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Abstract

Propositional Dynamic Logic (PDL) is a very successful variant of modal logic.

In the past, many extensions of PDL have been considered to make this logic even

more suitable for applications. Unfortunately, the very interesting extension of

PDL with negation of programs is undecidable. This work extends PDL with

negation on atomic programs only. The resulting logic is called PDL(¬) and has

still an interesting expressive power. It is shown that the satisfiability problem

of PDL(¬) is decidable and ExpTime-complete by using Büchi tree automata.
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Chapter 1

Introduction

Propositional dynamic logic (PDL) is a variant of modal logic and has been devel-

oped as a formal system for reasoning about the dynamic behavior of programs.

PDL was first introduced in [FL79] and is known to have a ExpTime-complete

satisfiability problem [FL79, Pra79]. For a survey see, e.g., [Har84, HKT00].

Since PDL was introduced, this logic became important for many application

areas which could made use of it quite successfully. For instance, among others

reasoning about knowledge [FHMV95], reasoning about actions [DL95, PS96],

and description logics [GGLM94]. Furthermore, many extensions of PDL have

been suggested to make this logic more suitable for applications [PT91, Har84,

HKT00]. One extension is the halt predicate which was specifically developed

for stating program termination in the field of reasoning about programs [HP78].

Contrary to that predicate, most extensions are more general and therefore have

been used in many application areas, e.g. PDL extended with the converse op-

erator [Var85].

Two interesting extensions of PDL are program intersection “∩” and program

negation “¬” [Dan84, Har84, HKT00]. Intersection on programs can be used

to model concurrent execution of programs. In [Dan84] it is shown that the

resulting logic PDL∩ is decidable by providing a 2-ExpTime-decision procedure.

Negation on programs is more general than program intersection since in PDL¬,

which extends PDL with negation on programs, the intersection π1 ∩ π2 can be

written as ¬(¬π1 ∪¬π2) using the program operator choice “∪”. Moreover, with

negation on programs the universal modality 2Uϕ becomes expressible by writing

[a]ϕ ∧ [¬a]ϕ where a is an arbitrary atomic program. The formula 2Uϕ holds if

and only if the formula ϕ holds at every world. Universal modality as extension of

5



CHAPTER 1. INTRODUCTION 6

modal logics is useful for many applications [GP92]. Additionally, due to program

negation, the window operator a [Hum83, GPT87, Gor90] can also be expressed

in PDL¬. The formula a ϕ holds at a world w if and only if the formula ϕ holding

at a world w′ implies that w′ is a-accessible from w. In PDL¬, the formula a ϕ

can be written as [¬a]¬ϕ. In contrast to the standard box operator in modal

logic, which can be seen to express necessity, the window operator expresses

sufficiency. Furthermore, the window operator is quite important for applications

in description logics [LS00]. Unfortunately, adding negation on programs to PDL

yields a bad computational behavior: PDL¬ is undecidable [Har84].

Due to the appealing and useful expressive power of PDL¬, it seems to be

a reasonable attempt to identify fragments of this logic which still have some

interesting properties of program negation, but which are computationally better

behaved. From a technical viewpoint, it is interesting to explore the borderline

of decidability, i.e., to investigate decidable fragments of PDL¬ and to ask for

their complexity. For instance, one such a fragment is the already mentioned

logic PDL∩ which is known to be decidable in 2-ExpTime—a complexity upper

bound. Facing the gap to the ExpTime-complete reasoning of PDL, it is sup-

posed to be still an open problem whether this upper bound is tight. This work

studies the fragment PDL(¬) of PDL¬ where program negation is restricted to

atomic programs only. The resulting theorem of this work states that the satis-

fiability problem of PDL(¬) is decidable and ExpTime-complete, i.e. as hard as

decidability of PDL. The technique to obtain this complexity result employs finite

automata on infinite trees; so-called Büchi tree automata. For a given formula,

a Büchi tree automaton is constructed which accepts a tree if and only if this

formula is satisfiable. In this way, a decision procedure for PDL(¬) is constructed

which extends standard automata-based decision procedures for PDL [VW86] and

for Boolean modal logic [LS01]. On the one hand, program intersection cannot

be expressed in PDL(¬), but on the other hand this logic is still of interest since

the universal modality and the window operator remain available.

A more practical motivation for investigating PDL(¬) is due to its corre-

spondence to Description Logics (DLs). A DL is a formal language to repre-

sent and to reason about knowledge; see [BCM+03] for an overview. DLs are

closely related to modal languages when regarding concepts as formulas, and

roles as PDL programs. In fact, many DLs are notational variants of modal

logics [Sch91, Sch94, GGLM94]. For instance, the DL ALCreg, which extends
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the basic DL ALC with regular expression on roles, is a notational variant of

PDL [GGLM94]. Adding negation of atomic roles to ALCreg yields ALC(¬)
reg ,

which in turn is a notational variant of PDL(¬).

The following illustrates the use of the combination of negation of atomic

roles and regular expressions in ALC(¬)
reg . For this, consider the real-world example

in the context of university administration which can be modelled with anALC(¬)
reg -

concept: Private universities commonly prefer to admit students whose ancestors

donated money to the university. First, consider the notion of donating ancestors

for which building the transitive closure of roles is essential. The transitive closure

of a given role parent can be written as parent;(parent∗) (short parent+). Clearly,

the ALC(¬)
reg -concept ∃parent+.Donator denotes the class of students with donating

ancestors. The disadvantage of just introducing a new transitive role ancestor

instead of having the transitive closure of parent is that the relation between the

roles ancestor and parent would be lost. One might want to widen the notion of

ancestors by including also parents-in-law, and stepparents. This can be achieved

by taking the transitive closure of the union of the roles parent, parent-in-law, and

stepparent, i.e., then, the notion of ancestor is described by the role (parent ∪
parent-in-law ∪ stepparent)+. Using the window operator for DL, the fact that all

students with donating ancestors are preferred can be modelled by the ALC(¬)
reg -

concept ∀¬prefer.¬(∃parent+.Donator).

In the past, due to the correspondence of DL and modal logics, the research in

the complexity of DLs profited from already known complexity results for modal

logics. Accordingly, this work contributes to the research of DLs by providing a

complexity result for PDL(¬). More precisely, the satisfiability problem ofALC(¬)
reg -

concepts is ExpTime-complete.

This work is organized as follows. Section 2 is about propositional dynamic

logic with negation on programs. First, the logic PDL¬ is formally defined, and

shown to be undecidable. Then the logics PDL and PDL(¬) are introduced as frag-

ments of PDL¬. Second, in order to show the correspondence between DLs and

modal logics, the definition of the DL ALC(¬)
reg is given together with a linear trans-

lation of ALC(¬)
reg -concepts into formulas of PDL(¬). Last, in preparation for the

automata-based decision procedure, the variant APDL(¬) of PDL(¬) is introduced

where programs as modal parameters are replaced by finite automata. Addition-

ally, a polynomial translation of PDL(¬) into APDL(¬) is provided. In Section

3, it is shown how models of APDL(¬)-formulas can abstractly be represented as
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infinite trees; so-called Hintikka-trees. Moreover, a first central lemma of this

work is proven which states that an APDL(¬)-formula is satisfiable if and only

if this formula has a Hintikka-tree. Section 4 provides first a general definition

of Büchi tree automata, and then a construction of a specific Büchi automaton

which will be used to check for existence of Hintikka-trees. More precisely, for a

given APDL(¬)-formula a Büchi tree automaton is constructed which, in another

central lemma, is proven to accept precisely the Hintikka-trees for this formula.

Then, checking for emptiness of such automata solves APDL(¬)-satisfiability. Fi-

nally, complexity issues are discussed resulting in the ExpTime-completeness of

the satisfiability problem for PDL(¬). In Section 5, the work is concluded by

giving possible directions for future research.



Chapter 2

Propositional Dynamic Logic

with Negation

2.1 Variants of PDL with Program Negation

In this section, several variants of propositional dynamic logic (PDL) are in-

troduced. First, the definition of PDL(¬) allowing for full negation of possibly

complex programs is given. Then, the logics PDL and PDL(¬) are defined as

fragments of PDL¬. Subsequently, PDL(¬) is shown to be undecidable.

Definition 2.1.1 (PDL¬ - Syntax) Let Φ be a countably infinite set of proposi-

tional variables, and Π0 be a countably infinite set of atomic programs. The sets

Π¬ of programs and PDL¬ of formulas are defined by simultaneous induction,

i.e., Π¬ and PDL¬ are the smallest sets such that:

• Φ ⊆ PDL¬

• Π0 ⊆ Π¬

• if ϕ, ψ ∈ PDL¬, then ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ ∈ PDL¬

• if π1, π2 ∈ Π¬, then ¬π1, π1 ∪ π2, π1; π2, π∗1 ∈ Π¬

• if π ∈ Π¬, and ϕ ∈ PDL¬, then 〈π〉ϕ, [π]ϕ ∈ PDL¬

• if ϕ ∈ PDL¬, then ϕ? ∈ Π¬

The symbol > is an abbreviation for an arbitrary propositional tautology, and

⊥ for ¬>. Moreover, for π, π′ ∈ Π¬, π ∩ π′ is the abbreviation for ¬(¬π ∪ ¬π′).

9
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A formula ϕ ∈ Φ¬ is called a PDL(¬)-formula (PDL-formula) if, in ϕ, negation

occurs only in front of atomic programs and formulas (only in front of formulas).

¢

For any formula ψ ∈ PDL¬, ψ? is called test. The program operators “¬”, “∪”,

“;”, “∗” are called negation, choice, composition, and iteration, respectively. Note

that in the fragment PDL(¬) negated atomic programs can occur nested inside

other (complex) programs.

Definition 2.1.2 (PDL¬ - Semantics) Let M = (W, {Ra | a ∈ Π0}, V ) be a

Kripke Structure where W is the set of worlds, {Ra | a ∈ Π0} is the set of

accessibility relations Ra ⊆ W 2 over the set of worlds W for atomic programs

a ∈ Π0, and V : Φ → 2W is a valuation function which maps propositional

variables to sets of worlds. In the following, the definition of accessibility relations

of compound programs and the consequence relation |= is given by simultaneous

induction. Let u ∈ W be a world in M, ϕ ∈ PDL¬ a formula, and π ∈ Π¬ a

program.

