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Abstract

Description Logics (DLs) are a family of logic-based knowledge representation
formalisms designed to represent and reason about conceptual knowledge. Due
to a nice compromise between expressivity and the complexity of reasoning, DLs
have found applications in many areas such as, e.g., modelling database schemas
and the semantic web. However, description logics represent knowledge in an
abstract way and lack the power to describe more concrete (quantitative) quali-
ties like size, duration, or amounts. The standard solution is to equip DLs with
concrete domains, e.g., natural numbers with predicates =, <, + or strings with a
string concatenation predicate. Moreover, recently it has been suggested that the
expressive power of DLs with concrete domains can be further enhanced by pro-
viding them with database-like key constraints. Key constraints can be a source
of additional inconsistencies in database schemas, and DLs applied in reasoning
about database schemas are thus wanted to be able to capture such constraints.
Up to now, only the integration of uniqueness key constraints into DLs with con-
crete domains has been investigated. In this thesis, we continue this investigation
by considering another type of keys, called functional dependencies. Functional
dependencies allow us to state that a property is uniquely determined by a set of
properties, such as: “all books with the same ISBN number have the same title”.
We will focus on ALC (the basic propositionally closed DL) and ALC(D) (ALC
equipped with an arbitrary concrete domain D). We show that functional depen-
dencies, just like uniqueness constraints, dramatically increase the complexity of
reasoning in the PSpace-complete ALC(D): reasoning in ALC(D)FD (ALC(D)
extended with functional dependencies) is undecidable in the general case, while
NExpTime-complete in a slightly restricted version.
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Chapter 1

Introduction

In the 1960’s and 1970’s it was recognized that knowledge representation (KR)
and reasoning is the main part of any intelligent system. Early KR systems
such as semantic networks [Quillian 1968] and frames [Minsky 1975] used simple
graphs and structured objects to represent knowledge and many algorithms were
developed to manipulate these data structures. However, these systems had a
major drawback, namely a lack of formal semantics. The subsequent research on
overcoming this drawback led to the creation of description logics.

Description Logics (DLs) are a family of logic-based knowledge representa-
tion formalisms designed to represent and reason about conceptual knowledge in
a structured and semantically well-understood way (see [Baader et al. 2003a]).
In other words, most DLs are well-behaved fragments of first order logic. In gen-
eral, they sacrifice some of the expressivity of first order logic in order to regain
decidability of reasoning.

The basic notions in DLs are concepts (unary predicates) and roles (binary
relations). A specific DL is mainly characterized by a set of constructors it
provides to build more complex concepts and roles out of atomic ones. The basic
propositionally closed description logic is called ALC (Attributive Language with
Complements) [Schmidt-Schauß & Smolka 1991]. Intuitively, the following ALC-
concept:

Female ⊓ ∀has child.¬Female ⊓ ∃has child.(Doctor ⊔ Lawyer)

describes “A mother who has only sons and at least one of them is a doctor or a
lawyer”. Here, Female, Doctor, and Lawyer are atomic concepts, while has child is
a role. In order to illustrate that ALC corresponds to a first order logic fragment
with only two variables, we give a translation of the above concept into first order
logic:

Female(x) ∧ ∀y.(has child(x, y) → ¬Female(y))

∧ ∃y.(has child(x, y) ∧ (Doctor(y) ∨ Lawyer(y)))
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From the logical point of view, description logics are closely related to
modal logics, e.g. ALC itself is a notational variant of the multi modal logic
Kω. To see the relation between ALC and Kω, it suffices to view atomic con-
cepts as propositional variables, roles as modal parameters, the ∀ constructor
as a box operator, and ∃ as a diamond. More complex description logics pro-
vide for various additional expressive means, such as: nominals (individuals)
[Areces et al. 1999]; number restrictions [Hollunder & Baader 1991]; inverse and
transitive roles and role hierarchies [Horrocks & Sattler 1999]; Boolean operations
on roles [Lutz & Sattler 2001]. Most of these expressive means have their coun-
terpart in modal logics. Moreover, DLs can be equipped with a terminological
component, called a TBox.

The most important reasoning problems considered in DLs are satisfiability
and subsumption of concepts. A concept is said to be satisfiable if it is consistent.
With concept subsumption, a determination of subconcept–superconcept rela-
tionships is meant. Unsurprisingly, the higher the expressivity of a DL is, the more
complex these reasoning problems are. ALC-concept satisfiability is a PSpace-
complete problem, and various decidable extensions of ALC are PSpace-, Exp-

Time-, and even NExpTime-complete.

In propositionally closed description logics, concept subsumption can be re-
duced to concept satisfiability. Thus, it suffices to develop a procedure which
decides satisfiability of concepts. One of the most popular such decision pro-
cedures is a tableau algorithm [Baader & Sattler 2001]. In general, tableau
algorithms decide whether a concept is satisfiable by trying to construct a
model for it. Although they do not always provide optimal upper complexity
bounds, tableau algorithms are amenable to many optimizations and can often
be efficiently implemented. The DL systems FaCT [Horrocks 1998] and Racer
[Haarslev & Möller 2001] are successful implementations of the tableau algorithm
for the expressive description logic SHIQ [Horrocks et al. 1999]; they use special
techniques to avoid non-determinism and ensure termination.

Due to successfully implemented DL reasoners, as well as a nice compromise
between the expressiveness and the complexity of reasoning, in the last decade
DLs found applications in various new areas, such as:

• Reasoning about database conceptual models expressed in entity-
relationship diagrams or object-oriented schemas (like UML)
[Calvanese et al. 1998]. DL translations of database schemas and DL
reasoning techniques are used to detect inconsistencies and to retrieve
implicit information.

• Providing ontologies for the sematic web [Baader et al. 2003b]. DLs are the
foundation of several web ontology languages, including OIL, DAML+OIL
[Horrocks et al. 2002], and OWL.
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The new applications pointed out that “plain” description logics have the
following shortcoming: they lack a means to represent information of a more
“concrete” nature, such as sizes, durations, amounts, or spatial extensions. Cap-
turing such concrete qualities turned out to be a task of great importance in
the mentioned applications. For example, in order to define a notion of a valid
credit card in a web ontology, we need a means of storing the expiry year of the
credit card and checking whether it is greater than the current year. In reasoning
about database schemas, concrete “datatypes” are needed to capture integrity
constraints.

The standard way of how to integrate numbers and other datatypes into de-
scription logics is proposed in [Baader & Hanschke 1991]. The idea is to extend
DLs with so-called concrete domains. A concrete domain D consists of a set and
predicates with a fixed extension over this set. Some concrete domains are, for
example:

• the set of natural numbers N with the following predicates: unary ≥0,
binary =, and ternary +;

• a set of words over some alphabet Σ with a unary predicate empty word,
binary prefix of, and a ternary concatenation predicate.

The integration of concrete domains into description logics is achieved by adding

1. abstract features, which are functional roles (such as has mother);

2. concrete features, which are assigning values from the concrete domain to
logical objects (such as size or population);

3. a new constructor which describes constraints on a concrete domain. It
has the form ∃u1, . . . , un.P , where ui are sequences f1 · · · fkg of k abstract
features f1,. . . ,fk followed by a single concrete feature g (called paths), and
P is an n-ary predicate from the concrete domain.

The logic obtained in this way, by integrating ALC with a concrete domain D,
is denoted with ALC(D). A valid credit card can be defined with the ALC(D)-
concept:

CreditCard ⊓ ∃expiry year. ≥2004

In this example, CreditCard is a concept and expiry year is a concrete feature.
We use a concrete domain D based on natural numbers, and ≥2004 is a unary
predicate with the obvious extension.

Let us consider now a database example. Assume that we want to model a
database schema about employees in some company where every employee has at
most one direct supervisor. With the ALC(D)-concept:

Employee ⊓ ∃(overtime hours), (boss overtime hours). >
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we describe an employee who works more overtime hours than his/her boss. Here,
Employee is a concept, boss is an abstract feature, while overtime hours is a con-
crete one. We use again a numerical concrete domain, and > is the binary “greater
than” predicate.

In [Lutz 2002b] it is proved that reasoning with ALC(D) PSpace-complete if
reasoning with the concrete domain D is in PSpace. Moreover, in [Lutz 2002a]
and [Lutz 2003a] it is shown that ALC(D) with different extensions is NExp-

Time-complete if reasoning with D is in NP.
Description logics with concrete domains turned out to be very useful in the

discussed applications. The web ontology languages mentioned above are all
based on DLs equipped with concrete datatypes. Moreover, in reasoning about
database schemas as entity relationship and UML diagrams, concrete domains
are used to capture integrity constraints on numerical data [Lutz 2002c].

Recently it has been proposed [Lutz et al. 2003] to further extend the expres-
sive power of DLs with concrete domains by providing them with key constraints,
as known from databases. Key constraints can be a source of additional inconsis-
tencies in database schemas and, thus, DLs applied in reasoning about database
schemas should be able to capture such constraints. The most important key
constraints are uniqueness constraints and functional dependencies. Uniqueness
constraints allow one to describe that a set of properties uniquely determines the
identity of an object, such as

Americans are uniquely identified by their social security number

Functional dependencies, in contrast, allow us to state that a property is func-
tionally determined by a set of properties, such as in the following examples:

All books with the same ISBN number have the same title

The extra pay of Microsoft employees is determined by their position
and the number of overtime hours they have worked

Although mainly related to databases, key constraints can clearly be very useful
in other DL applications.

The research on adding key constraints to DLs with concrete domains per-
formed in [Lutz et al. 2003] revealed that uniqueness constraints have a severe
impact on the decidability and computational complexity of reasoning: adding
uniqueness constraints to the PSpace-complete ALC(D) leads to undecidability
in the general case, while reasoning becomes NExpTime-complete if the exten-
sion is done in a more careful way.

In this thesis, we continue this research, by considering the second type
of key constraints – functional dependencies, and their integration into DLs
with concrete domains. We should note that functional dependencies in
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context of DLs have already been investigated in [Borgida & Weddell 1997,
Calvanese et al. 2001, Khizder et al. 2001], but only DLs without concrete do-
mains were considered. More precisely, we consider an extension of ALC(D) with
key boxes, which are finite sets of functional dependencies of the form

(u1, . . . , un keyfor C, u)

where u1,. . . ,un and u are paths, and C is a concept. Intuitively, the above
functional dependency states that, for the instances of C which share the same
values for u1,. . . ,un, the values for u must also be the same.

The goal of this thesis is to perform an analysis of the impact on decidability
and computational complexity of adding functional dependencies to DLs with
concrete domains. Intuitively, functional dependencies are significantly weaker
than the uniqueness constraints considered in [Lutz et al. 2003]. While unique-
ness constraints can “simulate” nominals and, thus, influence the structure of the
logic domain, functional dependencies only state constraints on concrete data and
should not affect the logical part of a DL.

The main outcome of our analysis is, however, that the seemingly weaker func-
tional dependencies have an equally dramatic effect on the decidability and com-
plexity of reasoning as uniqueness constraints. It turns out that in ALC(D)FD–
the logic obtained by adding functional dependencies to ALC(D)– reasoning be-
comes undecidable, and that a slight restriction on the structure of functional
dependencies regains decidability but leads to NExpTime-completeness.

The rest of the thesis is organized as follows:

In Chapter 2, we formally introduce the syntax and semantics of ALC(D)FD-
concepts and key boxes. We also define admissible concrete domains. We intro-
duce a class of restricted key boxes, called safe, which helps us to preserve the
decidability of reasoning.

In Chapter 3, we give the lower complexity bounds for ALC(D)FD. In Section
3.1, we prove by reduction of the Post Correspondence Problem that ALC(D)FD-
concept satisfiability is undecidable in the general case. Moreover, in Section 3.2
we prove by reduction of a NExpTime-complete version of the tiling problem that
ALC(D)FD-concept satisfiability w.r.t. to safe key boxes is NExpTime-hard.

In Chapter 4, we show that ALC(D)FD-concept satisfiability w.r.t. safe key
boxes is decidable. The decidability is shown in Section 4.1 via a tableau al-
gorithm – in order to ensure its termination, we combine here for the first time
blocking with concrete domains. In Section 4.2, we prove the termination, sound-
ness and completeness of the algorithm. Moreover, these proofs yield a NExp-

Time upper complexity bound for ALC(D)FD-concept satisfiability w.r.t. safe
key boxes.

Finally, concluding remarks are given in Chapter 5.
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Chapter 2

The Description Logic ALC(D)FD

In this section, we formally introduce the syntax and semantics of the description
logic ALC(D)FD. We start with the definition of a concrete domain.

Definition 1 (Concrete Domain). A concrete domain D is a pair (∆D, ΦD),
where ∆D is a set and ΦD a set of predicate names. Each predicate name is
associated with an arity n and an n-ary predicate PD ⊆ ∆n

D. ♦

Based on concrete domains, we define ALC(D)FD-concepts, as well as weak and
strong functional dependencies together with key boxes.

