)-reduction, theALC−(D)-reduction crucially depends on the fact that we
allow the application of the inverse constructor to abstract features. If the application
of this constructor is restricted to roles from NR \ NaF, then we obtain the logic
ALC(−)(D) which is the fusion of the two DLs ALC− and ALC(D). On the same
grounds as for ALC(u)(D) in the previous section, we thus conjecture that ALC(−)(D)-
concept satisfiability is in PSpace if D-satisfiability is in PSpace.

5.3.4 ALCP(D)-concept Satisfiability

The reduction strategy presented in the previous section can be adapted for proving
NExpTime-hardness of ALCP(D)-concept satisfiability, where ALCP(D) is the De-
scription Logic obtained by extending ALC(D) with the generalized concrete domain
constructors introduced in Section 2.3.2. Hence, this logic is the fourth example for
an extension of ALC(D) with a NExpTime-hard concept satisfiability problem.

The crucial task in the reduction described in the previous section is to enforce
a structure as displayed in Figure 5.9. For the ALCP(D)-reduction, however, the
inverse constructor is not available and thus we cannot achieve a labeling of the edges
connecting left and right successors in the tree with the inverse of an abstract feature.
Instead, we use a single role R from NR \ NaF to label both left and right successors.
The main problem with this approach is to establish the predicate edges:



5.3 Lower Bounds 121

= equality
= equality or concw for some w

RR

g`

gr

gr hr

h`

hr
p` pr
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g`

S

hr

h`pr

h`

Figure 5.10: A clipping from a model of CP .

• First assume that the existential version of the generalized concrete domain
constructor is used to establish the predicate edges. Then we cannot establish
the two leftmost edges in Figure 5.9, i.e., the ones connecting the g` and gr-
successors of the root node with the corresponding successors of its left child.
Using the concept ∃g`, Rg`.P u∃gr, Rgr.P to establish these edges will not work
since R is not functional and the two existential restrictions can be satisfied by
two distinct R-successors.

• Now assume that the universal version of the generalized concrete domain con-
structor is used to establish the predicate edges. Using the concept

∃R.> u ∀g`, Rg`.P u ∀gr, Rgr.P u ∀Rh`, p`.= u ∀Rhr, pr.=,

we can enforce the existence of the left successor in the tree together with all
predicate edges leading from the root note to this left successor. However, if
we additionally try to establish the right successor, it will be equipped with
exactly the same predicate edges as the left successor due to the use of the
universal concrete domain constructor. Hence, we cannot construct a structure
as in Figure 5.9.

The solution to this problem is to replace the structure from Figure 5.9 by a structure
as displayed in Figure 5.10. Note that both R-successors of the root node agree
with the root node on all concrete successors (only dotted edges on the upper level).
Intuitively, the upper level of the structure deals with branching while the lower one
deals with establishing the required predicate edges. The latter task is now easy since
it suffices to have a single S-successor and thus we may use the universal concrete
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R R

R RR R

SS

S S S S

Figure 5.11: Predicate chains in models of CP .

domain constructor as described above. To give a more global picture, the structure
of models of the reduction concept is as shown in Figure 5.11: one level of the tree in
Figure 5.7 is replaced by two levels in Figure 5.11. The reduction concept itself can
be found in Figure 5.12. The only real difference between the concepts in Figures 5.12
and 5.8 is the more complex definition of X. This concept is best understood by
considering the structure in Figure 5.10, which is a model of X. It is interesting to
note that abstract features are not used in the reduction concept. Hence, removing
them from the language does still yield a Description Logic with a NExpTime-hard
concept satisfiability problem.

The proof of the following lemma is omitted since it is very similar to the proof of
Lemma 5.23.

Lemma 5.27. Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. Then P has a 2n+ 1-
solution iff the concept CP is satisfiable.

Since CP can be constructed in time polynomial in |P | and |CP | is polynomial in |P |,
we obtain the following theorem:

Theorem 5.28. ALCP(W)-concept satisfiability is NExpTime-hard.

It remains to state the usual two corollaries and note that we obtain co-NExpTime-
hardness for concept subsumption.

Corollary 5.29. There exists a concrete domain D such that D-satisfiability is in
PTime and ALCP(D)-concept satisfiability is NExpTime-hard.
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Ch[U1,U2, U3, U4] := (∀(U1, U2).= u ∀(U3, U4).=)

t t
(`i,ri) in P

∀(U1, U2).conc`i u ∀(U3, U4).concri

X := ∃g`.word u ∃gr.word u ∃h`.word u ∃hr.word

u ∃R.A u ∃R.¬A u ∀R.∃S.>
u ∀R.

(
A→ (∃g`.word u ∃gr.word u ∃p`.word u ∃pr.word)

)
u ∀R.

(
¬A→ (∃p`.word u ∃pr.word u ∃h`.word u ∃hr.word)

)
u ∀(g`, Rg`).= u ∀(gr, Rgr).=
u ∀(p`, Rp`).= u ∀(pr, Rpr).=
u ∀(h`, Rh`).= u ∀(hr, Rhr).=
u ∀RS.

(
∃g`.word u ∃gr.word u ∃h`.word u ∃hr.word

)
u ∀R.

(
A→ (Ch[g`, Sg`, gr, Sgr] u ∃(Sh`, p`).= u ∃(Shr, pr).=)

)
u ∀R.

(
¬A→ (Ch[p`, Sg`, pr, Sgr] u ∃(gh`, h`).= u ∃(Shr, hr).=)

)
CP := X u ∀RS.X u · · · u ∀(RS)n−2.X

u ∀(RS)n−1.(∃(g`, h`).= u ∃(gr, hr).=)
u ∃x`.word u ∃xr.word u ∃y`.word u ∃yr.word u ∃z`.word u ∃zr.word

u Ch[h`, x`, hr, xr]
u Ch[x`, y`, xr, yr]
u Ch[y`, z`, yr, zr]
u ∃g`,=ε u ∃gr,=ε

u ∃z`, zr.= u ∃z`. 6=ε

Figure 5.12: The ALCP(W) reduction concept CP (n = |P |).

Corollary 5.30. For every arithmetic concrete domain D, satisfiability of ALCP(D)-
concepts is NExpTime-hard.

5.3.5 ALCrp(D)-concept Satisfiability

In Section 2.3.2, we presented the Description Logic ALCrp(D), an extension of
ALC(D) with a concrete domain role constructor. We prove that satisfiability of
(restricted6) ALCrp(W)-concepts without reference to TBoxes is NExpTime-hard.
Hence, ALCrp(D) is the fifth example for an extension of ALC(D) in which reasoning
is much harder than in ALC(D) itself.

Given a PCP-instance P = (`1, r1), . . . , (`k, rk), we define a concept CP of size
polynomial in |P | which has a model iff P has a 2n + 1-solution. The concept CP can

6Recall that we generally assume ALCrp(D) concepts to be in the restricted syntactical form
introduced in Section 2.3.2.
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DistB[k] :=
ku
i=0

((Bi → ∀R.Bi) u (¬Bi → ∀R.¬Bi))

Tree := ∃R.B0 u ∃R.¬B0

u ∀R.(DistB[0] u ∃R.B1 u ∃R.¬B1)
...

u ∀Rn−1.(DistB[n− 1] u ∃R.Bn−1 u ∃R.¬Bn−1)

S[g, p] := ∃(g), (g).p

Edge[g, p] =
(n−1t
k=0

(k−1u
j=0

Bj

)
u
(

(Bk u ∀S[g, p].Bk) t (¬Bk u ∀S[g, p].¬Bk)
)

t
n−1t
k=0

(k−1t
j=0
¬Bj

)
u
(

(Bk u ∀S[g, p].¬Bk) t (¬Bk u ∀S[g, p].Bk)
))

DEdge := (Edge[g`,=] u Edge[gr,=])t

t
(`i,ri) in P

(Edge[g`, conc`i ] u Edge[gr, concri ])

Ch[u1, u2, u3, u4] := (∃(u1, u2). = u ∃(u3, u4). =)

t t
(`i,ri) in P

(∃(u1, u2).conc`i u ∃(u3, u4).concri)

CP := Tree u ∀Rn.∃g`.word u ∀Rn.∃gr.word

u ∀Rn.
[
(¬B0 u · · · u ¬Bn−1)→ (∃g`. =ε u ∃gr. =ε)
u ¬(B0 u · · · uBn−1)→ DEdge

u (B0 u · · · uBn−1)→(
Ch(g`, f1g`, gr, f1gr) u Ch(f1g`, f2g`, f1gr, f2gr)
u ∃(f2g`), (f2gr).= u ∃(f2g`). 6=ε

)]
Figure 5.13: The ALCrp(W) reduction concept CP (n = |P |).

be found in Figure 5.13, where p denotes a predicate (written in lowercase to avoid
confusion with the PCP-instance P ). Note that S[g, p] denotes a predicate role and
not a concept, i.e., S[g, p] is an abbreviation for the role-forming concrete domain
constructor ∃(g), (g).p.

Figure 5.14 contains an example model of CP with |P | = n = 2. Obviously, the
models of CP are rather similar to the ones from the reduction in Section 5.3.1: models
have the form of a binary tree of depth n whose leaves—together with two “extra”
nodes—are connected by two predicate chains of length 2n + 1. However, in contrast
to the reduction in Section 5.3.1, the edges of the tree are labeled with the role R and
not with abstract features ` and r. The Tree concept enforces the existence of the
binary tree. The concept names B0, . . . , Bn−1 are used for a binary numbering (from
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RR
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¬B1

f1
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¬B0
B1

B0

¬B1

Figure 5.14: An example model of CP with |P | = 2.

0 to 2n − 1) of the leaves of the tree. More precisely, for a domain object d ∈ ∆I , set

pos(d) = Σn−1
i=0 βi(d) · 2i where βi(d) =

{
1 if d ∈ BIi
0 otherwise.

The Tree and DistB concepts ensure that, for each i with 0 ≤ i < 2n, there exists a leaf
d in the tree such that pos(d) = i. This numbering will be used to establish the two
predicate chains. Due to the first line of the CP concept, every leaf has (concrete) g`-
and gr-successors. Lines 4 and 5 of CP guarantee the existence of the two extra nodes
which are connected by predicate edges due to the use of the Ch concept. Hence, it
remains to describe how the predicate edges between the leaf nodes are established.

There are two main ideas underlying the establishment of these edges: (i) use the
role-forming predicate constructor to establish single edges and (ii) use the position
pos() of leaf nodes together with the fact that counting modulo 2n can be expressed by
ALC-concepts to do this with a concept of size polynomial in |P |. We first illustrate
Point (i). Assume that we have two abstract objects d and e, d has a g`-successor
x, and e has a g`-successor y. Moreover, let e ∈ XI for some concept X. We may
then establish a p-edge (for some binary predicate p ∈ ΦW) between x and y by
enforcing that d ∈ (∀S[g`, p].¬X)I : since e ∈ XI , it follows that (d, e) /∈ S[g`, p]I , i.e.,
(d, e) /∈ (∃(g`), (g`).p)I and thus (x, y) /∈ pW, which obviously implies that (x, y) ∈ pW.

Now for Point (ii) from above. In the third line of the CP -concept, the DEdge
concept is used to establish edges between the leaf nodes. The DEdge concept itself
is just a disjunction over the various edge types while the Edge concept actually
establishes the edges. In principle, it does this in the way described above. However,
the Edge concept is not only used for two fixed nodes d and e together with a fixed
concept X but establishes the edges between all neighboring leaf nodes. This is
achieved by exploiting the binary numbering of the leaf nodes: the Edge concept is



126 Chapter 5. Extensions of ALC(D)

essentially the negation of the well-known propositional formula

n−1∧
k=0

(
k−1∧
j=0

xj = 1)→ (xk = 1↔ x′k = 0) ∧
n−1∧
k=0

(
k−1∨
j=0

xj = 0)→ (xk = x′k)

which encodes incrementation modulo 2n, i.e., if t is the number (binarily) encoded by
the propositional variables x0, . . . , xn−1 and t′ is the number encoded by the propo-
sitional variables x′0, . . . , x

′
n−1, then we have t′ = t + 1 modulo 2n, c.f. [Börger et al.

1997]. Let d be a leaf of the tree with d ∈ (Edge[g`, p])I (where p is “=”, conc`i , or
concri for some i), e a leaf with pos(e) = pos(d) + 1, x the g`-successor of d, and y the
g`-successor of e. The Edge concept ensures that, for each S[g`, p]-successor d′ of d, we
have pos(d′) 6= pos(d)+1, i.e., there exists an i with 0 ≤ i ≤ n such that d′ differs from
e in the interpretation of Bi. It follows that (d, e) /∈ S[g`, p]I . As described above,
we can conclude (x, y) ∈ pI . All remaining issues, such as ensuring that the last pair
of words on the predicate chains is in fact a solution to P , are as in the reduction
given in Section 5.3.1. Note that the reduction concept is restricted in the sense of
Section 2.3.2: for all subconcepts ∀S[g, p].D of the reduction concept CP , D is either
a concept name or the negation of a concept name.

Lemma 5.31. Let P = (`1, r1), . . . , (`k, rk) be a PCP-instance. Then P has a 2n+ 1-
solution iff the concept CP is satisfiable.

Proof. Let |P | = n ≥ 2. First assume that CP is satisfiable. Using induction over n
and the definitions of the Tree and DistB concepts, it is easy to show that there exist
domain elements di,j for 0 ≤ i ≤ n and 0 ≤ j < 2i such that

1. {(di,j , d(i+1),2j), (di,j , d(i+1),(2j+1))} ⊆ RI for i < n and j < 2i and

2. pos(dn,j) = j for j < 2n.

The first property states that the di,j form a binary tree whose edges are labeled by R.
The naming scheme for nodes is as indicated in Figure 5.5. By the first line of the CP
concept, there exist words x0, . . . , x2n−1 and y0, . . . , y2n−1 such that

gI` (dn,j) = xj and gIr (dn,j) = yj for j < 2n.

By the third line of CP , we have dn,j ∈ DEdgeI for all dn,j with pos(dn,j) 6= 2n − 1,
i.e., for all dn,j with j < 2n − 1. By definition of DEdge, for each j < 2n − 1, we have
either

dn,j ∈ (Edge[g`,=] u Edge[gr,=])I

or there exists a pair (`i, ri) ∈ P such that

dn,j ∈ (Edge[g`, conc`i ] u Edge[gr, concri ])
I .

As already argued in the intuitive explanations, the first property implies xj = xj+1

and yj = yj+1 while the second implies (xj , xj+1) ∈ concW
`i

and (yj , yj+1) ∈ concW
ri (we

refrain from repeating the arguments here). Hence, there exist indexes i1, . . . , i2n−1 ∈
{1, . . . , k} ∪ {♣} such that, for 0 < j ≤ 2n − 1, we have
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• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

By definition of the Ch concept and Lines 4 and 5 of the definition of CP , there
exist domain elements dn,2n and dn,(2n+1), words x2n , x2n+1, y2n , y2n+1, and indexes
i2n , i2n+1 ∈ {1, . . . , k} ∪ {♣} such that

1. fI1 (dn,2n−1) = dn,2n and fI2 (dn,2n−1) = dn,(2n+1),

2. gI` (dn,i) = xi and gIr (dn,i) = yi for i ∈ {2n, 2n + 1},

3. for j ∈ {2n, 2n + 1},

• if ij = ♣ then xj−1 = xj and yj−1 = yj , and

• (xj−1, xj) ∈ concW
`ij

and (yj−1, yj) ∈ concW
rij

otherwise.

By the second and last line of the definition of CP , we have x0 = y0 = ε and x2n+1 =
y2n+1 6= ε. Taking together these observations, it is clear that the sequence i′1, . . . , i

′
p,

which can be obtained from i1, . . . , i2n+1 by eliminating all ij with ij = ♣, is a solution
for P . Furthermore, we obviously have 1 ≤ p ≤ 2n + 1.

Now for the “only if” direction. Assume that P has a solution i1, . . . , im with
m ≤ 2n + 1. By Lj (resp. Rj), we denote the concatenation `i1 · · · `ij (resp. ri1 · · · rij )
for 1 ≤ j ≤ m and set L0 = R0 = ε and Lj = Lm (resp. Rj = Rm) for j > m. We
define a model I for CP with the form of a binary tree of depth n. Figure 5.5 indicates
the naming scheme used. Set

∆I := {di,j | 0 ≤ i ≤ n, 0 ≤ j < 2i} ∪ {dn,2n , dn,(2n+1)}.

For j < n, BIj is the smallest superset S of {d(j+1),i | 0 ≤ i < 2j and i mod 2 6= 0}
which is closed under the following condition:

di,j ∈ S and i < n implies d(i+1),(2j), d(i+1),(2j+1) ∈ S.

Now for the interpretation of the roles and concrete features.

RI := {(di,j , d(i+1),(2j)), (di,j , d(i+1),(2j+1)) | i < n and j < 2i}

Set fI1 (dn,(2n−1)) := dn,2n and fI2 (dn,(2n−1)) := dn,(2n+1).

For i ≤ 2n + 1, set gI` (dn,i) := Li and gIr (dn,i) := Ri.

It is not hard to verify that I is a model of CP . ❏

The size of CP is polynomial in |P | and CP can be constructed in time polynomial
in |P |.

Theorem 5.32. ALCrp(W)-concept satisfiability is NExpTime-hard.
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Once more, we obtain two corollaries:

Corollary 5.33. There exists a concrete domain D such that D-satisfiability is in
PTime and ALCrp(D)-concept satisfiability is NExpTime-hard.

Corollary 5.34. For every arithmetic concrete domain D, satisfiability of ALCrp(D)-
concepts is NExpTime-hard.

Of course, we again obtain corresponding co-NExpTime lower bounds for concept
subsumption.

5.4 The Upper Bound

We combine the five extensions of ALC(D) into a single Description Logic and prove
a NExpTime upper complexity bound matching the lower bounds established in the
previous sections. For this upper bound, we concentrate on admissible concrete do-
mains D for which D-satisfiability is in NP. This captures a large class of interesting
concrete domains such as the concrete domain W used to prove the lower bounds
and the temporal concrete domains P and I from Section 2.4.3. Note that, unlike
in Chapter 3, we do not consider concrete domains D for which D-satisfiability is in
PSpace. The reason is that, here, we are heading for a time complexity bound rather
than for a space complexity bound.

Let us introduce ALCPrp,−,u(D), the Description Logics obtained by combining
the five extensions of ALC(D), in detail. We start with defining the roles that may
be used inside existential and universal value restrictions.

Definition 5.35 (ALCPrp,−,u(D)-roles). The set of ALCPrp,−,u(D)-roles R is de-
fined inductively as follows:

• each element of NR is an ALCPrp,−,u(D)-role,

• each predicate role (c.f. Section 2.3.2) is an ALCPrp,−,u(D)-role, and

• if R and R′ are ALCPrp,−,u(D)-roles, then R− and R uR′ are ALCPrp,−,u(D)-
roles.

Predicate roles and inverses of predicate roles are called complex roles. For each
R ∈ R, Inv(R) denotes R− and Inv(R−) denotes R. 3

The semantics of ALCPrp,−,u(D)-roles is defined in the obvious way and we omit
the details (see Sections 2.1.2 and 2.3.2). In what follows, we generally assume
ALCPrp,−,u(D)-roles to be of the form R1 u · · · u Rn, where the Ri are role names,
inverses of role names, or complex roles. Clearly, every element of R can be converted
into this form by exhaustively applying the transformations

(R1 u · · · uRn)− ; (R−1 u · · · uR
−
n ) and (R−)− ; R.

The Description Logic ALCPrp,−,u(D) is obtained from ALC(D) by allowing the use
of ALCPrp,−,u(D)-roles in existential and universal value restrictions and admitting
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the generalized concrete domain constructors ∃U1, . . . , Un.P and ∀U1, . . . , Un.P intro-
duced in Section 2.3.2. Recall that the Ui are role paths, i.e. sequences R1 · · ·Rng,
where R1, . . . , Rn ∈ NR and g ∈ NaF. Hence, the role conjunction constructor, the
inverse role constructor, and predicate roles are not allowed inside role paths. Since
concrete paths are (a special case of) role paths, we do not distinguish between the
standard version and the generalized version of the concrete domain constructor. Note,
however, that role paths are only allowed inside the concrete domain concept construc-
tor and not inside the concrete domain role constructor.

Since ALCPrp,−,u(D) includes the concrete domain role constructor, we must re-
strict its syntax to avoid inheriting undecidability from ALCrp(D) (see Section 2.3.2).
As for ALCrp(D), we first need a procedure to convert ALCPrp,−,u(D)-concepts to
NNF.

Fact 5.36. Every ALCPrp,−,u(D)-concept can be converted into an equivalent one in
NNF by exhaustively applying the following rewrite rules:

¬¬C ; C ¬(g↑) ; ∃g.>D
¬(C uD) ; ¬C t ¬D ¬(C tD) ; ¬C u ¬D
¬(∃(R1 u · · · uRn).C) ; ∀(R1 u · · · uRn).¬C
¬(∀(R1 u · · · uRn).C) ; ∃(R1 u · · · uRn).¬C

¬(∃U1, . . . , Un.P ) ; ∀U1, . . . , Un.P

¬(∀U1, . . . , Un.P ) ; ∃U1, . . . , Un.P

We can now define restricted concepts.

Definition 5.37 (Restricted ALCPrp,−,u(D)-concept). An ALCPrp,−,u(D)-con-
cept C is called restricted iff the result C ′ of converting C to NNF satisfies the following
conditions:

1. For any ∀(R1 u · · · uRn).D ∈ sub(C ′), where all R1, . . . , Rn are complex roles,

(a) sub(D) does not contain any concepts ∃(S1u· · ·uSm).E such that some Si
is a complex role, and

(b) sub(D) contains no concepts ∃U1, . . . , Un.P or ∀U1, . . . , Un.P

2. For any ∃(R1 u · · · uRn).D ∈ sub(C ′), where all R1, . . . , Rn are complex roles,

(a) sub(D) does not contain any concepts ∀(S1u· · ·uSm).E such that some Si
is a complex role, and

(b) sub(D) contains no concepts ∃U1, . . . , Un.P or ∀U1, . . . , Un.P
3

In what follows, we generally assume that ALCPrp,−,u(D)-concepts are restricted
without further notice. Note that converting a restricted ALCPrp,−,u(D)-concept
into NNF does again yield a restricted ALCPrp,−,u(D)-concept. We may thus w.l.o.g.
assume ALCPrp,−,u(D)-concepts to be in NNF. Also observe that the restrictions 1b
and 2b from above are slightly stronger than the corresponding ones for restricted
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ALCrp(D)-concepts presented in Section 2.3.2: in Definition 2.13, we admit the oc-
currence of concepts ∃f1, . . . , fn.P in sub(D) which is not allowed in Definition 5.37.
The reason is that, when constructing a completion algorithm for ALCPrp,−,u(D) with
the weaker restrictions, one runs into termination problems. Consider, for example,
the concept

∃g.>D u ∃f−.> u ∀(∃(g), (fg).>2).(∃g.>D u ∃f−.>)

where >D2 = ∆D × ∆D. A straightforward completion algorithm would generate an
infinite “f−-chain” of objects, each having a concrete g-successor. In fact, it seems
rather easy to prove undecidability of ALCrp,−(D) with the weaker restrictions (role
conjunction is not needed) using a technique similar to the one used in [Lutz & Möller
1997] to show undecidability of unrestricted ALCrp(D).

5.4.1 The Completion Algorithm

We establish the NExpTime upper bound using a completion algorithm. To simplify
presentation, we first treat ALCPrp,−,u(D)-concept satisfiability without reference
to TBoxes and, in a second step, modify this algorithm to take into account acyclic
TBoxes. In what follows, we generally assume thatD is an admissible concrete domain.

As usual, the completion algorithm expects the input concept to be in NNF. Since
models constructed by the completion algorithm have the form of a tree, we reflect
this explicitly in the data structure instead of using ABoxes as in Chapter 3.

Definition 5.38 (Completion System). A completion tree for an ALCPrp,−,u(D)-
concept D is a tree whose set of nodes is a subset of Oa ]Oc such that all nodes from
Oc are leaves. In this context, we call elements of Oa abstract nodes and elements of
Oc concrete nodes. The tree is labeled as follows:

1. each node a ∈ Oa is labeled with a subset L(a) of sub(D);

2. each edge (a, b) with a, b ∈ Oa is labeled with a set L(a, b) of roles from R
occurring in D;

3. each edge (a, x) with a ∈ Oa and x ∈ Oc is labeled with a concrete feature
L(a, x) occurring in D.

A completion system for an ALCPrp,−,u(D)-concept D is a pair (T,P), where T is
a completion tree for D and P is a function mapping each P ∈ ΦD with arity n
appearing in D to a subset of (Oc)n. 3

To simplify the formulation of the completion rules and the proofs, it is convenient to
define several notions of successorship and neighborhood in completion trees.

Definition 5.39 (Successor, Neighbor, Relative). Let S = (T,P) be a comple-
tion system, a and b abstract nodes in T, and x a concrete node in T. Moreover, let
R be a role name, the inverse of a role name, or a complex role, and let g ∈ NaF. Then
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• b is an R-successor of a in T iff b is a successor of a and R ∈ L(a, b);

• x is a g-successor of a in T iff x is successor of a and L(a, x) = g;

• b is an R-neighbor of a iff either b is an R-successor of a or a is an Inv(R)-successor
of b.

It is straightforward to extend the notion “neighbor” to role paths: let U = R1 · · ·Rng
be a role path. Then x is a U -neighbor of a in T iff there exist nodes b1, . . . , bn ∈ Oa

such that b1 is an R1-neighbor of a, bi is an Ri-neighbor of bi−1 for 1 < i ≤ n, and x
is a g-successor of bn. By neighbT(a, U), we denote the set of U -neighbors of a in T.
The index T is omitted if clear from the context.

To deal with complex roles, it is convenient to further generalize the notion “neigh-
bor” into the notion “relative”. For non-complex roles R ∈ NR∪{R− | R ∈ NR}, these
two notions coincide. Let S = ∃(u1, . . . , un), (v1, . . . , vm).P be a predicate role. Then
b is an S-relative of a iff either b is an S-neighbor of a or there exist concrete domain
elements x1, . . . , xn, y1, . . . , ym ∈ Oc such that

1. xi ∈ neighbT(a, ui) for 1 ≤ i ≤ n,

2. yi ∈ neighbT(b, vi) for 1 ≤ i ≤ m, and

3. (x1, . . . , xn, y1, . . . , ym) ∈ P(P ).

Moreover, b is an S−-relative of a iff a is an S-relative of b.7

We now generalize these notions to conjunctions of roles. For R1 u · · · u Rn ∈ R,
b is an (R1 u · · · uRn)-successor / (R1 u · · · uRn)-neighbor / (R1 u · · · uRn)-relative
of a iff b is an Ri-successor / Ri-neighbor / Ri-relative of a for 1 ≤ i ≤ n.

