
Description Logics for Ontologies

Zusammenfassung der wissenschaftlichen Arbeiten

eingereicht bei der
Fakultät Informatik

der
Technischen Universität Dresden

anstelle einer Habilitationsschrift

von Dr. rer. nat. Ulrike Sattler
aus München

April 2003

Die eingereichten Arbeiten sind in den References mit ∗ gekennzeichnet.
Im Appendix B ist der Beitrag der Autorin an gemeinschaftlichen Arbeiten
beschrieben.

i

ii

Contents

Abstract v

1 Ontologies 1

2 Introduction to Description Logics 3
2.1 Basic notions in description logics 5
2.2 Description logics as ontology languages 6
2.3 Relationship with other formalisms 9
2.4 Standard expressive means in description logics 11

3 Introduction to DL Reasoning Techniques 18
3.1 Tableau algorithms . 18
3.2 Automata-based algorithms 20
3.3 Other reasoning techniques 22

4 DLs with Expressive Operators on Roles 23
4.1 Adding transitivity . 24
4.2 Further adding inverse roles 26
4.3 Further adding role inclusion axioms 27
4.4 Further adding number restrictions 28
4.5 Further adding more expressive role inclusion axioms 30

5 DLs with Nominals 33
5.1 The hybrid µ-calculus . 34
5.2 Information logics . 35
5.3 Nominals for DLs with rich roles 36

6 Summary and Outlook 38

A References 41

iii

iv

Abstract

Description Logics (DLs) are a family of knowledge representation
formalisms designed for the representation of terminological knowl-
edge. A DL knowledge base consists (at least) of a set of concept
definitions, namely of those concepts that are relevant for the specific
application. Standard inference services provided by DL-based knowl-
edge representation systems include tests whether each defined concept
is satisfiable and the computation of the subsumption hierarchy of the
defined concepts, i.e., of the specialisation relation between the defined
concepts.

Besides the well-defined semantics of DLs, these inference services
make DLs suitable candidates for ontology languages, which have be-
come of increasing importance due to the amount of information avail-
able electronically and the vision of the semantic web. For a variety of
DLs, decision procedures, tight complexity bounds, and practical infer-
ence algorithms for the corresponding inference problems are known.
It is clear that, to be of use as an ontology language, a description logic
has to provide adequate expressive power, and we are thus concerned
with the well-known trade-off between complexity and expressiveness.

After a brief introduction to ontologies, we introduce the basic de-
scription logic ALC and describe how DLs can be used as ontology
languages. Next, we sketch the relationship between DLs and other
formalisms such as first order and modal logic and data base concep-
tual models. To give a broader view of DLs, some standard expressive
means in DLs are mentioned as well as their modal logic counter-
parts and their effect on the complexity of the inference problems.
In Section 3, we give an intuitive explanation of standard reasoning
techniques employed for DLs and discuss their respective advantages:
tableau-based algorithms turned out to be well-suited for implemen-
tations, whereas automata-based algorithms yield elegant upper com-
plexity bounds for Exptime logics. In many cases, first a DL was
proven to be in Exptime using automata before a tableau-based algo-
rithm was designed and implemented.

v

Having thus introduced description logics and how they can be used
as ontology languages, in Section 4, we describe how we have designed
the rather successful DLs SHIQ and RIQ: we first observe that ALC
lacks the expressive power to describe aggregated objects using a tran-
sitive part-whole relation, and then extend ALC with a new construc-
tor that overcomes this expressive shortcoming while still allowing for a
practical, tableau-based inference algorithm. Step by step, we further
extend the resulting DLs with new constructors that were chosen ac-
cording to the same design goal: to overcome expressive shortcomings
while allowing for practical inference algorithms. For each extension,
we describe how we have modified the tableau algorithm to take into
account the new constructor.

In Section 5, we are concerned with hybrid logics, i.e., description
and modal logics that allow to refer to single individuals using nom-
inals. Nominals are a rather special constructor since they destroy a
nice model theoretic property that most DLs enjoy, namely the tree
model property. Despite this effect, we were able to show, for two ex-
ample hybrid logics, that automata on trees can still be used to decide
satisfiability of hybrid DLs and thus provide tight upper complexity
bounds. To this purpose, we use a certain abstraction technique from
(non)-tree models to tree structures. This technique turns out to be
applicable also for tableau algorithms: we have used it to devise a
tableau algorithm for the extension of (a restriction of) SHIQ with
nominals.

vi

1 Ontologies

A well-known attempt to define what constitutes an ontology is due to Gru-
ber [1993]:

an ontology is an explicit specification of a conceptualisation,

where “a conceptualisation” means an abstract model of some aspect of the
world. This was later elaborated to “a formal specification of a shared con-
ceptualisation” [Borst et al. 1997]. In this abstract model, relevant concepts
of the aspect in question are defined, including a description of the vital
properties of their instances. For example, if we are concerned with trans-
portation means, relevant concepts are “bicycle” and “power unit”, and the
description of bicycles contains a statement such as “a bicycle is powered by
a human through pedalling”.

In the last decade, ontologies became rather popular through ap-
plications like the Semantic Web [Berners-Lee 1999; Berners-Lee et al.
2001], enterprise knowledge management systems [Uschold et al. 1998], and
medical terminology systems [Stevens et al. 2002; Rector & Horrocks 1997;
Spackman 2000] and through the growing amount of data available elec-
tronically.

An ontology is built (possibly by a group of) domain experts—and it
will evolve over time in any application that changes over time. Moreover,
it is advisable to integrate existing ontologies if a larger aspect of the world
is to be covered—instead of building a new one from scratch. Finally, if an
ontology is deployed, knowledge is shared using the concepts defined in the
ontology, e.g., concrete objects are described using the vocabulary defined in
an ontology. Each of these tasks is rather complex: e.g. building and evolu-
tion involves a huge amount of creativity, integration requires knowledge in
a large aspect. Moreover, all four ontology engineering tasks might involve
co-operation, which increases the risk of misunderstanding, redundancy, etc.
Thus if an ontology is to be engineered by more than one user, the use of
an unambiguous language makes it easier to agree upon a specification and
thus decreases the risk of misunderstandings.

The increasing importance of ontologies and their processing in com-
puters has led to the development of ontology editors such as OntoEdit,
Protégé, Rice, and OilEd [Sure et al. 2002; Protégé 2003; Cornet 2003;
Bechhofer et al. 2001]. Due to the above mentioned complexity of ontology
engineering tasks, it is highly desirable that these editors support the user
in the design, evolution, integration, and deployment of ontologies through

1

corresponding, intelligent system services. This automatic processing of on-
tologies has further implications on the ontology language. In addition to
the reduction of misunderstandings, an unambiguous language enables the
precise definition of the behaviour of system services, i.e., in the design
phase of an ontology-based system, we can define what a system service
is supposed to do on a given input. This enables the investigation of the
soundness, completeness, and termination of the algorithms underlying the
system services.

Moreover, if the un-ambiguousness of the ontology language is due to
its semantics being defined via a translation into a logic, this yields further
possibilities: we can base system services on logical reasoning problems,
and thus investigate these problems and the reasoning algorithms designed
to solve them in a rigorous way. That is, we can investigate the decidability
and computational complexity of the corresponding logical problems. The
latter is a pre-requisite to design optimal reasoning algorithms—or to prove
that a given algorithm cannot be optimised substantially. The former is im-
portant if a reasoning problem underlying a system service is undecidable:
in this case, one has to decide whether to live with heuristic, approximative,
or partial algorithms, or modify the ontology language in order to re-gain
decidability. Both the investigation of the decidability and computational
complexity give insight into the sources of complexity, and thus might allow
to devise a certain fragment of the ontology language for which the corre-
sponding algorithms show more desirable properties or better performance.

Finally, using a logical formalism allows us to profit from the huge
amount of work in computer science and logic. There exists a large va-
riety of complexity results for logical problems which can be used instead of
re-proving similar results again; as an example for such results by transla-
tion, see [Schild 1991; De Giacomo 1995]. We can also use a variety of results
in model theory to learn more about the expressive power [Baader 1996a] of
an ontology language [Borgida 1996; Vardi 1997].

Recently, the ontology editors Rice and OilEd have been developed which
provide system services based on logical reasoning problems to support
the user in the above mentioned ontology engineering tasks [Cornet 2003;
Bechhofer et al. 2001]. For example, in the design phase, the computation of
the taxonomy1 taking into account the description of the concepts defined so
far might help to detect modelling flaws in an early design phase: missing or
unintended specialisation links are signs of incomplete or erroneous concept
descriptions. In all tasks, singling out synonymous concepts helps reducing

1The specialisation hierarchy of the concepts defined so-far.

2

redundancy and thus misunderstandings. Finally, checking the consistency
of concept description also helps detecting modelling flaws.

However, since ontology engineering is still a rather new field, various
other such services will need to be devised to provide optimal support. For
example, one would like to ask the editor to propose a new concept descrip-
tion as (the most specific) generalisation of a given set of instances; one
would like to find a concept description that follows a certain “pattern” of a
concept; or one would like to see a user-friendly approximation of a concept
description, for instance in a frame-based notation. These services are pro-
vided by so-called non-standard inference services such the least common
subsumer and most specific concept, matching of concepts, or computing
the approximation of a concept expressed in a more expressive logic in a
less expressive logic [Küsters 2001; Baader et al. 2001; Baader & Turhan 2002;
Brandt et al. 2002].

The ontology editors Rice and OilEd are based on description logics,
which are described in the next section, together with their usage as ontology
languages.

2 Introduction to Description Logics

Description logics (DLs) [Baader et al. 2003; Baader & Sattler 2001; Cal-
vanese et al. 1999b] are a family of logic-based knowledge representation
formalisms designed to represent and reason about the knowledge of an
application domain in a structured and well-understood way. They are de-
scendants of semantic networks and frames, and are equipped with a formal,
Tarski-style semantics.

The basic notions in DLs are concepts (unary predicates) and roles (bi-
nary relations), and a specific DL is mainly characterised by the constructors
it provides to form complex concepts and roles from atomic ones. In this
introduction, we only illustrate some typical constructors by example. The
following concept describes “A cooler that is connected to something which
(i) is a reactor, (ii) has a part that is a stirrer, and (iii) whose functionality
is to stir or to cool (or both)”:

Cooler u ∃connectedTo.(Reactor u ∃hasPart.Stirrer u
∀functionality.(Cooling t Stirring))

(1)

This concept employs the Boolean constructors conjunction (u) and disjunc-
tion (t) on concepts, which are interpreted as set intersection and union,

3

respectively, as well as the existential restriction (∃r.C) and the value re-
striction constructor (∀r.C). For an object x to be instance of ∃r.C, there
has to exist an object, say y, which belongs to C and is related via r to
x. Similarly, x is an instance of ∀r.C if all objects related to x via r are
instances of C.

In addition to such a set of constructors, DLs are usually equipped with
a terminological component, often called a TBox. In its simplest form, a
TBox can be used to introduce names (abbreviations) for complex concepts.
For example, we can introduce the abbreviation CooledStirringReactor for
the concept in Equation 1 from above. More expressive TBox formalisms
allow the statement of general concepts inclusion axioms (GCIs) such as

∃hasPart.Stirrer v̇ Reactor u ∃functionality.Stirring, (2)

which says that only stirring reactors can have stirrers. In ontology appli-
cations, both kinds of assertions are useful: we can introduce names for all
the relevant concepts of the application domain and, additionally, use GCIs
to describe the background knowledge of the application, i.e., to constrain
the set of possible models of the TBox.

Description logic systems provide their users with various reasoning ca-
pabilities that deduce implicit knowledge from the one explicitly stated in
the TBox. The subsumption algorithm determines subconcept-superconcept
relationships: a concept C is subsumed by a concept D w.r.t. a TBox if, in
each model of the TBox, each instance of C is also an instance of D, i.e.,
each model of the TBox interprets C as a subset of the interpretation of D.
Such an algorithm can be used to compute the taxonomy of a TBox, i.e., the
subsumption hierarchy of all those concepts introduced in the TBox. The
satisfiability algorithm tests whether a given concept can ever be instanti-
ated.

Unsurprisingly, the higher the expressive power of a DL is, the more
complex are the subsumption and the satisfiability problem. To use a DL for
a certain application, it has to provide enough expressive power to describe
the relevant properties of the objects in this application. On the other hand,
the system services should be “practical” in that they run in realistic time
and space. Thus, we are confronted with the well-known trade-off between
expressivity and complexity, as in many other areas of computer science.

In the last decade, a lot of work was devoted to investigate DLs
w.r.t. their expressive power and computational complexity. It turned out
that the first DL systems were based on undecidable logics [Schmidt-Schauss
1989; Patel-Schneider 1989]. As a reaction, the expressive power was re-
stricted severely, thus yielding DLs with polynomial reasoning problems

4

[Donini et al. 1991b; Patel-Schneider et al. 1991]. Then, in parallel with the
discovery of the close relation between description and modal logics [Schild
1991; De Giacomo & Lenzerini 1994a], Pspace-complete DLs were identified
[Schmidt-Schauß & Smolka 1991], and a tableau-based reasoning algorithm
was implemented for such a DL [Baader et al. 1994]. After certain op-
timisations, it turned out that this implementation behaves much better
than the high worst-case complexity of the underlying reasoning problem
suggests. This motivated the implementation of tableau-based reasoning
algorithms for Exptime-complete DLs [Horrocks 1998b; Haarslev & Möller
2001]. Again, these implementations proved to be amenable to optimisa-
tions and behave surprisingly well in practise. This fostered the design and
investigation of other Exptime-complete DLs together with tableau-based,
“practicable” reasoning algorithms. Today, industrial strength DL systems
are being developed for very expressive DLs with system services being based
on highly optimised tableau algorithms and with applications like the Se-
mantic Web or knowledge representation and integration in bio-informatics.

2.1 Basic notions in description logics

In this section, we define the basic description logic ALC, TBox formalisms,
and reasoning problems.

Definition 1 Let C and R be disjoint sets of concept and role names. The
set of ALC -concepts is the smallest set such that

• each concept name A ∈ C is an ALC-concept and

• if C and D are ALC-concepts and r is a role name, then ¬C, C u
D, C t D, ∃r.C, and ∀r.C are also ALC-concepts. Concepts of the
form ∃r.C are called existential restrictions, whereas concepts ∀r.C
are called universal restrictions.

A general concept inclusion axiom (GCI) is of the form C v̇ D for C, D
ALC-concepts. A TBox is a finite set of GCIs.

An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the
interpretation domain, and a mapping ·I which associates, with each concept
name A, a set AI ⊆ ∆I and, with each role name r, a binary relation

5

rI ⊆ ∆I ×∆I . The interpretation of complex concepts is defined as follows:

(C uD)I = CI ∩DI ,
(C tD)I = CI ∪DI ,

¬CI = ∆I \ CI ,
(∃R.C)I = {d ∈ ∆I | there exists an e ∈ ∆I with 〈d, e〉 ∈ RI and e ∈ CI},
(∀R.C)I = {d ∈ ∆I | for all e ∈ ∆I , if 〈d, e〉 ∈ RI , then e ∈ CI}.

An interpretation I satisfies a GCI C v̇ D if CI ⊆ DI ; I satisfies a
TBox T if I satisfies all GCIs in T—in this case, I is called a model of T .
An element d ∈ CI is called an instance of C and, if 〈d, e〉 ∈ rI , then e is
called an r-successor of d.