Definition 2 (ALC(D)FD Syntax). Let NC , NR and NcF be pairwise disjoint
and countably infinite sets of concept names, role names, and concrete features.
Furthermore, we assume that NR contains a countably infinite subset NaF of
abstract features. A path u is a composition f1 · · · fng of n abstract features
f1,. . . ,fn (n ≥ 0) and a concrete feature g. Let D be a concrete domain. The set
of ALC(D)FD-concepts is the smallest set such that

• every concept name is a concept

• if C and D are concepts, R is a role name, g is a concrete feature, u1,. . . ,un

are paths, and P ∈ ΦD is a predicate of arity n, then the following expres-
sions are also concepts:

¬C, C ⊓ D, C ⊔ D, ∃R.C, ∀R.C, ∃u1, . . . , un.P, and g↑.

A weak functional dependency is an expression

(u1, . . . , uk wkeyfor C, u),

and a strong functional dependency is an expression

(u1, . . . , uk skeyfor C, u)
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where u1,. . . ,uk (k ≥ 1) and u are paths, and C is a concept. A finite set
of functional dependencies is called key box. If a key box contains only weak
functional dependencies, it is called weak. ♦

We use ⊤ as abbreviation for an arbitrary propositional tautology, ⊥ as abbre-
viation for ¬⊤, and C → D as abbreviation for ¬C ⊔ D. Intuitively, the two
kinds of functional dependencies differ in the following way: if two instances a
and b of C have the same values for the paths u1,. . . ,un, then the weak functional
dependencies enforce that they share the same values for u only if both a and b
have a defined u-value. The strong ones, additionally, enforce that the u-value
of b is defined if this is the case for a and vice versa; these values must then
also coincide. Sometimes we will use (u1, . . . , uk depfor C, u) if the type of the
functional dependency is not important.

Before giving the formal semantics of ALC(D)FD, let us consider the following
examples of functional dependencies:

Example 1:

1. The first example from Chapter 1: “books with the same ISBN number
have the same titles” can be modelled as the strong functional dependency:

(

isbn skeyfor Book, title
)

where Book is a concept, and isbn, title are concrete features.

2. Let us now consider our second example from Chapter 1: “the extra pay
of Microsoft employees is determined by their position and the number of
overtime hours they have worked”. This can be expressed with the n-ary
functional dependency:

(

overtime hours, position wkeyfor ∃works for.Microsoft, extra pay
)

.

The concept ∃works for.Microsoft refers to Microsoft employees, and
overtime hours, position, and extra pay are concrete features. Here is natural
to use the weak form of functional dependency, since we want to allow for
the case that an arbitrary employee gives up on his extra pay (e.g., in favor
of more vacation days).

3. Suppose that we want to express that the tax married Germans pay is
uniquely defined by their income, their spouse’s income and the number of
children they have. We can use the sequence of features (spouse income) to
refer to the income of the spouse in the strong functional dependency:

(

income, (spouse income), num child skeyfor Married ⊓ German, tax
)

Here, the concept Married⊓German describes married Germans, spouse is a
concrete feature, while income, num child, and tax are concrete ones.
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4. Finally, let us consider the example of an integrated patient management
system. Assume that the illness diagnoses have their unique identification
codes, as do stations of each hospital. We can state that patients of one
hospital with the same diagnosis are put into the same station, with the
following functional dependency:

(

(diagnosis id), (hospital name) skeyfor Patient, (station id)
)

Clearly, Patient is a concept; diagnosis, hospital, and station are abstract fea-
tures, while id and name are concrete ones. Note that we used the sequence
of features (station id) on the right-hand side of the functional dependency.

Let us now introduce the semantics of ALC(D)FD together with the most common
reasoning problems.

Definition 3 (ALC(D)FD Semantics). An interpretation I is a pair (∆I ,·
I),

where ∆I is a non-empty set, called the domain, and ·I is the interpretation
function. The interpretation function maps

• each concept name C to a subset CI of ∆I ,

• each role name R to a subset RI of ∆I × ∆I ,

• each abstract feature f to a partial function fI from ∆I to ∆I , and

• each concrete feature g to a partial function gI from ∆I to ∆D.

If u = f1 · · · fng is a path and d ∈ ∆I , then uI(d) is defined as
gI(fI

n · · · (fI
1 (d)) · · · ). The interpretation function is extended to arbitrary con-

cepts as follows:

(¬C)I := ∆I \ CI

(C ⊓ D)I := CI ∩ DI

(C ⊔ D)I := CI ∪ DI

(∃R.C)I := {d ∈ ∆I | there is e ∈ ∆I with (d, e) ∈ RI and e ∈ CI}

(∀R.C)I := {d ∈ ∆I | for all e ∈ ∆I , if (d, e) ∈ RI then e ∈ CI}

(∃u1, ..., un.P )I := {d ∈ ∆I | ∃x1, ..., xn ∈ ∆D : uI
i (d) = xi and (x1, ..., xn) ∈ PD}

(g↑)I := {d ∈ ∆I | gI(d) undefined }.

Let I be an interpretation. Then I is a model of a concept C iff CI 6= ∅.
Moreover, I satisfies a weak functional dependency (u1, ..., uk wkeyfor C, u) if,
for all a, b ∈ CI , the following holds: if, for 1 ≤ i ≤ n, uI

i (a) = uI
i (b) and uI(a)

and uI(b) are defined, then uI(a) = uI(b).
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I satisfies a strong functional dependency (u1, ..., uk skeyfor C, u) if, for all
a, b ∈ CI , the following holds: if, for 1 ≤ i ≤ n, uI

i (a) = uI
i (b) and uI(a) is

defined, then uI(b) is defined and uI(a) = uI(b).
I is a model of a key box K iff I satisfies all functional dependencies in K. A

concept C is satisfiable w.r.t. a key box K iff C and K have a common model. C
is subsumed by a concept D w.r.t. a key box K (written C ⊑K D) iff CI ⊆ DI

for all models I of K. ♦

In ALC(D)FD, as well as in any description logic that provides for negation and
conjunction, concept subsumption can be reduced to concept satisfiability and
vice versa: C ⊑K D iff C ⊓¬D is unsatisfiable w.r.t. K and C is satisfiable w.r.t.
K iff C 6⊑K ⊥. Therefore, it suffices to concentrate on concept satisfiability when
investigating the complexity of ALC(D)FD.

When developing decision procedures for ALC(D)FD, we do not want to re-
strict us to a particular concrete domain D. Therefore, we need a good interface
between the logic and concrete domain reasoner. This is usually achieved by
requiring that the satisfiability of finite predicate conjunctions in D is decidable
[Baader & Hanschke 1991, Lutz 2002a]. Such concrete domains are called admis-
sible:

Definition 4 (D-conjunction, admissibility). Let D be a concrete domain
and V a set of variables. A D-conjunction is a finite predicate conjunction of the
form

c =
∧

i<k

(x
(i)
0 , . . . , x(i)

ni
) : Pi,

where Pi is an ni-ary predicate for i < k and the x
(i)
j are variables from V . A

D-conjunction c is satisfiable iff there exists a function δ mapping the variables
in c to elements of ∆D such that (δ(x

(i)
0 ), . . . , δ(x

(i)
ni )) ∈ PD

i for each i < k. Such
a function is called a solution for c.

A concrete domain D is admissible iff it satisfies the following properties:

1. ΦD contains a name ⊤D for ∆D;

2. ΦD is closed under negation, i.e., for each n-ary predicate P ∈ ΦD, there is

a predicate P ∈ ΦD of arity n such that P
D

= ∆n
D \ PD ;

3. satisfiability of D-conjunctions is decidable.

We refer to the satisfiability of D-conjunctions as D-satisfiability. ♦

It will be shown in subsequent chapters that the decidability and complexity of
ALC(D)FD reasoning problems depends on whether we use key boxes as intro-
duced so far (i.e., general ones) or a restricted version. Thus, we introduce a safe
class of key boxes that will help us to preserve decidability:
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Definition 5 (safe, unary) A key box K is called

• safe if none of concepts appearing in functional dependencies in K has a
subconcept of the form ∃u1, . . . , un.P ;

• a unary key box if all functional dependencies in K are of the form
(u depfor C, u′).

♦

Note that requiring a key box to be safe is not a very severe restriction. Safe key
boxes are still very expressive; if we revisit the examples from this chapter, we
see that they are all modelled using safe key boxes.

Finally, if we want to emphasize that the key box we use is not unary, we refer
to it as n-ary key box.
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Chapter 3

Lower bounds

In this section, we present the lower complexity bounds for the description logic
ALC(D)FD. We first show that ALC(D)FD-concept satisfiability w.r.t. general
key boxes is undecidable. As it will be shown in Chapter 4, the decidability can
be regained if we restrict ourselves to safe key boxes as introduced in Definition
5. In this case, we show that reasoning is NExpTime-hard. Both results are
obtained via variations of the corresponding reductions for ALCK(D) (ALC(D)
with uniqueness constraints) presented in [Lutz et al. 2002].

3.1 Undecidability of ALC(D)FD with General

Key Boxes

We prove that satisfiability of ALC(D)FD-concepts w.r.t. key boxes is undecidable
in the general case. The proof is done by reduction of the well-known undecidable
Post Correspondence Problem (PCP) [Post 1946].

Definition 6 (PCP). An instance P of the Post Correspondence Problem is
given by a finite, non-empty list (l1, r1), . . . , (lk, rk) of pairs of words over some
alphabet Σ. A sequence of integers i1, . . . , im, with m ≥ 1, is called a solution for
P iff

li1 · · · lim = ri1 · · · rim

The Post Correspondence Problem (PCP) is to decide, for a given instance P ,
whether P has a solution. ♦

In order to encode the PCP, it is natural to take a concrete domain based on
words and word concatenation. We will use the concrete domain W introduced
in [Lutz 2003b].

Definition 7 (Concrete domain W). Let Σ be an alphabet. The concrete
domain W is defined by setting ∆W := Σ∗ and defining ΦW as the smallest set

11



Step := ⊓
1≤i≤k

∃fi.(∃g. =ǫ ⊓ ∃s. =ǫ ⊓ ∃l, r. 6=)

⊓ ⊓
1≤i≤k

(∃l, fil.concli ⊓ ∃r, fir.concri
)

CP := ∃l. =ǫ ⊓ ∃r. =ǫ

⊓ ∃R.(∃g. =ǫ ⊓ ∃s. 6=ǫ ⊓ ¬Step)

⊓ Step

KP := {(g wkeyfor ¬Step, s)}

Figure 3.1: The ALC(W)FD reduction concept CP and key box KP

containing the following predicates:

• unary predicates word and nword with wordW = ∆W and nwordW = ∅,

• unary predicates =ǫ and 6=ǫ with =W
ǫ = {ǫ} and 6=W

ǫ = Σ+,

• a binary equality predicate = and a binary inequality predicate 6= with the
obvious interpretation, and

• for each w ∈ Σ+, two binary predicates concw and nconcw with

concW
w = {(u, v) | v = uw} and nconcW

w = {(u, v) | v 6= uw}

♦

It is obvious that the concrete domain W satisfies the Conditions 1 and 2 of
admissibility. Moreover, in [Lutz 2003b] it is shown that W-satisfiability is in
PTime, and, thus, W is admissible. This is important, since we want to show
that the undecidability is not due to non-admissibility or a high complexity of
the concrete domain, but due to functional dependencies .

For an instance of the Post Correspondence Problem P = (l1, r1), . . . , (lk, rk),
we define now an ALC(W)FD-concept CP and a key box KP such that models of
CP and KP encode all potential solutions for P . The reduction concept CP and
key box KP are given in Figure 3.1. Here, R is a role name, f1, . . . , fk denote
abstract features, while l, r, g, and s denote concrete features. The definition of
the concept Step is not a TBox definition, but serves only as abbreviation.

The models of CP and KP have the form of an infinite k-ary tree whose
edges are labelled with f1, . . . , fk and whose root has an additional R-successor,
as shown in Figure 3.2. Intuitively, each node represents a sequence of indices
i1, . . . , in, its l-successor represents the left concatenation li1 · · · lin , and its r-
successor the corresponding right concatenation ri1 · · · rin . By the definition of
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Figure 3.2: A model I of CP and KP

KP it is ensured that every potential solution is considered, and by CP that no
potential solution is indeed a solution. Thus, CP and KP have a common model
iff P has no solution.

Note that the key box KP used in the reduction is a weak one, which means
that restricting us to weak key boxes would not preserve decidability.

Lemma 1 Let P = (l1, r1), . . . , (lk, rk) be a PCP. Then P has a solution iff the
concept CP is unsatisfiable w.r.t. the key box KP .

Proof. For both directions, we will show the contrapositives.
First we show that, if CP is satisfiable w.r.t. KP , then P has no solution. Let

the interpretation I be a model of CP and KP . Then there exists an a ∈ ∆I

such that a ∈ CI
P . Due to the first line of CP we have that lI(a) = rI(a) = ǫ.

Due to the second line of CP , a has an R-successor b such that b ∈ (∃g. =ǫ)
I ,

b ∈ (∃s. 6=ǫ)
I and b ∈ (¬Step)I .

We prove the following claim in order to show that I enumerates all potential
solutions of P :

Claim: For every n ≥ 1 and every sequence of indices S = i1, . . . , in, 1 ≤ ij ≤ k,
there is a c ∈ ∆I such that:

(P1) c = fI
in(· · · (fI

i1
(a)) · · · ),

(P2) lI(c) = li1 · · · lin , rI(c) = ri1 · · · rin ,

(P3) lI(c) 6= rI(c), and
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(P4) c ∈ StepI .