3

If the satisfiability of a concept D is to be decided, the completion algorithm is started
with the initial completion system SD = (TD,P∅), where TD is the tree consisting of
a single node a with L(a) = {D} and P∅ maps each P ∈ ΦD occurring in D to ∅. The
algorithm repeatedly applies the non-deterministic completion rules until either it finds
a completion system to which no more rules are applicable or it finds a completion
system containing a contradiction. If the rules can be applied such that the final
completion system does not contain a contradiction, then this final completion system
represents a model of D, and thus D is satisfiable. Otherwise, D is unsatisfiable. As
in Chapter 3, we define a “+” operation for introducing new nodes, which facilitates
the succinct presentation of the completion rules.

Definition 5.40 (“+” operation). An abstract or concrete node is called fresh
w.r.t. a completion tree T if it does not appear in T. Let S = (T,P) be a completion
system. The operation

S + a(R1 u · · · uRn)b

where a ∈ Oa is a node in T, b ∈ Oa is fresh in T, and R1 u · · · uRn ∈ R, (non-
deterministically) yields a completion system that can be obtained from S by either

7It is easily checked that “S−-relative” subsumes “S−-neighbor” although this is not explicitly
stated.
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1. augmenting T with a new successor b of a and setting L(a, b) := {R1, . . . , Rn}
and L(b) := ∅ or

2. choosing a neighbor c of a in T, renaming c in T with b, and then

• setting L(a, b) := L(a, b) ∪ {R1, . . . , Rn} if b is a successor of a in T and

• setting L(b, a) := L(b, a) ∪ {Inv(R1), . . . , Inv(Rn)} if a is a successor of b
in T.

By S + agx, where x ∈ Oc is fresh in T and g ∈ NcF, we denote the completion
system S′ = (T′,P ′) that can be obtained from S as follows:

1. if a has no g-successor, then augment T with a new successor x of a and set
L(a, x) := g;

2. if a already has a g-successor y, then replace y in T and P by x.

When nesting the +-operation, we omit brackets writing, e.g., S + aR1b + bR2c for
(S + aR1b) + bR2c. Let U = R1 · · ·Rng be a role path. By S + aUx, where x is fresh
in S, we denote the completion system S′ which can be obtained from S by choosing
distinct objects b1, . . . , bn ∈ Oa which are fresh in S and setting

S′ := S + aR1b1 + b1R2b2 + · · ·+ bn−1Rnbn + bngx.
3

Intuitively, the above version of the “+”-operation allows to “reuse” nodes when
generating successors. For example, let S = (T,P) be a completion system and a be an
abstract node in T having a successor b. If S+aRc is executed, the “+”-operation may
either make the existing node b an R-successor of a by extending the edge label L(a, b)
with R, or it may generate a new R-successor c of a. Together with an appropriate
clash condition, this approach replaces fork elimination (c.f. Section 3.1.2). More
precisely, it guarantees that every abstract node has at most a single successor for
each abstract and concrete feature at any given time: assume for example that, in
the above situation, we have R = f for some f ∈ NaF and that f ∈ L(a, b) before
the “+”-operation was executed. In this case, it is obviously desirable to reuse the
node b instead of generating a new one. The wrong choice, i.e., the generation of a
new R-successor, will lead to a clash (see below).

The non-determinism introduced by the “+”-operation is true “don’t know” non-
determinism. Thus, the completion algorithm to be devised is a non-deterministic
algorithm. Why don’t we use a fork elimination rule such as in Section 3.1.2 or even
integrate fork elimination into the other rules as done in [Baader & Hanschke 1991a]?
Both approaches are problematic due to complex interactions between features, role
conjunction, and the inverse role constructor. For example, we can express feature
agreements for abstract paths of length one by writing ∃f u f ′.>. Moreover, due to
the presence of inverses, such agreements may be “detected rather late”. For example,
a straightforward completion algorithm started on the concept

∃f.> u ∃f ′.> u ∀f.∀f−.∃(f u f ′).>
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Ru if C1 u C2 ∈ L(a), C1 /∈ L(a), or C2 /∈ L(a)
then L(a) := L(a) ∪ {C1, C2}

Rt if C1 t C2 ∈ L(a), C1 /∈ L(a) and C2 /∈ L(a)
then L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃(R1 u · · · uRn).C ∈ L(a) and,
for all (R1 u · · · uRn)-relatives b of a, C /∈ L(b)

then set S := S + a(R1 u · · · uRn)b for a fresh b ∈ Oa and
L(b) := L(b) ∪ {C}

R∀ if ∀(R1 u · · · uRn).C ∈ L(a),
b is an (R1 u · · · uRn)-relative of a, and C /∈ L(b)

then set L(b) := L(b) ∪ {C}

R∃c if ∃U1, . . . , Un.P ∈ L(a) and there exist no x1, . . . , xn ∈ Oc such that
xi ∈ neighb(a, Ui) for 1 ≤ i ≤ n and (x1, . . . , xn) ∈ P(P )

then set S := (S + aU1x1 + · · ·+ aUnxn) with x1, . . . , xn ∈ Oc fresh in S
and P(P ) := P(P ) ∪ {(x1, . . . , xn)}

R∀c if ∀U1, . . . , Un.P ∈ L(a) and there exist x1, . . . , xn ∈ Oc such that
xi ∈ neighb(a, Ui) for 1 ≤ i ≤ n and (x1, . . . , xn) /∈ P(P )

then set P(P ) := P(P ) ∪ {(x1, . . . , xn)}

Rpr if b is ∃(u1, . . . , un), (v1, . . . , vm).P -neighbor of a and there exist no
x1, . . . , xn, y1, . . . , ym ∈ Oc such that xi ∈ neighb(a, ui) for 1 ≤ i ≤ n,
yi ∈ neighb(b, vi) for 1 ≤ i ≤ m, and (x1, . . . , xn, y1, . . . , ym) ∈ P(P )

then set S := (S + au1x1 + · · ·+ aunxn + bv1y1 + · · ·+ bvmym) with
x1, . . . , xn, y1, . . . , ym ∈ Oc fresh in S
and set P(P ) := P(P ) ∪ {(x1, . . . , xn, y1, . . . , ym)}

Rch if ∃(u1, . . . , un), (v1, . . . , vm).P occurs in D,
xi ∈ neighb(a, ui) for 1 ≤ i ≤ n, yi ∈ neighb(b, vi) for 1 ≤ i ≤ m, and
(x1, . . . , xn, y1, . . . , ym) /∈ P(P ) ∪ P(P )

then set P(P ′) := P(P ′) ∪ {(x1, . . . , xn, y1, . . . , ym)} for a P ′ ∈ {P, P}

Figure 5.15: Completion rules for ALCPrp,−,u(D) on input D.

would first generate distinct f - and f ′-successors and later identify them. This and
similar effects make brute force guessing as implemented by the “+”-operation the
most manageable approach to fork elimination.

The completion rules can be found in Figure 5.15. Some explanatory notes are in
order. The rules Ru, Rt, R∃, R∀, and R∃c are straightforward generalizations of the
corresponding rules from Figures 3.2 and 3.5. R∀c deals with the universal version of
the (generalized) concrete domain concept constructor and Rpr closely resembles R∃c
but deals with predicate roles. The Rch rule is a “choose rule” (c.f., e.g., [Baader et
al. 1996]) that is necessary to ensure completeness of the algorithm in the presence of
predicate roles. With “S occurs in D” in the Rch rule, we mean that the predicate
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define procedure sat(S)
if S contains a clash then

return unsatisfiable
if S is complete then

return satisfiable
Apply a completion rule to S yielding S′

return sat(S′)

Figure 5.16: The ALCPrp,−,u(D) completion algorithm.

role S is used (directly or as inverse) in the input concept D. Note that the Rt and
Rch rules are non-deterministic.

The notion “clash” formalizes what it means for a completion system to be con-
tradictory.

Definition 5.41 (Clash). Let S = (T,P) be a completion system for a concept D.
S is concrete domain satisfiable iff the conjunction

ζP =
∧

P used in D

∧
(x1,...,xn)∈P(P )

(x1, . . . , xn) : P

is satisfiable. S is said to contain a clash iff there exist a, b, c ∈ Oa such that

1. {A,¬A} ⊆ L(a) for some concept name A,

2. both b and c are f -neighbors of a for some f ∈ NaF and b 6= c,

3. g↑ ∈ L(a) and there exists an x ∈ Oc such that x is g-successor of a, or

4. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. S is called complete iff no
completion rule is applicable to S. 3

As discussed above, “wrong” decisions concerning the reuse of neighbors made by
the non-deterministic “+”-operation need to be ruled out by an appropriate clash
condition. This is done by Condition 2 in Definition 5.41. An analogous condition
for concrete features is not necessary since the “+”-operation will obviously never
generate more than one successor per concrete feature.

The completion algorithm itself can be found in Figure 5.16. If a completion system
S′ can be obtained by repeated rule application to another completion system S, then
we call S′ derivable from S.

5.4.2 Termination, Soundness, and Completeness

To prove termination in a succinct way, it is convenient to introduce several auxil-
iary notions. We start with defining the role depth of ALCPrp,−,u(D)-concepts (c.f.
Section 2.1.1) and generalizing it to sets of concepts.
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• The role depth of ALCPrp,−,u(D)-concepts C is denoted by rd(C) and defined
inductively as follows (for technical reasons, we also define the role depth of
roles):

1. rd(A) = rd(¬A) = 0 for concept names A,

2. rd(R) = 0 for role names R,

3. rd(∃(u1, . . . , un), (v1, . . . , vm).P ) is the length of the longest path among
u1, . . . , un, v1, . . . , vm (where the length of a concrete path u = f1 · · · fng is
n+ 1),

4. rd(R−) = rd(R),

5. rd(C1 u C2) = rd(C1 t C2) = max(rd(C1), rd(C2)),

6. rd(∃(R1 u · · · uRn).C) = rd(∀(R1 u · · · uRn).C) =
max(rd(R1), . . . , rd(Rn), rd(C) + 1),

7. rd(∃U1, . . . , Un.P ) and rd(∀U1, . . . , Un.P ) is the length of the longest role
path among U1, . . . , Un, and

8. rd(g↑) = 0;

• Let C be a finite set of ALCPrp,−,u(D)-concepts. By rd(C), we denote the max-
imum role depth of concepts in C and 0 if C is the empty set;

We introduce two more notions concerning sets of concepts and define the level of
nodes in a completion tree.

• Let C be a set of ALCPrp,−,u(D)-concepts. We set

C|∃cR := {C ∈ C | sub(C) contains a concept of the form ∃(R1 u · · · uRn).E
with some Ri being a complex role}

and

C|∃P := {C ∈ C | sub(C) contains a concept of the form ∃U1, . . . , Un.P}.

• For nodes a ∈ Oa ∪ Oc in a completion tree T, lev(a) denotes the level of a in
T, i.e., its distance to the root node.

Since the proof of termination involves establishing several lemmas, we start with
giving an overview. Our main aim is to prove an upper bound for the size of completion
trees constructed by the algorithm since, once this bound is established, the proof of
termination is more or less straightforward. This bound is proved by establishing two
other bounds: one for the depth of completion trees and one for the outdegree of
completion trees. In order to establish the depth bound, we first prove that the level
of abstract nodes having concrete successors is bounded. This is important since it
implies that, if a node b is an S-relative of a node a with S complex role, then the
depth of b is bounded. It is not hard to see that this latter bound is crucial for the
boundedness of the depth of completion trees, since, if it would not exist, the R∀ rule
could propagate concepts ∃(R1u· · ·uRn).C or ∃U1, . . . , Un.P to nodes on an arbitrary
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level. These concepts would then generate new successors on an even deeper level and
this process could repeat indefinitely. To show the bound on the level of nodes with
concrete successors, in turn, we prove that, if L(a) contains a concept of the form
∃U1, . . . , Un.P or ∃(R1 u · · · u Rn).C with some Ri a complex role, then the level of
the node a is bounded. We start with establishing these latter two bounds (one for
each concept type).

Lemma 5.42. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD. For all a ∈ Oa in T, we have rd(L(a)|∃cR) ≤ rd(D)− lev(a).

Proof. The proof is by induction on the number of rule applications. The lemma is
obviously true for the initial completion system SD. For the induction step, we make
a case distinction according to the rule applied. Ru and Rt are straightforward since
they only add concepts C to labels L(a) with rd(C) ≤ rd(L(a)). R∃c, R∀c, Rpr, and
Rch are trivial since they do not change existing node labels at all and introduce new
nodes only with empty labels. The remaining cases are:

• Assume R∃ is applied to a concept C = ∃(R1 u · · · u Rn).C ′ ∈ L(a) where
sub(C ′) contains a concept of the form ∃(R′1 u · · · u R′m).E with R′i complex
role for some i. According to the definition of the “+” operation, the rule
application either (i) generates a new (R1 u · · · u Rn)-successor b of a and sets
L(b) = {C ′} or (ii) chooses a neighbor b of a, appropriately augments the label
of the edge between a and b (or vice versa) and sets L(b) := L(b)∪{C ′}. In both
cases, we obviously have lev(b) ≤ lev(a) + 1. By induction hypothesis, we have
rd(C) ≤ rd(D)− lev(a). These two facts imply rd(C ′) ≤ rd(D) − lev(b) since,
clearly, rd(C) ≥ rd(C ′) + 1 (“≥” since one of the Ri may be a complex role).

• Assume R∀ is applied to a concept C = ∀(R1 u · · · u Rn).C ′ ∈ L(a) adding
C ′ to L(b) where sub(C ′) contains a concept of the form ∃(R′1 u · · · u R′m).E
with R′i complex role for some i. Since D is in restricted form, C is also in
restricted form, and, hence, by Property 1a from Definition 5.37, one of the Ri
is not a complex role (see Definition 5.37). This, together with the fact that b
is a (R1 u · · · u Rn)-relative of a, implies lev(b) ∈ {lev(a) − 1, lev(a) + 1}, i.e.,
lev(b) ≤ lev(a) + 1. By induction hypothesis, rd(C) ≤ rd(D)− lev(a). As in the
R∃ case, it follows that rd(C ′) ≤ rd(D)− lev(b).

❏

Lemma 5.43. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD. For all a ∈ Oa in T, we have rd(L(a)|∃P ) ≤ rd(D)− lev(a).

Proof. The proof is analogous to the one of Lemma 5.42, i.e., by induction on the
number of rule applications. In the R∀ case, we need to employ Property 1b from
Definition 5.37 instead of Property 1a. ❏

Now for the bound on the level of nodes having concrete successors.

Lemma 5.44. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD. Then, for all a ∈ Oa in T, lev(a) > rd(D) implies that a has no
concrete successors.
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Proof. Only the R∃c and Rpr rules may introduce successors for concrete features. We
first treat the R∃c rule. Assume that the rule was applied to a concept ∃U1, . . . , Un.P ∈
L(a) and generates a g-successor x for an abstract node b. By Lemma 5.43, we have
lev(a) ≤ rd(D)−rd(∃U1, . . . , Un.P ). Furthermore, by definition of the R∃c rule and the
“+” operation, we have lev(b) < lev(a)+rd(∃U1, . . . , Un.P ), and, hence, lev(b) < rd(D).

Now assume that the Rpr rule was applied to a node a and its R-neighbor b with
R a predicate role. Observe that predicate roles are added to edge labels only by the
R∃ rule. By definition of this rule and the “+” operation, b being an R-neighbor of a
implies that one of the following cases holds:

1. b is an R-successor of a and L(a) contains a concept ∃(R1 u · · · uRn).C ∈ L(a)
with Ri = R for some i;

2. b is an R-successor of a and L(b) contains a concept ∃(R1 u · · · uRn).C ∈ L(a)
with Ri = R− for some i;

3. a is an R−-successor of b and L(b) contains a concept ∃(R1 u · · · uRn).C ∈ L(a)
with Ri = R− for some i;

4. a is an R−-successor of b and L(a) contains a concept ∃(R1u · · ·uRn).C ∈ L(a)
with Ri = R for some i.

In all four cases, it is not hard to prove that if the Rpr application generates a
g-successor for an abstract node c, then lev(c) ≤ rd(D). We only deal with Case 1
exemplarily. In this case, it follows from Lemma 5.42 that

lev(a) ≤ rd(D)− rd(∃(R1 u · · · uRn).C). (∗)

Furthermore, we have lev(b) = lev(a) + 1. Suppose that the Rpr application generates
a g-successor x for an abstract node c. By definition of the Rpr rule, it is easy
to see that we have lev(c) < lev(b) + rd(R). Since lev(b) = lev(a) + 1, this yields
lev(c) < lev(a) + 1 + rd(R). Together with (∗), we obtain

lev(c) < rd(D)− rd(∃(R1 u · · · uRn).C) + 1 + rd(R)

which clearly implies lev(c) ≤ rd(D) since R ∈ {R1, . . . , Rn}. ❏

We can now prove the bounds on the size of completion trees. We start with the
bound on the depth.

Lemma 5.45. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD. Then the depth of T is bounded by 3 · rd(D).

Proof. We prove the following claim which obviously implies that the depth of T is
bounded by 3 · rd(D).

Claim: for all abstract nodes a in T, rd(L(a)) < 3 · rd(D)− lev(a).

The proof is by induction on the number of rule applications. The claim is clearly
true for the initial completion system SD. Now for the induction step. We obviously
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lev(a) = rd(D) g

Figure 5.17: Node b is on level rd(D) + 1 but nevertheless has an fg-successor.

have rd(L(a)) ≤ rd(D) for all abstract nodes a in T. This implies that the claim holds
true for all nodes a with lev(a) < 2 · rd(D). Hence, we will in the following consider
only nodes a with lev(a) ≥ 2 · rd(D). We make a case distinction according to the rule
applied. Ru and Rt are straightforward since they only add concepts C to labels L(a)
with rd(C) ≤ rd(L(a)). R∀c and Rch are trivial since they neither add new nodes nor
do they change node labels.

• Assume R∃ is applied to a concept C = ∃(R1 u · · · u Rn).C ′ ∈ L(a). According
to the definition of the “+” operation, the rule application either (i) generates
a new (R1 u · · · u Rn)-successor b of a and sets L(b) = {C ′} or (ii) chooses a
neighbor b of a, appropriately augments the label of the edge between a and b
(or vice versa) and sets L(b) := L(b) ∪ {C ′}. In both cases, we obviously have
lev(b) ≤ lev(a)+1. By induction hypothesis, we have rd(C) < 3 · rd(D)− lev(a).
These two facts imply rd(C ′) < 3·rd(D)−lev(b) since, clearly, rd(C) ≥ rd(C ′)+1.

• Assume R∀ is applied to a concept ∀(R1 u · · · uRn).C ∈ L(a) adding C to L(b).
We first show lev(b) ≤ lev(a) + 1. For assume that the contrary holds. By
definition of “relative” and since b is a (R1u· · ·uRn)-relative of a, this can only
be the case if all the roles R1, . . . , Rn are complex. Since the maximum length
of concrete paths in D is bounded by rd(D), Lemma 5.44 implies that uI(c) is
undefined for each concrete path u in D and each c with lev(c) ≥ 2 · rd(D) (as
Figure 5.17 shows, due to the presence of the inverse role constructor this does
not necessarily hold for nodes c with rd(D) < lev(c) < 2 · rd(D)). Thus, since
we assume lev(b) ≥ 2 · rd(D), uI(b) is undefined for each concrete path u in D.
It follows that b is no R-relative of a for any complex role R: a contradiction.
Hence we have shown that lev(b) ≤ lev(a) + 1. We can now argue as in the R∃
case.

• The R∃c rule does not change concept labels but adds new abstract and concrete
nodes to the completion tree. We must show that the level of all new nodes is
at most 3 · rd(D)− 1. First assume to the contrary that an abstract node a with
lev(a) ≥ 3 · rd(D) is generated. By definition of the R∃c rule and of the “+”
operation and since the inverse constructor is not admitted inside role paths,
this implies the existence of an abstract node b with lev(b) ≥ lev(a) such that b
has a concrete successor. This is a contradiction to Lemma 5.44. Now assume
that a concrete node x with lev(x) ≥ 3 · rd(D) is generated. Then there clearly
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Figure 5.18: The neighborhood of node a.

exists an abstract node a with lev(a) = lev(x) − 1 such that x is successor of a
which is again a contradiction to Lemma 5.44.

• The Rpr rule can be treated identical to the previous case.
❏

Before we can prove the upper bound on the outdegree, we introduce one more notion
and establish a technical lemma. Due to the reuse of nodes by the “+”-operation
and the presence of role and feature chains in the concrete domain concept and role
constructors, the outdegree of an abstract node a in a completion tree T does not only
depend on the concept label of a (and the labels of this node’s incoming and outgoing
edges) but also on the concept labels of other nodes in the “vicinity”. The following
notion will help to make this more precise:

Definition 5.46 (Neighborhood). Let S = (T,P) be a completion system derivable
from an initial completion system SD and let a be an abstract node in T. The
neighborhood of a in T is denoted by nhood(a,T) and defined as the set of abstract
nodes b in T that satisfy the following condition: there exists a sequence of abstract
nodes c1, . . . , cn and role names R1, . . . , Rn−1 with n ≤ rd(D) such that

1. c1 = b, cn = a, and

2. for 1 ≤ i < n, either ci+1 is an Ri-successor of ci and or ci is an R−i -successor of
ci+1.

3

Note that a ∈ nhood(a,T) since we may have n = 1. Figure 5.18 displays an example
completion tree T. All nodes in the neighborhood of the node a are displayed as filled
circles while nodes not in this neighborhood are displayed as unfilled circles. The
sequence of nodes c1, . . . , c4, whose existence implies that b is in the neighborhood
of a, is highlighted by dashed lines.
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Figure 5.19: The tree Υ for the completion tree T and node a from Figure 5.18.

Intuitively, the neighborhood of a node a contains all nodes whose node labels
and connecting edge labels have an impact on a’s outdegree. For the node labels,
the impact arises from the presence of concepts ∃R.C and ∃U1, . . . , Un.P . For edge
labels, the impact arises from the presence of predicate roles. Note that the inverse
constructor is not allowed inside paths, and the lengths of the “abstract part” of paths
occurring in D is bounded by rd(D) − 1, which is both reflected by the definition of
“neighborhood”.

Lemma 5.47. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD and a be an abstract node in T. Then we have |nhood(a,T)| ≤
(2 · |sub(D)|)rd(D).

Proof. Let S and a be as in the lemma. We define a tree Υ whose nodes are from
the set {b ∈ Oa | b used in T} ×N and which has two types of edges called α-edges
and β-edges. For the construction, we will assume that nodes in Υ are either marked
or unmarked. More precisely, Υ is constructed by starting with the tree consisting
only of the single, unmarked node (a, 0), initializing a counter variable m with 0, and
then exhaustively performing the following induction step: choose an unmarked node
(b, n) such that the depth of (b, n) in Υ is at most rd(D)− 2. Then add the following
successors of (b, n) to Υ:

1. if b is R-successor of c in T for some R ∈ NR, then add an α-successor (c,m);

2. if c is R−-successor of b in T for some R ∈ NR, then add a β-successor (c,m).

To complete the induction step, increment m by one and mark the node (b, n). Fig-
ure 5.19 shows the tree Υ for the completion tree T and node a from Figure 5.18.

It is not hard to verify that the first components of nodes in Υ are precisely the
elements of nhood(a,T). Hence, it suffices to show that the number of nodes in Υ is
bounded by |sub(D)|rd(D). Clearly, the depth of Υ is bounded by rd(D) − 1. Let us
investigate the outdegree:
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1. Since each node in T has at most a single predecessor, each node in Υ has at
most a single α-successor;

2. Since the inverse constructor is not allowed inside paths, R∃ is the only rule that
may create successors in T whose connecting edge contains an inverse role. Since
this rule may clearly generate at most a single successor per node and concept in
sub(D), each node in T has at most |sub(D)| successors whose connecting edge
contains an inverse role. It follows that each node in Υ has at most |sub(D)|
β-successors.

Summing up, the maximum outdegree of nodes in Υ is |sub(D)| + 1, which yields
an upper bound of (|sub(D)|+ 1)rd(D)−1 for the number of nodes in Υ, which clearly
implies the bound given in the lemma. ❏

Let C be a concept. In what follows, we use

• maxar(C) to denote the maximum arity of concrete domain predicates occurring
in C and 1 if no such predicate occurs in C and

• ncr(C) to denote the number of distinct complex roles in C.

We may now establish the upper bound on the outdegree.

Lemma 5.48. Let S = (T,P) be a completion system derivable from an initial com-
pletion system SD. Then the outdegree of T is bounded by

|sub(D)|+
(
|sub(D)|+ ncr(D) · (|sub(D)|+ 2)

)
·maxar(D) · (2 · |sub(D)|)rd(D)

Proof. Let a be a node in T. We analyze the maximum number of successors of a
(not distinguishing between successors from Oa and successors from Oc). The following
rules may generate successors:

R∃ Only rule applications to concepts ∃(R1u · · ·uRn).C ∈ L(a) can add successors
to a. Since each rule application generates at most a single successor, the number
of successors of a generated by R∃ is bounded by |sub(D)|.

R∃c Since the length of role paths is bounded by rd(D) and the inverse construc-
tor may not occur inside role paths, it is easily seen that only applications to
concepts ∃U1, . . . , Un.P ∈ L(b) with b ∈ nhood(a,T) may lead to the genera-
tion of successors for a (if b 6= a, this can only happen if the “+” operation
reuses neighbors). Again since the inverse constructor may not occur inside role
paths, each such application generates at most maxar(D) successors for a. Thus,
by Lemma 5.47 the number of successors generated by this rule is bounded by
|sub(D)| ·maxar(D) · (2 · |sub(D)|)rd(D).

Rpr Only applications to complex roles R ∈ L(b, c) with {b, c} ∩ nhood(a,T) 6= ∅
may generate new successors for a. Let us determine the number of edges (b, c)
in T such that {b, c} ∩ nhood(a,T) 6= ∅. We make a case distinction as follows:
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1. b /∈ nhood(a,T) and c ∈ nhood(a,T). Since T is a tree and thus every node
has at most a single incoming edge, the number of such edges is bounded
by |nhood(a,T)|, i.e., by (2 · |sub(D)|)rd(D) due toLemma 5.47.

2. {b, c} ⊆ nhood(a,T). Since T is a tree and by Lemma 5.47, the number of
such edges is bounded by (2 · |sub(D)|)rd(D).