A concept C is satisfiable w.r.t. a TBox T if there is a model I of T
with CI 6= ∅. A concept C is subsumed by a concept D w.r.t. T (written
C vT D) if, for each model I of T , CI ⊆ DI . Two concepts are equivalent
if they mutually subsume each other.

As usual, we use > as an abbreviation for At¬A, ⊥ for ¬>, C ⇒ D for
¬C tD, and C ⇔ D for (C ⇒ D) u (D ⇒ C). Moreover, we use C .= D as
an abbreviation for C v̇ D and D v̇ C.

Some remarks are in order here. Firstly, in ALC, the two reasoning
problems satisfiability and subsumption can be mutually reduced to each
other: C is satisfiable w.r.t. T iff C is not subsumed by ⊥ w.r.t. T . And
C vT D iff C u ¬D is not satisfiable w.r.t. T .

Secondly, it can be shown that satisfiability (and thus subsumption)
w.r.t. a general TBox is Exptime-complete [Schild 1991], whereas these
problems become Pspace-complete when considered w.r.t. the empty TBox
[Schmidt-Schauß & Smolka 1991].

2.2 Description logics as ontology languages

As mentioned above, ontologies are employed in a variety of applications,
and engineering ontologies is a complex task that requires optimal support
from powerful system services. We have argued that a logic-based language
enables the design of provably correct and optimal such services. Now de-
scription logics are such a class of logic-based knowledge representation lan-
guages. Moreover, they come with a knowledge base formalism which makes
them good candidates for ontology languages: an ontology can be suitably
formalised in a TBox. As indicated above, to formalise an ontology, we
divide the TBox into the following two disjoint parts.

6

Background Knowledge GCIs of the form C v̇ D, for C and D com-
plex concepts, can be used to formalise background knowledge of the
application domain and thus to constrain the set of models.

For example, we can express that the concepts Device and Connection
are disjoint by

Device v̇ ¬Connection

and use the GCI 2 from above to ensure that only stirring reactors can
have stirrers.

Definitiorial Part For each concept relevant in the application domain,
we can introduce a concept name A and a concept definition A v̇ C
or A .= C describing necessary or necessary and sufficient conditions
for individuals to be an instance of A. We say that A is a primitively
defined or a defined concept.

For example, we can (primitively) define connections as being material
things having some input and some output, and then define a hose as
a flexible connection:

Connection v̇ MThing u ∃hasComp.Output u ∃hasComp.Input
Hose

.= Connection u Flexible

Thus we have given necessary conditions for an object to be a con-
nection, and necessary and sufficient conditions for an object to be
hose.

Thus the (standard) system services provided by DL-based knowledge
representation systems can be based on the logical problems satisfiability
and subsumption:

• each concept defined in a TBox T is tested for satisfiability w.r.t. T .
Unsatisfiable concepts are returned to the user or, e.g., marked red.

• the computation of the taxonomy of a TBox T : for each pair A1, A2 of
concepts defined in the definitorial part of T , we test whether A1 v̇T
A2 and A2 v̇T A1. A taxonomy is the partial order of the defined
concepts w.r.t. v̇T , and is often presented as the corresponding Hasse-
diagram.

As mentioned above, unsatisfiable defined concepts and unintended or miss-
ing subsumption relationships are signs of modelling flaws, and thus these
system services can be used to support the engineering of ontologies: in

7

the design phase and when modifying or integrating an ontology, we can
repeatedly use both system services to ensure that the TBox is consistent,
that it reflects our intuition, and that it does not contain unintended re-
dundancies, i.e., defined concepts that are equivalent. Unsurprisingly, it
turned out that, in applications where the knowledge engineer is no descrip-
tion logic expert, ontology engineering requires more support [Sattler 1998;
Molitor 2000]. For example, the domain expert wants to see automatically
generated suggestions for a new concept definition as a generalisation of a
set of example instances. This observation lead to the investigation of the
afore mentioned non-standard inferences in description logics [Küsters 2001;
Baader et al. 2001; Baader & Turhan 2002; Brandt et al. 2002].

State-of-the-art DL-based systems such as FaCT and Racer [Horrocks
1998b; Haarslev & Möller 2001] provide the above standard system services
such as deciding the satisfiability and the computation of the taxonomy, and
are based on a DL, called SHIQ [Horrocks et al. 1999], which is an extension
of ALC with a variety of interesting expressive means [Sattler 2000]; SHIQ
is discussed in detail in Section 4. Despite providing additional expressive
means, reasoning w.r.t. TBoxes for SHIQ is of the the same worst-case
complexity as for ALC, namely Exptime-complete [Tobies 2001a]. This
high complexity implies that, in the worst-case, the computation might take
far too much time. However, the algorithms in these DL-based systems
proved to be amenable to a wide range of optimisations, as a consequence of
which these systems behave surprisingly well in many realistic applications
[Horrocks 1997; 1998b; Haarslev & Möller 2001; Horrocks & Sattler 2002].

The suitability of DLs as ontology languages has been highlighted by
their role as the foundation for several web ontology languages, includ-
ing OIL [Fensel et al. 2001], DAML+OIL [Horrocks & Patel-Schneider 2001;
Horrocks et al. 2002], and OWL, a newly emerging ontology language stan-
dard being developed by the W3C Web-Ontology Working Group.2 All
of these languages have a syntax based on RDF Schema, but the basis
for their design is a combination of the DLs SHIQ (mentioned above) and
SHOQ(D) [Horrocks & Sattler 2001]. Both are DLs that were designed with
the goal to find a good compromise between expressiveness and the com-
plexity of reasoning.

2http://www.w3.org/2001/sw/WebOnt/

8

2.3 Relationship with other formalisms

Even though they were developed independently, description logics are
closely related to other logical formalisms, most importantly to modal logics
and other non-classical logics. In this section, we will briefly sketch these
relationships; for a more detailed discussion, see Chapter 4 of [Baader et al.
2003].

First order predicate logic It is not too hard to see that each ALC
concept C can be translated into a formula ΦC in one free variable of the
two-variable fragment of first order logic such that a ∈ CI iff I |= ΦC(a),
provided that we view interpretations both as DL and predicate logic inter-
pretations, that a concept name is viewed as a unary predicate symbol, and
a role name as a binary predicate symbol. The following two functions tx
and ty realise this translation:

tx(A) = A(x), ty(A) = A(y),
tx(C uD) = tx(C) ∧ tx(D), ty(C uD) = ty(C) ∧ ty(D),
tx(C tD) = tx(C) ∨ tx(D), ty(C tD) = ty(C) ∨ ty(D),
tx(∃R.C) = ∃y.R(x, y) ∧ ty(C), ty(∃R.C) = ∃x.R(y, x) ∧ tx(C),
tx(∀R.C) = ∀y.R(x, y)⇒ ty(C), ty(∀R.C) = ∀x.R(y, x)⇒ tx(C).

Then we can easily show that C is satisfiable w.r.t. a TBox T = {Ci v̇ Di |
1 ≤ i ≤ n} iff

tx(C) ∧
n∧

i=1

∀x.tx(Ci)⇒ tx(Di)

is satisfiable.
Thus ALC with general TBoxes can be viewed as a fragment of the

two-variable fragment of first order logic, and hence satisfiability is in NEx-
ptime [Grädel et al. 1997]. For a detailed discussion of this relationship,
see [Borgida 1996; Lutz et al. 2001].

Modal Logics The connection between description logics and the two-
variable fragment of first order logic can be viewed as an immediate conse-
quence of the close relationship between modal and description logics and the
modal correspondence theory [van Benthem 1983]. ALC (without TBoxes) is
a notational variant of the multi modal logic K [Halpern & Moses 1992], and
a variety of description logic expressive means have close relatives in modal
logic, which will be sketched in the next section. To see the connection
between K and ALC, it suffices to view elements of a DL interpretation

9

domain as worlds in a Kripke structure, roles as modal parameters, uni-
versal restrictions as box formulae, and existential restrictions as diamond
formulae. Then, for example, it can be easily seen that

A u ∃r.(C t ∀s.D) is equivalent to A ∧ 〈r〉(C ∨ [s]D)

for A, C, and D concept names and propositional variables, and r and s
role names and modal parameters.

After the close relationship between modal and description logics was
published [Schild 1991], it was successfully exploited, with dynamic log-
ics and the µ-calculus being extremely useful. Firstly, complexity re-
sults and techniques were translated from modal logics to their descrip-
tion logic counterparts [De Giacomo & Lenzerini 1994b; 1994a; Schild 1994;
Calvanese et al. 1999a]. Secondly, these DL counterparts were extended
with DL specific expressive means such as number restrictions (defined in
Section 2.4), which then gave raise to new complexity results for modal
logics [De Giacomo & Lenzerini 1994b; 1994a; Schild 1994; Calvanese et al.
1999a]. Thirdly, DL reasoners can be used as modal logic theorem provers,
and turned out to perform well on modal logic sets of benchmark for-
mulae [Horrocks 1998a; Patel-Schneider & Horrocks 1999; Haarslev & Möller
2000]. Finally, automata-based reasoning techniques that were success-
fully employed in modal logic turned out to be equally efficient to devise
tight upper complexity bounds for description logics [Calvanese et al. 1999a;
Lutz & Sattler 2001; Sattler & Vardi 2001; Kupferman et al. 2002]. Please
note that, despite this close relationship, a variety of expressive means and
reasoning problems are only considered in description logics, for example
concrete domains [Baader & Hanschke 1991; Lutz 2003], general and cyclic
TBoxes with different fixpoint semantics [Nebel 1990; Baader 1996b], and
the above mentioned non-standard inferences.

Finally, the close relationship between modal and description logics im-
plies that DLs are closely related to the guarded fragment [Andréka et al.
1998; Grädel 1999], a fragment of first order logic generalising a variety of
modal logics. This relationship motivated the design and investigation of
n-ary DLs that are fragments of the guarded fragment [Lutz et al. 1999;
Georgieva et al. 2003], and the usage of successful DL implementation and
optimisation techniques for tableau algorithms for the guarded fragment
[Hirsch & Tobies 2001; Hladik 2002].

Frame-based Systems Since DLs are descendants of frame-based sys-
tems, it is not surprising that these two families of formalisms are still closely

10

related. For example, the DL based ontology editor Oiled [Bechhofer et al.
2001] uses a frame-based user interface rather similar to the one of Protégé,
one of the most successful frame-based systems [Protégé 2003]. A detailed
description of this relationship can be found in [Calvanese et al. 1994] and
Section 4 of [Baader et al. 2003].

Conceptual Graphs Both Conceptual graphs and DLs were originally
designed as “non-logical” knowledge representation formalisms, thus avoid-
ing variables and formulae. Recently, it turned out that, indeed, these fam-
ilies of formalisms are closely related [Baader et al. 1999]: (a generalisation
of) simple graphs can be translated into an existential description logic, and
another class can be translated into the guarded fragment. Again, exploiting
these relationships yields decidability and complexity results “for free”.

Conceptual Models Description Logics can be used to reason about con-
ceptual database models, e.g. Entity-Relationship (ER) diagrams for rela-
tional databases or UML schemas for object-oriented databases [Calvanese
et al. 1994; 1998]. In general, one can translate a conceptual model (i.e., an
ER diagram or a UML Schema) into a TBox such that an entity (a relation-
ship, or a class) can be instantiated in a database conforming to the model
iff its translation is satisfiable w.r.t. the resulting TBox. Analogously, im-
plicit IS-A links and containment relations can be reduced to subsumption.
This extremely useful application led to the implementation of Icom, a tool
for intelligent conceptual modelling, which is based on the FaCT reasoner
for SHIQ [Franconi & Ng 2000].

2.4 Standard expressive means in description logics

To give the reader an impression of what DLs are, we present a variety of
expressive means that are commonly used in DLs, and discuss, if appropri-
ate, their modal logic equivalent and their influence on the computational
complexity.

TBoxes were introduced in Section 2.1, and it was mentioned in Sec-
tion 2.2 that they are divided into a background knowledge part and a defin-
itorial part. Some DLs only allow for the definitorial part and possibly
require this part to be free of “definitorial cycles”. In this case, fixing the
interpretation of undefined concept names uniquely determines the interpre-
tation of defined concepts—which is not the case in the presence of cyclic
definitions [Nebel 1990; Baader 1996b]. Moreover, reasoning w.r.t. acyclic

11

concept definitions can be reduced to pure concept reasoning: one can ei-
ther use a (sub-optimal) technique, called unfolding, which reduces reasoning
w.r.t. acyclic concept definition to pure concept reasoning [Nebel 1990], or
use more direct techniques [Lutz 1999]. As a result of the latter, it turned
out that, for a variety of logics, reasoning w.r.t. acyclic concept definitions
is as complex as pure concept reasoning.

The modal logic counterpart to TBoxes is the universal role, a role that
is interpreted as ∆I ×∆I . It enables the internalisation of a TBox [Baader
1991; Schild 1991; Baader et al. 1993; Horrocks et al. 1999]: for u a universal
role, C is satisfiable w.r.t. a TBox {Ci v̇ Di | 1 ≤ i ≤ n} iff the concept

∃u.C u
n

u
i=1
∀u.(Ci ⇒ Di)

is satisfiable. Moreover, we can translate a concept C involving a univer-
sal role into a concept C ′ and a (general) TBox TC without the universal
role such that C is satisfiable iff C ′ is satisfiable w.r.t. TC [Lutz 2002]. This
translation yields another proof of ALC with general TBoxes being Exp-
time-hard by a reduction of the (Exptime-hard) extension of the modal
logic K with the universal role [Spaan 1993a].

Number Restrictions are an expressive means rather popular in DLs:
they are present in almost all implemented DL systems. They are of the
form (>nr.C) (atleast restriction) or (6nr.C) (atmost restriction), for n a
non-negative integer, r a role, and C a (possibly complex) concept. Their
interpretation is defined as follows:

(>nr.C)I = {d ∈ ∆I | #{e ∈ CI | (d, e) ∈ rI} ≥ n},
(6nr.C)I = {d ∈ ∆I | #{e ∈ CI | (d, e) ∈ rI} ≤ n},

where #M denotes the cardinality of a set M . They can be used, e.g.,
to described pipes as those connections having exactly one input and one
output (we use (= nr.C) as an abbreviation for (>nr.C) u (6nr.C)):

Connection u (= 1hasComponent.Input) u (= 1hasComponent.Output)

In their simpler form, number restrictions only allow for the concept > in
the place of C above. A further restriction only allows for 2 in atleast
restrictions and 1 in atmost restrictions. Finally, features are role names
that are to be interpreted as partial functions—they can be viewed as a
“globalised” version of a simple form of number restrictions. Number re-
strictions rarely seem to have effects on the complexity of DLs: for a variety

12

of logics, extending them with number restrictions does not change their
complexity, even if such an extension yields the loss of the finite model
property (see Section 4.4 for a more detailed discussion). For example,
when extended with number restrictions, ALC remains in Pspace [Tobies
2001b], ALC with TBoxes remains in Exptime, even if further extended
with other expressive means such as inverse roles (see below) [Tobies 2001a;
Kupferman et al. 2002]. These observations hold regardless of the coding of
numbers in number restrictions, i.e, they are independent of whether num-
bers are coded in unary (i.e., |(>nr.C)| = |(6nr.C)| = n + 1 + |C|, for
|C| the length of a concept) or in binary (i.e., |(>nr.C)| = |(6nr.C)| =
log(n) + 1 + |C|).