Proof. We prove the claim by induction on n:

1. n = 1. Let S = i1. Due to the third line of CP and the first line of Step, a
has an fi1-successor a′ (a′ = fI

i1
(a)) such that a′ ∈ (∃g.=ǫ)

I and a′ ∈ (∃s.=ǫ)
I .

Moreover, from the definition of Step and since lI(a) = rI(a) = ǫ, it follows that
lI(a′) = li1 , rI(a′) = ri1 , and lI(a′) 6= rI(a′). Thus, the conditions (P1), (P2),
and (P3) are satisfied. In order to show that (P3) holds, we assume the opposite,
i.e., that a′ ∈ (¬Step)I . Since b ∈ (¬Step)I and gI(a′) = gI(b), the functional
dependency (g wkeyfor ¬Step, s) ∈ KP implies sI(a′) = sI(b), which does not
hold. Therefore, we have that a′ ∈ StepI (P4) and the base case is proved.

2. n = m + 1, m ≥ 1. Let S = i1, . . . , im, im+1. By inductional hypothesis, for
n = m and S ′ = i1, . . . , im there is a c ∈ ∆I such that (P1)-(P4) hold for c and
S ′. Since c ∈ StepI , the node c has an fim+1

-successor c′ such that c′ ∈ (∃g.=ǫ)
I ,

c′ ∈ (∃s. =ǫ)
I , and lI(c′) 6= rI(c′). Since c = fI

im(· · · (fI
i1
(a)) · · · ), we obtain

that c′ = fI
im+1

(fI
im(· · · (fI

i1
(a)) · · · )). Moreover, due to the second line of Step

and since lI(c) = li1 · · · lim , we get that lI(c′) = li1 · · · lim+1
. Analogously we

obtain rI(c′) = ri1 · · · rim+1
. Thus, c fulfills the conditions (P1), (P2) and (P3).

Reasoning similarly as in the previous case, we get that (P4) is satisfied as well,
namely c′ ∈ StepI . Thus, the induction step is proved.

The immediate consequence of this claim is that no potential solution of P is
indeed a solution.

For the other direction, we show that if P has no solution, then CP is satisfiable
w.r.t. KP . We construct an interpretation I that is a model of CP and KP . If
w = i1 · · · in is a sequence of indices, with lc(w) we denote the concatenation
of the words l1 · · · ln and with rc(w) we denote the concatenation of the words
r1 · · · rn. We define

∆I := {i1 · · · in | n ≥ 0 and 1 ≤ ij ≤ k for 1 ≤ j ≤ n} ∪ {d}

RI := {(ǫ, d)}

fI
i (w) := wi for w ∈ ∆I \ {d}, fI

i (d) undefined, 1 ≤ i ≤ k

lI(w) := lc(w) for w ∈ ∆I \ {d}, lI(d) undefined

rI(w) := rc(w) for w ∈ ∆I \ {d}, rI(d) undefined

gI(w) := ǫ for w ∈ ∆I

sI(w) :=

{

ǫ, w ∈ ∆I \ {d}
a ∈ Σ+, w = d

14



Since P has no solution, we have lc(w) 6= rc(w) for all w ∈ ∆I \ {d} and, due to
the definition of fI

i for 1 ≤ i ≤ k, lI , rI , gI , and sI we have that StepI = ∆I\{d}.
Now it is easy to see that I is a model of CP (ǫ ∈ CI

P ) and KP . ¤

The following theorem is an immediate consequence of the previous lemma.

Theorem 1 The satisfiability of ALC(W)FD-concepts w.r.t. weak key boxes is
undecidable.

In the following corollary, we emphasize the fact that the undecidability result
is obtained by using a simple concrete domain, and that it holds even for unary
weak key boxes which contain only paths of length one (path-freeness):

Corollary 1 There exists a concrete domain D such that D-satisfiability is in
PTime and ALC(D)FD-satisfiability w.r.t. unary path-free weak key boxes is un-
decidable.

A remark is in order. The concrete domain W may seem unnatural and
the obtained undecidability result, therefore, not very relevant. However, in
[Lutz 2002a] it is shown that words over alphabet Σ can be interpreted as num-
bers written at base #Σ+1 (without “0 digit”). Thus, the corresponding natural
numbers at base 10 can be used to represent non-empty words, and 0 to repre-
sent the empty word. Moreover, the concatenation of two words v and w can be
expressed as vw = v · (#Σ + 1)|w| + w, where |w| denotes the length of the word
w. Since exponentiation can be expressed as multiple multiplications, similarly
as in [Lutz et al. 2002] we obtain the following theorem:

Theorem 2 Let D be a concrete domain such that N ⊆ ∆D and ΦD contains the
following predicates:

1. unary predicates =0 with (=0)
D = {0} and 6=0 with (6=0)

D = ∆D \ {0},

2. binary equality and inequality predicates,

3. a ternary predicate + with (+)D ∩ {(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 + k2) | k1, k2 ∈ N}, and

4. a ternary predicate ∗ with (∗)D ∩ {(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 ∗ k2) | k1, k2 ∈ N}.

Then satisfiability of ALC(D)FD-concepts w.r.t. (general) weak key boxes is un-
decidable.
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3.2 NExpTime-Hardness of ALC(D)FD with Safe

Key Boxes

In this section, we will consider ALC(D)FD with safe key boxes. Recall that safe
key boxes do not allow subconcepts of the form ∃u1, . . . , un.P of concepts oc-
curring in functional dependencies. We will prove a NExpTime-lower bound for
ALC(D)FD-satisfiability w.r.t. safe key boxes by reducing a NExpTime-complete
variant of the well-known undecidable domino problem.

A domino problem is given by a finite set of tile types, all of which are of the
same size, have a square shape and colored edges. An unlimited number of tiles of
each type is available. In the NExpTime-variant of the domino problem we use,
the task is to tile a 2n+1 × 2n+1-torus, i.e., a 2n+1 × 2n+1-rectangle whose parallel
edges are “glued” together. The adjacent tiles must be pairwise compatible,
meaning that their touching edges must be of the same color.

Definition 8 (Domino System). A domino system D is a triple (T,H, V ),
where T = {0, . . . , K}, K ∈ N is a finite set of tile types and H,V ⊆ T × T
are the horizontal and vertical matching conditions. Let D be a domino system
and a = a0, . . . , an−1 an initial condition, i.e. an n-tuple of tiles. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T is a solution for D and a iff, for all
x, y < 2n+1, the following holds:

• if τ(x, y) = t and τ(x +2n+1 1, y) = t′, then (t, t′) ∈ H

• if τ(x, y) = t and τ(x, y +2n+1 1) = t′, then (t, t′) ∈ V

• τ(i, 0) = ai for i < n

where +i denotes addition modulo i. ♦

It is shown in [Börger et al. 1997, Lutz 2002a] that the variant of the domino
problem we introduced is NExpTime-complete. Now we introduce a concrete
domain D which we need for encoding the domino problem.

Definition 9 (Concrete Domain D). The concrete domain D is defined by set-
ting ∆D := {0, 1} and ΦD to the smallest set containing the following predicates:

• unary predicates ⊤D and ⊥D with ⊤D
D = ∆D and ⊥D

D = ∅;

• unary predicates =0 and =1 with =D
i = {i}.

♦
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It is not difficult to see that D is an admissible concrete domain, and that D-
satisfiability is in PTime. The concrete values we want to encode in this concrete
domain are x- and y-coordinates of the 2n+1 × 2n+1 torus and the labels of every
grid position, i.e., the tile type that covers it. Since ∆D = {0, 1}, we have to use
the binary representation of these values. In the case of x- and y-coordinate, it
suffices to use concrete features xpos0,. . . , xposn and ypos0,. . . , yposn to represent
them binary. As for grid labels, we can encode them as l0,. . . , lm, where m =
[log2 K].

For a given domino system D and initial condition a, we now define an
ALC(D)FD-concept CD,a and a safe key box KD,a such that CD,a is satisfiable
w.r.t. KD,a iff D has a solution with initial condition a = a0, . . . , an−1. The
reduction is given in Figure 3.3.

We use here ∀Ri.C as an abbreviation for the n-fold nesting ∀R. · · · ∀R.C.
The names Xi and Yi denote concept names; R, Rx and Ry denote role names,
while xposi, yposi and li denote concrete features. The definitions of the concepts
TreeX, TreeY, etc. serve only as abbreviation. We use biti(n) to denote the i-th bit
of the binary representation of n ∈ N. Before proving formally the correctness of
the reduction, let us explain some parts of the concept CD,a. The TreeX concept
enforces the existence of a binary tree Tx of depth n + 1. The edges of this tree
are labelled with role R, and the concept names X0, . . . , Xn are used for a binary
numbering of the leaves of Tx. For d ∈ ∆I we define xpos(d) in the following way:

xpos(d) =
n

∑

i=0

αi(d) · 2i where αi(d) =

{

1, if d ∈ XI
i

0, otherwise.

It is ensured by the TreeX and DistXk concepts that, for each i < 2n+1, there is
a leaf di of Tx with xpos(di) = i. Furthermore, the TreeY enforces that each leaf
di of Tx is a root of another tree of depth n + 1; let us call this tree T i

y. Due to

the TreeY, DistXn, and DistYk concepts, we have that the leaves of
⋃n+1

i=0 T i
y are

binarily numbered by concepts X0, . . . , Xn, Y0, . . . , Yn. Moreover, for each leaf
d of the tree T i

y it holds that xpos(d) = i. Let us now define ypos(d) for d ∈ ∆I

analogously to xpos:

ypos(d) =
n

∑

i=0

βi(d) · 2i where βi(d) =

{

1, if d ∈ Y I
i

0, otherwise.

We have that, for each i, j < 2n+1 there is a leaf di,j of T i
y such that ypos(di,j) = j

(and xpos(di,j) = i). Intuitively, each di,j represents the (i, j) position of the
2n+1 × 2n+1-torus.

The concrete features xpos0, . . . , xposn are used as a binary representation of
the x-coordinate (xpos) and concrete features ypos0, . . . , yposn as a binary rep-
resentation of the y-coordinate (ypos) for every di,j and its horizontal neighbours
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TreeX := ∃R.X0 ⊓ ∃R.¬X0 ⊓ ⊓
i=1..n

∀Ri.(DistXi−1 ⊓ ∃R.Xi ⊓ ∃R.¬Xi)

TreeY := DistXn ⊓ ∃R.Y0 ⊓ ∃R.¬Y0 ⊓

⊓
i=1..n

∀Ri.(DistYi−1 ⊓ DistXn ⊓ ∃R.Yi ⊓ ∃R.¬Yi)

DistXk := ⊓
i=0..k

((Xi → ∀R.Xi) ⊓ (¬Xi → ∀R.¬Xi))

DistYk := ⊓
i=0..k

((Yi → ∀R.Yi) ⊓ (¬Yi → ∀R.¬Yi))

TransXPos := ⊓
i=0..n

((Xi → ∃xposi. =1) ⊓ (¬Xi → xposi. =0))

TransYPos := ⊓
i=0..n

((Yi → ∃yposi. =1) ⊓ (¬Yi → yposi. =0))

Succs := ∃Rx.(TransXPos ⊓ TransYPos) ⊓ ∃Ry.(TransXPos ⊓ TransYPos)

XSuccOk := ⊓
i=0..n

((Yi → ∀Rx.Yi) ⊓ (¬Yi → ∀Rx.¬Yi))

⊓
k=0..n

( ⊓
j=0..k

Xj) → ((Xk → ∀Rx.¬Xk) ⊓ (¬Xk → ∀Rx.Xk))

⊓
k=0..n

( ⊔
j=0..k

¬Xj) → ((Xk → ∀Rx.Xk) ⊓ (Xk → ∀Rx.¬Xk))

YSuccOk := ⊓
i=0..n

((Xi → ∀Ry.Xi) ⊓ (¬Xi → ∀Ry.¬Xi))

⊓
k=0..n

( ⊓
j=0..k

Yj) → ((Yk → ∀Ry.¬Yk) ⊓ (¬Xk → ∀Ry.Yk))

⊓
k=0..n

( ⊔
j=0..k

¬Yj) → ((Yk → ∀Ry.Yk) ⊓ (Xk → ∀Ry.¬Yk))

Tilei := ⊓
j=0..m

∃lj. =bitj(i)

Label := ⊔
i∈T

Tilei

CheckMatch := ⊔
(i,j)∈H

(Tilei ⊓ ∀Rx.Tilej) ⊓ ⊔
(i,j)∈V

(Tilei ⊓ ∀Ry.Tilej)

Init := ⊓
i=0..n−1

(

( ⊓
j=0..n,bitj(i)=0

¬Xj ⊓ ⊓
j=0..n,bitj(i)=1

Xj ⊓ ⊓
j=0..n

¬Yj) → Tileai

)

CD,a := TreeX ⊓ ∀Rn+1.TreeY

⊓∀R2(n+1)(TransXPos ⊓ TransYPos ⊓ Succs ⊓ XsuccOk ⊓ YSuccOk)

⊓∀R2(n+1)(Init ⊓ Label ⊓ CheckMatch)

KD,a := {(xpos0, . . . , xposn, ypos0, . . . , yposn wkeyfor ⊤, l0),
...

xpos0, . . . , xposn, ypos0, . . . , yposn wkeyfor ⊤, lm)}

Figure 3.3: The ALC(D)FD reduction concept CD,a and key box KD,a
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(Rx-successors) and vertical neighbours (Ry-successors). This is realized by the
concepts TransX, TransY, and Succs.