3. b ∈ nhood(a,T) and c /∈ nhood(a,T). The number of such edges is bounded
by the number of successors of nodes in nhood(a,T) such that the label of
the connecting edge contains a complex role. Since complex roles are added
to node labels only by applications of the R∃ rule, and, as shown above,
the number of R∃ applications per node is bounded by |sub(D)|, every
node in T has at most |sub(D)| successors such that the connecting edge is
labeled with a complex role. Hence, by Lemma 5.47 the number of edges
(b, c) in T such that b ∈ nhood(a,T) and c /∈ nhood(a,T) is bounded by
|sub(D)| · (2 · |sub(D)|)rd(D).

Summing up, the number of edges (b, c) in T such that {b, c} ∩ nhood(a,T) 6= ∅
is bounded by (|sub(D)| + 2) · (2 · |sub(D)|)rd(D). Since each such edge may
contain at most ncr(D) complex roles and each application of Rpr generates at
most maxar(D) successors, the number of successors generated by this rule is
bounded by ncr(D) ·maxar(D) · (|sub(D)|+ 2) · (2 · |sub(D)|)rd(D).

Summing up, we obtain the bound in the lemma. ❏

Using the lemmas just established, we can now prove termination.

Proposition 5.49 (Termination). Let D be an input to the completion algorithm
and let

k =
[
|sub(D)|+

(
|sub(D)|+ncr(D)·(|sub(D)|+2)

)
·maxar(D)·(2·|sub(D)|)rd(D)

]3·rd(D)
.

The algorithm terminates after at most

(|sub(D)| · kmaxar(D)) + k · (2 · |sub(D)|+ ncr(D))

rule applications.

Proof. Lemmas 5.48 and 5.45 imply that the number of nodes generated by the
completion algorithm is bounded by k. Using this observation, we first investigate
the maximum number of applications of the Ru, Rt, R∃, and R∀ rules. Each such
application adds a new concept to a node label. Since the size of each node label is
obviously bounded by |sub(D)|, nodes are never removed from the tree, and concepts
are never removed from node labels, there may be at most |sub(D)| · k applications of
the mentioned rules. It remains to treat applications of the remaining rules:

R∃c This rule may be applied at most once per concept ∃U1, . . . , Un.P appearing in
a node label. Hence, the R∃c rule may be applied at most |sub(D)| · k times.
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R∀c/Rch These rules add new tuples (x1, . . . , xn) to P(P ) for some predicate P
appearing in D. Since the number of concrete nodes is bounded by k and the
number of distinct predicates in D is bounded by |sub(D)|, these rule may be
applied at most |sub(D)| · (kmaxar(D)) times.

Rpr This rule may be applied at most once per complex role appearing in an edge
label. Since each node has at most one incoming edge, the number of Rpr
applications is bounded by k · ncr(D).

Taking the above observations together, we obtain the bound given in the lemma.
❏

We now prove soundness and completeness of the completion algorithm.

Proposition 5.50 (Soundness). If there exists a complete and clash-free comple-
tion system S = (T,P) derivable from the initial completion system SD, then D is
satisfiable.

Proof. Let S = (T,P) be as in Proposition 5.50. Since S is clash-free, there exists a
solution δ for ζP , i.e., a mapping from the set of concrete nodes used in T to ∆D such
that P is satisfied. Define the interpretation I by setting ∆I to the set of abstract
nodes in T,

AI to {a | A ∈ L(a)} for all A ∈ NC,

RI to {(a, b) | b is R-neighbor of a} for all R ∈ NR, and

gI to {(a, δ(x)) | L(a, x) = g} for all g ∈ NcF.

The relations fI for f ∈ NaF are functional since S is clash-free. The relations gI for
g ∈ NcF are functional by definition of the “+” operation. The following claim shows
that roles are “properly” interpreted:

Claim: For all a, b ∈ ∆I and roles R1u· · ·uRn ∈ R, we have (a, b) ∈ (R1u· · ·uRn)I

iff b is an R1 u · · · uRn-relative of a.

Due to the definition of R1u · · ·uRn-relatives, it suffices to show that (a, b) ∈ RIi iff b
is an Ri-relative of a for 1 ≤ i ≤ n. We make a case distinction according to the type
of Ri:

1. Ri ∈ NR. By definition of I.

2. Ri = R− with R ∈ NR. Clearly, b is an Ri-relative of a iff a is an R-neighbor
of b. By definition of I, a is an R-neighbor of b iff (b, a) ∈ RI . By the semantics,
(b, a) ∈ RI iff (a, b) ∈ RIi .

3. Ri = ∃(u1, . . . , un), (v1, . . . , vm).P is a predicate role. By definition, b is an Ri-
relative of a iff either (i) b is an Ri-neighbor of a or (ii) there exist concrete
domain elements x1, . . . , xn, y1, . . . , ym ∈ Oc such that

• xi ∈ neighb(a, ui) for 1 ≤ i ≤ n,
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• yi ∈ neighb(b, vi) for 1 ≤ i ≤ m, and

• (x1, . . . , xn, y1, . . . , ym) ∈ P(P ).

Since the Rpr rule is not applicable, (i) implies (ii). Hence, we need to show that
(ii) holds iff (∗) there exist α1, . . . , αn, β1, . . . , βm ∈ ∆D such that

• uIi (a) = αi for 1 ≤ i ≤ n,

• vIi (b) = βi for 1 ≤ i ≤ m, and

• (α1, . . . , αn, β1, . . . , βm) ∈ PD.

This is sufficient since, by the semantics, (∗) holds iff (a, b) ∈ RIi . The direction
from (ii) to (∗) is straightforward by definition of I. Now for the direction from
(∗) to (ii). Assume that (∗) holds. By definition of I, this implies the existence
of x1, . . . , xn, y1, . . . , ym ∈ Oc such that

• xi ∈ neighb(a, ui) for 1 ≤ i ≤ n,

• yi ∈ neighb(b, vi) for 1 ≤ i ≤ m,

• δ(xi) = αi for 1 ≤ i ≤ n, and

• δ(yi) = βi for 1 ≤ i ≤ m.

Since the Rch rule is not applicable to S and Ri occurs in D, we have either
(x1, . . . , xn, y1, . . . , ym) ∈ P(P ) or (x1, . . . , xn, y1, . . . , ym) ∈ P(P ). The latter
implies (α1, . . . , αn, β1, . . . , βm) ∈ PD which is a contradiction. Hence, we con-
clude (x1, . . . , xn, y1, . . . , ym) ∈ P(P ).

4. Ri = R− with R predicate role. By definition, b is an Ri-relative of a iff a is
an R-relative of b. As in the previous case, we conclude that this is the case iff
(b, a) ∈ RI . By the semantics, (b, a) ∈ RI iff (a, b) ∈ RIi .

This finishes the proof of the claim. By induction on the concept structure, we now
show that C ∈ L(a) implies a ∈ CI for all a ∈ ∆I and C ∈ sub(D). The induction
start consists of several cases:

• C is a concept name. Immediate consequence of the definition of I.

• C = ¬E. Since D is in negation normal form, E is a concept name. Since S is
clash-free, E /∈ L(a) and, by definition of I, a /∈ EI . Hence, a ∈ (¬E)I .

• C = ∃U1, . . . , Un.P . Since the R∃c rule is not applicable, by definition of I there
exist nodes x1, . . . , xn ∈ Oc such that xi is Ui-neighbor of a for 1 ≤ i ≤ n and
(x1, . . . , xn) ∈ P(P ). By multiple applications of the claim and definition of I,
we obtain (a, δ(xi)) ∈ UIi for 1 ≤ i ≤ n. Moreover, since δ is a solution for ζP ,
we also have (δ(x1), . . . , δ(xn)) ∈ PD. Hence, a ∈ (∃U1, . . . , Un.P )I .

• C = ∀U1, . . . , Un.P . Let α1, . . . , αn ∈ ∆D be such that (a, αi) ∈ UIi for 1 ≤ i ≤
n. By the claim and definition of I, this implies that there exist x1, . . . , xn ∈ Oc

such that xi is a Ui-neighbor of a and δ(xi) = αi for 1 ≤ i ≤ n. Since the R∀c
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rule is not applicable, we have (x1, . . . , xn) ∈ P(P ). The fact that δ is a solution
for ζP yields (α1, . . . , αn) ∈ PD. Since this holds for all α1, . . . , αn ∈ ∆D as
above, we conclude a ∈ (∀U1, . . . , Un.P )I .

• C = g↑. Since S is clash-free, a has no g-successor x in T. By definition of I,
gI(a) is undefined and hence a ∈ (g↑)I .

For the induction step, we make a case distinction according to the topmost construc-
tor in C.

• C = C1uC2. Since the Ru rule is not applicable to S, we have {C1, C2} ⊆ L(a).
By induction, a ∈ CI1 and a ∈ CI2 , which implies a ∈ (C1 u C2)I .

• C = C1 t C2. Similar to the previous case.

• C = ∃(R1u · · ·uRn).E. Since the R∃ rule is not applicable to S, there exists an
abstract node b in T such that b is R1u· · ·uRn-relative of b in T and E ∈ L(b).
The claim yields (a, b) ∈ (R1u· · ·uRn)I . By induction, we have b ∈ EI . Hence,
we conclude a ∈ (∃(R1 u · · · uRn).E)I .

• C = ∀(R1 u · · · u Rn).E. Let b ∈ ∆I such that (a, b) ∈ (R1 u · · · u Rn)I . By
the claim, b is an (R1 u · · · u Rn)-relative of a in T. Since the R∀ rule is not
applicable to S, we have E ∈ L(b). By induction, it follows that b ∈ EI . Since
this holds for all b, we can conclude a ∈ (∀(R1 u · · · uRn).E)I .

Since D ∈ L(a0) for the root a0 of T, we have DI 6= ∅ and hence I is a model of D.
❏

It remains to prove completeness.

Proposition 5.51 (Completeness). For any satisfiable ALCPrp,−,u(D)-concept D,
the completion rules can be applied to SD such that a complete and clash-free comple-
tion system for D is obtained.

Proof. Let I be a model of D. We use this model to “guide” the application
of the non-deterministic completion rules Rt and Rch and the non-deterministic
“+”-operation such that a complete and clash-free completion system for D is ob-
tained. A completion system S = (T,P) is called I-compatible iff there exists a
function π mapping the abstract nodes in T to ∆I and the concrete nodes in T to
∆D such that

a) C ∈ L(a)⇒ π(a) ∈ CI

b) b is an (R1 u · · · uRn)-relative of a⇒ (π(a), π(b)) ∈ (R1 u · · · uRn)I

c) x is a g-successor of a ⇒ gI(π(a)) = π(x)

d) (x1, . . . , xn) ∈ P(P )⇒ (π(x1), . . . , π(xn)) ∈ PD

e) there exists at most a single f -neighbor of a
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for all abstract nodes a, b in T, concepts C ∈ sub(D), roles R1 u · · · u Rn ∈ R, con-
crete nodes x, x1, . . . , xn in T, abstract features f , concrete features g, and predicates
P ∈ ΦD. Note that, due to the definition of the “+”-operation, nodes in completion
trees derived by rule application may contain at most a single g-successor per node.
Thus, we do not need an equivalent of Property e) for concrete features.

Claim: If a completion system S is I-compatible and a rule R is applicable to S, then
R can be applied such that an I-compatible completion system S′ is obtained.

Let S be an I-compatible completion system, π be a function satisfying a) to e), and
let R be a completion rule applicable to S. We make a case distinction according to
the type of R.

Ru The rule is applied to a concept C1 uC2 ∈ L(a). By a), C1 uC2 ∈ L(a) implies
π(a) ∈ (C1 u C2)I and hence π(a) ∈ CI1 and π(a) ∈ CI2 . Since the rule adds
C1 and C2 to L(a), π clearly satisfies a) to e) w.r.t. the obtained completion
system S′.

Rt The rule is applied to C1 t C2 ∈ L(a). C1 t C2 ∈ L(a) implies π(a) ∈ CI1 or
π(a) ∈ CI2 . Since the rule adds either C1 or C2 to L(a), it can be applied such
that π satisfies a) to e) w.r.t. the obtained completion system S′.

R∃ The rule is applied to a concept ∃(R1 u · · · uRn).C ∈ L(a). By a), this implies
π(a) ∈ (∃(R1 u · · · u Rn).C)I and, hence, there exists a d ∈ ∆I such that
(π(a), d) ∈ (R1 u · · · uRn)I and d ∈ CI . We distinguish three cases:

1. There already exists a successor b of a such that π(b) = d. In this case,
apply the rule and the “+”-operation such that b is renamed to c, L(a, c) is
set to L(a, c)∪{R1, . . . , Rn} and L(c) to L(c)∪{C}. Define π′ as π∪{c 7→ d}.

2. For the predecessor b of a, we have π(b) = d. In this case, apply the rule
such that b is renamed to c, L(c, a) is set to L(c, a)∪{Inv(R1), . . . , Inv(Rn)}
and L(c) to L(c) ∪ {C}. Define π′ as π ∪ {c 7→ d}.

3. Otherwise add a fresh (R1 u · · · uRn)-successor b of a and set L(b) := {C}.
Define π′ as π ∪ {b 7→ d}.

It all three cases, it is readily checked that π′ satisfies a) to e) w.r.t. S′.

R∀ The rule is applied to a concept ∀(R1u· · ·uRn).C ∈ L(a) and an (R1u· · ·uRn)-
relative b of a. By a), b), and the semantics, this implies π(a) ∈ (∀(R1 u · · · u
Rn).C)I , (π(a), π(b)) ∈ (R1 u · · · u Rn)I , and π(b) ∈ CI . The rule application
adds C to L(b). Obviously, π satisfies a) to e) w.r.t. the obtained completion
system S′.

R∃c The rule is applied to a concept ∃U1, . . . , Un.P ∈ L(a) with Ui = R
(i)
1 · · ·R

(i)
ki
gi

for 1 ≤ i ≤ n. By a), this implies π(a) ∈ (∃U1, . . . , Un.P )I . Hence, there exist
d

(i)
j ∈ ∆I for 1 ≤ i ≤ n and 1 ≤ j ≤ ki and α1, . . . , αn ∈ ∆D such that

– (π(a), d(i)
1 ) ∈ (R(i)

1 )I for 1 ≤ i ≤ n,
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– (d(i)
j−1, d

(i)
j ) ∈ (R(i)

j )I for 1 ≤ i ≤ n and 1 < j ≤ ki,

– gIi (d(i)
ki

) = αi for 1 ≤ i ≤ n, and

– (α1, . . . , αn) ∈ PD.

We use these domain elements to (i) perform a step-by-step guidance of the
“+”-operation and (ii) extend the mapping π to a new mapping π′ that satisfies
a) to e). More precisely, we will guide the “+”-operation in the same way as
for the R∃ rule. To construct π′, we start with π and then modify this mapping
everytime a node is renamed or a new node is introduced. The rule application
performs n calls to the “+”-operation, each one of the form S′ + aUix. Fix
an i. By definition of “+”, the call S′+ aUix is broken down into the following,
simpler “+”-calls:

– A call S′ + aR1b1. We can distinguish three subcases:

1. There already exists a successor c of a such that π(c) = d
(i)
1 . In this

case, apply the “+”-operation such that c is renamed to b1 and L(a, b1)
is set to L(a, b1) ∪ {R1}. Moreover, set π′(b1) := d

(i)
1 .

2. For the predecessor c of a, we have π(c) = d
(i)
1 . In this case, apply

the “+”-operation such that c is renamed to b1 and L(b1, a) is set to
L(b1, a) ∪ {R−1 }. Moreover, set π′(b1) := d

(i)
1 .

3. Otherwise add a fresh R1-successor b1 of a. Set π′(b1) = d
(i)
1 .

– Calls S′ + bjRbj+1 for 1 ≤ j < k. We can distinguish the same three
subcases as above with bj playing the role of a and bj+1 playing the role of
b1. In every case, we set π′(bj+1) := d

(i)
j+1.

– A call to the “+”-operation of the form S′ + bkgx. If bk already has a
g-successor y, replace y with x in T and P. Otherwise extend T with a
new g-successor x of a. Set π′(x) := αi.

Assume that, for all i with 1 ≤ i ≤ n, the “+”-operation has been called and
the π′ mapping has been modified as indicated. Call the completion system
obtained by rule application S′. It is readily checked that π′ satisfies a) to e)
w.r.t. S′ (note, however, that the rule application may generate new S-relative
relationships for complex roles S).

R∀c The rule is applied to a concept ∀U1, . . . , Un.P ∈ L(a) and nodes x1, . . . , xn ∈ Oc

such that xi is a Ui-neighbor of a for 1 ≤ i ≤ n. By a), a ∈ (∀U1, . . . , Un.P )I .
By b) and c), (π(a), π(xi)) ∈ UIi for 1 ≤ i ≤ n. Hence, by the semantics, we
have (π(x1), . . . , π(xn)) ∈ PD. Since rule application adds (x1, . . . , xn) to P(P ),
it is easy to see that π satisfies a) to e) w.r.t. the resulting completion system
S′.

Rpr The rule is applied to a node a and its R-neighbor b, where R is a predicate
role ∃(u1, . . . , un), (v1, . . . , vm).P . By b), b being an R-neighbor of a implies
(π(a), π(b)) ∈ RI . We may now proceed as in the case of the R∃c rule, i.e.,
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deduce the existence of certain abstract and concrete nodes and then use these
to guide the rule application.

Rch If the rule is applied to two nodes a, b ∈ Oa and their neighbors x1, . . . , xn ∈ Oc

and y1, . . . , ym ∈ Oc, then there exists a predicate role

∃(u1, . . . , un), (v1, . . . , vm).P occurring in D,

and we have xi ∈ neighb(a, ui) for 1 ≤ i ≤ n and yi ∈ neighb(b, vi) for 1 ≤ i ≤ m.
By b) and c), this implies (π(a), π(xi)) ∈ uIi for 1 ≤ i ≤ n and (π(b), π(yi)) ∈ uIi
for 1 ≤ i ≤ m. The rule application adds (x1, . . . , xn, y1, . . . , yn) either to P(P )
or to P(P ). By the semantics, we have either

(π(x1), . . . , π(xn), π(y1), . . . , π(ym)) ∈ PD

or
(π(x1), . . . , π(xn), π(y1), . . . , π(ym)) ∈ PD.

Hence, the rule Rch can be applied such that π satisfies a) to e) w.r.t. the
obtained completion system S′.

It remains to show that Proposition 5.51 is a consequence of the above claim. Let
SD = (TD,P∅) be the initial completion system for D and let a0 be the node in
TD. Set π(a0) to d for a d ∈ DI . Obviously, π satisfies a) to e) and hence SD is
I-compatible. By the claim, the completion rules can be applied such that only I-
compatible completion systems are obtained. By Lemma 5.49, every sequence of rule
applications terminates yielding a complete completion system. Hence, we can obtain
a complete and I-compatible completion system S = (T,P) by rule application. It
remains to show that this implies clash-freeness of S. Let π be a mapping for S
satisfying a) to e). We make a case distinction according to the various clash types
(c.f. Definition 5.41).

1. S does not contain a clash of the form {A,¬A} ⊆ L(a) since, together with a),
this would imply π(a) ∈ AI ∩ (¬A)I , which is impossible.

2. By e), T contains at most a single f -neighbor for each node a in T and each
f ∈ NaF.

3. Assume that T contains an abstract node a and a concrete node x such that
g↑ ∈ L(a) and x is g-successor of a in T for some g ∈ NcF. By a), we have
π(a) ∈ (g↑)I . By c), we have gI(π(a)) = π(x), which is a contradiction.

4. It remains to show that S is concrete domain satisfiable, i.e., that the predicate
conjunction ζP is satisfiable. However, using d), it is straightforward to show
that the “concrete part” of π is a solution for ζP .

❏
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As described in Section 2.2.1, concept satisfiability w.r.t. TBoxes can be reduced
to concept satisfiability without reference to TBoxes by using unfolding [Nebel 1990].
Together with Lemmas 5.49, 5.50, and 5.51, this gives the following decidability result:

Theorem 5.52. If D is admissible, then satisfiability of ALCPrp,−,u(D)-concepts
w.r.t. acyclic TBoxes is decidable.

From the well-known reduction of subsumption to (un)satisfiability, it follows that
ALCPrp,−,u(D)-concept subsumption w.r.t. acyclic TBoxes is decidable as well. In
the next section, we modify the presented completion algorithm to directly take into
account acyclic TBoxes and then investigate its complexity.

5.4.3 Adding Acyclic TBoxes

We use the modification scheme from Section 4.1.1 to extend the presented comple-
tion algorithm to acyclic TBoxes. More precisely, the modified algorithm is capable of
deciding satisfiability of concept names w.r.t. simple ALCPrp,−,u(D)-TBoxes, which
are defined as in Definition 4.2 with the only difference that right-hand sides of con-
cept equations may now also be of the form ∃(R1 u · · · u Rn).C, ∀(R1 u · · · u Rn).C,
∃U1, . . . , Un.P , ∀U1, . . . , Un.P , and g↑. Since Lemma 4.3 clearly generalizes from ALC
to ALCPrp,−,u(D), it is easily seen that satisfiability of concepts w.r.t. acyclic TBoxes
can be reduced to this task (c.f. Section 4.1.1). In analogy to the modified comple-
tion algorithm from Section 4.1.1, the modified ALCPrp,−,u(D)-completion algorithm
works on simple completion systems, i.e., completion systems in which node labels are
sets of concept names.

Definition 5.53 (Modified Completion Algorithm).
The modified ALCPrp,−,u(D)-completion algorithm is obtained from the completion

algorithm in Figure 5.16 by performing the following modifications:

1. To decide the satisfiability of a concept name A w.r.t. a simple TBox T , the
modified algorithm starts with the initial completion system SA := (TA,P∅),
where TA is the tree consisting of a single node a with L(a) = {A} and P∅ maps
each P ∈ ΦD to ∅.

2. The completion rules are modified as follows: in the premise of each rule, sub-
stitute

“C ∈ L(a)” with “B ∈ L(a) and B
.= C ∈ T ”.

For example, in the conjunction rule, “C1 u C2 ∈ L(a)” is replaced with
“B ∈ L(a) and (B .= C1 u C2) ∈ T ”;

3

In Section 4.1.1, we defined what it means for a simple ABox A to be a “variant” of
an ABox A′. Based on this notion, we then proved soundness, completeness, and ter-
mination of the modified ALC-completion algorithm by establishing a correspondence
between runs of the algorithm on input A, T and runs of the original algorithm on
input C, where C is obtained by unfolding A w.r.t. T . Since correctness and termina-
tion of the modified ALCPrp,−,u(D)-completion algorithm is proved in the same way,
we adapt the notion “variant” from ABoxes to completion systems.
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Definition 5.54. A simple completion system S = (T,P) is a variant of a completion
system S′ = (T′,P ′) w.r.t. a TBox T iff the following conditions hold:

1. A ∈ L(a) and unfold(A, T ) = C implies C ∈ L′(a),

2. C ∈ L′(a) implies the existence of an A ∈ NC such that A ∈ L(a) and
unfold(A, T ) = C,

3. b is an (R1 u · · · uRn)-successor of a in T iff b is an (R1 u · · · uRn)-successor of
a in T′,

4. x is a g-successor of a in T iff x is a g-successor of a in T′, and

5. P = P ′.
3

We can now establish a lemma that describes the correspondence between runs of the
original algorithm and runs of the modified algorithm as described above.

Lemma 5.55. Let S1 be a simple completion system that is a variant of a completion
system S′1 w.r.t. a simple TBox T .

• If the modified completion algorithm can apply a completion rule R to S1 yielding
a completion system S2, then the original completion algorithm can apply R to
S′1 yielding a completion system S′2 such that S2 is a variant of S′2 w.r.t. T .

• Conversely, if the original completion algorithm can apply a completion rule R
to S′1 yielding a completion system S′2, then the modified completion algorithm
can apply R to S1 yielding a variant S2 of S′2 w.r.t. T .

Proof. The proof is by a straightforward case analysis (c.f. the proof of Lemma 4.6).
❏

In order to analyze the space requirements of the modified completion algorithm, we
need to investigate the connection between unfolding and the various measures used
in the formulation of Proposition 5.49.

Lemma 5.56. Let A be a concept name and T a simple TBox such that A occurs
in T . If C is the result of unfolding A w.r.t. T , then

1. maxar(C) ≤ |T |,

2. ncr(C) ≤ |T |,

3. rd(C) ≤ |T |, and

4. |sub(C)| ≤ |T |.8

8I.e, maxar(), ncr(), rd(), and |sub()| are polynomial under unfolding of simple TBoxes.
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Proof. Properties 1 and 2 are trivial and Property 3 can be proved as in the case
of ALC (c.f. the proof of Proposition 4.7). Hence, we concentrate on the proof of
Property 4. Let A be a concept name, T a simple TBox, and χ be the set of concept
names used in T (thus, A ∈ χ). We prove Property 4 by defining a total, injective
function f from sub(C) to χ. The existence of such a function implies |sub(C)| ≤ |T |
since, clearly, |χ| ≤ |T |. For defining f , assume that the concept names in χ are
linearly ordered and, for each set Ψ with ∅ ⊂ Ψ ⊆ χ, min(Ψ) denotes the concept in
Ψ which is minimal w.r.t. this ordering. Define the function f from sub(C) to χ as
follows:

f(E) := min{B ∈ χ | unfold(B, T ) = E}.
We show that f is well-defined and injective.

• Let k be the number of iterations performed by the while loop in the unfolding
algorithm (see Figure 2.5) if started on (A, T ) and let Ci (0 ≤ i ≤ k) denote
the concept C after the i-th loop, i.e., C0 = A and Ck = C. To prove well-
definedness, we establish the following claim:

Claim: For all 0 ≤ i ≤ k, and for all E ∈ sub(Ci), there exists a B ∈ χ such
that unfold(E, T ) = unfold(B, T ).

The claim implies well-definedness since, for all concepts E ∈ sub(Ck) = sub(C),
we have unfold(E, T ) = E. The proof of the claim is by induction on i. For
i = 0, the claim trivially holds since C0 = A and A ∈ χ. Now for the induction
step. Assume that, in the the i-th step, every occurrence of a concept name A′

has been replaced by a concept F . Let E ∈ sub(Ci+1) \ sub(Ci). Then we have
one of the following two cases:

– E ∈ sub(F ). Since T is simple, this implies that either E = F or E is a
concept name from χ. In the first case, E occurs on the right-hand side
of a concept equation in T and hence there obviously exists a B ∈ χ as
required. In the second case, we can use E itself as the required B.

– E /∈ sub(F ). Then there exists an E′ in sub(Ci) such that E can be obtained
from E′ by substituting every occurrence of A′ in E′ by F . By induction
hypothesis, there exists a B ∈ χ such that unfold(E′, T ) = unfold(B, T ).
Since, obviously, unfold(E, T ) = unfold(E′, T ), we have unfold(E, T ) =
unfold(B, T ).