Rϕ? := {(u, u) ∈ W 2 | M, u |= ϕ}
R¬π := W 2\Rπ, the complement of Rπ

Rπ1∪π2 := Rπ1 ∪Rπ2 for π1, π2 ∈ Π¬, the union of Rπ1 and Rπ2

Rπ1;π2 := Rπ1 ◦Rπ2 for π1, π2 ∈ Π¬, the composition of Rπ1 and Rπ2

Rπ∗ := (Rπ)∗ for π ∈ Π¬, the reflexive transitive closure of Rπ

M, u |= p iff u ∈ V (p) for any p ∈ Φ

M, u |= ¬ϕ iff M, u 6|= ϕ

M, u |= ϕ1 ∨ ϕ2 iff M, u |= ϕ1 or M, u |= ϕ2

M, u |= ϕ1 ∧ ϕ2 iff M, u |= ϕ1 and M, u |= ϕ2

M, u |= 〈π〉ϕ iff there is a v ∈ W with (u, v) ∈ Rπ and M, v |= ϕ

M, u |= [π]ϕ iff for all v ∈ W, (u, v) ∈ Rπ implies M, v |= ϕ

If for some world u ∈ W it holds M, u |= ϕ, then formula ϕ is true at u in M,

and M is called model of ϕ. A formula is satisfiable if it has a model. A formula

is valid if it is true at all worlds in any Kripke structure.

¢
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Note that the semantics for both fragments, PDL(¬) and PDL, is the same as for

PDL¬.

Remark. The logic PDL is non-deterministic. The deterministic version

DPDL differs in the semantics, i.e., formulas of DPDL are only interpreted over

Kripke structures whose accessibility relations for atomic programs are functions

that assign maximally one successor to each world. Note that talking about the

deterministic versions of PDL¬ and PDL(¬) does not make much sense. One

cannot w.l.o.g. assume that both, the accessibility relation for atomic programs

and their negation, are functional since this would restrict the size of Kripke

structures to only two worlds.

In [Har84] it is shown that the logic PDL¬ is undecidable. Since this un-

decidability result can be established quite easily, a simple proof is given in the

following. The proof is done by reduction of the undecidable word-problem of

finitely represented semigroups [Pos47] to the satisfiability problem of PDL¬. Let

the tuple (A, ; , a1, . . . , an) be a semigroup, i.e., the carrier set A is closed under

the binary operation “;” and the constants a1, . . . , an. Think of the constants

a1, . . . , an as smallest possible words, and of “;” as composition such that ap-

plying it produces more complex words. Each word gets assigned to an element

of the carrier A. An equation of two words w ≈ w′ is true if both words get

assigned to the same element of A. Then the word-problem is as follows: Given a

set of word-equations {w1 ≈ w′
1, . . . , wk ≈ w′

k}, the problem is to decide whether

this implies another word-equation w ≈ w′. In order to reduce this problem to

PDL¬-satisfiability, the universal modality 2Uϕ is needed, which has the follow-

ing semantics:

M, u |= 2Uϕ iff M, v |= ϕ for all v ∈ W.

As mentioned in the introduction, the universal modality 2Uϕ is expressible in

PDL¬ with its equivalent [a]ϕ ∧ [¬a]ϕ where a ∈ Π0 is an arbitrary atomic

program. Assume that for every constant a1, . . . , an there is an atomic program

with the same name. Then the reduction is as follows: {w1 ≈ w′
1, . . . , wk ≈ w′

k}
implies w ≈ w′ if and only if the following formula is unsatisfiable:

(〈w ∩ ¬w′〉> ∨ 〈¬w ∩ w′〉>) ∧2U(
∧

1≤i≤k

[wi ∩ ¬w′
i]⊥ ∧ [¬wi ∩ w′

i]⊥).

This shows that PDL¬ is undecidable.
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On the other hand, it is well known that satisfiability for PDL is ExpTime-

complete where ExpTime-decidability is shown in [Pra79], and [FL79] shows

its ExpTime-hardness. According to the introduction, the aim was to identify

decidable fragments of PDL¬ which extend PDL in an useful way. The main

objective of this work is to show that PDL(¬) is such a fragmemnt, i.e., it is

proven that PDL(¬)-satisfiability is decidable and ExpTime-complete.

2.2 Correspondence of PDL(¬) to Description Logic

This section provides a formal definition of the DL ALC(¬)
reg . Moreover, the cor-

respondence between PDL(¬) and ALC(¬)
reg is shown by defining a function which

translates ALC(¬)
reg -concepts into formulas of PDL(¬).

First, consider the definition of the syntax and the semantics of ALC(¬)
reg .

Definition 2.2.1 (ALC(¬)
reg - Syntax, Semantics) Let NC be a set of concept

names, and NR a set of role names. The set R(¬) is the set of role literals, i.e., the

set of role names in NR together with their negation. Define the ALC(¬)-concepts

and the set R(¬)
reg of roles simultaneously as the smallest sets such that:

• NC ⊆ ALC(¬)
reg

• R(¬) ⊆ R(¬)
reg

• if R,S ∈ R(¬)
reg , then R ◦ S, R t S, R∗ ∈ R(¬)

reg

• if C, D ∈ ALC(¬)
reg , and R ∈ R(¬)

reg , then ¬C, C uD, C tD, ∀R.C, ∃R.C ∈
ALC(¬)

reg

• if C ∈ ALC(¬)
reg , then id(C) ∈ R(¬)

reg

Let I = (∆I , ·I) be an interpretation where ∆I is a set, the domain of I, and ·I
is a function mapping every atomic concept in NC to a subset of ∆I , and every

atomic role in NR to a subset of ∆I ×∆I . Inductively augment the function ·I
to all concepts in ALC(¬)

reg and all roles in R(¬)
reg as follows:

(¬C)I = ∆I\CI (¬R)I = ∆I ×∆I\RI

(C tD)I = CI ∪DI (R t S)I = RI ∪ SI

(C uD)I = CI ∩DI (R ◦ S)I = RI ◦ SI

(id(C))I = {(x, x) | x ∈ CI} (R∗)I = (RI)∗
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(∃R.C)I = {x ∈ ∆I | there is a y ∈ ∆I with (x, y) ∈ RI , and y ∈ CI}
(∀R.C)I = {x ∈ ∆I | for all y ∈ ∆I , if (x, y) ∈ RI , then y ∈ CI}

A concept C is satisfiable if CI 6= ∅. An interpretation I is a model of a concept

C if C is satisfiable. ¢

In the following, the correspondence of the DL ALC(¬)
reg and the modal logic

PDL(¬) is discussed, and a translation of ALC(¬)
reg -concepts into formulas of PDL(¬)

defined.

First, look at the similarity in the syntax of both logics which can be seen

when regarding ALC(¬)
reg -concepts and -roles as formulas and programs of PDL(¬),

respectively. Atomic concepts correspond to propositional variables, and role

literals to program literals. Moreover, all operators for building complex concepts

and roles in ALC(¬)
reg have a counterpart in PDL(¬).

The semantical correspondence of both logics is due to similar interpretation

structures. Observe the similarity of an interpretation I = (∆I , ·I) and a Kripke

structure M = (W, {Rπ | π ∈ Π0}, V ): The domain ∆I corresponds to the set

of worlds W , an atomic concept C ∈ NC and a propositional variable p ∈ Φ are

interpreted as a set of individuals CI ⊆ ∆I and as a set of worlds V (p) ⊆ W ,

respectively, and an atomic role R ∈ NR and an atomic program π ∈ Π0 are

interpreted as binary relations RI ⊆ ∆I × ∆I and Rπ ⊆ W ×W , respectively.

Moreover, the constructs for building complex concepts and roles, and formulas

and programs are interpreted similarly.

In fact, both logics are just notational variants of each other. To illustrate

this, define a function t1 which maps ALC(¬)
reg -concepts and -roles to formulas and
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programs of PDL(¬) as follows:

t1(C) := pc where pc ∈ Φ, for atomic concept C ∈ NC ;

t1(¬C) := ¬(t1(C));

t1(C ∧D) := t1(C) ∧ t1(D);

t1(C ∨D) := t1(C) ∨ t1(D);

t1(∀R.C) := [t1(R)]t1(C);

t1(∃R.C) := 〈t1(R)〉t1(C);

t1(R) := πR where πR ∈ Π
(¬)
0 , for role literals R ∈ R(¬);

t1(R1 tR2) := t1(R1) ∪ t1(R2);

t1(R1 ◦R2) := t1(R1); t1(R2);

t1(R
∗) := (t1(R))∗;

where Π
(¬)
0 is the set of program literals containing atomic programs together

with their negation.

Since ALC(¬)
reg and PDL(¬) are notational variants of each other, it is easy to

see that a concept C is satisfiable if and only if the formula t1(C) is satisfiable.

Now, with the help of function t1 it is possible to translate the DL-example

for ALC(¬)
reg in the introduction into PDL(¬). Let the atomic role prefer correspond

to the atomic program πprefer, and the atomic concept Donator to the propositional

variable pDonator, respectively. Then, the ALC(¬)
reg -concept of the introduction is

translated into a PDL(¬)-formula as follows:

t1(∀¬prefer.¬(∃parent; (parent∗).Donator)) = [¬πprefer]¬(〈πparent; (π
∗
parent)〉pDonator).

2.3 An Automata-based Variant of PDL(¬)

The decision procedure for PDL(¬) uses Büchi tree automata which accept infinite

trees. In order to prove the result, it is more convenient to use a variant of

PDL(¬) where programs are represented by finite automata, rather than by regular

expressions. A similar approach where finite automata replace regular expressions

can be found in [VW86].

In the following, a variant of PDL(¬), called APDL(¬), is defined replacing
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regular expressions as modal parameter with finite automata. But first, finite

automata are introduced.

Definition 2.3.1 (Finite automata) A (nondeterministic) finite automaton A
is defined as A := (Q, Σ, q0, ∆, F ) where Q is a finite set of states, Σ a finite

alphabet, q0 an initial state, ∆ : Q × Σ → 2Q a transition function, and F ⊆ Q

is the set of accepting states. Note that for a state q ∈ Q and letter a ∈ Σ the

set ∆(q, a) contains the possible successors of q.

Inductively extend ∆ to Q×Σ∗ as follows: for any q ∈ Q, ∆(q, ε) := {q} where ε is

the empty word, and ∆(q, wa) := {q′′ ∈ Q | q′′ ∈ ∆(q′, a) for some q′ ∈ ∆(q, w)}
where w ∈ Σ∗, and a ∈ Σ.

A sequence p0 · · · pn ∈ Q∗, n ≥ 0, of states is a run ofA on the word a1 · · · an ∈ Σ∗,

if p0 = q0, pi ∈ ∆(pi−1, ai) for any 0 < i ≤ n, and pn ∈ F .

A word w ∈ Σ∗ is accepted by A if there exists a run of A on w. The language

accepted by A is the set L(A) := {w ∈ Σ∗ | w is accepted by A}. ¢

Now, the syntax and the semantics of the variant APDL(¬) is defined.