The definition of the XSuccOk and YSuccOk concepts is the DL formulation
of the propositional formula:

n
∧

k=0

(
k−1
∧

j=0

xj = 1) → (xk = 1 ↔ x′
k = 0) ∧

n
∧

k=0

(
k−1
∨

j=0

xj = 0) → (xk = x′
k)

which encodes incrementation modulo 2n+1, i.e., if x0,. . . ,xn is the binary rep-
resentation of the number t, and x′

0,. . . ,x
′
n of the number t′, we have that

t′ = t +2n+1 1. These concepts, together with the Succs concept ensure that
every di,j has a horizontal and a vertical neighbour with correct coordinates.

The concepts Tilei for i ≤ K represent tile types. The definition of the Label

concept ensures that every grid position is covered with a tile type. For d ∈ LabelI

we define

l(d) =
m

∑

i=0

lIi (d) · 2i.

The definition of the Tilei concepts implies that d ∈ TileIi iff l(d) = i. This
means that l takes the role of the “tiling function”, i.e., a potential so-
lution for D and a. Thus, it is ensured that every grid position is cov-
ered with no more than one domino type. The functional dependencies
(xpos0, . . . , xposn, ypos0, . . . , yposn wkeyfor ⊤, li) for i ≤ m ensure that the x- and
y-coordinates uniquely define the tile that covers position (x, y) of the grid.

The initial and matching conditions of the domino system are tackled by the
Label, Init, and CheckMatch concepts.

Lemma 2 Let D be a domino system and a an initial condition. Then D and a
have a solution iff the concept CD,a is satisfiable w.r.t. the key box KD,a.

Proof. Let D = (T,H, V ) be a domino system and a = a0, . . . , an−1 an initial
condition. First assume that CD,a is satisfiable w.r.t. KD,a and an interpretation
I is their model. Using induction on n and the definitions of the TreeX, DistXi,
TreeY, and DistYi concepts it is not difficult to show that there exists a di,j ∈ ∆I ,
for all i, j < 2n+1, such that

xpos(di,j) = i and ypos(di,j) = j,

i.e., every di,j corresponds to the (i, j) position of a 2n+1×2n+1-torus. The domain
elements di,j are leaves of a binary tree of depth 2(n+1) whose root is an instance
of CD,a, and whose existence is enforced by the definition of the concepts named
above.
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The second line of CD,a ensures that di,j ∈ (TransXPos ⊓ TransYPos)I . Due
to the concept TransXPos, for every d ∈ (TransXPos)I it holds that xposI0 (d),. . . ,
xposIn(d) is the binary representation of xpos(d); similarly, due to TransYPos,
for every d ∈ (TransYPos)I it holds that yposI0 (d),. . . , yposIn(d) is the binary
representation of ypos(d).

Moreover, the definition of CD,a implies that di,j ∈ (Succs ⊓ XSuccOk ⊓
YSuccOk)I . Using the definitions of the concepts Succs, XSuccOk, and YSuccOk,
we obtain that ∅ 6= RI

x(di,j), R
I
y (di,j) ⊆ (TransXPos ⊓ TransYPos)I , and:

if (di,j, e) ∈ RI
x then xpos(e) = i +2n+1 1 and ypos(e) = j

if (di,j, e) ∈ RI
y then xpos(e) = i and ypos(e) = j +2n+1 1

(3.1)

Due to the third line of CD,a we obtain that di,j ∈ (Label⊓CheckMatch⊓Init)I . By
definitions of the Label and Tilek concepts, it is ensured that every grid position
is labelled with precisely one tile, and by Init that the initial condition is satisfied,
i.e.:

l(di,0) = ai for i < n

Due to the CheckMatch concept, we have:

if (di,j, e) ∈ RI
x then (l(di,j), l(e)) ∈ H

if (di,j, e) ∈ RI
y then (l(di,j), l(e)) ∈ V

(3.2)

Finally, the functional dependencies

(xpos0, . . . , xposn, ypos0, . . . , yposn wkeyfor ⊤, li)

enforce that if xpos(e) = xpos(e′) and ypos(e) = ypos(e′) for some e, e′ ∈
(TransXPos ⊓ TransYPos ⊓ Label)I , then lIi (e) = lIi (e′) for i ≤ m, i.e., l(e) = l(e′).
Combining this with (3.1) and (3.2), we obtain the following:

(l(di,j), l(di+
2n+11,j)) ∈ H and (l(di,j), l(di,j+

2n+11)) ∈ V

Thus, the matching condition is satisfied and if we define a mapping

τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T

with τ(i, j) = l(di,j), then τ is a solution for D and a.

Now let us consider the “only if” direction. Assume that τ : {0, . . . , 2n+1 −
1} × {0, . . . , 2n+1 − 1} → T is a solution for D and a. We use τ to construct an
interpretation I. First we define the interpretation domain:
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∆I := {d
(k)
i,0 | k ≤ n + 1, i < 2k}

∪{d(n+1+k)
i,j | k ≤ n + 1, i < 2n+1, j < 2k}

For p ≤ n, we define XI
p and Y I

p as follows:

XI
p := {d

(k)
i,j ∈ ∆I | p < k ≤ 2n + 2, bitp(i) = 1}

Y I
p := {d

(k)
i,j ∈ ∆I | n + p < k ≤ 2n + 2, bitp(j) = 1}

We continue with the interpretation of the role names R, Rx, and Ry:

RI := {(d
(k)
i,0 , d

(k+1)
2i,0 ), (d

(k)
i,0 , d

(k+1)
2i+1,0) | k ≤ n, d

(k)
i,0 ∈ ∆I}

∪{(d
(k)
i,j , d

(k+1)
i,2j ), (d

(k)
i,j , d

(k+1)
i,2j+1) | n < k < 2n + 2, d

(k)
i,j ∈ ∆I}

RI
x := {(d

(2n+2)
i,j , d

(2n+2)
i+

2n+11
,j) | d

(2n+2)
i,j ∈ ∆I}

RI
y := {(d

(2n+2)
i,j , d

(2n+2)
i,j+

2n+11) | d
(2n+2)
i,j ∈ ∆I}

Finally, we give the interpretation of the concrete features xposp and yposp for
every p ≤ n and of the concrete features lk for k ≤ m:

xposIp (d
(2n+2)
i,j ) := bitp(i)

yposIp (d
(2n+2)
i,j ) := bitp(j)

lIk (d
(2n+2)
i,j ) := bitk(τ(i, j))

Here, xposIp , yposIp , and lIk are undefined for d
(k)
i,j ∈ ∆I with k < 2n + 2.

It is not hard to verify that d
(0)
0,0 ∈ CI

D,a. Moreover, there exist no domain
elements d1 and d2, d1 6= d2, such that the values xposIm(di), yposIm(di) are defined
for m ≤ n, i = 1, 2 and xposIm(d1) = xposIm(d2), yposIm(d1) = yposIm(d2) for m ≤ n.
The immediate consequence is that the interpretation I satisfies the functional
dependencies (xpos0, . . . , xposn, ypos0, . . . , yposn wkeyfor ⊤, li) for i ≤ m. Thus,
I is a model of CD,a and KD,a. ¤

Since the size of CD,a and KD,a is polynomial in n and m, we obtain the
following theorem:

Theorem 3 The satisfiability of ALC(D)FD-concepts w.r.t. to safe key boxes is
NExpTime-hard.

Now we combine the obtained result with the complexity of D-satisfiability:

Corollary 2 There exists a concrete domain D such that D-satisfiability is in
PTime and ALC(D)FD-satisfiability w.r.t. safe key boxes is NExpTime-hard.
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As an immediate consequence of the previous reduction we obtain the theorem:

Theorem 4 Let D be a concrete domain such that {0, 1} ⊆ ∆D and ΦD contains
predicates =0 and =1 with (=0)

D = {0} and (=1)
D = {1}. Then satisfiability of

ALC(D)FD-concepts w.r.t. safe key boxes is NExpTime-hard.

Let us notice that the key box used in the reduction is a weak one, which means
that dropping strong functional dependencies does not help to overcome NExp-

Time-hardness.
In the presented reduction, we used a very simple concrete domain and there-

fore we needed an n-ary key box for the reduction. If we use a more complex
concrete domain D′ such that N ⊆ ∆D′ and ΦD′ contains unary predicates =k for
k ∈ N with the obvious extensions and the ternary predicates + and ∗, we can do
the reduction by using only a unary key box. More precisely, we can introduce
concrete features pos and lab such that:

posI(d) = xpos(d) + 2n+1 · ypos(d) and labI(d) = l(d)

This can be achieved by modifying the reduction as shown in [Lutz et al. 2002],
and by defining Tilei := ∃lab. =i. Then it suffices to have the unary key box with
a single functional dependency:

{(pos wkeyfor ⊤, lab)}

for the reduction. As a consequence, we obtain the following theorem:

Theorem 5 Let D be a concrete domain such that N ⊆ ∆D and ΦD contains the
following predicates:

1. a unary predicate =k with (=k)
D = {k} for each k ∈ N,

2. a ternary predicate + with (+)D ∩ {(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 + k2) | k1, k2 ∈ N}, and

3. a ternary predicate ∗ with (∗)D ∩ {(k1, k2, x) | k1, k2 ∈ N and x ∈ ∆D} =
{(k1, k2, k1 ∗ k2) | k1, k2 ∈ N}.

Then satisfiability of ALC(D)FD-concepts w.r.t. safe weak unary key boxes is
NExpTime-hard.

This result shows that, in general, restricting us to unary key boxes would not
lower the complexity of reasoning in ALC(D)FD with safe key boxes.
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Chapter 4

A Reasoning Procedure

In this chapter, we will present a reasoning procedure for ALC(D)FD. In Section
3.1 it was shown that the satisfiability of ALC(D)FD-concepts w.r.t. general key
boxes is undecidable. We will show that decidability can be regained if we restrict
us to safe key boxes. The chosen reasoning procedure for ALC(D)FD with safe
key boxes is the tableau algorithm presented in Section 4.1. In Section 4.2, we
prove the correctness of this algorithm (termination, soundness, completeness)
and show that the algorithm yields a tight NExpTime upper complexity bound
for ALC(D)FD if D is a concrete domain such that extended D-satisfiability is in
NP.

4.1 A Tableau Algorithm for ALC(D)FD with

Safe Key Boxes

In this section, we present a tableau algorithm for ALC(D)FD with weak key
boxes. As already said, tableau algorithms for description logics decide whether
a concept is satisfiable by trying to construct a model for it. They start with
an initial structure induced by the input concept and apply so-called completion
rules until an obvious contradiction is detected or no rule is applicable anymore.
In the latter case, the concept is satisfiable, and in the former it is not. Tableau
algorithms for DLs with concrete domains work on trees which have two types of
nodes: abstract ones that represent individuals of the logic domain, and concrete
ones that are mapped to values of the concrete domain. If we do not want to
commit to a particular concrete domain, we need a clear interface between the
tableau algorithm and a concrete domain reasoner. This is often achieved by
requiring that the concrete domain D is admissible (c.f. Definition 4), i.e., that
the satisfiability of D-conjunctions is decidable.

However, due to the functional dependencies, we need, additionally, infor-
mation on which variables (concrete nodes) have to be mapped to the same
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concrete domain value in order to satisfy a certain D-conjunction. Thus, for
ALC(D)FD, we need the stronger condition from [Lutz et al. 2003] called key-
admissibility. Since the tableau algorithm we are going to develop for ALC(D)FD

is non-deterministic, key-admissibility is defined in a non-deterministic manner:

Definition 10 (key-admissible). An admissible concrete domain D is key-
admissible iff it additionally satisfies the following property:

• there exists an algorithm that takes as input a D-conjunction c, returns
clash if c is unsatisfiable, and otherwise non-deterministically outputs an
equivalence relation ∼ on the set of variables V used in c such that there
exists a solution δ for c with the following property: for all v, v′ ∈ V

δ(v) = δ(v′) iff v ∼ v′.

We say that extended D-satisfiability is in NP if there exists an algorithm as
above running in polynomial time. ♦

As discussed in [Lutz et al. 2003], key-admissibility is not a significantly
stronger property than admissibility, since every admissible concrete domain that
provides for an equality predicate is also key-admissible. In [Lutz et al. 2002],
it is shown that an algorithm for extended D-satisfiability can be easily con-
structed from one for D-satisfiability: every admissible concrete domain D that
provides for an equality predicate, provides also for inequality. Then we can
simply guess an equivalence relation ∼ on the set of variables used in the
presented predicate conjunction c; decide the satisfiability of the conjunction
c ∧

∧

v∼v′ =(v, v′) ∧
∧

v 6∼v′ 6=(v, v′), and return clash if it is unsatisfiable and ∼
otherwise. Throughout this chapter, we assume that the concrete domain D pro-
vides for an equality. Let us now give an example of a key-admissible numerical
concrete domain Q [Lutz 2003a]:

Example 2: The concrete domain Q is defined by setting ∆Q to the set of rational
numbers Q and ΦQ to the smallest set containing the following predicates:

• unary predicates Pq for each P ∈ {<,≤, =, 6=,≥, >} and q ∈ Q with (Pq)
Q =

{q′ ∈ Q | q′Pq};

• binary predicates <,≤, =, 6=,≥, > with obvious extensions;

• ternary predicates + and + with (+)Q = {(q, q′, q′′) ∈ Q3 | q + q′ = q′′} and
(+)Q = Q3 \ (+)Q;

• unary predicates ⊤Q and ⊥Q with (⊤Q)Q = Q and (⊥Q)Q = ∅.