• Assume that f is not injective, i.e., there exist two concepts E,E′ ∈ sub(C)
with E 6= E′ such that f(E) = f(E′) = B. By definition of f , this implies
unfold(B, T ) = E and unfold(B, T ) = E′. Since E 6= E′ and unfolding is
deterministic, this is obviously impossible. ❏

We are now ready to prove correctness and analyze the time requirements of the
modified completion algorithm.

Proposition 5.57. The modified completion algorithm is sound and complete. More-
over, if it is started on input (A, T ), then it terminates after at most 2p(|T |) rule
applications, for some polynomial p(n).
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Proof. Soundness and completeness are an immediate consequence of Lemma 5.55
and the following facts:

1. the original algorithm is sound, complete, and terminating;

2. a concept name A and a simple TBox T have a model iff the concept C =
unfold(A, T ) has a model.

Now for termination. By Lemma 5.55, the maximum number of rule applications made
by the modified algorithm if started on A, T is identical to the maximum number of
rule applications made by the original algorithm if started on D = unfold(A, T ). By
Proposition 5.49, the latter number is bounded by

(|sub(D)| · kmaxar(D)) + k · (2 · |sub(D)|+ ncr(D))

where

k =
[
|sub(D)|+

(
|sub(D)|+ncr(D)·(|sub(D)|+2)

)
·maxar(D)·(2·|sub(D)|)rd(D)

]3·rd(D)
.

Using Lemma 5.56, we can infer the existence of a polynomial p(n) as required. ❏

Finally, the upper bound forALCPrp,−,u(D)-concept satisfiability w.r.t. acyclic TBoxes
can be given.

Theorem 5.58. Let D be an admissible concrete domain.

1. If D-satisfiability is in NP, then ALCPrp,−,u(D)-concept satisfiability w.r.t.
acyclic TBoxes is in NExpTime.

2. If D-satisfiability is in PSpace, then ALCPrp,−,u(D)-concept satisfiability w.r.t.
acyclic TBoxes is in ExpSpace.

3. If D-satisfiability is in NExpTime ( ExpSpace), then ALCPrp,−,u(D)-concept
satisfiability w.r.t. acyclic TBoxes is in 2-NExpTime ( 2-ExpSpace).

Proof. As above, we only deal with the satisfiability of concept names w.r.t. simple
TBoxes since the more general problem referred to in the theorem can be polynomially
reduced to this task.

First for Point 1. By Proposition 5.57, the completion algorithm terminates af-
ter at most 2p(|T |) rule applications if started on A, T , where p(n) is a polynomial.
Since each rule application adds at most a single tuple to P, the length of predicate
conjunctions ζP encountered while checking for clashes is also bounded by 2p(|T |).
Hence, D-satisfiability being in NP implies that clashes can be checked for in (non-
deterministic) time exponential in |T |. Since the number of clash checks is bounded by
the number of rule applications, we conclude that the modified completion algorithm
can be executed in non-deterministic exponential time.

Now for Point 2. Since the completion algorithm terminates after at most 2p(|T |)

rule applications, it is obvious that the number of nodes in the constructed completion
systems is bounded by 2q(|T |), where q(n) is a polynomial. Hence, the space required to
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store completion systems is exponential in |T |. Moreover, as argued above, the length
of predicate conjunctions ζP is exponential in |T | and thus D-satisfiability being in
PSpace implies that clashes can be checked for using at most exponential space.
It remains to apply the well-known result that ExpSpace = NExpSpace [Savitch
1970].

Point 3 can be proved similarly. ❏

Together with, e.g., Theorem 5.16, we obtain a tight complexity bound for the case
of arithmetic concrete domains.

Corollary 5.59. If D is an admissible arithmetic concrete domain and D-satisfiability
is in NP, then ALCPrp,−,u(D)-concept satisfiability w.r.t. acyclic TBoxes is NExp-

Time-complete.

Since subsumption can be reduced to (un)satisfiability, the above results carry over
to ALCPrp,−,u(D)-concept subsumption with the exception that, in Theorem 5.58,
Point 1 and Corollary 5.59, “NExpTime” has to be replaced by “co-NExpTime”, and,
in Theorem 5.58, Point 3, “2-NExpTime” has to be replaced by “co-2-NExpTime”.

Can the results just established be extended to ABox consistency? In the liter-
ature, there exist two main approaches for obtaining ABox consistency algorithms:
either reduce ABox consistency to concept satisfiability obtaining a precompletion-
style algorithm as in Section 3.2, or “directly” devise a completion algorithm for de-
ciding ABox consistency (instead of for deciding concept satisfiability) as done, e.g.,
in [Haarslev & Möller 2000b; Horrocks et al. 2000b]. In the case of ALCPrp,−,u(D),
the precompletion approach does not seem to be feasible. The reason for this is the
presence of the generalized concrete domain constructors and of the concrete domain
role constructor.

To discuss the problems with precompletion algorithms for ALCPrp,−,u(D) in
some more detail, let us consider the precompletion algorithm for ALCF(D) from
Section 3.2. In that algorithm, we had to compute the “closure under feature succes-
sors” before constructing the reduction concepts, i.e., we had to generate all feature-
successors of ABox objects, all feature successors of these feature successors, etc. If
we had not done this, the “concrete parts” of models for different reduction concepts
would have interacted, which would have resulted in the failure of the reduction. Intu-
itively, we exploited the facts that the closure under feature successors is of polynomial
size and that concrete domain information cannot “cross” (non-feature) role succes-
sor relationships. In the case of the generalized concrete domain constructors, this
obviously does not work. Since roles are allowed inside the generalized constructors
in place of features, concrete domain information may very well cross role successor
relationships. This means that we would have to take the closure under role succes-
sors, which is equivalent to taking the “direct” approach to ABox reasoning described
above.

The problem with predicate roles is that they have a global flavor. If, for example,
during the satisfiability checking of a reduction concept we detect that some domain
element has to satisfy the concepts ¬g↑, ∀(∃(g), (g).P ).C and ∀(∃(g), (g).P ).C, then all
domain elements in models of every reduction concept have to satisfy C if they have a
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g-successor. Since precompletion algorithms check the satisfiability of each reduction
concept separately, it is not clear how such effects can be taken into account.

The described difficulties make it rather unlikely that an upper complexity bound
for ALCPrp,−,u(D)-ABox consistency can be obtained using a precompletion algo-
rithm. Hence, our only choice to establish such a bound would have been to take
the direct approach and devise a completion algorithm for deciding ABox consistency
right from the start. We have chosen not to do this since the presentation of the
completion algorithm and the proofs of correctness and termination are already quite
involved and a further extension of the algorithm to ABoxes would have made its
presentation even more complex. Thus, we only conjecture that Theorem 5.58 and
Corollary 5.59 extend to ABox consistency w.r.t. acyclic TBoxes.

5.5 Comparison with ALCF

In previous chapters, we have already seen that the concrete domain concept construc-
tor and the feature (dis)agreement constructors are closely related. Apart from their
obvious syntactical similarity—i.e., the fact that they both take paths as arguments—
we observed in Chapter 3 that ALCF and ALC(D) can be treated with similar algo-
rithmic techniques and are both PSpace-complete (if D-satisfiability is in PSpace).
Moreover, as was shown in Sections 4.2 and 5.3.1, the complexity of both ALCF and
ALC(D) moves from PSpace-complete to NExpTime-complete if acyclic TBoxes are
added. In the following, we further elaborate on this correspondence between the com-
plexity of (extensions of) ALCF and the complexity of (extensions of) ALC(D). We
concentrate on extensions of ALC(D) that have been considered in Section 5.3 and are
also applicable to ALCF , i.e., on the addition of role conjunction and inverse roles. As
we shall see, the combination of feature (dis)agreements with role conjunction behaves
similarly to the combination of concrete domains with role conjunction, i.e., reason-
ing becomes NExpTime-complete. In contrast, the addition of inverse roles leads
to different complexity in the cases of ALC(D) and ALCF : while, in Sections 5.3.3
and 5.4, we proved that ALC−(D)-concept satisfiability is NExpTime-complete if D-
satisfiability is in NP, we will see in the following that ALCF−-concept satisfiability
is undecidable.

5.5.1 ALCFu-concept Satisfiability

We show that ALCFu-concept satisfiability is NExpTime-hard. The definition of this
logic and the corresponding upper bound can be found in Section 4.3. The basic idea
is to modify the reduction of the NExpTime-hard variant of the domino problem
to ALCF-concept satisfiability w.r.t. acyclic TBoxes described in Section 4.2 such
that acyclic TBoxes are replaced by role conjunction. Note that this is very similar
to what we did in Section 5.3.2, where the NExpTime-hardness proof for ALC(D)-
concept satisfiability w.r.t. acyclic TBoxes has been adapted to ALCu(D)-concept
satisfiability.

In Section 4.2, the NExpTime-hard domino problem was reduced to ALCF-
concept satisfiability w.r.t. TBoxes by defining, for each domino system D and each
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Tree0[α, β, γ] := ∃(R u α).> u ∃(R u β).>
u βn+1γ ↓ αn+1 u αβnγ ↓ βαn

u ∀R.
(
∃(R u α).> u ∃(R u β).>
u αβn−1γ ↓ βαn−1

)
...

u ∀Rn.
(
∃(R u α).> u ∃(R u β).>
u αγ ↓ β

)
u ∀Rn+1.Grid

Figure 5.20: The ALCFu-reduction concept CD,a with n = |a|: tree definition. Sub-
stitute α, β, γ with f, g, y and f ′, g′, x.

initial condition a = a0, . . . , an−1, a concept (name) CD,a and a TBox TD,a such that
models of CD,a and TD,a have the form of a 2n+1×2n+1-grid representing a torus of the
same size that is properly tiled and satisfies the initial condition a. Acyclic TBoxes
serve two purposes in this reduction: firstly, they are used to build up the two binary
trees of depth n+ 1 whose leaf nodes are connected by chains of features. These two
feature chains are row 0 and column 0 of the torus to be defined. Secondly, TBoxes are
used to define the rest of the grid once row 0 and column 0 have been established. Very
similarly to what was done in Section 5.3.2, the tree definition from Figure 4.4 can
be reformulated without reference to TBoxes by using role conjunction. The resulting
reduction concept can be found in Figure 5.20. This figure contains an abbreviation
rather than a concept definition from a TBox since TBoxes are not available.

It hence remains to adapt the grid definition from Figure 4.6 to ALCFu without
TBoxes. In the original grid definition, the TBox is used to propagate the Tilei-
concepts to appropriate positions in the grid. Instead of using a TBox, we can also
achieve this by using universal value restriction on the diagonals in the grid z0, . . . , zn.
However, this yields a reduction concept whose size is no longer polynomial in the
size of D and a since we must use universal value restrictions ∀zi0 . · · · .∀zik .Tilej for
all prefixes i0, . . . , ik (k ≤ n) of permutations i0, . . . , in of 0, . . . , n. This blowup can
be avoided by using role conjunction to enforce that there exists a role R such that all
diagonals in the grid z0, . . . , zn are additionally labeled with R. We may then replace
the exponentially many universal value restrictions by polynomially many of the form
∀R.Tilej , . . . , ∀Rn+1.Tilej . With some additional simplifications, this approach yields
the reduction concept in Figure 5.21.

The proof of the following lemma is omitted since it is very similar to the proof of
Lemma 4.16.

Lemma 5.60. CD,a is satisfiable w.r.t. TD,a iff D tiles U(2n+1, 2n+1) with initial
condition a where n = |a|.

Together with Corollary 4.23, we obtain the following result.

Theorem 5.61. ALCFu-concept satisfiability is NExpTime-complete.
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GridAux := Tile u xy ↓ yx u xy ↓ z0 u u
0≤i≤n

∃(zi uR).> u u
0≤i<n

zizi ↓ zi+1

Grid := GridAux u ∀R.GridAux u · · · u ∀Rn+1.GridAux

Tile := t
t∈T

At uu
t∈T
u

t′∈T\{t}
¬(At uAt′)

u
t∈T

(At → ∃x. t
(t,t′)∈H

At′)

u
t∈T

(At → ∃y. t
(t,t′)∈V

At′)

Init := ∃`n+1
2 .(Aa0 u ∃x.(Aa1 u · · · u ∃x.(Aan−2 u ∃x.Aan−1) . . . ))

CD,a := Tree0[`1, r1, y] u Tree0[`2, r2, x] u `n+1
1 ↓ `n+1

2 u Init

Figure 5.21: The ALCF reduction concept CD,a with n = |a|: grid definition and
tiling.

It is an immediate consequence of Theorem 5.61 that ALCFu-concept subsumption
is co-NExpTime-complete. Similar to the reduction in Section 5.3.2, the one just
described relies on the fact that the role conjunction constructor may be applied to
features. If we disallow the use of the role conjunction constructor on features, we
obtain the logicALCF (u), which is the fusion of the logicsALCF and andALCu. Since
concept satisfiability is in PSpace for both these logics (see Chapter 3 and [Donini
et al. 1997]), we conjecture that ALCF (u)-concept satisfiability (and subsumption) is
also in PSpace. (c.f. Section 5.6).

We should like to add a general comment concerning the complexity of reason-
ing with Description Logics that provide the role conjunction constructor. This
constructor is frequently believed to be “harmless” w.r.t. complexity, i.e., that it
can be added to Description Logics without increasing the complexity of reasoning
[Donini et al. 1997; Tobies 2001b]. In this thesis, we encountered two logics for
which this is not the case: ALC(D) in Section 5.3.2 and ALCF in this section.
Another case is known from the literature since, as shown in [Lutz & Sattler 2000;
Lutz & Sattler 2001], the complexity of the logic ALC¬—ALC extended with a nega-
tion constructor on roles—moves from ExpTime-complete to NExpTime-complete if
role conjunction is added. Hence, there seem to be many cases in which role conjunc-
tion is indeed “harmless”, but also several cases where it has a considerable impact
on the complexity of reasoning.

5.5.2 Undecidability of ALCF−

We consider ALCF−, the extension of ALCF with inverse roles, and show that, for
this Description Logic, concept satisfiability is undecidable. The logic ALCF− is
defined in correspondence with ALC−(D), the extension of ALC(D) with inverse roles
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Grid := ∃f−.> u ∀f−.xy↓yx u ∀f−.(f↓xf u f↓yf u f↓xyf)

Tile := (t
t∈T

At) uu
t∈T
u

t′∈T\{t}
¬(At uAt′)

u
t∈T

(At → ∃x. t
(t,t′)∈H

At′)

u
t∈T

(At → ∃y. t
(t,t′)∈V

At′)

CD := Grid u ∀f−.Tile

Figure 5.22: The ALCF− reduction concept CD.
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Figure 5.23: Clipping from a model of CD.

introduced in Section 5.3.3. Hence, we may use the inverse constructor both on roles
and features but only inside universal and existential value restrictions.

The proof is by a reduction of the general domino problem to ALCF−-concept
satisfiability. More precisely, we reduce the domino problem that requires finding a
tiling of the first quadrant of the plane. As noted in Section 4.2, this variant is already
undecidable [Knuth 1968]. Given a domino system D = (T, V,H), the reduction
concept CD is defined such that (i) models of CD have the form of a two-side infinite
grid, (ii) every node of the grid is an instance of exactly one of the concept names At
with t ∈ T (representing tile types), and (iii) the horizontal and vertical conditions
V and H are satisfied. The reduction concept can be found in Figure 5.22 and an
example CD model can be found in Figure 5.23. Again, the figure defines abbreviations
which are not to be confused with concept definitions from a TBox. The symbols x,
y, and f denote (abstract) features. In the reduction, the Grid concept generates the
grid and the Tile concept ensures that the conditions (ii) and (iii) are satisfied.

Lemma 5.62. CD is satisfiable iff D has a solution.

Proof. Assume that CD has a model I. We define a solution τ for D. Let r ∈ CID
and r′ ∈ (f−)I(d) (such r and r′ exist due to the first conjunct of the Grid concept).
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Define the function π from N2 to ∆I inductively as follows:

1. π(0, 0) = r′,

2. if π(i, j) = d and xI(d) = e, then π(i+ 1, j) = e,

3. if π(i, j) = d and yI(d) = e, then π(i, j + 1) = e.

The Grid concept ensures that this function is total and well-defined. Finally, we define
τ(i, j) as the t ∈ T for which π(i, j) ∈ AIt . Note that, due to the first line of Tile,
there exists exactly one such t for each π(i, j). It is straightforward to check that τ is
well-defined and a solution for D.

Conversely, assume that τ is a solution for D. We define a model I for CD as
follows:

• ∆I = N2 ∪ {d},

• xI(i, j) = (i+ 1, j) for all i, j ∈ N,

• yI(i, j) = (i, j + 1) for all i, j ∈ N,

• fI(i, j) = d for all i, j ∈ N,

• AIt = τ−1(t) for all t ∈ T .

It is straightforward to verify that I is a model of CD. ❏

The following theorem is an immediate consequence of Lemma 5.62 and the undecid-
ability of the domino problem.

Theorem 5.63. ALCF−-concept satisfiability is undecidable.

Since (un)satisfiability can be reduced to subsumption, ALCF−-concept subsumption
is clearly also undecidable. Again, the reduction is only possible since the inverse
constructor may be applied to features. It does not work for ALCF (−), which is ob-
tained from ALCF− by disallowing the use of the inverse constructor on features. In
fact, since ALCF (−) is nothing but the fusion of ALCF and ALC−, it follows from
the results in [Baader et al. 2002a] that ALCF (−)-concept satisfiability is decidable.
Moreover, since both ALCF and ALC− are PSpace-complete (see Chapter 3 and
[Horrocks et al. 2000a; Spaan 1993b]), we conjecture that ALCF (−)-concept satisfia-
bility is also PSpace-complete.

5.6 Discussion

We have seen that the PSpace upper bound for ALC(D)-concept satisfiability from
Chapter 3 is not robust in the sense that, for many seemingly simple extensions
of ALC(D) and a large class of concrete domains, reasoning becomes NExpTime-
complete. However, there also exist several rather expressive concrete domains and
extensions of ALC(D) to which the obtained results are not applicable:
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1. Some interesting concrete domains, such as the temporal concrete domains P and
I from Section 2.4.3, are not arithmetic. Hence, none of the hardness results
obtained in this chapter applies to extensions of ALC(P) and ALC(I).

2. We gave no NExpTime-hardness results for extensions of ALC(D) with some
standard DL constructors such as transitive roles and qualifying number restric-
tions.

Concerning the first point, it seems that many extensions of ALC(P) and ALC(I) are
indeed not NExpTime-hard. This is illustrated in the following chapter, where general
TBoxes are added to ALC(P), and the resulting logic is proved to be decidable and
ExpTime-complete. Using the reduction of ALC(I)-concept satisfiability to ALC(P)-
concept satisfiability sketched in Section 2.4.3, one can then show that this upper
bound also applies to ALC(I) with general TBoxes.

Concerning the second point, let us discuss the extension ofALC(D) with transitive
roles and qualifying number restrictions on an informal level. As in previous sections,
it is convenient to use the fact that some Description Logics can be viewed as the
fusion of other Description Logics to obtain decidability results and conjecture com-
plexity results. However, it is out of the scope of this thesis to give a formal definition
of the notion “fusion” and we refer the interested reader to, e.g., [Baader et al. 2002a;
Kracht & Wolter 1991; Spaan 1993a]. Intuitively, the fusion L of two Description Log-
ics L1 and L2 is obtained by combining L1 and L2 in a way such that their constructors
do not “interact”. As an example, consider the logics ALCF− and ALCF (−) intro-
duced in Section 5.5.2, which are both combinations of ALCF and ALC−. While
ALCF (−) is the fusion of these two logics, ALCF− is “more” than the fusion: feature
agreements interact with the inverse role constructor since we allow the inverse con-
structor to be applied to features. This difference is reflected by the computational
properties of the two logics: in contrast to ALCF−, which was proven undecidable
in Section 5.5.2, we can use the general transfer results from [Baader et al. 2002a] to
deduce that ALCF (−)-concept satisfiability is decidable. More precisely, the transfer
results in [Baader et al. 2002a] state the following:

• if L1-concept satisfiability and L2-concept satisfiability are decidable and L is
the fusion of L1 and L2, then L-concept satisfiability is decidable;

• if L1-concept satisfiability w.r.t. general TBoxes and L2-concept satisfiability
w.r.t. general TBoxes are decidable and L is the fusion of L1 and L2, then
L-concept satisfiability w.r.t. general TBoxes is decidable.

Unfortunately, Baader et al. do not provide transfer results for the complexity of
reasoning, and, indeed, it seems that the methods used in [Baader et al. 2002a] will
in many cases not yield a tight upper complexity bound.

The mentioned transfer results can be used to prove decidability of extensions of
ALC(D) with transitive roles and qualifying number restrictions. For example, it is
easily seen that ALCQ−

R+(D), i.e., the extension of ALC(D) with qualifying number
restrictions, the inverse role constructor, and transitive roles, is the fusion of the
Description Logics ALC−(D) and ALCQ−

R+—more precisely, this is only true if the
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use of features inside qualifying number restrictions is prohibited, which obviously
is no restriction w.r.t. expressive power. Since ALC−(D)-concept satisfiability was
proven decidable in Section 5.4 and ALCQ−

R+-concept satisfiability is also decidable
[Horrocks et al. 2000a], we obtain the following result:9

Theorem 5.64. If D is admissible, then ALCQ−
R+(D)-concept satisfiability is decid-

able.

Although this does not follow from the results in [Baader et al. 2002a], in many cases
the complexity of component logics also transfers to their fusion. In the area of Modal
Logics, this has, e.g., been shown by Spaan [1993a]. More precisely, Spaan proves the
following result:

• if L1 and L2 are Modal Logics, L is the fusion of L1 and L2, C is a complexity
class that contains PSpace, and satisfiability of Li-formulas under restrictions
is in C for i ∈ {1, 2}, then satisfiability of L-formulas under restrictions is also
in C.

Roughly spoken, “L-formula satisfiability under restrictions” means to decide whether,
for a given L-formula ϕ and a given set of L-formulas R, ϕ is satisfiable by a modelM
such that, for every set Ψ of formulas verified by a world w of M, the intersection of
Ψ with a certain set of formulas “relevant at w” is in R. Although Spaan’s notion of
“Modal Logic” does not capture most of the Description Logics used in this thesis, a
close inspection of Spaan’s results gives reason to assume that they can be extended to
a large class of Description Logics. Moreover, it seems possible to show that, for most
Description Logics L used in this thesis, L-concept satisfiability being in a complexity
class C implies that L-concept satisfiability under restrictions is also in C. These
observations are the basis for the following conjectures.

For the logic ALCQ−
R+(D) from above, we conjecture concept satisfiability to be

in NExpTime if D is admissible and D-satisfiability is in NP. The reason for this is
that the component ALC−(D) is in NExpTime in this case (Theorem 5.52) and the
component ALCQ−

R+ is ExpTime-complete even if the numbers inside number restric-
tions are coded binarily [Tobies 2001a]. In search of a maximally expressive PSpace

Description Logic with concrete domains, we give another conjecture. It is not hard
to see that ALCFNR+(D), the extension of ALC(D) with feature (dis)agreements,
unqualifying number restrictions, and transitive roles, is the fusion of the Descrip-
tion Logics ALCF(D) and ALCNR+ (if the use of features inside qualifying number
restrictions is prohibited). Since, in Chapter 3, we proved ALCF(D)-concept satisfi-
ability to be PSpace-complete if D-satisfiability is in PSpace, and ALCNR+ is also
PSpace-complete (with binary coding of numbers and if transitive roles are not used
inside number restrictions [Horrocks et al. 1998]), we conjecture that ALCFNR+(D)-
concept satisfiability is PSpace-complete if D-satisfiability is in PSpace. However,
it seems that the results in [Horrocks et al. 1998] can be extended to ALCQR+ , and,
thus, ALCFQR+(D) is another candidate for a very expressive PSpace Description
Logic with concrete domains.

9ALCQ−
R+ -concept satisfiability is only known to be decidable if the use of transitive roles in-

side qualifying number restrictions is prohibited. Hence, the same restriction applies to the logic
ALCQ−

R+(D).



Chapter 6

Concrete Domains and General
TBoxes

In Chapter 5, we obtained tight complexity bounds for reasoning with concrete do-
mains and acyclic TBoxes. However, for many applications it is desirable to have at
one’s disposal the strictly more powerful general TBoxes introduced in Section 2.2.1.
Striving for more expressive Description Logics with concrete domains, in this chapter
we investigate the possibility of combining concrete domains and general TBoxes with-
out losing decidability. The first result we obtain is a negative one since it states that,
for every arithmetic concrete domain D, ALC(D)-concept satisfiability w.r.t. general
TBoxes is undecidable. Retrospectively, this strong undecidability result provides a
major justification for our detailed investigation of Description Logics with concrete
domains and acyclic TBoxes in Chapter 5. However, as the main result of this chapter
will demonstrate, the situation concerning concrete domains and general TBoxes is not
hopeless in all cases: we prove thatALC(P)-concept satisfiability w.r.t. general TBoxes
and ALC(P)-ABox consistency w.r.t. general TBoxes are decidable in deterministic
exponential time, where P is the point-based temporal concrete domain introduced
in Section 2.4.3. Using an encoding technique as in the reduction of ALC(I)-concept
satisfiability to ALC(P)-concept satisfiability sketched in Section 2.4.3 (where I is the
interval-based temporal concrete domain from Section 2.4.3), it can then be shown
that these upper bounds also apply to ALC(I), or, viewed from a different perspec-
tive, that ALC(P) can be used for combined point-based and interval-based temporal
reasoning.

It is important to note that the temporal Description Logic ALC(P) is not only
interesting because it provides an example for the case where a concrete domain can be
combined with general TBoxes without losing decidability. The obtained decidability
results are interesting in their own right since, to the best of our knowledge, for the
first time we provide a combination of interval-based temporal reasoning and reasoning
with general TBoxes in a decidable Description Logic. Before proving decidability, we
illustrate the usefulness of this combination by describing a general framework for
the representation of conceptual temporal knowledge with ALC(P) and then applying
this framework exemplarily in the application domain of process engineering [Sattler

161
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CP := ∃`. =ε u ∃r. =ε

TP :=
{
> v u

(`i,ri)∈P
∃`, fi`.conc`i u ∃r, fir.concri

> v ∃`. =ε t ¬∃`, r.=
}

Figure 6.1: The ALC(W) reduction concept CP and TBox TP .
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Figure 6.2: An example model of C w.r.t. T

1998; Molitor 2000]. A comparison with existing temporal Description Logics shows
that ALC(P) with general TBoxes significantly extends the expressive power of other
interval-based temporal Description Logics known from the literature and thus has
the potential to become a valuable tool in many application areas.

6.1 An Undecidability Result

We prove that ALC(W)-concept satisfiability is undecidable, where W is the concrete
domain for encoding Post Correspondence Problems introduced in Section 5.2. This
is done by reducing the general, undecidable PCP to ALC(W)-concept satisfiability
using a technique similar to the ones employed in Section 5.3. As in Section 5.3, W can
be replaced by any arithmetic concrete domain.