Number restrictions are known in modal logics as graded modalities [Fine
1972; van der Hoek & De Rijke 1995], whereas features play an important
role in dynamic logic: they are syntactic variants of deterministic programs
[Ben-Ari et al. 1982].

Nominals are, in their simplest form, special concept names that are to be
interpreted as singleton sets. For example, the following concept describes
those objects that are part of the oil platform Brent Spar

∃partOf.BrentSpar,

where BrentSpar is a nominal, i.e., has only one instance.
In description logics, a weak form of nominals, ABoxes (“A” for asser-

tional), are widely known and used: they provide a second knowledge base
component to describe individuals and their interrelationship while possi-
bly referring to the background knowledge and concepts defined in a TBox.
Given a set of individual names I, assertions are of the form

a :C and 〈a, b〉 ∈ r

for a, b ∈ I, C a concept, and r a role. An ABox is a finite set of assertions.
An interpretation I associates, additionally, with each a ∈ I, some aI ∈ ∆I ,
and I satisfies an assertion of the form

a :C if aI ∈ CI and
〈a, b〉 :r if 〈aI , bI〉 ∈ rI .

An interpretation satisfying all assertions in an ABox is a model of the ABox,
and an ABox that has a model is called consistent.

Some DLs employ the unique name assumption, i.e., they require inter-
pretations I to map different individual names to different elements of the

13

interpretation domain. Not employing this assumption seems to be the more
general way since we can impose, on demand, difference of individuals by
adding assertions of the form a :A and b :¬A.3

In most description logics, we thus have a clear distinction between the
terminological part of a knowledge base and the assertional one: we can
use concepts defined in the TBox to describe individuals, but we cannot
use individuals (from the ABox) to define concepts. With nominals, such a
distinction does not exist.

Using nominals, it is straightforward to express ABox assertions: using
a nominal Na for each individual name a and a new role name u, an ABox
is translated into a conjunction over all its assertions, a :C is translated into
∃u.(Na uC), and 〈a, b〉 :r is translated into ∃u.(Na u∃r.Nb). Then it can be
easily seen that an ABox is consistent iff its translation is satisfiable. This
reduction is also possible in the presence of a TBox and a role hierarchy (see
below).

In many cases, consistency of an ABox is of the same complexity as
concept satisfiability [Schaerf 1994]; examples are ALC without and with
TBoxes [Baader & Hollunder 1991; De Giacomo & Lenzerini 1996] and SHIQ
[Tobies 2001a]. Moreover, the tableau algorithm for SHIQ can be extended
to decide consistency of ABoxes, see [Horrocks et al. 2000b]. In contrast,
extending a description logic with nominals often increases its complexity.
For example, ALC with inverse roles (see below) is Pspace-complete, but
becomes Exptime-complete when extended with nominals [Areces et al.
1999]. If, additionally, number restrictions are present, the complexity leaps
from Exptime-completeness to NExptime-completeness [Tobies 2001a]. A
reason for this increase in complexity might be that nominals destroy the tree
model property [Vardi 1997]: a logic enjoys the tree model property if every
satisfiable concept/formula has a model whose relational structure forms a
tree. For example, for nominals N1 and N2, the concept N1u∃r.(N2u∃r.N1)
only has models with a cycle of length two.

Nominals originate in hybrid logic [Prior 1967; Areces et al. 1999; 2000],
and are known in description logics as an elegant and powerful generalisation
of ABoxes; they are discussed in more detail in Section 5.

Inverse Roles In various applications, one wants to use both “directions”
of a role, e.g., one wants to use both hasPart and isPartOf [Sattler 2000].

3Such a reduction is also possible the other way round, i.e., from “with unique name
assumption” to “without”, by substituting individual names. However, this involves a
non-deterministic step.

14

To model these roles adequately, i.e., to ensure that 〈x, y〉 ∈ hasPartI iff
〈y, x〉 ∈ isPartofI , some description logics provide inverse roles: for r a
role name, r− is an inverse role, which is interpreted as (r−)I = {〈y, x〉 |
〈x, y〉 ∈ r−}.

A variety of DLs can be extended with inverse roles without affect-
ing their computational complexity: examples are ALC with or with-
out TBoxes and possibly with number restrictions [Calvanese et al. 1999b;
Tobies 2001a]. However, there are counter-examples such as ALC with con-
crete domains, which becomes NExptime-complete when extended with in-
verse roles [Lutz 2003] and ALC with nominals and without TBoxes, which
becomes Exptime-complete when extended with inverse roles [Areces et al.
1999]. Inverse roles are closely related to the tense logic “past” modality
[Rescher & Urquhart 1971; Spaan 1993b; Vardi 1998] and are syntactic vari-
ants of converse programs in dynamic logics and the µ-calculus [Streett 1982;
Vardi 1985; 1998].

Transitive Roles are special role names r ∈ R+ ⊆ R that are to be
interpreted as transitive relations [Sattler 1996]. Transitive roles can be used
to model transitive relations such as isAncestorOf or isPartOf [Sattler
2000]. Another way to extend DLs with transitivity is to allow for the
transitive closure operator on roles, i.e., to allow for roles r∗ in the place of
roles [Baader 1991; De Giacomo 1995], where r∗ is to be interpreted as the
transitive closure of rI . We will discuss the expressiveness of transitive roles
in more detail in Section 4.1.

Adding transitive roles to ALC without TBoxes yields a DL whose rea-
soning problems are still Pspace-complete [Sattler 1996], whereas adding
the transitive closure operator on roles yields an Exptime-complete logic
[Fischer & Ladner 1979]. Transitive roles are notational variants of transi-
tive accessibility relations in modal logics [Halpern & Moses 1992], whereas
a transitive closure operator is also present in the dynamic logic PDL
[Fischer & Ladner 1979], which is a notational variant of ALC with regular
role expressions [Schild 1991; Baader 1991].

Boolean Operator on Roles So far, we considered DLs with full
Boolean operators on concepts, but no Boolean operators on roles. In DLs,
Boolean operators on roles are mostly restricted to intersection [Donini
et al. 1991a], or to union and difference [De Giacomo & Lenzerini 1996;
Calvanese et al. 1995]. They are interpreted in the obvious way, i.e.,
(rus)I = rI∩sI , etc., and are an interesting expressive means. For example,

15

role negation allows to express the so-called window operator from modal
logic [Gargov et al. 1987]. The window operator can be viewed as the dual4

of universal restrictions: an instance of ∀connectedTo.Pipe is connected
only to pipes, whereas an instance of the concept ∀Pipe.connectedTo us-
ing the window operator is connected to all pipes. It can be easily seen
that the concept ∀¬connectedTo.¬Pipe using role negation is equivalent to
∀Pipe.connectedTo. For a complete description of the (mostly dramatic)
effects of adding Boolean operators on roles to the computational complexity
of ALC, see [Lutz & Sattler 2001].

In dynamic logic, union of programs is present in all logics allowing for
regular programs [Fischer & Ladner 1979], and Boolean operators on modal-
ities are discussed, e.g., in [Gargov et al. 1987].

Role Hierarchies Another expressive means on roles are role hierarchies,
which are finite sets of role inclusion axioms: a role inclusion axiom is an
expression of the form r v̇ s, for r and s role names. In case the underlying
DL allows for inverse roles, r and/or s can also be inverse roles. An inter-
pretation I satisfies a role hierarchy R iff rI ⊆ sI for each r v̇ s in R. Such
an interpretation is called a model of R. Satisfiability and subsumption
w.r.t. role hierarchies are defined in the obvious way.

Role hierarchies can be used, for example, to introduce a sub-role
hasComponent of hasPart. In the presence of inverse roles, role hierarchies
can be used to enforce symmetric roles using r− v̇ r and r v̇ r−.

It should be noted that role hierarchies provide a weak form of role inter-
section: replacing each role expression r1u r2 with a new role name r1,2 and
adding r1,2 v̇ r1 and r1,2 v̇ r2 to the role hierarchy yields a “weakened” form
of intersection since rI1,2 ⊆ rI1 ∩ rI2 . Moreover, for s a transitive role, the role
inclusion axioms r v̇ s yields a weakened form of the transitive closure: s
is interpreted as some transitive role containing r, whereas r∗ is interpreted
as the smallest transitive role containing r. The latter observation implies
that pure concept satisfiability of ALC, when extended with both transi-
tive roles and role inclusion axioms, becomes Exptime-hard [Sattler 1996].
In DLs, role inclusion axioms are widely known since they add some form
of expressive power that allows for adequate modelling of various applica-
tions whereas, in this simple form, they do not seem to have modal logic
counterparts.

4Dual is here not used in the strict, logical sense.

16

General Role Inclusion Axioms (g-RIAs) are a generalisation of the
above role inclusion axioms to the form r1 . . . rm v̇ s1 . . . sn for ri, sj role
names [Horrocks & Sattler 2003]. A model of such an axiom satisfies

rI1 ◦ . . . ◦ rIm ⊆ sI1 ◦ . . . ◦ sIn,

where ◦ denotes the composition of binary relations. Role value maps, i.e.,
concepts of the form r1 . . . rm ⇒ s1 . . . sn with the semantics

(r1 . . . rm ⇒ s1 . . . sn)I = {x | ∀y.〈x, y〉 ∈ rI1 ◦. . .◦rIm ⇒ 〈x, y〉 ∈ sI1 ◦. . .◦sIn},

can be viewed as a “local” form of g-RIAs. Both constructors have dra-
matic effects on the decidability of a description logic: it was shown in
[Schmidt-Schauss 1989] that subsumption of the very weak DL allowing
only for conjunction and universal restrictions becomes undecidable when
extended with role value maps. DLs with g-RIAs are closely related to
grammar logics [Demri 2001; Baldoni 1998; Baldoni et al. 1998], i.e., the
multi modal logic K with the accessibility relations being constrained by
a grammar: a production rule of the form s1 . . . sn → r1 . . . rm can be
viewed as a notational variant of the g-RIA r1 . . . rm v̇ s1 . . . sn, and
thus enforces models to interpret r1 . . . rm as a sub-relation of s1 . . . sn.
It is well-known that each context-free grammar can be transformed into
an equivalent one in Chomsky normal form, and that there are context-
free grammars such that multi modal K becomes undecidable if the
accessibility relations are constrained by these grammars [Baldoni 1998;
Baldoni et al. 1998]. Transferring this to DLs yields that satisfiability of
ALC-concepts w.r.t. g-RIAs of the form r1r2 v̇ s is undecidable.

Fixpoint Operators are expressive means that are not first order de-
finable, and they are known in DLs in at least three forms: a re-
stricted form includes the transitive closure operator on roles [Baader 1991;
De Giacomo & Lenzerini 1996] (see above) and an operator that allows to
enforce that a role is interpreted as a well-founded relation [Calvanese et
al. 1995]. Secondly, general least and greatest fixpoints operators in DLs
[Calvanese et al. 1999a] are notational variants of the fixpoint operators in
the µ-calculus [Kozen 1982]. Thirdly, cyclic concept definitions such as

Device
.= TechThing u ¬Connection u ∀connectedTo.Connection

Connection
.= TechThing u ¬Device u ∀connectedTo.Device

can be read with least or greatest fixpoint semantics [Nebel 1990; Baader
1996b]: in contrast to the descriptive semantics, which takes into account

17

all fixpoints of such GCIs, one might chose to take into account only the
least or the greatest fixpoints. A discussion on the consequences of such a
choice can be found in [Nebel 1990].

Adding least and greatest fixpoints operators to ALC yields a notational
variant of the µ-calculus and thus brings its complexity from Pspace- to
Exptime-completeness [Streett & Emerson 1989], where it remains even if
the logic is further extended with either inverse roles and features, number
restrictions, nominals, or n-ary relations [Vardi 1998; Kupferman et al. 2002;
Sattler & Vardi 2001; Calvanese et al. 1999a].

3 Introduction to DL Reasoning Techniques

In this section, we sketch two prominent reasoning techniques employed
to decide concept satisfiability (and thus subsumption) w.r.t. TBoxes, and
discuss their advantages and disadvantages.

3.1 Tableau algorithms

For several expressive DLs, there exist efficient tableau-based implementa-
tions that decide satisfiability of concepts w.r.t. a TBox [Horrocks 1998b;
Haarslev & Möller 2001]. For an extensive survey of tableau algorithms for
description logics, see, e.g., [Baader & Sattler 2001]. In the following, we
will give an intuitive description of description logic tableau algorithms. In
general, they work on trees whose nodes stand for individuals of an inter-
pretation, and the input is assumed to be in negation normal form.5 Nodes
are labelled with sets of concepts, namely those they are assumed to be an
instance of. Edges between nodes are labelled with role names or sets of role
names, namely those that hold between the corresponding individuals.

Intuitively, to decide the satisfiability of a concept C, a tableau algorithm
starts with an instance x0 of C, i.e., a tree consisting of a root node x0 only
with C as its node label (written L(x0) = {C}). Then the algorithm breaks
down concepts in node labels syntactically, thus inferring new constraints
on the model of C to be built, and possibly generating new individuals, i.e.,
new nodes. Roughly speaking, if (D uE) ∈ L(y) has already been inferred,
it adds D and E to L(y). For ∃r.F ∈ L(y), it generates a new r-successor
node of y, say z, and sets L(z) = {F}. If a node y has some r-successor z

5A concept is in negation normal form if negation occurs in front of concept names
only. It can be easily seen that each concept can be transformed into an equivalent one
in negation normal form by pushing negation inwards, using de Morgan’s rules and the
duality between existential and universal restrictions.

18

and it finds ∀r.G ∈ L(y), then G is added to L(z). Finally, in the presence
of a TBox T , it adds, for each GCI Ci v̇ Di ∈ T , and for each node y, the
(negation normal form of the) concept (¬Ci tDi) to L(y). Now, for logics
with disjunctions, various tableau algorithms non-deterministically choose
whether to add D or E to L(y) for (D t E) ∈ L(y). The answer behaviour
is as follows: if this “completion” can be carried out exhaustively without
encountering a node with both a concept and its negation in its label—
a so-called clash, then the algorithm answers that the input concept was
satisfiable, and unsatisfiable, otherwise.

Since we are talking about decision procedures, termination is an im-
portant issue. Even though tableau algorithms for some DLs terminate
“automatically”, this is not the case for more expressive ones. For exam-
ple, consider the algorithm sketched above on the input concept A and
TBox {A v̇ ∃r.A}: it would create an infinite r-chain of nodes with labels
{A,∃r.A}. To guarantee termination, the tableau algorithm needs to be
stopped explicitly. Intuitively, the processing of an element z is stopped
if all “relevant” concepts in the label of z are also present in the label
of an “older” element z′. In this case, z′ is said to block z. The defi-
nition of “relevant” has to be chosen carefully since it is crucial for the
correctness of the algorithm [Baader & Sattler 1999; Horrocks et al. 1999;
2000a] and for the efficiency of the implementation [Horrocks & Sattler 2002;
Hladik 2002].

Correctness of DL tableau algorithms are often proved as follows: first,
termination is proved by, roughly spoken, showing that the algorithm builds
a (tree) structure of bounded size in a monotonic manner. Soundness is
proved by constructing a model (or an abstraction of a model) of the input
concept (and TBox) in case that the algorithm stops without having gener-
ated a clash. If a blocking situation has occurred, this often yields either a
finite, cyclic model or an “unravelled” infinite tree model (or an abstraction
thereof). Completeness can be proved by using a model of the input concept
and TBox to steer the application of the non-deterministic rules and proving
that no clash occurs using this control.