Moreover, in [Lutz 2003a] it is shown that Q-satisfiability is in PTime, and, thus,
we conclude that extended Q-satisfiability is in NP.
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Before presenting the tableau algorithm, we need some more prerequisites. A
concept is in negation normal form (NNF) if negation occurs only in front of
concept names. If D is a key-admissible concrete domain, then every ALC(D)FD-
concept can be converted into an equivalent one in NNF by exhaustively applying
the following rewrite rules:

¬(C ⊓ D) Ã ¬C ⊔ ¬D ¬(C ⊔ D) Ã ¬C ⊓ ¬D

¬(∃R.C) Ã ∀R.¬C ¬(∀R.C) Ã ∀R.¬C

¬¬C Ã C

¬(∃u1, ..., un.P ) Ã ∃u1, ..., un.P ⊔ u1↑ · · · ⊔ un↑

¬(g↑) Ã ∃g.⊤D

Note that, for a path u = f1 · · · fng, we use u↑ as abbreviation for the concept
∀f1. · · · ∀fn.g↑.

We use ¬̇C to denote the result of converting the concept ¬C into NNF. A
key box K is in NNF if all concepts occurring in functional dependencies in K are
in NNF. From now on, we assume that all input concepts and key boxes are in
NNF. Let C be an ALC(D)FD-concept and K a key box. We use sub(C) to denote
the set of subconcepts of C and con(K) to denote the set of concepts appearing
on the right-hand side of functional dependencies in K. For a set of concepts Γ,
sub(Γ) denotes

⋃

C∈Γ sub(C). We use cl(K) as abbreviation for the set

sub(con(K)) ∪ {¬̇D | D ∈ sub(con(K))},

and cl(C,K) as abbreviation for the set

sub(C) ∪ cl(K).

Now we introduce the underlying data structure of the tableau algorithm:

Definition 11 (Completion system) Let Oa and Oc be disjoint and countably
infinite sets of abstract and concrete nodes. A completion tree for an ALC(D)FD-
concept C and a key box K is a finite, labelled tree T = (Va, Vc, E,L) with nodes
Va ∪ Vc, such that Va ⊆ Oa, Vc ⊆ Oc, and all nodes from Vc are leaves. The tree
is labelled as follows:

1. each node a ∈ Va is labelled with a subset L(a) of cl(C,K);

2. each edge (a, b) ∈ E with a, b ∈ Va is labelled with a role name L(a, b)
occurring in C or K;

3. each edge (a, x) ∈ E with a ∈ Va and x ∈ Vc is labelled with a concrete
feature L(a, x) occurring in C or K
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A node b ∈ Va is an R-successor of a node a ∈ Va if (a, b) ∈ E and L(a, b) = R,
while an x ∈ Vc is an g-successor of a if (a, x) ∈ E and L(a, x) = g. The notion
u-successor for a path u is defined in the obvious way.

For a ∈ Va ∪ Vc, we use levT (a) to denote the depth on which a occurs in T
(the root node is on depth 0). A completion system for an ALC(D)FD-concept
C and a key box K is a tuple (T,P ,∼) where

• T = (Va, Vc, E,L) is a completion tree for C and K,

• P is a function mapping each P ∈ ΦD of arity n in C to a subset of V n
c ,

• ∼ is an equivalence relation on Vc.

♦

Let D be a key admissible concrete domain. To decide the satisfiability of
an ALC(D)FD-concept C0 w.r.t. a safe key box K (both in NNF), the tableau
algorithm is started with the initial completion system

SC0
= (TC0

,P0, ∅)

with the initial completion tree

TC0
= ({a0}, ∅, ∅, {a0 7→ {C0}})

and where P0 maps each P occurring in C0 to ∅.
The algorithm applies completion rules to the completion system until an

obvious inconsistency (clash) is detected or no completion rule is applicable any
more. We will define completion rules for ALC(D)FD after some prerequisites.
Let us first introduce an operation that is used by completion rules to add new
nodes to completion trees. The operation respects the functionality of abstract
and concrete features.

Definition 12 (⊕ Operation) An abstract or concrete node is called fresh w.r.t.
a completion tree T if it does not appear in T . Let S = (T,P ,∼) be a completion
system with T = (Va, Vc, E,L). We use the following operations:

• S ⊕ aRb (a ∈ Va, b ∈ Oa fresh in T , R ∈ NR) yields a completion system
obtained from S in the following way:

– if R 6∈ NaF or R ∈ NaF and a has no R-successors, then add b to Va,
(a, b) to E and set L(a, b) = R, L(b) = ∅.

– if R ∈ NaF and there is a c ∈ Va such that (a, c) ∈ E and L(a, c) = R
then rename c in T with b.
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• S ⊕ agx (a ∈ Va, x ∈ Oc fresh in T , g ∈ NcF ) yields a completion system
obtained from S in the following way:

– if a has no g-successors, then add x to Vc, (a, x) to E and set L(a, x) =
g;

– if a has a g-successor y, then rename y in T , P , and ∼ with x.

Let u = f1 · · · fng be a path. With S ⊕ aux, where a ∈ Va and x ∈ Oc is fresh
in T , we denote the completion system obtained from S by taking distinct nodes
b1, ..., bn ∈ Oa which are fresh in T and setting

S ′ := S ⊕ af1b1 ⊕ · · · + bn−1fnbn ⊕ bngx

♦

Now we define what is meant by an obvious inconsistency.

Definition 13 (Clash) Let S = (T,P ,∼) be a completion system for a concept
C and a key box K with T = (Va, Vc, E,L). We say that the completion system
S is concrete domain satisfiable iff the conjunction

ζS =
∧

P used in C

∧

(x1,...,xn)∈P(P )

P (x1, ..., xn) ∧
∧

x∼y

= (x, y)

is satisfiable. S is said to contain a clash iff

1. there is an a ∈ Va and an A ∈ NC such that {A,¬A} ⊆ L(a),

2. there are a ∈ Va and x ∈ Vc such that g↑ ∈ L(a) and x is a g-successor of
a,

3. S is not concrete domain satisfiable.

If S does not contain a clash, S is called clash-free. ♦

In order to ensure the termination of the algorithm, we need a cycle detection
mechanism, called blocking. Informally, we detect nodes in the completion tree
“similar” to the previously created ones and “block” them. This means that the
completion rules are applied only to unblocked nodes.

Definition 14 (≈ relation, Blocking) Let S = (T,P ,∼) be a completion
system for a concept C0 and a key box K with T = (Va, Vc, E,L). Let u be a
path. We say that nodes a, b ∈ Va have similar u-successors (written a ≈u b) if
the following holds:

• if a has a u-successor x, then b has a u-successor y and x ∼ y;
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• if b has a u-successor x, then a has a u-successor x and x ∼ y.

With suff(C0,K) we denote the set of all suffixes of paths that appear in a
∃u1, ..., un.P ∈ sub(C0) or in a functional dependency (either on the left- and
right-hand side) in the key box K.

We call abstract nodes a and b similar (written a ≈ b) if

1. L(a) = L(b), and

2. a ≈u b for all u ∈ suff(C0,K).

An abstract node a ∈ Va is directly blocked by its ancestor b ∈ Va if a ≈ b. An
abstract node is blocked if it or one of its ancestors is directly blocked. ♦

The first part of the blocking condition, namely the requirement that a node
and the one which directly blocks it have same labels is known from tableau
algorithms for other DLs. The second part is introduced due to functional
dependencies, and here is new that while blocking we consider not only abstract
nodes and their labels, but also concrete ones and the concrete equivalence
relation. An intuitive explanation of the blocking mechanism is given after we
have introduced the completion rules. Before actually giving them, we introduce
some notions. With check we refer to the function that computes a concrete
equivalence for a given D-conjunction. If ρ is a binary relation on Vc × Vc, with
ρ∗ we denote the reflexive, symmetric and transitive closure of ρ.

Completion rules:

R⊓ if C1 ⊓ C2 ∈ L(a), a is not blocked, and {C1, C2} 6⊆ L(a), then L(a) :=
L(a) ∪ {C1, C2}

R⊔ if C1 ⊔ C2 ∈ L(a), a is not blocked, and {C1, C2} ∩ L(a) = ∅, then
L(a) := L(a) ∪ {C} for some C ∈ {C1, C2}

R∃ if ∃R.C ∈ L(a), a is not blocked, and there is no R-successor of a such
that C ∈ L(b), then set S := S ⊕ aRb for a fresh b ∈ Oa and L(b) := {C}

R∀ if ∀R.C ∈ L(a), a is not blocked, and b is an R-successor of a such that
C 6∈ L(b), then set L(b) := L(b) ∪ {C}

R∃c if ∃u1, ..., un.P ∈ L(a), a is not blocked, and there exist no x1, ..., xn ∈ Vc

such that xi is a ui-successor of a for 1 ≤ i ≤ n and (x1, ..., xn) ∈ P(P )
then set S := (S ⊕ au1x1 ⊕ · · · ⊕ aunxn) with x1, ..., xn ∈ Oc fresh and
P(P ) := P(P ) ∪ {(x1, ..., xn)}
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Rch if (u1, ..., un wkeyfor C, u) ∈ K or (u1, ..., un skeyfor C, u) ∈ K and there
exist x1, ..., xn ∈ Vc such that xi is a ui-successor of a (not blocked) for
1 ≤ i ≤ n and {C, ¬̇C} ∩ L(a) = ∅, then set L(a) := L(a) ∪ {D} for some
D ∈ {C, ¬̇C}

Rwkey if C ∈ L(a)∩L(b), (u1, ..., un wkeyfor C, u) ∈ K, a and b are not blocked,
a has ui-successor xi, b has ui-successor yi, and xi ∼ yi for 1 ≤ i ≤ n, there
is a u-successor x of a and a u-successor y of b, and (x, y) 6∈∼, then set
∼:= (∼ ∪{(x, y)})∗

Rskey if C ∈ L(a)∩L(b), (u1, ..., un skeyfor C, u) ∈ K, a and b are not blocked,
a has ui-successor xi, b has ui-successor yi, and xi ∼ yi for 1 ≤ i ≤ n, there
is a u-successor x of a, and there is no u-successor z of b such that (x, z) ∈∼
then set S := S ⊕ buy with y ∈ Oc fresh and ∼:= (∼ ∪{(x, y)})∗

R∼ if ∼′= check(ζS) 6⊆∼ then set ∼:=∼′

Note that the Rwkey, Rskey and R∼ rules which update the ∼ relation ensure
that the update result is indeed a concrete equivalence relation.

If no completion rule is applicable to a completion system S, S is called
complete.

Let us give some remarks on the completion rules. Among the rules there are
two non-deterministic ones, namely R⊔ and Rch. The rules R⊓, R⊔, R∃, R∀,
and R∃c are known from the existing algorithm for ALC(D)-concept satisfiability
(see [Lutz 2002a]). The rules Rch, Rwkey, and Rskey deal with the key box.

The Rch is a so-called “choice” rule that does the following: If there is a
functional dependency (u1, . . . , un depfor C, u) ∈ K and there is an abstract node
a with all appropriate ui-successors, the rule adds non-deterministically C or ¬̇C
to the L(a). This is necessary since both possibilities may have ramifications.
Observe that, without blocking, this rules can cause infinite runs of the algorithm,
e.g. due to a (u wkeyfor ∃R.⊤, u) ∈ K and “bad guessing” by Rch. The first part
of the blocking condition deals with this problem.

The Rwkey rule deals with weak functional dependencies. If there is a
(u1, . . . , un wkeyfor C, u) ∈ K and there are two abstract nodes a and b with
ui- and u-successors such that the ui-successors of a and b are associated with the
same element of the concrete domain (i.e., related by ∼), the Rwkey rule makes
sure that u-successors of a and b are also related by ∼.

Analogously, the Rskey rule deals with strong functional dependencies. The
difference to Rwkey is that it is applied even if b does not have a u-successor. In
this case, the necessary u-successor of b is created. This rule also endangers the
termination of the algorithm. To see this, consider satisfiability of

C0 = ∃g.=0 ⊓ ∃(fg).=0 w.r.t. K = {(g skeyfor ⊤, fg)}.
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Without blocking, applications of Rskey will generate an infinite f -chain such
that each element has a g-successor that is zero as shown in Figure 4.1. The
second part of the blocking condition is introduced to deal with this effect.

{C0} s ✲¡
¡¡✒

f

g
q
=0

s ✲¡
¡¡✒

f

g
q
=0

s ✲¡
¡¡✒

f

g
q
=0

s ✲¡
¡¡✒

f

g
q
=0

. . .