Given an instance of the Post Correspondence Problem P = (`1, r1), . . . , (`k, rk),
the idea is to define a concept CP and a TBox TP such that models of CP and TP
represent all potential solutions of P , i.e., all corresponding left and right concatena-
tions of words from P induced by sequences of indices of arbitrary length. Moreover,
the definition of CP and TP ensures that none of the potential solutions is in fact
a solution. Hence, P has a solution iff CP is unsatisfiable w.r.t. TP . The reduction
concept and TBox can be found in Figure 6.1, where ` and r denote concrete features.
An example model is displayed in Figure 6.2.
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Lemma 6.1. Let P = (`1, r1), . . . , (`k, rk) be a PCP. Then P has a solution iff the
concept CP is unsatisfiable w.r.t. the TBox TP .

Proof. For both directions, we show the contrapositive. Hence, to show the “if”
direction, assume that P has no solution. We show that CP is satisfiable w.r.t. TP
by constructing an interpretation I that is a model of CP and TP . If w = i1, . . . , in
is a sequence of indices, we use leftconc(w) to denote the concatenation of the words
`i1 , . . . , `in and rightconc(w) to denote the concatenation of the words ri1 , . . . , rin . We
define

∆I := {i1 · · · in | n ≥ 0 and 1 ≤ ij ≤ k for 1 ≤ j ≤ n},
fi(w) := wi for w ∈ ∆I and 1 ≤ i ≤ k,
`(w) := leftconc(w) for w ∈ ∆I ,
r(w) := rightconc(w) for w ∈ ∆I .

Note that ∆I also contains the empty sequence of indices. Since P has no solution,
it is readily checked that I is a model of CP and TP .

Now for (the contrapositive of) the “only if” direction. Let I be a model of CP
and TP with d ∈ CIP . We must show that P has no solution. Assume to the contrary
that w = i1, . . . , in is a solution for P . By induction on j, it is easy to show that
(fi1 · · · fij`)I = leftconc(w) and (fi1 · · · fijr)I = rightconc(w) for 1 ≤ j ≤ n. Since I
is a model of TP and n ≥ 1, we clearly have (fi1 · · · fin`)I 6= (fi1 · · · finr)I and thus
leftconc(w) 6= rightconc(w). Hence, w is no solution to P , a contradiction. ❏

The following theorem is an immediate consequence of the described reduction:

Theorem 6.2. ALC(W)-concept satisfiability w.r.t. general TBoxes is undecidable.

As already mentioned, W can be replaced by any arithmetic concrete domain (see
Section 5.2).

Corollary 6.3. For every arithmetic concrete domain D, ALC(D)-concept satisfia-
bility w.r.t. general TBoxes is undecidable.

These undecidability results obviously also apply to concept subsumption and ABox
consistency since concept satisfiability can be reduced to these tasks. It should be
noted that the above proof is similar to Baader and Hanschke’s undecidability proof
for ALC(D) extended with a transitive closure role constructor [Baader & Hanschke
1992]. Moreover, the reduction resembles the one used in [Lutz & Möller 1997] to prove
undecidability of unrestricted ALCrp(D) (see Section 2.3.2). In all three cases, being
able to “reach” every domain element in connected models from the root together
with the expressive power of the concrete domain is the cause of undecidability.

6.2 ALC(P) with General TBoxes

Despite the discouraging undecidability result established in the previous section, there
exist interesting concrete domains D such that reasoning with ALC(D) and general
TBoxes is decidable. In this section, we show that the temporal concrete domain P in-
troduced in Section 2.4.3 has this desirable property by proving that ALC(P)-concept



164 Chapter 6. Concrete Domains and General TBoxes

ATemporal
.= t↑ u `↑ u r↑

Temporal
.= Point t Interval

Point
.= ∃t, t.= u `↑ u r↑

Interval
.= ∃`, r.< u t↑

> .= (∃`, `.= t ∃r, r.=)→ Interval

u ∃t, t.=→ Point

Figure 6.3: TBox T ∗ with basic definitions of the framework.

satisfiability and ALC(P)-ABox consistency can be decided in deterministic exponen-
tial time. Before presenting the decision procedures, we illustrate the relevance of our
results by motivating ALC(P) as a powerful tool for conceptual temporal represen-
tation and reasoning. More precisely, we first introduce a general framework for the
representation of conceptual temporal knowledge with ALC(P) and then apply this
framework in the application area of process engineering.

6.2.1 Temporal Reasoning with ALC(P)

We present a framework for the representation of conceptual temporal knowledge
with the Description Logic ALC(P). The most important aspect addressed by this
framework is the fact that ALC(P) cannot only be used for point-based temporal
reasoning but can also be viewed as a full-fledged interval-based temporal Description
Logic. Moreover, it is even possible to freely combine point-based and interval-based
reasoning. The introduced representation framework once more illustrates the close
connection between the point-based concrete domain P and the interval-based concrete
domain I (see Section 2.4.3).

The representation framework consists of several conventions and abbreviations.
We assume that each entity of the application domain is either temporal or atemporal.
If it is temporal, its temporal extension may be either a time point or an interval.
We generally assume that left endpoints of intervals are represented by the concrete
feature `, right endpoints of intervals are represented by the concrete feature r, and
time-points not related to intervals are represented by the concrete feature t. All this
can be expressed by the TBox T ∗ displayed in Figure 6.3. The first four concept
equations in the TBox define the relevant notions while the fifth equation ensures
that all domain elements for which one of the concrete features `, r, or t is defined is
either an Interval or a Point. The TBox implies that the concepts ATemporal, Point,
and Interval are mutually disjoint, and that their disjunction is equivalent to >.

Interval-based reasoning with ALC(P) is based on Allen’s relations, which have
been introduced in Section 2.4.3. The Allen relations can be defined in terms of their
endpoints as in the reduction of ALC(I)-concept satisfiability to ALC(P)-concept
satisfiability sketched in Section 2.4.3. To keep concepts readable, we define a suitable
abbreviation for each of the 13 basic relations. For example,

∃(p, p′).contains abbreviates ∃p`, p′`.< u ∃p′r, pr.<
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where p and p′ are abstract paths. Note that we have

∃(p, p′).contains vT ∗ ∃p.Interval u ∃p′.Interval.

Similar abbreviations are introduced for the other basic relations and the defining
concepts can be read off from Figure 2.7. We do not introduce explicit abbreviations
for generalized Allen relations (c.f. Section 2.4.3), but these relations can clearly be
expressed in ALC(P) by using the disjunction concept constructor. In what follows,
we use self to denote the empty abstract path. For example,

∃(p, self).starts abbreviates ∃p`, `.= u ∃pr, r.<.

Intuitively, self refers to the interval associated with the domain element at which the
∃(p, self).starts concept is “evaluated”.

Since we have intervals and points at our disposal, we should be able to talk about
the relationship between points and intervals. More precisely, there exist 5 possible
relations between a point and an interval and we introduce the following abbreviations
for them:

∃(p, p′).beforep for ∃pt, p′`.<
∃(p, p′).startsp for ∃pt, p′`.=
∃(p, p′).duringp for ∃p′`, pt.< u ∃pt, p′r.<
∃(p, p′).finishesp for ∃pt, p′r.=
∃(p, p′).afterp for ∃p′r, pt.<

where p and p′ are again abstract paths. We refrain from defining abbreviations for
the inverses of these relations since they can easily be expressed by exchanging the
arguments in the above abbreviations.

Given the abbreviations introduced in this section and the reductions given in Sec-
tion 2.4.3, it should be clear that ALC(I)-concept satisfiability w.r.t. general TBoxes
can be reduced to ALC(P)-concept satisfiability w.r.t. general TBoxes and ALC(I)-
ABox consistency w.r.t. general TBoxes can be reduced to ALC(P)-ABox consistency
w.r.t. general TBoxes. Hence, the decidability and complexity results obtained in the
following subsections also apply to reasoning with ALC(I).

The usefulness of the introduced framework is demonstrated in the next subsection.

6.2.2 A Modelling Example

Interval-based temporal Description Logics have been used in various application areas
such as reasoning about actions and plans [Artale & Franconi 2001; Artale & Franconi
1998] and disaster management [Kullmann et al. 2000]. We claim that ALC(P) is a
valuable contribution to most of these application areas since, unlike existing interval-
based Description Logics, it admits general TBoxes. To substantiate this claim, we
motivate ALC(P) as an appropriate tool for temporal reasoning in the area of process
engineering. In [Sattler 1998] and [Molitor 2000], it is described how Description
Logics can be used for knowledge representation and reasoning in this application
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Day v Interval

Figure 6.4: Weeks and Days.

domain. However, in Sattler’s and Molitor’s approach, only static knowledge about
process engineering is considered, i.e., there is no explicit representation of temporal
relationships. We use the framework presented in the previous section to show how
the temporal aspects of this application domain can be represented in ALC(P), thus
refining Sattler’s and Molitor’s model.

Our goal is to represent information about an automated chemical production
process that is carried out by some complex technical device. The device operates
each day for some time, depending on the output quantity that is to be produced. It
needs complex startup and shutdown phases before and after operation. Moreover,
some weekly maintenance is needed to keep the device functional.

Let us first represent the underlying temporal structure consisting of weeks and
days. The corresponding TBox can be found in Figure 6.4. In the figure, we use C v D
as an abbreviation for > .= (C → D). The first concept equation states that each
week consists of seven days, where the i-th day is accessible from the corresponding
week via the abstract feature dayi. The temporal relationship between the days are
as expected: Monday starts the week, Sunday finishes it, and each day temporally
meets the succeeding one. Moreover, each week has a successor week (accessible via
the abstract feature next) that it temporally meets. The TBox clearly implies that
days 2 to 6 are during the corresponding week although this is not explicitly stated.
Note that the TBox is cyclic since Week is defined in terms of itself. Indeed, it is easy
to see that such an (infinite) temporal structure cannot be described using acyclic
TBoxes.

Figure 6.5 defines the startup, operation, shutdown, and maintenance phases,
where start, op, shut, and maint are abstract features and “◦” is used as a separa-
tor for the features in (concrete and abstract) paths for better readability. In lines 2
to 5 of the concept equation for Day, we freely combine abbreviations from the frame-
work with predicates from P itself to ensure succinct definitions. Taken together, these
lines imply that phases are related to the corresponding day as follows: startup via
starts or during, shutdown via during or finishes, and operation via during. Moreover,
the startup phase meets the operation phase, which in turn meets the shutdown phase.

Until now, we did not say anything about the temporal relationship of maintenance
and operation. This may be inadequate, if, for example, maintenance and operation
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Day v ∃start.Startup u ∃op.Operation u ∃shut.Shutdown u
∃start ◦ `, `.≥ u
∃(start, op).meets u
∃(op, shut).meets u
∃shut ◦ r, r.≤

Week v ∃maint.Maintenance u ∃(self,maint).contains

Interval w Startup t Operation t Shutdown tMaintenance

Figure 6.5: Operation and Maintenance.

are mutually exclusive. We can take this into account by using the additional concept
equation

Week v u
1≤i≤7

(
∃(maint, dayi ◦ op).before t
∃(maint, dayi ◦ op).after

) (∗)

which expresses that the weekly maintenance phase must be either before or after the
operation phase of every weekday. It is not hard to check that this is the case if and
only if the weekly maintenance phase does not overlap the operation phase of any
weekday.

This finishes the modelling of the basic properties of our production process. Let
us define some more advanced concepts to illustrate reasoning with ALC(P). For
example, we can define a busy week as follows:

BusyWeek
.= Week u u

1≤i≤7

(
∃(dayi ◦ start, dayi).starts u
∃(dayi ◦ shut, dayi).finishes

)
The concept equation says that on every day of a busy week, the startup phase starts
at the beginning of the day and the shutdown finishes at the end of the day. Say now
that it is risky to do maintenance during startup and shutdown phases and define

RiskyWeek
.= Week u ¬ u

1≤i≤7

(
∃(dayi ◦ start,maint).before t
∃(dayi ◦ shut,maint).after

)
expressing that, in a risky week, the maintenance phase is not strictly separated from
the startup and shutdown phases. An ALC(P) reasoner could be used to detect that
BusyWeek v RiskyWeek, i.e., every busy week is a risky week: in a busy week, every
day of the week is partitioned into startup, shutdown, and operation phases. Since
maintenance may not overlap with operation phases by (∗), it must overlap with
startup and/or shutdown phases, which means that the week is a risky week.

In order to demonstrate combined reasoning with time points and intervals, we
propose a further refinement of our model. Assume that the production process is fully
automated except that an operator interaction is necessary to initiate the startup
and shutdown phases. This is described by the concept equations in Figure 6.6,
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Day v ∃up-int.Interaction u ∃down-int.Interaction u
∃(up-int ◦ t, start).startsp

∃(down-int ◦ t, shut).startsp

Interaction v Point

Figure 6.6: Operator interaction.

where up-int and down-int are abstract features. Note that the operator interaction is
represented by a time point instead of a time interval. To illustrate reasoning, assume
that, on Friday of calendar week 23, a shutdown interaction was performed by the
maintenance team:

Week23 vWeek u ∃(day5 ◦ down-int,maint).duringp.

It is not hard to see that this is inconsistent with the description of faultless operation
from above, i.e., that Week23 is unsatisfiable: the shutdown interaction finishes the
operation phase (since it starts the shutdown phase and the operation phase meets
the shutdown phase), which means that the maintenance phase, during which the
shutdown interaction was performed, is not strictly separated from the operation
phase. This separateness, however, is required by (∗) since maintenance and operation
are mutually exclusive. Hence, unsatisfiability of Week23 allows us to conclude that
something went wrong on the Friday of calendar week 23.

6.2.3 Deciding Concept Satisfiability

In this section, we prove satisfiability of ALC(P)-concepts w.r.t. general TBoxes to be
decidable and obtain a tight ExpTime complexity bound for this problem. We use
an automata-theoretic approach: first, models are abstracted to so-called Hintikka-
trees such that there exists a model for a concept C and a TBox T iff there exists a
Hintikka-tree for C and T . Then we build, for each ALC(P)-concept C and TBox T , a
looping tree automaton A(C,T ) (i.e., a Büchi tree automaton without Büchi condition)
that accepts exactly the Hintikka-trees for C and T . Hence, A(C,T ) accepts the empty
(tree-) language iff C is unsatisfiable w.r.t. T .

Throughout this section, we assume that ALC(P)-concepts and TBoxes contain at
most the concrete predicates < and =. It is easy to see that this can be done without
loss of generality since other predicates can be eliminated by exhaustively applying
the following rewrite rules:

∃u.>P ; ∃u, u.=
∃u.⊥P ; ⊥

∃u1, u2.≤ ; ∃u1, u2.< t ∃u1, u2.=
∃u1, u2.≥ ; ∃u1, u2.> t ∃u1, u2.=
∃u1, u2.6= ; ∃u1, u2.> t ∃u1, u2.<
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For what follows, it is interesting to note that ALC(P) with general TBoxes lacks the
finite model property since there exist satisfiable TBoxes such as > .= ∃g, fg.< having
only infinite models (due to the semantics of the “<” predicate). Hence, Hintikka-trees
and most other structures used for deciding satisfiability are (potentially) infinite.

Preliminaries

We introduce the basic notions needed for the automata-theoretic satisfiability algo-
rithm like infinite trees, looping automata, and the language they accept. We also
introduce constraint graphs which will be needed to take into account concrete do-
mains when defining Hintikka trees.

Definition 6.4. Let M be a set and k ≥ 1. A k-ary M -tree is a mapping T :
{1, . . . , k}∗ → M that labels each node α ∈ {1, . . . , k}∗ with T (α) ∈ M . Intuitively,
the node αi is the i-th child of α. We use ε to denote the empty word (corresponding
to the root of the tree).

A looping automaton A = (Q,M, I,∆) for k-ary M -trees is defined by a finite set
Q of states, a finite alphabet M , a subset I ⊆ Q of initial states, and a transition
relation ∆ ⊆ Q×M ×Qk.
A run of A on an M -tree T is a mapping r : {1, . . . , k}∗ → Q with r(ε) ∈ I and

(r(α), T (α), r(α1), . . . , r(αk)) ∈ ∆

for each α ∈ {1, . . . , k}∗. A looping automaton accepts all those M -trees for which
there exists a run, i.e., the language L(A) of M -trees accepted by A is

L(A) := {T | there is a run of A on T}.
3

Vardi and Wolper [1986] show that the emptiness problem for looping automata,
i.e., the problem to decide whether the language L(A) accepted by a given looping
automaton A is empty, is decidable in polynomial time.

A Hintikka-tree T for C and T corresponds to a canonical model I of C and T .
Apart from representing the abstract domain ∆I together with the interpretation of
concepts and roles, T induces a directed graph whose edges are labeled with predicates
from {<,=}. Such constraint graphs describe the “concrete part” of I, i.e., concrete
successors of elements of ∆I and their relationship by concrete domain predicates.

Definition 6.5. A constraint graph is a pair G = (V,E), where V is a countable
set of nodes and E ⊆ V × V × {=, <} a set of edges. We generally assume that
constraint graphs are equality closed, i.e., that (v1, v2,=) ∈ E implies (v2, v1,=) ∈ E.
We use cl=(E) to denote the equality closure of a set of edges E which is defined in
the obvious way. A constraint graph G = (V,E) is called satisfiable over S—where
S is a set equipped with a total ordering <—iff there exists a total mapping δ from
V to S such that δ(v1)P δ(v2) for all (v1, v2, P ) ∈ E. Such a mapping δ is called a
solution for G.

A path Q in G is a finite non-empty sequence of nodes v0, . . . , vk ∈ V such that,
for all i with i < k, we have (vi, vi+1, P ) ∈ E for some P ∈ {<,=}. Such a path is also
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called a path from v0 to vk. A cycle O in G is a path v0, . . . , vk with (vk, v0, P ) ∈ E
for some P ∈ {<,=}. For i ≤ k, we use i+O to denote (i+ 1) mod k+ 1, i.e., i+O denotes
the index following i in the cycle O. The index ·O is omitted if clear from the context.
A path v0, . . . , vk is a =-path iff (vi, vi+1,=) ∈ E for i < k. A cycle O = v0, . . . , vk is
a <-cycle iff (vi, vi+ , <) ∈ E for some i with i ≤ k. 3

Note that constraint graphs are just a different notation for (potentially infinite)
conjunctions of concrete domain predicates as used in previous sections. However,
since <-cycles in constraint graphs play an important role in what follows, it is more
convenient to use graphs rather than conjunctions.

The following theorem will be crucial for proving that, for every Hintikka-tree,
there exists a corresponding canonical model. More precisely, it will be used to ensure
that the constraint graph induced by a Hintikka-tree, which describes the concrete
part of the corresponding model, is satisfiable.

Theorem 6.6. A constraint graph G is satisfiable over S with S ∈ {Q,R} iff G does
not contain a <-cycle.

Proof. Since the “only if” direction is trivial, we concentrate on the “if” direction.
Let G be a constraint graph not containing a <-cycle. Let ∼ be the relation on V
with v1 ∼ v2 iff v1 = v2 or there exists a =-path between v1 and v2. Since constraint
graphs are assumed to be equality closed, ∼ is an equivalence relation. For v ∈ V ,
we denote the equivalence class of v w.r.t. ∼ by [v]∼. Define a new constraint graph
G′ = (V ′, E′) as follows:

V ′ := {[v]∼ | v ∈ V }
E′ := {([v1]∼, [v2]∼, <) | ∃v′1, v′2 ∈ V such that

v′1 ∈ [v1]∼, v′2 ∈ [v2]∼, and (v′1, v
′
2, <) ∈ E}

Using the fact that G does not contain a <-cycle, it is straightforward to prove that
G′ does not contain a <-cycle. Since G′ does not contain a <-cycle, E′ induces a
partial order with domain V ′. By Szpilrajn’s Theorem, every partial order can be
extended to a total order (on the same domain) [Szpilrajn 1930]. Let ≺E′ be a total
order obtained in this way from the partial order induced by E′. In the following,
we show that every total order with a countable domain can be embedded into Q
and R such that the ordering is preserved. This suffices to complete the proof since
it implies that that there exists a total mapping δ from V to S such that v1 ≺E′ v2

implies δ(v1) < δ(v2). It is obvious that δ is a solution for G′ and it is straightforward
to use δ to construct a solution for G.

Hence, it remains to show that every total order ≺ with a countable domain D
can be embedded into Q and R such that the ordering is preserved. Let d0, d1, . . . be
an enumeration of D. We use induction on this enumeration to define a function δ
from D to Q such that d1 ≺ d2 implies δ(d1) < δ(d2) for all d1, d2 ∈ D.

1. For the induction start, set δ(d0) to some r ∈ Q.

2. Assume that δ(di) is defined for all i < k. We distinguish three cases:
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Figure 6.7: A constraint graph containing no <-cycle that is unsatisfiable over N.

(a) di ≺ dk for all i < k. Since Q has no maximum, there exists an r ∈ Q such
that r > δ(di) for all i < k. Set δ(dk) := r.

(b) dk ≺ di for all i < k. Since Q has no minimum, there exists an r ∈ Q such
that r < δ(di) for all i < k. Set δ(dk) := r.

(c) Neither of the previous two cases holds. Since Q is dense, there exists an
r ∈ Q such that

max{δ(di) | i < k and di ≺ dk} < r < min{δ(di) | i < k and dk ≺ di}.

Set δ(dk) := r.

It is readily checked that δ is as required. Since Q ⊆ R, δ is also an embedding of ≺
into R. ❏

Note that ∆P is defined as R and thus we will use this temporal structure in what
follows. However, all obtained results also apply if we choose Q instead. Note that
Theorem 6.6 does not hold if satisfiability over non-dense structures such as N is
considered: if there exist two nodes v1 and v2 such that the length of <-paths (which
are defined in analogy to <-cycles) between v1 and v2 is unbounded, then a constraint
graph is unsatisfiable over N even if it contains no <-cycle. Figure 6.7 shows such a
constraint graph.

Path Normal Form

Apart from the assumption that only the predicates < and = occur in concepts and
TBoxes, we require some more normalization as a prerequisite for the satisfiability
algorithm. More specifically, we assume concepts and TBoxes to be in negation normal
form and, more importantly, restrict the length of concrete paths, which will turn out
to be rather convenient for some constructions like defining Hintikka-trees. We start
with describing NNF conversion:

Lemma 6.7 (NNF Conversion). Exhaustive application of the following rewrite
rules translates ALC(P)-concepts to equivalent ones in NNF.

¬¬C ; C
¬(C uD) ; ¬C t ¬D ¬(C tD) ; ¬C u ¬D
¬(∃R.C) ; (∀R.¬C) ¬(∀R.C) ; (∃R.¬C)

¬(∃u1, u2.P ) ; ∃u1, u2.P̃ t ∃u2, u1.< t u1↑ t u2↑ ¬(g↑) ; ∃g, g.=
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where ·̃ denotes the exchange of predicates, i.e., <̃ is = and =̃ is <. By nnf(C), we
denote the result of converting C into NNF using the above rules.

We now introduce path normal form for ALC(P)-concepts and TBoxes.

Definition 6.8 (Path Normal Form). An ALC(P)-concept C is in path normal
form (PNF) iff it is in NNF and, for all subconcepts ∃u1, u2.P of C, we have either

1. u1 = g1 and u2 = g2 for some g1, g2 ∈ NcF,

2. u1 = fg1 and u2 = g2 for some f ∈ NaF and g1, g2 ∈ NcF, or

3. u1 = g1 and u2 = fg2 for some f ∈ NaF and g1, g2 ∈ NcF.

An ALC(P)-TBox T is in path normal form iff it is in NNF and all concepts appearing
in T are in PNF. 3

The following lemma shows that it is not a restriction to consider only concepts and
TBoxes in PNF.

Lemma 6.9. Satisfiability of ALC(P)-concepts w.r.t. general TBoxes can be reduced
in polynomial time to satisfiability of ALC(P)-concepts in PNF w.r.t. general TBoxes
in PNF.

Proof. Let C be an ALC(P)-concept. For every concrete path u = f1 · · · fng used in
C, we assume that [g], [fng], . . . , [f1 · · · fng] are concrete features not used in C. We
inductively define a mapping λ from concrete paths u in C to concepts as follows:

λ(g) = >
λ(fu) = (∃[fu], f [u]. =) u ∃f.λ(u)

For every ALC(P)-concept C, a corresponding concept ρ(C) is obtained by replacing
all subconcepts ∃u1, u2.P of C with ∃[u1], [u2].P uλ(u1)uλ(u2) and g↑ with [g]↑. We
extend the mapping ρ to TBoxes in the obvious way, i.e., if

T = {C1 v D1, . . . , Ck v Dk},

then
ρ(T ) = {ρ(C1) v ρ(D1), . . . , ρ(Ck) v ρ(Dk)}.

Now let C be an ALC(P)-concept and T an ALC(P)-TBox. Using the rewrite rules
from Lemma 6.7, we can convert C into an equivalent concept C ′ in NNF and T into
an equivalent TBox T ′ in NNF. It is then easy to check that C ′ is satisfiable w.r.t. a
TBox T ′ iff ρ(C ′) is satisfiable w.r.t. ρ(T ′). Moreover, ρ(C ′) and ρ(T ′) are clearly in
PNF and the translation can be done in polynomial time. ❏
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In what follows, we generally assume that all concepts and TBoxes are in path normal
form. Moreover, we will often refer to TBoxes T in their concept form CT which is
defined as follows:

CT = u
C
.
=D∈T

nnf(C ↔ D).

Defining Hintikka-trees

In this section, we define Hintikka-trees for ALC(P)-concepts C and TBoxes T (which
are both required to be in PNF) and show that Hintikka-trees are proper abstractions
of models, i.e., that there exists a Hintikka-tree for C and T iff there exists a model
of C and T .

Let C be a concept and T be a TBox. By cl(C, T ), we denote the set of subconcepts
of C and CT . Note that, in contrast to sub(C, T ), cl(C, T ) is defined in terms of the
concept form CT of T . We assume that existential concepts ∃R.D in cl(C, T ) with
R ∈ NR\NaF are linearly ordered, and that E(C, T , i) yields the i-th existential concept
in cl(C, T ) (starting with i = 1). Furthermore, we assume the abstract features used
in cl(C, T ) to be linearly ordered and use F(C, T , i) to denote the i-th abstract feature
in cl(C, T ) (also starting with i = 1). The set of concrete features used in cl(C, T ) is
denoted by G(C, T ).

We now define Hintikka-pairs which will be used as labels of nodes in Hintikka-
trees.