In the tableau sketched above and in various other tableau algorithms,
disjunction is treated non-deterministically. When implementing tableau
algorithms or designing an optimal tableau algorithm for a logic that is
complete for a deterministic complexity class, this non-determinism has
to be circumvented. A natural solution is back-tracking which, unfortu-
nately, is often not sufficient to design optimal tableau algorithms. For
example, to the best of our knowledge, the algorithm in [Donini & Massacci
2000] is the only known worst-case optimal tableau algorithm for an Exp-

19

time-complete description logic, and employs a rather intricate technique
to circumvent non-determinism due to disjunction. In contrast, the tableau
algorithm implemented in state-of-the-art DL systems such as FaCT and
Racer uses (highly optimised) back-tracking and is 2NExptime even
though the underlying logic is Exptime-complete [Horrocks et al. 1999;
Tobies 2001a]. Despite this sub-optimality, these tableau algorithms al-
low for a set of well-known efficient optimisations, so that they per-
form much better in practise than their worst-case complexity suggests;
see [Horrocks 1998b; Horrocks et al. 2000a; Haarslev & Möller 2000; 2001;
Horrocks & Sattler 2002] for descriptions of these optimisations. An inter-
esting open question is whether an implementation of a worst-case optimal
algorithm would behave better in practise—so far, only implementations of
worst-case sub-optimal algorithms exist.

In summary, tableau algorithms are used in state-of-the-art implemen-
tations, and many well-understood optimisations are available. They have
proven to perform well on realistic inputs. However, they involve special
techniques to ensure termination and avoid non-determinism, and are thus
rarely worst-case optimal for logics complete for deterministic complexity
classes.

3.2 Automata-based algorithms

For several expressive description and modal logics, there exist optimal
automata-based algorithms that decide satisfiability (and thus subsump-
tion) of concepts, possibly w.r.t. a TBox or a universal role [Vardi &
Wolper 1986; Streett & Emerson 1989; Vardi 1998; Calvanese et al. 1999a;
Lutz & Sattler 2001; Sattler & Vardi 2001; Kupferman et al. 2002]: for a con-
cept C and a TBox T , we define an automaton AC,T which accepts ex-
actly the (abstractions of) models of C and T . Thus, the satisfiabil-
ity problem is reduced to the emptiness problem of automata. In most
cases, abstractions of models are finite or infinite trees—depending on the
logic. Thus the target automata are automata on finite or infinite trees.
Moreover, we can use deterministic, non-deterministic, or, as a general-
isation, alternating automata, where the latter class of automata allows
for rather elegant translations of many logics. In many cases, the empti-
ness test for non-deterministic automata is polynomial and the transla-
tion yields an automaton of size exponential in the input concept and
TBox. In contrast, the translation into an alternating automaton usu-
ally yields an automaton of polynomial size (see, for example, [Vardi 1998;
Calvanese et al. 1999a])—however, testing emptiness of (two-way and one-

20

way) alternating automata is Exptime-complete [Kupferman & Vardi 1998;
Vardi 1998]. In both cases, this reduction yields a worst-case optimal algo-
rithm for Exptime-complete logics.

One advantage of this approach is that standard abstraction techniques
such as unravelling [Thomas 1992] yield, in general, abstractions of models
that are infinite trees. Using automata on infinite trees, we can directly
work with these standard, infinite abstractions. This is a clear advantage
for logics lacking the finite model property, and where it would be tedious
to invent finite abstractions. In tableau algorithms, we had to work with
finite representations of possibly infinite models to ensure termination, and
used blocking to ensure termination. In contrast, for automata on infinite
trees, termination is no issue since input trees are, by definition, infinite
structures.

Another advantage of non-deterministic automata is that non-deter-
minism due to disjunctions can be translated into non-deterministic tran-
sitions. For alternating automata, we can also translate “universal” quan-
tification—e.g. due to conjunction—into the transition function. In the
following, we sketch the construction of an alternating automaton for an
ALC-concept C and a TBox T . We use a state qD for each sub-concept D
of C or T . Nodes of input trees are labelled with sets of concept names and
stand for elements of a model. The transition function δ takes a state (the
current one) and a label (the one from the current node), and returns a pos-
itive Boolean formulae, where each atom can be read as “send a copy of the
automaton in state q to the jth neighbour” or “send a copy of the automa-
ton in state q to the current node”. A tree is accepted by the automaton
if there exists a “successful” run of the automaton on the tree. Such a run
is, basically, a repeated sending of copies to nodes, each of which “satisfies”
the corresponding Boolean formulae of the transition function. Let us start
with the easiest case: for X a concept name, δ(qX , σ) = true if X ∈ σ, and
false otherwise. Next, for conjunctions, δ(qDuE , σ) = (0, qD)∧ (0, qE), which
sends, when being in state qDuE and reading a node label σ, one copy of
the automaton in state qD and one copy in state qD to the same node (“0”
stands for “to the same node”). Similarly, δ(qDtE , σ) = (0, qD) ∨ (0, qE),
which sends one copy of the automaton in state qD or one copy in state
qD to the same node. We assume the sub-concepts of C and T that are
existential restrictions to be ordered linearly, and reserve the j-th successor
of a node for the j-th existential restriction ∃r.E. Then

δ(q∃r.E , σ) = (j, qE) ∧ ((j, q¬C1) ∨ (j, qD1)) ∧ . . . ∧ ((j, q¬Cm) ∨ (j, qDm)),

which sends one copy of the automaton in state qE to the j-th successor and,

21

for each GCI Ci v̇ Di in T , either one copy in state q¬Ci or one copy in state
qDi to the j-th successor. The translation of universal restrictions is slightly
more complicated since it depends on whether a node has a j-th successor,
and thus omitted here. In summary, the description logic translates in a
natural way into an automaton.

The main drawback of automata lies in the fact that their complex-
ity is exponential not only in the worst case, but in every case: either
the automaton AC is exponential in |C| or, in the case of alternating au-
tomata, is polynomial but is translated into a non-deterministic automaton
A′C of exponential size to decide its emptiness [Kupferman & Vardi 1998;
Vardi 1998]. Therefore, a naive implementation is doomed to failure and,
to the best of our knowledge, no optimised implementation is yet available.
However, a first attempt to gain insight into such an implementation has
been carried out successfully [Pan et al. 2002].

Correctness of automata-based algorithms is often proved as follows.
Firstly, it is shown that each satisfiable concept (and TBox) has a tree
model (or a tree abstraction of a model) and, in case tree abstractions are
used, that each abstraction corresponds to a model. Then one shows that
the automaton constructed for a concept C and a TBox T accepts exactly
the (abstractions of) tree models of C w.r.t. T .

In summary, automata-based approaches often allow for a very elegant
and natural translation of a logic and provide Exptime upper complexity
bounds and are thus optimal for Exptime-hard logics. Equally important,
they handle infinite structures and non-determinism implicitly.

Thus, the advantages of tableau- and automata-based algorithms are
rather complementary. In the past, it occurred quite often that first, a
description logic was proven to be in Exptime using automata, and then
a tableau-based algorithm for this logic was developed for implementation
purposes. In this case, fixing tight complexity bounds for a DL is not only
of theoretic interest, but also of a practical one: so far, no tableau-based
decision procedure for NExptime-complete DLs was implemented, but for
a variety for Exptime-complete DLs. Thus proving a certain DL to be in
Exptime might justify an attempt to design a “practical” tableau algo-
rithm.

3.3 Other reasoning techniques

For certain DLs that are not propositionally closed such as the one used in
the system Classic [Patel-Schneider et al. 1991], one can use a reasoning

22

technique called structural subsumption: roughly speaking, to decide the
subsumption between two concepts C and D, both concepts are transformed
into a certain normal form C ′ and D′, and then subsumption can be decided
by a syntactic comparison of C ′ and D′, see Section 2.3.1 of [Baader et al.
2003]. This technique yields a polynomial time decision procedure for a
sub-Boolean fragment of ALC with number restrictions, but seems to be
applicable only to DLs without disjunction and existential restrictions.

Finally, the successful resolution-based theorem prover SPASS was mod-
ified into a decision procedure for expressive modal and description log-
ics, then called MSPASS [Hustadt & Schmidt 2000]. Interestingly, it is well-
suited for DLs extending ALC with Boolean operators on roles and can be
extended to n-ary description logics [Georgieva et al. 2003].

4 DLs with Expressive Operators on Roles

In various applications such as engineering and medicine, aggregated objects
play a central role, where we call an object aggregated if it is composed of
various parts, which again can be composite, etc. It is natural to describe
an aggregated object by means of its parts and, vice versa, to describe
parts by means of the aggregate they belong to. For example, the following
statements describe a control rod and a reactor core by means of their parts
and wholes:

ControlRod v̇ Device u ∃partOf.ReactorCore
ReactorCore v̇ Device u ∃hasPart.ControlRod u ∃partOf.NuclReactor

In contrast to, for example, the relation likes, the part-whole relation has a
variety of properties; for a complete collection of these properties, we refer to
[Simons 1987]. Most importantly, the general part-whole relation is a strict
partial order, i.e., it is transitive and asymmetric (and hence irreflexive).
That is, if x partOf y and y partOf z, then x partOf z, and if x partOf y,
then not y partOf x. Moreover, an aggregated object has at least two parts
where none is a part of the other. Next, we might consider to assume that
two objects consisting of the same parts are identical. As a last example,
we might assume the existence of atoms, i.e., indivisible objects of which all
other objects are composed. This is equivalent to assuming that hasPart is
well-founded and thus to excluding infinite chains x0 hasPart x1 hasPart
x2

Besides the properties mentioned above, it might be useful to distinguish
various sub-relations of the part-whole relation such as, for example, the re-

23

lation between a component and its composite (e.g. between a motor and
the car the motor is in), the relation between matter and an object contain-
ing this matter (e.g. between metal and a car), or the relation between a
member and a collection it belongs to (e.g. between a tree and the forest
this tree belongs to). These sub-part-whole relations are subject to sev-
eral investigations and discussions; see, for example, [Winston et al. 1987;
Gerstl & Pribbenow 1995; Pribbenow 1995]. However, various questions con-
cerning part-whole relations are still open, for example concerning the rela-
tionship between these sub-relations and their interaction.

4.1 Adding transitivity

Coming back to representing aggregated objects in ontologies using DLs, we
observe that the DL ALC provides no means to express that a relation is
transitive. For example, in ALC, the concept

Device u ∃hasPart.(ReactorCore u ∃hasPart.ControlRod)

is not subsumed by

Device u ∃hasPart.ControlRod,

although the first concept is a specialisation of the second one under the
assumption that hasPart is interpreted as a transitive relation.

Thus the correct modelling of aggregated objects asks for the exten-
sion of ALC with some form of transitivity. As mentioned in Section 2.4,
there are at least two such possible extensions. One might argue that mod-
elling aggregated objects requires a direct, non-transitive part-whole relation
hasDirectPart. In this case, we need a DL with a transitive closure oper-
ator to also provide its transitive super-role hasPart. However, the way in
which aggregated objects are decomposed strongly depends on the individ-
ual taste, aims, and circumstances. Continuing the previous example, we
introduce the following GCIs concerning controlled reactors:

CReactor v̇ Reactor u ∃hasDirectPart.ControlRod
as well as

CReactor v̇ Reactor u ∃hasDirectPart.ControlledRCore and
ControlledRCore v̇ RCore u ∃hasDirectPart.ControlRod
However, using all three GCIs yields models where a reactor has a control
rod as a direct part, and where the control rod is also a direct part of the

24

reactor’s core—which clearly clashes with our intuition of direct part-whole
relations. Thus the the transitive closure of roles is only required in case that
all decompositions of aggregated objects are unique, and we have preferred
to add transitive roles to ALC.

By S, we refer to the description logic ALC extended with transitive
roles, i.e., where the set of of role names contains a subset of transitive role
names R+ ⊆ R.6 Obviously, S provides the means to represent the general
part-whole relation as a transitive relation by asserting that partOf is a
transitive role. Additionally, since S has a tree model property, all satisfiable
concepts and TBoxes have a model in which partOf is interpreted as a strict
partial ordering.

Tableau algorithm for S A naive extension of the tableau algorithm
for ALC sketched in Section 3.1 to transitive roles does not necessarily ter-
minate, even without TBoxes: assume the algorithm is started with the
concept

C0 := C u ∃r.C u ∀r.(∃r.C)

for r a transitive role. After some rule applications, the algorithm has gen-
erated three nodes, x, y, and z where y is an r-successor of x, z is an
r-successor of y, and

C0,∀r.(∃r.C) ∈ L(x)
∃r.C ∈ L(y)
C ∈ L(z).

Since r is a transitive role, we could make z an r-successor of x, but this
would destroy the tree structure that turned out to be quite useful. Instead,
we do something which has the same effect: we add ∀r.(∃r.C) to L(y).
More precisely, if ∀r.C ∈ L(x) and x has an r-successor y, we add both C
and ∀r.C to y’s label. In our example, this and the fact that z is an r-
successor of y leads to ∃r.C ∈ L(z). It can easily be seen that the repeated
application of this modification builds an infinite r-chain, and thus leads to
non-termination. To re-gain termination without corrupting soundness or
completeness of the algorithm, we use the blocking technique mentioned in
Section 3.1: we stop generating new successors of a node z in case there is
another node z′ with L(z) ⊆ L(z′). In this case, we say that z′ blocks z,
and we can build a model by “merging” z and z′ (and all other nodes which

6The logic S has previously been called ALCR+ , but this becomes too cumbersome
when adding letters to represent additional features.

25

z′ blocks), thus building a finite, possibly cyclic model [Horrocks & Sattler
1999].

4.2 Further adding inverse roles

When modelling aggregated objects using S and using role names partOf
and hasPart, we might end up with an inadequate representation: for ex-
ample, extending the TBox in the beginning of Section 4 with

NuclReactor u ∃hasPart.Faulty v̇ Dangerous,

we would assume that

ControlRod u Faulty is subsumed by ∃partOf.Dangerous

w.r.t. to this TBox—which is only the case if partOf was the inverse of
hasPart, i.e., if 〈x, y〉 ∈ hasPartI iff 〈y, x〉 ∈ partOfI . Thus we can choose
between the following three options: we

1. use either partOf or hasPart, but not both,

2. use partOf and hasPart and live with the fact that our model is not
adequate in the above sense and we thus might lose inferences, or

3. extend S with inverse roles, see Section 2.4.

The third options yields a description logic called SI, which allows to de-
scribe both objects by means of the wholes they belong to and by means
of the parts they have. Substituting hasPart by partOf− in the last ex-
ample yields a TBox with respect to which ControlRod u Faulty is indeed
subsumed by ∃partOf.Dangerous.

Tableau algorithm for SI Intuitively, we can extend the tableau al-
gorithm for S as follows to yield a decision procedure for satisfiability of
SI-concepts [Horrocks & Sattler 1999; Horrocks et al. 1999]: if ∀r.C ∈ L(w),
in addition to adding C to the label of r-successors, we also add C to r-
predecessors.7 For example, for the concept ∃r−.(Cu∀r.B) ∈ L(x), we would
first create an r−-successor y of x with C u ∀r.B ∈ L(y). For ∀r.B ∈ L(y),
we would then add B to L(x) since x is an r-predecessor of y (because y
is an r−-successor of x). Moreover, the blocking condition has to be more

7Here, r-predecessors might seem to be defined the wrong way round, but this notation
turned out to be useful.