Figure 4.1: An infinite f -chain

Finally, the R∼ rule computes an update of the concrete equivalence ∼ by
calling the check function with argument ζS. The rule R∃c adds new tuples into
P(P ) and the rules Rwkey and Rskey add new tuples into ∼, modifying in this
way the D-conjunction ζS and making it necessary to update ∼. The R∼ rule
does this during the run of the algorithm—in contrast to the original ALC(D)
algorithm, where a single call to the concrete domain reasoner at the end of the
computation is sufficient. The interleaving approach of our algorithm is essential
since the equality of concrete nodes detected by the concrete domain reasoner
can trigger further applications of the Rwkey and Rskey rules.

We present now the tableau algorithm in pseudo-code notation. It is started
with sat(SC0

).

Algorithm:
procedure sat(S)

if S contains a clash then return unsatisfiable

if S is complete then return satisfiable

S ′ := application of a completion rule to S
return sat(S ′)

Note that checking whether a completion system contains a clash prior to com-
pletion rule application ensures that the function check(ζS) in the rule R∼ does
not return clash.

4.2 Correctness of the Algorithm

Let us now prove termination, soundness and completeness of the tableau algo-
rithm. We first introduce a few notions.
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Definition 15 (Path length, Role depth)
Let u = f1 · · · fng be a path. The length of u is defined as |u| = n + 1.
The role depth of concepts is defined inductively as follows:

rd(A) = rd(¬A) = rd(g↑) = 0
rd(∃u1, . . . , un.P ) = max{|ui| | 1 ≤ i ≤ n}
rd(C ⊓ D) = rd(C ⊔ D) = max{rd(C), rd(D)}
rd(∃R.C) = rd(∀R.C) = rd(C) + 1 ♦

Let C be a concept, and K a key box. We use |C| to denote the length of C
and |K| to denote

∑

(u1,...,un depfor C,u)∈K

(|u1| + · · · + |un| + |C| + |u|).

where depfor ∈ {wkeyfor, skeyfor}. With mpl(C0,K) we denote

max{|u| | u ∈ suff(C0,K)}

Lemma 3 Let T = (Va, Vc, E,L) be a completion tree constructed during the run
of the tableau algorithm started on the input concept C0 and a safe key box K.
Let a ∈ Va and C ∈ L(a). Then either

C ∈ cl(K) or levT (a) ≤ rd(C0) − rd(C).

Proof. We prove the lemma by induction on the number n of rule applications
after which C is added into L(a).

1. n = 0. Obvious, since C ≡ C0 and a is the root node, i.e., levT (a) = 0.

2. n ≥ 1. Assume C 6∈ cl(K). Since C ∈ cl(C0,K) and cl(C0,K) = sub(C0)∪cl(K),
it must be that C ∈ sub(C0). We will distinguish two cases.

• C is added to L(a) via an application of R⊔ or R⊓ rule. Then there exists an
E ∈ L(a), with E = C ⊔ D or E = C ⊓ D for some concept D ∈ cl(C0,K).
We have that C 6∈ cl(K) implies E 6∈ cl(K). Since E is added to L(a)
by an earlier rule application, by inductional hypothesis we get levT (a) ≤
rd(C0) − rd(E). Using rd(E) = rd(C), we obtain levT (a) ≤ rd(C0) − rd(C).

• C is added to L(a) via an application of R∃ or R∀ rule. Then there is a
b ∈ Va such that a is an R-successor of b and there is a D ∈ L(b) with
D ∈ {∃R.C,∀R.C}. Obviously, D 6∈ cl(K). Since D is added to L(b)
by an earlier rule application, by inductional hypothesis we get levT (b) ≤
rd(C0) − rd(D). Using rd(D) = rd(C) + 1 and levT (b) = levT (a) − 1, we
obtain levT (a) ≤ rd(C0) − rd(C). ¤

31



Lemma 4 Let S = (T,P ,∼) with T = (Va, Vc, E,L) be a completion system
constructed during the run of the tableau algorithm started on the input concept
C0 and a safe key box K. Then the following holds:

(a) The out-degree of T is bounded by |C0| + |K|;

(b) The concrete equivalence relation ∼ satisfies:

|Vc/∼| ≤ #{c ∈ Vc | levT (c) ≤ rd(C0)} ≤ (|C0| + |K|)|C0|;

(c) ≈ is an equivalence relation on Va and

|Va/≈| ≤ (n + 1)|C0|+|K| · 2|cl(C0,K)|, where n = |Vc/∼|;

(d) The depth of T is bounded by |Va/≈| + mpl(C0,K).

Proof.
(a) New nodes are created exclusively due to application of the rules R∃,

R∃c, and Rskey. The rule R∃ generates at most one successor for each ∃R.C ∈
sub(C0), and the rule R∃c generates at most one successor for every abstract or
concrete feature appearing in some ∃u1, ..., un.P ∈ sub(C0). Hence, the number
of successors of an a ∈ Va created by applying these two rules to a is bounded by
|C0|. Moreover, the rule Rskey generates at most one successor for every abstract
or concrete feature appearing in K. Thus, the number of successors created due to
the application of Rskey is bounded by |K|. Therefore, the number of successors
of an arbitrary abstract node a is bounded by |C0| + |K|.

(b) In order to prove (b), we first show that the following holds:

(∀c ∈ Vc)(∃c′ ∈ Vc)(levT (c′) ≤ rd(C0) ∧ c ∼ c′) (∗)

Note that concrete nodes are created only due to the application of the rules R∃c

and Rskey. Let us define rang(c) for c ∈ Vc as:

rang(c) :=

{

0, if c is created via an application of R∃c

i, if c is created via the i-th application of Rskey

Now we prove (∗) by strong induction on rang(c):

1. rang(c) = 0. Then c is created due to the application of the R∃c rule
to a node a ∈ Va and a concept C ∈ L(a), C = ∃u1, ..., un.P . Since K is safe,
C 6∈ cl(K) and according to Lemma 3, this implies levT (a) ≤ rd(C0) − rd(C).
Due to the definition of rd(∃u1, ..., un.P ), we have levT (c) − levT (a) ≤ rd(C) and
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combining these two inequalities, we obtain: levT (c) ≤ rd(C0). Since c ∼ c, the
base case is proved.

2. rang(c) = n, n ≥ 1. In this case, c is created due to the applica-
tion of the Rskey rule to nodes a, b ∈ Va and a strong functional dependency
(u1, ..., un skeyfor C, u) ∈ K. The node a has a u-successor x created due to the
application of R∃c or an earlier application of Rskey. The node c is u-successor
of b, c ∼ x and rang(x) < rang(c) = n. By induction hypothesis, there is a c′ ∈ Vc

such that x ∼ c′ and levT (c′) ≤ rd(C0). Due to the transitivity of ∼, we get c ∼ c′

and the induction step is proved.
According to (a), the out-degree of T is bounded by |C0|+ |K|. Using the fact

that rd(C0) ≤ |C0| and that concrete nodes are leaves of the tree T , we get:

#{c ∈ Vc | levT (c) ≤ rd(C0)} ≤ (|C0| + |K|)|C0|;

Finally, combining this result with (∗) we complete the proof of (b).
(c) Using the definition of ≈ and the fact that ∼ is an equivalence relation,

it is easy to see that ≈ is also an equivalence relation on Va. Due to (b), Vc/∼
is of bounded size. Let Vc/∼ = {v1, v2, . . . , vn}. Furthermore, suff(C0,K) is of
bounded size and m = |suff(C0,K)| ≤ |C0| + |K|. Let us define a mapping
φ : Va → 2suff(C0,K)×Vc/∼ in the following way:

φ(a) = {(u, vk) | u ∈ suff(C0,K), a has a u-successor x, and x ∈ vk}

Then the following holds:

a ≈ b iff φ(a) = φ(b) and L(a) = L(b) (∗∗)

Due to the definition of ⊕, the functionality of paths is respected and therefore,
there are no vi, vj ∈ Vc/∼, i 6= j such that {(u, vi), (u, vj)} ⊆ φ(a) for some a ∈ Va

and u ∈ suff(K). Thus, we have

|{φ(a) | a ∈ Va}| ≤
m

∑

i=0

(

m

i

)

· ni.

In the above sum, every argument
(

m
i

)

· ni corresponds to the situation when an
abstract node has exactly i successors for paths from suff(C0,K). Since

∑m
i=0

(

m
i

)

·

ni = (n + 1)m, and m ≤ |C0| + |K| we get |{φ(a) | a ∈ Va}| ≤ (n + 1)|C0|+|K|.
Finally, using (∗∗) and the fact that |{L(a) | a ∈ Va}| ≤ 2|cl(C0,K)| we obtain

|Va/≈| ≤ |{φ(a) | a ∈ Va}| · |{L(a) | a ∈ Va}| ≤ (n + 1)|C0|+|K| · 2|cl(C0,K)|

(d) Let M = |Va/≈|. Assume that there is a node a ∈ Va ∪ Vc such that
levT (a) > M + mpl(C0,K). Then a is created due to the application of a com-
pletion rule to an ancestor b ∈ Va of a for which it holds that k = levT (b) > M .
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Then there is sequence of abstract nodes a0, a1, . . . , ak such that ai is a successor
of ai−1 for 1 ≤ i ≤ k, a0 is the root node and ak = b. Since k > M , we have
that ai ≈ aj for some i, j with 0 ≤ i < j ≤ k. This means that b is blocked and
contradicts the assumption that a completion rule was applied to b. ¤

Lemma 5 (Termination) When started with an ALC(D)FD concept C0 and a
safe key box K, both in NNF, the tableau algorithm terminates.

Proof. The tableau algorithm terminates due to the following reasons:

• It constructs a finitely labelled completion tree T of bounded out-degree
and depth (by Lemma 4 (a) and (d)) in a monotonic way, i.e., no nodes are
removed from T , and no concepts are removed from node labels.

• The concrete equivalence relation ∼ is updated only finitely often: Let ∼1,
∼2, ... be the sequence of concrete equivalences computed during the run
of the tableau algorithm. The relation ∼ is updated exclusively due to the
application of the rules Rwkey, Rskey, and R ∼. By the definition of these
rules and ζS, we have:

∼1Ã∼2Ã · · ·

Moreover, from Lemma 4 (a) and (d) we can conclude that the number
of the concrete nodes #Vc is finite, more precisely, double-exponential in
|C0|+ |K|. Since ∼⊆ Vc×Vc, the relation ∼ is updated no more than (#Vc)

2

times.

• P is updated only finitely often. This can be shown reasoning similarly as
in the case of ∼.

¤

The tableau algorithm algorithm we presented runs in 2NExpTime. This is due
to the fact that the algorithm is non-deterministic and it constructs a completion
tree whose number of nodes is (in the worst case) double-exponential in |C0|+ |K|
(since the depth of the tree may be exponential – c.f. Lemma 4 (d)).

Now we prove that the tableau algorithm is sound, i.e., that if it returns
satisfiable then the input concept C0 and key box K have a common model I.
This model can be constructed by “putting” all unblocked abstract nodes of the
constructed completion tree into the interpretation domain ∆I . However, in the
soundness proof that we will present, we do not put all unblocked abstract nodes
into the domain, but rather use a filtration technique and in this way obtain a
model whose size is only exponential in |C0| + |K|. This will help us, along with
the completeness lemma, to show a bounded model property of ALC(D)FD which
induces a NExpTime upper complexity bound.

34



Lemma 6 (Soundness) If the tableau algorithm returns satisfiable, then the input
concept C0 is satisfiable w.r.t. the input safe key box K in a model whose size is
not greater than M , where

M = ((|C0| + |K|)|C0| + 1)|C0|+|K| · 2|cl(C0,K)|.

Proof. If the tableau algorithm returns satisfiable, then there exists a com-
plete and clash-free completion system S = (T,P ,∼) for C0 and K. Let
T = (Va, Vc, E,L). Since the rule R∼ is not applicable and S does not con-
tain a clash, we have that check(ζS) ⊆∼. By the definition of ζS, it always holds
that ∼⊆ check(ζS). Therefore, we have that ∼= check(ζS) and there exists a
solution δ for ζS such that

δ(x) = δ(y) iff x ∼ y.

We now use S and δ to construct an interpretation I. In order to get an
exponential bound on the size of the interpretation domain, we introduce a
linear ordering ≺ on Va such that a ≺ b implies levT (a) ≤ levT (b). Using ≺, we
make sure that ∆I contains no more than one representative of each Va/≈ (c.f.
Lemma 4):

∆I = {a ∈ Va | a is not blocked and there is no unblocked b ∈ Va such that
a ≈ b and b ≺ a}

AI = {a ∈ ∆I | A ∈ L(a)}, for all A ∈ NC

RI = {(a, b) ∈ ∆I × ∆I | there is a b′ ∈ Va such that b ≈ b′ and b′ is an
R-successor of a}, for all R ∈ NR

gI = {(a, δ(x)) ∈ ∆I × ∆D | x is g-successor of a}, for all g ∈ NcF

I is well defined since fI is functional for each f ∈ NaF and gI is functional for
each g ∈ NcF . This follows from the definition of the operation ⊕.