Definition 6.10 (Hintikka-set, Hintikka-pair). Let C be a concept and T be a
TBox. A set Ψ ⊆ cl(C, T ) is a Hintikka-set for (C, T ) iff it satisfies the following
conditions:

(H1) CT ∈ Ψ,

(H2) if C1 u C2 ∈ Ψ, then {C1, C2} ⊆ Ψ,

(H3) if C1 t C2 ∈ Ψ, then {C1, C2} ∩Ψ 6= ∅,

(H4) {A,¬A} 6⊆ Ψ for all concept names A ∈ cl(C, T ),

(H5) if g↑ ∈ Ψ, then ∃u1, u2.P /∈ Ψ for all concepts ∃u1, u2.P with u1 = g or u2 = g.

We say that f ∈ NaF is enforced by a Hintikka-set Ψ iff either ∃f.C ∈ Ψ for some
concept C or {∃fg1, g2.P,∃g1, fg2.P} ∩Ψ 6= ∅ for some g1, g2 ∈ NcF and P ∈ {<,=}.
A Hintikka-pair (Ψ, χ) for (C, T ) consists of a Hintikka-set Ψ for (C, T ) and a set χ
of tuples (g1, g2, P ) with g1, g2 ∈ G(C, T ) such that

(H6) if (g1, g2, P ) ∈ χ, then {g1↑, g2↑} ∩Ψ = ∅.

A concrete path u is enforced by (Ψ, χ) iff either u appears in χ or {∃u, u′.P,∃u′, u.P}∩
Ψ 6= ∅ for some concrete path u′ and P ∈ {<,=}. By Γ(C,T ), we denote the set of all
Hintikka-pairs for (C, T ). 3
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Observe that, if a concrete path u is enforced by a Hintikka-pair (Ψ, χ), then u
has length 1 or 2: if u appears in χ, it has length 1 by definition; moreover, if
{∃u, u′.P,∃u′, u.P} ∩ Ψ 6= ∅ for some u′ and P , then u has length 1 or 2 since all
concepts are in path normal form.

Intuitively, each node α of a (yet to be defined) Hintikka-tree T corresponds to a
domain element d of the corresponding canonical model I. The first component Ψα

of the Hintikka-pair labeling α is the set of concepts from cl(C, T ) satisfied by d. The
second component χα states relationships between concrete successors of d. If, for
example, (g1, g2, <) ∈ χα, then d must have g1- and g2-successors such that gI1 (d) <
gI2 (d). Note that the restrictions in χα are independent from concepts ∃g1, g2.P ∈ Ψα.
As will become clear when Hintikka-trees are defined, the restrictions in χα are used
to ensure that the constraint graph induced by the Hintikka-tree T , which describes
the concrete part of the model I, does not contain a <-cycle, i.e., that it is satisfiable.
This induced constraint graph can be thought of as the union of smaller constraint
graphs, each one being described by a Hintikka-pair labeling a node in T . These
pair-graphs are defined next.

Definition 6.11 (Pair-graph). Let C be a concept, T a TBox, and p = (Ψ, χ) a
Hintikka-pair for (C, T ). The pair-graph G(p) = (V,E) of p is a constraint graph
defined as follows:

1. V is the set of concrete paths enforced by p

2. E = χ ∪ {(u1, u2, P ) | ∃u1, u2.P ∈ Ψ}.

An edge extension of G(p) is a set E′ ⊆ V ×V ×{<,=} such that for all fg1, fg2 ∈ V ,
we have (fg1, fg2, <) ∈ E′, (fg1, fg2,=) ∈ E′, or (fg2, fg1, <) ∈ E′. If E′ is an edge
extension of G(p), then the graph (V,E ∪ E′) is a completion of G(p). 3

Observe that, since all concepts are in path normal form and since no paths of length
greater one may appear in χ, we have E′ ∩ E = ∅ for every edge extension E′ of
pair-graphs (V,E). Like all constraint graphs, we assume pair-graphs to be equality
closed.

We briefly comment on the connection of completions and the χ-component of
Hintikka-pairs. Let α and β be nodes in a Hintikka-tree T representing domain el-
ements d and e in the corresponding canonical model I. Edges in Hintikka-trees
represent role-relationships, i.e., if β is a successor of α in T , then there exists an
R ∈ NR such that (d, e) ∈ RI . Assume β is a successor of α and the edge between α
and β represents relationship via the abstract feature f , i.e., we have fI(d) = e. The
second component χβ of the Hintikka-pair labeling β fixes the relationships between
all concrete successors of e that “d talks about”. For example, if (∃fg1, g2.=) ∈ Ψα

and (∃fg3, g2. <) ∈ Ψα, where Ψα is the first component of the Hintikka-pair label-
ing α, then “d talks about” the concrete g1-successor and the concrete g3-successor of
e. Hence, χβ contains (g1, g3, <), (g1, g3,=), or (g3, g1, <). This is formalized by de-
manding that the pair-graph G(T (α)) of the Hintikka-pair labeling α together with all
the edges from the χ-components of the successors of α are a completion of G(T (α)).
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Moreover, this completion has to be satisfiable, which is necessary to ensure that
the constraint graph induced by T does not contain a <-cycle. An appropriate way
of thinking about the χ-components is as follows: at α, a completion of G(T (α))
is “guessed”. The additional edges are then “recorded” in the χ-components of the
successor-nodes of α. We now define Hintikka-trees formally.

Definition 6.12 (Hintikka-tree). Let C be a concept, T be a TBox, k the number
of existential subconcepts in cl(C, T ), and ` be the number of abstract features in
cl(C, T ). A k + ` + 1-tuple of Hintikka-pairs (p0, . . . , pk+`) with pi = (Ψi, χi) and
G(p0) = (V,E) is called matching iff

(H7) if ∃R.D ∈ Ψ0 and E(C, T , i) = ∃R.D, then D ∈ Ψi

(H8) if {∃R.D, ∀R.E} ⊆ Ψ0 and E(C, T , i) = ∃R.D, then E ∈ Ψi

(H9) if ∃f.D ∈ Ψ0 and F(C, T , i) = f , then D ∈ Ψk+i.

(H10) if f is enforced by Ψ0, F(C, T , i) = f , and ∀f.D ∈ Ψ0, then D ∈ Ψk+i.

(H11) the constraint graph (V,E∪cl=(E′)) is a satisfiable completion of G(p0), where

E′ =
⋃

1≤i≤`
{(fg1, fg2, P ) | F(C, T , i) = f and (g1, g2, P ) ∈ χk+i}

A k + `-ary Γ(C,T )-tree T is a Hintikka-tree for (C, T ) iff it satisfies the following
conditions:

(H12) C ∈ Ψε, where T (ε) = (Ψε, χε),

(H13) for all α ∈ {1, . . . , k + `}∗, the tuple (T (α), T (α1), . . . , T (αj)) with j = k + `
is matching.

For a Hintikka-tree T and a node α ∈ {1, . . . , k+`}∗ with T (α) = (Ψ, χ), we use T�(α)
to denote Ψ and T�(α) to denote χ. Moreover, if G(α) = (V,E), we use cpl(T, α) to
denote the constraint graph (V,E ∪ E′) as defined in (H11). 3

Whereas most properties of Hintikka-trees deal with concepts, roles, and abstract
features and are hardly surprising, (H11) ensures that constraint graphs induced by
Hintikka-trees contain no <-cycle. By “guessing” a completion as explained above,
possible <-cycles are anticipated and can be detected locally, i.e., it then suffices to
check that the completions cpl(T, α) are satisfiable as demanded by (H11). Indeed, it
is crucial that the cycle detection is done by a local condition since we need to define
an automaton that accepts exactly Hintikka-trees, and automata work locally. It is
worth noting that the localization of cycle detection as expressed by (H11) crucially
depends on the path normal form.

The following two lemmas show that Hintikka-trees are appropriate abstractions
of models. This result is the main step towards devising a decision procedure since,
as we shall see later, defining looping automata accepting exactly Hintikka-trees is a
straightforward task.

Lemma 6.13. A concept C is satisfiable w.r.t. a general TBox T if there exists a
Hintikka-tree for (C, T ).
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Proof. Let C be a concept, T a TBox, and k and ` as in Definition 6.12. Moreover, let
T be a Hintikka-tree for (C, T ). We define an interpretation I = (∆I , ·I) as follows:

∆I = {1, . . . , k + `}∗

AI = {α | A ∈ T�(α)} for all A ∈ CN
RI = {(α, β) | β = αi and E(C, T , i) = ∃R.E ∈ T�(α)} for all R ∈ NR \ NaF

fI = {(α, β) | β = αi, F(C, T , i− k) = f, and f is enforced by T�(α)}
for all f ∈ NaF

It remains to define the interpretation of concrete features, which is done as follows: we
define an (infinite) constraint graph G(T ) induced by T , show that G(T ) is satisfiable,
and define the interpretation of concrete features from a solution of G(T ). The nodes
of G(T ) have the form α|u, where α is a node in T and u is a concrete path in C or T .
More precisely, G(T ) is defined as (V, cl=(E)), where

1. V = {α|u | α ∈ {1, . . . , k + `}∗, u appears in C or T }

2. E =
⋃

α∈{1,...,k+`}∗
{(α|u, α|u′, P ) | (u, u′, P ) ∈ cpl(T, α)}

∪ {(α|fg), αi|g,=) | F(C, T , i− k) = f, fg is a node in cpl(T, α)}

It is not hard to see that G(T ) really is a constraint graph, i.e., the node set of G(T )
is countable. Next, we show the following claim:

Claim 1: G(T ) is satisfiable over R.

By Theorem 6.6, it suffices to show that G(T ) contains no <-cycle. Assume to the
contrary that G(T ) contains a <-cycle and that O = α0|u0, . . . , αn|un is the <-cycle
in G(T ) with minimal length. Fix a t ≤ n such that

for each i with i ≤ n and each β ∈ {1, . . . , k + `}+, we have αi 6= αtβ, (∗)

i.e., there exist no αi in O such that αt is a true prefix of αi (such a t exists since
O is of finite length). Since O is a <-cycle, there exists an s ≤ n such that we have
(αs|us, αs+ |us+ , <) ∈ E. We make a case distinction and derive a contradiction in
either case.

• αs 6= αt. Define a sequence of nodes O′ from O by deleting all nodes αi|ui with
αi = αt. O′ is non-empty since αs 6= αt. We show that O′ is a <-cycle in G(T ),
which is a contradiction to the minimality of O. Let O′ = α′0|u′0, . . . , α′m|u′m.
By definition of G(T ), the fact that (αs|us, αs+ |us+ , <) ∈ E implies αs+ = αs.
Since αs 6= αt, αs|us and αs+ |us+ are in O′ and it remains to show that O′ is
a cycle in G(T ), i.e., for all i ≤ m, we have (α′i|u′i, α′i+ |u

′
i+ , P ) ∈ E for some

P ∈ {<,=}.
Let α′i|u′i and α′i+ |u

′
i+ be nodes in O′. If these two nodes are already neighbor

nodes in O, we are obviously done. Hence, assume that this is not the case. By
construction of O′, this implies the existence of a path

α′i|u′i, αt|u∗1, . . . , αt|u∗x, α′i+ |u
′
i+
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in G(T ), which is at most as long as O. Since α′i 6= αt and α′i+ 6= αt, by
construction of G(T ) and by (∗), this implies that

1. there exists a β ∈ {1, . . . , k + `}∗ such that α′i = α′i+ = β,

2. there exists an f ∈ NaF such that αt = βj where F(C, T , j − k) = f ,

3. u′i = fg, u∗1 = g, u∗x = g′, and u′i+ = fg′ for some g, g′ ∈ G(C, T ), and

4. (β|fg, βj|g,=) ∈ E and (β|fg′, βj|g′,=) ∈ E.

By definition of G(T ) and by Point 4, both fg and fg′ are nodes in cpl(T, β) =
(V ′, E′). By definition of cpl, this implies that either

(a) (fg′, fg,<) ∈ E′ or

(b) (fg, fg′, P ) ∈ E′ for some P ∈ {<,=}.

Together with Point 1 and 3 and the definition of G(T ), (b) obviously implies
(α′i|u′i, α′i+ |u

′
i+ , P ) ∈ E, and we are done. Moreover, in the following we show

that case (a) cannot occur.

Let cpl(T, βj) = (V ′′, E′′). In case (a), we have (g′, g, <) ∈ E′′: Let G(β) =
(V ′∗ , E

′
∗); by definition of pair-graphs and since all concepts are in path normal

form, (fg′, fg,<) ∈ E′ implies (fg′, fg,<) ∈ E′ \E′∗; by definition of cpl and by
Point 2, this means that (g′, g, <) ∈ T�(β). Hence, (g′, g, <) ∈ E′′. By definition
of G(T ) and Point 1 and 3, (g′, g, <) ∈ E′′ implies that (αt|u∗x, αt|u∗1, <) ∈ E.
Hence, the path αt|u∗1, . . . , αt|u∗x is a <-cycle in G(T ), which contradicts the
minimality of O.

• αs = αt. We first show that there exists a node αz|uz in O such that αz 6= αt.
For suppose that no such node exists. Then, by definition of G(T ), u0, . . . , un
is a <-cycle in cpl(T, αt). This is clearly a contradiction to the fact that T is a
Hintikka-tree. Hence, we may conclude the existence of an αz as above. Define
a sequence of nodes O′ from O by deleting all nodes αi|ui with αi 6= αt. O′ is
non-empty since αs = αt. Moreover, O′ is shorter than O due to the existence
of αz. We show that O′ is a <-cycle in G(T ), which is a contradiction to the
minimality of O. Let O′ = αt|u′0, . . . , αt|u′m. By definition of G(T ), the fact that
(αs|us, αs+ |us+ , <) ∈ E implies αs+ = αs = αt. Hence, it remains to show that
O′ is a cycle in G(T ), i.e., that, for all i ≤ m, we have (αt|u′i, αt|u′i+ , P ) ∈ E for
some P ∈ {<,=}.
Let αt|u′i and αt|u′i+ be nodes in O′. If these two nodes are already neighbor
nodes in O, we are obviously done. Hence, assume that this is not the case. By
construction of O′, this implies the existence of a path

αt|u′i, α∗1|u∗1, . . . , α∗x|u∗x, αt|u′i+

in G(T ), which is at most as long as O, such that α∗i 6= αt for all i with 1 ≤ i ≤ x.
By construction of G(T ) and by (∗), this implies that

1. there exists a β ∈ {1, . . . , k + `}∗ such that α∗1 = α∗x = β,
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2. there exists an f ∈ NaF such that αt = βj where F(C, T , j − k) = f ,

3. u′i = g, u∗1 = fg, u∗x = fg′, and u′i+ = g′ for some g, g′ ∈ G(C, T ), and

4. (β|fg, βj|g,=) ∈ E and (β|fg′, βj|g′,=) ∈ E.

By definition of G(T ) and by Point 4, both fg and fg′ are nodes in cpl(T, β) =
(V ′, E′). By definition of cpl, this implies that either

(a) (fg′, fg,<) ∈ E′ or

(b) (fg, fg′, P ) ∈ E′ for some P ∈ {<,=}.

Case (a) is impossible: together with Point 1 and 3 and the definition of G(T ),
(a) obviously implies (α∗x|u∗x, α∗1|u∗1, <) ∈ E. Hence, the path α∗1|u∗1, . . . , α∗x|u∗x is
a <-cycle in G(T ) which contradicts the minimality of O.

Hence, let us assume that (b) holds. Moreover, let cpl(T, βj) = (V ′′, E′′).
We have (g, g′, P ) ∈ E′′, which can be seen as follows: let G(β) = (V ′∗ , E

′
∗);

by definition of pair-graphs and since all concepts are in path normal form,
(fg, fg′, P ) ∈ E′ implies (fg, fg′, P ) ∈ E′\E′∗; by definition of cpl and by Point 2,
this means that (g, g′, P ) ∈ T�(β). Hence, (g, g′, P ) ∈ E′′. By definition of G(T )
and Point 1 and 3, (g, g′, P ) ∈ E′′ implies that we have (αt|u′i, αt|u′i+ , P ) ∈ E,
as was to be shown.

This finishes the proof of Claim 1. We may now define the interpretation of concrete
features. Let δ be a solution for G(T ). We set

gI = {(α, x) | g is enforced by T (α) and δ(α|g) = x} for all g ∈ NcF.

To show that there exists a d ∈ ∆I such that d ∈ CI , we prove the following claim:

Claim 2: D ∈ T�(α) implies α ∈ DI for all α ∈ ∆I and D ∈ cl(C, T ).

Proof: The claim is proved by induction on the structure of D. First for the induction
start, which splits into several subcases:

• D is a concept name. Immediate by definition of I.

• D = ¬E. Since C is in NNF and by definition of cl(), D is in NNF. Hence, E
is a concept name. By definition of I and since T (α) is a Hintikka-set and thus
satisfies (H4), we have α ∈ (¬E)I .

• D = ∃u1, u2.P . Let G(T ) = (V,E) and cpl(T, α) = (V ′, E′). By definition of
pair-graphs and cpl(), we have (u1, u2, P ) ∈ E′. Moreover, by definition of G(T ),
we have (α|u1, α|u2, P ) ∈ E. It thus remains to show that uI1 (α) = δ(α|u1), and
uI2 (α) = δ(α|u2): since δ is a solution forG(T ), this clearly implies uI1 (α)PuI2 (α).

First, assume ui = g for some g ∈ NcF. By definition of gI and since g is
enforced by T (α), we have uIi (α) = δ(α|ui) as required. Now let ui = fg with
F(C, T , j−k) = f . Since fg is a node in cpl(T, α), we have (α|fg, αj|g,=) ∈ E.
Hence, δ(αj|g) = δ(α|fg). By definition of fI and since f is obviously enforced
by T�(α), we have fI(α) = αj. By definition of cpl and of pair-graphs, fg ∈ V ′
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implies that g appears in T�(αj): since cpl(T, α) is both a completion of G(α)
and satisfiable, fg ∈ V ′ implies (fg, fg,=) ∈ E′; due to the definition of pair
graphs and since all concepts are in path normal form, (fg, fg,=) is not an edge
of G(α); hence, by definition of cpl and since F(C, T , j − k) = f , we must have
(g, g,=) ∈ T�(αj), i.e., g appears in T�(αj). Since g appears in T�(αj) and is
thus enforced by T (αj), we have gI(αj) = δ(αj|g) by definition of gI . Summing
up, we obtain (fg)I(α) = δ(αj|g) = δ(α|fg).

• D = g↑. If gI(α) is defined, then g is enforced by T (α). We show that this
implies g↑ /∈ T�(α). If g is enforced by T (α), then either (i) g appears in T�(α)
or (ii) {∃g, u′.P,∃u′, g.P}∩T�(α) 6= ∅ for some concrete path u′ and P ∈ {<,=}.
In case (i), (H6) yields g↑ /∈ T�(α). In case (ii), (H5) yields the same result.

For the induction step, we make a case distinction according to the topmost operator
in D. Assume D ∈ T�(α).

• D = C1uC2 or D = C1tC2. Straightforward by (H2) and (H3) of Hintikka-sets
and by induction hypothesis.

• D = ∃R.E with R ∈ NR \ NaF. By definition of RI , we have (α, β) ∈ RI for
β = αi and E(C, T , i) = ∃R.E. By (H7), we have E ∈ T�(β), and, by induction,
β ∈ EI .

• D = ∃f.E with f ∈ NaF. Hence, f is enforced by T�(α). By definition of fI ,
we have fI(α) = β for β = αi and F(C, T , i − k) = f . By (H9), we have
E ∈ T�(β), and, by induction, β ∈ EI .

• D = ∀R.E with R ∈ NR \ NaF. Let (α, β) ∈ RI . By definition of RI , there
exists an i such that E(C, T , i) = ∃R.D ∈ T�(α) and β = αi. By (H8), we have
E ∈ T�(β), and, by induction, β ∈ EI . Since this holds independently of the
choice of β, we have α ∈ (∀R.E)I .

• D = ∀f.E with f ∈ NaF. Let fI(α) = β. By definition of fI , we have β = αi,
F(C, T , i−k) = f , and f is enforced by T�(α). By (H10), we have E ∈ T�(β),
and, by induction, β ∈ EI .

This completes the proof of the claim. Since C ∈ T�(ε) by (H12) and, for all α ∈ ∆I ,
we have CT ∈ T�(α) by (H1), it is an immediate consequence of the semantics of
TBoxes and Claim 2 that I is a model of C w.r.t. T . ❏

Lemma 6.14. A concept C is satisfiable w.r.t. a general TBox T only if there exists
a Hintikka-tree for (C, T ).



180 Chapter 6. Concrete Domains and General TBoxes

Proof. Let C be a concept, T a TBox, and k and ` as in Definition 6.12. Moreover,
let I be a model of C w.r.t. T , i.e., there exists a d0 ∈ ∆I such that d0 ∈ CI and
DI = EI for all D .= E ∈ T . We inductively define a Hintikka-tree T for (C, T ), i.e.,
a k + `-ary Γ(C,T )-tree that satisfies (H12) and (H13). Along with T , we define a
mapping τ from {1, . . . , k + `}∗ to ∆I in such a way that

T�(α) = {D ∈ cl(C, T ) | τ(α) ∈ DI} (∗)

For the induction start, set

τ(ε) := d0, T�(ε) := {D ∈ cl(C, T ) | d0 ∈ DI}, and T�(ε) := ∅.

Obviously, (∗) is satisfied. Now for the induction step. Let α ∈ {1, . . . , k + `}∗ be
a word of minimal length such that τ(α) is defined and τ(αi) is undefined for some
i ∈ {1, . . . , k + `}. We make a case distinction as follows:

1. E(C, T , i) = ∃R.D ∈ T�(α). By (∗), we have τ(α) ∈ (∃R.D)I . Thus, there
exists some e ∈ ∆I such that (τ(α), e) ∈ RI and e ∈ DI . Set τ(αi) := e,
T�(αi) := {E ∈ cl(C, T ) | e ∈ EI}, and T�(αi) := ∅.

2. F(C, T , i − k) = f , and f is enforced by τ(α). By (∗) and the definition of
“enforced”, there exists an e ∈ ∆I such that fI(τ(α)) = e. Set τ(αi) := e,
T�(αi) := {E ∈ cl(C, T ) | e ∈ EI}, and

T�(αi) := {(g1, g2, P ) | fg1 and fg2 are enforced by T (α) and gI1 (e)PgI2 (e)}

3. α, i do not match the above cases. Then set τ(αi) := τ(ε) and T (αi) := T (ε).

Clearly, (∗) is satisfied after each induction step, and hence T is well-defined. Intu-
itively, Case 3 applies if the i-th successor of α is not needed to satisfy the Properties
of Hintikka-trees. In this case, the choice of τ(αi) is arbitrary: we could have defined
τ(αi) as any element of ∆I (instead of choosing τ(ε)).

We must show that T is a Hintikka-tree for (C, T ). From (∗) together with the
semantics of concepts and TBoxes, it is clear that T�(α) is a Hintikka-set for (C, T )
for each α ∈ {1, . . . , k + `}∗. Let us show exemplarily that (H1) holds. Assume to
the contrary that there exists an α ∈ {1, . . . , k + `}∗ such that CT /∈ T�(α). Since
CT ∈ cl(C, T ) and by (∗), we have τ(α) /∈ CIT and thus τ(α) ∈ (¬CT )I . By definition
of CT , this implies the existence of D .= E ∈ T such that τ(α) ∈ (¬nnf(D ↔ E))I ,
i.e., τ(α) ∈ DI \ EI or τ(α) ∈ EI \DI . Hence, we do not have DI = EI and obtain
a contradiction to the fact that I is a model of T .

Now we show that T (α) is a Hintikka-pair for each node α, i.e., that (H6) is
satisfied. The proof is by contradiction. Assume that there exists an α ∈ {1, . . . , k+`}∗
such that (g1, g2, P ) ∈ T�(α) and gj↑ ∈ T�(α) for j ∈ {1, 2}. By definition of T�,
(g1, g2, P ) ∈ T�(α) implies that gIj (τ(α)) is defined. But from gj↑ ∈ T�(α) and (∗),
we obtain that gIj (τ(α)) is undefined: contradiction.

It remains to show that T satisfies (H12) and (H13), where the latter amounts
to showing that, for each α ∈ {1, . . . , k+ `}∗, the tuple (T (α), T (α1), . . . , T (αj)) with
j = k + ` satisfies (H7) to (H11).
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(H7) Let ∃R.D ∈ T�(α) and E(C, T , i) = ∃R.D. By definition of τ (Case 1), we have
τ(αi) = e for some e ∈ ∆I with (τ(α), e) ∈ RI and e ∈ DI . By (∗), we thus
have D ∈ T�(αi).

(H8) Let {∃R.D, ∀R.E} ⊆ T�(α) and E(C, T , i) = ∃R.D. By definition of τ (Case 1),
we have τ(αi) = e for some e ∈ ∆I with (τ(α), e) ∈ RI . By (∗), we have
τ(α) ∈ (∀R.E)I which implies e ∈ EI . By (∗), we thus have E ∈ T�(αi).

(H9) Let ∃f.D ∈ T�(α) and F(C, T , i) = f . Hence, f is enforced by T (α). By
definition of τ (Case 2), we have τ(αj) = e for e = fI(τ(α)) and j = k + i.
From ∃f.D ∈ T�(α) and (∗), we obtain τ(α) ∈ (∃f.D)I and thus e ∈ DI . Again
by (∗), we get D ∈ T�(αj).

(H10) Let f be enforced by T (α), F(C, T , i) = f , and ∀f.D ∈ T�(α). By definition
of τ (Case 2), we have τ(αj) = e for e = fI(τ(α)) and j = k + i. From
∀f.D ∈ T�(α) and (∗), we obtain τ(α) ∈ (∀f.D)I and thus e ∈ DI . Again by
(∗), we get D ∈ T�(αj).

(H11) Let G(T (α)) = (V,E) and E′ be defined as in (H11). To prove that (H11)
is satisfied, we show that

1. E′ is an edge extension of G(T (α)), which implies that (V,E ∪ E′) is a
completion of G(T (α)) and

2. (V,E ∪ E′) is satisfiable.