26

strict: for z′ to block z, they must have identical labels, i.e., L(z) = L(z′).
Finally, blocking becomes necessarily “dynamic”: in the presence of inverse
roles, node labels influence each other up and down the completion tree.
Thus the label of a node x blocking some node y further down the tree can
change due to some of its other successors, the node labels of x and y become
different, and we must “unblock” them.

This tableau algorithm decides satisfiability (and thus subsumption) of
SI-concepts w.r.t. TBoxes. Moreover, we were able to prove that, in the
absence of a TBox and employing a certain strategy and a more intricate
blocking condition, it uses polynomial space only. This is one example for the
fact that the definition of the blocking condition is not only crucial for the
correctness of the algorithm, but also for its complexity. As a consequence,
ALC without TBoxes and with transitive and inverse roles is of the same
complexity as pure ALC, namely Pspace-complete [Horrocks et al. 1999].

4.3 Further adding role inclusion axioms

If we want to use, beside the general part-whole relation, certain sub-part-
whole relations such as “is a component of” or “is an ingredient of”, we can
use role hierarchies [Horrocks & Gough 1997], as defined in Section 2.4. The
extension of SI with role hierarchies is called SHI.

Adding role hierarchies to SI has mainly two consequences: firstly, we
can introduce (possibly transitive—depending on the additional relation)
role names such as hasComponent or hasIngredient and add role inclusion
axioms

hasComponent v̇ hasPart and
hasIngredient v̇ hasPart.

This turns out to be quite useful in various applications since it allows for
a concise and natural description not only of aggregated objects.

Secondly, SHI (as well as SH and SHIQ) has the expressive power for
the internalisation of TBoxes [Baader 1991; Horrocks & Sattler 1999]. This
technique polynomially reduces reasoning w.r.t. a general TBox to pure
concept reasoning as follows. We introduce a new transitive role name u ∈
R+ and specify that u is a super-role of all roles and their respective inverses.
This implies that, in connected models, u behaves like a universal role, i.e.,
u relates all elements of the interpretation domain; cf. Section 2.4. Since
each satisfiable SHI concept is satisfiable in a connected model, it can be
shown that a concept C is satisfiable w.r.t. {Ci v̇ Di | 1 ≤ i ≤ n} iff
∃u.C u ∀u. u

1≤i≤n
(Ci ⇒ Di) is satisfiable.

27

Tableau algorithm for SHI The tableau algorithm for SI and TBoxes
can be extended to SHI as follows [Horrocks & Sattler 1999]. Basically, it
involves an adaption of the notion of an “r-successor” to take into account
role hierarchies: if y is an r-successor of x and r v̇ s is in the role hierarchy,
then y is also an s-successor of x. An analogous adaption for predeces-
sors is also required in the presence of inverse roles, and transitive roles
require a further, rather complex adaption of the propagation of universal
restrictions ∀r.C. Moreover, the correctness proof of the tableau algorithm
becomes more complex since the tree structure the algorithm works on does
no longer correspond to the relational structure that is to be built in case
that the algorithm answers “satisfiable”: this is already the case in the
presence of transitive roles, but becomes more notable if, additionally, role
hierarchies are taken into account. For SI, the tree structure was only
missing “transitively implied” edges. For SHI, these as well as those edges
implied by the role hierarchy are possibly missing.

4.4 Further adding number restrictions

In general, when describing the relevant concepts of an application domain,
it seems to be natural to describe an object by restricting the number of
objects it is related to via a certain relation. For example, the following are
concept definitions for pipes and forks:

Pipe
.= Connection u (= 1 partOf− Input) u (= 1 partOf− Output)

Fork
.= Connection u (= 1 partOf− Input) u (≥ 2 partOf− Output)

Before adding number restriction to SHI, we have to define simple roles
since only simple roles are allowed in number restrictions—without that
restriction, satisfiability of SHI extended with number restrictions is unde-
cidable [Horrocks et al. 1999].

A (possibly inverse) role is called simple if it is neither transitive nor has
a transitive sub-role.
SHIQ is obtained from SHI by allowing, additionally, for concepts of

the form (>nR.C) and (6nR.C) for n a non-negative integer, R a simple
role, and C a SHIQ-concept. The semantics of number restrictions is given
in Section 2.4.

In contrast to SHI, SHIQ lacks the finite model property. That is,
there are concepts that are satisfiable, but only in infinite models. For
example, for r a transitive role and s v̇ r, each model of the following
concept contains an infinite, acyclic r-chain:

¬A u ∃s.A u ∀r.((∃s.A) u (>1s−.>)).

28

As mentioned in Section 2.2, state-of-the-art DL reasoners FaCT and
Racer implement tableau algorithms for SHIQ [Horrocks 1998b; Haarslev &
Möller 2001]. Thus, SHIQ forms the logical basis of ontology editors Rice
and Oiled [Cornet 2003; Bechhofer et al. 2001], and of the intelligent concep-
tual modelling tool Icom [Franconi & Ng 2000].

Tableau algorithm for SHIQ It is not difficult to see that, in the pres-
ence of number restrictions, we have to add two new rules to our tableau
algorithm:

1. if (>nr.C) ∈ L(x) and x has less than n r-neighbours with C in their
label, then generate these missing r-neighbours and set their labels to
{C}.

2. if (6nr.C) ∈ L(x) and x has more than n r-neighbours with C in their
label, then merge some of them, so that only n remain.

However, this is not sufficient. Firstly, such a naive extension might easily
yield a “yo-yo” effect: for example, if applied to a node x with (>3r.(C u
D)), (62r.C) ∈ L(x), the above tableau algorithm would generate three r-
successors yi with CuD ∈ L(yi), break down the conjunctions CuD ∈ L(yi),
and then notice that there are too many r-successors yi of x with C ∈ L(yi)
for (62r.C) ∈ L(x). Thus two of them would be merged into a single
one. Now there are not enough r-successors for (>3r.(C u D)), so one
would be generated, and so on, thus leading to non-termination. To re-
gain termination, we can use, for example, an explicit inequality relation
6 .= that prevents nodes that were introduced for one (>nr.C) from being
merged again later. Moreover, we extend the notion of a “clash” to cases
where (6nr.C) ∈ L(x) and x has more than n 6 .=-distinct r-successors with
C in their labels.

Secondly, consider the concept

C := (>3r.B) u (61r.A) u (61r.¬A).

So far, for C ∈ L(x), the tableau algorithm would generate three r-successors
yi of x with {B} = L(yi), and stop with the answer “C is satisfiable”. How-
ever, the concept C is obviously unsatisfiable: the algorithm’s unsoundness
is due to its ignorance of which of the yi are instances of A and which are
instances of ¬A. To overcome this problem, we add a third rule

3. if (6nr.C) ∈ L(x) and y is an r-neighbour of x, then non-determi-
nistically add C or ¬C to L(y).

29

Thirdly, one also needs to modify the blocking condition—otherwise,
the algorithm would still be unsound. Roughly spoken, the SHIQ blocking
condition involves two pairs of subsequent nodes whose labels must coin-
cide pairwise. Together, these three modifications indeed yield a decision
procedure for the satisfiability of SHIQ [Horrocks et al. 1999].

Interestingly, the first proposal of the SHIQ blocking condition was so
strict that it delayed blocking severely, thus enlarging the search space for a
model dramatically and degrading the performance of FaCT. Investigating
the soundness and completeness proof of the SHIQ tableau algorithm more
closely, we were able to devise an new blocking condition which still ensures
soundness, completeness, and termination, but was less strict [Horrocks &
Sattler 2002]. Intuitively, node labels had only to be equal for “relevant
concepts” in the respective nodes, a fact that made the formulation of the
new blocking condition (and its testing in FaCT) rather intricate. However,
an empirical evaluation of the new tableau algorithm in FaCT showed that
this more intricate but less strict blocking condition pays off: it improves
performance up to two orders of magnitude.

Concerning worst-case complexity, both the original and the optimised
SHIQ tableau algorithm are far from being optimal: in the worst case,
they run in 2NExptime, whereas satisfiability of SHIQ-concepts is known
to be in ExpTime, even with numbers in number restrictions coded in binary
[Tobies 2001a]. Despite this worst-case sub-optimality, its implementation in
the FaCT and Racer systems behave surprisingly well in practise [Horrocks &
Sattler 2002; Haarslev & Möller 2001]. However, the worst-case complexity
implies that there exist rather small example inputs for which these systems
need so much time that they are practically not terminating [Berardi et al.
2001]. To investigate the nature of input concepts and TBoxes on which
these system perform well and those where they fail is part of future work.

4.5 Further adding more expressive role inclusion axioms

Although SHIQ is rather expressive, there is a common phenomenon that
SHIQ is not able to express, and that would be useful for many applications,
especially for those involving aggregated objects. This phenomenon is often
coined propagation of properties: for example, one wants to express that a
fracture located in the shaft of the femur (which is a division of the femur) is
a fracture located in the femur. Or one might want to express that the owner
of a thing also owns the parts of this thing. The importance of this expressive
means is illustrated by the fact that the Grail DL [Horrocks et al. 1996;
Rector et al. 1997], which was designed for medical terminologies, is able

30

to express these propagations (although it is quite weak in other respects).
In two other medical terminology applications, rather complex workarounds
to represent propagations can be found: SEP-triplets8 in [Schulz & Hahn
2001] and right-identities in [Spackman 2000]. Finally, the CycL knowledge
representation language provides the transfersThro statement for similar
propagations [Lenat & Guha 1989]. So far and to the best of our knowledge,
none of these systems were proven to handle these propagations in a sound
and complete way.

It is rather straightforward to extend SHIQ to allow for the propagation
of properties: obviously, it suffices to extend role hierarchies to the general
role inclusion axioms (g-RIAs, see Section 2.4) of the form r ◦ s v̇ t and to
require that a model satisfies rI ◦sI ⊆ tI for each r◦s v̇ t in a role hierarchy
(where ◦ is standard composition of binary relations). For the first example,
one would introduce an axiom hasLocation ◦ divisionOf v̇ hasLocation
and, indeed, w.r.t. this axiom,

Fracture u ∃hasLocation.(Shaft u ∃isDivisionOf.Femur)

is subsumed by
Fracture u ∃hasLocation.Femur.

For the second example, one would introduce an axiom owns ◦ hasPart v
owns and, w.r.t. this axiom,

∃owns.(Bicycle u ∃hasPart.SuspensionFork)

is subsumed by
∃owns.SuspensionFork.

As mentioned in Section 2.4, results in grammar and description logics
imply that extending ALC with role inclusion axioms of the form r ◦ s v̇
t yields a logic for which satisfiability and subsumption are undecidable
[Baldoni 1998; Baldoni et al. 1998; Wessel 2001]. However, for expressing
propagation of properties, we only need axioms of the form r◦s v̇ s or r◦s v̇
r [Horrocks et al. 1996; Rector 2002]. Unfortunately, extending SHIQ with
this restricted form of axioms still yields an undecidable logic [Horrocks &
Sattler 2003]. This is a rather surprising result since, roughly spoken, the
former undecidability is due to the close relationship between axioms r◦s v̇ t
and context-free production rules t → rs in grammars. A set of axioms
r ◦ s v̇ t can be viewed as a context-free grammar in Chomsky normal

8SEP-triplets are used both to compensate for the absence of transitive roles in ALC,
and to express the propagation of properties across a distinguished “part-of” role.

31

form, which then can be used to prove undecidability via a reduction of
the intersection problem for context-free grammars to the satisfiability of
concepts. Hence the restriction to axioms of the form r ◦ s v̇ s or r ◦ s v̇ r
is seemingly severe, but still yields an undecidable logic.

One way to re-gain decidability would be to restrict the underlying logic
SHIQ. Since we have argued that, especially for the representation of aggre-
gated objects, the concept- and role-forming operators of SHIQ are crucial,
we have chosen a different approach, namely to further restrict the role in-
clusion axioms: further restricting role hierarchies to not contain “affecting
cycles” of length greater than one finally yields a decidable logic. Roughly
speaking, “affecting” is the transitive closure of the relation “directly affect-
ing”, and r directly affects s if r ◦ s v̇ s, s ◦ r v̇ s, or r v̇ s is contained
in the role hierarchy. A role hierarchy containing no “affecting” cycles of
length greater than one is called acyclic, and the extension of SHIQ with
acyclic role hierarchies is called RIQ.

Thus in RIQ, we can model the propagation of properties as mentioned
above, and the restriction to acyclicity does not seem to be too severe since
non-trivial cycles seem to indicate modelling flaws [Rector 2002].

Tableau algorithm for RIQ The tableau algorithm for RIQ
[Horrocks & Sattler 2003] involves two pre-processing steps that transform
the role hierarchy into a more explicit and manageable structure. Firstly,
acyclic role hierarchies are unfolded in a similar way as acyclic TBoxes can
be unfolded [Nebel 1990], thus making all implicit implications explicit. As a
result of this unfolding, we obtain, for each role name r, a regular expression
τr on role names. Secondly, we construct, for each τr, a non-deterministic
finite automaton Ar which accepts L(τr).

Then, in the tableau rules, we add three rules

1. if ∀r.C ∈ L(x), then we add ∀Ar.C.

2. if ∀A.C ∈ L(x) and x has an s-successor y, then we add ∀A′.C to
L(y) for each automaton A′ that is the result of A reading s, i.e., A′
is obtained from A by simply changing the initial state to a state that
is reachable from A’s initial state by an s transition.

3. if ∀A.C ∈ L(x) and ε ∈ L(A), then add C to L(x).

The pre-processing together with these three rules yield a decision procedure
for RIQ.

32

Unfortunately, the first pre-processing step, i.e., the unfolding of the
role hierarchy, may yield an exponential blow-up—similar to the one for
acyclic TBoxes [Nebel 1990]. The second pre-processing step is less complex:
since we use non-deterministic automata, Ar is polynomial in τr and can be
constructed in polynomial time. Thus the RIQ tableau algorithm is of the
same complexity as the one for SHIQ, provided that the input role hierarchy
is already unfolded. So far, we have defined a property on role hierarchies
that implies that the unfolding is polynomial, i.e., that avoids this blow-up.
Currently, we are investigating whether this blow-up can always be avoided.

This tableau algorithm for RIQ is implemented successfully in FaCT.
The additional overhead introduced by using automata in tableau rules
seems to pay off since it does not degrade the performance of FaCT, yields
a more comprehensible algorithm, and can draw additional inferences like
the one from the examples above [Horrocks & Sattler 2003].

5 DLs with Nominals

Nominals were introduced in Section 2.4 and provide interesting expressive-
ness for ontology languages. For example, the web ontology language OWL
proposed by the W3C Web-Ontology Working Group is based upon the ex-
tension of SHIQ with nominals. Coming back to the Brent Spar example,
we can define a concept BSP for those devices that are part of Brent Spar by

BSP
.= Device u ∃partOf.BrentSpar,

and the following two concepts D1 and D2:

D1
.= BSP u ∀partOf.(BrentSpar⇒ ∀hasPart.Harmless)

D2
.= ∀connectedTo.(BSP⇒ Harmless)

Now, the subsumption relationship between D1 and D2 w.r.t. the definition
of BSP depends on the number of instances of BrentSpar:

• if BrentSpar is a concept name, D1 u¬D2 is satisfiable, i.e., D1 is not
subsumed by D2. However, in each model of D1 u ¬D2, there are at
least two instances of BrentSpar. As a consequence,

• if BrentSpar is a nominal, then D1 u¬D2 is not satisfiable, i.e., D1 is
subsumed by D2 w.r.t. the definition of BSP.