In order to show that I is a model for C0 and K, we prove the following claims:

Claim 1: If a ∈ Va is unblocked or directly blocked, then there exists an a′ ∈ ∆I

such that a ≈ a′.

Proof: Let us define p(a) for a ∈ Va as follows:

p(a) := #{b ∈ Va | b ≺ a}

We prove the claim by induction on p(a):
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1. p(a) = 0. Then a is the root node and a ∈ ∆I . Since a ≈ a, the base case is
proved.

2. p(a) = n, n ≥ 1. We distinguish two cases:

• a is unblocked and there is no unblocked b ∈ Va with a ≈ b and b ≺ a. By
definition of ∆I , we have that a ∈ ∆I . Due to the reflexivity of ≈, it holds
that a ≈ a.

• There is an unblocked ā ∈ Va such that a ≈ ā and ā ≺ a (this includes
the case when a is directly blocked). Then p(ā) < p(a) and by inductional
hypothesis there exists an a′ ∈ ∆I such that ā ≈ a′. The transitivity of ≈
implies a ≈ a′.

Claim 2: If a ∈ ∆I and u ∈ suff(C0,K), then the following holds:

(a) If uI(a) is defined, then a has a u-successor x and uI(a) = δ(x).

(b) If a has a u-successor x, then uI(a) = δ(x).

Proof: We prove (a) and (b) by induction on the length of u:

(a) |u| = 1: True by construction of I.

|u| = n + 1, n ≥ 1: Let u = f1 · · · fng. Since uI(a) is defined, by definition
of I there is a b ∈ ∆I such that fI

1 (a) = b and (f2 · · · fng)I(b) is defined. By
induction hypothesis, b has an f2 · · · fng-successor y and (f2 · · · fng)I(b) =
δ(y). Furthermore, fI

1 (a) = b implies that there is a b′ ∈ Va which is an f1-
successor of a and b ≈ b′. By definition of ≈ (since f2 · · · fng ∈ suff(C0,K)),
b′ has an f2 · · · fng-successor x such that y ∼ x. Then x is a u-successor of
a and uI(a) = δ(y) = δ(x).

(b) |u| = 1: True by construction of I.

|u| = n+1, n ≥ 1: Let u = f1 · · · fng and b ∈ Va an f1-successor of a. Then x
is an f2 · · · fng-successor of b. Since a ∈ ∆I , b is either unblocked or directly
blocked. Due to Claim 1, there is a b′ ∈ ∆I such that b ≈ b′ and b′ ≺ b. By
definition of I we have that fI

1 (a) = b′. By definition of ≈, b′ has a f2 · · · fng-
successor y such that x ∼ y. Since b′ ∈ ∆I and f2 · · · fng ∈ sub(C0,K), by
induction hypothesis we obtain (f2 · · · fng)I(b′) = δ(y). Finally, we get
uI(a) = δ(y) = δ(x).

Claim 3: For all a ∈ ∆I and C ∈ cl(C0,K), if C ∈ L(a), then a ∈ CI .

Proof: We prove the claim by structural induction:

36



• C is a concept name. By construction of I.

• C = ¬D. Since C is in NNF, D is a concept name. Clash-freeness of
S implies D 6∈ L(a). The construction of I implies a 6∈ DI which yields
a ∈ (¬D)I .

• C = D ⊓ E. The completeness of S implies {D,E} ⊆ L(a). The induction
hypothesis yields a ∈ DI and a ∈ EI , therefore a ∈ (D ⊓ E)I .

• C = D⊔E. The completeness of S implies {D,E}∩L(a) 6= ∅. By induction
hypothesis it holds that a ∈ DI or a ∈ EI , and therefore a ∈ (D ⊔ E)I .

• C = ∃R.D. Since the R∃ rule is not applicable, a has an R-successor b
such that D ∈ L(b). Then b is either unblocked or directly blocked. Due
to Claim 1, there is a b′ ∈ ∆I such that b ≈ b′. Due to the definition of ≈,
we have L(b) = L(b′) and therefore D ∈ L(b′). By induction hypothesis, it
holds that b′ ∈ DI . By the definition of I, we have (a, b′) ∈ RI and this
implies a ∈ CI .

• C = ∀R.D. Let (a, b) ∈ RI . By construction of I, there is an R-successor
b′ of a with b ≈ b′. Non-applicability of R∀ yields D ∈ L(b′). Due to the
definition of ≈, we have L(b) = L(b′) and therefore D ∈ L(b′). By induction
hypothesis, we get b ∈ DI . Since this holds independently of the choice of
b, we obtain a ∈ CI .

• C = ∃u1, ..., un.P . Since the R∃c rule is not applicable, there exist
x1, ..., xn ∈ Vc such that xi is a ui-successor of a for 1 ≤ i ≤ n and
(x1, ..., xn) ∈ P(P ). By Claim 1 we get uI

i (a) = δ(xi) for 1 ≤ i ≤ n. Since
(x1, ..., xn) ∈ P(P ) and δ is a solution for ζS, we have (δ(x1), ..., δ(xn)) ∈ PD

and thus a ∈ CI .

• C = g↑. Since S is clash-free, there exists no x ∈ Vc such that x is a
g-successor of a. Thus, by the construction of I, there is no α ∈ ∆D such
that (a, α) ∈ gI .

Since C0 is in the label of the root node a0 and a0 ∈ ∆I , Claim 3 implies that I
is a model of C0. We use Claim 2 and Claim 3 to show that I satisfies all strong
and weak functional dependencies in K:

• I satisfies all (u1, ..., un skeyfor C, u) ∈ K: take a, b ∈ CI such that uI
i (a) =

uI
i (b) for 1 ≤ i ≤ n and uI(a) is defined. Non-applicability of Rch yields

{C, ¬̇C} ∩ L(a) 6= ∅. If ¬̇C ∈ L(a), then Claim 2 implies a ∈ (¬̇C)I which
contradicts a ∈ CI . Therefore, C ∈ L(a) and for the same reason C ∈ L(b).
Using the Claim 2(a) and the fact that uI

i (a) and uI
i (b) are defined for
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1 ≤ i ≤ n, we conclude that a has a ui-successor xi and b a ui-successor
yi such that uI

i (a) = δ(xi) and uI
i (b) = δ(yi) for 1 ≤ i ≤ n. Moreover,

δ(xi) = δ(yi) implies xi ∼ yi for 1 ≤ i ≤ n. Reasoning similarly, we get that
a has a u-successor x such that uI(a) = δ(x). Non-applicability of Rskey
yields that b has a u-successor y such that x ∼ y. Using Claim 2(b), we get
that uI(b) = δ(y), and since δ(x) = δ(y) we obtain uI(a) = uI(b).

• I satisfies all (u1, ..., un wkeyfor C, u) ∈ K: take a, b ∈ CI such that uI
i (a) =

uI
i (b) for 1 ≤ i ≤ n and uI(a) and uI(b) are defined. Reasoning similarly as

in the previous case, we obtain C ∈ L(a)∩L(b). Using Claim 2(a) and the
definition of δ, we conclude that a has a ui-successor xi and b a ui-successor
yi such that xi ∼ yi for 1 ≤ i ≤ n. Moreover, a has a u-successor x and b has
a u-successor y. Non-applicability of Rwkey yields that x ∼ y. Using Claim
2(b), we get that uI(a) = δ(x) and uI(b) = δ(y), and since δ(x) = δ(y) we
obtain uI(a) = uI(b).

Let us now determine the size of ∆I . From the construction of I it follows that
|∆I | ≤ |Va/≈|. Using Lemma 4, we obtain

|Va/≈| ≤ ((|C0| + |K|)|C0| + 1)|C0|+|K| · 2|cl(C0,K)|.

¤

Finally, we prove that the tableau algorithm is complete.

Lemma 7 (Completeness) If the input concept C0 is satisfiable w.r.t. the safe
key box K, then the tableau algorithm returns satisfiable.

Proof. Let I be a model of C0 and K. We use I to guide the non-deterministic
parts of the tableau algorithm in such a way that it constructs a complete and
clash-free completion system. A completion system S = (T,P ,∼) with T =
(Va, Vc, E,L) is called I-compatible if there exist mappings π : Va → ∆I and
τ : Vc → ∆D such that:

(C1) C ∈ L(a) ⇒ π(a) ∈ CI

(C2) b is a R-successor of a ⇒ (π(a), π(b)) ∈ RI

(C3) x is a g-successor of a ⇒ gI(π(a)) = τ(x)

(C4) (x1, ..., xn) ∈ P(P ) ⇒ (τ(x1), ..., τ(xn)) ∈ PD

(C5) x ∼ y ⇒ τ(x) = τ(y)
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We prove the following claim to show that completion rules can be applied
in such a way that I-compatibility is preserved.

Claim 1: If a completion system S is I-compatible and a rule R is applicable
to S, then R can be applied such that an I-compatible completion system S ′ is
obtained.

Proof: Let S be an I-compatible completion system, π and τ functions satisfying
conditions (C1)-(C5), and R a completion rule applicable to S. We make a case
analysis according to the type of R.

R⊓ The rule is applied to C1 ⊓ C2 ∈ L(a). By (C1), C1 ⊓ C2 ∈ L(a) implies
π(a) ∈ (C1 ⊓C2)

I and hence π(a) ∈ CI
1 and π(a) ∈ CI

2 . Since the rule adds
C1 and C2 to L(a), the obtained completion system is I-compatible via the
same π and τ .

R⊔ The rule is applied to C1 ⊔ C2 ∈ L(a). By (C1), C1 ⊔ C2 ∈ L(a) implies
π(a) ∈ (C1 ⊔ C2)

I and hence π(a) ∈ CI
1 or π(a) ∈ CI

2 . Since the rule
adds C1 or C2 to L(a), it can be applied in such a way that the obtained
completion system is I-compatible via the same π and τ .

R∃ The rule is applied to ∃R.C ∈ L(a). By (C1), π(a) ∈ (∃R.C)I and hence
there exists a d ∈ ∆D such that (π(a), d) ∈ RI and d ∈ CI . Since the rule
adds a new R-successor b of a and sets L(b) = {D}, the resulting completion
system is I-compatible via π′ = π ∪ {b 7→ d} and τ .

R∀ The rule is applied to ∀R.C ∈ L(a) and it adds C to the label L(b) of
an existing R-successor of a. By (C1), π(a) ∈ (∀R.C)I and by (C2),
(π(a), π(b)) ∈ RI . Therefore, π(b) ∈ CI and the resulting completion
system is I-compatible via π and τ .

R∃c The rule is applied to ∃u1, ..., un.P ∈ L(a) with ui = f
(i)
1 · · · f

(i)
ki

g(i) for

1 ≤ i ≤ n. The rule application generates new abstract nodes b
(i)
j and

concrete nodes x(i) (or reuses existing ones and renames them) for 1 ≤ i ≤ n
and 1 ≤ j ≤ ki such that:

– b
(i)
1 is an f

(i)
1 -successor of a for 1 ≤ i ≤ n,

– b
(i)
j is an f

(i)
j -successor of b

(i)
j−1 for 1 ≤ i ≤ n and 2 ≤ j ≤ ki,

– x(i) is g(i)-successor of b
(i)
ki

for 1 ≤ i ≤ n, and

– (x(1), ..., x(n)) ∈ P(P ).

Due to (C1), π(a) ∈ (∃u1, ..., un.P )I and therefore there exist d
(i)
j ∈ ∆I for

1 ≤ i ≤ n and 1 ≤ j ≤ ki and α1, ..., αn ∈ ∆D such that:
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– (π(a), d
(i)
1 ) ∈ (f

(i)
1 )I for 1 ≤ i ≤ n,

– (d
(i)
j , d

(i)
j−1) ∈ (f

(i)
j )I for 1 ≤ i ≤ n and 2 ≤ j ≤ ki,

– (g(i))I(d
(i)
ki

) = αi for 1 ≤ i ≤ n, and

– (α1, ..., αn) ∈ PD.

The resulting completion system is I-compatible via π′ and τ ′, where

π′ = π ∪
⋃

1≤i≤n and 1≤j≤ki

{b
(i)
j 7→ d

(i)
j } and τ ′ = τ ∪

⋃

1≤i≤n

{x(i) 7→ αi}

.

Rch The rule is applied to an abstract node a and a functional dependency
(u1, ..., un depfor C, u) ∈ K where depfor ∈ {skeyfor, wkeyfor} and non-
deterministically adds C or ¬̇C to L(a). By definition of semantics, π(a) ∈
CI or π(a) ∈ (¬̇C)I . Therefore, Rch can be applied in such a way that the
obtained completion system is I-compatible via π and τ .

Rwkey The rule is applied to nodes a, b ∈ Va and a functional dependency
(u1, ..., un wkeyfor C, u) ∈ K. Then C ∈ L(a) ∩ L(b), a has ui-successor
xi, b has ui-successor yi, and xi ∼ yi for 1 ≤ i ≤ n, a has a u-successor x
and b has a u-successor y. Due to (C1), π(a), π(b) ∈ CI . Due to (C2) and
(C3), uI

i (a) = uI
i (b) for 1 ≤ i ≤ n, uI(a) = τ(x) and uI(b) = τ(y). Since

I is a model of K, uI(a) = uI(b) which implies τ(x) = τ(y). The rule sets
∼:= (∼ ∪(x, y))∗. Obviously, (C5) is satisfied and the resulting completion
system is I-compatible via π and τ .