Definition 2.3.2 (APDL(¬) - Syntax) The set Π
(¬)
0 of program literals is defined

as {a,¬a | a ∈ Π0}. The sets AΠ(¬) of program automata and APDL(¬) of

formulas are defined by simultaneous induction, i.e., AΠ(¬) and APDL(¬) are the

smallest sets such that:

• Φ ⊆ APDL(¬)

• if ϕ, ψ ∈ APDL(¬), then ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ ∈ APDL(¬)

• if α ∈ AΠ(¬) and ϕ ∈ APDL(¬), then 〈α〉ϕ, [α]ϕ ∈ APDL(¬)

• if α is a finite automaton with alphabet Σ ⊆ Π
(¬)
0 ∪ {ψ? | ψ ∈ ADPL(¬)},

then α ∈ AΠ(¬)

¢

For any formula ψ ∈ APDL(¬), ψ? is called test. Note that the alphabet of an

program automaton is a finite set of atomic programs, negated atomic programs,

and tests.

Definition 2.3.3 (APDL(¬) - Semantics) Let M = (W, {Ra | a ∈ Π0}, V ) be

a Kripke structure as in Definition 2.1.2. Inductively define a relation R which
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maps each program literal, each test, and each program automaton to a binary

relation over W . This is done simultaneously with the inductive definition of the

consequence relation |=. Let α ∈ AΠ(¬) be a program automaton, u ∈ W a world

in M, and ϕ ∈ APDL(¬) a formula.

R(a) := Ra for any a ∈ Π0

R(¬a) := W 2\Ra for any a ∈ Π0

R(ψ?) := {(u, u) ∈ W 2 | M, u |= ψ}
R(α) := {(u, v) ∈ W 2 | there is a word w = w1 · · ·wm ∈ L(α), m ≥ 0,

and worlds u0, . . . , um ∈ W with

u = u0R(w1)u1R(w2) · · · um−1R(wm)um = v}

M, u |= p iff u ∈ V (p) for any p ∈ Φ,

M, u |= ¬ϕ iff M, u 6|= ϕ,

M, u |= ϕ1 ∨ ϕ2 iff M, u |= ϕ1 or M, u |= ϕ2,

M, u |= ϕ1 ∧ ϕ2 iff M, u |= ϕ1 and M, u |= ϕ2,

M, u |= 〈α〉ϕ iff there is a u′ ∈ W with (u, u′) ∈ R(α) and M, u′ |= ϕ,

M, u |= [α]ϕ iff for all u′ ∈ W, (u, u′) ∈ R(α) implies M, u′ |= ϕ.

Truth, satisfiability, and validity are defined as in the PDL¬ case. ¢

Since a regular set represented by a regular expression is equivalent to the lan-

guage of a finite automaton [Kle56], obviously both logics, PDL(¬) and APDL(¬),

have the same expressive power.

2.4 Translation of PDL(¬) into APDL(¬)

This section provides a method of how PDL(¬)-formulas can be translated into

formulas of APDL(¬) with no essential grow in size. In fact, the translation is

linear.

Definition 2.4.1 (Translation) By simultaneous induction define the function

t2 : PDL(¬) → APDL(¬), and the finite automaton Aπ := (Qπ, Σπ, qπ
i , ∆π, {qπ

f })
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for programs π ∈ Π(¬). First, consider the induction on the structure of ϕ.

t2(p) := p for p ∈ Φ

t2(¬ψ) := ¬t2(ψ)

t2(ψ ∧ θ) := t2(ψ) ∧ t2(θ)

t2(ψ ∨ θ) := t2(ψ) ∨ t2(θ)

t2(〈π〉ψ) := 〈Aπ〉t2(ψ)

t2([π]ψ) := [Aπ]t(ψ)

t2(ψ?) := t2(ψ)?

Then, consider the induction on the structure of π. In the induction base, π is a

program literal, or π is a test ψ?.

Qπ := {qi, qf}

Σπ :=




{t2(ψ?)} if π = ψ?

{π} if π ∈ Π
(¬)
0

qπ
i := qi

∆π := {(qi, π, {qf})}
qπ
f := qf

In the first two cases of the induction step, π is π1 ∪ π2, or π1; π2.

Qπ := Qπ1 ∪Qπ2

Σπ := Σπ1 ∪ Σπ2

qπ
i := qπ1

i

∆π := ∆π1 ∪∆π2

qπ
f := qπ2

f

In the case where π = π1 ∪ π2, the initial (final) state qπ1
i (qπ1

f ) of Aπ1 is set

equivalent to the initial (final) state qπ2
i (qπ2

f ) of Aπ2 , i.e., qπ1
i = qπ2

i and qπ1
f = qπ2

f .

In the case where π = π1; π2, the final state qπ1
f of Aπ1 is set equivalent to the

initial state qπ2
i of Aπ2 , i.e., qπ1

f = qπ2
i .
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In the last case of the induction step, π is σ∗ where σ ∈ Π(¬).

Qπ := Qσ ∪ {qσ∗
i , qσ∗

f }
Σπ := Σσ

qπ
i := qσ∗

i

∆π := ∆σ ∪ {(qσ∗
i , ε, qσ

i ), (qσ
f , ε, qσ∗

f )}
qπ
f := qσ∗

f

¢

The function t2 translates PDL(¬)-formulas into formulas of APDL(¬) by replacing

regular expressions π ∈ Π(¬), which are modal parameters in PDL(¬)-formulas,

by finite automata Aπ. In order to maintain the truth of translated formulas,

the language of the finite automaton Aπ is the same regular set as represented

by the regular expression π ∈ Π(¬) which is easy to verify. Note that actually the

language of Aπ is still different because of the tests. Formulas used for tests are

translated by t2 as well.

The translation is linear in the size of the input formula, i.e., for a PDL(¬)-

formula ϕ the length of APDL(¬)-formula t2(ϕ) is linear in the length of ϕ. To

see this, observe that in the inductive definition of t2 most cases are obviously

linear, only the modal cases where a regular expression π ∈ Π(¬) is replaced by

the automaton Aπ need a closer look. In the definition of Aπ, only the cases

in the induction step are interesting for investigating complexity. The first two

cases for choice and composition yield no grow in size of the resulting automaton

since neither states, alphabet symbols, nor transitions are added. The last case,

for program iteration, is also linear, because it just augments the automaton with

two new states and two new transitions which yields a constant grow in size.

Note that due to this linear translation, APDL(¬) is more general than

PDL(¬) in the sense that any upper complexity bound for APDL(¬)-satisfiability

automatically holds for PDL(¬) as well. The converse is not true since APDL(¬)-

formulas can be exponentially more succinct than formulas of PDL(¬). This is

because it is not possible to translate program automata back to regular expres-

sion without an exponential blowup.



Chapter 3

Hintikka-Trees

In this chapter, models of APDL(¬)-formulas are abstractly represented as infinite

trees; so-called Hintikka-trees. Moreover, it is proven in a first central lemma that

an APDL(¬)-formula is satisfiable if and only if there exists a Hintikka-tree for

this formula.

The approach for deciding APDL(¬)’s satisfiability problem makes use of the

notion of Hintikka-trees as follows: An APDL(¬)-formula ϕ is translated into a

Büchi tree automaton Bϕ which accepts precisely the Hintikka-trees for ϕ. That

is, the language of Bϕ is non-empty if and only if ϕ has a model. To decide

satisfiability of ϕ, it remains to perform an emptiness-test on the automaton Bϕ

which is computationally easy.

An obstacle in representing APDL(¬)-models as trees is the fact that APDL(¬)

does not have the tree model property. For instance, the PDL(¬)-formula

p ∧ [¬a]¬p, a ∈ Π0,

which can be translated in to APDL(¬), has no tree model. But nevertheless,

it is possible to construct a tree-like representation of these (possibly non-tree)

models which is done in the following.

3.1 Negation Normal Form and Notation

Further on, it is assumed that all formulas in APDL(¬) are in negation normal

form (NNF), i.e., negation only occurs in front of propositional variables. The

19
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following notation for negation of APDL(¬)-formulas and program literals in Π
(¬)
0

is used:

• for each ϕ ∈ APDL(¬), ϕ denotes the NNF of ¬ϕ,

• for each π ∈ Π
(¬)
0 , π denotes ¬π if π ∈ Π0, and σ if π = ¬σ where σ ∈ Π0.

For identification purposes, the tuple components of a program automaton α ∈
AΠ(¬) are labelled with an identifying subscript: α = (Qα, Σα, qα, ∆α, Fα). For

each program automaton α, and each state q ∈ Qα, let αq := (Qα, Σα, q, ∆α, Fα)

be the automaton α with new initial state q.

3.2 Closure cl(ϕ)

As a first step, a closure for APDL(¬)-formulas is introduced, analogous to [FL79,

VW86] for PDL. The closure is a set cl(ϕ) that contains those formulas which are

relevant for deciding satisfiability of ϕ. That is, the set cl(ϕ) contains subformulas

of ϕ, their negation, tests in the alphabet of ϕ’s automata, and formulas with

automata whose initial states are changed.

In the following, with a subformula ψ of a formula ϕ it is meant that ψ

can be obtained from ϕ by decomposing only the formula operators, but not

decomposing the program automata in ϕ. For instance, ϕ is a subformula of

〈α〉ϕ, but test-formulas in the alphabet Σα are not.

Definition 3.2.1 Let ϕ be an APDL(¬)-formula. The set cl(ϕ) is the smallest

set which is closed under the following conditions:

(C1) ϕ ∈ cl(ϕ)

(C2) if ψ is a subformula of a ψ′ ∈ cl(ϕ), then ψ ∈ cl(ϕ)

(C3) if ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ)

(C4) if 〈α〉ψ ∈ cl(ϕ), then ψ′ ∈ cl(ϕ) for all ψ′? ∈ Σα

(C5) if 〈α〉ψ ∈ cl(ϕ), then 〈αq〉ψ ∈ cl(ϕ) for all q ∈ Qα

(C6) if [α]ψ ∈ cl(ϕ), then ψ′ ∈ cl(ϕ) for all ψ′? ∈ Σα

(C7) if [α]ψ ∈ cl(ϕ), then [αq]ψ ∈ cl(ϕ) for all q ∈ Qα

¢
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In the sequel, it is assumed that all diamond formulas in cl(ϕ) are linearly ordered,

and εi with i ≥ 1 denotes the i-th diamond formula in cl(ϕ). Note that a changed

initial state of an program automaton results in a different diamond formula.

In order to get the ExpTime-complete complexity result for APDL(¬)--

satisfiability in the end, it is important that the cardinality of the closure cl(ϕ) is

at most polynomial in the length of ϕ. For this, it becomes necessary to assume

that APDL(¬)-formulas are not represented too succinct. Otherwise, for instance

when program automata are encoded exponentially succinct, it would be possible

to extract exponentially many formulas with the Conditions (C4) to (C7). To

avoid this, it is further on assumed that any program automaton α ∈ AΠ(¬) is

encoded by just separately writing down the automaton components Qα, qα, Σα,

∆α, Fα where sets are represented element by element.

With the help of this assumption, the cardinality of the closure cl(ϕ) can be

proven to be polynomial in the length of ϕ.