Hence, using nominals, we can not only model individuals adequately, but
also infer additional subsumption relationships. Moreover, it turned out

33

that hybrid logics are well-suited for the internalisation of deduction in proof
systems [Blackburn 2000].

Thus nominals are an interesting expressive means—unfortunately, they
often have a dramatic effect on the computational complexity. As mentioned
in Section 2.4, adding nominals to

• ALC with inverse roles and without TBoxes increases the complexity
from Pspace-completeness to Exptime-completeness [Areces et al.
1999];

• ALC with inverse roles, number restrictions, and TBoxes increases the
complexity from Exptime-completeness to NExptime-completeness
[Tobies 2001a];

One reason for this effect is surely the loss of the tree model property [Vardi
1997]. This property is enjoyed by most description and modal logics, and
seems to be one reason for their “robust” decidability; for example, even
the extension of many description or modal logics with expressive means as
powerful as fixpoint operators preserves their decidability—possibly because
it also preserves the tree model property. However, for many logics with
nominals, it is possible to define, instead of the tree model property, an
appropriate, less strict tree model property. As sketched in Section 3.2,
we can abstract from non-tree models to tree abstractions of models, and
then use these tree abstractions in (automata or tableau-based) reasoning
algorithms. In the following, we will show three examples of logics with
nominals where this is possible. For a better readability, we use DL terms,
e.g., roles instead of programs or modal parameters, even though the µ-
calculus and information logics are described in different terms.

5.1 The hybrid µ-calculus

The µ-calculus [Kozen 1982; Streett & Emerson 1989] was originally designed
to describe the behaviour of programs, but turned out to be a useful super-
logic of various other Exptime logics: besides SH, many expressive de-
scription logics [De Giacomo & Lenzerini 1994a; 1994b], the propositional
dynamic logic (PDL) [Fischer & Ladner 1979], and various temporal logics
[Emerson 1990] are fragments of the µ-calculus. It can easily be seen that
the µ-calculus provides the expressive power to internalise TBoxes (see the
TBox paragraph of Section 2.4).

The µ-calculus is the extension of ALC (or multi modal K, see Sec-
tion 2.3) with least and greatest fixpoint operators. For example, the least

34

fixpoint concept µX.(P t∃r.X) is satisfied by all those individuals that have
an r path to an instance of P , and thus equivalent to ∃r∗.P . The greatest
fixpoint concept νX.∃r.X is satisfied by all those individuals that are on an
infinite r path.

In [Vardi 1998], it was shown that the µ-calculus can be extended with
inverse roles and features (axioms of the form > .= (61r.>)) while remain-
ing in Exptime. Despite its high expressive power, the µ-calculus does not
provide nominals and, since it has the tree model property, it cannot ex-
press nominals. In [Sattler & Vardi 2001], we have shown that the hybrid
µ-calculus, i.e., the extension of the µ-calculus with inverse roles and nom-
inals, remains in Exptime. Since the only known decision procedures for
the µ-calculus are automata-based, we also used automata for the hybrid
µ-calculus.

To overcome the loss of the tree model property, we devise a suitable
tree model property for this logic, i.e., we define suitable, tree-shaped ab-
stractions of non-tree models. Another difficulty to overcome was due to
the “global” character of nominals: since a nominal N can be reached in
one step from each individual in a model using ∃r.(N u . . .), the informa-
tion about which concepts a nominal is an instance of and how nominals
are inter-related becomes “global”. Moreover, all nodes that have a nom-
inal N as an r-successor can be reached from N in one step using ∀r−.D.
Now automata can only work locally, i.e., on one node, its successors, and,
if the automaton is two-way, its predecessors. We “localise” the “global”
information concerning nominals in a guess: a piece of information that is
passed from node to node without being changed, and to which we apply a
sort of “book-keeping” to ensure that the local information conforms with
the global guess. Employing this technique, we can define, for a hybrid
µ-calculus concept ϕ, an alternating two-way automaton on infinite trees
Aϕ that accepts exactly the tree abstractions of ϕ’s models. Thus we have
reduced the satisfiability problem of the hybrid µ-calculus to the emptiness
problem of automata: each tree accepted by Aϕ can be “folded” into a model
of ϕ and, vice versa, each model of ϕ can be unravelled into a tree structure
that is accepted by Aϕ.

As a consequence, any logic that is a fragment of the µ-calculus can be
extended with nominals while remaining in Exptime.

5.2 Information logics

Information logics are designed to model and reason about information sys-
tems [Pawlak 1981; Or lowska 1998]. Most information logics combine expres-

35

sive means whose combination are known to make reasoning rather difficult
such as a form of intersection of roles, the universal role (see Section 2.4), and
nominals. Among the class of information logics, the logic SIM introduced
in [Konikowska 1997] plays a special role since it provides various expressive
ingredients: it provides Boolean operators on roles and nominals at the level
of concepts and at the level role expressions. This highly expressive logic
was designed to represent and reason about relevant properties of similarity
relations induced by a set of attribute names A: we only consider role names
rA for A ⊆ A a set of attribute names, and require interpretations I to

• interpret each role rA as a reflexive symmetric binary relation rIA,

• satisfy r∅ = ∆I ×∆I , and

• satisfy rIa∪b = rIa ∩ rIb .

Like other logics with nominals, SIM lacks the tree model property, but
it is possible to define tree abstractions of (non-tree) models. Thus, for a
SIM concept ϕ, one can define a Büchi tree automaton Aϕ that accepts all
tree abstractions of models of ϕ, and thus reduce the satisfiability problem
for SIM to the emptiness problem for Büchi tree automata. Using a certain
normal form for modal expressions and a similar localisation of global in-
formation as for the hybrid µ-calculus, it is possible to define Aϕ such that
its size is only exponential in the length of ϕ. Since emptiness of Büchi
tree automata can be decided in polynomial time in the number of the au-
tomaton’s states [Vardi & Wolper 1986], satisfiability of SIM concept is in
Exptime [Demri & Sattler 2002]. It is Exptime-complete since it contains
multi modal logic K with the universal modality, which is known to be
Exptime-hard [Spaan 1993a].

5.3 Nominals for DLs with rich roles

In [Horrocks & Sattler 2001], we introduce the description logic SHOQ(D),
i.e., SHIQ with nominals and concrete datatypes, but without inverse roles.
Concrete datatypes are a rather trivial restriction of concrete domains (see
[Lutz 2003]) and are merely useful syntactic sugar. In contrast, nominals
provide interesting, additional expressive power.

The tableau algorithm for SHOQ(D) [Horrocks & Sattler 2001] is,
roughly spoken, obtained by modifying the one for SHIQ as follows: for
each nominal N , we have one “distinguished” node xN with N ∈ L(x), and
all other nodes y with N ∈ L(y) are blocked by xN . Moreover, we make sure
that L(y) ⊆ L(xN), for each un-distinguished node y with N ∈ L(y). In this

36

way, if we do not take into account incoming edges of distinguished nodes,
we can still work on a forest, i.e., a set of trees. This technique is similar to
the one employed for the localisation of global information introduced for
the hybrid µ-calculus [Sattler & Vardi 2001] described above. Again, we can
prove soundness, completeness, and termination of this algorithm, and thus
show that it decides satisfiability and subsumption of SHOQ(D)-concepts
w.r.t. TBoxes.

In the remainder of this section, we explain why we have chosen to add
nominals to the restriction of SHIQ without inverse roles, and not to full
SHIQ. In the following, we use SHIQO for the extension of SHIQ with
nominals. Firstly, as a consequence of the NExptime-hardness of ALC with
inverse roles, number restrictions, and TBoxes [Tobies 2001a], SHIQO is
NExptime-hard—in contrast to SHIQ which is Exptime-complete. Sec-
ondly and equally important, all attempts to designing a “goal-directed”
decision procedure for SHIQO failed: by “goal-directed”, we refer to any
algorithm that decides satisfiability in a more sophisticated way than guess-
ing a model of exponential size and then performing model checking.

As mentioned in Section 4.2, in the presence of inverse roles, blocking
is dynamic, i.e., established blocks are possibly broken. And if x blocks y,
then x will play the role of y when constructing a model from a clash-free
completion tree. So in a completion tree or forest, blocking yields one form
of “identity” between nodes. Now, in the presence of nominals, a second
kind of identity has to be considered: consider, for example, the concept

C := ∃r1.∃r2. . . .∃rn.C1 u
∃r1.∃r2. . . .∃rn.C2 u
∀r1.∀r2. . . .∀rn.N u
∀r1.((61r−1 .>) u ∀r2.((61r−2 .>) u ∀r3. . . .∀rn−1.(61r−n .>)) · · ·).

A tableau algorithm would start with C ∈ L(x), then build r1. . . . ri-
successors yi of x with C1 ∈ L(yn) and r1. . . . ri-successors zi of x with
C2 ∈ L(zn). When applying the ∀-rules, the algorithm learns that yn and
zn denote the same object. But then, due to the other atmost restrictions,
also yn−1 and zn−1 must denote the same object, and so on, until y1 and z1.
This “zipper” behaviour yields the second form of identities that a tableau
algorithm would need to take into account. Now suppose yi blocks some
node w which is an ri-successor of v. Thus the first identity yields that yi

and w also represent the same object, and the atmost restriction in L(yi)
implies that yi−1 and v represent the same object. To capture this identity,
one would need to merge the node labels of yi and w and of yi−1 and v (or
do something similar). However, the block between yi and w may be broken

37

later—which would mean that this label merging and its effects had to be
undone. It is an interesting question whether the implementation of such
an algorithm can decide the satisfiability of any non-trivial input: its design
and empirical evaluation are part of future work.

6 Summary and Outlook

As argued above, to be of use in realistic applications, a logic-based ontol-
ogy language has to provide adequate expressive power and useful system
services. Thus we are concerned with the well-known trade-off between ex-
pressive power and computational complexity, and designing useful ontology
languages consists, to a considerable amount, in finding a “good” compro-
mise for this trade-off. In the last years, it turned out that such a good
compromise needs two sorts of theoretical results: on the one hand, tight
worst-case complexity bounds for the reasoning problems these system ser-
vices are based upon give insight into the intrinsic difficulty of reasoning
for a certain ontology language. On the other hand and equally important,
practical reasoning algorithms are to be developed and their amenability
to optimisation techniques is to be evaluated. It is commonly agreed that
being below a certain complexity is necessary for practicability, but that
different logics can behave quite differently even though they are of the
same worst-case complexity. Interestingly, the complexity class that is be-
lieved to be practical changed during the last decade from polynomial time
(with the development of Classic [Patel-Schneider et al. 1991]) over poly-
nomial space (with the development of Kris [Baader et al. 1994]) to expo-
nential time (with the development of FaCT and Racer [Horrocks 1998b;
Haarslev & Möller 2001]).

In this thesis, we have described the development of practical reasoning
algorithms for a family of description logics, starting from ALC and, when
they turned out to be amenable to optimisations but still lacking expressive
power for certain applications, continuing with more expressive logics. This
development led to the description logic RIQ, which is the extension of
ALC (a syntactic variant of multi-modal K) with inverse roles, number
restrictions, transitive roles, role hierarchies, and general role inclusions of
the form r ◦ s→ s and r ◦ s→ r. RIQ has been implemented successfully
in the DL system FaCT and proved to behave well in a realistic, medical
terminology application: the tableau-based reasoning algorithms performs
well and draws useful inferences that none of its predecessors were able to
draw.

38

Moreover, we have investigated the computational complexity of and
developed tableau algorithms for hybrid description logics, i.e., those pro-
viding nominals. This is an expressive means that seems to be required in
various applications, but is rarely provided by DLs, one reason being that
its presence destroys the tree model property. This property is one rea-
son for description and modal logics to be rather robustly decidable [Vardi
1997]. However, we were able to devise, for three hybrid logics, a tree model
property, even though these logics lack the tree model property: in all three
cases, it is possible to define tree-shaped abstractions of non-tree models.
This allows to devise practical, tableau-based and/or optimal automata-
based reasoning algorithms for these logics. The latter yields, for the hybrid
µ-calculus and SIM, a tight Exptime upper complexity bound. Since the µ-
calculus is already Exptime-complete, we can thus extend it with nominals
“for free”. This behaviour is not always the case: there are Exptime-
complete logics that become NExptime-complete when extended with a
single nominal [Tobies 2001a]. Thus we can now better distinguish those
DLs that can be extended with nominals without increasing their complex-
ity from those where such an extension yields a more complex logic. For
example, SH with number restrictions is a logic of the former kind, and
the design of SHOQ(D) and its tableau algorithm was motivated by this
insight.

These investigations have an interesting impact: currently, industrial
strength systems are being developed for expressive, Exptime-complete
fragments of SHIQ9 whereas, for a long time, the only industrial-strength
DL system, Classic [Patel-Schneider et al. 1991], was based on a poly-
nomial time DL. Moreover, the proposal for an ontology language stan-
dard for the Semantic Web proposed by the W3C Web-Ontology Working
Group,10 OWL, is based on a description logic, namely the union of SHIQ
and SHOQ(D).

Despite this success, there are still various interesting open questions
concerning the logical foundations of DL-based systems, three of which are
sketched here as parts of future work. Firstly, there is no clear explanation
of why DL reasoners behave so well on various “natural” ontologies, and
which properties of ontologies are responsible for a good performance or its
degradation. So far, there are some hints that TBoxes from a graphical
user interface such as a UML editor (see Section 2.3) are more likely to
degrade the system’s performance than those from textual or frame-based

9See http://www.networkinference.com/.
10http://www.w3.org/2001/sw/WebOnt/

39

editors [Berardi et al. 2001; Horrocks & Sattler 2002]. One could speculate
that, using a graphical interface, one introduces more easily cyclic relation-
ships and interdependencies than in a textual one. A deeper understanding
of the complexity sources will enable a better estimation of the complexity
of the input and thus enable the design of DL systems with a more stable
performance.

Secondly, as mentioned above, no “goal-directed” algorithm is known
that decides the satisfiability of SHIQO, the combination of SHIQ and
SHOQ(D), which is the DL underlying OWL. It is known that satisfiabil-
ity of SHIQO is NExptime-hard, and it is conjectured that it is also in
NExptime. Clearly, this high complexity implies that it is yet to be seen
whether an implementation of such a goal-directed algorithm has any per-
formance advantages over an incomplete reasoner or a first order theorem
prover (for the translation of SHIQO-concepts and TBoxes into first order
logic). However, to answer this question, such an algorithm needs to be
designed and its correctness needs to be proven. Finally, if this algorithm
were automata-based, it would be interesting to see automata applied to a
NExptime-hard problem—one would possibly learn more about automata
for other NExptime-hard problems.