We first prove Point 1. It needs to be shown that, for each fg1, fg2 ∈ V ,
{(fg1, fg2, <), (fg1, fg2,=), (fg2, fg1, <)} ∩ E′ 6= ∅. By definition of G(T (α)),
fg1 and fg2 are enforced by T (α). Since T�(α) may only contain concrete paths
of length 1, we have {∃fg1, u.P

′,∃u, fg1.P
′}∩T�(α) 6= ∅ for some concrete path

u and P ′ ∈ {<,=} and similarly for fg2. By (∗), this implies that fI(gI1 (τ(α)))
and fI(gI2 (τ(α))) are defined. By definition of T (Case 2) and since f is obviously
enforced by T�(α), we have fI(τ(α)) = τ(αi) with F(C, T , i − k) = f . Hence,
gI1 (τ(αi)) and gI2 (τ(αi)) are defined. By the semantics, we have gI1 (τ(αi)) <
gI2 (τ(αi)), gI1 (τ(αi)) = gI2 (τ(αi)), or gI2 (τ(αi)) < gI1 (τ(αi)). By definition of
T�, this implies {(g1, g2, <), (g1, g2,=), (g2, g1, <)} ∩ T�(αi) 6= ∅. Hence, by
definition of E′, we have {(fg1, fg2, <), (fg1, fg2,=), (fg2, fg1, <)} ∩ E′ 6= ∅.
We now prove Point 2 from above. Define a mapping δ from V to R as follows:
δ(u) := uI(τ(α)). This mapping is well-defined, which can be seen as follows.
Fix a u ∈ V . Since u is enforced by T (α), either

(i) u occurs in T�(α) or

(ii) {∃u, u′.P,∃u′, u.P}∩T�(α) 6= ∅ for some concrete path u′ and P ∈ {<,=}.

In Case (i), we have u = g for some g ∈ NcF. By definition of T , there exists
a predecessor β of α in T such that α = βi, F(C, T , i − k) = f for some
f ∈ NaF, and fg is enforced by T (β). Since T�(β) contains only concrete paths
of length 1, we have {∃fg, u.P,∃u, fg.P} ∩ T�(β) 6= ∅ for some concrete path u
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and P ∈ {<,=}. By (∗), gI(fI(τ(β))) is defined. Since, by definition of T , we
have fI(τ(β))) = τ(α), gI(τ(α)) is defined. In Case (ii), it follows from (∗) that
uI(τ(α)) is defined.

We show that δ is a solution for (V,E∪E′) by distinguishing the following cases:

1. (u1, u2, P ) ∈ E and (u1, u2, P ) ∈ T�(α). Then there exist g1, g2 ∈ NcF such
that u1 = g1 and u2 = g2. By definition of T�, we have gI1 (τ(α))PgI2 (τ(α)),
and thus, by definition of δ, δ(g1)Pδ(g2).

2. (u1, u2, P ) ∈ E and ∃u1, u2.P ∈ T�(α). By (∗), we have τ(α) ∈ (∃u1, u2.P )I .
Hence, uI1 (τ(α))PuI2 (τ(α)). By definition of δ, we thus obtain δ(u1)Pδ(u2).

3. (u1, u2, P ) ∈ E′. By definition of E′, we have u1 = fg1, u2 = fg2, and
(g1, g2, P ) ∈ T�(αi) where g1, g2 ∈ NcF and F(C, T , k − i) = f . By defi-
nition of T�, this implies that fg1 and fg2 are enforced by T (α) and that
gI1 (τ(αi))PgI2 (τ(αi)). From this and the definition of T (Case 2), it follows
that fI(τ(α)) = τ(αi). We conclude δ(u1)Pδ(u2).

To sum up, we have shown that (H13) holds. (H12) is satisfied by definition of T
(induction start) and since d0 ∈ CI . ❏

Defining Looping Automata

To prove decidability, it remains to define a looping automaton A(C,T ) for each concept
C and TBox T such that A(C,T ) accepts exactly the Hintikka-trees for (C, T ). Using
the notion of matching tuples of Hintikka-pairs from Definition 6.12, this is rather
straightforward.

Definition 6.15. Let C be a concept, T be a TBox, k the number of existential
subconcepts in cl(C, T ), and ` be the number of abstract features in cl(C, T ). The
looping automaton A(C,T ) = (Q,M,∆, I) is defined as follows:

• Q := M := Γ(C,T )

• I := {(Ψ, χ) ∈ Q | C ∈ Ψ}.

• ((Ψ, χ), (Ψ′, χ′), (Ψ1, χ1), . . . , (Ψk+`, χk+`)) ∈ ∆ iff

(Ψ, χ) = (Ψ′, χ′) and

((Ψ, χ), (Ψ1, χ1), . . . , (Ψk+`, χk+`)) is matching.
3

As a consequence of the following lemma and Lemmas 6.13 and 6.14, we can reduce
satisfiability of concepts w.r.t. general TBoxes (both in PNF) to the emptiness of the
language accepted by looping automata.

Lemma 6.16. T is a Hintikka-tree for (C, T ) iff T ∈ L(A(C,T )).
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Proof. Let C be a concept, T a TBox, and k, `, and A(C,T ) as in Definition 6.15.
For the “if” direction, let r be a run of A(C,T ) on T . By definition of runs and

of ∆, we have

r(α) = T (α) for all α ∈ {1, . . . , k + `}∗.

Hence, it remains to be shown that r is a Hintikka-tree for (C, T ), which is straightfor-
ward: (i) by definition of Q, r is a Γ(C,T )-tree; (ii) since, by definition of runs, r(ε) ∈ I,
(H12) is satisfied; and (iii) by definition of runs and of ∆, (H13) is satisfied.

Now for the “only if” direction. It is straightforward to check that the func-
tion r defined by r(α) := T (α) is a run of AC,T on T : (i) by definition of Hintikka-
trees and AC,T , r(α) ∈ Q for all α ∈ {1, . . . , k + `}∗; (ii) by (H12) and definition
of I, we have r(ε) ∈ I; (iii) by (H13) and by definition of r and of ∆, we have
(r(α), T (α), r(α1), . . . , r(αk)) ∈ ∆ for all α ∈ {1, . . . , k + `}∗. ❏

It is an immediate consequence of Lemmas 6.9, 6.13, 6.14, and 6.16 and the decidability
of the emptiness problem of looping automata [Vardi & Wolper 1986] that satisfiabil-
ity of ALC(P)-concepts w.r.t. general TBoxes is decidable. However, the presented
automata-based algorithm has the nice property of additionally providing us with a
tight complexity bound.

Theorem 6.17. Satisfiability of ALC(P)-concepts w.r.t. general TBoxes is ExpTime-
complete.

Proof. The lower bound is an immediate consequence of the fact that ALC with
general TBoxes is ExpTime-hard (Theorem 2.6). For the upper bound, we need to
show that the size of A(C,T ) is exponential in |C| + |T |, which clearly implies that
A(C,T ) can be computed in exponential time. Indeed, if this is established, we can
use Lemmas 6.9, 6.13, 6.14, and 6.16 together with the fact that the emptiness prob-
lem for looping automata A(C,T ) is in PTime [Vardi & Wolper 1986] to conclude that
satisfiability of ALC(P)-concepts w.r.t. TBoxes can be decided in deterministic expo-
nential time. Hence, let us investigate the size of A(C,T ) = (Q,M,∆, I). Obviously,
the cardinality of cl(C, T ) is linear in |C| + |T |. Hence, by definition of A(C,T ) and
Hintikka-pairs, the cardinality of Q and M are exponential in |C| + |T |. Again by
definition of A(C,T ), this implies that the cardinalities of I and ∆ are also exponential
in |C|+ |T |. Hence, the size of A(C,T ) is exponential in |C|+ |T |. ❏

Since subsumption can be reduced to (un)satisfiability, ALC(P)-concept subsumption
is also ExpTime-complete. It is interesting to note that the result just established
does not contradict Corollary 5.18 since the concrete domain P is not arithmetic.
Using the translation of ALC(I)-concepts to ALC(P)-concepts from Section 2.4.3 and
extending it to TBoxes in the natural way, we obtain the following corollary.

Corollary 6.18. Satisfiability of ALC(I)-concepts w.r.t. general TBoxes is ExpTime-
complete.
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6.2.4 Deciding ABox Consistency

In this section, we extend the ExpTime upper bound just obtained to ALC(P)-ABox
consistency w.r.t. general TBoxes. The extended upper bound is established using a
precompletion algorithm similar to the ones devised in Sections 3.2 and 4.1.3.

As in the previous subsection, we assume w.l.o.g. that all concepts (also inside
TBoxes and ABoxes) contain only the predicates < and =. Moreover, we require
TBoxes and ABoxes to be in path normal form, where an ABox A is in PNF iff every
concept occurring in A is in PNF. The next lemma shows that this assumption does
not sacrifice generality.

Lemma 6.19. Consistency of ALC(P)-ABoxes w.r.t. general TBoxes can be reduced
to consistency of ALC(P)-ABoxes in PNF w.r.t. general TBoxes in PNF.

Proof. Let A be an ABox and T a TBox, and let k be the length of the longest
concrete path occurring in A or T . For every concrete path u = f1 · · · fng used in A
or T , we assume that [g], [fng], . . . , [f1 · · · fng] are concrete features not appearing in
A or T . Let ρ be the mapping from concepts to concepts in PNF and from TBoxes
to TBoxes in PNF introduced in the proof of Lemma 6.9. Construct an ABox ρ(A)
from A by performing the following steps:

1. Replace every concept C in A with ρ(C);

2. Replace every assertion (a, x) : g ∈ A with (a, x) : [g];

3. For i = 1, . . . , k − 1 do the following: for every pair of assertions

(a, b) : f, (b, x) : [u] ∈ A

where the length of u is i and fu is a postfix of a concrete path occurring in A
or T , add (a, x) : [fu] to A.

It is straightforward to prove that A is satisfiable w.r.t. T iff ρ(A) is satisfiable
w.r.t. ρ(T ). Moreover, the size of ρ(A) and ρ(T ) is polynomial in n = |A| + |T |
and ρ(A) and ρ(T ) can be constructed in polynomial time. For ρ(A), this can be
seen as follows. Since the number of postfixes of concrete paths occurring in A and T
is clearly bounded by n, the number of abstract and concrete objects in A is also
bounded by n, and no new abstract objects are introduced, the number of assertions
of the form (a, x) : [u] generated in Step 3 is bounded by n3. Since the number of
assertions (a, b) : f is obviously bounded by n, the number of pairs to be considered
in each step of the “for” loop in Step 3 is thus bounded by n4. Since we clearly have
k ≤ n, ρ(A) can be computed in time n5. In addition, ρ(T ) was treated in the proof
of Lemma 6.9. ❏
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Ru if C1 u C2 ∈ A(a) and {C1, C2} 6⊆ A(a)
then A := A ∪ {a : C1, a : C2}

Rt if C1 t C2 ∈ A(a) and {C1, C2} ∩ A(a) = ∅
then A1 := A ∪ {a : C1} and A2 := A ∪ {a : C2}

R∃f if ∃f.C ∈ A(a), b is an f -successor of a, and C /∈ A(b)
then set A := A ∪ {b : C}

R∀ if ∀R.C ∈ A(a), b is an R-successor of a, and C /∈ A(b)
then set A := A ∪ {b : C}

Rc1 if ∃g1, g2.P ∈ A(a), xi is a gi-successor of a in A for i ∈ {1, 2},
and (x1, x2) : P /∈ A

then set A := A ∪ {(x1, x2) : P}

Rc2 if ∃fg1, g2.P ∈ A(a), b is an f -successor of a in A, and
there are no x1, x2 ∈ Oc such that
- x1 is a g1-successor of a,
- x2 is a g2-successor of b, and
- (x1, x2) : P ∈ A

then set A := A ∪ {(a, x1) : g1, (b, x2) : g2, (x1, x2) : P}
where x1 and x2 are fresh in A

Rc3 Symmetric to Rc2 but for concepts ∃g1, fg2.P ∈ A(a)

Rch if xi is a gi-successor of a in A for i ∈ {1, 2}
and {∃g1, g2.<, ∃g1, g2.=, ∃g2, g1.<} ∩ A = ∅

then set A1 := A ∪ {a : ∃g1, g2.<},
A2 := A ∪ {a : ∃g1, g2.=}, and
A3 := A ∪ {a : ∃g2, g1.<}.

R
.= if CT /∈ A(a)

then set A := A ∪ {a : CT }

Rfe if {(a, b) : f, (a, c) : f} ⊆ A and b 6= c
(resp. {(a, x) : g, (a, y) : g} ⊆ A and x 6= y)

then replace b by c in A (resp. x by y)

Figure 6.8: Precompletion rules for ALC(P).

The precompletion algorithm repeatedly applies precompletion rules in search of an
ABox to which no more rules are applicable and which does not contain obvious
contradictions. If such an ABox is found, the precompletion algorithm constructs
a number of reduction concepts that are passed to the algorithm from the previous
section for satisfiability checking. A major difference to the precompletion algorithms
devised in previous sections is that, here, we are heading for a deterministic time
bound. Hence, in the case of branching rules (i.e., rules with more than one possible
outcome), we cannot just non-deterministically “guess” an outcome, but we must
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(deterministically) consider all possible outcomes. Intuitively, this means that the
precompletion algorithm computes all precompletions of the input ABox instead of
guessing a single one.

The precompletion rules can be found in Figure 6.8. In the formulation of the
rules, we use the notion “successor” introduced in Definition 3.2. As in previous
sections, we call an object x ∈ Oc fresh in an ABox A iff x does not occur in A. The
determinism of branching rules is reflected in the definition of the rules Rt and Rch,
whose application results in the construction of more than one ABox. Let us comment
on the rules in more detail:

• Apart from being deterministic, the rules Ru, Rt, R∀, and Rfe are well-known
from, e.g., Figures 3.2 and 4.1.

• The R∃f rule resembles its counterpart from Figure 3.2, but differs in that it
does not generate new objects.

• The Rc1, Rc2, and Rc3 rules are all specializations of the Rc rule in Figure 3.2.
There exists one rule for each syntactic form allowed for ∃u1, u2.P concepts in
PNF. The main difference to the Rc rule from Figure 3.2 is that no new abstract
objects are generated. Note that Rc1 does not generate new concrete objects
while Rc2 and Rc3 do. Intuitively, if (i) ∃g1, g2.P ∈ A(a) and a has both g1- and
g2-successor or (ii) {∃fg1, g2.P,∃g1, fg2.P} ∩ A(a) 6= ∅ and a has a b-successor,
then we must “treat” the mentioned concepts in the precompletion phase of the
algorithm to avoid losing information. In all other cases (e.g. ∃g1, g2.P ∈ A(a)
and a has no g1-successor) it suffices to “treat” these concepts as part of the
reduction concept constructed for a.

• The Rch rule has the character of a “choose rule” (c.f. Section 5.4) and is needed
to ensure that the relation between any two concrete successors of an abstract
object a is recorded as a concept of the form ∃g1, g2.P in the node label of a.
This is necessary since the relation between such concrete successors must be
passed to the satisfiability algorithm as part of the reduction concept.

• The R
.= rule deals with general TBoxes, where the concept form CT of a TBox T

is defined as in Section 6.2.3.

If an ABox A′ can be obtained from an ABox A by exhaustive rule application using
a TBox T , then A′ is called precomplete and a precompletion of A w.r.t. T . Contra-
dictory ABoxes are formalized as follows:

Definition 6.20 (Clash). Let A be an ABox. We use ζA to denote the predicate
conjunction associated with A as introduced in Definition 3.4. A is called concrete
domain satisfiable iff ζA is satisfiable. A is said to contain a clash iff one of the
following conditions applies:

1. {A,¬A} ⊆ A(a) for a concept name A and object a ∈ Oa,

2. g↑ ∈ A(a) for some a ∈ Oa and there exists a g-successor x of a, or
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define procedure cons(A, T )
while a completion rule R ∈ {Ru,R∃f,R∀,Rc1,Rc2,Rc3,R .=,Rfe}

is applicable to A do
apply R to A

if a completion rule R ∈ {Rt,Rch} is applicable to A then
apply R to A yielding A1, . . . ,Ak (k ∈ {2, 3})
if cons(Ai, T ) = consistent for some i ∈ {1, . . . , k} then

return consistent
return inconsistent

if A contains a clash then
return inconsistent

if sat( u
C∈A(a)

C, T ) = satisfiable for every a ∈ Oa in A then

return consistent
return inconsistent

Figure 6.9: The ALC(P) precompletion algorithm.

3. A is not concrete domain satisfiable.

If A does not contain a clash, then A is clash-free. 3

The precompletion algorithm itself is given in Figure 6.9. In the formulation of
the algorithm, we use sat(C, T ) to denote the result of applying the satisfiability
algorithm from the previous section to the concept C and TBox T . Since the order
of rule application is obviously not important, it is easily seen that the precompletion
algorithm computes all precompletions of the input ABox w.r.t. the input TBox.
Moreover, for every abstract object a in each such precompletion A, the algorithm
calls the sat algorithm to decide the satisfiability of the reduction concept

con(A, a) := u
C∈A(a)

C.

Note that there exists a fundamental difference between the ALC(P)-precompletion
algorithm and the ALCF(D)-precompletion algorithm presented in Section 3.2: in
the ALCF(D) case, we expanded the input ABox such that the “concrete part” of
models for the resulting precompletion is independent of the concrete parts of models
for the reduction concepts. More precisely, we generated all feature successors of
objects in the ABox, all feature successors of these successors, and so on. We then
generated a reduction concept for each R-successor of objects in the precompleted
ABox with R ∈ NR \NaF, and concrete information could not pass this “R-boundary”
since only features were admitted inside concrete paths. This does not work in the
case of ALC(P) due to general TBoxes, in whose presence the closure under feature
successors is no longer polynomial, it is indeed not even finite. Hence, we cannot
separate the concrete parts of the ABox and of the reduction concepts. Instead, we
ensure that the concrete part of models for the reduction concepts can be “plugged
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into” solutions for the predicate conjunction ζA induced by the precompleted ABox A.
This is the purpose of the rules Rc1, Rc2, Rc3, and Rch (see also Lemma 6.24 below).

We now prove termination and investigate the time requirements of the algorithm.
First, we establish an upper bound for the number of rules that may be applied to a
given ABox (independently of the algorithm).

Lemma 6.21. Let A be an ABox, T a TBox, and A0,A1, . . . ,Ak with A0 = A a
sequence of ABoxes obtained by repeated rule application. Then k ≤ p(|A| + |T |) for
some polynomial p(n).

Proof. We abbreviate |A| + |T | by n. Each of the rules Ru, Rt, R∃f, R∀, Rch, and
R
.= adds a new concept to the label of an abstract object. Since all added concepts

are from the set

χ := cl(A, T ) ∪ {∃g1, g2.P | P ∈ {<,=} and g1, g2 used in cl(A, T )}

and |χ| ≤ 2n2 + n, the number of applications of the above rules per abstract object
is also bounded by 2n2 + n and their overall number of applications is bounded by
2n3 + n2. There are four remaining rules:

• Rc1, Rc2, Rc3. These rules may be applied at most once per concept ∃u1, u2.P ∈ χ
and abstract object a in A. Since no new abstract objects are introduced, there
are at most 2n3 + n2 applications of Rc1, Rc2 and Rc3. Moreover, since each
rule application introduces at most 2 new concrete objects and Rc2 and Rc3 are
the only rules to introduce new concrete objects, it also follows that the number
of newly introduced concrete objects is bounded by 4n3 + 2n2.

• Rfe. The rule is applied at most once per (concrete or abstract) object. The
initial ABox contains at most n abstract or concrete objects, no new abstract
objects are generated, and at most 4n3+2n2 new concrete objects are generated.
Hence, the number of applications of Rfe is bounded by 4n3 + 2n2 + n.

Taking together these observations, it is obvious that there exists a polynomial p(n)
as required.

❏

We can now prove termination.

Proposition 6.22 (Termination). If started on an ABox A and a TBox T , the
precompletion algorithm terminates after time exponential in |A|+ |T |.

Proof. Assume that the precompletion algorithm is started on an ABox A and a
TBox T . The precompletion algorithm is a recursive procedure. In every recursion
step, either several recursion calls or several calls to the sat algorithm are made.
Obviously, a run of the algorithm induces a recursion tree, where nodes in the tree are
recursion steps and edges are recursion calls. These recursion trees have the following
properties:

1. Since at most three recursion calls are made per recursion step, the outdegree
is three.
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2. Every path of the recursion tree induces a sequence of ABoxes A0,A1, . . . with
A0 = A that can be obtained by repeated rule application. By Lemma 6.21,
the length of this sequence is bounded by p(|A|+ |T |), and, thus, the depth of
recursion trees is also bounded by p(|A|+ |T |).

This implies that the total number of recursion steps made by the algorithm is bounded
by 3p(|A|+|T |). Since none of the rules introduces new abstract objects, the number
of sat calls per recursion step is bounded by |A| and the total number of calls to
sat by 3p(|A|+|T |) · |A|. Together with Theorem 6.17, we obtain termination and the
exponential time bound. ❏

We now prove a series of lemmas that will finally allow to establish soundness and
completeness of the precompletion algorithm. We start with showing that the con-
struction of precompletions preserves (un)satisfiability.

Lemma 6.23. Let A be an ABox and T be a TBox. Then A is consistent w.r.t. T
iff there exists a precompletion A′ of A w.r.t. T such that A′ is consistent w.r.t. T .

Proof. Recall that A′ is a precompletion of A w.r.t. T if A′ can be obtained from A
by exhaustive rule application (using the TBox T ). By Lemma 6.21, exhaustive rule
application always terminates. Hence, we only need to show that, if a precompletion
rule R is applicable to an ABox A, then A is consistent w.r.t. T iff R can be applied
to A such that an ABox A′ is obtained which is consistent w.r.t. T .

We make a case distinction according to the type of R. The rules Ru, Rt, R∃f,
R∀, Rc1, Rc2, Rc3, and Rfe can be treated similarly to the corresponding rules in the
proof of Part 1 of Lemma 3.9. Hence, we concentrate on the Rch and R

.= rules. In
both cases, the “if” direction is trivial since A ⊆ A′ if A′ is obtained from A by rule
application. Hence, every model of A′ and T is clearly also a model of A and T . It
remains to prove the “only if” direction.

• R = Rch. Let I be a model of A and T and assume that the Rch rule is
applied to an abstract object a, its concrete g1-successor x1, and its concrete
g2-successor x2. The rule application adds one of the assertions a : ∃g1, g2.<,
a : ∃g1, g2.=, and a : ∃g2, g1.<. Since I is a model of A, there exist r1, r2 ∈ R
such that xI1 = r1 and xI2 = r2. Trivially, we have either r1 < r2, r1 = r2,
or r2 < r1. Hence, the Rch rule can be applied such that I is a model of the
resulting ABox A′.

• R = R
.=. Let I be a model of A and T . The rule application adds a : CT for

some a ∈ Oa. By definition of CT , we have d ∈ CIT for every d ∈ ∆I . Hence, I
is clearly also a model of the resulting ABox A′.

❏

Our next aim is to show that every clash-free precomplete ABox, for which all reduc-
tion concepts are satisfiable, is consistent. We start with a technical lemma that states
that, intuitively, for every precomplete ABox A with satisfiable reduction concepts,
we can find models for the reduction concepts such that their concrete parts can be
“plugged into” solutions for the predicate conjunction ζA induced by A. Recall that
we use con(A, a) to denote the reduction concept for a ∈ Oa in A.
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Lemma 6.24. Let A be a precomplete ABox, δ a solution for ζA, and a ∈ Oa used
in A. If con(A, a) is satisfiable w.r.t. T , then there exists a model I of con(A, a)
and T and a da ∈ con(A, a)I such that, for all (a, x) : g ∈ A, we have gI(da) = δ(x).

Proof. Let A, ζA, and δ be as in the lemma, and let I be a model of con(A, a)
and T . Moreover, let da be an arbitrary element of con(A, a)I . We show that I can
be transformed into a model J such that J and da are as required.

In the following, we assume that there exists a well-founded linear ordering on
the set ∆I × NcF. This can be done w.l.o.g. since it is a byproduct of the proof of
Lemma 6.13 that, if a concept C is satisfiable w.r.t. a TBox T , then there exist a
model of C and T (the one constructed in the proof) for which such an ordering
exists. We construct the model J from I by modifying the interpretations of concrete
features in an appropriate way. To do this, we successively “mark” pairs in ∆I ×NcF

such that a pair (d, g) is marked iff gJ (d) has already been determined. During the
construction of J , the following invariant will always hold:

if (d1, g1), (d2, g2) ∈ ∆I × NcF are marked, then

gI1 (d1)P gI2 (d2) with P ∈ {<,=, >} implies gJ1 (d1)P gJ2 (d2)
(∗)

Initially, each pair in ∆I × NcF is unmarked. The construction of J consists of an
initial step and a looping step.

1. Initial step. For all (a, x) : g ∈ A, set gJ (e) := δ(x) and mark the pair (e, g).

We need to show that (∗) is satisfied. Hence, fix two marked pairs (e, g1)
and (e, g2) from ∆I × NcF. Since both pairs are marked, we have {(a, x1) :
g1, (a, x2) : g2} ⊆ A for some x1, x2 ∈ Oc. Since neither the Rch nor the Rc1
rule is applicable, we have either (i) ∃g1, g2.< ∈ A(a) and (x1, x2) : < ∈ A,
(ii) ∃g1, g2.= ∈ A(a) and (x1, x2) : = ∈ A, or (iii) ∃g2, g1.< ∈ A(a) and
(x2, x1) : < ∈ A. We only treat case (i) exemplarily. By definition of con(A, a)
and since e ∈ con(A, a)I , we have e ∈ (∃g1, g2.<)I and thus gI1 (e) < gI2 (e). From
(x1, x2) : < ∈ A and the definition of ζA, it follows that δ(x1) < δ(x2) and hence
gJ1 (e) < gJ2 (e). Cases (ii) and (iii) are analogous.

2. Looping step. Choose the least unmarked pair (d, g) from ∆I × NcF (w.r.t. the
assumed ordering) for which gI(d) is defined. For P ∈ {<,=, >}, let ΨP be the
set of marked pairs (d1, g1) ∈ ∆I × NcF for which gI1 (d1)P gI(d). By (∗), we
have

• gJ1 (d1) = gJ2 (d2) for all (d1, g1), (d2, g2) ∈ Ψ=,

• gJ1 (d1) < gJ2 (d2) for all (d1, g1) ∈ Ψ< and (d2, g2) ∈ Ψ= ∪Ψ>, and

• gJ1 (d1) < gJ2 (d2) for all (d1, g1) ∈ Ψ= and (d2, g2) ∈ Ψ>.

Hence, due to the density of R, there exists an r ∈ R such that

• r > max{gJ1 (d1) | (d1, g1) ∈ Ψ<},
• r = gJ1 (d1) for all (d1, g1) ∈ Ψ=, and
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• r < min{gJ1 (d1) | (d1, g1) ∈ Ψ>}.

Set gJ (d) := r. Obviously, (∗) is satisfied.

It is straightforward to show by structural induction that d ∈ CI iff d ∈ CJ for all
d ∈ ∆I and all ALC(P)-concepts C. Hence, J is a model of con(A, a) and T . By the
initial step of its construction, J is as required. ❏

The following lemma is central for proving soundness and completeness.

Lemma 6.25. Let A be a clash-free precompletion of an ABox A′ w.r.t. a TBox T .
A is consistent w.r.t. T iff con(A, a) is satisfiable w.r.t. T for every a ∈ Oa used in A.