Claim 1 Let ϕ be an APDL(¬)-formula. The size of the set cl(ϕ) is polynomial

in the length of ϕ.

Proof of Claim Concerning the first three Conditions (C1) to (C3), the size

of cl(ϕ) stays polynomial w.r.t. the length of ϕ. To see this, note that there

are only linearly many subformulas of an APDL(¬)-formula, and adding the NNF

of the negation of cl(ϕ)-formulas to the closure increases its cardinality only by

a constant factor two. The Conditions (C4) to (C7) deal with modal formulas

where (C4) and (C6) add formulas used for tests, and (C5) and (C7) add modal

formulas with changed initial state of their program automata to the closure.

Consider the Conditions (C4) and (C6). From the assumption above, it

follows that the size of a program automaton α is polynomial in the length of

all test-formulas in its alphabet Σα together. Then, w.r.t. to the length of ϕ, at

most polynomially many formulas used for tests are added to cl(ϕ). Note that

these test-formulas in their turn contribute at most polynomially many formulas

w.r.t. their length to the closure.

Consider the Conditions (C5) and (C7). By assumption, the number of states

in Qα is polynomial in the length of α. Consequently, changing the initial state of

α in box and diamond formulas yields only polynomially many different formulas

which are added to cl(ϕ). Note that these formulas with different initial state of

α share the same subformulas. J
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3.3 Representation of Models as Hintikka-Trees

In order to define Hintikka-trees as tree-like representation of APDL(¬)-models,

infinite trees are employed. This is done in the following way. First, Hintikka-sets

are defined as consistent subsets of the closure cl(ϕ). Hintikka-sets are used to

label nodes in infinite trees. The intuition is that every node in such a tree is

meant to represent a world in the corresponding model. A Hintikka-set labelling a

node contains exactly those cl(ϕ)-formulas which are true at the world represented

by this set. As a second step, a matching relation is introduced which regulates

the relations between adjacent nodes in the tree. By “pushing” box and diamond

formulas to the Hintikka-sets of their immediate successors, the matching relation

models the “local” influence of modal formulas on their successors. Next, diamond

starvation is defined. With the help of this notion the “non-local” impact of

diamond formulas whose program automata might allow for arbitrary long words

is captured. More precisely, with this definition it can be made sure that diamond

formulas cannot be pushed infinitely far along the tree, i.e. that they get satisfied

at some node. Last, by putting all these notions together, Hintikka-trees are

defined.

Definition 3.3.1 (Hintikka-set) Let ψ ∈ APDL(¬) be a formula, and α ∈ AΠ(¬)

a program automaton. The set Ψ ⊆ cl(ϕ) is a Hintikka-set for ϕ if

(H1) if ψ1 ∧ ψ2 ∈ Ψ, then ψ1 ∈ Ψ and ψ2 ∈ Ψ

(H2) if ψ1 ∨ ψ2 ∈ Ψ, then ψ1 ∈ Ψ or ψ2 ∈ Ψ

(H3) ψ ∈ Ψ iff ψ /∈ Ψ

(H4) if [α]ψ ∈ Ψ and qα ∈ Fα, then ψ ∈ Ψ,

(H5) if [α]ψ ∈ Ψ, then for any state q ∈ Qα and test θ? ∈ Σα

q ∈ ∆α(qα, θ?) implies θ ∈ Ψ or [αq]ψ ∈ Ψ

The set of all Hintikka-sets for ϕ is designated by Hϕ. ¢

The Conditions (H1) and (H2) deal with boolean cases and are straightforward.

Condition (H3) forces maximality of Hintikka-sets by stating that, for each cl(ϕ)-

formula, either the formula itself or its negation must be in the Hintikka-set.

Later, this condition will be used to deal with negated atomic programs. The

last two Conditions (H4) and (H5) deal with the “local” impact of box formulas
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within the same Hintikka-set. Note that, in (H5), the program automaton αq

corresponds to the automaton α with new initial state q.

The matching relation models how box and diamond formulas are pushed

to successor nodes. Consider the following intuition: In a Hintikka-tree, every

diamond formula in a Hintikka-set of a node has its own successor node. Pushing

a diamond formula to the Hintikka-set of its successor corresponds to travelling

along a single program literal such that the program automaton can “advance”

to a next state. Then, this program literal connects the node with this successor.

Generally, in order to satisfy a diamond formula, it can be necessary to perform a

sequence of such moves since the program automaton of the diamond might allow

for arbitrary long words. The matching relation is necessary (but not sufficient)

to ensure that diamond formulas get satisfied, either in the node where they

occur, or, if necessary, by pushing them to their corresponding successors node

by node along the tree. Moreover, this relation makes sure that box formulas are

not violated by any successor.

In order to define the matching relation, fix the structure for the node labels.

Let ϕ be a APDL(¬)-formula, and denote with k the number of diamond formulas

in the closure cl(ϕ). Let Π
(¬)
ϕ be the set of all program literals occurring in ϕ.

Then, the set of possible node-labels for Hintikka-trees for ϕ is defined as a set

of triples Λϕ with

Λϕ := Hϕ × Π(¬)
ϕ ∪ {⊥} × {0, . . . , k}.

In a Λϕ-triple, which labels a node, the first component is a Hintikka-set contain-

ing those cl(ϕ)-formulas which are true at the corresponding world in the model.

The second component contains the program literal of ϕ connecting the node with

its predecessor; the second component is ⊥ when this information is irrelevant.

The third component is a number at most k which indicates a diamond formula

in the Hintikka-set of this label. Later, this information is used to trace diamonds

through the tree and to make sure they eventually get satisfied. For any triple

λ ∈ Λϕ refer to the first, second, and third triple component with λ1, λ2, and λ3,

respectively.

Definition 3.3.2 (Matching) Let ϕ ∈ APDL(¬) be a formula, and k the num-

ber of diamond formulas in cl(ϕ). A k + 1-tuple of Λϕ-triples (λ, λ1, . . . , λk) is
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matching if, for all 1 ≤ i ≤ k and all automata α ∈ AΠ(¬), it holds:

(M1) if εi = 〈α〉ψ ∈ λ1, then there is a word w = ψ1? · · ·ψn? ∈ Σ∗
α, n ≥ 0,

and a state q1 ∈ Qα such that ψ1, . . . , ψn ∈ λ1, q1 ∈ ∆α(qα, w)

and one of the following conditions hold:

(a) q1 ∈ Fα is a final state, ψ ∈ λ1, λ2
i = ⊥, and λ3

i = 0

(b) there is a program literal π ∈ Σα and a state q2 ∈ Qα such that

q2 ∈ ∆α(q1, π), εj = 〈αq2〉ψ ∈ λ1
i , λ2

i = π, and λ3
i = j

(M2) if [α]ψ ∈ λ1, q ∈ Qα, and π ∈ Σα is a program literal such that

q ∈ ∆α(qα, π), then π = λ2
i implies [αq]ψ ∈ λ1

i

¢

The matching relation contains possible candidates of labels for nodes and their

immediate successors. Think of λ as a label of a node, and of λ1, . . . , λk as the

labels of its k successors. Condition (M1) deals with diamond-pushing. Suppose

the diamond formula εi = 〈α〉ψ is in the Hintikka-set λ1. Now, there are two

possibilities: either εi can be satisfied inside λ1 as it is considered in (M1)(a), or

the satisfaction of εi is “delayed” by pushing it to the Hintikka-set λ1
i of the i-th

successor which is regulated by (M1)(b). In the case of (M1)(a), the program

automaton α can reach a final state by accepting a possible empty sequence of

tests such that these test-formulas are also contained in λ1. Then, the diamond

formula εi is not pushed and the formula ψ without the diamond is forced to be in

λ1. In this case, the information how the current node is connected with its i-th

successor is irrelevant, therefore λ2
i is set to ⊥. There is also no need to indicate

further diamond formulas in λ1
i , thus λ3

i is set to 0. This is different in the case

of (M1)(b), where εi is pushed to its i-th successor using a program literal π such

that α “advances” to a state q. Then, λ2
i is set to π since the current node is

connected with its i-th successor by this program literal. The pushed diamond

formula εj = 〈αq〉ψ is forced to be in the Hintikka-set λ1
i of the i-th successor.

Note that diamond formulas change while being pushed. Moreover, the pushed

diamond formula εj in λ1
i is indicated by setting λ3

i to j. This indication makes it

possible to trace the path along which the changing diamond formulas are pushed.

The Condition (M2) is about box-pushing. More precisely, a box formula

[α]ψ in λ1 is pushed to the Hintikka-set of a successor, when this successor is
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connected with a program literal which is applicable to α such that α can advance

to a state q. Then, the box formula [αq]ψ with changed initial state of its program

automaton is guaranteed to be in the Hintikka-set of this successor.

In order to define Hintikka-trees, the notion of infinite trees is made precise

as follows. Further on, abbreviate the set {1, . . . , n}, n ≥ 0, with [n]. Let M be a

set of labels, and k a natural number. An (infinite) k-ary M-tree T is a mapping

T : [k]∗ → M where [k]∗ is the set of finite sequences of numbers 1, . . . , k. Note

that a k-ary tree is a tree where each node has k many successors, and that

x ∈ [k]∗ uniquely determines a node in a k-ary tree: x = ε, where ε denotes the

empty sequence, corresponds to the root of the tree, and xi, i ∈ [k], denotes the

i-th successor of node x. An infinite path in a k-ary M -tree is an infinite sequence

γ ∈ [k]ω. Denote with γ[n], n ≥ 0, the prefix of γ up to the n-th element of the

sequence (γ[0] yields the empty sequence).

With the notion of an infinite tree in hand, a Hintikka-tree for an APDL(¬)-

formula ϕ will be a k-ary Λϕ-tree where k is the number of diamond formulas

in the closure cl(ϕ). Moreover, such a tree will have to meet further conditions,

such as that the labels of adjacent nodes need to be matching.

As already mentioned, the matching relation is not sufficient to ensure dia-

mond satisfaction. That is because a program automaton of a diamond formula

might accept arbitrary long words such that it can become necessary to push

this diamond several times to corresponding successors. Since the matching re-

lation only considers nodes and their immediate successors, it cannot avoid that

diamond formulas are pushed infinitely far along the tree and that they there-

fore never get satisfied. Now, the third component of a Λϕ-triple comes into

the play. These third triple components of the node labels make it possible

to trace the path along which diamonds are pushed. Since diamond formulas

change while being pushed, the Condition (M1)(b) indicates the respective next

diamond formula in the third label component at the corresponding successor. Is

the diamond satisfied at a node, (M1)(a) sets this third component to zero and

a “diamond-push-path” ends. Consequently, to ensure that all diamonds even-

tually get satisfied, it remains to guarantee that there are no infinite such paths

where diamonds can “starve”. These paths can be identified by the notion of

diamond starvation.