Thirdly, so far, we only described research concerned with reasoning
in arbitrary models. As we have seen, SHIQ lacks the finite model prop-
erty, i.e., some satisfiable concepts only admit infinite models. Now, if
an application is only concerned with finite models such as many database
applications—since most databases are finite—reasoners for arbitrary model
reasoning can not provide the best possible system services. For example,
they possibly classify too many entities as satisfiable (namely those that
are satisfiable but finitely unsatisfiable), and might not detect all implicit
containment relationships (namely those where all counterexamples depend
on infinite models). Thus finite model reasoning is an interesting prob-
lem, for which first progress has already been made in DLs [Calvanese 1996;
Lutz et al. 2003]. It has become clear that, due to the combinatoric nature of
finite model reasoning, novel reasoning techniques have to be employed such
as translating the input ontology into a set of linear in-equations over the
non-negative integers. The empirical evaluation of the feasibility of this kind
of decision procedures and their extension to other logics such as SHIQ are
interesting open questions.

40

References

[Andréka et al. 1998] H. Andréka, J. van Benthem, and I. Németi. Modal
languages and bounded fragments of predicate logic. Journal of Philo-
sophical Logic, 27(3):217–274, 1998.

[Areces et al. 1999] C. Areces, P. Blackburn, and M. Marx. A road-map
on complexity for hybrid logics. In Annual Conference of the European
Association for Computer Science Logic (CSL’99), vol. 1683 of Lecture
Notes in Computer Science, pages 307–321. Springer-Verlag, 1999.

[Areces et al. 2000] C. Areces, P. Blackburn, and M. Marx. The computa-
tional complexity of hybrid temporal logics. Logic Journal of the IGPL,
8(5), 2000.

[Baader et al. 1993] F. Baader, H.-J. Bürckert, B. Nebel, W. Nutt, and
G. Smolka. On the expressivity of feature logics with negation, func-
tional uncertainty, and sort equations. Journal of Logic, Language and
Information, 2:1–18, 1993.

[Baader et al. 1994] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and
H. Profitlich. An empirical analysis of optimization techniques for termi-
nological representation systems, or: Making KRIS get a move on. Applied
Artificial Intelligence, 4:109–132, 1994.

[Baader et al. 1999] F. Baader, R. Molitor, and S. Tobies. Tractable and
decidable fragments of conceptual graphs. In W. Cyre and W. Tepfenhart,
eds., Proc. of the 7th Int. Conference on Conceptual Structures (ICCS’99),
vol. 1640 of Lecture Notes in Computer Science, pages 480–493. Springer-
Verlag, 1999.

[Baader et al. 2001] F. Baader, S. Brandt, and R. Küsters. Matching un-
der side conditions in description logics. In B. Nebel, ed., Proceedings of
the Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-01), pages 213–218, Seattle, Washington, 2001. Morgan Kauf-
mann, Los Altos.

[Baader et al. 2003] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. F. Patel-Schneider, eds. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[Baader 1991] F. Baader. Augmenting concept languages by transitive clo-
sure of roles: An alternative to terminological cycles. In Proceedings of the

41

Twelfth International Joint Conference on Artificial Intelligence (IJCAI-
91), Sydney, 1991.

[Baader 1996a] F. Baader. A formal definition for the expressive power of
terminological knowledge representation languages. Journal of Logic and
Computation, 6(1):33–54, 1996.

[Baader 1996b] F. Baader. Using automata theory for characterizing the
semantics of terminological cycles. Annals of Mathematics and Artificial
Intelligence, 18(2–4):175–219, 1996.

[Baader & Hanschke 1991] F. Baader and P. Hanschke. A schema for inte-
grating concrete domains into concept languages. In Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (IJCAI-
91), pages 452–457, Sydney, 1991.

[Baader & Hollunder 1991] F. Baader and B. Hollunder. A terminological
knowledge representation system with complete inference algorithm. In
Proc. of the Workshop on Processing Declarative Knowledge, PDK-91,
vol. 567 of Lecture Notes in Artificial Intelligence, pages 67–86. Springer-
Verlag, 1991.

[Baader & Sattler 1999] F. Baader and U. Sattler. Expressive number re-
strictions in description logics. Journal of Logic and Computation,
9(3):319–350, 1999.

[Baader & Sattler 2001] F. Baader and U. Sattler. An overview of tableau al-
gorithms for description logics. Studia Logica, 69:5–40, 2001. An abridged
version appeared in Tableaux 2000, volume 1847 of LNAI, 2000. Springer-
Verlag.

[Baader & Turhan 2002] F. Baader and A.-Y. Turhan. On the problem of
computing small representations of least common subsumers. In Proc. of
the 25th German Conference on Artificial Intelligence (KI 2002), vol.
2479 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

[Baldoni et al. 1998] M. Baldoni, L. Giordano, and A. Martelli. A tableau
calculus for multimodal logics and some (un)decidability results. In Pro-
ceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX-98), vol. 1397 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, 1998.

42

[Baldoni 1998] M. Baldoni. Normal Multimodal Logics: Automatic Deduc-
tion and Logic Programming Extension. PhD thesis, Dipartimento di
Informatica, Università degli Studi di Torino, Italy, 1998.

[Bechhofer et al. 2001] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens.
OilEd: a reason-able ontology editor for the semantic web. In Proceedings
of the 2001 Description Logic Workshop (DL 2001), pages 1–9. CEUR
(http://ceur-ws.org/), 2001.

[Ben-Ari et al. 1982] M. Ben-Ari, J. Halpern, and A. Pnueli. Deterministic
propositional dynamic logic: finite models, complexity and completeness.
Journal of Computer and System Science, 25:402–417, 1982.

[Berardi et al. 2001] D. Berardi, D. Calvanese, and G. De Giacomo. Rea-
soning on UML Class Diagrams using Description Logic Based Systems.
In Proc. of the KI’2001 Workshop on Applications of Description Logics.
CEUR (http://ceur-ws.org/), 2001.

[Berners-Lee et al. 2001] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic Web. Scientific American, 284(5):34–43, 2001.

[Berners-Lee 1999] T. Berners-Lee. Weaving the Web. Harpur, San Fran-
cisco, 1999.

[Blackburn 2000] P. Blackburn. Internalizing labelled deduction. Journal
of Logic and Computation, 10(1):137–168, 2000.

[Borgida 1996] A. Borgida. On the relative expressive power of Description
Logics and Predicate Calculus. Artificial Intelligence Journal, 82(1), 1996.

[Borst et al. 1997] P. Borst, H. Akkermans, and J. Top. Engineering on-
tologies. International Journal of Human-Computer Studies, 46:365–406,
1997.

[Brandt et al. 2002] S. Brandt, R. Küsters, and A.-Y. Turhan. Approxima-
tion and difference in description logics. In D. Fensel, F. Giunchiglia,
D. McGuiness, and M.-A. Williams, eds., Proceedings of the Eighth Inter-
national Conference on the Principles of Knowledge Representation and
Reasoning (KR-02), pages 203–214. Morgan Kaufmann, Los Altos, 2002.

[Calvanese et al. 1994] D. Calvanese, M. Lenzerini, and D. Nardi. A uni-
fied framework for class based representation formalisms. In J. Doyle,
E. Sandewall, and P. Torasso, eds., Proceedings of the Fourth International

43

Conference on the Principles of Knowledge Representation and Reasoning
(KR-94), pages 109–120, Bonn, 1994. Morgan Kaufmann, Los Altos.

[Calvanese et al. 1995] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Structured objects: Modeling and reasoning. In Proceedings of the Fourth
International Conference on Deductive and Object-Oriented Databases
(DOOD-95), vol. 1013 of Lecture Notes in Computer Science, pages 229–
246, 1995.

[Calvanese et al. 1998] D. Calvanese, M. Lenzerini, and D. Nardi. Descrip-
tion logics for conceptual data modeling. In J. Chomicki and G. Saake,
eds., Logics for Databases and Information Systems, pages 229–263.
Kluwer Academic Publisher, 1998.

[Calvanese et al. 1999a] D. Calvanese, G. De Giacomo, and M. Lenzerini.
Reasoning in expressive description logics with fixpoints based on au-
tomata on infinite trees. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kauf-
mann, Los Altos, 1999.

[Calvanese et al. 1999b] D. Calvanese, G. De Giacomo, M. Lenzerini, and
D. Nardi. Reasoning in expressive description logics. In A. Robinson and
A. Voronkov, eds., Handbook of Automated Reasoning. Elsevier Science
Publishers (North-Holland), Amsterdam, 1999.

[Calvanese 1996] D. Calvanese. Unrestricted and Finite Model Reasoning
in Class-Based Representation Formalisms. PhD thesis, Dipartimento di
Informatica e Sistemistica, Università di Roma “La Sapienza”, 1996.

[Cornet 2003] R. Cornet. Rice ontology editor, 2003. Homepage at http:
//www.b1g-systems.com/ronald/rice/.

[De Giacomo 1995] G. De Giacomo. Decidability of Class-Based Knowledge
Representation Formalisms. PhD thesis, Università degli Studi di Roma
“La Sapienza”, 1995.

[De Giacomo & Lenzerini 1994a] G. De Giacomo and M. Lenzerini. Boost-
ing the correspondence between description logics and propositional dy-
namic logics (extended abstract). In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94). AAAI Press, 1994.

[De Giacomo & Lenzerini 1994b] G. De Giacomo and M. Lenzerini. Concept
language with number restrictions and fixpoints, and its relationship with

44

mu-calculus. In A. Cohn, ed., Proceedings of the Eleventh European Con-
ference on Artificial Intelligence (ECAI-94). John Wiley & Sons, 1994.

[De Giacomo & Lenzerini 1996] G. De Giacomo and M. Lenzerini. Tbox and
Abox reasoning in expressive description logics. In Proceedings of the Fifth
International Conference on the Principles of Knowledge Representation
and Reasoning (KR-96), pages 316–327. Morgan Kaufmann, Los Altos,
1996.

[Demri 2001] S. Demri. The complexity of regularity in grammar logics and
related modal logics. Journal of Logic and Computation, 11(6), 2001.

∗[Demri & Sattler 2002] S. Demri and U. Sattler. Automata-theoretic decision
procedures for information logics. Fundamenta Informaticae, 53(1):1–22,
2002.

[Donini et al. 1991a] F. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The
complexity of concept languages. In Proceedings of the Second Inter-
national Conference on the Principles of Knowledge Representation and
Reasoning (KR-91), Boston, MA, USA, 1991.

[Donini et al. 1991b] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt.
Tractable concept languages. In Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (IJCAI-91), pages 458–463,
Sydney, 1991.

[Donini & Massacci 2000] F. M. Donini and F. Massacci. Exptime tableaux
for ALC. Artificial Intelligence, 124(1):87–138, 2000.

[Emerson 1990] E. A. Emerson. Temporal and modal logic. In Handbook of
Theoretical Computer Science, pages 997–1072. Elsevier Science Publish-
ers (North-Holland), Amsterdam, 1990.

[Fensel et al. 2001] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuin-
ness, and P. F. Patel-Schneider. OIL: An ontology infrastructure for the
semantic web. IEEE Intelligent Systems, 16(2):38–45, 2001.

[Fine 1972] K. Fine. In so many possible worlds. Notre Dame Journal of
Formal Logics, 13:516–520, 1972.

[Fischer & Ladner 1979] M. J. Fischer and R. E. Ladner. Propositional dy-
namic logic of regular programs. Journal of Computer and System Sci-
ence, 18:194–211, 1979.

45

[Franconi & Ng 2000] E. Franconi and G. Ng. The i.com tool for intelligent
conceptual modelling. In Working Notes of the ECAI2000 Workshop on
Knowledge Representation Meets Databases (KRDB2000). CEUR (http:
//ceur-ws.org/), 2000.

[Gargov et al. 1987] G. Gargov, S. Passy, and T. Tinchev. Modal environ-
ment for Boolean speculations. In D. Skordev, ed., Mathematical Logic
and Applications, pages 253–263. Plenum Publ. Co., New York, 1987.

[Georgieva et al. 2003] L. Georgieva, U. Hustadt, and R. A. Schmidt. Hy-
perresolution for guarded formulae. Journal of Symbolic Logic, 2003. To
appear.

[Gerstl & Pribbenow 1995] P. Gerstl and S. Pribbenow. Midwinters, end
games and bodyparts. International Journal of Human-Computer Studies,
43:847–864, 1995.

[Grädel et al. 1997] E. Grädel, P. Kolaitis, and M. Vardi. On the Decision
Problem for Two-Variable First-Order Logic. Bulletin of Symbolic Logic,
3:53–69, 1997.

[Grädel 1999] E. Grädel. On the restraining power of guards. Journal of
Symbolic Logic, 64(4):1719–1742, 1999.

[Gruber 1993] T. R. Gruber. Towards Principles for the Design of Ontologies
Used for Knowledge Sharing. In N. Guarino and R. Poli, eds., Formal On-
tology in Conceptual Analysis and Knowledge Representation, Deventer,
The Netherlands, 1993. Kluwer Academic Publishers.

[Haarslev & Möller 2000] V. Haarslev and R. Möller. Consistency testing:
The RACE experience. In R. Dyckhoff, ed., Proceedings of the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX 2000), vol. 1847 of Lecture Notes in Arti-
ficial Intelligence, pages 1–18. Springer-Verlag, 2000.

[Haarslev & Möller 2001] V. Haarslev and R. Möller. RACER system de-
scription. In Proceedings of the International Joint Conference on Au-
tomated Reasoning (IJCAR-01), vol. 2083 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2001.

[Halpern & Moses 1992] J. Y. Halpern and Y. Moses. A guide to complete-
ness and complexity for modal logic of knowledge and belief. Artificial
Intelligence, 54:319–379, 1992.

46

[Hirsch & Tobies 2001] C. Hirsch and S. Tobies. A tableau algorithm for the
clique guarded fragment. In F. Wolter, H. Wansing, M. de Rijke, and
M. Zakharyaschev, eds., Advances in Modal Logics Volume 3, Stanford,
2001. CSLI Publications.

[Hladik 2002] J. Hladik. Implementation and optimisation of a tableau al-
gorithm for the guarded frament. In U. Egly and C. G. Fermüller, eds.,
Proc. of the Int. Conf. on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX 2002), vol. 2381 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2002.

[Horrocks et al. 1996] I. Horrocks, A. Rector, and C. Goble. A description
logic based schema for the classification of medical data. In Working Notes
of the ECAI-96 Workshop on Knowledge Representation Meets Databases
(KRDB-96). CEUR (http://ceur-ws.org/), 1996.

∗[Horrocks et al. 1999] I. Horrocks, U. Sattler, and S. Tobies. Practical rea-
soning for expressive description logics. In H. Ganzinger, D. McAllester,
and A. Voronkov, eds., Proceedings of the Sixth International Conference
on Logic for Programming and Automated Reasoning (LPAR’99), vol.
1705 of Lecture Notes in Artificial Intelligence, pages 161–180. Springer-
Verlag, 1999.

[Horrocks et al. 2000a] I. Horrocks, U. Sattler, and S. Tobies. Practical rea-
soning for very expressive description logics. Logic Journal of the IGPL,
8(3):239–264, May 2000.

[Horrocks et al. 2000b] I. Horrocks, U. Sattler, and S. Tobies. Reasoning
with individuals for the description logic shiq. In D. MacAllester, ed.,
Proceedings of the 17th Conference on Automated Deduction (CADE-17),
vol. 1831 of Lecture Notes in Computer Science, Germany, 2000. Springer-
Verlag.

[Horrocks et al. 2002] I. Horrocks, P. F. Patel-Schneider, and F. van Harme-
len. Reviewing the design of DAML+OIL: An ontology language for the
semantic web. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI-02), 2002.