Rskey The rule is applied to nodes a, b ∈ Va and a functional dependency
(u1, ..., un skeyfor C, u) ∈ K with u = f1 · · · fng. Then C ∈ L(a) ∩ L(b), a
has ui-successor xi, b has ui-successor yi, and xi ∼ yi for 1 ≤ i ≤ n and a
has a u-successor x. Due to (C1), π(a), π(b) ∈ CI . Due to (C2) and (C3),
uI

i (a) = uI
i (b) for 1 ≤ i ≤ n, and uI(a) = τ(x). Since I is a model of

K, uI(b) is defined and uI(a) = uI(b). Hence, there exist d1, ..., dn ∈ ∆I

and α ∈ ∆D such that: (π(b), d1) ∈ fI
1 , (di−1, di) ∈ fI

i for 2 ≤ i ≤ n and
gI(dn) = α = τ(x). The rule application generates new abstract nodes
b1, ..., bn and a new concrete node y (or reuses existing ones and renames
them) such that: b1 is an f1-successor of b, bi is an fi-successor of bi−1 for
2 ≤ i ≤ n and y is g-successor of bn. The rule also sets ∼:= (∼ ∪(x, y))∗.
If we set π′ := π ∪

⋃

1≤i≤n{bi 7→ di} and τ ′ := τ ∪ {y 7→ α}, the resulting
completion system is I-compatible via π′ and τ ′.
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R∼ The properties (C4) and (C5) imply that τ is a solution for the predicate
conjunction ζS. We guide the non-deterministic check function such that,
when given ζS and set of variables Vc ⊆ Oc as input, it returns the relation
∼′ defined by setting x ∼′ y iff τ(x) = τ(y) for all x, y ∈ Vc. Obviously, ∼′

is a concrete equivalence relation. The rule sets ∼:=∼′, the condition (C4)
and (C5) is satisfied, and the resulting completion system is I-compatible
via π and τ .

With the second claim, we show that I-compatibility implies clash-freeness:

Claim 2: Every I-compatible completion system is clash-free.

Proof: Let S = (T,P ,∼) with T = (Va, Vc, E,L) be an I-compatible completion
system. We show that S is clash-free by case distinction:

• Assume that there is an a ∈ Va and A ∈ NC such that {A,¬A} ⊆ L(a).
Due to (C1), π(a) ∈ AI and π(a) ∈ (¬A)I , which is a contradiction.

• Assume that there are a ∈ Va and x ∈ Vc such that x is g-successor of a and
g↑ ∈ L(a). Due to (C1) and (C3), gI(π(a)) = x and π(a) ∈ (g↑)I , which is
a contradiction.

• According to the properties (C4) and (C5), τ is a solution for ζS. Thus, S
is concrete domain satisfiable.

Let SC0
= (TC0

,P0, ∅) with TC0
= ({a0}, ∅, ∅, {a0 7→ {C0}}) be the initial

completion system. Obviously, SC0
is I-compatible. According to Claim 1, we

can apply completion rules in such a way that I-compatibility is preserved. By
Lemma 5, the algorithm always terminates and by Claim 2, no clash will be
found and the algorithm returns satisfiable. ¤

As an immediate consequence of Lemmas 5, 6 and 7, we get the following theorem:

Theorem 6 If D is a key-admissible concrete domain, the tableau algorithm de-
cides satisfiability of ALC(D)FD-concepts w.r.t. safe key boxes.

Lemmas 6 and 7 yield a bounded-model property for ALC(D)FD: if an ALC(D)FD-
concept C0 is satisfiable w.r.t. a safe key box K, Lemma 7 implies that the tableau
algorithm returns satisfiable. Then Lemma 6 implies that C0 and K have a model
I such that |∆I | ≤ b(C0,K), where

b(C0,K) = ((|C0| + |K|)|C0| + 1)|C0|+|K| · 2|cl(C0,K)| (4.1)

Since |cl(C0,K)| is linear in |C0| + |K|, there is an m ∈ N such that b(C0,K) ≤
2(|C0|+|K|)m

. To sum up, every ALC(D)FD-concept C0 that is satisfiable w.r.t. K
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has a model I of size |∆I | ≤ 2(|C0|+|K|)m

. This observation yields a NExpTime

upper complexity bound:

Theorem 7 If D is a key-admissible concrete domain and extended D-
satisfiability is in NP, then ALC(D)FD-concept satisfiability w.r.t. safe key boxes
is in NExpTime.

Proof. Let us consider an alternative algorithm for deciding whether a given
ALC(D)FD-concept C0 is satisfiable w.r.t. a safe key box K. We first introduce
the notion of a quasi-model:

Let b(C0,K) be defined as in (4.1) and V = {v1, . . . , vn} be a finite set of variables,
where n ≤ (|C0| + |K|) · b(C0,K). A quasi-interpretation for C0 and K is a tuple
M = (∆M,PM, ·M), where

• ∆M is a non-empty set such that |∆M| ≤ b(C0,K);

• PM is a function mapping each predicate P of arity n used in C0 to a subset
of V n, and an equality predicate = to a subset of V 2;

• ·M is a quasi-interpretation function which maps

– each concept name C to a subset CM of ∆M,

– each role name R to a subset RM of ∆M × ∆M,

– each abstract feature f to a partial function fM from ∆M to ∆M, and

– each concrete feature g to a partial function gM from ∆M to V .

The quasi-interpretation function is extended to paths and arbitrary concepts in
the same way as interpretation functions, with the following exception:

(∃u1, . . . , un.P )M := {d ∈ ∆M | ∃x1, . . . , xn ∈ V : uM
i (d) = xi

and (x1, . . . , xn) ∈ PM(P )}

A quasi-interpretation M is called a quasi-model for C0 and K if it satisfies the
following conditions:

(C1) the finite predicate conjunction

ζM =
∧

(x1,...,xn)∈PM(P )

P (x1, . . . , xn) ∧
∧

(x,y)∈PM(=)

=(x, y) ∧
∧

(x,y) 6∈PM(=)

6=(x, y)

is satisfiable;

(C2) there exists an a ∈ ∆M such that a ∈ CM
0 ;

42



(C3) the functional dependencies from K are satisfied via the mapping of = by
PM .

It is not difficult to see that there is a quasi-model for an ALC(D)FD-concept
C0 and a safe key box K iff C0 and K are satisfiable. This follows immediately
from the definition of quasi-models, the bounded-model property for ALC(D)FD

w.r.t. safe key boxes obtained in Lemma 6, and the fact that the number of
different concrete features appearing in C0 and K is bounded by |C0| + |K|.

Now we present an alternative decision procedure for ALC(D)FD with safe key
boxes, based on quasi-models. We first “guess” a quasi-interpretation for C0 and
K (clearly, there are only finitely many such quasi-interpretations), and then we
check whether it is a quasi-model for C0 and K. The latter can be done via the
following algorithm:

Algorithm: Let D1, . . . , Dm be all concepts from cl(C0,K), listed in order of
length. Thus we have that if Di is a subconcept of Dj, then i < j. The algorithm
labels every node a of ∆M with L(a) – a set of concepts from cl(C0,K). Initially,
all node labels L(a) are set to the empty set. In the i-th step of the algorithm,
1 ≤ i ≤ m, the following rule is applied to all a ∈ ∆M:

• if Di = A for A a concept name, and a ∈ AM, then add A to L(a);

• if Di = ¬A for A a concept name, and a 6∈ AM, then add the tuple ¬A to
L(a);

• if Di = ∃u1, . . . , un.P and a ∈ (Di)
M, then add ∃u1, . . . , un.P to L(a);

• if Di = g↑ and gM(a) undefined, then add g↑ to L(a);

• if Di = B ⊓ C and {B,C} ⊆ L(a), then add B ⊓ C to L(a);

• if Di = B ⊔ C and {B,C} ∩ L(a) 6= ∅, then add B ⊔ C to L(a);

• if Di = ∃R.B, and there exists a b ∈ ∆M such that (a, b) ∈ RM and
B ∈ L(b), then add ∃R.B to L(a);

• if Di = ∀R.B, and for all b ∈ ∆M such that (a, b) ∈ RM, it holds that B in
L(b), then add ∀R.B to L(a);

An easy induction shows that, after the m-th step of the algorithm, the following
holds: a ∈ DM for D ∈ cl(C0,K) iff D ∈ L(a). Moreover, every step of the
algorithm can be carried out in time O(|∆M|), which is at most exponential in
|C0| + |K|. Since the number of steps m = |cl(C0,K)| is linear in |C0| + |K|, the
algorithm can be carried out in time exponential in |C0| + |K|.
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Now we can check whether M satisfies conditions (C2) and (C3): (C2) is sat-
isfied iff there is an a ∈ ∆M such that C0 ∈ L(a); similarly, (C3) is satisfied if for
every functional dependency (u1, . . . , un depfor C, u), every two nodes a, b ∈ ∆M

such that C ∈ L(a) ∩ L(b) and (uM
i (a), uM

i (b)) ∈ PM(=) (i = 1..n), have “cor-
rect” u-successors. Obviously, (C2) and (C3) can be checked in exponential time,
since |∆M| is exponential in |C0|+ |K| and the number of functional dependencies
in K is not greater than |K|.

Finally, we can employ a concrete domain reasoner to check whether ζM is
satisfiable (C1). Alternatively, if a concrete domain D does not provide for an
equality and inequality predicate, the algorithm for extended D-satisfiability can
be employed to check the satisfiability of the D-conjunction

∧

(x1,...,xn)∈PM(P )

P (x1, . . . , xn) ∧
∧

v∈V

⊤D(v).

If successful, it returns an equivalence relation ∼⊆ V × V , and in exponential
time it can be checked whether ∼= PM(=).

Since all described parts of the (non-deterministic) algorithm run in exponen-
tial time, and every ALC(D)FD-concept C0 and a safe key box K have a model
of size bounded by b(C0,K), we conclude that ALC(D)FD-concept satisfiability
w.r.t. safe key boxes can be decided in NExpTime if extended D-satisfiability is
in NP. ¤

Together with the lower complexity bound from Theorem 4 we get the following
result:

Theorem 8 If D is a key-admissible concrete domain and extended D-
satisfiability is in NP, then ALC(D)FD-concept satisfiability w.r.t. safe key boxes
is NExpTime-complete.

Since the concept subsumption can be reduced to the concept unsatisfiability
in the standard way, we obtain that the ALC(D)FD-concepts subsumption is
co-NExpTime-complete.
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Chapter 5

Conclusion

In this thesis, we have completed the investigation of description logics with con-
crete domains and key constraints, by considering a type of keys called functional
dependencies. Uniqueness key constraints have already been extensively analyzed
in [Lutz et al. 2003], in combination with DLs with concrete domains.

Let us summarize the results obtained in these two investigations. In
[Lutz et al. 2003] it is proved that providing ALC(D)– the basic DL with concrete
domains – with uniqueness constraints leads to undecidability in the general case.
The decidability can be preserved if the considered key boxes are Boolean, namely
if they contain only concepts which are Boolean combinations of concept names.
Even in this restricted form, uniqueness constraints produce dramatic jumps in
the complexity of reasoning – from PSpace-complete to NExpTime-complete.
Uniqueness constraints turned ut to be a very powerful expressive means, since
they can “capture” nominals and thus have a strong effect on the structure of
logical models.

Quite surprisingly, we were able to show in this thesis that seemingly weaker
functional dependencies have an equally severe impact on decidability and com-
plexity of reasoning. In their weak form, functional dependencies only allow to
state constraints on concrete data and do not affect the logical objects. However,
it turns out that providing ALC(D) even only with weak functional dependencies
leads to undecidability. In order to regain decidability, we have found a safe class
of key boxes, in which we disallow the concepts that have subconcepts of the form
∃u1, . . . , un.P . However, even safe key boxes with weak functional dependencies
affect dramatically the complexity of reasoning - ALC(D) equipped with such key
boxes is shown to be NExpTime-hard. The matching upper complexity bound
is obtained with help of a tableau algorithm for ALC(D)FD with safe key boxes.
Due to strong functional dependencies, which might influence the structure of the
logical domain, we had to come up with a complicated blocking mechanism in
order to ensure the termination of the algorithm; this was unnecessary in the case
of uniqueness constraints. After the investigation we performed in this thesis, we
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can conclude that both types of keys produce the similar complexity jumps from
PSpace-completeness to undecidability/ NExpTime-completeness when added
to ALC(D).

For the future work, it would be interesting to combine both uniqueness con-
straints and functional dependencies in a single DL with concrete domains. We
believe that the upper complexity bounds can be preserved and that Boolean key
boxes can be replaced with less restricted safe ones.

It would be also useful to integrate functional dependencies into more expres-
sive DLs with concrete domains. For example, it would be interesting to consider
SHOQ(D), since this logic has found applications in the semantic web as under-
lying logic for web ontology languages. Moreover, functional dependencies can
be combined with other extensions of DLs with concrete domains, for example
with inverse roles or acyclic TBoxes.

Finally, it would be a challenge to implement the tableau algorithm for
ALC(D)FD we presented in this thesis. We believe that it is amenable to known
optimization techniques and thus can be implemented efficiently.
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