Definition 3.3.3 (Diamond Starvation) Let ϕ ∈ APDL(¬) be a formula, and k
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the number of diamond formulas in cl(ϕ). Let T be a k-ary Λϕ-tree, and x ∈ [k]∗

a node in T . A diamond formula εi = 〈α〉ψ ∈ T (x)1 is starving in x if there is a

path γ = γ1γ2 · · · ∈ [k]ω such that

(1) γ1 = i, and

(2) γn+1 = T (xγ[n])3 for all n ≥ 1.

¢

Finally, Hintikka-trees are defined by putting together the notions of Hintikka-

sets, matching relation, and diamond starvation.

Definition 3.3.4 (Hintikka-Tree) Let ϕ ∈ APDL(¬) be a formula, and k the

number of diamond formulas in cl(ϕ). A k-ary Λϕ-tree T is a Hintikka-Tree for

ϕ if T satisfies, for all nodes x, y ∈ [k]∗, the following four conditions:

(T1) ϕ ∈ T (ε)1

(T2) k + 1-tuple (T (x), T (x1), . . . , T (xk)) is matching

(T3) no diamond formula of cl(ϕ) is starving in node x

(T4) if [α]ψ, [β]θ ∈ T (x)1, π ∈ Π
(¬)
0 , q′α ∈ Qα, and q′β ∈ Qβ

such that q′α ∈ ∆α(qα, π) and q′β ∈ ∆β(qβ, π),

then [αq′α ]ψ /∈ T (y)1 implies [βq′β ]θ ∈ T (y)1.

¢

Condition (T1) states that the formula ϕ, for which an abstract model represen-

tation should be constructed, must be contained in the Hintikka-set of the root

of a Hintikka-tree for ϕ. The labels of adjacent nodes must be matching by Con-

dition (T2). With (T3), infinite diamond-pushing is prevented by forcing that

there is no diamond formula starving in any node of the tree. Condition (T4)

captures the influence of negated atomic programs in the language. This is done

analogous to [LS01], but generalized to program automata. By the semantics,

any two worlds in an APDL(¬)-model are connected by the accessibility relation

for either a or ¬a where a is an atomic program. Consequently, any two nodes in

a Hintikka-tree, being an abstract representation of such models, are connected

by either a or ¬a as well. For diamond formulas this makes no difference since

at each node they already have their own successor. But, due to such global
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connections, box formulas can be pushed to nodes far away in the tree. This

is modelled by the Conditions (T4) and (H3) as follows. Consider two nodes x

and y in a Hintikka-tree T . Suppose there is a box formula [α]ψ in T (x)1 such

that q′α ∈ ∆α(qα, a) where a is an atomic program. By (H3), it holds that either

[αq′α ]ψ or [αq′α ]ψ is in T (y)1. In the former case, the nodes x and y are connected

by a, and in the latter one, by ¬a. Note that Condition (T4) is applicable in the

second case and ensures that, if necessary, box formulas in T (x)1 are pushed via

a ¬a-connection to T (y)1.

3.4 Satisfiability and Existence of Hintikka-Trees

In this section, it is proven that Hintikka-trees indeed properly represent APDL(¬)-

models.

First, consider some auxiliary notions. For a given APDL(¬)-formula ϕ,

denote with Σϕ the set Π
(¬)
ϕ of all program literals in ϕ together with all tests

occurring in ϕ. Let M be a Kripke structure, and u a world in M. A word

w = w1 · · ·wm ∈ Σ∗
ϕ, m ≥ 0, accomplishes a diamond formula 〈α〉ϕ at a world u

if w ∈ L(α), and there are worlds u0, . . . , um ∈ W with u = u0R(w1) · · ·R(wm)um,

and M, um |= ϕ.

Lemma 3.4.1 Let ϕ ∈ APDL(¬) be a formula. Then ϕ is satisfiable iff ϕ has a

Hintikka-tree.

Proof. Let ϕ ∈ APDL(¬) be a formula and k the number of diamond formulas

in cl(ϕ).

“ ⇒”: Suppose the Kripke structure M = (W,R, V ) is a model of ϕ, i.e., there

is a world uϕ ∈ W such that M, uϕ |= ϕ.

Let ≺ be some linear order on Σ∗
ϕ such that

• w ≺ w′ if |w| < |w′|, and

• ww′ ≺ ww′′ if w′ ≺ w′′.

Define a partial function ` : APDL(¬)×W → N as follows: for each 〈α〉ψ ∈ cl(ϕ),

and u ∈ W such that M, u |= 〈α〉ψ, `(〈α〉ψ, u) denotes the length of the word

w ∈ Σ∗
ϕ which accomplishes 〈α〉ψ at world u, and is minimal w.r.t. ordering ≺

with this property.
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In the following, a Hintikka-tree for ϕ is constructed. Define a k-ary W -

tree TW , and a k-ary (2cl(ϕ) × Π
(¬)
ϕ ∪ {⊥} × {0, . . . , k})-tree Tϕ by simultaneous

induction such that it holds, for all x ∈ [k]∗

ψ ∈ Tϕ(x)1 iff M, TW (x) |= ψ. (∗)

For the induction base, set

TW (ε) := uϕ,

Tϕ(ε)1 := {ψ ∈ cl(ϕ) | M, uϕ |= ψ},
Tϕ(ε)2 := ⊥, and

Tϕ(ε)3 := 0.

For the induction step, let x ∈ [k]∗ be a node such that TW (x) is already defined.

For each i ∈ [k] consider the following cases:

(1) εi = 〈α〉ψ ∈ Tϕ(x)1. By (∗), it holds that M, TW (x) |= 〈α〉ψ. Then there

is a word that accomplishes α〉ψ at TW (x) by the semantics. Among the

words which accomplish 〈α〉ψ at TW (x) let w = w1 · · ·wm ∈ Σ∗
ϕ, m ≥ 0, be

the minimal one w.r.t. ≺. Then there are worlds u0, . . . , um ∈ W such that

TW (x) = u0R(w1)u1R(w2) · · ·um−1R(wm)um and M, um |= ψ. Distinguish

two more cases:

(a) The word w contains only tests or is empty. This implies that TW (x) =

u, and thus, M, TW (x) |= ψ. Consequently, ψ ∈ Tϕ(x)1 by (∗). Define

TW (xi) := uϕ,

Tϕ(xi)1 := {ψ ∈ cl(ϕ) | M, uϕ |= ψ},
Tϕ(xi)2 := ⊥, and

Tϕ(xi)3 := 0.

(b) Otherwise, fix a run q0 · · · qm ∈ Q∗
α of α on word w. Take the least

p ∈ [m] such that wp is not a test but a program literal in Π
(¬)
ϕ . Let
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j ∈ [k] be such that εj = 〈αqp〉ψ. Then, define

TW (xi) := up,

Tϕ(xi)1 := {ψ ∈ cl(ϕ) | M, up |= ψ},
Tϕ(xi)2 := wp, and

Tϕ(xi)3 := j.

(2) εi = 〈α〉ψ /∈ Tϕ(x)1. Then define

TW (xi) := uϕ,

Tϕ(xi)1 := {ψ ∈ cl(ϕ) | M, uϕ |= ψ},
Tϕ(xi)2 := ⊥, and

Tϕ(xi)3 := 0.

Claim 2 Let x, y ∈ [k]∗ be nodes such that xi = y for some i ∈ [k]. If Tϕ(y)3 =

j 6= 0, then εi ∈ Tϕ(x)1, εj ∈ Tϕ(y)1, and `(εj, TW (y)) < `(εi, TW (x)).

Proof of Claim Let x and y be as in the claim. Suppose Tϕ(y)3 = j 6= 0. The

value of Tϕ(y)3 can only be set to different from zero in the Case (1)(b) of the in-

duction step. Thus, εi = 〈α〉ψ ∈ Tϕ(x)1. Let the word w = w1 · · ·wm, the worlds

u0, . . . , um, the states q0 · · · qn, and p be as in the Case (1)(b). Since w accom-

plishes 〈α〉ψ at TW (x), it holds that w ∈ L(α) which implies wp+1 · · ·wm ∈ L(αqp).

Then from TW (y) = upR(wp+1)up+1R(wp+2) · · · um−1R(wm)um and M, um |= ψ,

it follows by the semantics that M, TW (y) |= 〈αqp〉ψ where εj = 〈αqp〉ψ. Con-

sequently, εj ∈ Tϕ(y)1 by (∗). Obviously, wp+1 · · ·wm accomplishes εj at TW (y).

Since w accomplishes εi at TW (x) and is minimal w.r.t. ≺ with this property,

it follows from the definition of the ordering ≺ that the rest word wp+1 · · ·wm

is the minimal word with the property to accomplish εj at TW (y). Hence,

`(εj, TW (y)) = |wp+1 · · ·wm| < m = |w| = `(εi, TW (x)).

J

The following proves that Tϕ is a Hintikka-tree for ϕ. First, it is shown that,

for each node x ∈ [k]∗, Tϕ(x)1 is a Hintikka-set. Observe that Conditions (H1),

(H2), and (H3) easily follow from the semantics and the definition of the closure

cl. Next, consider the Condition (H4). Suppose that [α]ψ ∈ Tϕ(x)1, and qα ∈ Fα.

Then, M, TW (x) |= ψ by (∗). It obviously holds that (TW (x), TW (x)) ∈ R(α), and
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M, TW (x) |= ψ. Hence, ψ ∈ Tϕ(x)1 by (∗). Look at the remaining Condition (H5).

Suppose that [α]ψ ∈ Tϕ(x)1, and let q ∈ Qα be a state, and θ? ∈ Σα a test

such that q ∈ ∆α(qα, θ?). By (H3), θ ∈ Tϕ(x)1 or θ ∈ Tϕ(x)1. In the former

case, (H4) follows immediately. Consider the latter case. By (∗), it holds that

M, TW (x) |= [α]ψ, and M, TW (x) |= θ. From the semantics, it follows that

M, TW (x) |= [αq]ψ. Thus, [αq]ψ ∈ Tϕ(x)1.

Since the first triple components of the node labels in tree Tϕ are Hintikka-

sets, Tϕ can be seen as a Λϕ-tree. It remains to show that Tϕ additionally satisfies

the conditions for Hintikka-trees (T1) to (T4). Let x, y ∈ [k]∗ be nodes.

(T1) Holds by definition of Tϕ; see induction start.

(T2) It is to show that the k + 1-tuple (Tϕ(x), Tϕ(x1), . . . , Tϕ(xk)) is matching.

First consider the matching condition (M1). Suppose εi = 〈α〉ψ ∈ Tϕ(x)1.