[Horrocks 1997] I. Horrocks. Optimising Tableaux Decision Procedures for
Description Logics. PhD thesis, University of Manchester, 1997.

[Horrocks 1998a] I. Horrocks. The FaCT system. In H. de Swart, ed., Pro-
ceedings of the International Conference on Automated Reasoning with

47

Analytic Tableaux and Related Methods (TABLEAUX-98), vol. 1397 of
Lecture Notes in Artificial Intelligence, pages 307–312. Springer-Verlag,
1998.

[Horrocks 1998b] I. Horrocks. Using an Expressive Description Logic: FaCT
or Fiction? In Proceedings of the Sixth International Conference on the
Principles of Knowledge Representation and Reasoning (KR-98). Morgan
Kaufmann, Los Altos, 1998.

[Horrocks & Gough 1997] I. Horrocks and G. Gough. Description logics with
transitive roles. In M.-C. Rousset, R. Brachmann, F. Donini, E. Franconi,
I. Horrocks, and A. Levy, eds., Proceedings of the 1997 Description Logic
Workshop (DL’97), pages 25–28, 1997.

[Horrocks & Patel-Schneider 2001] I. Horrocks and P. Patel-Schneider. The
generation of DAML+OIL. In Proceedings of the 2001 Description Logic
Workshop (DL 2001), pages 30–35. CEUR (http://ceur-ws.org/), vol-
ume 49, 2001.

∗[Horrocks & Sattler 1999] I. Horrocks and U. Sattler. A description logic
with transitive and inverse roles and role hierarchies. Journal of Logic
and Computation, 9(3), 1999.

∗[Horrocks & Sattler 2001] I. Horrocks and U. Sattler. Ontology reasoning in
the SHOQ(D) description logic. In B. Nebel, ed., Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-
01), pages 199–204. Morgan Kaufmann, Los Altos, 2001.

∗[Horrocks & Sattler 2002] I. Horrocks and U. Sattler. Optimised reasoning
for SHIQ. In Proceedings of the 15th European Conference on Artificial
Intelligence (ECAI-2002), 2002.

∗[Horrocks & Sattler 2003] I. Horrocks and U. Sattler. Decidability of SHIQ
with complex role inclusion axioms. In Proceedings of the Eighteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI-03). Morgan
Kaufmann, Los Altos, 2003. To appear. A long version has appeared as
technical report LTCS 02-06 available at http://lat.inf.tu-dresden.
de/research/reports.html.

[Hustadt & Schmidt 2000] U. Hustadt and R. A. Schmidt. MSPASS: Modal
reasoning by translation and first-order resolution. In R. Dyckhoff, ed.,
Proceedings of the International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods (TABLEAUX 2000), vol. 1847

48

of Lecture Notes in Artificial Intelligence, pages 67–71. Springer-Verlag,
2000.

[Konikowska 1997] B. Konikowska. A logic for reasoning about relative sim-
ilarity. Studia Logica, 58(1):185–226, 1997.

[Kozen 1982] D. Kozen. Results on the propositional µ-calculus. In
M. Nielsen and E. M. Schmidt, eds., Automata, Languages and Program-
ming, 9th Colloquium, vol. 140 of Lecture Notes in Computer Science,
pages 348–359. Springer-Verlag, 1982.

[Kupferman et al. 2002] O. Kupferman, U. Sattler, and M. Y. Vardi. The
complexity of the graded mu-calculus. In Proceedings of the 18th Confer-
ence on Automated Deduction (CADE-18), vol. 2392 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2002.

[Kupferman & Vardi 1998] O. Kupferman and M. Vardi. Weak alternating
automata and tree automata emptiness. In Proceedings of the Thirtieth
ACM SIGACT Symposium on Theory of Computing (STOC-98), pages
224–233, 1998.

[Küsters 2001] R. Küsters. Non-Standard Inferences in Description Logics,
vol. 2100 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

[Lenat & Guha 1989] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems. Addison Wesley Publ. Co., Reading, Mas-
sachussetts, 1989.

[Lutz et al. 1999] C. Lutz, U. Sattler, and S. Tobies. A suggestion for an n-
ary description logic. In P. Lambrix, A. Borgida, M. Lenzerini, R. Möller,
and P. Patel-Schneider, eds., Proceedings of the 1999 Description Logic
Workshop (DL’99), pages 81–85, Linköping, Sweden, 1999. CEUR (http:
//ceur-ws.org/).

[Lutz et al. 2001] C. Lutz, U. Sattler, and F. Wolter. Modal logics and the
two-variable fragment. In Annual Conference of the European Associa-
tion for Computer Science Logic (CSL-01), vol. 2142 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[Lutz et al. 2003] C. Lutz, U. Sattler, and L. Tendera. The complexity
of finite model reasoning in description logics. In Proceedings of the
19th Conference on Automated Deduction (CADE-19), Lecture Notes in

49

Artificial Intelligence. Springer-Verlag, 2003. To appear. A long ver-
sion has appeared as technical report LTCS 02-05 available at http:
//lat.inf.tu-dresden.de/research/reports.html.

[Lutz 1999] C. Lutz. Complexity of terminological reasoning revisited. In
Proceedings of the Sixth International Conference on Logic for Program-
ming and Automated Reasoning (LPAR’99), Lecture Notes in Artificial
Intelligence, pages 181–200. Springer-Verlag, 1999.

[Lutz 2002] C. Lutz. The Complexity of Description Logics with Concrete
Domains. PhD thesis, RWTH Aachen, 2002.

[Lutz 2003] C. Lutz. Description logics with concrete domains—a survey. In
Advances in Modal Logics Volume 4. World Scientific Publishing Co. Pte.
Ltd., 2003.

[Lutz & Sattler 2001] C. Lutz and U. Sattler. The complexity of reasoning
with boolean modal logics. In F. Wolter, H. Wansing, M. de Rijke, and
M. Zakharyaschev, eds., Advances in Modal Logics 3. CSLI Publications,
Stanford, 2001.

[Molitor 2000] R. Molitor. Unterstützung der Modellierung verfahrenstech-
nischer Prozesse durch Nicht-Standardinferenzen in Beschreibungslogiken.
PhD thesis, RWTH Aachen, 2000.

[Nebel 1990] B. Nebel. Reasoning and Revision in Hybrid Representation
Systems, vol. 422 of Lecture Notes in Artificial Intelligence. Springer-
Verlag, 1990.

[Or lowska 1998] E. Or lowska, ed. Incomplete Information: Rough Set Anal-
ysis. Studies in Fuzziness and Soft Computing. Physica, Heidelberg, 1998.

[Pan et al. 2002] G. Pan, U. Sattler, and M. Y. Vardi. BDD-based decision
procedures for K. In Proceedings of the 18th Conference on Automated De-
duction (CADE-18), vol. 2392 of Lecture Notes in Artificial Intelligence.
Springer-Verlag, 2002.

[Patel-Schneider et al. 1991] P. Patel-Schneider, D. McGuinness, R. Brach-
man, L. Resnick, and A. Borgida. The CLASSIC knowledge representa-
tion system: Guiding principles and implementation rationale. SIGART
Bulletin, 2(3):108–113, 1991.

[Patel-Schneider 1989] P. F. Patel-Schneider. Undecidability of subsumption
in NIKL. Artificial Intelligence Journal, 39:263–272, 1989.

50

[Patel-Schneider & Horrocks 1999] P. F. Patel-Schneider and I. Horrocks.
DLP and FaCT. In Proceedings of the International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX-99), vol. 1397 of Lecture Notes in Artificial Intelligence,
pages 19–23. Springer-Verlag, 1999.

[Pawlak 1981] Z. Pawlak. Information systems theoretical foundations. In-
formation Systems, 6(3):205–218, 1981.

[Pribbenow 1995] S. Pribbenow. Modeling physical objects: Reasoning
about (different kinds of) parts. In Time, Space, and Movement Workshop
95, Bonas, France, 1995.

[Prior 1967] A. Prior. Past, Present and Future. Oxford University Press,
1967.

[Protégé 2003] Protégé. Homepage at http://protege.stanford.edu/,
2003.

[Rector et al. 1997] A. Rector, S. Bechhofer, C. A. Goble, I. Horrocks, W. A.
Nowlan, and W. D. Solomon. The Grail concept modelling language for
medical terminology. AI in Medicine, 9:139–171, 1997.

[Rector 2002] A. Rector. Analysis of propagation along transitive roles:
Formalisation of the galen experience with medical ontologies. In Pro-
ceedings of the 2002 Description Logic Workshop (DL 2002). CEUR
(http://ceur-ws.org/), 2002.

[Rector & Horrocks 1997] A. Rector and I. Horrocks. Experience building a
large, re-usable medical ontology using a description logic with transitivity
and concept inclusions. In Proc. of the WS on Ontological Engineering,
AAAI Spring Symposium (AAAI’97). AAAI Press, 1997.

[Rescher & Urquhart 1971] N. Rescher and A. Urquhart. Temporal Logic.
Springer-Verlag, 1971.

[Sattler 1996] U. Sattler. A concept language extended with different kinds
of transitive roles. In G. Görz and S. Hölldobler, eds., 20. Deutsche
Jahrestagung für Künstliche Intelligenz, vol. 1137 of Lecture Notes in Ar-
tificial Intelligence. Springer-Verlag, 1996.

[Sattler 1998] U. Sattler. Terminological knowledge representation systems
in a process engineering application. PhD thesis, RWTH Aachen, 1998.

51

∗[Sattler 2000] U. Sattler. Description logics for the representation of aggre-
gated objects. In W. Horn, ed., Proceedings of the 14th European Con-
ference on Artificial Intelligence (ECAI-2000). IOS Press, Amsterdam,
2000.

∗[Sattler & Vardi 2001] U. Sattler and M. Y. Vardi. The hybrid µ-calculus.
In Proceedings of the International Joint Conference on Automated Rea-
soning (IJCAR-01), vol. 2083 of Lecture Notes in Artificial Intelligence,
pages 76–91. Springer-Verlag, 2001.

[Schaerf 1994] A. Schaerf. Reasoning with individuals in concept languages.
Data and Knowledge Engineering, 13(2):141–176, 1994.

[Schild 1991] K. Schild. A correspondence theory for terminological logics:
Preliminary report. In Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91), pages 466–471, Sydney,
1991.

[Schild 1994] K. Schild. Terminological cycles and the propositional µ-
calculus. In J. Doyle, E. Sandewall, and P. Torasso, eds., Proceedings of
the Fourth International Conference on the Principles of Knowledge Rep-
resentation and Reasoning (KR-94), pages 509–520, Bonn, 1994. Morgan
Kaufmann, Los Altos.

[Schmidt-Schauss 1989] M. Schmidt-Schauss. Subsumption in KL-ONE is
undecidable. In Proceedings of the First International Conference on the
Principles of Knowledge Representation and Reasoning (KR-89), pages
421–431, Boston (USA), 1989.

[Schmidt-Schauß & Smolka 1991] M. Schmidt-Schauß and G. Smolka. At-
tributive concept descriptions with complements. Artificial Intelligence,
48(1):1–26, 1991.

[Schulz & Hahn 2001] S. Schulz and U. Hahn. Parts, locations, and holes -
formal reasoning about anatomical structures. In Proc. of AIME 2001,
vol. 2101 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2001.

[Simons 1987] P. M. Simons. Parts. A study in Ontology. Oxford: Claren-
don, 1987.

[Spaan 1993a] E. Spaan. Complexity of Modal Logics. PhD thesis, University
of Amsterdam, 1993.

52

[Spaan 1993b] E. Spaan. The complexity of propositional tense logics. In
M. de Rijke, ed., Diamonds and Defaults, pages 287–307. Kluwer Aca-
demic Publishers, 1993.

[Spackman 2000] K. Spackman. Managing clinical terminology hierar-
chies using algorithmic calculation of subsumption: Experience with
SNOMED-RT. Journal of the American Medical Informatics Association,
2000. Fall Symposium Special Issue.

[Stevens et al. 2002] R. Stevens, I. Horrocks, C. Goble, and S. Bechhofer.
Building a bioinformatics ontology using OIL. IEEE Information Technol-
ogy in Biomedicine. special issue on Bioinformatics., 6(2):135–141, 2002.

[Streett 1982] R. S. Streett. Propositional dynamic logic of looping and
converse is elementarily decidable. Information and Computation, 54:121–
141, 1982.

[Streett & Emerson 1989] R. S. Streett and E. A. Emerson. An automata
theoretic decision procedure for the propositional µ-calculus. Information
and Computation, 81:249–264, 1989.

[Sure et al. 2002] Y. Sure, S. Staab, and J. Angele. OntoEdit: Guiding
ontology development by methodology and inferencing. In Proceedings of
the Confederated International Conferences DOA, CoopIS and ODBASE
2002, vol. 2519 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

[Thomas 1992] W. Thomas. Automata on infinite objects. In J. van
Leeuwen, ed., Handbook of theoretical computer science, vol. B. Elsevier
Science Publishers (North-Holland), Amsterdam, 1992.

[Tobies 2001a] S. Tobies. Complexity Results and Practical Algorithms
for Logics in Knowledge Representation. PhD thesis, RWTH Aachen,
2001. electronically available at http://www.bth.rwth-aachen.de/
ediss/ediss.html.

[Tobies 2001b] S. Tobies. PSPACE reasoning for graded modal logics. Jour-
nal of Logic and Computation, 11(1):85–106, 2001.

[Uschold et al. 1998] M. Uschold, M. King, S. Moralee, and Y. Zorgios. The
enterprise ontology. The Knowledge Engineering Review, 13, 1998.

[van Benthem 1983] J. F. A. K. van Benthem. Modal Logic and Classical
Logic. Bibliopolis, Naples, Italy, 1983.

53

[van der Hoek & De Rijke 1995] W. van der Hoek and M. De Rijke. Counting
objects. Journal of Logic and Computation, 5(3):325–345, 1995.

[Vardi 1985] M. Y. Vardi. The taming of converse: Reasoning about two-way
computations. In R. Parikh, ed., Proc. of the 4th Workshop on Logics of
Programs, vol. 193 of Lecture Notes in Computer Science, pages 413–424.
Springer-Verlag, 1985.

[Vardi 1997] M. Y. Vardi. Why is modal logic so robustly decidable? In
N. Immerman and P. G. Kolaitis, eds., Descriptive Complexity and Finite
Models, vol. 31 of DIMACS: Series in Discrete Mathematics and Theo-
retical Computer Science. American Mathematical Society, 1997.

[Vardi 1998] M. Y. Vardi. Reasoning about the past with two-way automata.
In Proceedings of the 25th International Colloquium on Automata, Lan-
guages, and Programming, vol. 1443 of Lecture Notes in Computer Sci-
ence, pages 628–641. Springer-Verlag, 1998.

[Vardi & Wolper 1986] M. Y. Vardi and P. Wolper. Automata-theoretic tech-
niques for modal logics of programs. Journal of Computer and System
Science, 32:183–221, 1986.

[Wessel 2001] M. Wessel. Obstacles on the way to qualitative spatial rea-
soning with description logics: Some undecidability results. In Pro-
ceedings of the 2001 Description Logic Workshop (DL 2001). CEUR
(http://ceur-ws.org/), 2001.

[Winston et al. 1987] M. Winston, R. Chaffin, and D. Herrmann. A taxon-
omy of part whole relations. Cognitive Science, 11:417–444, 1987.

54