Proof. The “only if” direction is straightforward. Suppose that A is consistent
w.r.t. T , let I be a model of A and T , and let a ∈ Oa be used in A. Since I is a
model of A, we have aI ∈ CI for all C ∈ A(a). By the semantics of the conjunction
constructor, this clearly implies aI ∈ con(A, a)I . Hence, I is a model of con(A, a)
and T .

Now for the “if” direction. Let A denote the set of abstract objects a ∈ Oa

appearing in A. Since A is clash-free, there exists a solution δ for ζA. For every
a ∈ A, fix a model Ia of con(A, a) and T and a domain element da ∈ ∆Ia such that
da ∈ con(A, a)Ia . By Lemma 6.24, we may assume w.l.o.g. that, for all a ∈ A,

(a, x) : g ∈ A implies gIa(da) = δ(x). (∗)

Moreover, we assume that (i) a 6= b implies ∆Ia ∩∆Ib = ∅ and (ii) none of the da has
incoming edges, i.e., (d, da) /∈ RIa for all d ∈ ∆Ia and R ∈ NR. It is straightforward to
prove that none of these assumptions restricts generality: for example, take for each
a ∈ A the canonical model constructed from a Hintikka-tree for con(A, a) and T as in
the proof of Lemma 6.13. Then apply the modification from the proof of Lemma 6.24
and finally make all domains Ia disjoint by renaming. Clearly, (∗), (i), and (ii) are
satisfied for the resulting set of models. In the following, we define an interpretation I
by taking the “union” of the models Ia with a ∈ A and the relational structure defined
by the ABox. However, we have to be careful not to obtain too many abstract feature
successors and prefer successors from the ABox over successors from the models.

1. ∆I :=
⋃
a∈A ∆Ia ,

2. AI :=
⋃
a∈AA

Ia for all A ∈ NC,

3. RI := {(da, db) | (a, b) : R ∈ A} ∪
⋃
a∈AR

Ia for all R ∈ NR \ NaF,

4. fI := {(da, db) | (a, b) : f ∈ A} ∪
⋃
a∈A{(d, e) ∈ fIa | d 6= da or a

has no f -successor in A} for all f ∈ NaF,

5. gI :=
⋃
a∈A g

Ia for all g ∈ NcF,

6. aI := da for all a ∈ A, and

7. xI := δ(x) for all x ∈ Oc appearing in A.
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Note that, for all f ∈ NaF, fI is functional since the Rfe rule is not applicable to A.
Since none of the da has incoming edges, the following claim can be proved straight-
forwardly by structural induction:

Claim 1: For all objects a ∈ A, domain elements d ∈ ∆Ia with d 6= da, and ALC(P)-
concepts C, we have d ∈ CIa iff d ∈ CI .

However, we still need to deal with the elements da themselves.

Claim 2: For all objects a ∈ A, C ∈ A(a) implies da ∈ CI .

The proof is by induction on the structure of C. The induction start consists of three
cases:

• C ∈ NC. Straightforward by definition of con(A, a), the choice of Ia and da, and
the construction of I.

• C = ∃u1, u2.P . By definition of con(A, a) and choice of Ia and da, C ∈ A(a)
implies da ∈ CIa . We make a case distinction according to the form of u1 and u2

(recall that all concepts are assumed to be in path normal form).

1. u1 = g1 and u2 = g2. Since da ∈ (∃g1, g2.P )Ia , there exist r1, r2 ∈ R such
that gIa1 (da) = r1, gIa2 (da) = r2, and r1Pr2. By definition of I, this implies
gI1 (da) = r1, gI2 (da) = r2 and thus da ∈ (∃g1, g2.P )I .

2. u1 = fg1 and u2 = g2. We have to distinguish two subcases. First assume
that a has an f -successor b in A. Since the Rc2 rule is not applicable,
there exist x1, x2 ∈ Oc such that {(a, x1) : g1, (b, x2) : g2, (x1, x2) : P} ∈ A.
Since δ is a solution for ζA, there clearly exist r1, r2 ∈ R such that r1 = δ(x1),
r2 = δ(x2), and r1Pr2. Since Ia and Ib satisfy (∗), we have gIa1 (da) = r1 and
gIb2 (db) = r2. By construction of I, we have fI(da) = db, gI1 (da) = gIa1 (da),
and gI2 (db) = gIb2 (db). Hence, gI1 (da)PgI2 (db) and da ∈ (∃fg1, g2.P )I .
Now assume that a has no f -successor b in A. From da ∈ (∃fg1, g2.P )Ia
and the construction of I, it follows straightforwardly (similar to Case 1)
that da ∈ (∃fg1, g2.P )I .

3. u1 = g1 and u2 = fg2. Analogous to the previous case using Rc3 instead
of Rc2.

• C = g↑. As in the previous case, C ∈ A(a) implies da ∈ CIa . Hence, gIa(da) is
undefined. By definition of I, gI(da) is also undefined and thus da ∈ (g↑)I .

For the induction step, we make a case distinction according to the topmost construc-
tor in C:

• C = C1 u C2. Since the Ru rule is not applicable to A and C ∈ A(a), we have
{C1, C2} ⊆ A(a). The induction hypothesis yields da ∈ CI1 and da ∈ CI2 . By
the semantics, we obtain da ∈ CI .

• C = C1 t C2. Similar to the previous case.
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• C = ∃R.D with R ∈ NR \ NaF. By definition of con(A, a) and choice of Ia
and da, C ∈ A(a) implies da ∈ CIa . Hence, there exists an e ∈ ∆Ia such that
(da, e) ∈ RIa and e ∈ DIa . Since da has no incoming edges in Ia (see above),
we have da 6= e. Hence, by Claim 1, e ∈ DIa implies e ∈ DI . By construction
of I, we additionally have (da, e) ∈ RI and thus da ∈ (∃R.D)I .

• C = ∃f.D. If there is no b ∈ Oa such that (a, b) : f ∈ A, then we can argue as
in the previous case. Hence assume that such a b exists. Since the R∃f rule is
not applicable, we have b : D ∈ A. By induction, we have db ∈ DI . Since we
have fI(da) = db by construction of I, we obtain da ∈ (∃f.D)I .

• C = ∀R.D. Fix a pair (da, e) ∈ RI . By definition of I, we have either (da, e) ∈
RIa or e = db and (a, b) : R ∈ A. In the first case, we have e 6= da since da
has no incoming edges in Ia and e ∈ DI by the semantics and Claim 1. In the
second case, we have D ∈ A(b) since the R∀ rule is not applicable to A. Hence,
by induction, e ∈ DI and thus da ∈ (∀R.D)I .

This finishes the proof of Claim 2.

Using the two claims, it is easy to show that I is a model of A and T . We first
show that I satisfies every assertion in A. For assertions of the form a : C, we have
aI = da ∈ CI by Claim 2. Assertions (a, b) : R are obviously satisfied by definition
of I. Assertions (a, x) : g are satisfied by construction of I and since the models Ib
(for b ∈ A) satisfy (∗). Finally, assertions (x1, x2) : P are satisfied since δ is a solution
for ζA.

It remains to show that I is a model of T . Fix a concept equation C
.= D ∈ T

and a d ∈ ∆I . First assume that d 6= da for all a ∈ A. Let d ∈ ∆Ia . Then d ∈ CI
iff d ∈ DI by Claim 1 and since Ia is a model of T . Now assume d = da. Since the
R
.= rule is not applicable to A, we have a : CT ∈ A. Hence, by Claim 2, da ∈ CIT . By

definition of CT , this clearly implies da ∈ CI iff da ∈ DI . ❏

Finally, we prove soundness and completeness.

Proposition 6.26 (Soundness and Completeness). If the precompletion algo-
rithm is started on an ABox A and a TBox T , then it returns consistent if A is
consistent w.r.t. T and inconsistent otherwise.

Proof. Let A and T be an input to the precompletion algorithm. It is easily seen
that the algorithm computes all precompletions of A w.r.t. T and, for each clash-free
precompletion A′, checks whether the reduction concept con(A, a) is satisfiable for all
a ∈ Oa occurring in A′. It returns consistent if it finds a precompletion for which
all reduction concepts are satisfiable and, by Proposition 6.22, inconsistent other-
wise. Soundness and completeness are now an immediate consequence of Lemmas 6.23
and 6.25. ❏

Taking together Propositions 6.22 and 6.26, we obtain an ExpTime upper bound for
ALC(P)-ABox consistency w.r.t. general TBoxes. Together with the lower bound from
Theorem 6.17, we obtain the following result.
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Theorem 6.27. ALC(P)-ABox consistency w.r.t. general TBoxes is ExpTime-com-
plete.

Extending the translation of ALC(I)-concepts to ALC(P)-concepts from Section 2.4.3
to ABoxes and TBoxes in the obvious way, we obtain the following corollary.

Corollary 6.28. ALC(I)-ABox consistency w.r.t. general TBoxes is ExpTime-com-
plete.

6.3 Related Work and Discussion

During the last years, a variety of temporal Description Logics have been proposed
that differ widely w.r.t. their expressive power and computational properties, see
[Artale & Franconi 2001] for a (slightly outdated) overview. One of the most fun-
damental decisions to be made when defining a temporal DL is whether time points
or time intervals should be the atomic temporal entity. In Modal Logics, the point-
based approach seems to be the most popular one [Goldblatt 1974; Gabbay et al. 1994;
van Benthem 1996] while in Artificial Intelligence interval-based formalisms are preva-
lent [Ginsberg 1993; Stock 1997]. In Description Logic research, which is situated at
the intersection of these two areas, both point-based and interval-based temporal
DLs have attracted considerable attention. Since we view ALC(P) primarily as an
interval-based logic, we will not discuss point-based DLs in detail and refer the in-
terested reader to, e.g., [Schild 1993; Wolter & Zakharyaschev 1999; Lutz et al. 2001c;
Lutz et al. 2001d].

The ancestor of most interval-based temporal DLs is the Modal Logic of time in-
tervals defined by Halpern and Shoham [1992] (in the following called HS). On an
informal level, the logic HS can be described as follows. The semantics is defined in
terms of Kripke structures whose set of worlds is the set of all time intervals over
some temporal structure. The logic offers thirteen modal operators—one for each
Allen relation—which, intuitively, “quantify over” the Allen relations. Unfortunately,
Halpern and Shoham were able to show that HS-formula satisfiability is undecidable
over most interesting temporal structures. The Modal Logic HS can straightforwardly
be converted into a Description Logic by associating each modal world with a De-
scription Logic interpretation instead of with a set of propositional variables in the
style of [Lutz et al. 2001d]. Of course, undecidability of HS is inherited by the re-
sulting multi-dimensional logic (let us call it HSALC). Based on these observations,
researchers tried either to live with undecidability [Bettini 1997] or to find fragments
of HSALC that are decidable yet sufficiently expressive [Artale & Franconi 1998].

Since it is nowadays generally accepted that Description Logics should be decid-
able, let us focus on Artale and Franconi’s approach. Basically, their “fragment”
T LALCF of HSALC is obtained by restricting negation to atomic concepts and disal-
lowing the use of the box modalities on temporal relations [Artale & Franconi 1998].
Some new flavor is added to the language by admitting a much more general exis-
tential modality that allows to describe “relation networks” (hence, T LALCF is not
really a fragment of HSALC). As shown in [Artale & Lutz 1999], there exists a rather
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close correspondence between T LALCF and ALC(P) without general TBoxes since
T LALCF -concept satisfiability can be rephrased as ALC(P)-concept satisfiability in a
natural way. However, the expressive power of logics like T LALCF is seriously limited
since universal statements cannot be made at all. For example, if we want to model
the behavior of a robot using a temporal Description Logic, it is surely desirable to
make universal statements such as “in every robot state, there exists a sane successor
state”. It is not hard to see that statements of this type are needed in many temporal
reasoning applications. One of the distinguishing aspects of the temporal DL ALC(P)
is that it combines interval-based temporal reasoning with general TBoxes that allow
to make universal statements of the above form. To the best of our knowledge, ALC(P)
is the first decidable interval-based temporal Description Logic with this important
property.

Let us now discuss the results presented in this chapter in some more detail. One
important limitation is that the obtained results are only valid if a dense strict linear
order is assumed as the underlying temporal structure. For example, the concept >
is satisfiable w.r.t. the TBox

T = {> v ∃g1, g2, < u ∃g1, fg1, < u ∃fg2, g2, <}

over the temporal structuresQ and R (with the natural orderings) but not over N. To
see this, note that T induces a constraint graph as in Figure 6.7. Hence, it would be
interesting to investigate how the presented algorithm has to be modified for reasoning
with the temporal structure N. It is not hard to see that a constraint graph G is
satisfiable over N iff there exists an upper bound on the length of <-paths between
any two nodes in G (which also implies that G contains no <-cycle). It is, however, not
clear how Hintikka-trees and automata can be modified to account for this stronger
condition.

There exist several other interesting directions in which the presented results could
be extended. We briefly discuss some of them:

• In its current form, the logic ALC(P) can be used for qualitative temporal rea-
soning only. In other words, there exist no predicates for referring to specific
time intervals or for specifying a precise distance between two intervals. An
extension of the logic allowing for this kind of quantitative temporal reasoning
could be rather interesting for many application domains.

• It would be interesting to extend ALC(P) to make it suitable for reasoning
about entity relationship (ER) diagrams with temporal integrity constraints. As
demonstrated by Calvanese et al. in [Calvanese 1996b; Calvanese et al. 1998b],
Description Logics can be used for reasoning about ER diagrams with integrity
constraints and thus are a valuable tool for database design. Artale and Franconi
propose a temporalization of Calvanese’s approach that can be used for reasoning
about temporal ER diagrams [Artale & Franconi 1999]. They use a point-based
logic and focus on temporal databases, i.e., they admit reference to previous
database states in the ER model. By using an appropriate extension of ALC(P),
one should be able to capture a different kind of temporal reasoning with ER
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diagrams, namely reasoning over ER diagrams with integrity constraints for
databases that store temporal data. Such an extension would allow to formulate
temporal integrity constraints, i.e., integrity constraints that take into account
the temporal semantics of the data in the database. For example, a temporal
integrity constraint could state that employees birthdays should be before their
employment date. But what is an appropriate extension of ALC(P) for reasoning
in this domain? Given the results in [Calvanese 1996b], it is clear that we need
at least (unqualifying) number restrictions and inverse roles. An extension of
the results presented in this section to the more complex logic appears to be
possible, but this still needs to be investigated.

• As already mentioned in Section 2.4.3, there exists a set of eight spatial rela-
tions called RCC-8 [Randell et al. 1992; Bennett 1997] which in many aspects
resembles the set of Allen relations. It would be interesting to replace P by a
concrete domain whose predicates describe the RCC-8 relations. Our guess is
that again a decidable formalism is obtained but many proof techniques would
clearly have to be reworked (for example, the RCC-8 relations cannot be broken
down to the predicates {<,=}).



Chapter 7

Summary and Outlook

In this thesis, we have investigated the complexity of reasoning with Description Logics
that provide for concrete domains or the closely related feature (dis)agreement con-
structors. In Chapter 3, we have established the fundamental result stating that satis-
fiability and subsumption ofALCF(D)-concepts and consistency ofALCF(D)-ABoxes
are PSpace-complete provided that D-satisfiability is in PSpace (Theorems 3.13 and
3.18). It immediately follows that the Description Logics ALC(D) and ALCF also
have PSpace-complete reasoning problems. Starting from these results, we then ex-
tended both ALC(D) and ALCF with standard means of expressivity and found that

1. the PSpace upper bounds for reasoning with ALC(D) and ALCF cannot be
considered robust since, for many seemingly harmless extensions of ALC(D)
and ALCF , the complexity of reasoning jumps from PSpace-completeness to
NExpTime-completeness or even to undecidability. With “seemingly harmless”
we mean that, for the vast majority of Description Logics that can be found
in the literature, the considered extensions do not change the complexity of
reasoning (or at least not in such a dramatic way).

2. apart from the obvious syntactic similarity of their constructors, extensions of
ALC(D) and extensions of ALCF behave very similarly w.r.t. the complexity
of reasoning. The only case where the complexity diverges is the extension
with an inverse role constructor: in Sections 5.3.3 and 5.4, we showed that
ALC−(D)-concept satisfiability is NExpTime-complete if D-satisfiability is in
NP, whereas, in Section 5.5.2, we proved ALCF−-concept satisfiability to be
undecidable.

These two statements are based on the complexity results obtained in Chapters 4
to 6, in which we proved tight complexity bounds for most standard extensions of
ALC(D) and ALCF . In the following, we describe the obtained results in more detail.
We will not explicitly mention concept subsumption since, in all logics considered,
concept satisfiability being complete for some complexity class C implies that concept
subsumption is complete for the complement of C.

197
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Benign Extensions

The PSpace upper bounds proved in Chapter 3 show that adding concrete domains
and feature (dis)agreements to the Description Logic ALC does not increase the com-
plexity of reasoning, i.e., concept satisfiability and ABox consistency remain PSpace-
complete. As we argued above, these upper bounds are rather fragile and, indeed, most
extensions of ALC(D) and ALCF that still have PSpace-complete reasoning prob-
lems seem to be of a “non-interacting” type: the logic obtained through extension can
be viewed as the fusion of ALC(D) (resp. ALCF) and an extension of ALC for which
reasoning is in PSpace. For example, this is the case for the extension of ALC(D) and
ALCF with qualifying number restrictions or with transitive roles. In Section 5.6, we
used this fact to conjecture PSpace-completeness for several extensions of ALC(D)
and ALCF .

In Chapter 4, we investigated the extension of Description Logics with acyclic
TBoxes. We presented a technique for modifying completion algorithms that use
tracing to take into account acyclic TBoxes. This technique was employed to estab-
lish PSpace upper bounds for ALC-concept satisfiability w.r.t. acyclic TBoxes and
ALC-ABox consistency w.r.t. acyclic TBoxes (Theorems 4.8 and 4.12). Moreover, we
generalized these results into rules of thumb which characterize a class of DLs that
contain ALC as a fragment and for which the addition of acyclic TBoxes has no impact
on the complexity of concept satisfiability and ABox consistency (pages 75 and 78).
It is easily seen that the identified class of DLs contains many “standard” Description
Logics considered in the literature. The motivation for establishing these results is to
demonstrate that adding acyclic TBoxes is “usually harmless” w.r.t. the complexity
of reasoning. If contrasted with the results described next, this yields an indication
for the non-robustness of the ALC(D) and ALCF PSpace upper bounds.

Malicious Extensions

In Chapters 4 and 5, we considered extensions ofALC(D) andALCF that are not well-
behaved in the sense that reasoning with the extended logics is considerably harder
than reasoning with ALC(D) and ALCF themselves. More precisely, we investigated
the extensions of ALC(D) and ALCF with

• acyclic TBoxes,

• the role conjunction constructor,

• the inverse role constructor,

• generalized concrete domain constructors, and

• the concrete domain role constructor.

Obviously, the last two extensions only make sense for ALC(D) but not for ALCF . Let
us summarize the obtained complexity results. The central theorems state that, for
each of the above five extensions of ALC(D), concept satisfiability is NExpTime-hard
if D is an arithmetic concrete domain (Theorems 5.16, 5.20, 5.24, 5.28, and 5.32).
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These results are rather surprising since, as already mentioned, most of the above
means of expressivity are usually considered harmless w.r.t. the complexity of reason-
ing. To illustrate the relevance of the obtained results, we should like to stress that
it is a relatively weak requirement for a concrete domain to be arithmetic. Indeed,
most concrete domains considered in the literature are arithmetic. As a corresponding
upper bound, we showed that reasoning with all the above extensions of ALC(D) put
together is in NExpTime if D-satisfiability is in NP (Theorem 5.58).

Concerning ALCF , we have proved NExpTime-completeness for the extension
of this logic with acyclic TBoxes, role conjunction, and both (Theorems 4.17, 4.23,
and 5.61). As already mentioned above, the extension of ALCF with the inverse
role constructor yields an undecidable logic (Theorem 5.63). Note that both ALC(D)
and ALCF are counterexamples to the observation from Chapter 4 that, usually, the
addition of acyclic TBoxes does not increase the complexity of reasoning. For all the
above results, we considered concept satisfiability but not ABox consistency (which,
however, we conjecture to have the same complexity in all cases).

General TBoxes

Completing our investigation of Description Logics with concrete domains and (various
types of) TBoxes, in Chapter 6 we performed an in-depth analysis of the extension
of ALC(D) with general TBoxes. The fundamental observation is a negative one,
namely that ALC(D)-concept satisfiability w.r.t. general TBoxes is undecidable for
every arithmetic concrete domain D (Theorem 6.2). However, the situation is not
completely hopeless since there exist interesting concrete domains that are not arith-
metic: we defined the temporal concrete domain P and proved that satisfiability of
ALC(P)-concepts w.r.t. general TBoxes is decidable and ExpTime-complete (Theo-
rem 6.17). To demonstrate the usefulness of this decidability result, we motivated
ALC(P) as a powerful tool for mixed point-based and interval-based temporal reason-
ing. In Section 6.2.4, we then extended the upper bound to ALC(P)-ABox consistency
thus proving this reasoning task to be also ExpTime-complete (Theorem 6.27). We
did not consider the extension of ALCF with general TBoxes since it is well-known
to be undecidable [Baader et al. 1993].

After summarizing the obtained results, let us highlight some promising future
research topics. Although we determined the complexity of most standard exten-
sions of ALC(D) in this thesis, there remain some natural extensions which we did
not address. Among these are several for which tight complexity bounds should be
easy to obtain and also some for which the complexity is not immediately clear.
An example for the former group is the extension of ALC(D) with a role disjunc-
tion constructor. For this logic, it should be straightforward to prove PSpace-
completeness of the standard reasoning problems by “coding out” disjunction as
done, e.g., in [Lutz & Sattler 2001]. The latter group of extensions includes, for ex-
ample, ALCO(D), which is ALC(D) extended with nominals [Areces & de Rijke 2001;
Tobies 2001a]. The complexity of this logic is easily seen to be between PSpace and
NExpTime, but the exact complexity is as of now unknown (note that the tracing-
style completion algorithm from Chapter 3 can not easily be extended to nominals).
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The greatest potential for future work seems to lie in the extension of Description
Logics with concrete domains and general TBoxes. As discussed in more detail in
Section 6.3, there are several promising directions for further research: one could
extend the logic ALC(P) by additional concept and role constructors to make it a
suitable tool for reasoning about entity relationship diagrams with temporal integrity
constraints; or one could extend ALC(P), which is restricted to qualitative temporal
reasoning, by quantitative predicates obtaining more expressive power for the rep-
resentation of temporal knowledge; finally, it would be interesting to exchange the
temporal concrete domain P by a spatial concrete domain based on the set of RCC-8
relations, thus obtaining a powerful spatial Description Logic.
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Centre d’Orsay.

[Lutz & Sattler 2000] C. Lutz and U. Sattler. Mary likes all cats. In F. Baader and
U. Sattler, editors, Proceedings of the 2000 International Workshop in Description
Logics (DL2000), number 33 in CEUR-WS (http://ceur-ws.org/), pages 213–226,
2000.

[Lutz & Sattler 2001] C. Lutz and U. Sattler. The complexity of reasoning with
boolean modal logics. In F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev,
editors, Advances in Modal Logics Volume 3. CSLI Publications, Stanford, CA,
USA, 2001.

[Mayr & Meyer 1982] E. W. Mayr and A. R. Meyer. The complexity of the word
problem for commutative semigroups and polynomial ideals. Advanced Mathemat-
ics, 46:305–329, 1982.

[Minsky 1975] M. Minsky. A framework for representating knowledge. In P. H. Win-
ston, editor, The Psychology of Computer Vision, pages 211–277. McGraw-Hill,
New York, USA, 1975.
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Dr. Ralf Möller: “Representation of Topological Information in
Description Logics”.

1998 - 2002 PhD student at the Teaching and Research Area for Theoretical
Computer Science at RWTH Aachen.

Professional Activities:

1993 - 1994 System administration and software development for the
German Aerospace Airbus AG (DASA), Hamburg.

1994 - 1998 Consultant work in Internet-related projects for
High-Performance GmbH, Hamburg.

1998 - 1999 Researcher in the multinational ESPRIT project “Foundations
of Data Warehouse Quality”.

1999 - 2002 Researcher in the DFG project “Combinations of Modal and
Description Logics” of Franz Baader and Frank Wolter.


	0 Title
	1 Introduction
	2 Preliminaries
	2.1 Description Logics
	2.1.1 Introducing ALC
	2.1.2 Extensions of ALC

	2.2 TBox and ABox Formalisms
	2.2.1 TBoxes
	2.2.2 ABoxes

	2.3 Description Logics with Concrete Domains
	2.3.1 Introducing ALC(D)
	2.3.2 Extensions of ALC(D)

	2.4 Examples of Concrete Domains
	2.4.1 Unary Concrete Domains and ALCf(D)
	2.4.2 Expressive Concrete Domains
	2.4.3 Temporal Concrete Domains


	3 Reasoning with ALCF(D)
	3.1 Concept Satisfiability
	3.1.1 Overview
	3.1.2 The Completion Algorithm
	3.1.3 Correctness and Complexity

	3.2 ABox Consistency
	3.2.1 The Algorithm
	3.2.2 Correctness and Complexity

	3.3 Discussion

	4 Acyclic TBoxes and Complexity
	4.1 PSpace Upper Bounds
	4.1.1 ALC with Acyclic TBoxes
	4.1.2 A Rule of Thumb
	4.1.3 ALC-ABox Consistency

	4.2 A Counterexample: ALCF
	4.3 The Upper Bound
	4.4 Discussion

	5 Extensions of ALC(D)
	5.1 A NExpTime-complete Variant of the PCP
	5.2 A Concrete Domain for Encoding the PCP
	5.3 Lower Bounds
	5.3.1 ALC(D)-concept Satisfiability w.r.t. Acyclic TBoxes
	5.3.2 ALC(D)-concept Satisfiability
	5.3.3 ALC-(D)-concept Satisfiability
	5.3.4 ALCP(D)-concept Satisfiability
	5.3.5 ALCrp(D)-concept Satisfiability

	5.4 The Upper Bound
	5.4.1 The Completion Algorithm
	5.4.2 Termination, Soundness, and Completeness
	5.4.3 Adding Acyclic TBoxes

	5.5 Comparison with ALCF
	5.5.1 ALCF-concept Satisfiability
	5.5.2 Undecidability of ALCF-

	5.6 Discussion

	6 Concrete Domains and General TBoxes
	6.1 An Undecidability Result
	6.2 ALC (P) with General TBoxes
	6.2.1 Temporal Reasoning with ALC (P)
	6.2.2 A Modelling Example
	6.2.3 Deciding Concept Satisfiability
	6.2.4 Deciding ABox Consistency

	6.3 Related Work and Discussion

	7 Summary and Outlook
	Bibliography
	Index