By (∗), it holds that M, TW (x) |= 〈α〉ψ. By the semantics, there is a

word that accomplishes εi at TW (x). Let w = w1 · · ·wm be the minimal

such word w.r.t. ≺. To check Condition (M1)(a) suppose w contains only

tests or is empty. Then Case (1)(a) of the induction step applies which

yields ψ ∈ Tϕ(x)1, Tϕ(xi)2 = ⊥, and Tϕ(x)3 = 0. Clearly, the program

automaton α can reach a final state since w ∈ L(α). Consequently, (M1)(a)

is satisfied. For checking the Condition (M1)(b), assume that w contains

a program literal. Let p ∈ [m] be the smallest number such that wp is a

program literal. Then from Case (1)(b) of the induction step, it follows

that εj = 〈αq〉ψ ∈ Tϕ(xi)1, where q ∈ ∆α(qα, w1 · · ·wp) (as in the proof of

Claim 2). Furthermore, Tϕ(xi)2 = wp and Tϕ(xi)3 = j. Thus, (M1)(b) is

fulfilled.

Consider the remaining Condition (M2). Suppose [α]ψ ∈ Tϕ(x)1. By (∗),
it holds that M, TW (x) |= [α]ψ. Let q ∈ Qα be a state of α, and π ∈ Σα be

a program literal such that q ∈ ∆α(qα, π). Assume π = Tϕ(xi)2 for some

i ∈ [k]. Since Tϕ(xi)2 6= ⊥, Tϕ(xi)2 and TW (xi) must have been set in Case

(b) of the induction step. This implies (TW (x), TW (xi)) ∈ R(π). Together

with the fact that M, TW (x) |= [α]ψ, it follows that M, TW (xi) |= [αq]ψ.

Consequently, [αq]ψ ∈ Tϕ(xi)1.

(T3) Suppose by contradiction that the diamond formula εi = 〈α〉ψ ∈ Tϕ(x)1

is starving in node x, i.e., there is a path γ = γ1γ2 · · · ∈ [k]ω such that

γ1 = i, and Tϕ(xγ[n])3 = γn+1 for n ≥ 1. Label x with the natural number
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`(εγ1 , TW (x)), and the nodes xγ[n], n ≥ 1, with `(εTϕ(xγ[n])3 , TW (xγ[n])). By

the Claim 2, these numbers are strictly decreasing with increasing n along

the path γ. Since the range of function ` is N, there cannot be such a path

γ; a contradiction.

(T4) It is to show that Tϕ satisfies extended box-pushing w.r.t. node x. Suppose

[α]ψ, [β]θ ∈ Tϕ(x)1. Let π ∈ Π
(¬)
ϕ be a program literal, and q′α ∈ Qα,

q′β ∈ Qβ be states such that q′α ∈ ∆α(qα, π), and q′β ∈ ∆β(qβ, π). Further

suppose that [αq′α ]ψ /∈ T (y)1. To show (TW (x), TW (y)) ∈ R(π), assume by

contradiction that (TW (x), TW (y)) ∈ R(π). Since M, TW (x) |= [α]ψ by (∗),
the semantics yields, M, TW (y) |= [αq′α ]ψ. Then, by (∗), [αq′α ]ψ ∈ T (y)1; a

contradiction. Consequently, (TW (x), TW (y)) ∈ R(π). Since M, TW (x) |=
[β]θ by (∗), the semantics yields, M, TW (y) |= [βq′β ]θ. Then, by (∗), it holds

that [βq′β ]θ ∈ T (y)1 which satisfies (T4).

“ ⇐”: Suppose T is a Hintikka-tree for ϕ. Construct a Kripke Structure M =

(W,R, V ) from tree T in the following way. The set of worlds W is defined as

W := [k]∗, the set of nodes in a k-ary tree. For an atomic program a ∈ Π0 define

the accessibility relation R(a) ⊆ W 2 in terms of relations R3(a) and R2(a) as

R(a) := R3(a) ∪R2(a) where

R3(a) := {(x, y) ∈ W 2 | y = xi for some i ∈ [k], and T (y)2 = a}, and

R2(a) := {(x, y) ∈ W 2 | there is a [α]ψ ∈ T (x)1 and q ∈ ∆α(qα,¬a)

such that [αq]ψ /∈ T (y)1}.

The valuation function V (p) for any propositional variable p ∈ Φ is defined as

V (p) := {x ∈ W | p ∈ T (x)1}.

In order to prove that M is a model of ϕ, consider the following claim.

Claim 3 Let ψ ∈ cl(ϕ) be a APDL(¬)-formula, and x ∈ [k]∗ a world in M. Then,

ψ ∈ T (x)1 implies M, x |= ψ.

Proof of Claim Let ψ and x be as in the claim. Define a norm ‖ · ‖ of
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APDL(¬)-formulas in NNF inductively as follows:

‖p‖ := ‖¬p‖ := 0 for p ∈ Φ

‖ψ1 ∧ ψ2‖ := ‖ψ1 ∨ ψ2‖ := 1 + ‖ψ1‖+ ‖ψ2‖
‖〈α〉ψ‖ := ‖[α]ψ‖ := 1 + ‖ψ‖+

∑

θ?∈Σα

‖θ‖

The proof is by induction on the norm ‖ · ‖. The induction base has two cases:

• ψ is a propositional variable p ∈ Φ. This is immediate by definition of M.

• ψ = ¬p. By assumption in section 3.1, ψ is in NNF, i.e., negation occurs

only in front of propositional variables. Thus p ∈ Φ. It follows from ¬p ∈
T (x)1 by (H3) that p /∈ T (x)1. By definition of M, x /∈ V (p). Hence,

M, x |= ¬p.

The induction step is as follows:

• ψ = ψ1 ∨ ψ2 or ψ = ψ1 ∧ ψ2. Since T (x)1 is a Hintikka-set, these cases

are straightforward by Conditions (H1) and (H2), and by the induction

hypothesis.

• ψ = εi = 〈α〉θ. Inductively define a path γ = γ1γ2 · · · ∈ [k]ω as:

– γ1 := i

– γn+1 :=





T (xγ[n])3 if T (xγ[n])3 6= 0

n′ ∈ [k] arbitrary otherwise
.

By (T3), the diamond formula 〈α〉θ is not starving in x. Consequently,

T (xγ[n])3 = 0 for some n ≥ 1. Let n be the smallest such number.

From Condition (M1), it follows that there are states q0, . . . , qn−1 ∈ Qα,

and a word w = t1π1 · · · tn−2πn−2tn−1 ∈ Σ∗
α, such that, for m ∈ [n− 2],

(a) πm = T (xγ[m])2,

(b) there are formulas ψ1, . . . , ψ` ∈ T (xγ[m − 1])1, ` ≥ 0, such that tm =

ψ1? · · ·ψ`? is a sequence of tests, for m ∈ [n− 1]

(c) q0 = qα, qm ∈ ∆α(qm−1, tmπm), qn−1 ∈ ∆α(qn−2, tn−1), and qn−1 ∈ Fα
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Moreover, θ ∈ T (xγ[n − 1])1 by (M1). The induction hypothesis yields

M, xγ[n − 1] |= θ. From (b), it follows by the induction hypothesis that,

for each m ∈ [n− 1], M, xγ[m− 1] |= ψ1, . . . , M, xγ[m− 1] |= ψ`.

In the following, it is shown that (xγ[m−1], xγ[m]) ∈ R(πm). Depending on

πm, distinguish two cases: First, if πm is an atomic program a, then (xγ[m−
1], xγ[m]) ∈ R(a) holds easily by definition of R(a). Second, suppose that

πm is an negated atomic program ¬a. Assume by contradiction that (xγ[m−
1], xγ[m]) /∈ R(¬a). Then, (xγ[m− 1], xγ[m]) ∈ R(a) by the semantics. By

definition of R3(a), (xγ[m− 1], xγ[m]) /∈ R3(a) since T (xγ[m])2 = ¬a; see

(a). Consequently, (xγ[m− 1], xγ[m]) ∈ R2(a) which yields that there is a

[α]ψ ∈ T (x)1 and q ∈ ∆α(qα,¬a) such that [αq]ψ /∈ T (y)1; a contradiction

to (M2).

By (c) it holds that w ∈ L(α). Thus, it follows by the semantics that

(x, xγ[n− 1]) ∈ R(α). Consequently, M, x |= 〈α〉θ.

• ψ = [α]θ. By the semantics, it needs to be shown that, for any world

y ∈ [k]∗, (x, y) ∈ R(α) implies M, y |= θ. Suppose (x, y) ∈ R(α) for some

world y ∈ [k]∗, i.e., there is a word w = w1 · · ·wm ∈ L(α), m ≥ 0, and

worlds x0, . . . , xm ∈ [k]∗ with x = x0R(w1)x1R(w2) · · · xm−1R(wm)xm = y.

Fix a run q0 · · · qm ∈ Q∗
α of program automaton α on w. In the following,

it is shown by induction on i that [αqi
]θ ∈ T (xi)

1 for i ≤ m. The induction

start is immediate. For the induction step, assume that [αqi
]θ ∈ T (xi)

1.

Depending on wi distinguish the following three cases:

(1) wi is a test δ?. From (xi, xi+1) ∈ R(δ?), it follows by the semantics

that xi = xi+1, and M, xi |= δ. Suppose by contradiction that δ ∈
T (xi)

1. The induction hypothesis yields M, xi |= δ, a contradiction

to M, xi |= δ. Thus, it holds that δ /∈ T (xi)
1. By Condition (H5), it

follows that [αqi+1
]θ ∈ T (xi)

1 = T (xi+1)
1.

(2) wi is an atomic program a in Π
(¬)
ϕ . By definition of R(a), (xi, xi+1) ∈

R3(a) ∪ R2(a). Firstly, suppose that (xi, xi+1) ∈ R3(a). The defini-

tion of R3(a) yields xi+1 = xij for some j ∈ [k], and T (xi+1)
2 = a.

Consequently, by the Condition (M2), [αqi+1
]θ ∈ T (xi+1)

1.

Secondly, suppose that (xi, xi+1) ∈ R2(a). By definition of R2(a),

there is a [β]δ ∈ T (xi)
1, and [βq]δ /∈ T (xi+1)

1 for some q ∈ ∆β(qβ, a).

Since [αqi
]θ ∈ T (xi)

1 by assumption, the Condition (T4) yields [αqi+1
]θ ∈
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T (xi+1)
1.

(3) wi is a negated atomic program ¬a in Π
(¬)
ϕ . It follows from the seman-

tics that R(¬a) = W 2\R(a), and by definition of R(a), (xi, xi+1) ∈
W 2\(R3(¬a)∪R2(¬a)). By definition of R2, the fact that (xi, xi+1) /∈
R2(a) implies that, for any box formula [β]δ and state q ∈ Qβ such

that q ∈ ∆β(qβ, a), [β]δ ∈ T (xi)
1 implies [βq]δ ∈ T (xi+1)

1 . Then,

since [αqi
]θ ∈ T (xi)

1 by assumption, [αqi+1
]θ ∈ T (xi+1)

1.

Consequently, it holds that [αqm ]θ ∈ T (x)1. Since qm ∈ Fα, Condition (H4)

yields θ ∈ T (x)1.

J

By Condition (T1), it holds that ϕ ∈ T (ε)1. Then it follows directly from Claim

3 that M is a model of ϕ. qed



Chapter 4

Büchi Automata decide

Satisfiability of PDL(¬)

In the previous chapter, an one-to-one correspondence between APDL(¬)-models

and Hintikka-trees has been established. In the following, an elegant technique

is shown how to check for existence of Hintikka-trees by Büchi tree automata,

and thus, to solve the satisfiability problem of APDL(¬). More precisely, for a

given APDL(¬)-formula ϕ a Büchi tree automaton Bϕ is constructed such that

it accepts precisely the Hintikka-trees for ϕ. Then, checking for emptiness of

Bϕ’s language corresponds to decide satisfiability of ϕ. Subsequently, complexity

issues are discussed yielding that satisfiability of APDL(¬), and thus of PDL(¬),

is ExpTime-complete.

4.1 Büchi Tree Automata

In this section, Büchi tree automata are introduced which will be employed for

devising a decision procedure for APDL(¬).

Definition 4.1.1 (Büchi Tree Automaton, Run, Accepting) Let k be a natu-

ral number. A Büchi Tree Automaton B for k-ary trees is defined as B :=

(Q,M, I, ∆, F ) where Q is a finite set of states, M an alphabet, I ⊆ Q the

set of initial states, ∆ ⊆ Q×M ×Qk a transition relation, and F ⊆ Q is a set of

accepting states.

Let M be a set of labels, and T be a k-ary M -tree. Then, a run of B on T is a

k-ary Q-tree r such that

35
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1. r(ε) ∈ I, and

2. (r(x), T (x), r(x1), . . . , r(xk)) ∈ ∆ for all nodes x ∈ [k]∗.

Let γ ∈ [k]ω be a path. The set infr(γ) of the states in Q that occur infinitely

often in run r along path γ is defined as: infr(γ) := {q ∈ Q | ∀n.∃m.r(γ[n]) =

q implies r(γ[m]) = q}.
A run r of B on T is accepting if, for each path γ ∈ [k]ω, it holds that infr(γ)∩F 6=
∅. The language accepted by B is the set L(B) = {T | there is an accepting run of

B on T}.
¢

Given a Büchi automaton B, the problem whether its language is empty, i.e.,

whether it holds that L(B) = ∅, is called the emptiness problem. The empti-

ness problem for Büchi automata is solvable in quadratic time in the size of the

automata; see [VW86].

4.2 Automata Construction

This section provides the construction of the Büchi tree automaton Bϕ for an

APDL(¬)-formula ϕ. This construction is aiming at that Bϕ accepts exactly the

Hintikka-trees for ϕ.

Denote with P2(ϕ) the set of sets of box formulas {{[α]ψ, [β]θ} | [α]ψ, [β]θ ∈
cl(ϕ)}.

Definition 4.2.1 Let ϕ ∈ APDL(¬) be a formula, and k the number of diamond

formulas in cl(ϕ). Then the Büchi tree automaton for k-ary trees Bϕ is defined

as follows: Bϕ := (Q, Λϕ, I, ∆, F ) such that

• The set Q of states is Q ⊆ Λϕ × 2P2(ϕ) × {®, ↑} such that each state

((Ψ, π, `), P, d) ∈ Q satisfies the following two conditions:

(1) if [α]ψ, [β]θ ∈ Ψ, then {[α]ψ, [β]θ} ∈ P

(2) if {[α]ψ, [β]θ} ∈ P , π ∈ Π(¬), q′α ∈ ∆α(qα, π), q′β ∈ ∆β(qβ, π), and

[αq′α ]ψ /∈ Ψ,

then [βq′β ]θ ∈ Ψ

• The set I of initial states is I := {((Ψ, π, `), P, d) ∈ Q | ϕ ∈ Ψ, and d = ®}.
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• The transitions in ∆ ⊆ Q× Λϕ ×Qk are defined as follows:

((λ0, P0, d0), (Ψ, π, `), (λ1, P1, d1), . . . , (λk, Pk, dk)) ∈ ∆ iff, for all i ∈ [k], the

following holds:

(1) λ0 = (Ψ, π, `),

(2) P0 = Pi,

(3) the k + 1-tuple (λ0, . . . , λk) is matching, and

(4) di =





↑ if d0 = ®, λ3
i 6= 0, and εi ∈ Ψ0

↑ if d0 = ↑, λ3
0 = i, and λ3

i 6= 0

® otherwise

.

• The set F of accepting states is F := {(λ, P, d) ∈ Q | d = ®}.

¢

In order to achieve that the Büchi tree automaton Bϕ accepts precisely the

Hintikka-trees for ϕ, the definition of Bϕ needs to incorporate the conditions

for Hintikka-trees (T1) to (T4). In the following, it is explained how this is done.

Automaton Bϕ is a Büchi tree automaton for k-ary trees, where k is the

number of diamond formulas in the closure cl(ϕ). Since Λϕ is used as alphabet

for Bϕ, Bϕ accepts k-ary Λϕ-trees. In order to see that these trees in the language

L(Bϕ) satisfy the Conditions (T1) to (T4), look at the accepting runs of Bϕ. By

definition of a run, the root of a run is labelled with an initial state in I. Such

an initial state contains ϕ in its Hintikka-set. Then, by Condition (1) in the

definition of ∆, the Hintikka-set in the root of an accepted tree also contains ϕ,

which captures (T1). The node labels of a node and its immediate successors in

an accepted tree are matching by Condition (1) and (2) in the definition of the

transition relation ∆. Thus (T2) is satisfied.

The incorporation of Condition (T3) is more intrigue; it involves the third

components of states and the accepting condition for a run. Intuitively, whenever

a diamond formula is not satisfied at a current node in a Hintikka-tree, it is

pushed further to the next node, where it may be satisfied. The paths along

which diamonds are pushed should not be infinite, otherwise the diamond is

never satisfied—it “starves”. Therefore, Condition (4) in the definition of ∆

marks nodes of a run, which are on a “diamond-push-path”, with ↑ in the third

component of states, and the other nodes with ®. To trace and mark such paths
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the information in the third component of Λϕ-triples is used. This component is

set by (M1)(b) indicating the next node in the path, or by (M1)(a) to zero when

the path ends. Infinite “diamond-push-paths” are avoided using the acceptance

condition for a run. This is done by defining the third component of all accepting

states in F to be ®. Consequently, no path in an accepting run contains infinitely

many consecutive nodes marked with ↑. Then, by Condition (1) in the definition

of ∆, no diamond is starving in a tree accepted by Bϕ which captures (T3).

In the following, the labelling of states in a run with ↑ and ® controlled by

Point (4) in the definition of ∆ is illustrated in more detail. Suppose there is

an unsatisfied diamond formula εi = 〈α〉ψ at a ®-labelled node x in a run; see

Figure 4.1. Then (M1)(b) pushes 〈α〉ψ to xi yielding εj = 〈αq〉ψ. When εj is also

not satisfied at xi, it is pushed further to xij, and so on. The nodes xi, xij, . . .

on the path along which the diamond 〈α〉ψ is pushed are marked with ↑. Now

suppose that there is another unsatisfied diamond formula εk = 〈β〉θ, k 6= j, at

xi. Clearly, 〈β〉θ gets pushed to the node xik. Thus, another “↑-path” starts out

of an already existing one. Observe that the first node xik in the “↑-path” of 〈β〉θ
is marked with ® in order to separate the two “↑-paths”. Otherwise, if two such

paths are not separated by a node marked with ®, this could yield an infinite

“↑-path” by jumping from one “↑-path” to the next along r. Consequently, run

r would not be accepting. In this way, Hintikka-trees satisfying (T3) could be

rejected by Bϕ.

i

xi
j

j
kxi
k

xi x

Figure 4.1: Run of Bϕ where nodes are labelled with ↑ and ®

Finally, consider how Condition (T4) is modelled by using the second com-

ponent of states. Remember that (T4) has a global character since it relates any

two nodes in a Hintikka-tree with each other. For this, the second component of

a state is used as a set of pairs of box formulas. By Point (1) in the definition of

Q and (1) in the definition of ∆, such a set contains each pair of box formulas at a
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node in a tree accepted by Bϕ. Point (2) in the definition of ∆ ensures that every

node in a run is labelled with the same such set. Thus, the second component of

a state in a run makes any pair of box formulas occurring in this run available

for each node. Then, Condition (T4) is realized in an tree accepted by Bϕ with

the help of Point (2) in the definition of Q and (1) in the definition of ∆.

In preparation for a subsequent discussion about the complexity of APDL(¬)’s

decision procedure, the following claim determines the size of the Büchi tree

automaton Bϕ. Preceding this, assume that Bϕ = (Q, Λϕ, I, ∆, F ) is encoded by

just separately writing down its components as sets element by element.

Claim 4 The size of Bϕ is exponential in the length of ϕ.

Proof of Claim The size of the Büchi automaton Bϕ = (Q, Λϕ, I, ∆, F ) is the

length of its coding. By the assumption above, the sum |Bϕ| = |Q|+ |Λϕ|+ |I|+
|∆|+ |F | of the cardinality of Bϕ’s components is polynomial in the length of this

coding.

Denote with n = |cl(ϕ)| + |Π(¬)
ϕ | an upper bound for the size of the closure

cl(ϕ), and the size of the set Π
(¬)
ϕ of program literals in ϕ. Let k denote the

number of diamond formulas in cl(ϕ). Then n is also an upper bound for k.

In the following, it is determined that n = |cl(ϕ)| + |Π(¬)
ϕ | is polynomial in

the length of ϕ. This amounts to show that the cardinality of the sets cl(ϕ) and

Π
(¬)
ϕ is polynomial in the length of ϕ. The case for cl(ϕ) simply holds by Claim 1.

Consider the set Π
(¬)
ϕ . By assumption in Section 3.2, any program automaton α

in ϕ is represented in such a way that the number of program literals in Σα is

polynomial in the size of α. Then the size of Π
(¬)
ϕ , which contains all program

literals in ϕ, is polynomial in the length of ϕ.

Consider the upper bounds for the cardinality of the following sets:
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P2 ⊆ cl(ϕ)× cl(ϕ) Ã |P2| ≤ n2

Hϕ ⊆ 2cl(ϕ) Ã |Hϕ| ≤ 2n

Λϕ = Hϕ × Π(¬)
ϕ ∪ {⊥} × {0, . . . , k} Ã |Λϕ| = |Hϕ| · (|Π(¬)

ϕ |+ 1) · (k + 1)

≤ 2O(n) · O(n2)

Q ⊆ Λϕ × 2P2 × {®, ↑} Ã |Q| ≤ |Λϕ| · 2|P2| · 2
≤ 2O(n2) · O(n2)

I ⊆ Q Ã |I| ≤ |Q|
∆ ⊆ Q× Λϕ ×Qk Ã |∆| ≤ |Q| · |Λϕ| · |Q|n

≤ 2O(n3) · O(n)O(n)

F ⊆ Q Ã |F | ≤ |Q|

Note that the set ∆ has the highest upper bound. Then, |Bϕ| is determined as:

|Bϕ| = |Q|+ |Λϕ|+ |I|+ |∆|+ |F |
= 2O(n3) · O(n)O(n)

Consequently, the size of automaton Bϕ is exponential in the length of ϕ. J

4.3 Recognition of Hintikka-Trees by Büchi Tree

Automata

The following lemma shows that the Büchi tree automaton Bϕ indeed accepts

precisely the Hintikka-trees for ϕ.

Lemma 4.3.1 Let ϕ ∈ APDL(¬) be a formula, and T a k-ary Λ-tree. Then T is

a Hintikka-tree for ϕ iff T ∈ L(Bϕ).

Proof. Let ϕ be an APDL(¬)-formula and k the number of diamond formulas in

cl(ϕ).

“ ⇒”: Suppose T is a Hintikka-tree for ϕ. In the following, it is shown that

T ∈ L(Bϕ), i.e. that there is an accepting run of Büchi automaton Bϕ on T .
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Define the set P of pairs of box formulas in T as

P2(T ) := {{[α]ψ, [β]θ} | [α]ψ, [β]θ ∈ T (x)1 for some x ∈ [k]∗}.

Define a Λϕ × {P2(T )} × {®, ↑}-tree r by induction on the sequence x ∈ [k]∗ as

follows. In the induction base, set r(ε) := (T (ε), P2(T ),®). For the induction

step, let x ∈ [k] be such that r(x) = (T (x), P2(T ), dx) is already defined. For all

i ∈ [k], define r(xi) := (T (xi), P2(T ), dxi) where

dxi :=





↑ if dx = ®, T (xi)3 6= 0, and εi ∈ T (x)1

↑ if dx = ↑, T (x)3 = i, and T (xi)3 6= 0

® otherwise

.

Claim 5 The tree r is an accepting run of Bϕ on T .

Proof of Claim In order to verify that r is a run of Bϕ on T , it is first checked

that r is a Q-tree, i.e. that r(x) ∈ Q for all nodes x ∈ [k]∗. Let x ∈ [k]∗ be

a node. Since T is a Hintikka-tree for ϕ, it holds that T (x) ∈ Λϕ. Moreover,

P2(T ) ⊆ P2(ϕ), and thus r(x) = (T (x), P2(T ), dx) ∈ Λϕ × 2P2(ϕ) × {®, ↑}. It

still needs to be shown that r(x) satisfies Properties (1) and (2) of the definition

of Q.

(1) Holds by definition of set P2(T ).

(2) Suppose that {[α]ψ, [β]θ} ∈ P2(T ), and [αq′α ]ψ /∈ T (x)1 where q′α ∈ ∆α(qα, π)

for some program literal π ∈ Π(¬). Let q′β ∈ ∆β(qβ, π). By definition

of P2(T ), there is a node y ∈ [k]∗ with {[α]ψ, [β]θ} ⊆ T (y)1. Then, the

Condition (T4) yields [βq′β ]θ ∈ T (x)1.

Thus, r is a Q-tree. To show that r is a run of Bϕ on T two conditions in

Definition 4.1.1 need to be checked.

First, r(ε) ∈ I. Since T is a Hintikka-tree for ϕ, Condition (T1) yields that

ϕ ∈ T (ε)1. Hence, r(ε) = (T (ε), P2(T ),®) ∈ I.

Second, it is to check that (r(x), T (x), r(x1), . . . , r(xk)) ∈ ∆ for all nodes x ∈ [k]∗.

According to the definition of ∆, there are four conditions that need to be checked.

Conditions (1) and (2) are immediate by definition of r. Condition (3) holds since

the tuple (T (x), T (x1), . . . , T (xk)) is matching by (T2). Last, the Condition (4)

is easily be checked using the definition of r.
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It remains to show that the run r is accepting. Suppose that it is not, i.e.

that there is a path γ = γ1γ2 · · · ∈ [k]ω such that infr(γ) ∩ F = ∅. By definition

of F , the set infr(γ) only contains states r(x) = (T (x), P, dx) where the third

component is dx = ↑. Consequently, there is a position p in γ such that, for all

m ≥ p, the third component of r(γ[m]) is dγ[m] = ↑. Note that p > 0 since dε = ®
by definition. Let p be the minimal such position, i.e., dγ[p] = ↑, and dγ[p−1] = ®.

Then from the definition of dγ[p], it follows that εγp ∈ T (γ[p− 1])1.

In order to show that the diamond formula εγp is starving in γ[p−1], check that the

path γpγp+1 · · · has the Properties (1) and (2) of Definition 3.3.3. Property (1) is

immediate since εγp ∈ T (γ[p−1])1. With dγ[m] = ↑ and dγ[m+1] = ↑ for any m ≥ p,

the definition of dγ[m+1] yields γm+1 = T (xγ[m])3 which shows Property (2).

The fact that εγp is starving in γ[p−1] is a contradiction to (T3) which is satisfied

by Hintikka-tree T . J

The result T ∈ L(Bϕ) follows directly follows from Claim 5 above.

“ ⇐”: Suppose T ∈ L(Bϕ), i.e. that there is an accepting run, say r, of Bϕ on

T . In the following, it is shown that T is a Hintikka-tree for ϕ. Since Bϕ is a

Büchi tree automaton for k-ary trees with alphabet Λϕ, T is a k-ary Λϕ-tree. Let

x ∈ [k]∗ be a node such that r(x) = (Tx, Px, d
′
x). In the following, it is checked

that T fulfills the conditions for Hintikka-trees (T1) to (T4).

(T1) Let r(ε) = (T (ε), P, d′ε). By Condition (1) in the definition of a run, it holds

that r(ε) ∈ I. Thus, ϕ ∈ T (ε)1 by definition of I.

(T2) By Condition (2) in the definition of a run, (r(x), T (x), r(x1), . . . , r(xk)) ∈
∆. Then it follows by (3) in the definition of ∆ that the k + 1-tuple

(T (x), T (x1), . . . , T (xk)) is matching.

(T3) Suppose by contradiction that there is a diamond formula εi ∈ T (x)1 that

is starving in x. Then there exists a path γ = γ1γ2 · · · ∈ [k]ω such that

γ1 = i, and γn+1 = T (xγ[n])3 for n ≥ 1. In the following, it is shown that

dxγ[n] = ↑ for n ≥ 2. This is done by induction on n. In the induction base,

n = 2. Distinguish two cases:

– d′xγ[1] = ↑. By definition of diamond starvation it holds that T (xγ[1])3 =

γ2 and T (xγ[2])3 = γ3 6= 0. Hence, d′xγ[2] = ↑ by Condition (4) in the

definition of ∆.
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– d′xγ[1] = ®. By definition of diamond starvation it holds that T (xγ[1])3 =

γ2 6= 0 and T (xγ[2])3 = γ3 6= 0. As shown above, (T2) holds for all

nodes x ∈ [k]∗. Thus (M1)(b) applies at x since εi ∈ T (x)1, i = γ1, and

T (xγ[1])3 = γ2 6= 0, and yields εj ∈ T (xγ[1])1 where j = γ2. Then,

Condition (4) in the definition of ∆ yields d′xγ[2] = ↑.

For the induction step, let n > 2 such that dxγ[n] = ↑ is already defined.

By definition of diamond starvation it holds that T (xγ[n])3 = γn+1 and

T (xγ[n + 1])3 = γn+2 6= 0. Then, by Condition (4) in the definition of ∆ it

follows d′xγ[n+1] = ↑.
Consequently, there are only finitely many nodes in the path xγ which are

labelled with ®. This implies that infr(xγ) ∩ F = ∅; a contradiction to r

being an accepting run.

(T4) Suppose [α]ψ, [β]θ ∈ T (x)1. Let π ∈ Π
(¬)
0 be a program literal and q′α ∈

Qα, q′β ∈ Qβ be states such that q′α ∈ ∆α(qα, π), and q′β ∈ ∆β(qβ, π).

Suppose [αq′α ]ψ /∈ T (y)1 for some node y ∈ [k]∗ with r(y) = (Ty, Py, d
′
y). By

Condition (1) in the definition of Q, it holds that {[α]ψ, [β]θ} ∈ Px. Since

Px = Py by (2) in the definition of ∆, Condition (2) in the definition of Q

yields [βq′β ]θ ∈ T (y)1.

qed

4.4 Complexity of PDL(¬)-Satisfiability

Theorem 4.4.1 Satisfiability problem for PDL(¬) is ExpTime-complete.

Proof. From Lemma 3.4.1 and 4.3.1, it follows that, for all APDL(¬)-formulas

ϕ, ϕ is satisfiable if and only if L(Bϕ) 6= ∅. The emptiness problem for Büchi

automata is decidable in quadratic time in the size of the automaton; see [VW86].

By Claim 4, the size of the automaton Bϕ is exponential in the length of ϕ. Hence,

satisfiability of APDL(¬) can be decided in ExpTime. Since formulas of PDL(¬)

can be translated into APDL(¬)-formulas in linear time, satisfiability of PDL(¬)

is in ExpTime which fixes an upper bound. For the lower bound consider the

fragment PDL of PDL(¬) for which satisfiability is ExpTime-hard; see [FL79].

Thus the satisfiability problem for PDL(¬) is ExpTime-complete. qed
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Conclusion

In this work, propositional dynamic logic is extended with negation on atomic

programs resulting in the logic PDL(¬). The satisfiability problem for PDL(¬) was

shown to be decidable and ExpTime-complete. Thus adding negation of atomic

programs to PDL does not make reasoning more difficult, but increases PDL’s

expressiveness in an interesting and useful way. To obtain the complexity result,

an ExpTime-decision procedure was constructed using Büchi automata on infi-

nite trees. This technique extends standard automata-based decision procedures

for PDL [VW86] and for Boolean modal logic [LS01]. Due to the correspondence

of DLs and modal logics, the complexity result for PDL(¬) can be transferred

to its corresponding DL ALC(¬)
reg . Hence, as a corollary it can be stated that

satisfiability of ALC(¬)
reg -concepts is ExpTime-complete.

For future work, it seems interesting to study the complexity of further ex-

tensions of PDL. For instance, it should not be hard to show that adding the

converse operator to PDL(¬) does not increase its complexity. In order to gain

more of PDL¬’s appealing expressiveness without destroying decidability, it is in-

teresting to further investigate logics which allow for more negation on programs.

From a technical viewpoint, this means identifying larger decidable fragments

of the undecidable logic PDL¬. A next interesting candidate for this could be

the fragment of PDL¬ that has only the program operators negation “¬” and

composition “;”. Currently, it is supposed to be unknown whether this logic is

decidable.
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